
®

Data Modeling and Relational
Database Design

...Volume 1 • Student Guide

Course Code 20000GC12

Edition 1.2

July 2001

D33098

Authors

Jan Speelpenning

Patrice Daux

Jeff Gallus

Technical Contributors
and Reviewers

Simmie Kastner

Sunshine Salmon

Satyajit Ranganathan

Stijn Vanbrabant

Joni Lounsberry

Kate Heap

Gabriella Varga

Publishers

Avril Price-Budgen

Fiona Simpson

Don Griffin

Copyright Oracle Corporation, 1998, 1999,2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure
and is also protected by copyright law. Reverse engineering of the software is
prohibited. If this documentation is delivered to a U.S. Government Agency of the
Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend
Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights
software under Federal law, as set forth in subparagraph (c) (1) (ii) of DFARS
252.227-7013, Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of the Worldwide Education Services
group of Oracle Corporation. Any other copying is a violation of copyright law and
may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Right,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find
any problems in the documentation, please report them in writing to Education
Products, Oracle Corporation, 500 Oracle Parkway, Box 659806, Redwood
Shores, CA 94065. Oracle Corporation does not warrant that this document is
error-free.

Oracle, SQL*Plus, SQL*Net, Oracle Developer, Oracle7, Oracle8, Oracle
Designer and PL/SQL are trademarks or registered trademarks of Oracle
Corporation.

All other products or company names are used for identification purposes only,
and may be trademarks of their respective owners.

...
iii®

...
Contents

Contents

Lesson 1: Introduction to Entities, Attributes, and Relationships
Introduction 1-2

Why Conceptual Modeling? 1-4

Entity Relationship Modeling 1-7

Goals of Entity Relationship Modeling 1-8

Database Types 1-9

Entities 1-10

Entities and Sets 1-12

Attributes 1-13

Relationships 1-15

Entity Relationship Models and Diagrams 1-17

Representation 1-18

Attribute Representation 1-19

Relationship Representation 1-20

Data and Functionality 1-23

Types of Information 1-24

Other Graphical Elements 1-27

Summary 1-28

Practice 1—1: Instance or Entity 1-29

Practice 1—2: Guest 1-30

Practice 1—3: Reading 1-31

Practice 1—4: Read and Comment 1-32

Practice 1—5: Hotel 1-33

Practice 1—6: Recipe 1-34

General Instructor Notes 1-35

Practices 1-38

Suggested Timing 1-41

Workshop Interviewing 1-42

...
iv Data Modeling and Relational Database Design

...
Contents

Lesson 2: Entities and Attributes in Detail
Introduction 2-2

Data Compared to Information 2-4

Data 2-5

Tracking Entities 2-7

Electronic Mail Example 2-9

Evolution of an Entity Definition 2-11

Functionality 2-13

Tracking Attributes 2-14

Subtypes and Supertypes 2-17

Summary 2-20

Practice 2—1: Books 2-21

Practice 2—2: Moonlight 2-22

Practice 2—3: Shops 2-23

Practice 2—4: Subtypes 2-24

Practice 2—5: Schedule 2-25

Practice 2—6: Address 2-26

Practice 2—6: Address (continued) 2-27

Lesson 3: Relationships in Detail
Introduction 3-2

Establishing a Relationship 3-4

Relationship Types 3-9

Relationships and Attributes 3-16

Attribute Compared to Relationship 3-18

Relationship Compared to Attribute 3-19

m:m Relationships May Hide Something 3-20

Resolving Relationships 3-25

Normalization During Data Modeling 3-28

Summary 3-32

Practice 3—1: Read the Relationship 3-33

Practice 3—2: Find a Context 3-34

Practice 3—3: Name the Intersection Entity 3-35

Practice 3—4: Receipt 3-36

Practice 3—5: Moonlight P&O 3-37

Practice 3—6: Price List 3-39

...
v®

...
Contents

Practice 3—7: E-mail 3-40

Practice 3—8: Holiday 3-41

Practice 3—9: Normalize an ER Model 3-42

Lesson 4: Constraints
Introduction 4-2

Identification 4-4

Unique Identifier 4-6

Arcs 4-12

Arc or Subtypes 4-16

More About Arcs and Subtypes 4-17

Hidden Relationships 4-18

Domains 4-19

Some Special Constraints 4-20

Summary 4-24

Practice 4—1: Identification Please 4-25

Practice 4—2: Identification 4-26

Practice 4—3: Moonlight UID 4-28

Practice 4—4: Tables 4-29

Practice 4—5: Modeling Constraints 4-30

Lesson 5: Modeling Change
Introduction 5-2

Time 5-4

Date as Opposed to Day 5-5

Entity DAY 5-6

Modeling Changes Over Time 5-7

A Time Example: Prices 5-10

Current Price 5-16

Journalling 5-17

Summary 5-19

Practice 5—1: Shift 5-20

Practice 5—2: Strawberry Wafer 5-21

Practice 5—3: Bundles 5-22

Practice 5—4: Product Structure 5-24

...
vi Data Modeling and Relational Database Design

...
Contents

Lesson 6: Advanced Modeling Topics
Introduction 6-2

Patterns 6-4

Master Detail 6-5

Basket 6-6

Classification 6-7

Hierarchy 6-8

Chain 6-10

Network 6-11

Symmetric Relationships 6-13

Roles 6-14

Fan Trap 6-15

Data Warehouse 6-16

Drawing Conventions 6-17

Generic Modeling 6-19

Generic Models 6-20

More Generic Models 6-21

Most Generic Model 6-22

Summary 6-23

Practice 6—1: Patterns 6-24

Practice 6—2: Data Warehouse 6-25

Practice 6—3: Argos and Erats 6-26

Practice 6—4: Synonym 6-27

Lesson 7: Mapping the ER Model
Introduction 7-2

Why Create a Database Design? 7-4

Transformation Process 7-6

Naming Convention 7-8

Basic Mapping 7-12

Relationship Mapping 7-14

Mapping of Subtypes 7-20

Subtype Implementation 7-23

Summary 7-30

Practice 7—1: Mapping basic Entities, Attributes and Relationships 7-31

Practice 7—2: Mapping Supertype 7-32

...
vii®

...
Contents

Practice 7—3: Quality Check Subtype Implementation 7-33

Practice 7—4: Quality Check Arc Implementation 7-34

Practice 7—5: Mapping Primary Keys and Columns 7-35

Lesson 8: Denormalized Data
Introduction 8-2

Why and When to Denormalize 8-4

Storing Derivable Values 8-6

Pre-Joining Tables 8-8

Hard-Coded Values 8-10

Keeping Details With Master 8-12

Repeating Single Detail with Master 8-14

Short-Circuit Keys 8-16

End Date Columns 8-18

Current Indicator Column 8-20

Hierarchy Level Indicator 8-22

Denormalization Summary 8-24

Practice 8—1: Name that Denormalization 8-25

Practice 8—2: Triggers 8-26

Practice 8—3: Denormalize Price Lists 8-29

Practice 8—4: Global Naming 8-30

Lesson 9: Database Design Considerations
Introduction 9-2

Reconsidering the Database Design 9-4

Oracle Data Types 9-5

Most Commonly-Used Oracle Data Types 9-6

Column Sequence 9-7

Primary Keys and Unique Keys 9-8

Artificial Keys 9-11

Sequences 9-13

Indexes 9-16

Choosing Columns to Index 9-19

When Are Indexes Used? 9-21

Views 9-23

Use of Views 9-24

Old-Fashioned Design 9-25

...
viii Data Modeling and Relational Database Design

...
Contents

Distributed Design 9-27

Benefits of Distributed Design 9-28

Oracle Database Structure 9-29

Summary 9-31

Practice 9—1: Data Types 9-32

Practice 9—2: Artificial Keys 9-34

Practice 9—3: Product Pictures 9-35

Appendix A: Solutions
Introduction to Solutions A-2

Practice 1—1 Instance or Entity: Solution A-4

Practice 1—2 Guest: Solution A-5

Practice 1—3 Reading: Solution A-6

Practice 1—4 Read and Comment: Solution A-7

Practice 1—5 Hotel: Solution A-8

Practice 1—6 Recipe: Solution A-9

Practice 2—1 Books: Solution A-11

Practice 2—2 Moonlight: Solution A-12

Practice 2—3 Shops: Solution A-13

Practice 2—4 Subtypes: Solution A-14

Practice 2—5 Schedule: Solution A-15

Practice 2—6 Address: Solution A-16

Practice 3—1 Read the Relationship: Solution A-18

Practice 3—2 Find a Context: Solution A-19

Practice 3—3 Name the Intersection Entity: Solution A-20

Practice 3—4 Receipt: Solution A-21

Practice 3—5 Moonlight P&O: Solution A-23

Practice 3—6 Price List: Solution A-27

Practice 3—7 E-mail: Solution A-28

Practice 3—8 Holiday: Solution A-30

Practice 3—9: Normalize an ER Model: Solution A-32

Practice 4—1 Identification Please: Solution A-34

Practice 4—2 Identification: Solution A-36

Practice 4—3 Moonlight UID: Solution A-39

Practice 4—4 Tables: Solution A-40

Practice 4—5 Constraints: Solution A-41

...
ix®

...
Contents

Practice 5—1 Shift: Solution A-42

Practice 5—2 Strawberry Wafer: Solution A-43

Practice 5—3 Bundles: Solution A-44

Practice 5—4 Product Structure: Solution A-46

Practice 6—1 Patterns: Solution A-47

Practice 6—2 Data Warehouse: Solution A-49

Practice 6—3 Argos and Erats: Solution A-50

Practice 6—4 Synonym: Solution A-51

Practice 7—1 Mapping basic Entities, Attributes and Relationships:
Solution A-52

Practice 7—2 Mapping Supertype: Solution A-53

Practice 7—3 Quality Check Subtype Implementation: Solution A-54

Practice 7—4 Quality Check Arc Implementation: Solution A-55

Practice 7—5 Primary Keys and Columns: Solution A-56

Practice 8—1 Name that Denormalization: Solution A-57

Practice 8—2 Triggers: Solution A-58

Practice 8—3 Denormalize Price Lists: Solution A-61

Practice 8—4 Global Naming: Solution A-63

Practice 9—1 Data Types: Solution A-64

Practice 9—2 Artificial Keys: Solution A-66

Practice 9—3 Product Pictures: Solution A-67

Appendix B: Normalization
Introduction B-2

Normalization and its Benefits B-3

First Normal Form B-7

Second Normal Form B-9

Third Normal Form B-11

Summary B-13

...
x Data Modeling and Relational Database Design

...
Contents

Introduction to
Entities, Attributes, and

Relationships

...
1-2 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Introduction

Lesson Aim
This lesson explains the reasons for conceptual modeling and introduces the key role
players: entities, attributes, and relationships.

Topic See Page

Introduction 2

Why Conceptual Modeling? 4

Entity Relationship Modeling 7

Goals of Entity Relationship Modeling 8

Database Types 9

Entities 10

Entities and Sets 12

Attributes 13

Relationships 15

Entity Relationship Models and Diagrams 17

Representation 18

Attribute Representation 19

Relationship Representation 20

Data and Functionality 23

1-2

Overview

• Why conceptual modeling?

• Introduction of the Key role players:

– Entities

– Attributes

– Relationships

..
1-3

..
Introduction

®

Objectives
At the end of this lesson, you should be able to do the following:

• Explain why conceptual modeling is important

• Describe what an entity is and give examples

• Describe what an attribute is and give examples

• Describe what a relationship is and give examples

• Draw a simple diagram

• Read a simple diagram

Types of Information 24

Other Graphical Elements 27

Summary 28

Practice 1—1: Instance or Entity 29

Practice 1—2: Guest 30

Practice 1—3: Reading 31

Practice 1—4: Read and Comment 32

Practice 1—5: Hotel 33

Practice 1—6: Recipe 34

Topic See Page

...
1-4 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Why Conceptual Modeling?
This is a course on conceptual data modeling and physical data modeling. Why do you
need to learn this? Why invest time in creating entity models when you need tables?
Why bother about business functionality and interviews and feedback sessions when
you need programs? In this course you learn why. You learn why it is a wise decision
to spend time in modeling and why it is a good investment. You will learn even more,
including how to create, read, and understand models and how to check them, as well
as how to derive table and key definitions from them.

This list shows the reasons for creating a conceptual model. The most important
reason is that a conceptual model facilitates the discussion on the shape of the future
system. It helps communication between you and your sponsor as well as you and your
colleagues. A model also forms a basis for the default design of the physical database.
Last but not least, it is relatively cheap to make and very cheap to change.

What You Learn in This Course
In this course you learn how to analyze the requirements of a business, how to
represent your findings in an entity relationship diagram and how to define and refine
the tables and various other database objects from that model.

In summary, as a result of what you learn in this course you will know:

• How to model the information needs of a business and the rules that apply.

• Which tables you need in your database, and why.

• Which columns you need in your tables, and why.

• Which constraints and other database objects you require.

1-3

Why Create a Conceptual Model?

• It describes exactly the information needs of the
business

• It facilitates discussion

• It helps to prevent mistakes, misunderstanding

• It forms important “ideal system” documentation

• It forms a sound basis for physical database
design

• It is a very good practice with many practitioners

..
1-5

..
Why Conceptual Modeling?

®

You will also know how to explain this to:

• Your sponsors.

• The developers.

• Your fellow designers.

The House Building Metaphor
Imagine someone who wants to have a house built. Initially, the house only exists in
the minds of the future home owners as ideas, or as pieces of various dreams.
Sometimes the future inhabitants may not even know what they want, or know if what
they want is even feasible. Dreams may be full of internal contradictions and
impossibilities.This is not a problem in the dream world, but in the physical realm any
inconsistencies and obstacles need to be resolved before someone can construct the
house.

A building contractor needs a solid plan, a set of blueprints of the house with a
description of the materials to be used, the size of the roof beams, the capacity of the
plumbing and many, many other things. The contractor follows the plan, and has the
knowledge to construct what is on the blueprint. But how do the ideas of the home
owner become the blueprint for contractor? This is where the architect becomes
involved.

1-4

Between Dream and Reality...

...
1-6 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

The Architect
The architects are the intermediary between sponsor and constructor. They are trained
in the skills of translating ideas into models. The architect listens to the description of
the ideas and asks all kinds of questions. The architect’s skills in extracting the ideas,
putting it down in a format that allows discussion and analysis, giving advice,
describing sensible options, documenting it, and confirming it with the home owners,
are the cornerstones to providing the future home-owner with a plan of the home they
want.

Sketches
The architect’s understanding of the dreams is transformed into sketches of the new
house—only sketches! These consist of floor plans and several artist’s impressions,
and show the functional requirements of the house, not the details of the construction.
This is a conceptual model, the first version.

Easy Change
If parts of the model are not satisfactory or are misunderstood, the model can easily be
changed. Such a change would only need a little time and an eraser, or a fresh sheet of
paper. Remember, it is only changing a model. The cost of change at this stage is very
low. Certainly it is far less costly than making changes to the floor plan or roof
dimensions after construction has started. The house model is then reviewed again,
and further changes are made. The architect continues to explore and clarify the
dreams and make alternative suggestions until all controversial issues are settled, and
the model is stable and ready for the final approval by the sponsor.

Technical Design
Then the architect converts the model into a technical design, a plan the contractor can
use to build the house. Calculations are made to determine, for example, the number of
doors, how thick the walls and floor beams must be, the dimensions of the plumbing,
and the exact construction of the roof. These are technical issues that need not involve
the customer.

What? as Opposed to How?
While the conceptual model addresses the What? phase in the process, the design
addresses the question of How? it is to be constructed.

Conceptual modeling is similar to the work of an architect—transforming things that
only exist in people’s minds into a design that is sufficiently substantial to be created
physically.

..
1-7

..
Entity Relationship Modeling

®

Entity Relationship Modeling

What is Involved in Modeling?
Entity Relationship modeling is about modeling a business. To be more precise: it is
about modeling the data requirements for a business based on the current or desired
functionality of the future system.

To model a business you have to understand to a fair degree of detail what the business
is about.

Entity Relationship modeling is a technique used to describe the shared understanding
of the information needs of a business. It is a well-established technique that leads to
diagrams which are quite easy to read and therefore also easy to check.

1-5

Entity Relationship Modeling

• Models business,
not implementation

• Is a well-established
technique

• Has a robust syntax

• Results in easy-to-
read diagrams…

...although they may
look rather complex
at first sight

SUPPLIER
SUPPLIER CODE
o EMAIL
* APPROVED
* REFERENCE

OTHER ORGANIZATION

ORGANIZATION
o EMAIL
* NAME
o POSTAL CODE
o REGION
o STREET
o TOWN
o TELEPHONE NUMBER
o CONTACT NAME
o CONTACT EXTENSION

MEMBERSHIP TYPE
CODE
* DESCRIPTION
* DISCOUNT PERCENTAGE
o STANDARD FEE

MEMBERSHIP PERIOD
START DATE
o ACTUAL FEE PAID

MEMBERSHIP
NUMBER
o TERMINATION REASON
o TERMINATION DATE

EMPLOYEE
* POSITION
* LAST NAME
o FIRST NAME
o OTHER INITIALS
o EMAIL

BOOKING
* BOOK DATE
o EXPIRE DATE
o NOTIFY DATE
o RESERVE DATE
o STAFF REMARKS

RENTAL ITEM
LINE NO
* RENTAL PERIOD
* PRICE PAID
o RETURN DATE
o STAFF REMARKS

RENTAL
* RENTAL DATE
o STAFF REMARKS
o COMPLETED

COPY
* ACQUIRE DATE
* PURCHASE COST
* SHELF CODE
o CONDITION
o CUSTOMER REMARKS
...

REVIEW
SEQUENCE
* ARTICLE
* HOT
o AUTHOR
o URL

PUBLICATION
REFERENCE
* TITLE
o VOLUME
o ISSUE
o PUBLISH DATE

CUSTOMER
o EMAIL
* DESIGNATION
* FIRST NAME
* LAST NAME
o OTHER INITIALS
* STREET
* TOWN
* POSTAL CODE
* REGION
o HOME PHONE
o WORK EXTENSION
o WORK PHONE
o PHOTOGRAPH
o STAFF REMARKS

CATALOG
REFERENCE
o CATALOG DAT
o DESCRIPTION

MOVIE
* CATEGORY
o AGE RATING
* DURATION
* MONOCHROME
o AUDIO
o PREVIEW

GAME
* CATEGORY
* MEDIUM
o MINIMUM MEMOR

TITLE
PRODUCT CODE
* TITLE
o DESCRIPTION

PRICE LEVEL
CODE
* DESCRIPTION

PRICE HISTORY
EFFECTIVE DATE
* PRICE
* DEFAULT DAYS
* OVERDUE RATE

for

used fo
r

of

renewed fo
r

of

the type oheld by

the holder o

held by

the holder of

available

requested
against the

requestor
of

authorized by

responsible
for

the reservation for

reserved on

for

on

cancelled by

the cancellor of

approved by

responsible for

of

reviewed in

at

applied to

the rental for

fulfilled as

part of

composed of

for

rented on

approved by

responsible
for

part of

parent organization o

acquired fro
m

the source of

of

available as

for

defined by

managed b

the manager o

in

the source of

in

the source of

...
1-8 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Goals of Entity Relationship Modeling

The goals of conceptual data modeling are to ensure that:

• All pieces of information that are required to run a business properly are
recognized.

Models should be complete. Requirements should be known before you start
implementing. Dependencies must be clear.

• Every single piece of required information appears only once in the model.

This is an important goal. As soon as a system stores particular information twice,
you run into the possibility that this information is not the same in both places. If
you are a user of an information system and discover inconsistencies in the data,
which information would you to trust?

This goal implies that an ideal system does not contain derivable information.

• In the future system, the information is made available in a predictable, logical
place; related information is kept together.

• A proper Entity Relationship model leads to a set of logically coherent tables.

1-6

Goals of Entity Relationship Modeling

• Capture all required information

• Information appears only once

• Model no information that is derivable from other
information already modeled

• Information is in a predictable, logical place

..
1-9

..
Database Types

®

Database Types

Entity Relationship modeling is independent of the hardware or software used for
implementation. Although you can use an Entity Relationship model as a basis for
hierarchical databases, network databases, and relational databases, it is strongly
connected to the latter.

1-7

Database Types

Hierarchical
Relational

Network

ER Model

...
1-10 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Entities
This section gives definitions and examples.

Definition of an Entity
There are many definitions and descriptions of an entity. Here are a few; some are
quite informal, some are very precise.

• An entity is something of interest.

• An entity is a category of things that are important for a business, about which
information must be kept.

• An entity is something you can make a list of, and which is important for the
business.

• An entity is a class or type of things.

• An entity is a named thing, usually a noun.

Two important aspects of an entity are that it has instances and that the instances of the
entity somehow are of interest to the business.

Note the difference between an entity and an instance of an entity.

1-8

Entity

• An Entity is:

– “Something” of significance to the business
about which data must be known.

– A name for the things that you can list.

– Usually a noun.

• Examples: objects, events

• Entities have instances.

..
1-11

..
Entities

®

More on Entities

The illustration shows examples of entities and examples of instances of those entities.

Note:

• There are many entities.

• Some entities have many instances, some have only a few.

• Entities can be:

– Tangible, like PERSON or PRODUCT.

– Non-tangible, like REQUIRED SKILL LEVEL.

– An event, like ELECTION.

• An instance of one entity may be an entity in its own right: the instance “violinist”
of entity JOB could be the name of another entity with instances like “David
Oistrach”, “Kyung-Wha Chung.”

1-9

Entities and Instances

PERSON

PRODUCT

PRODUCT TYPE

EMPLOYMENT CONTRACT

JOB

SKILL LEVEL

TICKET RESERVATION

PURCHASE

ELECTION

PRINTER PREFERENCE

DOCUMENT VERSION

Mahatma Gandhi

2.5 x 35 mm copper nail

nail

my previous contract

violinist

fluent

tonight: Hamlet in the Royal

the CD I bought yesterday

for parliament next fall

…

...

...
1-12 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Entities and Sets

You can regard entities as sets. The illustration shows a set JOB and the set shows
some of its instances. At the end of the entity modeling process entities are
transformed into tables; the rows of those tables represent an individual instance.

During entity modeling you look for properties and rules that are true for the whole
set. Often you can decide on the rules by thinking about example instances. The
following lessons contain many examples of this.

Set Theory
Entity relationship modeling and the theory of relational databases are both based on a
sound mathematical theory, that is, set theory.

1-10

Entities and Sets

dish washer

JOB

waiter

cook
waitress

manager

financial controller
porter

piano player

• An entity represents a set of instances that are of
interest to a particular business.

..
1-13

..
Attributes

®

Attributes

What is an Attribute?
An attribute is a piece of information that in some way describes an entity. An attribute
is a property of the entity, a small detail about the entity.

Entities Have Attributes
For now, assume that all entities have at least one attribute. Later, you discover
exceptions to this assumption. The attribute describes, quantifies, qualifies, classifies,
and specifies an entity. Usually, there are many attributes for an entity, but again, we
are only interested in those attributes that are of importance to the business.

Values and Data Types
Attributes have values. An attribute value can be a number, a character string, a date,
an image, a sound, and even more. These are called data types or formats. Usually the
values for a particular attribute of the instances of an entity all have the same data type.
Every attribute has a data type.

Attribute is Single Valued
An attribute for an entity must be single valued. In more precise terms, an entity
instance can have only one value for that attribute at any point in time. This is the most
important characteristic of an attribute.

The attribute value, however, may change over time.

1-11

Attribute

• Also represents something of significance to the
business

• Is a single valued property detail of an entity

• Is a specific piece of information that:

– Describes

– Quantifies

– Qualifies

– Classifies

– Specifies

an entity.

...
1-14 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Attribute Examples

Note:

• Attribute Town of Residence for EMPLOYEE is an example of an attribute that is
quite likely to change, but is probably single valued at any point in time.

• Attribute Shoe Size may seem to be of no importance, but that depends on the
business: if the business supplies industrial clothing to its employees, this may be a
very sensible attribute to take.

• Attribute Family Name may not seem to be single-valued for someone with a
double name. This double name, however, can be regarded as a single string of
characters that forms just one name.

Volatile Attributes
Some attributes are volatile (unstable). An example is the attribute Age. Always look
for nonvolatile, stable, attributes. If there is a choice, use the nonvolatile one. For
example, use the attribute Birth Date instead of Age.

1-12

Attribute Examples

Entity

EMPLOYEE

CAR

ORDER

JOB

TRANSACTION

EMPLOYMENT
CONTRACT

Attribute

Family Name, Age, Shoe Size,

Town of Residence, Email, ...

Model, Weight, Catalog Price, …

Order Date, Ship Date, …

Title, Description, ...

Amount, Transaction Date, …

Start Date, Salary, ...

..
1-15

..
Relationships

®

Relationships

Entities usually have relationships. Here are some examples.

1-13

Relationships

• Also represent something of significance to the
business

• Express how entities are mutually related

• Always exist between two entities (or one entity twice)

• Always have two perspectives

• Are named at both ends

1-14

Relationship Examples

EMPLOYEES have JOBS

JOBS are held by EMPLOYEES

PRODUCTS are classified by a PRODUCT TYPE

PRODUCT TYPE is a classification for a PRODUCT

PEOPLE make TICKET RESERVATIONS

TICKET RESERVATIONS are made by PEOPLE

...
1-16 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

A relationship connects two entities. A relationship represents a significant
dependency of two entities—always two entities.

A particular relationship can be worded in many ways: An EMPLOYEE has a JOB, or
an EMPLOYEE performs a JOB, or an EMPLOYEE holds a JOB.

An EMPLOYEE applies for a JOB expresses a different relationship. Note that this
example shows that two entities can have more than one relationship.

Based on what you know about instances of the entities, you can decide on four
questions:

• Must every employee have a job?

In other words, is this a mandatory or optional relationship for an employee?

• Can employees have more than one job?

and

• Must every job be done by an employee?

In other words, is this a mandatory or optional relationship for a job?

• Can a job be done by more than one employee?

Later on we will see why these questions are important and why (and how) the
answers have an impact on the table design.

1-15

JOB

waiter

cook
waitress

manager

financial controller
porter

piano player

Employees have Jobs

Ahmed

Jill
Adam

Maria

EMPLOYEE

Numerical observation:

• All EMPLOYEES have a JOB

• No EMPLOYEE has more than one JOB

• Not all JOBS are held by an EMPLOYEE

• Some JOBS are held by more than one EMPLOYEE

Shintaro dish washer

..
1-17

..
Entity Relationship Models and Diagrams

®

Entity Relationship Models and Diagrams
An Entity Relationship Model (ER Model) is a list of all entities and attributes as well
as all relationships between the entities that are of importance. The model also
provides background information such as entity descriptions, data types and
constraints. The model does not necessarily include a picture, but usually a diagram of
the model is very valuable.

An Entity Relationship Diagram (ER Diagram) is a picture, a representation of the
model or of a part of the model. Usually one model is represented in several diagrams,
showing different business perspectives.

Graphical Elements
Entity Relationship diagramming uses a number of graphical elements. These are
discussed in the next pages.

Unfortunately, there is no ISO standard representation of ER diagrams. Oracle has its
own convention. In this course we use the Oracle diagramming technique, which is
built into the Oracle Designer tool.

...
1-18 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Representation

Entity

In an ER diagram entities are drawn as soft boxes with the entity name inside. Borders
of the entity boxes never cross each other. Entity boxes are always drawn upright.

Throughout this book, entity names are printed in capitals. Entity names are preferably
in the singular form; you will find that diagrams are easier to read this way.

Box Size
Neither the size of an entity, nor its position, has a special meaning. However, a reader
might construe a larger entity to be of more importance than a smaller one.

Where Entities Lead
During the design for a relational database, an entity usually leads to a table.

1-16

Entity Representation in Diagram

• Drawn as a “softbox”

• Name singular

• Name inside

• Neither size,
nor position
has a special
meaning

EMPLOYEE

TICKET
RESERVATION

JOB ASSIGNMENT

JOB

ORDER

E
LE

C
T

IO
N

During design, entities usually lead to tables.

..
1-19

..
Attribute Representation

®

Attribute Representation

Attributes are listed within the entity box. They may be preceded by a * or an O. These
symbols mean that the attribute is mandatory or optional, respectively. Throughout
this book attributes are printed in Initial Capital format.

* Mandatory: It is realistic to assume that for every instance of the entity the
attribute value is known and available when the entity instance is recorded and that
there is a business need to record the value.

o Optional: The value of the attribute for an instance of the entity may be unknown
or unavailable when that instance is recorded or the value may be known but of no
importance.

Not all attributes of an entity need to be present in the diagram, but all attributes must
be known before making the table design. Often only a few attributes are shown in a
diagram, for reasons of clarity and readability. Usually you choose those attributes that
help understanding of what the entity is about and which more or less “define” the
entity.

Where Attributes Lead
During design an attribute usually leads to a column. A mandatory attribute leads to a
not null column.

1-17

Attributes in Diagrams

*
o

EMPLOYEE
 Family Name
 Address
o Birth Date
o Shoe Size
o Email

JOB
 Title
o Description

During design, attributes lead to columns.

*
*

*

Mandatory attribute, that is, known and available
for every instance

Optional attribute, that is, unknown or unimportant
to know for some instances

...
1-20 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Relationship Representation
Relationships are represented by a line, connecting the entities. The name of the
relationship, from either perspective, is printed near the starting point of the
relationship line.

The shape of the end of the relationship line represents the degree of the relationship.
This is either one or many. One means exactly one; many means one or more.

In the above example, it is assumed that JOBS are held by one or more EMPLOYEES.
This is shown by the tripod (or crowsfoot), at EMPLOYEE.

An EMPLOYEE, on the other hand, is assumed here to have exactly one JOB. This is
represented by the single line at JOB.

The relationship line may be straight, but may also be curved; curves have no special
meaning, nor does the position of the starting point of the relationship line. The
diagram below represents exactly the same model, but arguably less clearly.

1-18

 Jobs are held by one or more employees

An employee has exactly one jobhas

Relationship in Diagrams

EMPLOYEE JOB
 has

held by

held by

exactly one

one or more

During design, relationships lead to foreign keys.

has

held by

EMPLOYEE

JOB

..
1-21

..
Relationship Representation

®

Mandatory and Optional Relationships
Relationships can be mandatory or optional, in the same way as attributes. Mandatory
relationships are drawn as a solid line; optional relationships as dotted lines.

Relationship and Relationship Ends
Here, the relationship between EMPLOYEE and JOB is modeled using the optional
relationship end and mandatory relationship end notation.

When you read the relationship, imagine it split into two perspectives:

Every EMPLOYEE has exactly one JOB or, alternatively:

An EMPLOYEE must have exactly one JOB.

A JOB may be held by one or more EMPLOYEES.

mandatory: optional:

EMPLOYEE JOBhas

held by

hasEMPLOYEE JOB

held by

hasEMPLOYEE JOB

held by

...
1-22 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Reading a Relationship End

A relationship from entity1 to entity2 must be read:

Each entity1 {must be | may be}
relationship_name

{one or more | exactly one} entity2

Where Relationships Lead
During design relationships lead to foreign keys and foreign key columns. An optional
relationship leads to non mandatory foreign key columns.

Relationship Name in the Diagram
Throughout this book relationship names in the diagrams are printed in lower case
italics.

For reasons of space and readability of the diagrams in this book, relationship names
are sometimes kept very short, and sometimes only a preposition is used.

1-24

”“Each P split into
must be
may be one or more Qs

exactly one Q“Each P may be split into one or more Qs”

“Each Q part of ”must be
may be one or more Ps

exactly one P“Each Q must be part of exactly one P”

Reading a Relationship End

P split into Q
part of

..
1-23

..
Data and Functionality

®

Data and Functionality

Functions Drive the Conceptual Data Model
Although this course does not cover the method of function modeling, functions are
present at any time, in any discussion on a conceptual data model. You cannot talk
about, nor judge a conceptual data model without knowing or assuming the desired
functionality of the future system.

Often a conceptual data model discussion may seem to be about the data structure but
actually is about functionality, usually unclear or undetermined pieces of functionality.
The language used is that of the conceptual data model, the representation used is that
of the entity relationship diagram, but the discussion in fact is about functionality.

Functions drive the conceptual data model. The question “Do we need to take Shoe
Size for an employee?” can only be answered by answering positively the question “Is
there a business function that needs it?”

Consider the conceptual data model as the shadow of the functions of a system.

Most of the time during this course, functionality is only briefly sketched, or merely
assumed, to prevent you from reading page after page of functional descriptions.

1-25

Functions Drive Data

• Business functions are always present.

– Explicit

– Assumed

• Business functions need data.

• An entity, attribute, or relationship may be
modeled because:

– It is used by a business function.

– The business need may arise in the near
future.

...
1-24 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Types of Information

What Information is Available?
The illustration shows a piece of a weather forecast torn from a European newspaper,
showing various types of information. What are the types of information? One of the
first things you will see are, for example, “København”, “Bremen”. These are cities, or
more precisely, names of cities. The little drawings represent the type of weather;
these drawings are icons. The next columns are temperatures, probably maximum and
minimum; the arrows indicate wind direction and the number next to it is the wind
force. Then there is a date on top which is the forecast date. Therefore we have:

• City

• Name of the city (such as “København”)

• Weather type (such as “cloudy with rain”)

• Icon of the weather type

• Minimum temperature

• Maximum temperature

• Wind direction arrow

• Wind force

• Forecast date

Is this all?

No, you can find out even more information. To do this you have to have some
“business” knowledge. In this case it is geographical knowledge.

1-26

Weather Forecast

���������
	
����
	�
��
�������
�����
���
	
�������
��
�
	�
�����

����

���

����

���

����

	�

	��

���

�����
����
�

�

�

	

�

�

�

	

..
1-25

..
Types of Information

®

You may notice that the cities in the weather forecast are not printed in a random order.
The German cities (Bremen, Berlin and Munchen) are grouped together, just as the
French cities are. Moreover, the cities are not ordered alphabetically by name but seem
to be ordered North-South. Apparently this report “knows” something to facilitate the
grouping and sorting. This could be:

• Country of the city

• Geographical position of the city

and maybe even

• Geographical position of the country

Next Step
Try to identify which of the above types of information is probably an entity, which is
an attribute and which is a relationship.

City and Country are easy. These are entities, both with, at least, attribute Name and
Geographical Position. Weather Type could also be an entity as there is an attribute
available: Icon. For the same reason there could be an entity Wind Direction. Now,
where does this leave the temperatures and forecast date? These cannot be attributes of
City as the forecast date is not single value for a City: there can be many forecast dates
for a city. This is how you discover that there is still one entity missing, such as
Forecast, with attributes Date, Minimum and Maximum Temperature, Wind Force.

1-27

(Copenhagen)

Bremen

Berlin

(Munich)

Bruxelles

Paris

Bordeaux

Amsterdam

UK

FR

DE

DK

CH

NL

BE

IT

LU

IR

København

München

(Brussels)

...
1-26 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

There are likely to be relationships between:

• COUNTRY and CITY

• CITY and FORECAST

• FORECAST and WEATHER TYPE

• FORECAST and WIND DIRECTION.

In this entity relationship diagram some assumptions are made about the relationships:

• Every FORECAST must be about one CITY, and

not all CITIES must be in a FORECAST—but may be in many

• Every CITY is located in a COUNTRY, and

every COUNTRY has one or more CITIES

• A FORECAST must not always contain a WEATHER TYPE, and

not all WEATHER TYPES are in a FORECAST—but may be in many

• A FORECAST must not always contain a WIND DIRECTION, and

not all WIND DIRECTIONS are in a FORECAST—but may be in many

The rationale behind these assumptions is that we consider an incomplete FORECAST
still to be a FORECAST, unless we do not know the date or the CITY the FORECAST
refers to.

1-28

located in

having

referring to

referred in

about

Weather Forecast, a Solution

WEATHER TYPE
* Icon
* Description

WIND DIRECTION
* Icon
* Description

COUNTRY
* Name
o Geographical
 Position

CITY
* Name
o Geographical
 Position

FORECAST
* Date
o Minimum
 Temperature
o Maximum
 Temperature
o Wind Force

referring to

referred in

subject of

..
1-27

..
Other Graphical Elements

®

Other Graphical Elements

The illustration shows all graphical elements you can encounter in a ER diagram. You
saw earlier how to represent an entity, an attribute, and a relationship.

The lessons following this one discuss the remaining four types of elements:

• Subtype, represented as an entity within the boundary of another entity

• Unique identifier, represented as a # in front of an attribute or as a bar across a
relationship line

• Arc, represented as an arc-shaped line across two or more relationship lines

• Nontransferability symbol, represented as a diamond across a relationship line

Limited Set of Graphical Elements
As you can see, the set of graphical elements in ER diagramming is very limited. The
complexity of ER modeling is clearly not in the representation. The main complexity
of ER modeling lies in the understanding of the business, in the recognition of the
entities that play a role in that business, the relevant attributes that describe the
entities, and the relationships that connect them.

1-29

Graphical Elements of ER Diagram

Subtype

##

Unique identifier

Arc

Nontransferability

** **o

o

Entity

Attribute

Relationship

...
1-28 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Summary
Conceptual models are created to model the functional and information needs of a
business. These models may be based on the current needs but can also be a reflection
of future needs. This course is about modeling the information needs. Functional
needs cannot be ignored while modeling data, as these form the only legitimate basis
for the data model. Ideally, the conceptual models are created free of any consideration
of the possible technical problems during implementation. Consequently the model is
only concerned with what the business does and needs and not with how it can be
realized.

Entity Relationship modeling is a well-established technique for catching the
information needs. The ER model forms the basis for the technical data model.
Technical considerations take place at that level.

Entity Relationship diagrams provide an easy-to-read and relatively easy-to-create
diagrammatic representation of the ER model. These diagrams initially form the
foundation for the discussion of business needs. Later they provide the best possible
map of a future system.

The diagrams show a fair amount of detail, but are not too detailed to become
cluttered.

1-30

Summary

• ER Modeling models information conceptually

• Based on functional business needs

• “What”, not “How”

• Diagrams provide easy means of communication

• Detailed, but not too much

..
1-29

..
Practice 1—1: Instance or Entity

®

Practice 1—1: Instance or Entity

Goal
The goal of this practice is to learn to make a distinction between an entity, an
attribute, and an instance of an entity.

Your Assignment
List which of the following concepts you think is an Entity, Attribute, or Instance. If
you mark one as an entity, then give an example instance. If you mark one as an
attribute or instance, give an entity. For the last three rows, find a concept that fits.

1-32

Practice: Instance or Entity?

PRESIDENT

ELLA FITZGERALD

DOG

ANIMAL

HEIGHT

 E CAR

 A CAR

 I CAR

Concept E/A/I? Example Instance or Entity

...
1-30 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Practice 1—2: Guest

Goal

The goal of this practice is to recognize attributes for an entity.

Scenario
On the left side of the illustration are three entities that play a role in a hotel
environment: GUEST, HOTEL, and ROOM. On the right is a choice of attributes.

Your Assignment
Draw a line between the attribute and the entity or entities it describes.

1-33

Practice: Guest

GUEST

 HOTEL

ROOM

Address

Arrival Date

Family Name

Room Number

Floor Number

Number of Beds

Number of Parking Lots

Price

TV set available?

..
1-31

..
Practice 1—3: Reading

®

Practice 1—3: Reading

Goal
The goal of this practice is to read a relationship.

Your Assignment
Which text corresponds to the diagram?

1-34

Practice: Reading

Each EMPLOYEE may be assigned to one or more DEPARTMENTS

Each DEPARTMENT must be responsible for one or more EMPLOYEES

Each EMPLOYEE must be assigned to one or more DEPARTMENTS

Each DEPARTMENT may be responsible for one or more EMPLOYEES

Each EMPLOYEE must be assigned to exactly one DEPARTMENT

Each DEPARTMENT may be responsible for exactly one EMPLOYEE

EMPLOYEE DEPARTMENTassigned to

responsible for

A

B

C

...
1-32 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Practice 1—4: Read and Comment

Your Assignment
1 Read each of the relationships in the model presented here.

2 Next, comment on the relationship you just read. Use your knowledge of people
and towns.

1-35

Practice: Read and Comment

TOWN
birthplace of

born in

living in

home town of

mayor of

with mayor

PERSON

visitor of

visited by

..
1-33

..
Practice 1—5: Hotel

®

Practice 1—5: Hotel

Your Assignment
1 Comment on the relationships of the model presented here.

2 Make up two more possible relationships between PERSON and HOTEL that
might be of some use for the hotel business.

1-36

Practice: Hotel

HOTEL
* Address

STAY
* Arrival Date

ROOM
* Room Number

PERSON
* Name

in

the lodging
for

of

with

in

with

guest in

host of

...
1-34 Data Modeling and Relational Database Design

..
Lesson 1: Introduction to Entities, Attributes, and Relationships

Practice 1—6: Recipe

Goal
The goal of this practice is to discover the various types of information that are present
in a given source of information.

Scenario
You work as an analyst for a publishing company that wants to make recipes available
on the Web. It wants the public to be able to search for recipes in a very easy way.
Your ideas about easy ways are highly esteemed.

Your Assignment
1 Analyze the example page from Ralph’s famous Raving Recipes book and list as

many different types of information that you can find that seem important.

2 Group the various types of information into entities and attributes.

3 Name the relationships you discover and draw a diagram.

1-37

Açorda alentejana
bread soup from Portugal

Ralph’s Raving Recipes

Cut the onion into small pieces and fry together
with the garlic. Wash the red pepper, cut it in
half, remove the seeds and fry it for at least 15

page 127

preparation

vegetarian
15 min
easy

1 onion
4 cloves of garlic
1 red pepper
1 liter of vegetable broth
4 tablespoons of olive oil
4 fresh eggs
1 handful of parsley or coriander
salt, pepper
9-12 slices of (old) bread

for 4 persons:

Soups

Entities and Attributes
in Detail

..
Lesson 2: Entities and Attributes in Detail
Introduction

Lesson Aim
This lesson provides you with a detailed discussion about entities and attributes and
how you can track these in various sources of information. The lesson looks at the
evolution of an entity definition and the concept of subtype and supertype entity. The
lesson also introduces the imaginary business of ElectronicMail Inc.which is used in
many examples throughout this book.

Topic See Page

Introduction 2

Data Compared to Information 4

Data 5

Tracking Entities 7

Electronic Mail Example 9

Evolution of an Entity Definition 11

Functionality 13

Tracking Attributes 14

Subtypes and Supertypes 17

Summary 20

Practice 2—1: Books 21

2-2

Overview

• Data compared to information

• Entities and how to track them down

• Attributes

• Subtypes and supertypes
...
2-2 Data Modeling and Relational Database Design

..
Introduction
Objectives
At the end of this lesson, you should be able to do the following:

• Track entities from various sources

• Track attributes from various sources

• Decide when you should model a piece of information as an entity or an attribute

• Model subtypes and supertypes

Practice 2—2: Moonlight 22

Practice 2—3: Shops 23

Practice 2—4: Subtypes 24

Practice 2—5: Schedule 25

Practice 2—6: Address 26

Topic See Page
..
2-3®

..
Lesson 2: Entities and Attributes in Detail
Data Compared to Information

The words data and information are often used as if they are synonyms. Nevertheless,
they have a different meaning.

Data: Raw material, from which you can draw conclusions. Facts from which you
can infer new facts. A typical example is a telephone directory. This is a huge
collection of facts with some internal structure.

Information: Knowledge, intelligence, a particular piece of data with a special
meaning or function. Often information leads to data. In reverse, information is often
the result of the deriving process from data—this may be a particular piece of data. If
data is structured in some way, this is very helpful in the process of finding
information. To expand the telephone directory data example, information is the
telephone number of your dentist or the home address of a colleague.

2-3

Data Compared to Information

• Data

– Facts given from which other facts may be
inferred

– Raw material

Example: Telephone Directory

• Information

– Knowledge, intelligence

Example: Telephone number of florist
...
2-4 Data Modeling and Relational Database Design

..
Data
Data

Conceptual Data Modeling
Conceptual data modeling is the examination of a business and business data in order
to determine the structure of business information and the rules that govern it. This
structure can later be used as the basis for the definition of the storage of the business
data. Conceptual data modeling is independent of possible technical implementations.
For that reason, a conceptual data model is relatively stable over longer periods of
time, as businesses change, often only gradually, over a period of time. Conceptual
Data modeling is also called Information Engineering.

Physical Data Modeling
Physical data modeling is concerned with implementation in a given technical
software and hardware environment. The physical implementation is highly dependent
on the current state of technology and is subject to change as available technologies
rapidly change. A technical design made five years ago is likely to be quite outdated
today.

By distinguishing between the conceptual and physical models, you separate the rather
stable from the rather unstable parts of a design. This is true for both data models and
functional specifications.

2-4

Data

Data~

• Modeling, Conceptual
Structuring data concepts into logical, coherent,
and mutually related groups

• Modeling, Physical
Modeling the structure of the (future) physical
database

• Base
A set of data, usually in a variety of formats, such
as paper and electronically-based

• Warehouse
A huge set of organized information
..
2-5®

..
Lesson 2: Entities and Attributes in Detail
Database
A database is a set of data. The various parts of the data are usually available in
different forms, such as paper and electronic-based. The electronic-based data may
reside, for example, in spreadsheets, in all kinds of files, or in a regular data base.
Today, relational databases are very common; but many older systems are still around.
The older systems are mostly hierarchical databases and network databases. Systems
of more recent date are semantic databases and object oriented databases.

Data Warehouse
A data warehouse is composed of data from multiple sources placed into one logical
database. This data warehouse database, (or, more correctly, this database structure), is
optimized for Online Analytical Processing (OLAP) actions.

Often a data warehouse contains summarized data from day-to-day transaction
systems with additional information from other sources. An example is a phone
company that tracks the traffic load for a routing system. The system does not store the
individual telephone calls, but stores the data summarized by hour.

From a data analysis point of view a data warehouse is just a database, like any other,
only with very specific and characteristic functional requirements.
...
2-6 Data Modeling and Relational Database Design

..
Tracking Entities
Tracking Entities
The nouns in, for example, the texts, notes, brochures, and screens you see concerning
a business often refer to entities, attributes of entities, or instances of entities.

Naming an Entity Uniquely
First distinguish an entity by outlining the concept in your mind. Next, try to find a
unique and clear name for an entity. This is not always easy as there are far more
concepts than clear names. Use your imagination. Use a dictionary. Use a combination
of words, use ‘X’ if necessary, but do not let the lack of a good name stop you from
modeling. Good names evolve over time.

Check the names you used every now and then. The implicit definition of an entity
may change during analysis, for instance, as a result of adding an attribute or changing
the optionality of a relationship.

Creating a Formal Description
Create a formal description of the entity. This is usually not difficult and the writing
helps clarify your thinking about what you are talking about. Check this description
regularly. Sometimes concepts evolve during the modeling process. The definitions, of
course, should follow that evolution.

Be Aware of Synonyms
In many business contexts one and the same concept is known under different names.
Select one and mention the synonyms in the description: “...also known as ...”.

2-5

Entities

• Give the entity a unique name

• Create a formal description of
the entity

• Add a few attributes, if possible

• Be aware of homonyms

• Check entity names and descriptions regularly

• Avoid use of reserved words

• Remove relationship name from entity name
..
2-7®

..
Lesson 2: Entities and Attributes in Detail
Avoid Homonyms
Often in a business one word is used for different concepts. Sometimes even the same
person will use the same word but with different meanings as you can see in the next
example.

“The data modeling course you attend now was written in 1999 and requires modeling
skills to teach.” In this sentence the word “course” refers to three different concepts: a
course event (like the one you are attending today), a course text (which was written in
1999) and the course type (that apparently needs particular skills).

Avoid Reserved Words
Although you are free to use any name you want for an entity, try to avoid database
and programming terms as entity names if possible. This may prevent naming
problems and confusion later on in the design stage.

Remove Relationship Name from Entity Name
Often you can select entity names in a more or less generic way. In the example, both
diagrams model the same context. In the first the “guest” aspect is part of the entity
name as well as part of the relationship name.

The second model is more general in its naming. There a guest is seen as a PERSON
playing the role of being a guest.

As a rule, if there is choice take the more general name. It allows, for example, for the
addition of a second relationship between the same entities that shows, for example,
person is working for or is owning shares in the accommodation. The first model
would require new entities.

This subject is closely related to the concept of subtypes and roles. You find more on
this later in this lesson and when we discuss Patterns.

HOTELGUEST
guest of

host of

ACCOMMODATIONPERSON guest of

host of
...
2-8 Data Modeling and Relational Database Design

..
Electronic Mail Example
Electronic Mail Example
In this course we investigate various business contexts. One is that of ElectronicMail,
a company that supplies an e-mail service. Here is some background information.

2-7

Some Background Information

“ElectronicMail (EM) wants to provide an attractive and user- friendly
Web-based e-mail system. Important concepts are user and message.

An EM user has a unique address of 30 characters at most and a
password supplied by the person who set up the EM user. Who the
person really is, we do not know, although we ask for some additional
information, such as the name, country, birth date, line of business, and
a few more things.

Users must be able to send and receive mail messages. A mail
message is usually a piece of straight text. A message may have
attached files. An attachment is a file, like a spreadsheet, that is sent
and kept with the message, but not created with our software.

Messages are kept in folders. Every user has three folders to start with:
Inbox, Outbox, and Wastebasket. Additional folders can be created by
the user.”

2-8

���������	�
�������
6XEMHFW�

7R�

&F�

%FF�

0HVVDJH
WH[W�

.HHS
&RS\

&RPSRVH

��
��
���
��	

�

�

��
��

*HW�1HZ�0DLO

)ROGHUV

$GGUHVVHV

3UHIHUHQFHV

([LW

$WWDFKPHQWV� 7\SH�

$GG
6LJQDWXUH

6HQG

6DYH�'UDIW

6DYH�7HPSODWH

&DQFHO

����
��

test

bipi, giovanni_papini@yahoo.com

this is a test
and a text as well
tralalalala
pompidom

abc.html
xyz.doc

Hypertext
Word document

������� 7HPSODWH default

myself

sketch of screen to compose mail m
essages
..
2-9®

..
Lesson 2: Entities and Attributes in Detail
The screenshots may give an idea of how the Compose a Mail Message screen and the
Maintain Addresses screen will look like.

2-9

���������	�
�����������
��

��
��
���
��	

�

�

��
��
�

*URXS

$OLDV (PDLO�DGGUHVV

1LFNQDPHV

���	�����

bipi
joe
giovanni_papini@yahoo.com
p.g.m.papini@em.com

IULHQGV

apple
bipi
joe
myself

w.j.appletree@cats.com
sabine_papini @yahoo.com
j.suspender@last.com
jtiddlywink@em.com

&RPSRVH

*HW�1HZ�0DLO

)ROGHUV

$GGUHVVHV

3UHIHUHQFHV

([LW

sketch of screen to
 maintain addresses

2-10

Some Desired Functionality

“Users of ElectronicMail must be able to address messages to a mail
list, for example, a group of e-mail addresses. The system should only
keep one copy of the message sent (to save database space) plus
information about whom the message was sent to.

Users must be able to create templates for their messages. A template
must be named and may contain everything a real message contains.
A template may be used for new messages.

Users must be able to reply to a message. By replying the user creates
a new message to which the old message is added.

Users must be able to create an alias for an e-mail address, to hide the
often complex addresses behind an easy-to-remember nickname.”
...
2-10 Data Modeling and Relational Database Design

..
Evolution of an Entity Definition
Evolution of an Entity Definition
To illustrate the evolution of a concept, consider ElectronicMail’s entity MESSAGE.
The first intuitive description of this entity may be:

Any user? Well, no.

Must every message contain text? Should it not be possible to send a message that
only transports an attachment, without additional text?

And what about a message that comes from an external source and is received by an
EM user? Should those not be kept as well?

Now suppose a message is sent by an EM user to an external e-mail address only.
Suppose the EM user does not want to keep a copy of the mail message. In that case
there is no need for the system to keep the message as there is no internal EM user that
needs the message. In fact, it is not important at all to keep messages that were sent by
a EM user; only those that were actually received by an EM user are of interest.

The thinking process shown here is typical for the change of a definition from the first
idea to something that is much more well thought-out—though this does not mean that
the definition is final.

 A message is a piece of text sent by a user.

 A message is a piece of text sent by an EM user.

 A message is a note that is sent by an EM user. A
message does not necessarily contain text, nor a
subject, etc.

 A message is a note that is sent by an EM user or
received by an EM user or both. A message does not
necessarily contain text, nor a subject, etc.

 A message is a note that is received by an EM user. A
message does not necessarily contain text, nor a
subject, etc.
..
2-11®

..
Lesson 2: Entities and Attributes in Detail
Entity Life Cycle
It often helps to make things clear if you think about the life cycle of an entity. The life
cycle refers to the functional steps of the entity. For example, how can the entity
instance come into existence? How can it change? How does it disappear?

In case of entity MESSAGE the questions are:

• When does “something” become a message?

• When does a message change?

• When can a message be removed?

Creating a Message
When I type in some text in the compose screen, is that text a message? You will
probably agree that it does not make much sense to consider it as a message until some
fields are completed, such as the To or Subject field. The checks must take place after
I hit the send key. Only after all checks have been made is the message born.

Removing a Message
When can the system remove a message? When a user hits the delete key? But what
should the system do when there are other receivers of that same message? It is better
to consider the deleting of a message as the signal to the system that you no longer
need the right to read the message. When all users that did receive the same message
have done this, then the message can be deleted. Apparently, for a message to exist it
must have receivers that still need the message.

Changing a Message
Changing a message? As long as the text is not sent, it is no problem as it is not yet
considered to be a message. Changing it after sending it? Changing something that is
history? This cannot be done. Changing the text should lead to a new message.

Draft
What about a message that is not yet ready for sending? Suppose a user wants to finish
a message at a later date. Is there a place for this? Do we want an unsent, or draft,
message in the system? Is a DRAFT a special case of entity MESSAGE, or should we
treat a DRAFT as a separate entity?

Template
What about the templates? A template is about everything a message can be, but a
template is only used as a kind of stamp for a message. Templates are named,
messages are not. Is TEMPLATE a special case of entity MESSAGE, or should we
look upon it as a separate entity?
...
2-12 Data Modeling and Relational Database Design

..
Functionality
Functionality
In the previous evolution of the entity definition, the definition changes were invoked
by thinking and rethinking the functionality of the system around messaging. This
illustrates the statement made earlier: functions drive the conceptual data model.

The first idea of the functionality of a system, or desired functionality, can be derived
from the verbs in, for example, descriptive texts and interview notes. In the above text
the functionality is expressed at a high level, without much detail. Nevertheless, you
can probably imagine more detailed functionality.

In this course functionality is always present, often implicitly assumed, sometimes in
detail.

2-11

“Users of ElectronicMail must be able to address messages to a mail
list, for example, a group of e-mail addresses. The system should only
keep one copy of the message sent (to save data base space) plus
information about whom the message was sent to.

Users must be able to create templates for their messages. A template
must be named and may contain everything a real message contains.
A template may be used for new messages.

Users must be able to reply to a message. By replying the user
creates a new message to which the old message is added.

Users must be able to create an alias for an e-mail address, to hide
the often complex addresses behind an easy-to-remember nickname.”

Business Functions
..
2-13®

..
Lesson 2: Entities and Attributes in Detail
Tracking Attributes

As discussed earlier, the nouns in, for example, the texts, notes, brochures, and screens
you see used in a business often refer to entities, attributes of entities, or instances of
entities. You can usually easily recognize attributes by asking the questions “Of
what?” and “Of what format?”. Attributes describe, quantify, qualify, classify, specify
or give a status of the entity they belong to. We define an attribute as a property of an
entity; this implies there is no concept of a standalone attribute.

In the background information text on ElectronicMail that is shown below, the first
occurrence of the (probable) entities are capitalized, the attributes are boxed and
instances are shown in italics.

2-13

An Attribute...

• Always answers “of what?”

• Is the property of entity, not of relationship

• Must be single valued

• Has format, for example:
– Character string

– Number

– Date

– Picture

– Sound

• Is an elementary piece of data

“ElectronicMail (EM) wants to provide an attractive and user friendly
Web-based email system. Important concepts are user and message.

An EM USER has a unique address of 30 characters at most and a
password supplied by the PERSON who set up the EM user. Who the
person really is, we do not know, although we ask for some additional
information, like the name, COUNTRY, birth date, line of business, and
a few things more.

Users must be able to send and receive mail MESSAGES. A mail
message is usually a piece of straight text. A message may have
attached files. An ATTACHMENT is a file, like a spreadsheet, that is
sent and kept with the message, but not created with our software.

Messages are kept in FOLDERS. Every user has three folders to start
with: Inbox, Outbox and Wastebasket. Additional folders can be created
by the user.”
...
2-14 Data Modeling and Relational Database Design

..
Tracking Attributes
List the types of information, distinguish the probable entities and attributes and group
them. Add attributes, if necessary, (like Name of COUNTRY) in the example. Distill
one or more attributes from the instances (like Name of FOLDER).

Naming Attributes
Attribute names become the candidate column names at a later stage. Column names
must follow conventions. Try to name attributes avoiding the use of reserved words.

Do not use abbreviations, unless these were decided beforehand. Examples of
frequently-used abbreviations are Id, No, Descr, Ind(icator).

Do not use attribute names like Amount, Value, Number. Always add an explanation
of the meaning of the attribute name: Amount Paid, Estimated Value, Licence No.

Always put frequently-used name components, such as “date” or “indicator”, of
attribute names in the same position, for example, at the end—Start Date, Creation
Date, and Purchase Date.

Do not use underscores in attribute names that consist of more than one word. Keep in
mind that attribute names, like entity names, must be as clear and understandable as
possible.

EM Entities and Attributes

user
address
password
person
name
country
birth date
occupation
message
text
attachment
file
folder
inbox
outbox
wastebasket

Nouns

USER
Address
Password
PERSON
Name
COUNTRY
Birth Date
Occupation
MESSAGE
Text
ATTACHMENT
File
FOLDER
Inbox
Outbox
Wastebasket

Entities/Attributes/
Instances

USER
 - Address
 - Password
PERSON
 - Name
 - Birth Date
 - Occupation
 COUNTRY
 - Name
MESSAGE
 - Text
ATTACHMENT
 - Filename
FOLDER
 - Name

Entities with their
Attributes
..
2-15®

...
Lesson 2: Entities and Attributes in Detail
Entities Compared to Attributes
Sometimes a piece of information that is an attribute in one context is an entity in
another context. This is purely specific to the business. A typical attribute, like Name,
may need to be modeled as an entity. This happens, for example, when the model
needs an extra dimension, such as the language. If product names must be kept in
several languages and prices must be kept in various currencies, you may suddenly
find one product has several names. For example: “This particular article of clothing is
named ‘Acapulco swimming trunks’ in English, and ‘Akapulko Badehose’ in
German.”
A commonly encountered dimension is time. This is discussed later.

Redundancy
You should take special care to prevent using redundant attributes, that is, attribute
values that can be derived from the values of others. An example is shown below.
Using derivable information is typically a physical design decision. This is also true
for audit type attributes such as Date Instance Created, and User Who Modified.

2-16

Attribute and Entity

• Attributes in one model can be entities in another.

GARMENT

CURRENCY PRICE LANGUAGENAME

GARMENT
Name
Price

COMMODITY
* Name
* Price exclusive VAT
* Price inclusive VAT
* VAT %
...
2-16 Data Modeling and Relational Database Design

..
Subtypes and Supertypes
Subtypes and Supertypes
Sometimes it makes sense to subdivide an entity X into subtypes. This may be the case
when a group of instances has special properties, such as attributes or relationships
that only exist for that group, or a fixed value for one of the attributes, or when there is
some functionality that only applies to the group. Such a group is called a subtype of
X. Entity X is called the supertype as a consequence. Subtypes are also modeled when
particular constraints apply to the subtype only. This is discussed further in the lesson
on Constraints.

Subtypes have all properties of X and usually have additional ones. In the example,
supertype ADDRESS is divided into two subtypes, USER and LIST. One thing USER
and LIST have in common is an attribute NAME and the functional fact that they can
both be used in the To field when writing a message.

Inheritance
In the next illustration, is a new entity, COMPOSITION, as a supertype of
MESSAGE, DRAFT, and TEMPLATE. The subtypes have several attributes in
common. These common attributes are listed at the supertype level. The same applies
to relationships. Subtypes inherit all attributes and relationships of the supertype
entity.

2-18

A Subtype ...

ADDRESS

USER

LIST

• Inherits all attributes of supertype

• Inherits all relationships of supertype

• Usually has its own attributes or
relationships or business functions

• Is drawn within supertype

• Never exists alone

• May have subtypes of its own

• Is also known as “Subentity”
..
2-17®

...
Lesson 2: Entities and Attributes in Detail
Read the diagram as:
Every MESSAGE (DRAFT, or TEMPLATE) is a COMPOSITION

and thus has attributes like Subject and Text. Conversely:
Every COMPOSITION is either a MESSAGE, a DRAFT, or a TEMPLATE

Always More Than One Subtype
Entity relationship modeling prescribes that when an ER model is complete subtypes
never stand alone. In other words, if an entity has a subtype, there should always be at
least a second subtype. This makes sense. What use would there be for distinguishing
between an entity and the single subtype? This idea leads to the two subtype rules.

COMPOSITION
o Subject
o Cc
o Bcc
o Text

MESSAGE

DRAFT
* Name

TEMPLATE
* Name

2-20

Subtype: Rules

Subtypes of the same entity must be:

• Exhaustive:
Every instance of a supertype is also instance of
one of the subtypes

and

• Mutually exclusive:
Every instance of the supertype is of one and only
one subtype

A

NON BB

Name subtypes
adequately:

C OTHER A
...
2-18 Data Modeling and Relational Database Design

..
Subtypes and Supertypes
Nested Subtypes
You can nest Subtypes. For readability, you would not usually subtype to more than
two levels, but there is no major reason not to do so. Reconsider the placement of the
attributes and relationships after creating a new level.

Subtypes Always Exist
Every entity can always be subtyped. You can always make up a rule to subdivide the
instances in groups, but that is not the issue. The reason for subtyping should always
be that there is a business need to show similarities and differences at the same time.

Implementing Subtypes
You can implement subtype entities in various ways, for example, as separate tables or
as a single table, based on the super entity.

COMPOSITION
o Subject
o Cc
o Bcc
o Text

MESSAGE

DRAFT
* Name

TEMPLATE
* Name

DRAFT

TEMPLATE

OTHER
COMPOSITION
* Name

2-22

More on Subtypes

EMPLOYEE

Subtypes always exist...

OTHER
EMPLOYEE

CURRENT
EMPLOYEE

EMPLOYEE

OTHER
EMPLOYEE

EMPLOYEE WITH
SHOE SIZE > 45

... but do not all make sense
..
2-19®

..
Lesson 2: Entities and Attributes in Detail
Summary
Entities can often be recognized as nouns in texts that functionally describe a business.
Entities can be tangible, intangible, and events. Subtypes of an entity share all
attributes and relationships of that entity, but may have additional ones.

Attributes are single-valued elementary pieces of information that describe, qualify,
quantify, classify, specify or give a status of the entity they belong to.

Most entities have attributes.

Every attribute can be promoted to a separate entity which is related to the entity the
attribute initially belonged to. You must do this when you discover that the attribute is
not single valued, for example, when names must be kept in multiple languages or
values in multiple currencies.

2-23

Summary

• Entities

– Nouns in texts

– Tangible, intangible, events

• Attributes

– Single-valued qualifiers of entities

• Subtypes

– Inherit all attributes and relationships of
supertype

– May have their own attributes and relationships
...
2-20 Data Modeling and Relational Database Design

..
Practice 2—1: Books
Practice 2—1: Books

Goal
The goal of this practice is to differentiate between various meanings of a word used in
a text.

Your Assignment
1 In this text the word book is used with several meanings. These meanings are

different entities in the context of a publishing company or a book reseller. Try to
distinguish the various entities, all referred to as book. Give more adequate names
for these entities and make up one or two attributes to distinguish them.

2 Create an ER model based on the text. Put the most general entity at the top of your
page and the most specific one at the bottom. Fit the others in between. Do not
worry about the relationship names.

2-25

 1. I have just finished writing a book. It’s a novel about justice and
power.

 2. We have just published this book. The hard cover edition is available
now.

 3. Did you read that new book on Picasso? I did. It's great!

 4. If you like you can borrow my book.

 5. I have just started translating this book into Spanish. I use the modern
English text as a basis and not the original, which is 16th century.

 6. I ordered that book for my parents.

 7. Yes, we have that book available. You should find it in Art books.

 8. A second printing of the book War and Peace is very rare.

 9. I think My name is Asher Lev is one of the best books ever written.
Mine is autographed.

10. I want to write a book on entity relationship modeling when I retire.
..
2-21®

...
Lesson 2: Entities and Attributes in Detail
Practice 2—2: Moonlight

Scenario
You work as a contractor for Moonlight Coffees Inc. One of your
colleagues, who is a business analyst, has prepared some
documentation. Below you find an extract from the summary
document.

Your Assignment
1 Make a list of about 15 different entities that you think are important for

Moonlight Coffees. Use your imagination and common sense and, of course, use
what you find in the summary that is printed below.

2 Write a formal definition of the entity that represents:
– The coffee shops.
– The Moonlight employees.

Moonlight Coffees

2-26

 Summary

Moonlight Coffees is a fast growing chain of high quality coffee shops with currently
over 500 shops in 12 countries of the world. Shops are located at first-class
locations, such as major shopping, entertainment and business areas, airports,
railway stations, museums. Moonlight Coffees has some 9,000 employees.

Products

All shops serve coffees, teas, soft drinks, and various kinds of pastries. Most shops
sell nonfoods, like postcards and sometimes even theater tickets.

Financial

Shop management reports sales figures on a daily basis to Headquarters, in local
currency. Moonlight uses an internal exchange rates list that is changed monthly.
Since January 1, 1999, the European Community countries must report in Euros.

Stock

Moonlight Coffees is a public company; stock is traded at NASDAQ, ticker symbol
MLTC. Employees can participate in a stock option plan.

Moonlight CoffeesMoonlight Coffees
...
2-22 Data Modeling and Relational Database Design

...
Practice 2—3: Shops
Practice 2—3: Shops

Scenario
You work as a contractor for Moonlight Coffees. Your task is to
create a conceptual data model for their business. You have
collected all kinds of documents about Moonlight. Below is a page
of a shop list.

Your Assignment
Use the information from the list as a basis for an ER model. Pay special attention to
find all attributes.

Moonlight Coffees

2-27

Shoplist, ordered to date opened page 4

181 The Flight, JFK Airport terminal 2, New York, USA, 212.866.3410, Airport, 12-oct-97
182 Hara, Kita Shinagawa,Tokyo, JP, 3581.3603/4, Museum, 25-oct-97
183 Phillis, 25 Phillis Rd, Atlanta, USA, 405.867.3345, Shopping Centre, 1-nov-97
184 JFK, JFK Airport terminal 4, New York, USA, 212.866.3766, Airport, 1-nov-97
185 VanGogh, Museumplein 24, Amsterdam, NL, 76.87.345, Museum, 10-nov-97
186 The Queen, 60 Victoria Street, London, UK, 203.75.756, Railway Station, 25-nov-97
187 Wright Bros, JFK Airport terminal 1, New York, USA, 212.866.9852, Airport, 6-jan-98
188 La Lune, 10 Mont Martre, Paris, FR, 445 145 20, Entertainment, 2-feb-98
189

Moonlight CoffeesMoonlight Coffees

Shop List
...
2-23®

..
Lesson 2: Entities and Attributes in Detail
Practice 2—4: Subtypes

Goal
The goal of this practice is to determine correct and incorrect subtyping.

Your Assignment
Find all incorrect subtyping in the illustration. Explain why you think the subtyping is
incorrect. Adjust the model to improve it.

2-28

Subtypes

DISABLED
PERSON
DEAF

BLIND

OTHER DISABLED
PERSON

CAR

STATION WAGON

SEDAN

BUILDING HOUSE

HOTEL

ROOM WITH BATH

OTHER ROOM

DOMESTIC
ANIMAL

MAMMAL

DOG
...
2-24 Data Modeling and Relational Database Design

...
Practice 2—5: Schedule
Practice 2—5: Schedule

Scenario
You work as a contractor for Moonlight Coffees.

Your Assignment
Use the schedule that is used in one of the shops in Amsterdam as

a basis for an entity relationship model. The schedule shows, for example, that in the
week of 12 to 18 October Annet B is scheduled for the first shift on Monday, Friday,
and Saturday.

The scheme suggests there is only one shift per person per day.

Moonlight Coffees

2-29

van Gogh, Museumplein, Amsterdam

Schedule Oct 12 - Oct 18 prepared by Janet

Shift Mon Tue Wed Thu Fri Sat Sun

Annet S

Annet B

Dennis

Jürgen

Kiri

Wil

2 2 2 1

1 1 1

2 2 1 2 3

5 4

3 4 4
...
2-25®

..
Lesson 2: Entities and Attributes in Detail
Practice 2—6: Address

Goal
The goal of this practice is to sort out various ways of modeling addresses.

Your Assignment
An entity, possibly PERSON (or ADDRESS) may have attributes that describe the
address as in the examples below.

1 How would you model the address information if the future system is required to
produce accurate international mailings?

Practice: Address (1/2)

Rheingasse 123
53111 Bonn
Germany

1020 Maple Drive
Kirkland WA 98234
USA

34 Oxford Road
Reading
Berkshire RG1 8JS
UK
...
2-26 Data Modeling and Relational Database Design

..
Practice 2—6: Address (continued)
Practice 2—6: Address (continued)

Your Assignment
2 Would your model from the previous practice also accept the addresses below?

3 Check if your model would be different if the system is also required to have
facilities to search addresses in the following categories. Make the necessary
changes, if any.

All addresses:

• In Kirkland

• With postal code 53111 in Bonn

• That are P.O. Boxes

• On:

– Oxford Road or

– Oxford Rd or

– OXFORD ROAD or

– OXFORD RD

in Reading

P.O. Box 66708
Nairobi
Kenya

c/o Mrs Smith
Maude Street
Sandton
Johannesburg 2144
South Africa
..
2-27®

..
Lesson 2: Entities and Attributes in Detail
...
2-28 Data Modeling and Relational Database Design

Relationships
in Detail

..
Lesson 3: Relationships in Detail
Introduction

Lesson Aim
This lesson discusses in detail how to establish a relationship between two entities.
You meet the ten types of relationship and examples of the less frequent types. This
lesson looks at nontransferable relationships and discusses the differences and
similarities between relationships and attributes. It also provides a solution for the
situation where a relationship seems to have an attribute. Finally, the rules of
normalization are discussed in the context of conceptual models.

Topic See Page

Introduction 2

Establishing a Relationship 4

Relationship Types 9

Relationships and Attributes 16

Attribute Compared to Relationship 18

Relationship Compared to Attribute 19

m:m Relationships May Hide Something 20

Resolving Relationships 25

Summary 32

Practice 3—1: Read the Relationship 33

3-2

Overview

• Relationships

• Ten different relationship types

• Nontransferability

• Relationships that seem to have attributes

• Rules of Normalization
...
3-2 Data Modeling and Relational Database Design

..
Introduction
Objectives
At the end of this lesson, you should be able to do the following:

• Create a well-defined relationship between entities

• Identify which relationship types are common and which are not

• Give real-life examples of uncommon relationship types

• Choose between using an attribute or a relationship to model particular
information

• Resolve a m:m relationship into an intersection entity and two relationships

• Resolve other relationships and know when to do so

• Rules of Normalization

Practice 3—2: Find a Context 34

Practice 3—3: Name the Intersection Entity 35

Practice 3—4: Receipt 36

Practice 3—5: Moonlight P&O 37

Practice 3—6: Price List 39

Practice 3—7: E-mail 40

Practice 3—8: Holiday 41

Topic See Page
..
3-3®

..
Lesson 3: Relationships in Detail
Establishing a Relationship

Determining the Existence of a Relationship
• Ask, for each of your entities, if it is somehow related to one or more of the entities

in your model, and, if so, draw a dotted “skeleton” relationship line.

• Usually all entities in a model are related to at least one other entity. Exceptions
are rare, but they do exist.

• Two entities can be related more than once. For example, in the Electronic Mail
system there are two relationships between entities MESSAGE and USER, one is
about who is sending a MESSAGE and one about who receives a MESSAGE.

• An entity can be related to itself. This is called a recursive relationship. For
example, a MESSAGE can be a reply to another MESSAGE. See the paragraph on
recursive relationships for more details on this.

3-3

Establishing a Relationship

• Determine the existence of a relationship

• Choose a name for the relationship from both
perspectives

• Determine optionality

• Determine degree

• Determine nontransferability

USERMESSAGE sending

receiving

replying
...
3-4 Data Modeling and Relational Database Design

..
Establishing a Relationship
Choosing a Name for the Relationship
• Sometimes the relationship name for the second perspective is simply the passive

tense of the other one, such as is owner of and is owned by. Sometimes there are
distinct words for both concepts, such as parent of / child of or composed of / part
of.

• Try to use names that end in a preposition.

• If you cannot find a name, you may find these relationship names useful:

– Consists of / is part of

– Is classified as / is classification for

– Is assigned to / is assignment of

– Is referred to / referring to

– Responsible for / the responsibility of

• Sometimes a very short name is sufficient, for example, with, in, of, for, by, about,
at, into.

Are sent to and receiver of really opposite? If so, the assumption is that if a
MESSAGE is sent to a USER, it also arrives. Maybe it is safer to name the
relationship received by / receiver of...

3-5

Relationship Names

USERMESSAGE sent by
sender

of

reply of

replied
to by

sent to
receiver

of
..
3-5®

..
Lesson 3: Relationships in Detail
Determining Optionality of Both the Relationship Ends
• Answer the questions:

– Must every MESSAGE be sent by a USER?

– Must every USER be sender of an MESSAGE?

– Must every MESSAGE be sent to a USER?

– Must every USER be addressed in a MESSAGE?

When an answer is Yes the relationship end is mandatory, otherwise it is optional.

• Be careful at this point. Often a relationship end seems to be mandatory, but
actually it is not. In the ElectronicMail example it seems that every MESSAGE
must be sent by a USER. But a MESSAGE that was sent by an external user to an
internal USER has no relationship to a USER, unless the system were to keep
external users as well.

• Sometimes a relationship is ultimately mandatory, but not initially. Such a
relationship should be modeled as optional.

3-7

Optionality

USERMESSAGE written by
author

of

reply of

replied
to by

received by
receiver

of
...
3-6 Data Modeling and Relational Database Design

..
Establishing a Relationship
Determining Degree of Both the Relationship Ends
• Answer the questions:

– Can a MESSAGE be written by more than one USER?

– Can a USER be author of more than one MESSAGE?

If the answer is No the degree is called “1”.

If the answer is Yes the degree is called “many” or just “m”.

• This must be determined for all relationship ends.

• Note that a mandatory “many” relationship end from A to B does not mean that it
is mandatory for A to be split into more than one B. One B is fine. Read it as:
every A must be split into at least one B.

• An optional “many” relationship end means zero, one or more. In the e-mail
example a USER can be author of 0,1 or more MESSAGES.

• Sometimes the degree is a fixed value, or there is a maximum number. Assume a
MESSAGE may be containing one or more ATTACHMENTS, but for some
business reason, the number of ATTACHMENTS per MESSAGE may not exceed
4. The degree then is <5. The diagram, however, shows a crowsfoot.

A split into
part of

B

3-10

Degree

USERwritten by
author

of

reply of

replied
to by

ATTACHMENT

with

containing

<5

received by

receiver
of

MESSAGE
..
3-7®

..
Lesson 3: Relationships in Detail
Determine Nontransferability of Both the Relationship Ends
• When a MESSAGE is created, the USER who is the author of the MESSAGE is a

fact. It would be strange if a mail system allowed you to change the author after the
MESSAGE is completed.

• Often relationships have the following property: you cannot change the
connection, once made. That property is called nontransferability.
Nontransferability leads to nonupdatable foreign keys. Nontransferability is shown
in the diagram with a little diamond-shaped symbol through the line of the
relationship end.

• Not all relationships are nontransferable. Assume the mail system allows a user to
file a MESSAGE in a FOLDER. This is only a valuable functionality if the user is
allowed to change the FOLDER in which a MESSAGE is filed.

3-12

Nontransferability

USERMESSAGE written by
author

of

reply of

replied
to by

FOLDER

filed in

containing

received by

receiver
of
...
3-8 Data Modeling and Relational Database Design

..
Relationship Types
Relationship Types
There are three main groups of relationships, named after their degrees:

• One to many (1:m)

• Many to many (m:m)

• One to one (1:1)

This paragraph discusses the various types and gives some examples of their variants.

Relationships—1:m
The various types of 1:m relationships are most common in an ER Model. You have
seen several examples already.

a Mandatory at both ends. This type of relationship typically models entities that
cannot exist without each other. Often the existence of mandatory details for a
master is more wishful thinking than a strict business rule. Often the
relationship expresses that an entity is always split into details. Seen from the
other perspective, it often expresses an entity that is always classified,
assigned.

3-13

Relationship Types
1:m

(a)

(b)

(c)

(d)
..
3-9®

..
Lesson 3: Relationships in Detail
Circumventing Mandatory 1 to Mandatory m Usually you would try to avoid
relationship type (a) in favor of type (b), by taking a different perspective on the
subject. For example, suppose an order is defined as something with at least one
order item. In other words, an order is regarded as a composed concept. You can
avoid modeling order as an entity as you can decide to model a slightly different
concept instead, say ORDER HEADER. Next, define an ORDER HEADER to
have zero, one or more ORDER ITEMS. An order would then be a thing
composed of two entities: any ORDER HEADER with one or more ORDER
ITEMS. Empty headers would not be considered to be an order.

Why Circumvent? Implementing a 1:m relationship that is mandatory at both
ends causes technical problems. In particular it is difficult to make sure details
exist for a newly-created record. In most relational database environments it is
even impossible.

b Optional 1: mandatory m. This is a very common type of relationship, together
with (d). Normally, at least 90% all relationships are of type (b) and (d). The
relationship expresses that the entity at the 1-end can stand alone, whereas the
entity at the many end can only exist in the context of the other entity.

c Mandatory 1: optional m. This is not common. You will see it only when the
relationship expresses that an entity instance only exists when it is a non-empty
set, and where the elements of the set can exist independently. In the example
below a PRODUCT may be part of one BUNDLE. According to the model, a
BUNDLE is of no interest if it is empty.

d Optional at both ends. See remarks for (b).

PRODUCT

BUNDLE

consists
of

part
of
...
3-10 Data Modeling and Relational Database Design

..
Relationship Types
Relationships—m:m
The various types of m:m relationships are common in a first version of an ER Model.
In later stages of the model most m:m relationships, and possibly all, will disappear.

e Mandatory at both sides is very uncommon in normal circumstances. This
relationship seems to mean that an entity instance can only be created if it is
immediately assigned to an instance of the other entity, as well as conversely.
But how can this occur when we do not have an instance of either entity?
Enforcing the mandatory rule from scratch leads to a conflict.

The relationship can, however, be part of a model of a theoretical nature, like
the mathematical: a LINE always consists of many POINTS and a POINT is
always part of many LINES. It can also describe an existing situation: a
DEPARTMENT always has EMPLOYEES and an EMPLOYEE is always
assigned to a DEPARTMENT. Here the question may arise if it is guaranteed
that the situation will always remain this way.

A m:m relationship that is mandatory at both sides can occur when the
relationship is part of an arc. See the lesson on Constraints for more details.

3-15

Relationship Types
m:m

(e)

(f)

(g)
..
3-11®

..
Lesson 3: Relationships in Detail
f Mandatory at one end is not uncommon in early versions of a model although
they usually disappear at a later stage.

g Optional at both ends is common in early versions of a model. These also
usually disappear at a later stage.

USER

LIST

consists
of

part
of
...
3-12 Data Modeling and Relational Database Design

..
Relationship Types
Relationships—1:1
Usually you will find just a few of the various types of 1:1 relationships in every ER
Model.

h A 1:1 relationship, mandatory at both ends, tightly connects two entities: when
you create an instance of one entity there must be exactly one dedicated
instance for the other simultaneously; for example, entity PERSON and entity
BIRTH. This leads to the question why you want to make a distinction between
the two entities anyway. The only acceptable answer is: only if there is a
functional need.
If you have this relationship in your model, it is often, possibly always, part of
an arc.

i Mandatory at one end is often in a model where roles are modeled, for
example, in this hospital model.

Note: These role-based relationships are often named is/is type of or simply
is/is.

See Page 46

3-17

Relationship Types
1:1

(h)

(i)

(j)

PERSON
* Name

PATIENT
* Blood Type

EMPLOYEE
* Job

acting as

role of

acting as

role of
..
3-13®

..
Lesson 3: Relationships in Detail
Both PATIENT and EMPLOYEE are roles played by a PERSON. The
attribute BLOOD TYPE is, according to this model, only of interest when this
person is a PATIENT. Note that PATIENT and EMPLOYEE cannot be
modeled as subtypes of PERSON, as a PERSON may play both roles. You
meet the concept of roles again in a later lesson.

j Optional at both ends is uncommon. However, they can occur, for example,
when there is a relationship between two entities that are conceptually the
same but exist in different systems. An example of this is entity EMPLOYEE
in one system and entity PERSON in a different, possibly a third-party, system.

Many 1:1 relationships (of all three variants) do occur when some of the
entities represent various stages in a process, such as in the next example.
Relationship names in this case can always be leads to / result of or something
similar.

If you consider a person to be a process as well, the earlier example of BIRTH
and PERSON fit nicely into this general idea.

MESSAGE
DRAFT

basis for

result of
...
3-14 Data Modeling and Relational Database Design

..
Relationship Types
Redundancy
Like attributes, relationships can be redundant.

In the left-hand example you can derive the relationship from PERSON to COUNTRY
from the other two relationships and you should remove them from the model.

This is a semantic issue and cannot be concluded from the structure alone, as the right-
hand example shows.

3-20

Redundant Relationships

PERSON

TOWN

livingliving
 in in

 of of

COUNTRY

living
 in

located
in

hometown
of

location
of

born
 in

of birth
oflocated

in

location
of

COUNTRY

PERSON

TOWN

living
 in

hometown
of
..
3-15®

..
Lesson 3: Relationships in Detail
Relationships and Attributes
Attributes can hide a relationship. In fact, any attribute can hide a relationship.

In the example, attribute TYPE of entity ATTACHMENT can be replaced by an entity
ATTACHMENT TYPE plus a relationship from ATTACHMENT to
ATTACHMENT TYPE.

You would have no choice other than to model it this way as soon as you need to keep
extra attributes for ATTACHMENT TYPE. If there are no important attributes for
ATTACHMENT TYPE to keep other than the Name of the type, you could consider
removing the entity and take Type as an attribute of ATTACHMENT.

You could also consider using the left-hand option when the number of types is a fixed
and small amount, such as in the context of a chain of hotels where there are only three
types of rooms: single, double, and suite.

See Page 48

3-21

• An attribute can hide a relationship

Relationships and Attributes

ATTACHMENT
* Content

ATTACHMENT TYPE
* Name

with

of

ATTACHMENT
* Type
* Content

• Relationship can be “downgraded” to attribute
...
3-16 Data Modeling and Relational Database Design

..
Relationships and Attributes
The table based on entity ATTACHMENT would contain the same columns in both
situations, but the Attachment Type Name column would be a foreign key column in
the second implementation. This would mean that an Attachment Type Name entered
for an ATTACHMENT can only be taken from the types listed in the table based on
entity ATTACHMENT TYPE. The list serves as a pick list and spelling check.

There are advantages and disadvantages for both models.

The one entity model is somewhat easier to read because it is less packed with lines. In
the table implementation you would need no joins to get the required information.

However, a two-entity model is usually far more flexible. It leaves the option open to
create relationships from other entities to the new entity. You would have control over
the values entered as they are checked against a given set. Usually, the two-table
implementation takes less (sometimes even much less) space in the database.

Use your common sense when you select the attributes and entities.

3-22

Attribute Compared to Relationship

• Easy model

• Fewer tables

• No join

• Value control

• List of values

• Other relationships

ATTACHMENT
* Type
* Content

ATTACHMENT
* Content

ATTACHMENT TYPE
* Name

with

of

JOBEMPLOYEE
* Id

BADGE

NATIONALITY

ADDRESS

NAME

SALARY

GENDER

TEAM
..
3-17®

..
Lesson 3: Relationships in Detail
Attribute Compared to Relationship

Nonexistence of Foreign Key Attributes
Be aware of foreign key attributes such as attribute Folder Name of entity MESSAGE
in the example. In ER modeling there is no such thing as a foreign key attribute. The
future foreign key is represented by the relationship between MESSAGE and
FOLDER. A foreign key column (or columns) will result from the primary unique
identifier of the entity FOLDER. See the lesson on CONSTRAINTS for more details
on unique identifiers.

No Entity Name in Attribute Name
When an attribute name contains an entity name, it usually comes from one of the
following situations:
• The attribute hides a relationship to an entity, as in the above example. The second

entity was probably added in a later stage.
• The attribute hides an entity. A typical example is an attribute Employment Date

of entity EMPLOYEE. This might hide the entity EMPLOYMENT, as there is
probably no rule that an employee may be employed by the same company only
once.

• The entity name in the attribute name is redundant. A typical example is attribute
Message Id of entity MESSAGE. The name “Id” would suffice.

• The attribute is the result of a one-to-one relationship that is not modeled, for
example, attributes Birth Date and Birthplace of entity EMPLOYEE. These are in
fact attributes of an entity BIRTH that is not (and probably will never be) modeled.

3-24

Attribute Compared to Relationship

• There is no such thing as a foreign key attribute.

• Usually, the attribute name should not contain an
entity name.

MESSAGE
* Message Id
* Text
* Folder Name

FOLDER
* Name

placed in

containing
...
3-18 Data Modeling and Relational Database Design

..
Relationship Compared to Attribute
Relationship Compared to Attribute

Sometimes a piece of information looks like a relationship between entities, but
actually is not a relationship.

In ElectronicMail’s Compose Message screen there is a field labeled “To” where the
user is supposed to enter the names of the addressees. Initially you may want to model
that as a relationship addressed to / addressee of between MESSAGE and USER, but
this is a questionable approach. If a message is sent to an external user would it make
sense for ElectronicMail to keep track of all external user addresses that were used to
send messages to, just for the sake of maintaining the relationship? Would this be
possible?

In this case it would be a better choice to see the Addressee as an attribute of the
MESSAGE. This attribute may contain a value that is also known as a USER. In other
words, entity USER contains only suggestions for addressees.

Another possibility is to do both—model an optional relationship and an optional
attribute that cooperatively handle the addressee. An extra constraint (which cannot be
shown in the diagram) must then make sure that at least one of the attributes or the
relationship is actually given a value for a MESSAGE.

3-25

Relationship Compared to Attribute

MESSAGE USER
addressee of

addressed to

MESSAGE
* Addressee

USER

MESSAGE
o Addressee

USER

addressee of

addressed to
..
3-19®

..
Lesson 3: Relationships in Detail
m:m Relationships May Hide Something
During the process of modeling you will find many relationships to be of type m:m.
Often this is a temporary thing. After you have been able to add more details to the
model, a lot of the m:m relationships will disappear as, after consideration, they
simply do not model the business properly.

A typical example is about the CUSTOMER/PRODUCT relationship.

Suppose you make a model for a retail company that sells PRODUCTS. A
CUSTOMER buys PRODUCTS. Suppose future customers are accepted into the
system as well. This would mean:

A CUSTOMER may buy one or more PRODUCTS

A PRODUCT may be bought by one or more CUSTOMERS

A typical event for this company would be customer Nick Sanchez buying two shirts.
“Nick Sanchez” is a CUSTOMER Name, “shirt” is a PRODUCT Name. This leaves
the question of where to put the “two”, the quantity information.

3-26

PRODUCT
 * Code
 * Name

CUSTOMER
* Id
* Name bought by

buyer of

m:m Relationships May Hide Something
...
3-20 Data Modeling and Relational Database Design

..
m:m Relationships May Hide Something
It is clear that Quantity is neither a property of CUSTOMER nor of PRODUCT.
Quantity seems to be an attribute of the relationship between CUSTOMER and
PRODUCT.

Relationships do not and cannot have attributes. Apparently an entity of which
quantity is a property, is missing. For that reason we need to change the model. Entity
ORDER (or SALE or PURCHASE) enters the scene.

3-27

?

Quantity

PRODUCTCUSTOMER

* Id
* Name

* Code
* Namebought by

buyer of

Quantity is Attribute of ...

PRODUCTCUSTOMER

* Id
* Name

* Code
* Name

buyer of

?

Quantity
bought by

PRODUCTCUSTOMER

* Id
* Name

* Code
* Namebought by

buyer of

Quantity
..
3-21®

..
Lesson 3: Relationships in Detail
The table design here is the default design for implementing the model. Note the two
foreign key columns in the ORDERS table, Ctr_id (foreign key to CUSTOMERS) and
Pdt_code (to PRODUCTS).

Now suppose Pepe Yomita enters the store and buys one pair of jeans, two shirts, and
one silk tie. Given the current model this would mean that Pepe places three orders:
one for the jeans, one for the shirts and one for the tie. Three orders, all at the same
time, from one and the same customer. No problem so far as the model allows for this.

Now suppose the store wants to automate the billing of the orders. (This is probably
one of the reasons for making the model anyway.) Using the above model, this would
mean three orders and, as a consequence, three bills, as the system has no way of
knowing these three orders somehow belong to each other.

It is better to change the model in such a way that one order can be for more than one
product. That means we should have a m:m relationship between ORDER and
PRODUCT, which we should investigate next.

3-29

CUSTOMER
* Id
* Name

PRODUCT
* Code
* Name

ORDER
with

with

for

of

New Entity ORDER

*Quantity Sold

Name

Sanchez
Lowitch
Yomita

CUSTOMERS

Id

1
2
3
4

PRODUCTS

Code

1
2
3
4

Name

Jeans
Shirt
Tie

ORDERS

Ctr_id

1
1
2
3

Pdt_code

2
3
2

Quantity_sold

2
2
1

...
3-22 Data Modeling and Relational Database Design

..
m:m Relationships May Hide Something
Then there is the question again: where do you put quantity? Quantity can now no
longer be an attribute of an order because the attribute must be single-valued and
cannot contain three values 1, 2 and 1 at the same time. Quantity has become a
property of the m:m relationship between PRODUCT and ORDER.

3-30

ORDER
* Id
* Date

with

with

for

of

CUSTOMER
* Id
* Name

PRODUCT
* Code
* Name

Multiple PRODUCTS for an ORDER

Quantity??
..
3-23®

...
3-2

..
Lesson 3: Relationships in Detail
This leads to:

Note the name change from ORDER to ORDER_HEADER, to avoid the 1: m
relationship that is mandatory at both ends. The set of tables for this model could be:

3-31

for for

ORDER ITEM

with

with

of

with

CUSTOMER
* Id
* Name

PRODUCT
* Code
* Name

ORDER
HEADER
* Id
* Date

Another New Entity: ORDER ITEM

*Quantity Sold

3-32

CUSTOMERS

1
2
3
4

Sanchez
Lowitch
Yomita

Id Name ORDER_HEADERS

1
2
3
4

Id Ctr_id

1
2
1

Date_ordered

25-MAY-1999
25-MAY-1999
25-MAY-1999

ORDER_ITEMS

1
2
3
4

Ohd_id Pdt_code

2
2
1

Quantity_sold

2
2
1

PRODUCTS

Code

1
2
3
4

Name

Jeans
Shirt
Tie

Tables
..
4 Data Modeling and Relational Database Design

..
Resolving Relationships
Resolving Relationships

Relationships and Intersection Entities
Earlier in this lesson you saw a typical example of relationships seeming to have
attributes. The relationships in the example were many-to-many relationships. You
deal with the situation by creating a new entity, an intersection entity, that replaces the
relationship and can hold attributes.
This leads to the following questions:
• What are the steps in resolving a relationship in general?
• Should every m:m relationship be resolved?
• Can other relationships than m:m be resolved?

Resolving a Relationship
Suppose we want to resolve the m:m relationship between entities A and B.

1 First create a new intersection entity. You will experience that sometimes there is
no suitable word available for the concept you are modeling. The new entity can
always be named with the neologism “A/B COMBINATION”, or a name that is
somehow derived from the name of the original m:m relationship. Do not let the
unavailability of a proper name for the entity stop you from modeling it.

2 Next create two new m:1 relationships from entity A/B COMBINATION, one to
A and one to B. Initially, draw these as mandatory at A/B COMBINATION, as
you will probably only be interested in complete pairs of A and B. If the original

3-33

Resolving m:m Relationship

• Create new intersection entity

• Create two m:1 relationships, derive optionality

• Remove m:m relationship

A

B

xxx

yyy

A/B
COMBINATION

A

B

of

of

in

in
..
3-25®

..
Lesson 3: Relationships in Detail
m:m relationship was optional (or mandatory) at A’s side, then the new
relationship from A to A/B COMBINATION is also optional (or mandatory).

3 Name the relationships. You can often name both relationships “in / of”.
4 The next step is to remove the m:m relationship you started with.
5 Finally, reconsider the newly-drawn relationships. They may be optional at the A/

B COMBINATION side. Also, they may turn out to be of type m:m and require
resolving, as you have seen in the example of customers buying products.

Should Every m:m Relationship be Resolved?
The answer depends on a number of factors.

Given the usual scenario, when you start creating an ER model you will discover that
many of the relationships you draw are of type m:m. Most of these will appear to hide
entities that you need in a later stage as you need to have a place in which to put
specific attributes. Finally, you will have only a few “genuine m:m” relationships left.

No Purely from a conceptual data modeling point of view, there is no need to resolve
these genuine m:m relationships. The model is rich enough to be the basis for table
design. A m:m relationship will transform into a binary table; this is a table that
consists of the columns of two foreign keys only. This is exactly the same table as the
one that would result from the intersection entity when you resolved the m:m
relationship.

A m:m relationship in a conceptual data diagram needs less space than a separate
entity plus two relationships. For this reason a diagram with unresolved m:m
relationships is more transparent and easier to read.

Yes From a function modeling point of view the answer is different. If your model
contains a true m:m relationship there is apparently a business need to keep
information on the combinations of, say, entity A and B. In other words, the system
would contain at least one business function that creates the relationship. This “create
relationship” cannot be expressed as a usage of entities of attributes, although this is
usually what design tools require of the functional model. Oracle Designer is no
exception. This means that when you create an ER model in Oracle Designer you
would always resolve the m:m relationships in order to create a fully-defined
functional model with all data usages included.

Resolving Other Relationships
Can relationships other than m:m be resolved? Yes. Every relationship, even a 1:1, can
be resolved into an intersection entity and two relationships, just like a m:m
relationship. When would you want to do this? It is quite rare to find a situation where
you have to do this. A typical situation where you may like to resolve a non m:m
relationship is when one entity represents something that is outside your system, for
example, when the entity is part of a third-party package.
...
3-26 Data Modeling and Relational Database Design

..
Resolving Relationships
Suppose you need your system to create a m:1 relationship from external entity
PERSON to CUSTOMER TYPE, one of your internal entities (as in the diagram
below):

This would result later on in a change of the table structure of the third-party
PERSONS table. This is undesirable (third parties often ask you to you sign a contract
that simply forbids you to do that) and sometimes even impossible if you have no
authority over that table.

The above model leaves the external entity PERSON as is and does the referencing
from inside. The m:1 relationship is replaced by an entity CLASSIFICATION and two
relationships.

3-35

PERSON
CUSTOMER
TYPE

classified
as

classification
 of

external

Resolving m:1 Relationship

internal

PERSON CUSTOMER
TYPE

internal

external

in

CLASSIFICATION

with

for with
..
3-27®

..
Lesson 3: Relationships in Detail
Normalization During Data Modeling
Normalization is a relational database concept. However, if you have created a correct
entity model, then the tables created during design will conform to the rules of
normalization. Each formal normalization rule from relational database design has a
corresponding data model interpretation. The interpretations which can be used to
validate the placement of attributes in an ER Model are as follows.

Normalization Rules
Normal Form Rule Description

First Normal Form All attributes are single valued.

Second Normal Form (2NF) An attribute must be dependent upon
entity’s entire unique identifier.

Third Normal Form (3NF) No non-UID attribute can be dependent
on another non-UID attribute.

“A normalized entity-relationship data model automatically translates
into a normalized relational database design”

“Third normal form is the generally accepted goal for a database
design that eliminated redundancy”
...
3-28 Data Modeling and Relational Database Design

..
Normalization During Data Modeling
First Normal Form in Data Modeling
All attributes must be single-valued.

Validate that each attribute has a single value for each occurrence of the entity. No
attribute should have repeating values.

You can often recognize the misplaced attributes by the fact that there is the same
(entity) name in the attribute name, such as Message Subject and Message Text.

If the attribute has multiple values, create an additional entity and relate it to the
original entity with a m:1 relationship.

3-38

First Normal Form in Data Modeling

RECEIVED
MESSAGE
Receive Date
o Subject
o Text

received by

receiver
of

All attributes must be single-valued.

USER
Name
* Person Name
* Message Receive Date
o Message Subject
o MessageText

USER
Name
* Person Name
..
3-29®

..
Lesson 3: Relationships in Detail
Second Normal Form in Data Modeling

An attribute must be dependent upon its entity’s entire unique identifier.

Validate that each attribute is dependent upon its entity’s entire unique identifier. Each
specific instance of the UID must determine a single instance of each attribute.
Validate that an attribute does not depend upon only part of its entity’s UID. If it does,
then it is misplaced and you must move it.

3-39

Second Normal Form in Data Modeling

MESSAGE
Id
o Text

including

included
in

An attribute must be dependent upon its entity’s entire
unique identifier.

including

included
in

RECEIVED
MESSAGE
User Name
* Receive Date

RECEIVED
MESSAGE
User Name
* Receive Date
* Subject

MESSAGE
Id
o Text
* Subject
...
3-30 Data Modeling and Relational Database Design

..
Normalization During Data Modeling
Third Normal Form in Data Modeling

No non-UID attribute can be dependent upon another non-UID attribute. If an attribute
is dependent upon a non-UID attribute, then move both the dependent attribute and the
attribute it is dependent upon to a new, related entity.

3-40

Third Normal Form in Data Modeling
USER
Name
* Person Name
* Password
* Server Id
* Server Name

assigned to

distribute
mail to

MAIL SERVER
Id
* Name

USER
Name
* Person Name
* Password

No non-UID attribute can be dependent upon another
non-UID attribute.
..
3-31®

..
Lesson 3: Relationships in Detail
Summary

Relationships connect entities and express how they are connected. There are ten types
of relationships, 4 of type1:m, 3 of type m:m and 3 of type 1:1.

The m:1 relationship that is optional at the 1 side is by far the most common type in
finished ER models. This one is very easy to implement in a relational database.

At the beginning of the process of creating an ER model there are often many m:m
relationships. Many of these disappear after closer investigation.

Relationships cannot have attributes. If this seems to be the case, you need to resolve
the relationship into an intersection entity plus two relationships.

The other types are less common—some express more a desired situation rather than
reality, such as the m:1 relationship that is mandatory at both ends.

A normalized data model yields a normalized relational database design. Third normal
form is the generally accepted standard.

3-41

Summary

• Relationships express how entities are connected.

• Initially relationships often seem to be of type m:m.

• Finally relationships are most often of type m:1.

• Relationships can be resolved into:

– Two new relationships.

– One intersection entity.

• Third Normal form is generally accepted standard.
...
3-32 Data Modeling and Relational Database Design

..
Practice 3—1: Read the Relationship
Practice 3—1: Read the Relationship

Goal
The goal of this practice is to learn to read relationships from an ER diagram.

Your Assignment
Read the diagrams aloud, from both perspectives. Make sentences that can be
understood and verified by people who know the business area, but do not know how
to read ER models.

3-39

Practice: Read the Relationship

of

with

bilought in

glazoed with

bazooned in

bazooned by

ALU BRY

KLO HAR

PUR YOK
..
3-33®

..
Lesson 3: Relationships in Detail
Practice 3—2: Find a Context

Goal
The purpose of this practice is to use your modeling skills.

Your Assignment
Given the following ER diagrams, find a context that fits the model.

1

2

3

4

...
3-34 Data Modeling and Relational Database Design

..
Practice 3—3: Name the Intersection Entity
Practice 3—3: Name the Intersection Entity

Goal
The goal of this practice is to find a proper name for the intersection entity after
resolving the m:m relationship.

Your Assignment
1 Resolve the following m:m relationships. Find an acceptable name for the

intersection entity.

2 Invent at least one attribute per intersection entity that could make sense in some
serious business context. Give it a clear name.

3-44

Practice: Name the Intersection Entity

sold by

selling

crewing

crewed by

fluent in

spoken by

PRODUCT DEPARTMENT
STORE

PERSON SAILBOAT

INTERPRETER LANGUAGE
..
3-35®

...
Lesson 3: Relationships in Detail
Practice 3—4: Receipt

Goal
The purpose of this practice is to use a simple source of real life
data as a basis for a conceptual data model.

Scenario
You work as a contractor for Moonlight Coffees. Your task is to create a conceptual
data model for their business. You have collected all kinds of documents about
Moonlight. Below you see an example of a receipt given at one of the shops.

Your Assignment
Use the information from the receipt and make a list of entities and attributes.

Moonlight Coffees

3-45

 Served by: Dennis
 Till: 3 Dec 8, 4:35 pm

 CAPPUCC M 3.60
 * 2 7.20
 CREAM .75
 * 2 1.50
 APPLE PIE 3.50
 BLACKB MUF 4.50
 <SUB> 16.70
 tax 12% 2.00
 <TOTAL> 18.70
 =======
 CASH 20.00
 RETURN 1.30

Hope to serve you again
 @MOONLIGHT COFFEES
 25 Phillis Rd, Atlanta
...
3-36 Data Modeling and Relational Database Design

...
Practice 3—5: Moonlight P&O
Practice 3—5: Moonlight P&O

Goal
The purpose of this practice is to create a ER model iteratively,
based on new pieces of information and new requirements.

Scenario
You are still working as a contractor for Moonlight Coffees—apparently you are doing
very well!

Your Assignment
1 Create a entity relationship model based on the following personnel and

organization information:

2 Extend or modify the diagram based on this information:

3 And again:

Moonlight Coffees

All Moonlight Coffee employees work for a department such as
“Global Pricing” or “HQ”, or for a shop. All employees are at the
payroll of one of our country organizations. Jill, for example,
works as a shop manager in London; Werner is a financial
administrator working for Accounting and is located in Germany.

All shops belong to one country organization (“the countries”).
There is only one country organization per country. All countries
and departments report to HQ, except HQ itself.

Employees can work part time. Lynn has had an 80%
assignment for Product Development since the 1st September.
Before that she had a full-time position.
...
3-37®

..
Lesson 3: Relationships in Detail
4 Change the model—if necessary and if possible—to allow for the following new
information.

a Jan takes shifts in two different shops in Prague.

b Last year Tess resigned in Brazil as a shop manager and moved to Toronto.
Recently she joined the shop at Toronto Airport.

c To reduce the number of direct reports, departments and country organizations
may also report to another department instead of Headquarters.

d The shops in Luxembourg report to Belgium.

e To prevent conflicting responsibilities, employees are not allowed to work for
a department and for a shop at the same time.

5 Would your model be able to answer the next questions?

a Who is currently working for Operations?

b Who is currently working for Moonlight La Lune at the Mont Martre, France?

c Are there currently any employees working for Marketing in France?

d What is the largest country in terms of number of employees? In terms of
managers? In terms of part-timers?

e When can we celebrate Lynn’s fifth year with the company? When can we do
the same with Tess’ fifth year with Moonlight?

f What country has the lowest number of resignations?
...
3-38 Data Modeling and Relational Database Design

...
Practice 3—6: Price List
Practice 3—6: Price List

Goal
The purpose of this practice is to use a simple source of real life
data as a basis for a conceptual data model.

Scenario
You work as a contractor for Moonlight Coffees.

Your Assignment
Make a ER model based on the pricelist from one of the Moonlight Coffee Stores.

Moonlight Coffees

3-47

small medium large
regular coffee 2.25 2.90 3.50
cappuccino 2.90 3.60 4.20
café latte 2.60 3.20 3.90
special coffee 3.10 3.70 4.40
espresso 2.25 2.90 3.50
coffee of the day 2.00 2.50 3.00
decaffeinated .25 .50 .75 extra
black tea 2.25 2.90 3.50
infusions 2.60 3.20 3.90
herbal teas 2.90 3.60 4.20
tea of the day 2.00 2.50 3.00
decaffeinated .25 .50 .75 extra
milk 1.25 1.90 2.50
soft drinks 2.25 2.90 3.50
soda water 2.25 2.90 3.50
mineral water 2.90 3.60 4.20
apple pie 3.50
strawberry cheesecake 3.50
whole wheat oats muffin with almonds 3.90
blackberry muffin 4.50
fruitcake 4.50
cake of the day 4.00
additional whipped cream .75

price list 25 Phillis Road, Atlanta
visit us at www.moonlight.com

Sa
le

s T
ax

 in
cl

ud
ed

Se
pt

em
be

r
16

P
ra

ct
ic

e:
P

ri
ce

 L
is

t
P

ra
ct

ic
e:

P
ri

ce
 L

is
t

...
3-39®

..
Lesson 3: Relationships in Detail
Practice 3—7: E-mail

Goal
The goal of this practice is to extend an existing conceptual data model.

Scenario.

Your Assignment
Take the given model as starting point. Add, delete, or change any entities, attributes,
and relationships so that you can facilitate the following functionality:

1 A user must be able to create nick names (aliases) for other users.

2 A folder may contain other folders.

3 A user must be able to forward a composition. A forward is a new message that is
automatically sent together with the forwarded message.

4 All folders and lists are owned by a user.

Challenge:

5 A mail list may contain both users and other lists.

6 A mail list may contain external addresses, like “giovanni_papini@yahoo.com”.

7 A nickname may be an alias for an external address.

3-48

USER

LIST

COMPOSITION written by

received by

author
of

consists
of

part
of

reply of
replied
to by

ATTACHMENT

with

containing

<5

ATT. TYPE

FOLDER

placed in

containing

receiver
of

MESSAGE

OTHER
COMPOSITION
...
3-40 Data Modeling and Relational Database Design

..
Practice 3—8: Holiday
Practice 3—8: Holiday

Goal
The purpose of this practice is to do a quality check on a conceptual data model.

Scenario
“Paul and I hiked in the USA. Eric and I hiked in France and we rented a car in the
USA last year”.

Your Assignment
Comment on the model given below that was based on the scenario text.

3-49

COUNTRY

COMPANION

TRANSPORTCOUNTRY

France
USAUSA COMPANION

EricEricPaul

CO
M

PANIO
N

Eric
Eric

Pau
l

TR
ANSPO

RT

Boo
ts

Car
Boo

ts

COUNTRY
France
USA
USA

TRANSPORT
Boots
Boots
Car
..
3-41®

..
Lesson 3: Relationships in Detail
Practice 3—9: Normalize an ER Model
GoalThe purpose of this practice is to place an unnormalized ER Model into third
Normal Form.

Your Assignment
1 For the following ER Model, evaluate each entity against the rules of

normalization, identify the misplaced attributes and explain what rule of
normalization each misplaced attribute violates.

2 Optionally, redraw the ER diagram in third normal form.

Practice: Normalize an ER Model

for

completed
with

ENROLLMENT
grade code
teacher number
grade description
course name

COURSE
course number
course name
teacher number
department code
department name
teacher name

STUDENT
#* student id
 last name
 first name

for

assigned
...
3-42 Data Modeling and Relational Database Design

Constraints

..
Lesson 4: Constraints
Introduction
This lesson is about constraints that apply to a business. Constraints are also known as
business rules. Some of these constraints can be easily modeled. Some can be
diagrammed but the resulting decreased clarity may not be acceptable. Some
constraints cannot be modeled at all. These should be listed in a separate document.

Topic See Page

Introduction 2

Identification 4

Unique Identifier 6

Arcs 12

Arc or Subtypes 16

More About Arcs and Subtypes 17

Hidden Relationships 18

Domains 19

Some Special Constraints 20

Summary 24

Practice 4—1: Identification Please 25

Practice 4—2: Identification 26

Practice 4—3: Moonlight UID 28

4-2

Overview

• Unique Identifiers

• Arcs

• Domains

• Various other constraints
...
4-2 Data Modeling and Relational Database Design

..
Introduction
Objectives
At the end of this lesson, you should be able to do the following:

• Describe the problem of identification in the real world

• Add unique identifiers to your model and know how they are represented

• Recognize correct and incorrect unique identifiers

• Decide when an arc is needed in your model

• Describe the similarities between arcs and subtypes

• Describe various types of business constraints that cannot be represented in an ER
diagram

Practice 4—4: Tables 29

Practice 4—5: Modeling Constraints 30

Topic See Page
..
4-3®

..
Lesson 4: Constraints
Identification

What Are We Talking About?
It is not unreasonable to assume everybody knows Rembrandt was born in the
Netherlands. What most people probably do not know is that Rembrandt was born on a
farm as the son of Pajamas and an unknown father. Rembrandt had a twin sister.
Although Rembrandt never married, he was the father of numerous children. You can
easily recognize Rembrandt and his offspring as they all have four white stripes at the
end of their tails.

Identification is about knowing what or who you are talking about. Obviously, the
name Rembrandt is not unique to the famous painter; other human beings and even
cats have the same name.

In day-to-day conversations, you can usually assume that you and the people you talk
to share enough of the same context and know enough about each other’s jobs and
interests, to understand what you are both talking about. Language is always a rather
nonspecific way to communicate, with lots of ambiguities, but people are very capable
of interpretation. Computers must communicate in a more specific way that is not
open to much interpretation. It would help a system to be told “Rembrandt the painter”
or “Rembrandt van Rijn, born in 1606” or maybe even the combination of all:
“Rembrandt van Rijn, the painter, born in 1606”, to distinguish this Rembrandt from
the other famous creatures with the same name.

The Problem of Identification
There are three sides to the problem of identification. One is identification in the real
world—how do we distinguish two real world things that have very similar properties?
This is the most difficult side. The second is identification within a database system—
how do we distinguish rows in tables? This one is far less complex. A third issue deals
with representation: how do we know what real world thing a row in a table
represents?
...
4-4 Data Modeling and Relational Database Design

..
Identification
Identification in the Real World Many things in the real world are difficult, if not
impossible, to identify—distinguishing between two cabs, two customers, two versions
of a contract, or two performances of the fourth string quartet by Shostakovich. As a
general rule, real world things cannot be identified with certainty. You have to live
with a substantial level of ambiguity. For example, how can I be sure that the car at the
other side of the street with license plate MN4606 is the same car as the one I saw last
week with that number? I cannot even be sure it is the same license plate. In normal
circumstances there in no reason for doubt, but that is not the same as certainty.
Sometimes people have their reasons for creating confusion.

Fortunately, some things in the real world are easier as they are within your reach.
There you can define the rules. When a company sends out, for example, invoices, it
can give every single invoice a unique number. When a business lets people create
ElectronicMail usernames (identities), they can force these names to be unique.

Identification Within a Database Usually, database systems can make sure that a
row is not stored twice, or, to be more exact, that a particular combination of values is
not stored twice, within the same table. The technical problem is solved for you by the
standard software you use.

Representation The remaining problem is to make sure that you can always know
what real world thing is represented by a particular row in a table. The solution to this
problem depends highly on the context. How likely do you consider it to be that two
different employees for the same company have the same family name, or the same
family name plus initials, or the same family name plus initials plus birthdate?

Clearly, the answer could be different when your company employs five or 50,000
employees.

Be aware that adding a new identifying attribute for EMPLOYEE, say, Id, only
partially solves the above problem. It would be very useful within the database. It
would not help much in the real world where employees usually would not know their
IDs, let alone the IDs of others. This kind of Id attribute often works only as an
internal, but not as an external identification.

EMPLOYEES

Name

PAPINI
HIDE
PAPINI
BAKER

Initials

G.
T.M.
G.
S.J.T.

Birthdate

02-FEB-1954
11-JUN-1961
02-FEB-1945
24-SEP-1958

G. Papini, please?
..
4-5®

..
Lesson 4: Constraints
Unique Identifier
To know what you are talking about, you need to find, for every entity, a value, or a
combination of values, that uniquely identifies the entity instance. This value or
combination is called the Unique Identifier for the entity.

The MAIL LIST example shows that a unique identifier is not necessarily a
combination of attributes: the owner of a MAIL LIST is actually represented by a
relationship.

UID Representation
In an ER diagram, the components of the UID of an entity are marked:

• # for attributes.

• With a small bar across the relationship end for relationships (a barred
relationship).

4-5

Unique Identifier Examples

JOB

COMPUTER IN NETWORK

TELEPHONE

EMPLOYEE

MAIL LIST

Name

IP Address

Country code,

Area code,

Telephone number

Employee number

Name,

Initials,

Birth Date

Name,

Owner

or

CUSTOMER
Family Name
o Initials
Address
o Telephone

Indicates Unique Identifier

ORDER
Date

responsible
for

by

Indicates Unique Identifier
...
4-6 Data Modeling and Relational Database Design

..
Unique Identifier
Single Attribute UID
The model shows that a USER of ElectronicMail is identified by attribute Name only.
Many entities will be identified by a single attribute. Typical candidate attributes, if
available, for single attribute UIDs are: Id, Code, Name, Description, Reference.

Multiple Attribute UID
An entity may have a UID that consists of multiple attributes; for example, a software
package can usually be identified by its Name and its Version, such as Oracle
Designer, version 7.0.

Composed UID
A MAIL LIST, illustrated above, is identified by the Name of the LIST plus the USER
that owns the LIST. That means that the combination of OWNER and a Name of a list
must be a unique pair.

This means that every USER must name their LIST instances uniquely, but need not
worry about names given by other users. It also means that the system may have many
LIST instances with the same name, as long as they are owned by different USERS.

You may argue that a USER also has a composed UID, as the Name must be unique,
within this mail system. To show this, you could add an extra high level entity, MAIL
PROVIDER, plus a relationship form USER to PROVIDER. The relationship then is
part of the UID of a USER.

Cascade Composed UID
It is not uncommon that an entity has a barred relationship to another entity that has a
barred relationship to a third entity, and so on.

part of

contains

USER
Name

owner
of

owned by

MAIL LIST
Name

ROOM
No

FLOOR
No

HOTEL
Name
..
4-7®

..
Lesson 4: Constraints
UID: Relationships Only

A Unique Identifier can also consist of relationships only.

At the lower right side of the diagram, entity LIST ITEM is shown, which resulted
from the resolved m:m relationship between LIST and USER.

The model shows that a LIST ITEM is identified by the combination of the USER and
the LIST. In other words, the model says that a LIST may contain as many ITEMS as
you like, as long as they refer to different USERS.

This results in the next definition:

A Unique Identifier (UID) of an entity is a constraint that declares the uniqueness
of values; a UID is composed of one or more attributes, one or more relationships,
or a combination of attributes and relationships of the entity.

Consequently, not all components of the UID may be optional.

Indirect Identification
Identification regularly takes place using an indirect construction, that is, when the
instance of an entity is identified only by the instance of another entity it refers to.

Examples
• In many office buildings employees are identified by their badge, which is

identified by a code.

• Around the world a person is identified by the picture on their passport.

4-8

Multiple Relationship UID

ownerowner
ofof

owned byowned by

USER
Name

LIST
Name

part ofpart of

containscontains

USER
Name

LIST
Name

ownerowner
ofof

owned byowned by

contains

contained
in

referring
to

is
referred to

LIST ITEM
...
4-8 Data Modeling and Relational Database Design

..
Unique Identifier
• All cows in the European Community are identified by the number of the tag they
are supposed to wear in their ear.

• When you park a car at Amsterdam International Airport you enter the parking lot
by inserting a credit card into a slot at the gate. The parking event is identified by
the credit card of the person that parked the car. This is a double indirect
identification.

Clearly, these identification constructions are not 100% reliable, but are probably as
far as you can go in a situation.

The model of these indirect identifications is shown in the next illustration, at the right
bottom corner. An instance of S is identified by the single instance of T it refers to. In
other words, the UID consists of one relationship only.

Multiple UIDs
Entities may have multiple UIDs. Earlier, you saw the example of entity EMPLOYEE
that can be identified by an Employee Number, and possibly by a combination of, for
example, Name, Initials and Birth Date.

At some point in time, usually at the end of your analysis, you promote one of the
UIDs to be the primary UID. All the other UIDs are called secondary UIDs.

You would usually select the UID that is most compact or easy to remember to
become primary UID. The reason, of course, is that the UID leads to one or more
foreign key columns in related tables. These columns should not be too sizeable.
Preferably, the primary UID of an entity does not consist of optional elements.

UID in Diagram
Only the primary UID is shown in ER Diagrams.

Where UIDs Lead
Unique Identifiers lead to Primary Key and Unique Key constraints.
..
4-9®

..
Lesson 4: Constraints
Unique Identifier Examples

Examples of Incorrect Unique Identifiers

4-9

Well-defined Unique Identifiers

Z
Z1
o Z2
o Z3
Z4

Q
Q1

R
R1

P
P1

T
T1

S

X
X1

Y
Y1
Y2

XY

K

L
L1

M
M1

4-10

Incorrect Unique Identifiers

K
K1

L
L1

KL

G
G1

F
F1

T
o # T1 Q

Q1

R
R1

P
P1

G
G1

H

...
4-10 Data Modeling and Relational Database Design

..
Unique Identifier
Information-Bearing Identifiers
When things in the real world are coded, you need to be especially careful. Codes that
have been used for some time are often information bearing. An example is a company
that uses product codes like 54.0.093.81, where 54 refers to the product group, 0
shows that the product is still in production, 093 identifies the factory where the
product is made and 81 is a sequence number. These codes come from the time when a
maximum amount of information had to be squeezed into a minimum number of bits.

The example above would be modeled conceptually:

The Code attribute would contain the same codes, for reasons of compatibility, but
now without meaning, as the old meaning is transferred to the attributes and
relationships. Product 54.0.093.81 may now be produced by factory 123 and may no
longer be in Product Group 54.

4-11

Information-Bearing Codes

54.0.093.81

PRODUCT

Code
* In Production?
* Sequence No

PRODUCT GROUP
Code

FACTORY
Id

Product Group
In Production?

Factory
Sequence Number
..
4-11®

..
Lesson 4: Constraints
Arcs
Suppose ElectronicMail rents the Advertisement Areas that are located in their various
mail screens on the Web. This renting is controlled by contracts; contracts consist of
one or more standard conditions and customized conditions. This can be modeled with
four entities: CONTRACT, CONTRACT COMPONENT, STANDARD
CONDITION and CUSTOMIZED CONDITION. See the model below. How do we
model the following constraint: every instance of CONTRACT COMPONENT refers
to either a STANDARD CONDITION or a CUSTOMIZED CONDITION, but not to
both at the same time?

An arc is a constraint about two or more relationships of an entity. An arc indicates
that any instance of that entity can have only one valid relationship of the relationships
in the arc at any one time. An arc models an exclusive or across the relationships. An
arc is therefor also called exclusive arc.

There is no similar constraint construct for attributes of an entity.

Arc Representation
The arc is drawn as an arc-shaped line, around an entity. Where the arc crosses a
relationship line a small circle is drawn, but only if the relationship participates in the
arc.

4-12

Arcs

“A contract consists of contract
components; these are standard
conditions or customized conditions”

Contract

Conditions Std?
1
2
3
4
5
6

CUSTOMIZED
CONDITION

STANDARD
CONDITION

CONTRACT

CONTRACT COMPONENT

in

referring to

in

referring to
part of

consists
of

basedbased
onon

basis forbasis for

Arc

Indicates
relationship

in arc
...
4-12 Data Modeling and Relational Database Design

..
Arcs
Mandatory Compared to Optional Relationships in an Arc
When the arc is drawn across two mandatory relationships, as in the example above, it
means that every instance of CONTRACT COMPONENT must have one valid
relationship. When the arc is drawn across two optional relationships, it would mean
that an instance may have one valid relationship.

Another Arc Example

Suppose a MAIL LIST may contain USERS as well as other MAIL LISTS. This
means that a particular LIST ITEM may refer to a USER or a LIST. To be more
precise, it must be a reference to a USER or to a LIST, but not to both at the same
time.

Note
• The relationship contained in/container of from LIST ITEM to LIST (the one that

is printed in gray) is not part of the arc as there is no small circle at the intersection
with the arc.

• A relationship that is part of a UID may also be part of an arc.

• The constraint that a LIST may only contain LISTS other than itself cannot be
shown in the model.

4-13

USER

LIST

ownedowned
byby

ownerowner
ofof

LIST ITEM

containercontainer
ofof

containedcontained
inin referring to

is referred
to

referring to

is referred to

Exclusive Arc
..
4-13®

..
Lesson 4: Constraints
Where Arcs Lead
An arc is normally implemented as a check constraint in an Oracle database. Note that
a check constraint is not an ISO standard relational database object. In other words, an
arc must be implemented differently in other database systems.

Some Rules About Arcs
• An arc always belongs to one entity.

• Arcs can include more than two relationships.

• Not all relationships of an entity need to be included in an arc.

• An entity may have several arcs.

• An arc should always consist of relationships of the same optionality:
all relationships in an arc must be mandatory or all must be optional.

• Relationships in an arc may be of different degree, although this is rare.

Tips About Arcs
• Do not include a relationship in more than one arc, for clarity reasons.

• Consider modeling subtypes instead of arcs (see the next paragraph).

See Page 36

4-14

Possible Arc Constructs
...
4-14 Data Modeling and Relational Database Design

..
Arcs
Incorrect Arcs

You cannot capture all possible relationship constraints with arcs. For example, if two
out of three relationships must be valid, this cannot be represented. The table below
shows what an arc can express.

4-15

Some Incorrect Arc Constructs

• Relationships in the arc
must be of the same
optionality

• Arcs must contain at least
two relationships

An arc may be correct, but is
quite difficult to implement ...

• The arc “belongs” to one
entity

4-16

Maximum

n n

1 1

0 n

0 1

Minimum

} n

} n

} n

} n

Number of Valid Relationships in Arc
Per Entity Instance
..
4-15®

..
Lesson 4: Constraints
Arc or Subtypes
Relationships within an arc are often of a very similar nature. They frequently carry
exactly the same names. If that is the case, an arc can often be replaced by a subtype
construction, as the illustration shows. On the left you see the arc that contains both
referring to relationships of LIST ITEM. In the model on the right there is only one
relationship left, now connected to an entity ADDRESS, a new supertype entity of
USER and LIST.

Both models are equivalent.

The model on the left emphasizes the difference between USER and LIST, which
clearly exists; the other model emphasizes the commonality. This commonality is
mainly a functional issue. Both USERS and LISTS can be part of a LIST and both can
be used as the address in the To, Cc or Bcc field in the screen for composing a
message.

Generally speaking, you can replace every arc with a supertype/subtype construction
and every supertype/subtype construction with an arc.

4-17

USER

LIST

ownedowned
byby

ownerowner
ofof

LIST ITEM

containscontains

inin

Arc or Subtype

USER

LIST

owned
by

owner
of

LIST ITEM

contains

inin

ADDRESS

referring
to

is referred
to

referring
to

is referred
to

referring to

is referred
to
...
4-16 Data Modeling and Relational Database Design

..
More About Arcs and Subtypes
More About Arcs and Subtypes
Arcs and Subtypes are similar notions. The five models that are printed below all show
the same context.

Model 1 and 2 are equivalent models to what you have seen before.

If every instance of A is related to a P or a Q, then you could say there are P-related-
A’s and Q-related-A’s. These two subtypes of A are shown in model 3.

Model 4 goes one step beyond this and shows subtypes of entity A and a supertype R
of P and Q.

Though models 3 and 4 are completely correct, it is likely they both model something
twice.

Note that only model 5 does not present the same information. In model 5, an instance
of B may be related to an instance of Q, unlike that which is modeled in 3 and 4.

4-18

Arc and Subtypes

A

QP

2
A

Q
P

R

1

A

P

C
B

Q

3

A C
B

Q
P

R

4 5

A C
B

Q
P

R

..
4-17®

..
Lesson 4: Constraints
Hidden Relationships
Every subtype hides a relationship between the subtype and its supertype. Moreover,
the relationships are in an arc, as the next illustration shows. Both relationships are
mandatory 1:1 is/is relationships.

4-19

Subtypes Hide Relationships in Arc

• Every A
is either a B or a C

• Every B is an A

• Every C is an A

A

C

B

C

B
A

is

is

is

is

• Every A must
be a B or be a C

• Every B must be an A

• Every C must be an A
...
4-18 Data Modeling and Relational Database Design

..
Domains
Domains
A very common type of attribute constraint is a set of values that shows the possible
values an attribute can have. Such a set is called a domain.

Very common domains are, for example:

• Yesno: Yes, No

• Gender: Male, Female, Unknown

• Weekday: Sun, Mon, Tue, Wed, Thu, Fri, Sat

In a conceptual data model you can recognize these as entities with, usually, only two
attributes: Code and Description. These domain entities are referred to frequently but
do not have any “many” relationships of their own, (see model A below). Typically,
you would know all the values before the system is built. The number of values is
normally low. Often you would deliver such a system with non-empty code tables

An alternative model for the (sometimes many) code entities is a more generic, two-
entity approach: CODE and CODE TYPE, model B.

Model A has the advantage of fewer relationships per entity as well as easy-to-
understand entities; B has obviously fewer entities and therefore will lead to fewer
tables.
.

Domains that have a large number of values, such as all positive integers up to a
particular value, are usually not modeled.

You should list and describe such a constraint in a separate document.

4-20

Value sets

GENDER
Code
* Description

YESNO
Code
* Description

WEEKDAY
Code
* Description

CODE
Code
* Description

CODE TYPE
Id
* Name
* Max Length
 of Description

A

B

..
4-19®

..
Lesson 4: Constraints
Some Special Constraints
Although an entity relationship model can express many of the constraints that are not
too complex, there are many types of constraints left that cannot be modeled. These
constraints must be listed on a separate document and often need to be handled
programmatically.

Categories: Examples
• Conditional domain: The domain for an attribute depends on the value of one or

more attributes of the same entity.

• State value transition: The set of values an attribute may be changed to depends
on the current value of that attribute.

• Range check: A numeric attribute must be between attribute values of a related
instance.

• Front door check: A valid relationship must only exist at creation time.

• Conditional relationship: A relationship must exist or may not exist, if an
attribute (of a related entity) has a special value.

• State value triggered check: A check must take place when an attribute is given a
value that indicates a certain state.

• There are also combinations of the above.

Range Check: Example

Constraint: Employee salary must be within the salary range of the job of the
employee.

See Page 37

EMPLOYEE
* Name
* Address

with

JOB
* Title
* Minimum Salary
* Maximum Salary

EMPLOYMENT
* Start Date
o End Date
* Salary

of
for referring to

between
...
4-20 Data Modeling and Relational Database Design

..
Some Special Constraints
State Value Transition: Example

Constraint: Marital Status of employees cannot change from any value to all other
values.

Conditional Relationship: Example

Constraint: If a CONTRACT has Standard Indicator set to Yes, the CONTRACT
COMPONENT may not refer to a CUSTOMIZED CONDITION.

EMPLOYEE
* Name
* Address
* Current Marital Status

Single
Married

Widowed
Divorced

Domestic Partnership

S
in

M
ar

W
id

D
iv

D
P

from

to
Possible
Marital Status
Transitions

4-23

CONTRACT
Id
* Standard Indicator

CONTRACT COMPONENT

in

referring to

in

referring to
part of

consists
of

basedbased
onon

basis forbasis for

CUSTOMIZED
CONDITION

STANDARD
CONDITION
..
4-21®

..
Lesson 4: Constraints
Derived Attribute?
You may argue that the attribute Standard Indicator of CONTRACT is derivable. If
the contract contains CUSTOMIZED CONDITIONS, it is, by consequence, not a
standard CONTRACT. This may be true, but it is not necessarily so. Suppose the
contract is created in various steps, by various people with different responsibilities.
Then, the creation of a CONTRACT is a process that may take days. The Standard
Indicator, then, is an attribute of that process. Only when the CONTRACT is finalized,
should a check be made that the Indicator corresponds with the actual STANDARD
and CUSTOMIZED CONDITIONS. In those situations, the entity CONTRACT will
usually have an attribute Completed Indicator that triggers the check when set to Yes.

Rules May Lead to Attributes
If you cannot capture a constraint in the model, the best you can do within the model is
make the model rich enough so that a program for constraint checking performs well.
Consider the rule:

If the Standard Indicator is set to No, and there is no CUSTOMIZED
CONDITION, then the CONTRACT is not yet ready for being sent to the
CUSTOMER.

This rule deals with a procedure and cannot be modeled as such, but it calls for an
indicator at entity CONTRACT to indicate something like a Ready To Send status.

Model for Overview
An analyst often runs into constraints that cannot be modeled and thus must be
documented separately. This is not a weakness of the model. An important goal of a
diagram is to give an overall picture, not all the details. The model should let you view
the key areas clearly.
...
4-22 Data Modeling and Relational Database Design

..
Some Special Constraints
Boundaries
More than once the checking of constraints or special rules needs to use information
that is not directly related to one of the entities in the model.

Typical examples are rules and boundaries set by external sources, like a mother
company or national legislation. If reasonably possible, these rules should be part of
your conceptual data model, and should not be hard coded in your programs. The
reason is obvious: if the rule changes, which is beyond your power, there is a chance
you do not have to make changes to your programs. Only an update of a value in a
table would be necessary. The time spent developing a complete model is fully
justified by the programming time saved.

4-24

Boundaries

EXTERNAL
Id
* Description
* Value

EXTERNALS

Id

1
2
3
4

Description

Value added tax %
Maximum available Space per Mail User in Mbyte
Maximum level of Nested Mail Folders
Maximum level of Nested Mail Lists

Value

15
500

3
16

unrelated entity

and possible implementation
..
4-23®

..
Lesson 4: Constraints
Summary
Entities in the real world must be individually identified before they can be
represented in a database. You would not know what you are talking about, otherwise.
Some entities are really difficult to identify, such as people and paintings. Some are
more easy, especially when they are part of the domain as you can make up the rules,
such as a unique number for each of the invoices you send to your customers. Some
unique identifiers are already present in the real world, often as a combination of
attributes and relationships of the entity.

Arcs in a diagram represent a particular type of constraint for the relationships of one
entity.

Many business constraints cannot be represented in a diagram and must be listed
separately. This way the model remains clear and not too full of graphical elements.

4-25

Summary

• Identification

– Can be a real problem in the real world

– Models cannot overcome this

• Entities must have at least one Unique Identifier

• Unique Identifiers consist of attributes or
relationships or both

• Arcs

• Many types of constraint are not represented
in ER model
...
4-24 Data Modeling and Relational Database Design

..
Practice 4—1: Identification Please
Practice 4—1: Identification Please

Your Assignment
Describe how you would identify the following entities, making up any attributes and
relationships you consider appropriate.

4-27

Practice: Identification Please

• A city

• A contact person for a customer

• A train

• A road

• A financial transaction

• An Academy Award (Oscar)

• A painting

• A T.V. show
..
4-25®

..
Lesson 4: Constraints
Practice 4—2: Identification

Your Assignment
Are the entities in the next diagrams identifiable?

1

2

3

4

A
Xx

B
* Yy

C
Zz

A B
IdC

Code

A
* Xx
B
Yy

C
Zz

D
Id

with

of

Q
Id

P

...
4-26 Data Modeling and Relational Database Design

..
Practice 4—2: Identification
5

6

Note: the next model describes a context that may be different from the world you are
familiar with.

7 Given the above model, answer the following questions.

a Can person A marry twice?

b Can person A marry twice on the same day?

c Can person A marry with person B twice?

d Can person A marry with person B twice on the same day?

e Can person A be married to person B and person C simultaneously?

f Can person A be married to person A?

P
Name

MARRIAGE
Start Date

PERSON

MALE
Seqno

FEMALE
Name
Birth Date

partner in partner in

with husband with wife

son of

mother of
..
4-27®

...
Lesson 4: Constraints
Practice 4—3: Moonlight UID

Goal
The purpose of this practice is to define UIDs for given entities.

Scenario
Moonlight Coffees, organization model.

Your Assignment
Use what you know about Moonlight Coffees by now, and, most importantly, use your
imagination.
1 Given the model below, indicate UIDs for the various entities. Add whatever

attributes you consider appropriate. Country organizations have a unique “tax
registration number” in their countries.

2 Are there any arcs missing?

Moonlight Coffees

4-34

DEPARTMENT
HQ

OTHER
DEPARTMENT COUNTRY

ORGANIZATION
COUNTRY

JOBASSIGNMENT

with

to

in

with

in

of

belongs to

with

reporting to

reporting to

as

in

report of

report of

EMPLOYEE

to

with

for

of for for

with

with

PAYROLL
ENTRY

SHOP
...
4-28 Data Modeling and Relational Database Design

..
Practice 4—4: Tables
Practice 4—4: Tables

Goal
The purpose of this practice is to match a given context with a ER model.

Your Assignment
Read the text on ISO Relational tables.

Do a quality check on the ER model based on the quoted text and what you know
about this subject. Also list constraints that are mentioned in the text but not modeled.

“In a relational database system, data is stored in tables. Tables of a
database user must have a unique name. A table must have at least
one column. A column has a unique name within the table. A column
must have a data type and may be Not Null.

Tables can have one primary key and any number of unique keys. A
key contains one or more columns of the table. A column can be part
of more than one key.
A table can have foreign keys. A foreign key always connects one
table with another. A foreign key consists of one or more columns of
the one table that refers to key columns of the other table.

The sequence of columns within the key and foreign key is important.”

Practice: Table 1

KEY
Name

TABLE
Name

FOREIGN KEY
Name

with

USAGE
Seqno

ASSOCIATION
Seqno

PRIMARY

UNIQUE

COLUMN
Name
* Data Type
o Not Null

with

with

with

with

for for
in

in

of

in

in

from

to

from

to

referenced
in

of
..
4-29®

..
Lesson 4: Constraints
Practice 4—5: Modeling Constraints

Goal
The purpose of this practice is to learn what constraints can be modeled and how, and
which cannot be modeled.

Your Assignment
Change the diagrams to model the constraint given.

1 Every EMPLOYEE must have a manager, except the Chief Executive Officer.

2 A user may not use the same name for both NICKNAME and LIST name.

3 A top level FOLDER must have a unique name per user; sub folders must have a
unique name within the folder where they are located.

EMPLOYEE
Name managed by

manager of

USER

Name

NICKNAME
Alias

owned
byowner of

owner of
owned

by

LIST
Name

FOLDER
Name

within

with
subfolder USER

Name

owned
by

owner
of
...
4-30 Data Modeling and Relational Database Design

Modeling Change

..
Lesson 5: Modeling Change
Introduction
Every update of an attribute or transfer of a relationship means loss of information.
Often that information is no longer of use, but some systems need to keep track of
some or all of the old values of an attribute. This may lead to an explicit time
dimension in the model which is usually quite a complicated issue.

Lesson Aim
Time is often present in a business context, as many entities are in fact a representation
of an event. This lesson discusses the possibilities and difficulties that arise when you
incorporate time in your entity model.

Topic See Page

Introduction 2

Time 4

Date as Opposed to Day 5

Entity DAY 6

Modeling Changes Over Time 7

A Time Example: Prices 10

Journalling 17

Summary 19

Practice 5—1: Shift 20

5-2

Overview

• Date and time

• Modeling change over time

• Prices change

• Journalling
...
5-2 Data Modeling and Relational Database Design

..
Introduction
Objectives
At the end of this lesson, you should be able to do the following:

• Make a well considered decision about using entity DATE or attribute Date

• Model life cycle attributes to all entities that need them

• List all constraints that arise from using a time dimension

• Cope with journalling

Practice 5—2: Strawberry Wafer 21

Practice 5—3: Bundles 22

Practice 5—4: Product Structure 24

Topic See Page
..
5-3®

..
Lesson 5: Modeling Change
Time

Modeling Time
In many models time plays a role. Often entities that are essentially events are part of a
model, for example, PURCHASE, ASSIGNMENT. One of the properties you record
about these entities is the date or date and time of the event. Often the date and time
are part of a unique identifier.

A second time-related issue often helps to increase the usability of a system
dramatically. By adding dates like Start, Expiry, End Date, to data in the system, you
allow users to work in advance. Suppose a particular value, say the price of gas or
diesel, will change as of January 1. It is very useful to be able to tell the system the
new value long before New Year’s Eve. By adding a time dimension to the model you
make the system independent of the now.

As always, there is a price for adding things such as this. Adding a time dimension to
your conceptual data model makes the model considerably more complex. In
particular, the number of constraints and business rules that must be checked will
increase.

A third time-related issue in conceptual data models is connected to the concept of
logging or journalling. Suppose you allow values to be updated, but you want to keep
track of some of the old values. In other words, what do you do when you need to keep
a record of the history of attribute values, of relationships, of entire entities?

The following issues arise:

• When do you model date/time as an entity, and when as an attribute?

• How do you handle the constraints that arise in systems that deal with time-related
data?

• How do you handle journalling?

Change and Time

• Every update means loss of information.

• Time in your model makes the model more
complex.

• There are often complex join conditions.

• Users can work in advance.

• When do you model date/time as an entity?

• What constraints do arise?

• How do you handle journalling?
...
5-4 Data Modeling and Relational Database Design

..
Date as Opposed to Day
Date as Opposed to Day
Probably all current operating systems and database systems have types “date” and
“time” available that know, for example, that 29-OCT-1983 was a Saturday in the 10th
month, called October, of 1983.

Some database systems, like Oracle, see time as a component of a date and store them
in one. Knowing that, you are likely to decide that dates can be modeled as attributes
with the format date.

A day, however, is not just a date. My great-grand father was born on a day in 1852,
but the exact date is unknown. A Genealogical Register System should therefore be
able to store fragments of a date, such as “1852”, or even a description, such as
“around 1765”.

Systems that store historical information often have to deal with several dates for one
event, according to multiple sources with nonidentical information.

Some systems have to take dates in conjunction with the reliability of that date.
Clearly, in these cases a simple attribute would not suffice.

Loosely speaking, when you are interested in the date only, and these dates are known
to the user, model an attribute; on the other hand, when you are interested in the day,
model it as an entity with attribute Date, which is possibly a unique identifying
attribute.

5-4

DAY
Date

PURCHASE

on

of

Single attribute entity without m:1 relationships
is usually replaced by attribute

PURCHASE
* Date

Entity DAY or Attribute Date
..
5-5®

..
Lesson 5: Modeling Change
Entity DAY
It is not only systems that deal with historical information that struggle with dates.
Sometimes a system needs to know more about a day than can be derived from its
date. A planning system, for example, often needs to know if a particular day is a
public holiday. Many data warehouse systems use a calendar that is different from the
normal one, for example, where a year is divided into four-week periods or 30 day
Months or Quarters where Q1 starts in the middle of May.

Some warehouses need weather information about days in order to do statistical
analysis about the influence of the weather on, for example, their sales. In these cases
a day has attributes or relationships of its own and should be modeled as entity DAY.

The above model shows part of a planning system where tasks are assigned to
employees. Tasks may take from a few hours to, at maximum, several days.

Based on this model, table TASK_ASSIGNMENTS will contain a date column that is
a foreign key column to the DAYS table.

Date and Time
As stated earlier, an Oracle DATE column always contains date and time. This needs
some special attention as two DATE columns may apparently contain the same date
but they are not equal because of a difference in their time component.

While modeling, always make explicitly clear when time of the day is an issue, for
instance, by naming the attribute DateTime. As soon as hours and minutes play a role,
the concepts of “time zone” and “daylight saving time” may become important.

5-5

DAY
Date
* Public Holiday Indicator

TASK
ASSIGNMENT
* Duration in Hours

starts on

first day of

EMPLOYEE
Name

TASK
Id

of

for

with

in

Entity DAY
...
5-6 Data Modeling and Relational Database Design

..
Modeling Changes Over Time
Modeling Changes Over Time
Date and Time in your models may substantially increase the complexity of your
system, as the next example shows.

The context for this example is that of an Embassy Information System, but could
have been chosen from almost any business area.

Embassy employees have an assignment for a country, but, of course, the assignments
may change over time. Therefore, the model would need an entity ASSIGNMENT
with a mandatory attribute Start Date and an optional End Date. Start Date is modeled
as part of the UID for ASSIGNMENT. This means that the model allows an employee
to have two assignments in the same country, as long as they start on different days. It
also allows the employee to have two assignments that start on the same day, as long
as these are for different countries.

Suppose we know today that Jacqueline will switch from Chili to Morocco on the first
of next month. This fact can be fed into the system immediately, by creating a new
instance of ASSIGNMENT with a Start Date that is still in the future at create time.
The future users will appreciate this kind of functionality.

End Date Redundant?
You may argue that attribute End Date of ASSIGNMENT is redundant because
Jacqueline’s assignments follow each other: the End Date of Jacqueline’s assignment
in Chili matches the Start Date of the one in Morocco. This may be true, but it does not
take into consideration that embassy people may take a leave and return after a couple
of years. In other words, if you do not model attribute End Date you ignore the
possibility that the assigned periods of a person are not contiguous.

Note that the model does allow an employee to have two assignments in, for example,
Honduras, that overlap! The unique identifier does not protect the data against
overlapping periods. Adding End Date to the UID does not help.

You would need a whole series of extra constraints to cope with this.

EMPLOYEE
Id

ASSIGNMENT
Start Date
o End Date

for

of in

as

COUNTRY
Name
..
5-7®

..
Lesson 5: Modeling Change
Countries Have a Life Cycle Too
Suppose the Embassy Information System contains data that goes back to at least the
late eighties. In those days the USSR and Zaire were still countries. Suppose there are
ASSIGNMENTS that refer to the USSR and Zaire. In the case of Zaire, you could
consider an update of the Name of the COUNTRY: Democratic Republic Congo is
essentially just the new name for Zaire. In case of the USSR this would not make
sense. There is not a new name for the old country. The old country simply ceased to
exist when it broke into several countries. Although the concept of a country seems
very stable, countries may change fundamentally during the lifetime of the
information system.

This leads to the next model.

Time-related Constraints
Be aware of the numerous constraints that result from the time dimension! Here is a
selection:

• An ASSIGNMENT may only refer to a COUNTRY that is valid at the Start Date
of the ASSIGNMENT.

• The obvious one: End Date must be past Start Date.

• A business rule: ASSIGNMENT periods may not overlap. The Start Date of an
ASSIGNMENT for an EMPLOYEE may not be between any Start Date and End
Date of an other ASSIGNMENT for the same EMPLOYEE.

• As for the previous constraint, but for End Date.

5-7

EMPLOYEE
Id

ASSIGNMENT
Start Date
o End Date

in

asfor

of

COUNTRY
Name
Start Date
* End Date

life cycle
attributes

Even a Country Has a Life Cycle
...
5-8 Data Modeling and Relational Database Design

..
Modeling Changes Over Time
• You would probably not allow an ASSIGNMENT to be transferred to another
COUNTRY, unless the ASSIGNMENT has not yet started, that is, the Start Date
of the ASSIGNMENT is still in the future.

This is an example of conditional nontransferability.
For updates of the attribute Start Date here are some possible constraints:

• A Start Date of an ASSIGNMENT may be updated to a later date, unless this date
is later then the End Date (if any) of the COUNTRY it refers to.

• A Start Date of an ASSIGNMENT may be updated to a later date, if the current
Start Date is still in the future.

• A Start Date of an ASSIGNMENT may be updated to an earlier date, unless this
date is earlier than the Start Date of the COUNTRY it refers to.

• A Start Date of an ASSIGNMENT may be updated to an earlier date, if this new
date is still in the future.

• A Start Date of a COUNTRY may be updated to a later date, if there are no
ASSIGNMENTS that would get disconnected.

Similar constraints apply to attribute End Date.

Referential Logic
Note that, except for two, these constraints result from referential logic only. There
may be more additional business constraints.

Imagine the sheer number of constraints if a time-affected entity is related to several
other time-affected entities! Fortunately, these constraints all have a similar pattern;
these result from the referential, time related, logic.

Not in Diagram
You cannot model any of these constraints in the diagram as they all have to be listed
separately.

Implementation
In an Oracle environment, one of these constraints can be implemented as a check
constraint, (End Date must be later than Start Date). All the others will be
implemented as database triggers.
..
5-9®

..
Lesson 5: Modeling Change
A Time Example: Prices

Products have a price. Prices change. Old prices are probably of interest. That leads to
a model with entities PRODUCT and PRICE. The latter entity contains the prices and
the time periods they are applicable. In real-life situations you find the concept of
PRICE also named PRICED PRODUCT, HISTORICAL PRICE (and less appropriate:
price list or price history); all these names more or less describe the concept.

You may argue the need for an End Date attribute. If the various periods of a product
price are contiguous, End Date is obsolete. If, on the other hand, the products are not
always available, as in the fruit and vegetable market, the periods should have an
explicit End Date.

5-8

Products and Prices

PRODUCT
Id
* Name

PRICE
* Price in $
Start date
o End Date

with

of
PRICE =
PRICED PRODUCT=
HISTORICAL PRICE
...
5-10 Data Modeling and Relational Database Design

..
A Time Example: Prices
Introducing Order Header and Order Item

Here, entities ORDER HEADER and ORDER ITEM are introduced. An ORDER
HEADER holds the information that applies to all items, like the Order Date and the
relationship to the CUSTOMER that placed the order or the EMPLOYEE that handled
it. (For clarity, these relationships are not drawn here.) The ORDER ITEM holds the
Quantity Ordered and refers to the PRODUCT ordered. The price that must be paid
can be found by matching the Order Date between Start Date and End Date of PRICE.
Note that you cannot model this “between relationship”.

This model is a fairly straightforward product pricing model and is often used.

Order
Note that the concept of an order in this model is composed of ORDER HEADER and
ORDER ITEM.

To find the order total for an order, it would need a join over four tables.

See Page 27

5-9

What Price to Pay?

PRODUCT
Id
* Name

PRICE
* Price in $
Start date
o End Date

with

of

ORDER HEADER
Id
* Order Date

ORDER ITEM
* Quantity Ordered

with

of

referring
to

referred
by

be
tw

ee
n

..
5-11®

..
Lesson 5: Modeling Change
Price List
A variant on the above model is often used when prices as a group are usually changed
at the same time. The period that prices are valid is the same for many prices; that
would lead to this model:

Entity PRICE LIST represents the set of prices for the various products; PRICED
PRODUCT represents the price list items. To know the price paid for an ordered item,
you take the Order Date of the ORDER HEADER, and take the PRICE LIST that is
applicable at that date. Next, you go from ORDER ITEM to the PRODUCT that is
referred to and from there to the PRICED PRODUCT of the PRICE LIST you have
just found. To find the order total for an order, it would need a join over five tables.

5-10

Price List Search

PRODUCT
Id
* Name

PRICED PRODUCT
* Price in $

with

of

ORDER HEADER
Id
* Order Date

with

of

with

on

PRICE LIST
Id
* Start Date
o End Date referred

by

between

referring
to

ORDER ITEM
* Quantity
 Ordered
...
5-12 Data Modeling and Relational Database Design

..
A Time Example: Prices
Buying a PRODUCT or a PRICED PRODUCT?
Another variant of a pricing model is shown here.

Here an ORDER ITEM refers directly to a PRICED PRODUCT. At create time of the
ORDER ITEM the constraint is applied that the Order Date must mach the correct
PRICE LIST period. To find the order total for an order now only requires three tables.

5-11

Order for Priced Products

PRODUCT
Id
* Name

PRICED PRODUCT
* Price in $

with

of

with

on

PRICE LIST
Id
* Start Date
o End Date

referred by

ORDER HEADER
Id
* Order Date

with

of

ORDER ITEM
* Quantity
 Orderedreferring

to
..
5-13®

..
Lesson 5: Modeling Change
Negotiated Prices

When prices are subject to negotiation, the model becomes simpler. Negotiated Price
is now an attribute of entity ORDER ITEM; ORDER ITEM refers to PRODUCT.
Every referential constraint can be modeled.

This model may seem to hold derivable information, but this is not true. Even in the
case that almost all Negotiated Prices are equal to the current product price, you have
to model Negotiated Price at ORDER ITEM level, just because of the small chance of
an exception. To find the order total you require only two tables. You can imagine that
many analysts choose this variant of the model as a safeguard, even if there is nothing
to negotiate at present.

5-12

Negotiated Prices

ORDER HEADER
Id
* Order Date

with

of

referring
to

PRICED PRODUCT
* Price in $

with

of

with

on

PRICE LIST
Id
* Start Date
o End Date

PRODUCT
Id
* Name

ORDER ITEM
* Quantity Ordered
* Negotiated Price

referred by
...
5-14 Data Modeling and Relational Database Design

..
A Time Example: Prices
Which Variant to Use and When?
Typically, the model with the negotiated prices will occur where the number of
ORDER ITEMS per ORDER HEADER is low, often just a single one, and where the
value is high, as, for example, in the context of a used car business.

You see ORDER ITEM referring to a PRODUCT most often in the situation where
prices do not change frequently. The number of items per ORDER HEADER is often
well over one, and the overall value limited. Typical examples are the fashion industry
and grocery stores.

The model with ORDER ITEM referring to PRICED PRODUCT is often used in
businesses where prices often change, as in the fresh fruit and vegetable markets.
Prices there may even change during the day.

The model with attribute Current Price for a PRODUCT is typically the model for the
supermarket environment where instant availability of prices at the checkouts is vital.

As stated earlier, the best model for a particular context depends on functional needs.
See more on this in the chapters on Denormalized Data and Design Considerations.
..
5-15®

..
Lesson 5: Modeling Change
Current Price

These models are variants on the PRODUCT-PRICE model you have seen before.

In the left-hand model the 1:m relationship between PRODUCT and PRICE shows the
real historical prices only. You can guess that only historical prices are kept because
attribute End Date is mandatory; an additional constraint is that this value should
always be in the past. The Current Price of a PRODUCT is represented as an attribute.
This model does not have any redundancies.

In many situations it would be a good design decision to keep the current product
prices as well as the old prices in one table based on entity PRICE. The middle model
is an ER representation of that situation. Note that End Date is now optional.

The right-hand model is another model that contains a subtle redundancy. See more on
this type of redundancy in the lesson on Denormalized Data.

5-13

Current Prices

of

PRODUCT
Id
* Name
* Current Price

with
old

PRICE
* Price in $
Start Date
* End Date

PRODUCT
Id
* Name
* Current Price

of

with

PRICE
* Price in $
Start Date
o End Date

PRICE
* Price in $
Start date
o End Date
o Current Indicator

of

PRODUCT
Id
* Name

with
...
5-16 Data Modeling and Relational Database Design

..
Journalling
Journalling
When a system allows a user to modify or remove particular information, the question
should arise if the old values must be kept on record. This is called logging or
journalling. You will often encounter this when the information is of a financial
nature.

Consequences for the Model

A journal usually consists of both the modified value and the information about who
did the modification and when it was done. This extra information can, of course, be
expanded if you wish.

Apart from the consequences for the conceptual data model, the system needs special
journalling functionality: any business function that allows an update of Amount In
should result in the requested update, plus the creation of an entity instance AMOUNT
MODIFICATION with the proper values. Of course, the system would need special
functions as well in order to do something with the logged data.

No Journal Entity
When several, or all, attributes of an entity need to be journalled, it is often
implemented by maintaining a full shadow table that has the same columns as the
original plus some extra to store information about the who, when, and what of the
change. This table does not result from a separate entity; it is just a second, special,
implementation of one and the same entity.

5-14

toto

byby

AMOUNT
MODIFICATION
* Old Amount in $
* Modified by
* Date Modification

PAYMENT
o Date Paid
* Amount in $

with

of

toto

byby

Journalling

PAYMENT
*Date Paid
*Amount in $
..
5-17®

..
Lesson 5: Modeling Change
Journalling Registers Only
Note that logging does not prevent a user from making updates. Preventing updates
entirely is a functional issue and is invisible in the conceptual data model. Be aware
that preventing updates altogether would also block the possibility to change typos or
other mistakes.

At this stage, decisions must be made about the behavior of the system with respect to
updates; sometimes this leads to modifications in the conceptual data model.

For example, suppose that in a particular business context a certain group of users is
allowed to create instances of PAYMENT but is not allowed to change them. Changes
can only be made by, say, a financial manager. Suppose you just created a PAYMENT
instance and you discover you made a mistake. For those cases the business would
need some mechanism to stop the erroneous instance. One mechanism would be to ask
one of the financial managers to make the change. A far better mechanism would be to
add functionality so that a payment can be neutralized. This may be represented in the
model as an attribute Neutralized Indicator that users can set to Yes.
...
5-18 Data Modeling and Relational Database Design

..
Summary
Summary
Every update in a system means loss of information. To avoid that you can create your
model to keep a history of the old situations. Sometimes relationships refer to a time-
dependent state of an entity. In other words, the updated entity is in fact a new instance
of the entity and not an updated existing instance. If this is the case, the time-
dependent referential constraints cannot be modeled by a relationship only.

Time in your model is a complicated issue. Many models have some time-related
entities.

5-15

Summary

• Consider the need for keeping old values.

• Time in your model is complicated:

– Implicit versions

– References

• Journalling
..
5-19®

...
Lesson 5: Modeling Change
Practice 5—1: Shift

Goal
The purpose of this practice is to model various aspects of time.

Scenario
Some shops are open 24 hours a day, seven days a week. Others

close at night. Employees work in shifts. Shifts are subject to local legislation. Below
you see the shifts that are defined in one of the shops in Amsterdam.

Your Assignment
List the various date/time elements you find in this Shift scheme and make a
conceptual data model.

Moonlight Coffees

5-17

Museumplein, Amsterdam, March 21

Shift 1 2 3 4 5

 6:30 11:30 16:00 20:30 -
11:30 16:00 20:30 23:00

 7:00 11:30 16:00 20:30 -
11:30 16:00 20:30 23:00

 7:00 11:30 16:00 20:30 -
11:30 16:00 20:30 23:00

 7:00 11:30 16:00 20:30 -
11:30 16:00 20:30 23:00

 7:00 11:30 16:00 20:30 -
11:30 16:00 20:30 24:00

 8:00 11:30 15:00 18:00 21:00
11:30 15:00 18:00 21:00 24:00

Mon

Tue

Wed

Thu

Fri

Sat/Sun

Practice: Shift
...
5-20 Data Modeling and Relational Database Design

...
Practice 5—2: Strawberry Wafer
Practice 5—2: Strawberry Wafer

Scenario
You have modeled a price list in an earlier lesson. Now some new
information is available.

Your Assignment
Revisit your model and make changes, if necessary, given this extra information.

Moonlight Coffees

Prices are at the same level within a country; prices are determined
by the Global Pricing Department. Usually the prices for regular,
global products are re-established once a year.

Prices and availability for local specialties are determined by the
individual shops. For example, the famous Norwegian Vafler med
Jordbær (a delicious wafer with fresh strawberries) is only available
in summer. Its price depends on the current local market price of
fresh strawberries.

5-19

klein middel groot
gewone koffie 60 90 120
cappuccino 90 110 140
koffie verkeerd 75 100 130
speciale koffies 99 125 150
espresso 60 95 110
koffie van de dag 45 75 100
caffeine vrij 5 10 15 toeslag
zwarte thees 60 100 120
vruchten thees 75 110 130
kruiden thees 80 120 140
dag thee 50 85 100
caffeine vrij 5 10 15 toeslag
frisdranken 60 100 130
diverse sodas 60 100 130
mineraal water 75 120 140
appel taart 180
brusselse wafel 150
portie chocolade bonbons 150
koekje van eigen deeg 120
portie slagroom 30

prijslijst de Keyzer, Keyzerlei 15, Antwerpen
bezoekt ons op ‘t Web: www.moonlight.com

in
cl

us
ie

f B
TW

16
 S

ep
te

m
be

r

...
5-21®

...
Lesson 5: Modeling Change
Practice 5—3: Bundles

Goal
The purpose of this practice is to expand the concept of an old
entity.

Scenario
As a test, Moonlight sells bundled products in some shops, for a special price. Here are
some examples.

Bundles sell very well; all kinds of new bundles are expected to come.
The system should know how all these products are composed, in order to complete
various calculations.

Your Assignment
1 Modify the product part of the model in such a way that the desired calculations

can be completed.

Moonlight Coffees

A SweetTreat(tm) consists of a large soft drink plus cake of
the day.

 A BigBox(tm) consist of a large coffee of the day plus two
cakes of the day.

A SuperSweetTreat(tm) consists of a SweetTreat(tm) plus
whipped cream (on the cake).

A FamilyFeast(tm) consists of two BigBoxes(tm) plus two
SweetTreats™ plus a small surprise.

PRODUCT
Id
* Name

classified
as

classification
for

PRODUCT GROUP
Name
...
5-22 Data Modeling and Relational Database Design

...
Practice 5—3: Bundles
2 Change the model in such a way that it allows for:

A DecafPunch(tm) consists of a regular decaffeinated coffee
or a regular decaffeinated tea, plus a blackberry muffin.
...
5-23®

...
Lesson 5: Modeling Change
Practice 5—4: Product Structure

Goal
The purpose of this practice is to model a hierarchical structure.

Scenario
Moonlight needs to make sales information available as a tool to

optimize its business. A hierarchical product structure is being developed to be able to
report on different summary levels. This hierarchical structure should replace the
single level product group classification. Below you see the current idea about a
product structure. This structure is far from complete, but it should give you an idea of
the shape the structure will take. The + signs mean that the structure will be expanded
at that point.

Your Assignment
1 Create a model for a product classification structure.

2 (Optional) How would you treat the bundled products?

Moonlight Coffees

5-22

 + Drinks
+ Coffees

Regular
Cappuccino
Café Latte
+ Special Coffee

Teas
+ Black

Chinese
Indian
English

+ Infusions
+ Herbal

Soft drinks
Juices

Orange
Grape

+ Waters
+ Sodas

+ Dairy Products
 +Foods

+ Pastry
+ Candy Bars
+ Local Specialties

 +Non Foods
Merchandise

CDs
+ Stationary

Other
+ Tickets
+ Art

+ Products
...
5-24 Data Modeling and Relational Database Design

Advanced Modeling
Topics

..
Lesson 6: Advanced Modeling Topics
Introduction

Lesson Aim
This lesson gives an overview of patterns you can discover in data models. This lesson
introduces some generic models. You can use these to make your model withstand
future changes that are predictable but not yet known.

Objectives

Topic See Page

Introduction 2

Patterns 4

Master Detail 5

Basket 6

Classification 7

Hierarchy 8

Chain 10

Network 11

Symmetric Relationships 13

Roles 14

Fan Trap 15

6-2

Overview

• Patterns

• Drawing conventions

• Generic modeling
...
6-2 Data Modeling and Relational Database Design

..
Introduction
At the end of this lesson, you should be able to do the following:

• Recognize common patterns in conceptual data models

• Know the general behavior, such as the common constraints, of these patterns

• Use particular drawing conventions

• Create a more generic model for selected sections of a conceptual data model

Data Warehouse 16

Drawing Conventions 17

Generic Modeling 19

Generic Models 20

Summary 23

Practice 6—1: Patterns 24

Practice 6—2: Data Warehouse 25

Practice 6—3: Argos and Erats 26

Practice 6—4: Synonym 27

Topic See Page
..
6-3®

..
Lesson 6: Advanced Modeling Topics
Patterns

Similar Structure
Many models contain parts that have a similar structure, although the context may be
completely different. For example, the structure of a conceptual data model in the
context of a dictionary that deals with concepts such as headword, entry, meaning,
synonym is, surprisingly, almost identical to the structure of a railroad with track,
station, connection, and also to the structure of a baseball or soccer competition.

Easier to see are the similarities between, for example, ORDER HEADER with
ORDER ITEM and QUOTATION HEADER with QUOTATION ITEM, or between
MARRIAGE and JOB ASSIGNMENT.

Why Search for Similarities?
The main reason why it is important to look for similarities is that it will save you
time. If you have solved a problem in a particular context and you can apply the
solution to another, it obviously saves time. Moreover, you will feel confident that you
know about the situation. It will help you to ask the right questions. It will help you
identify the really complex and unpleasant things and will prevent you from making
the same mistakes twice.

Are there similarities between marriage and job assignment? Of course, the business
rules in the context of a marriage are different, because they are determined differently
compared to those of a job assignment. But when you are aware of the similarities, you
can easily check if business rules of the first context apply in the second, by asking, for
example:

• Can an assignment be for more than one job?

• Can someone have two assignments simultaneously? Unofficially?

• How does an assignment start? How does it end?

The following paragraphs discuss a series of patterns that you will encounter while
creating your models. For all these patterns you will see the characteristics and the
rules that usually apply.

• Similar structure

• Similar rules and constraints?
...
6-4 Data Modeling and Relational Database Design

..
Master Detail
Master Detail

Master-detail constructions are very common, as 1:m relationships are very common.
Distinguish between a 1:m relationship that is typically directed from the 1 to the
many and a relationship that is directed the other way around (see below). Master-
detail is characterized by the fact that the master A is divided into B’s. B’s do not exist
alone; they are always in the context of an A.

It is very rare that these relationships are transferable; if an instance of B is connected
to the wrong instance of A, it is far more likely that the instance of B is deleted and
then recreated in the context of the correct A.

Typical master-detail relationship names:

• Consists of

• Divided into

• Made of

• (Exists) With

Often a master A is of no value when it has no B’s, for example, the relationship is
mandatory at the 1 side. This mandatory relationship end can usually be circumvented,
as you have seen before.

Implementation
The tables that come from this master-detail pattern should be considered as clustered.

6-3

Patterns: Master–Detail

consists
of

part of

• Characteristic: consists of
An instance of B only exists in the context of an A

• Metaphor: Master–Detail

B

A

..
6-5®

..
Lesson 6: Advanced Modeling Topics
Basket

A basket construction is a special case of a master-detail pattern. A basket can contain
one or more things, but these things (often named: items) can be of different types. A
single item is always of one type only. That is the reason for the arc. The arc shows
that an item must be of one and only one of the types.

6-4

Pattern: Basket

•• Characteristic:Characteristic:
container for various types of itemscontainer for various types of items

•• Items may be of different typesItems may be of different types

•• Metaphor: Shopping BasketMetaphor: Shopping Basket

consists
of

part of

B

A

X

Y

Z

A

B

X
Y
Z

...
6-6 Data Modeling and Relational Database Design

..
Classification
Classification

This is again a 1:m relationship, but now the main orientation is from P to Q.

This is typically the case when Q can exist independently from P. Q acts as a class for
P, something with which to group P’s.

Usually entities in a conceptual data model have several of these classes.

Typical classification-type relationship names:

• Classified by

• Grouped by

• Assigned to

• (Exists) In

The relationship is usually transferable as classifications may change over time.

6-5

Patterns: Classification

• Characteristic: classified by, grouped by
Q exists independently, may be related

• Metaphor: EMPLOYEE–DEPARTMENT

P

classifying

classified by

Q

..
6-7®

..
Lesson 6: Advanced Modeling Topics
Hierarchy

Most hierarchical structures have a known limit for the maximum number of levels. If
that is the case and the limit is a low number of 5, for example, then usually the best
model is the one that is shown in the left of the illustration, one entity per level.

Model the structure with the recursive relationship if:

• The structure has no known level limit.

• The structure has a level limit, but the limit is high, say six or more.

• An instance of the structure can easily have a change of position, thus changing its
level.

• You like maintaining constraints.

Disputable or False Hierarchies
Often structures should be hierarchical but you cannot be sure. Sometimes they seem
hierarchical but actually are not so. You can have, for example, the is owner of
relationship between companies. Suppose company C1 owns company C2, company
C2 owns company C3, could it be that company C3 owns the shares of company C1?
Even if legislation would prohibit such strange constructions, would you be sure?

Many people see the parent/child relationship as a metaphor for a hierarchical
relationship. Clearly this is wrong as a child usually has two parents and can have step-
parents as well.

6-6

Patterns: Hierarchy

A
Id

• Characteristic: manager of / subordinate of

• Additional constraints to guard hierarchical nature

• Metaphor: Mother–Child
...
6-8 Data Modeling and Relational Database Design

..
Hierarchy
Also the hierarchical structure of a FILE SYSTEM with files and folders, which are
files of a particular type, is a disputable hierarchy when you think of the concept of a
shortcut in Windows (or a Link in UNIX). These shortcuts transform the hierarchy
conceptually into a network although technically a shortcut and a link are just files
with a special role.

Recursive Relationship and Optionality
Recursive relationships that describe a real hierarchy are usually optional at both ends,
as the hierarchy must start or end somewhere.

Constraints Applying to a Hierarchy
The recursive model, as you see in the centre of the illustration, only requires an
instance of A to refer to a valid instance of A. A1 referring to A1 is fine, according to
the model. A2 referring to A3 and A3 referring to A2 is fine as well. These are the only
obvious diversions from a real hierarchy.

Constraints that apply in a hierarchical structure deal with safeguarding the hierarchy
and should prevent the table from containing the above kind of data.

Implementation
The first constraint, A1 may not refer to A1, and you can easily check this with an
Oracle check constraint. The others need some programming and lead to database
triggers.

Possibly you may have to check extra business rules, for example, when the number of
levels may not exceed a given value.
..
6-9®

..
Lesson 6: Advanced Modeling Topics
Chain

A Chain (of beads) can be regarded as a special kind of hierarchy. A chain is a
recursive relationship of an entity. The relationship of the chain is a 1:1 relationship as
a chain is characterized by the fact that an object in the chain is preceded and followed
by one object at most.

A chain is a structure where sequence is of importance, for example, the sequence of
the pages in a chapter and of the chapters in a document, of the critical path in a
procedure, of the preferred road from A to B.

A chain can also be modeled as a master-detail. The recursive model allows an easy
insertion in the chain. The right-hand model with entity CHAIN and BEAD may need
to change the sequence numbers of all the beads behind the inserted one.

6-7

Patterns: Chain

BEAD
Id

• Characteristic: preceded by / followed by

• Sequence is important

• Metaphor: Elephants

followed
by

preceded
by

CHAIN

BEAD
Seqno

A

B

...
6-10 Data Modeling and Relational Database Design

..
Network
Network

Network structures typically describe pairs of things of the same type, for example,
marriage, railroad track (pair of start and end stations), synonyms (two words with the
same meaning), and Web documents with hyperlinks to other Web documents.

Characteristics
Often:

• The m:m relationship must be resolved to hold specific information about the pair
such as the date of the marriage, or the length of the railroad track.

• The two relationships of the intersection entity form the unique identifier.
• Time-related constraints apply in networks that must guard, for example, the kind

of rules that deal with “sequentially monogamous”.
• The two relationships refer to different subtypes of the entity:

Note that a hierarchy is a network where a particular set of business rules apply.

6-8

Patterns: Network

A

A

A

• Characteristic: pairs
Every A can be connected to every A
(sometimes: to every other A)

• Metaphor: Web Document with Hyperlinks
..
6-11®

..
Lesson 6: Advanced Modeling Topics
Bill of Material
A special example of a network structure is a Bill of Material (BOM). A BOM
describes the way things are composed of other things, and how many of these other
things (here it is instances of PRODUCT) are needed. Entity COMPOSITION is the
intersection entity with attribute Quantity Needed.

.

6-10

Bill of Material

COMPOSITION
* Quantity Needed

product of

part in

in

with

Code
914.53
914.54
914.55
914.56

Name
AAAAAAAAA
AA
BBBBBBBBB
CCCCCCC
DDDDD

Prod_code
854.01
854.01
854.01
914.54
914.54
934.76

Part_code
604.18
604.19
 914.54
914.55
914.56
915.12

Quantity
1
1
2
1
1
3

PRODUCTSPRODUCTS COMPOSITIONS

PRODUCT
Code

6-11

914.54914.54

854.01854.01

604.18604.18

604.19604.19

914.55914.55

914.56914.56

914.54914.54
...
6-12 Data Modeling and Relational Database Design

..
Symmetric Relationships
Symmetric Relationships
Symmetric recursive relationships cause a very special kind of problem which is more
complex than you would assume.

In most contexts a record of a pair (A1, A2) has a different meaning when referred to
as (A2, A1). For example, if the model is about entity PERSON and the relationship is
mother of /daughter of, then the existence of person pair (P1, P2) would mean the
exclusion of the possibility of pair (P2, P1).

The recursive relationship of PERSON and family of / family of. Here, if (P1, P2) is
true, then (P2, P1) is equally true. This is called a symmetric relationship. There are
other symmetric recursive relationships such as: STATION directly connected by rail
with STATION,

Symmetric Relationships: Problem
When in a symmetric relationship the pair (S1, S2) is valid, the pair (S2, S1) must be
valid as well. Nevertheless, it would not make much sense to record both pairs as that
would essentially store the same information twice—which would oppose one of the
basic principles of database design.

But if we record only one pair, which should we record? And how would you know
which of the two pairs was used if someone else had recorded it?

Symmetric Relationships: Solution
A way which is often used to model these symmetric situations is based on the
following idea: think of (S1, S2) as Group1, (S3, S4) as Group2 and so on. Looking at
the relationship this way, you can say that a GROUP always consists of exactly two
instances of S. The model and the table implementation are shown below.

consists of 2consists of 2

Group_id
1
1
2
2
3
3

S
S1
S2
S3
S4
S5
S6

GROUPGROUP
Id# Id

inin

SS

consists of 2consists of 2

Group_id
1
1
2
2
3
3

S
S1
S2
S3
S4
S5
S6

GROUPGROUP
Id# Id

inin

SS
..
6-13®

..
Lesson 6: Advanced Modeling Topics
Roles

Roles often occur when a system needs to know more about people than the basic
Name/Address/City information. Modeling the roles as separate entities offers the
possibility to show which attributes are mandatory for a particular role, and, if
necessary, to show relationships between the various roles. The example below shows
that a person in their role as president of a country can appoint a person in the role of
minister of a department. Possibly the words “presidency” and “ministership” are
closer to the concepts than the ones in the diagram.

6-13

Patterns: Roles

• Characteristic: is / is 1:m (or 1:1) relationships

• Metaphor: Person–Many Hats
(not necessarily concurrent...)

A P

Q

PARTY

DEPARTMENT

PERSON COUNTRY

appointed by
appointing

roles
PRESIDENT

PARTY
LEADER

MINISTER

PERSON

ROLE

ROLE
TYPE
...
6-14 Data Modeling and Relational Database Design

..
Fan Trap
Fan Trap

A Fan Trap (named after the characteristic shape of the solution) occurs when three or
more entities are related through m:m relationships and form a ring. Usually you
should replace the relationships with a central entity having several m:1 relationships.
Preventing a fan trap is similar to resolving a m:m relationship between two entities.

Why Traps Occur
Resolving the three m:m relationships results into three intersection entities, AB, BC
and AC. These will contain related pairs. Joining AB and BC may, however, result in
different information to what AC contains which you may have seen in practice 3-8.

Note there are various ways of avoiding the trap, as is shown in the illustration. All can
be correct, depending on the context.

6-15

Fan Trap

• Characteristic: ring of m:m related entities

• Metaphor: ABC Combination

A

C

B

C

B

AB

BCAC

A

CB

AB

A CBA

BC

CBA

ABC ABC ABC
..
6-15®

..
Lesson 6: Advanced Modeling Topics
Data Warehouse

A data warehouse system can be modeled as any system. Data warehouses contain the
same sort of information as any straightforward transaction processing information
system. Data warehouses usually contain less detailed, summarized, information as
warehouses are mainly built for overview and statistical analysis. However, Data
warehouses in general receive the input from online transaction systems that do
contain details.

Data warehouses often have a star-shaped model: this is made up of one central entity
(the facts) containing the condensed, summarized, information, and several
dimensions that classify and group the details.

Common dimensions represent entities such as:

• Time

• Geography

• Actor (for example, salesperson, patient, customer, instructor)

• Product (for example, article, medical treatment, course)

Often the dimensions are classified as well. Time may be structured in day, week,
month, quarter, year. You can classify products in various ways as you have seen in
earlier examples. If this is the case, the model is usually described as the Snowflake
model, as it looks like the crystal shape of a snowflake.

6-17

Patterns: Data Warehouse

F

X D

B

A

C

E

July

• Characteristic: multidimensional, many, many
detail instances

• Metaphor: star model
Stars may be strangely shaped:

• Snowflake model
...
6-16 Data Modeling and Relational Database Design

..
Drawing Conventions
Drawing Conventions

Two drawing conventions are widely in use: one that positions the entities with the
high volumes at the top of the paper and one that does the opposite. Both try to avoid
crossing relationship lines, partially overlapping entities, and relationship lines that
cross entities. Whatever convention you choose, choose one and use it consistently.
This will prevent errors and make the reading of large diagrams much easier.

Keep the overall structure of the layout unchanged during the modeling project as
many people are disoriented when you change the structure.

Make separate diagrams for every business area. These may have a different layout;
these diagrams are mainly used for communication with subject matter experts.

At the end of this course, you should be able to read models created in any drawing
convention, and you should be able to complete a model following any convention
used.

6-18

high volumes

high volumes

Drawing Conventions

Not important which convention you choose,
as long as you follow one of them
..
6-17®

..
Lesson 6: Advanced Modeling Topics
Use Conventions Sensibly

The major goal of creating the diagram (but not the model) is to give a representation
of the model that can be used for communication purposes. This means that you must
never let a convention interfere with readability and clarity. Do not be concerned that
readability takes space. Usually an entity model is represented by several diagrams
that show only the entities and relationships that deal with a particular functional part
of the future system. Splitting the model over various diagrams adds to the readability.

But:
Readability first

6-20

Model Readability

A

F

C

E

B

D

A

E

F
D

C

• Takes space

• Subject to taste

B

...
6-18 Data Modeling and Relational Database Design

..
Generic Modeling
Generic Modeling

What is Generic Modeling?
Generic modeling is looking at the same context from another, more distant
perspective. From a distance many things looks the same.

Suppose you are to make a model for a photographer’s shop. The business typically
sells many different articles, for example, camera bodies, compact cameras, lenses,
films. For each type of article, there are between, say, 10 and 500 different types. You
can model every type as an entity, for example, CAMERA BODY, LENS, FILM.

You could also model them all as subtypes of the entity ARTICLE, or all as just
ARTICLE, without the subtypes.

This, however, would not work. For example, there is the fact that every now and then
new kinds of articles are stocked in the shop. Every time this happens it leads to a new
entity with its own attributes in the model.

The model with entity ARTICLE would only be a workable model if there were no (or
possibly only very few) new instances of ARTICLE TYPE during the life cycle of the
system.

6-21

Generic Modeling

FILM
* AsaTRIPOD

* HeightLENS
* Focal
 Distance

CAMERA
BODY
* Weight

ARTICLE
o Weight
o Focal Distance
o Height
o Asa Number
o ...

MANUFACTURER
* Name

MANUFACTURER
* Name

ARTICLE
TYPE
..
6-19®

..
Lesson 6: Advanced Modeling Topics
Generic Models
More generic models are shown below. They may be useful in particular situations.

Recycling of Attributes You can use this model if it is safe to assume the articles
will have a limited number of attributes. This limit may be a high number but must be
set beforehand. Property1 may contain the Asa Number for instances of ARTICLE of
TYPE Film and may contain Weight for instances of ARTICLE of TYPE Camera
Body and so on. The major advantage of this model is the possibility of adding new
instances of ARTICLE TYPE without the need to change the model.

The type of information that should be entered for Property1, Property2, and so on can
be described by using, for example, the Definition Prop1, attributes of ARTICLE
TYPE. Here you can also store information about the data type of these properties.

Attributes Modeled as PROPERTY Instance This model takes another approach.
Every value for a PROPERTY of an ARTICLE is stored separately. This model gives
a lot of freedom to define new articles and properties during the life cycle of the
system.

ARTICLE
o Property1
o Property2
o Property3
o Property4
o Property5
o Property6
o Property7
o Property8

MANUFACTURER
 Name

ARTICLE TYPE
 Definition Prop1
o Definition Prop2
o Definition Prop3
o Definition Prop4
...

*

*

ARTICLE PROPERTY VALUE
o Value

ARTICLE PROPERTY

ARTICLE TYPE
...
6-20 Data Modeling and Relational Database Design

..
More Generic Models
More Generic Models

Everything is a “Thing”
The world is full of things that may be related to things:

Resolving the m:m relationship:

Now add some definition information:

This is a rather generic model. In fact, it is a model of the universe and beyond. Note
that the number of attributes for entity THING may be substantial.

THING

having some kind ofhaving some kind of
relationship withrelationship with

having some kind ofhaving some kind of
relationship withrelationship with

THING
ASSOCIATION

6-26

THING
TYPE ASSOCIATION

TYPE

THING
ASSOCIATION
..
6-21®

..
Lesson 6: Advanced Modeling Topics
Most Generic Model

This model combines the concepts of “thing” and the property/property value and thus
allows everything to be represented with a free number of properties per type.

Value of Generic Modeling
The use of generic modeling is mainly to reduce to a minimum the number of possible
future changes of the conceptual data model. This can be an enormous advantage as it
cuts maintenance costs during the lifetime of a system. The other side of the coin is
that the initial coding of the programs is more complex as the entities are not “down-
to-earth” things.

Best of Two Worlds
In many models you would use a mix of the easy-to-understand, straightforward
entities and the more generic thing-like entities.

6-27

THING TYPE ASSOCIATION
TYPE

THING PROPERTY VALUE

THING
ASSOCIATION

PROPERTY

‘generic’

ARTICLE PROPERTY VALUEARTICLE PROPERTY VALUE

ARTICLEARTICLE PROPERTYPROPERTY

ARTICLE TYPEARTICLE TYPE

ORDER ITEMORDER ITEM

ORDER HEADERORDER HEADER

CUSTOMERCUSTOMER

‘down to earth’
...
6-22 Data Modeling and Relational Database Design

..
Summary
Summary

Thinking in terms of patterns forms a valuable way of doing quality checks on a
conceptual data model. Often constraints and considerations in one context can be
transferred to the other context with a simple translation.

Using a drawing convention in your models helps to improve readability and clarity.
This may prevent mistakes and inaccuracies.

Generic modeling can prevent the need to change data structures in the future and can
reduce the number of tables and programs dramatically. The price is increased
complexity in both data model and programs.

6-29

Summary

• Patterns

– Show similarities

– Invent your wheel only once

• Generic models

– Reduce the number of entities dramatically

– Are more complex to implement

– Are very flexible

– Are usually the best choice in unstable
situations
..
6-23®

..
Lesson 6: Advanced Modeling Topics
Practice 6—1: Patterns

Goal
The purpose of this practice is to predict the main pattern in a given context.

Your Assignment
What pattern do you expect to find in the given contexts? If you do not see it, make a
quick sketch of the model. Use your imagination and common sense.

6-31

Practice: Patterns

• Model of moves in a chess game

• Model of tenders (quotations)

• Model of recipes

• Model of all people involved in college: students,
teachers, parents, …

• Rentals in a video shop

• Model of phases in a process
...
6-24 Data Modeling and Relational Database Design

...
Practice 6—2: Data Warehouse
Practice 6—2: Data Warehouse

Goal
In this practice you create a conceptual data model for a data
warehouse for Moonlight Coffees Inc.

Scenario
Moonlight wants to build a data warehouse based on the detailed sales figures the
shops report back on a daily basis. Examples of questions Moonlight wants the data
warehouse to answer are printed below.

Your Assignment
1 Check the Moonlight models you created so far. Do they cater for answering the

listed questions. If not, make the appropriate changes.
2 For a data warehouse data model, suggest the central “facts” entity.

Moonlight Coffees

6-32

•What is the sales volume in $ of coffee last month compared with the coffee sales
volume same month last year?
•What is the sales volume in $ of coffee per head in Japan compared with the
average coffee sales volume in the Moonlight countries around the world?
•What is the growth of the sales volume in $ of coffee in Sweden compared with the
growth of sales volume of all products in the same geographical area? What is the
growth in local currency?
•What was the total sales volume in $ of coffee last month, compared with the total
coffee sales volume in the same month last year, for the shops that have been open
for at least 18 months?
•What is the growth of the sales volume in $ of nonfoods compared to that of foods?
•What is the best day of the week for total sales in the various countries? How is that
related to the average? Is the best day of the week dependent on the type of
location?
•What products are most profitable per country? Globally?
•Does the service level (#employees per 1000 items sold) have influence on sales?
...
6-25®

..
Lesson 6: Advanced Modeling Topics
Practice 6—3: Argos and Erats

Goal
When you model information, you make a lot of assumptions, often without being
aware of this. Most of these assumptions are likely to be correct as they are usually
based on experience in similar contexts or common.

This practice helps to increase your awareness of this.

Scenario
The scenario for this practice is Stranger in a Strange Land. Lost in Darkness. The
Wanderer in the Mist. You name it!

Your Assignment
Make a conceptual data model based on the information in the text. Mark all the pieces
in the diagram that can be confirmed from the text.

"Erats have names that are unique. Erats can have argos.
Argos have names as well. The name of an argo must be
unique within the erat it belongs to. Erats mutually have
rondels. There are only a few different types of rondels. Erats
can have one or more ubins. A ubin always consists of one or
more argos of the erat, one or more rondels of the erat, or
combinations of the two."
...
6-26 Data Modeling and Relational Database Design

..
Practice 6—4: Synonym
Practice 6—4: Synonym

Scenario
A synonym is, according to a dictionary, “a word having the same meaning with
another (usually almost the same).”

Examples:

Your Assignment
Make a conceptual data model that could be the basis for a dictionary of synonyms.

practice - exercise
order - command

entity - being
order - sequence

order - arrangement
Command - demand
..
6-27®

..
Lesson 6: Advanced Modeling Topics
...
6-28 Data Modeling and Relational Database Design

Mapping the ER Model

..
7-2 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Introduction

Lesson Aim
This lesson describes some principles of relational databases and presents the various
techniques that you can use to transform your Entity Relationship model into a
physical database design.

Topic See Page

Introduction 2

Why Create a Database Design? 4

Transformation Process 6

Naming Convention 8

Basic Mapping 12

Relationship Mapping 14

Mapping of Subtypes 20

Summary 30

Practice 7-1: Mapping basic Entities, Attributes and
Relationships

31

Practice 7—2: Mapping Supertype 32

7-2

Overview

• Why use design modeling?

• Introduction to the components:

– Tables

– Columns

– Constraints

• Basic Mapping

• Complex mapping

..
7-3

..Introduction

®

Objectives
At the end of this lesson, you should be able to do the following:

• Explain the need of a physical database design

• Know the concepts of the relational model

• Agree on the necessity of naming rules

• Perform a basic mapping

• Decide how to transform complex concepts

Practice 7—3: Quality Check Subtype Implementation 33

Practice 7—4: Quality Check Arc Implementation 34

Practice 7—5: Mapping Primary Keys and Columns 35

Topic See Page

..
7-4 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Why Create a Database Design?
The Entity Relationship model describes the data required for the business. This model
should be totally independent from any implementation considerations. This same ER
model could also be used as a basis for implementation of any type of DBMS or even
a file system.

A New Starting Point An Entity Relationship model is a high-level representation
which cannot be implemented as is.

People creating these models may not be aware of physical and database constraints,
but they still have to provide a conceptually “workable” solution. This is why it is
important to have a validated and agreed ER model before going into the physical
database design.

Transforming the ER model, creates a “first-cut” database design. This first-cut design
is intended to serve as a new basis for defining the physical implementation of the
database.

This new model can easily be used for further discussions between designers,
developers, and database administrators.

7-3

Why Create a Data Design Model?

• Closer to the implementation solution

• Facilitates discussion

• Ideal model can be adapted to an RDBMS model

• Sound basis for physical database design

..
7-5

..Why Create a Database Design?

®

Presenting Tables
Tables are supported by integrity rules that protect the data and the structures of the
database. Integrity rules require each table to have a primary key and each foreign key
to be consistent with its corresponding primary key.

Tables A table is a very simple structure in which data is organized and stored.
Tables have columns and rows. Each column is used to store a specific type of value.
In the above example, the EMPLOYEES table is the structure used to store
employees’ information.

Rows Each row describes an occurrence of an employee. In the example, each row
describes in full all properties required by the system.

Columns Each column holds information of a specific type like Id, Name, Address,
Birth Date, and the Id of the department the employee is assigned to.

Primary keys The Id column is a primary key, that is, every employee has a unique
identification number in this table which distinguishes each individual row.

Unique keys Both columns Name and Birth_date are associated with a Unique key
constraint which means that the system does not allow two rows with the same name
and Birth_date. This restriction defines the limits of the system.

Foreign keys The foreign key column enables the use of the Dpt_id value to retrieve
the department properties for which a specific employee is working.

7-4

Presenting Tables

Table: EMPLOYEES

rows

 foreign key
column

Id Name Address Birth_date Dpt_id

126 PAGE 12, OXFORD ST 03-03-66 10

349 PAPINI 53, HAYES AVE 10-08-77 20

785 GARRET 08-12-55 10

primary key
column

unique key
column

columns

EMPLOYEES (EPE)
pk
uk1

uk1
fk

Id
Name
Address
Birth_date
Dpt_id

 *
 *

 *
 *

 o

Table diagram: EMPLOYEES

 foreign
key

..
7-6 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Transformation Process
Using transformation rules you create a new model based on the conceptual model.

Conceptual Model The way you can describe requirements for the data business
requires using a semantically rich syntax through graphical representation. As you
have seen in previous chapters, you can describe many of the business rules with
graphical elements such as subtypes, arcs, and relationships (barred and
nontransferable ones). The only constraints in expressing business complexity that you
have encountered so far are the graphical limitations. We know that this model acts as
a generic one, because it is not related to any physical considerations. Therefore you
can use it for any type of database. Nevertheless, it may be that the DBMS type you
want to use (relational or others) does not support all of the semantic rules graphically
expressed in your ER model.

Relational Model The Relational model is based on mathematical rules. This means
that when you try to fit all of the syntax from the ER model into the physical database
model, some of it may not have any correspondence in the relational model. To
preserve these specified rules, you have to keep track of them and find the correct way
to implement them.

7-5

Transformation Process

Relational Model

Conceptual Model

..
7-7

..Transformation Process

®

Terminology Mapping

Changing from analysis to design also means changing terminology.

Using a very simple basis:

• An entity leads to a table.

• An attribute becomes a column.

• A primary unique identifier produces a Primary key.

• A secondary unique identifier produces a Unique key.

• A relationship is transformed into a Foreign key and foreign key columns.

• Constraints are the rules with which the database must cope to be consistent. Some
of the business rules are translated into Check Constraints, other complex ones
require additional programming and you can implement them at client side or
server side or both.

This initial mapping of an ER model is limited to the design of tables, columns, and
constraints that can be declared. A declarative constraint is a business constraint that
can be ensured at the server level using database language statements only and
requires no coding.

7-6

Terminology Mapping

Physical DesignER Model

ANALYSIS DESIGN

Entity

Attribute

Primary UID

Secondary UID

Business Constraints

Relationship

Table

Column

Primary Key

Unique Key

Foreign Key

Check Constraints

..
7-8 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Naming Convention
Before transforming the ER diagram you probably need to define a naming convention
so that people working on the project use the same standards and produce the same
model from the same source. Rules explained here are the ones used within Oracle.
Even though they are efficient, they are not the only ones that you can use. You or
your company can provide the company’s own standard as part of its method.

Naming of Tables
The plural of the entity name is used as the corresponding table name. The idea is that
the Entity is the concept of an abstract thing—you can talk about EMPLOYEE,
CUSTOMER, and so on, so singular is a good naming rule, but a table is made up of
rows (the EMPLOYEES table, or CUSTOMERS table) where the plural is more
appropriate.

Naming of Columns
Column names are identical to the attribute names, with a few exceptions. Replace
special characters with an underscore character. In particular, remove the spaces from
attribute names, as SQL does not allow spaces in the names of relational elements.
Attribute Start Date converts to column Start_date; attribute Delivered Y/N transforms
to Delivered_y_n (or preferably Delivered_Ind). Often column names use more
abbreviations than attribute names.

7-7

General Naming Topics

Decide on a convention for:
• Table names

• Special characters (%, *, #, -, space, …)

• Table short names

• Column names

• Primary and Unique Key Constraint names

• Foreign Key Constraint names

• Foreign Key Column names

..
7-9

..Naming Convention

®

Short Names
A unique short name for every table is a very useful element for the naming of foreign
key columns or foreign key constraints. A suggested way to make these short names is
based on the following rules:

• For entity names of more than one word, take the:

– First character of the first word.

– First character of the second word.

– Last character of the last word.

For example entity PRICED PRODUCT produces PPT as a short table name.

• For entity names of one word but more than one syllable, take the:

– First character of the first syllable.

– First character of the second syllable.

– Last character of the last syllable.

For example EMPLOYEE gives EPE as a short name.

• For entity names of one syllable, but more than one character, take the:

– First character.

– Second character.

– Last character.

For example FLIGHT gives FLT.

This short name construction rule does not guarantee uniqueness among short names
but experience has proved that duplicated names are relatively rare.

In case two short names happen to be the same, just add a number to the one that is
used less often giving, for example, CTR for the most frequently used one and then
CTR1 for the second one.

Naming of Foreign Key Constraints
The recommended rule for naming foreign key constraints is
<short name of the from table> _ < short name of the to table> _ < fk>.

For example, a foreign key between tables EMPLOYEES and DEPARTMENT results
in constraint name epe_dpt_fk.

Naming of Foreign Key Columns
Foreign key columns are prefixed with the short name of the table they refer to. This
leads to foreign key column names like dpt_no. Limiting the attribute name to 22
characters enables you to add two prefixes plus two underscores to the column name.
This may occur in the event of cascade barred relationships. This is discussed later in
the lesson.

..
7-10 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Multiple Foreign Keys Between Two Tables
If there are two (or more) foreign keys between two tables then the foreign keys and
foreign key columns would be entitled to the same name. In this situation, add the
name of the relationship to both foreign key names. Do the same with the foreign key
columns. This way you will never mistake one foreign key for the other.

For example, in the model of Electronic Mail entity LIST ITEM has two relationships
with ALIAS (one of them is at the subtype level). The naming would result in the two
foreign key names: lim_als_in and lim_als_referring_to. The foreign key columns
would be named Als_id_in and Als_id_referring_to.

Naming of Check Constraints
Check Constraints are named <table short name>_ck_<sequence_number>, such as
epe_ck_1, epe_ck_2 for the first and second check constraint on table EMPLOYEES.

Naming Restrictions with Oracle
Each RDBMS can have its own naming restrictions. You need to know if the
convention you decide to use is compatible with it.

• You can use any alpha-numeric character for naming tables and columns as long
as the name:

– Starts with a letter.

– Is up to 30 characters long.

– Does not include special characters such as “!” but “$”,’#” and “_” permitted.

7-8

Naming Restrictions with Oracle

• Table and column names:

– Must start with a letter

– May contain up to 30 alphanumeric characters

– Cannot contain space or special characters

• Table names must be unique within a schema.

• Column names must be unique within a table.

..
7-11

..Naming Convention

®

• Table names must be unique within the schema that is shared with views and
synonyms.

• Within the same table two columns cannot have the same name.

• Be aware also of the reserved programming language words that are not allowed
for naming objects. Avoid names like:

– Number

– Sequence

– Values

– Level

– Type

for naming tables or columns. Refer to the RDBMS reference books for these.

..
7-12 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Basic Mapping

Entity Mapping
Before going into complex transformation we will look at the way to transform simple
entities.

1 Transform entities into tables using your own naming convention or the one
previously described.

In this example the entity EMPLOYEE produces a table name EMPLOYEES and
a short name EPE.

Use a box to represent tables on a diagram.

2 Each attribute creates a column in the table and the characteristics such as
mandatory or optional have to be kept for each column. Using the same notation
“*” or “o” facilitates recognition of these characteristics on a diagram.

3 All unique identifiers are transformed. A primary unique identifier is transformed
into a Primary key. The notation “pk” next to the column name indicates the
Primary key property. If more than one column is part of the primary key, use the
“pk” notation for each column.

You need to implement secondary unique identifiers, even if they do not appear on
your ER diagram. To preserve this property, secondary UIDs are transformed as
unique keys. In the above example, the values for the combination of two columns
must be unique. They belong to the same unique key and each column has a uk1
notation to indicate this. If, in future, another unique key comes to exist for that table,
it would be notated as uk2.

7-11

Basic Mapping

Table Name: EMPLOYEES

Short Name: EPE

1 - Entities

2 - Attributes

3 - Unique identifiers

EMPLOYEES (EPE)
pk
uk1

uk1

EMPLOYEE
Id
 Name
o Address
 Birth Date

 *

 *

Id
Name
Address
Birth_date

 *
 *

 *
 o

Primary
UID

Secondary
UID

..
7-13

..Basic Mapping

®

Rules for Relationships

Foreign Key Columns: A relationship creates one or more foreign key columns in
the table at the many side. Using previous naming rules, the name of this foreign key
column is Dpt_id for the relationship with Department and Epe_id for the recursive
relationship. This ensures that column names such as Id, coming from different tables,
still provide a unique column name in the table.

Depending on whether or not the relationship is required, the foreign key column is
mandatory or optional.

Foreign Key Constraints: The foreign key constraints between EMPLOYEES and
DEPARTMENTS is epe_dpt_fk. The recursive one between EMPLOYEES and
EMPLOYEES is called epe_epe_fk.

7-12

Rules for Relationships

DEPARTMENT
Id
* Name

EMPLOYEES (EPE)

Id
Name

Dpt_id
Epe_id

*
*

*

pk

fk1
fk2

DEPARTMENTS (DPT)

pk
uk

 *
 *

Id
Namefk1 = epe_dpt_fk

fk2 = epe_epe_fk

EMPLOYEE
Id
 Name
o Address
 Birth Date

 *

 *

 o

..
7-14 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Relationship Mapping

Mapping of One-to-Many Relationships
As previously mentioned, some of the meaning that is expressed in an ERD cannot be
reproduced in the physical database design.
.

A relationship in an ER Diagram expresses the rules that apply between two entities,
from two points of view. The notation used in the ERD is rich enough to tell, for
example, that the relationship is mandatory on both sides. The illustration shows that
the 1:m relationships that are mandatory at the one side are implemented in exactly the
same way as the ones that are optional at the one side. This means that part of the
content of the ER model is lost during transformation, due to the relational model
limitations. You need to keep track of these incomplete transformations; they must be
implemented using a mechanism other than a declarative constraint.

Mapping of Mandatory Relationship at the One Side
In case of the implementation of a relationship that is mandatory at the one side you
need to check two things.

• You cannot create any master record without at least one detail record.

• When deleting details you must be sure that you do not delete the last detail for a
master record, or alternatively, you must delete the master record together with its
last detail.

7-13

Mapping 1:m Relationships

XS

fk o Y_id

XS

fk * Y_id

..
7-15

..Relationship Mapping

®

You can implement code to check this on the server side or on the client side. In an
Oracle environment this was usually done at the client side. Since Oracle 8, on the
server side Oracle offers implementation possibilities that were not available in
previous releases.

Optional Composed Foreign Keys
When a foreign key is made of two or more columns, and the foreign key is optional,
all foreign key columns must be defined as optional. Note that if you enter a value in
one of the foreign key columns, but not in the other one, Oracle will not fire the
foreign key constraint check.

You would need additional code to check that either all or none of the foreign key
columns have a value, but exclude the possibility of a partially-entered key.

Mapping of Nontransferable Relationships

This relationship property does not migrate to the physical database design because it
has no natural counterpart in an RDBMS, although you can code a solution at the
server side. In the example, you would create an update trigger at table YS that fails
when the foreign key column X_id is updated.

Mapping Barred Relationships

A barred relationship, like any other relationship, is mapped into a foreign key. The
foreign key column is also part of the primary key, and thus plays a double role.

7-14

Mapping Barred and Nontransferable
Relationships

XS (X)

X
Id
* C1

Y

Id
* C2

fk = y_x_fkpk * Id
* C1

YS (Y)

pk
pk, fk

* Id
* X_id
* C2

..
7-16 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Mapping of Cascade Barred Relationships
A Cascade Barred relationship may lead to long column names as the illustration
shows.

To avoid column names that could end up with more than 30 characters, the suggested
convention is never to use more than two table prefixes.

The usual choice for the foreign key column names is:

<nearest by table short name> _ <farthest table short name> _ <column name>

In the above example the foreign key column in DS that comes all the way from AS
through BS and CS is named C_a_id instead of C_b_a_id.

As the short names are usually three characters long, this rule explains why attribute
names should not have more than 22 characters.

7-15

Mapping Cascade Barred Relationships

A
Id
* C1

B
Id
* C2

C
Id
* C3

D
Id
* C4

AS (A)

pk * Id
 * C1

BS (B)

pk * Id
 * C2
fk,pk * A_id

CS (C)

pk * Id
 * C3
fk,pk * B_id
fk,pk * B_a_id

DS (D)

pk * Id
 * C4
fk * C_id
fk * C_b_id
fk *

fk = b_a_fk
fk = c_b_fk

fk = d_c_fk

C_a_id

..
7-17

..Relationship Mapping

®

Mapping of Many-to-Many Relationships
When transforming a many-to-many relationship, you create an intersection table.

The intersection table contains all the combinations that exist between XS and YS.

• This table has no columns other than foreign key columns. These columns together
form the primary key.

• The rule for naming this table is short name of the first table (in alphabetical order)
and full name of the second one. This would give a many-to-many relationship
between tables EMPLOYEES and PROJECTS an intersection table named
EPE_PROJECTS.

• Whether the relationship was mandatory or not, the foreign key columns are
always mandatory.

Note this table is identical (except, possibly, for its name) to the table that would result
from an intersection entity that could replace the m:m relationship.

7-16

Mapping m:m Relationships

fk1 = xy_x_fk

XS YS

X_YS

pk,fk1 * X_id
pk,fk2 * Y_id

pk * Id
 * C1

pk * Id
 * C2

fk2 = xy_y_fk

X
Id
* C1

Y
Id
* C2

..
7-18 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Mapping of One-to-One Relationships

When transforming a one-to-one relationship, you create a foreign key and a unique
key. All columns of this foreign key are also part of a unique key.

If the relationship is mandatory on one side, the foreign key is created at the
corresponding table. If the relationship is mandatory on both sides or optional on both
sides, you can choose on which table you want to create the foreign key. There is no
absolute rule for deciding on which side to implement it.

If the relationship is optional on both sides you may decide to implement the foreign
key in the table with fewer numbers of rows, as this would save space.

If the relationship is mandatory at both ends, we are facing the same RDBMS
limitation you saw earlier. Therefore, you need to write code to check the mandatory
one at the other side, just as you did to implement m:1 relationships that are mandatory
at the one end.

Alternative Implementations
A 1:1 relationship between two entities can be implemented by a single table. This is
probably the first implementation to consider. It would not need a foreign key
constraint.

A third possible implementation is to create an intersection table, as if the relationship
was of type m:m. The columns of each of the foreign keys of the intersection table
would be part of unique keys as well.

7-17

Mapping 1:1 Relationships

X
Id
* C1

Y
Id
* C2

YS (Y)
XS (X)

pk * Id
 * C2
fk,uk * X_id

pk * Id
 * C1

fk = y_x_fk

Choose which side for FK for other cardinalities

..
7-19

..Relationship Mapping

®

Mapping of Arcs

The first solution illustrated above shows that there are as many foreign keys created
as there are relationships. Therefore a rule must be set to verify that if one of the
foreign keys is populated, the others must not be populated (which is the exclusivity
principle of the relationships in an arc) and that one foreign key value must always
exist (to implement the mandatory condition).

From a diagram point of view, all foreign keys must be optional, but additional code
will perform the logical control. One solution on the server side is to create a check
constraint at LIST_ITEMS as is:

CHECK (usr_id IS NOT NULL

AND als_id IS NULL)
OR (usr_id IS NULL

AND als_id IS NOT NULL).

This controls the exclusivity of mandatory relationships.

In case the relationships are optional, you need to add:
OR (usr_id IS NULL AND als_id IS NULL)

An other syntax that is often used:
DECODE (usr_id,NULL,0,1)

+ DECODE (als_id,NULL,0,1)=1;

(or =<1 for optional relationship).

You can also map arcs in a different way using the generic arc implementation. This is
a historical solution that you may encounter in old systems. You should not use it in
new systems. It is discussed in the lesson on Design Considerations.

7-18

Mapping Arcs

LIST ITEM

USER
Id
* Name

LIST_ITEMS (LIM)

pk,fk1 * X_id
fk2 o Usr_id
fk3 o Als_id ALIASES (ALS)

pk * Id fk3 = lim_als_fk

ALIAS
Id

USERS (USR)

pk * Id
 * Name

fk2 = lim_usr_fk

fk1 = lim_x_fk

Explicit implementation

+ check constraint

..
7-20 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Mapping of Subtypes
In mapping subtypes, you must make a choice between three different types of
implementations. All three are discussed in detail.

Supertype Implementation
This choice produces one single table for the implementation of the entities P, Q, and
R. The supertype implementation is also called single (or one) table implementation.

Rules
1 Tables:

– Independent of the number of subtypes, only one single table is created.

2 Columns:

– The table gets a column for all attributes of the supertype, with the original
optionality.

– The table also gets a column for each attribute belonging to the subtype but the
columns are all switched to optional.

– Additionally, a mandatory column should be created to act as a discriminator
column to distinguish between the different subtypes of the entity. The value it
can take is from the set of all the subtype short names (DBE, DBU in the
example). This discriminator column is usually called <table_short_ name> _
type, in the example Dba_type.

3 Identifiers:

– Unique identifiers translate into primary and unique keys.

7-19

Id
K

Mapping Subtypes

• Supertype

• Subtype

• Both Supertype
and Subtype (“Arc”)

Variety of implementation choices

Id
A

B
Id

P
Id
* Xxx

Q
o Yyy

R
* Zzz

Id
L

..
7-21

..Mapping of Subtypes

®

– Unique identifiers at subtype level usually translate into a unique key or check
constraint only.

4 Relationships:

– Relationships at the supertype level transform as usual. Relationships at
subtype level are implemented as foreign keys, but the foreign key columns all
become optional.

5 Integrity constraints:

– For each particular subtype, all columns that come from mandatory attributes
must be checked to be NOT NULL.

– For each particular subtype, all columns that come from attributes or
relationships of other subtypes must be checked to be NULL.

Note: You may avoid the use of the discriminator column if you have one
mandatory attribute in each subtype. The check is done directly on these columns to
find out what type a specific row belongs to.

When to Consider Supertype Implementation
The single table implementation is a common and flexible implementation. It is the
one you are likely to consider first and is specially appropriate when:

• Most of the attributes are at the supertype level.

• Most of the relationships are at the supertype level.

• The various subtypes overlap in the required functionality.

7-20

Supertype Implementation

PS (P)

• Mandatory
discriminator
column

• Additional
constraints

pk

fk1
fk2

Id
Xxx
Yyy
Zzz
A_id
B_id
P_type

o
o

o

*
*

*

*

Id
K

Id
A

B
Id

P
Id
* Xxx

Q
o Yyy

R
* Zzz

Id
L

..
7-22 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

• The access path to the data of the various types is the same.

• Business rules are globally the same for the subtypes.

• The number of instances per subtype does not differ too much, for example, one
type having more than, say, 1000 times the number of instances of the other.

• An instance of one subtype can become an instance of another, for example,
imagine an entity ORDER with subtypes OPEN ORDER and PROCESSED
ORDER, each subtype having its own properties. An OPEN ORDER may
eventually become a PROCESSED ORDER.

Additional Objects
Usually you would create a view for every subtype, showing only the columns that
belong to that particular subtype. The correct rows are selected using a condition based
on the discriminator column. These views are used for all data operations, including
inserts and updates. All applications can be based on the view, without loss of
performance.

The supertype table plus subtype views is an elegant and appropriate implementation
and should be considered as first choice.

Consequences for Tables Based on K and L
The foreign key in the table based on K is straightforward.

The foreign key of the table based on L is more complex. The supertype
implementation would mean that the foreign key refers to a valid P, not to the more
limited set of R’s. This must be checked with an additional constraint.

..
7-23

..Subtype Implementation

®

Subtype Implementation
This subtype table implementation (often loosely referred to as two-table
implementation) produces one table for each of the subtypes, assuming there are only
two subtypes, such as Q and R.

Rules
1 Tables:

– One table per first level subtype.

2 Columns:

– Each table gets a column for all attributes of the supertype, with the original
optionality.

– Each table also gets a column for each attribute belonging to the subtype, also
with the original optionality.

3 Identifiers:

– The primary unique identifier at the supertype level creates a primary key for
each of the tables. Alternatively, if the subtypes had their own UID, this one
are used as the basis for the primary key.

– Secondary identifiers of the supertype become unique keys within each table.

4 Relationships:

– All tables get a foreign key for a relationship at the supertype level with the
original optionality.

7-21

pk * Id
 * Xxx
 * Zzz
fk1 * A_id
fk2 * B_id

Subtype Implementation

QS (Q)

pk * Id
 * Xxx
 o Yyy
fk * A_id

RS (R)

 q_a_fk

fk1=r_a_fk

fk2=r_b_fk

Id
K

Id
A

B
Id

P
Id
* Xxx

Q
o Yyy

R
* Zzz

Id
L

..
7-24 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

– For the relationships at the subtype levels, the foreign key is implemented in
the table it is mapped to. The original optionality is retained.

5 Integrity constraints:

– No specific additional checks are required. Only when the Id values must be
unique across all subtypes would it need further attention.

When to Consider a Subtype Implementation
You can regard this implementation as a horizontal partitioning of the supertype. It
may be appropriate when:

• The resulting tables will reside in different databases (distribution). This may
occur when different business locations are only interested in a specific part of the
information.

• When the common access paths for the subtypes are different.

• Subtypes have almost nothing in common. This may occur when there are few
attributes at the supertype and many at the subtype levels. An example can be
found in the Electronic Mail model. Entity ADDRESS has two subtypes: MAIL
LIST and ALIAS. These subtypes only share the fact that they can be used as
addressee for a message, but their other properties are completely different.

• Most of the relationships are at the subtype level. This is the case especially if both
tables are to be implemented in different databases, and the foreign key integrity
constraint for the supertype may not be verified in all cases.

• Business functionality and business rules are quite different between subtypes.

• The way tables are used is different, for example, one table being queried while the
other one is being updated. A one-table solution could result in performance
problems.

• The number of instances of one subtype is very small compared to the other one.

Additional Objects
Usually you would create an additional view that represents the supertype showing all
columns of the supertype and various subtypes. The view select statement must use the
union operator. The view can be used for queries only, not for data manipulation.

Consequences for Tables Based on K and L
The foreign key in the table based on L is straightforward and should refer to the table
based on R.

The foreign key of the table based on K is now more complex. This must be
implemented as two optional foreign keys, one to each of the tables based on Q and R.

An extra check is needed to make sure that both foreign keys do not have a value at the
same time; this is identical to an ordinary arc check.

..
7-25

..Subtype Implementation

®

Both Supertype and Subtype “Arc” Implementation

This choice produces one table for every entity, linked to foreign keys in an exclusive
arc at the PS side. It is the implementation of the model as if the subtypes were
modeled as standalone entities with each one having an is subtype of / is supertype of
relationship to the supertype. These relationships are in an arc. Therefore this
implementation is also called Arc Implementation. See also the chapter on Constraints
for more details about subtypes compared to the arc.

Rules
1 Tables:

– As many tables are created as there are subtypes, as well as one for the
supertype.

2 Columns:

– Each table gets a column for all attributes of the entity it is based on, with the
original optionality.

3 Identifiers:

– The primary UID at the supertype level creates a primary key for each of the
tables.

– All other unique identifiers transform to unique keys in their corresponding
tables.

4 Relationships:

– All tables get a foreign key for a relevant relationship at the entity level with

7-22

pk * Id
 * Zzz
fk * B_id

pk

Supertype and Subtype (Arc) Implementation

QS (Q) RS (R)

fk3 =
p_a_fk

fk1 =
p_q_fk

PS (P)

Id
Xxx
Q_id
R_id
A_id

fk2 =
p_r_fk

r_b_fkId
Yyy

*
o

pk

fk1,uk1
fk2,uk2
fk3 *

*
*
o
o

Id
K

Id
A

B
Id

P
Id
* Xxx

Q
o Yyy

R
* Zzz

Id
L

..
7-26 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

the original optionality.

5 Integrity constraints:

– Two additional columns are created in the table based on the supertype. They
are foreign key columns referring to the tables that implement the subtypes.
The columns are clearly optional as the foreign keys are in an arc. The foreign
key columns are also part of the unique keys because, in fact, they implement a
mandatory one-to-one relationship.

– An additional check constraint is needed to implement the arc.

When to Consider a Both Supertype and Subtype Implementation
This solution performs a double partitioning. It is used relatively rarely, but could
be appropriate when:

– The resulting tables reside in different databases (distribution). This may occur
when different business locations are only interested in a specific part of the
information.

– Subtypes have almost nothing in common and each table represents
information that can be used independently, for example, when the PS table
gives all global information and both QS and RS give specific information, and
the combination of global and specific information is hardly ever needed.

– Business rules are quite different between all types.

– The way tables are used and accessed is different.

– Users from different business areas need to work with the same rows at the
same time, but with different parts of the rows, which could result in locking
problems and a performance issue.

Additional Objects

Although you would hardly use them, you could consider creating additional views
that represent the supertype and various subtypes in full.

Consequences for Tables Based on K and L
Both foreign keys can be implemented straightforwardly without additional checks.

..
7-27

..Subtype Implementation

®

Storage Implication
The illustrations show the differences between the one, two, and three table
implementations. In most database systems empty column values do take some bytes
of database space (although this sounds contradictory). In Oracle this is very low when
the empty columns are at the end of the table and when the data type is of variable size.

Supertype Implementation All rows for both types are in one table. Note the
empty space in the Q rows at the R columns and vice-versa.

7-24

Storage Implication
Supertype Implementatioin

rows Q

rows R

cols
P

cols
Q

cols
R

PP

QQ

RR

discriminator column

..
7-28 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Subtype Implementation In the two table implementation the “empty space” of
the one-table implementation is gone. This is a horizontal split of the table.

7-25

rows Q

rows R

cols
P

cols
Q

cols
R

cols
P

Storage Implication
Subtype Implementation

..
7-29

..Subtype Implementation

®

Arc Implementation In this three table implementation the one table is sliced
vertically into a P-columns-only portion. The remaining part is horizontally split into
the Q and R columns and rows. An additional foreign key column at P, or a foreign
key column at both Q and R is needed to connect all the pieces together.

7-26

rows Q

rows R

cols
P

cols
Q

cols
Rrows Q

rows R

fk fk

Storage Implication
Supertype and Subtype (Arc) Implementation

..
7-30 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Summary

Relational databases implement the relational theory they are based on.

A coherent naming rule can prevent many errors and frustrations and adds to the
understanding of the structure of the database schema.

You have seen how to map basic elements from an ER model such as entities and
relationships. You can do this very simply. There are also complex structures which
require decisions on how to transform them. Some ER model elements can only be
implemented by coding check constraints or database triggers. These are specific to
Oracle and not part of the ISO standard for relational databases.

7-27

Summary

• Relational concepts

• Naming rules convention

• Basic mapping

• Complex mapping

..
7-31

..Practice 7—1: Mapping basic Entities, Attributes and Relationships

®

Practice 7—1: Mapping basic Entities, Attributes and
Relationships

Goal
In this practice, you are to create a basic mapping of a conceptual
model into a first cut logical mapping of your database.

Scenario
The following is part of the simple Moonlight ER model showing the entities of
DEPARTMENT and EMPLOYEE. Map the entities, attributes, relationships,
optionality, and keys of the following diagram.

Your Assignment
1 Map both entities to tables and all attributes to columns.
2 Map relationships to foreign keys columns and mark as (fk).
3 Map all optionality tags to not nulls (*).
4 Map UID tags to primary keys (pk).
5 On the table diagram, name all the elements that must be created following this

implementation. Use the naming convention as described in this lesson, or use
your own rules. Give proper names to the columns and foreign key constraints.

Moonlight Coffees

EMPLOYEE
Id
* First Name
* Last Name
* Date of Birth
o Home Phone

responsible
for

assigned
to

EMPLOYEES () DEPARTMENTS ()

DEPARTMENT
Id
* Name
* Location

EMPLOYEES () DEPARTMENTS ()

..
7-32 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Practice 7—2: Mapping Supertype

Goal
In this practice, you create a complex mapping and test your
understanding of the transformation process.

Scenario
Here is part of the Moonlight ER model showing the entity DEPARTMENT. One of
the analysts has decided to implement the DEPARTMENT entity and its subtypes as a
single table.

Your Assignment
1 What would have been the rationale of this choice?
2 On the table diagram, name all the elements that must be created following this

supertype implementation. Use the naming convention as described in this lesson,
or use your own rules. Give proper names to the columns and foreign key
constraints and identify check constraints, if any.

Moonlight Coffees

Practice: Mapping Supertype

DEPARTMENT
Id
* Name
* Head Count

HQ
* Address

OTHER DEPARTMENT

reporting
to

reporting to

report
of

report of

COUNTRY
ORGANIZATION
Tax Id Number

7-29

DEPARTMENTS ()

..
7-33

..Practice 7—3: Quality Check Subtype Implementation

®

Practice 7—3: Quality Check Subtype Implementation

Goal
In this practice you perform a quality check on table mappings
that were created by someone who is supposed to use the naming
convention that is described in this lesson.

Scenario
Here is a part of the Moonlight ER model.

Your Assignment
Perform a quality check on the proposed subtype implementation of entity
PRODUCT.

Moonlight Coffees

7-30

for

with

COUNTRY
Code

PRODUCT

PRICE LIST
Start Date
* End Date

GLOBAL PRICE
* Amount

with

LOCAL
Name

of

with

GLOBAL
Code
o Size

in

in

with

with

SHOP
No
* Name
* Address
* Cityof

in
with

PRODUCT GROUP
Name

GLOBAL_PRODUCTS (GPT)

pk Code
Size
Pgp_name

LOCAL_PRODUCTS (LPT)

pk
fk
fk

Name
Shop_no
Pgp_name

lpt_shop_fk

*
#

*
o
*

*

..
7-34 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

Practice 7—4: Quality Check Arc Implementation

Goal
The purpose of this practice is to do a quality check on table
mappings that were created by someone else who is supposed to
use the naming convention that is described in this lesson.

Scenario
This practice is based on the same ER diagram as the previous practice.

Your Assignment
Perform a quality check on the proposed supertype and subtype implementation of the
entity PRODUCT and its subtypes. Also, check the selected names.

Moonlight Coffees

7-32

Practice: Quality Check
Arc Implementation

fk1=pdt_pgp_name

fk2=pdt_gpt_code

fk3=pdt_lpt_name

GLOBAL_PRODUCTS (GPT)

pk Code
Size

LOCAL_PRODUCTS (LPT)

pk
pk, fk1
fk1

Name
Shp_no
Pgp_name

fk1=shp_lpt_fk

o
*

*

o
*

pk
fk1
fk2
fk3

Code
Pgp_name
Gpt_code
Lpt_name

PRODUCTS (PDT)

*
*
*

*

fk2=pgp_lpt_fk

gpt_pgp_fk

..
7-35

..Practice 7—5: Mapping Primary Keys and Columns

®

Practice 7—5: Mapping Primary Keys and Columns

Goal
The purpose of this practice is to do a complex mapping of
primary keys and columns.

Scenario
This practice is based on the same model that was used in the previous practice.

Your Assignment
Identify the Primary key columns and names resulting from the transformation of the
GLOBAL PRICE entity. Give the short name.

Moonlight Coffees

GLOBAL_PRICES ()

..
7-36 Data Modeling and Relational Database Design

..Lesson 7: Mapping the ER Model

 Denormalized Data

...
8-2 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

Introduction

Lesson aim
This lesson shows you the most common types of denormalization with examples.

Topic See Page

Why and When to Denormalize 4

Storing Derivable Values 6

Pre-Joining Tables 8

Hard-Coded Values 10

Keeping Details With Master 12

Repeating Single Detail with Master 14

Short-Circuit Keys 16

End Date Columns 18

Current Indicator Column 20

Hierarchy Level Indicator 22

Denormalization Summary 24

Practice 8—1: Name that Denormalization 25

Practice 8—3: Denormalize Price Lists 29

Practice 8—4: Global Naming 30

8-2

Overview

• Denormalization

• Benefits

• Types of denormalization

..
8-3

..
Introduction

®

Objectives

At the end of this lesson, you should be able to do the following:

• Define denormalization and explain its benefits

• Differentiate and describe the different circumstances where denormalization is
appropriate

...
8-4 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

Why and When to Denormalize

Definition of Denormalization
Denormalization aids the process of systematically adding redundancy to the database
to improve performance after other possibilities, such as indexing, have failed. You
will read more on indexing in the lesson on Design Considerations.

Denormalization can improve certain types of data access dramatically, but there is no
success guaranteed and there is always a cost. The data model becomes less robust,
and it will always slow DML down. It complicates processing and introduces the
possibility of data integrity problems. It always requires additional programming to
maintain the denormalized data.

Hints for Denormalizing
• Always create a conceptual data model that is completely normalized.

• Consider denormalization as the last option to boost performance.

• Never presume denormalization will be required.

• To meet performance objectives, denormalization should be done during the
database design.

• Once performance objectives have been met, do not implement any further
denormalization.

• Fully document all denormalization, stating what was done to the tables, what
application code was added to compensate for the denormalization, and the
reasons for and against doing it.

8-3

Denormalization Overview

Denormalization

• Starts with a “normalized” model

• Adds “redundancy” to the design

• Reduces the “integrity” of the design

• Application code added to compensate

..
8-5

..
Why and When to Denormalize

®

Denormalization Techniques and Issues
In the next pages you see a number of denormalization techniques that are used
regularly. For every type of denormalization you see an indication of when it is
appropriate to use it and what the advantages and disadvantages are.

The following topics are covered:

• Storing Derivable Values

• Pre-joining Tables

• Hard-Coded Values

• Keeping Details with Master

• Repeating Single Detail with Master

• Short-Circuit Keys

and the most common specific examples:

• Derivable End Date Column

• Derivable Current Indicator column

• Hierarchy Level Indicator

8-4

Denormalization Techniques

• Storing Derivable Values

• Pre-joining Tables

• Hard-Coded Values

• Keeping Details with Master

• Repeating Single Detail with Master

• Short-Circuit Keys

...
8-6 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

Storing Derivable Values
When a calculation is frequently executed during queries, it can be worthwhile storing
the results of the calculation. If the calculation involves detail records, then store the
derived calculation in the master table. Make sure to write application code to re-
calculate the value, each time that DML is executed against the detail records.

In all situations of storing derivable values, make sure that the denormalized values
cannot be directly updated. They should always be recalculated by the system.

Appropriate:
• When the source values are in multiple records or tables

• When derivable values are frequently needed and when the source values are not

• When the source values are infrequently changed

Advantages:
• Source values do not need to be looked up every time the derivable value is

required

• The calculation does not need to be performed during a query or report

Disadvantages:
• DML against the source data will require recalculation or adjustment of the

derivable data

• Data duplication introduces the possibility of data inconsistencies

8-5

Storing Derivable Values

 Add a column to store derivable data in the
“referenced” end of the foreign key.

Before

After

B

pk,fk
pk

*
*
*

A_id
Sequence_No
Quanity

A

pk *
*

Id
X

A

pk *
*
*

Id
X
Total_quantity

..
8-7

..
Storing Derivable Values

®

E-mail Example of Storing Derivable Values

When a message is delivered to a recipient, the user only receives a pointer to that
message, which is recorded in RECEIVED_MESSAGES. The reason for this, of
course, is to prevent the mail system from storing a hundred copies of the same
message when one message is sent to a hundred recipients.

Then, when someone deletes a message from their account, only the entry in the
RECEIVED_MESSAGES table is removed. Only after all RECEIVED_MESSAGE
entries, for a specific message, have been deleted, the should the actual message be
deleted too.

We could consider adding a denormalized column to the MESSAGES table to keep
track of the total number of RECEIVED_MESSAGES that are still kept for a
particular message. Then each time users delete a row in RECEIVED_MESSAGES,
in other words, they delete a pointer to the message, the Number_of_times_received
column can be decremented. When the value of the denormalized column equals zero,
then we know the message can also be deleted from the MESSAGES table.

8-6

EMail Example of Storing Derivable Values

Store derivable column in the ‘referenced’ end of the foreign key.

REC_MESSAGES (RME)

pk,fk
pk,fk

*
*

Usr_Id
Mse_Id

MESSAGES (MSE)

pk *
*
*

Id
Subject
Text

MESSAGES (MSE)

pk *
*
*
*

Id
Subject
Text
Number_of_times_received

USERS (USR)

pk *
*

Id
Per_name

Before

After

...
8-8 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

Pre-Joining Tables
You can pre-join tables by including a nonkey column in a table, when the actual value
of the primary key, and consequentially the foreign key, has no business meaning. By
including a nonkey column that has business meaning, you can avoid joining tables,
thus speeding up specific queries.

You must include application code that updates the denormalized column, each time
the “master” column value changes in the referenced record.

Appropriate:
• When frequent queries against many tables are required

• When slightly stale data is acceptable

Advantages
• Time-consuming joins can be avoided

• Updates may be postponed when stale data is acceptable

Disadvantages
• Extra DML needed to update original nondenormalized column

• Extra column and possibly larger indices require more working space and disk
space

8-7

Pre-Joining Tables

A

pk *
*

Id
Col_a

B

pk
fk

*
*

Id
A_id

B

pk
fk

*
*
*

Id
A_id
A_col_a

Before

After

Add the non_key column to the table with the foreign key.

..
8-9

..
Pre-Joining Tables

®

Example
Suppose users often need to query RECEIVED_MESSAGES, using the name of the
folder where the received message is filed. In this case it saves time when the name of
the folder is available in the RECEIVED_MESSAGES table.

Now, if a user needs to find all messages in a particular folder, only a query on
RECEIVED_MESSAGES is needed.

Clearly, the disadvantage is extra storage space for the extra column in a, potentially,
very large table.

8-8

EMail Example of Pre-Joining Tables

Create a table with all the frequently queried columns.

RECEIVED_MESSAGES (RME)

pk,fk
pk,fk

*
*
*
*

Mse_id
Flr_id
Date_received
Fdr_Name

FOLDERS (FDR)

pk *
*

Id
Name

RECEIVED_MESSAGES (RME)

pk,fk
pk,fk

*
*
*

Mse_id
Flr_id
Date_received

Before

After

...
8-10 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

Hard-Coded Values
If a reference table contains records that remain constant, then you can consider hard-
coding those values into the application code. This will mean that you will not need to
join tables to retrieve the list of reference values. This is a special type of
denormalization, when values are kept outside a table in the database. In the example,
you should consider creating a check constraint to the B table in the database that will
validate values against the allowable reference values. Note that a check constraint,
though it resides in the database, is still a form of hardcoding.

Whenever a new value of A is needed the constraint must be rewritten.

Appropriate
• When the set of allowable values can reasonably be considered to be static during

the life cycle of the system

• When the set of possible values is small, say, less than 30

Advantages
• Avoids implementing a look-up table

• Avoids joins to a look-up table

Disadvantages
• Changing look-up values requires recoding and retesting

8-9

Hard-Coded Values

Before

After

Remove the foreign key and hard code the allowable values and
validation in the application.

A

pk *
*

Id
Type

B

pk
fk

*
*

Id
A_id

pk *
*

Id
A_Type

B

..
8-11

..
Hard-Coded Values

®

Example
ElectronicMail would like to know some background information about their users,
such as the type of business they work in. Therefore EM have created a table to store
all the valid BUSINESS_TYPES they want to distinguish. The values in this table are
set up front and not likely to change.

This is a candidate for hard-coding the allowable values. You could consider placing a
check constraint on the column in the database. In addition to that, or instead of that,
you could build the check into the field validation for the screen application where
users can sign in to the EM service.

8-10

Email Example of Hard-Coded Values

Hard code the allowable values and validation in the
application.

BUSINESS_TYPES (BTE)

pk * Id
Name

USERS (USR)

pk
fk

*
*
*

Id
Bte_id
Per_name

USERS (USR)

pk *
*
*

Id
Business_type
Per_name

Before

After

...
8-12 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

Keeping Details With Master
In a situation where the number of detail records per master is a fixed value (or has a
fixed maximum) and where usually all detail records are queried with the master, you
may consider adding the detail columns to the master table. This denormalization
works best when the number of records in the detail table are small. This way you will
reduce the number of joins during queries. An example is a planning system where
there is one record per person per day. This could be replaced by one record per person
per month, the table containing a column for each day of the month.

Appropriate
• When the number of detail records for all masters is fixed and static

• When the number of detail records multiplied by the number of columns of the
detail is small, say less than 30

Advantages
• No joins are required

• Saves space, as keys are not propagated

Disadvantages
• Increases complexity of data manipulation language (DML) and SELECTs across

detail values

• Checks for Amount column must be repeated for Amount1, Amount2 and so on

• Table name A might no longer match the actual content of the table

8-11

Keeping Details with Master

Add the repeating detail columns to the master table.

A

pk * Id

B

pk,fk
pk

*
*
*

A_id
Type
Amount

A

pk *
*
*
*
*
*
*

Id
Type1
Amount_1
Type2
Amount_2
Type3
Amount_3

Before

After

Keeping Details with Master

Add the repeating detail columns to the master table.

A

pk * Id

B

pk,fk
pk

*
*
*

A_id
Type
Amount

A

pk *
*
*
*
*
*
*

Id
Amount_1
Amount_2
Amount_3
Amount_4
Amount_5
Amount_6

Before

After

..
8-13

..
Keeping Details With Master

®

Example
Suppose each e-mail user is assigned two quotas—one for messages and one for files.
The amount of each quota is different, so both have to be tracked individually. The
quota does not change very frequently. To be relationally pure, we would create a two-
record STORAGE_TYPES table and a STORAGE_QUOTAS table with records for
each user, one for each quota type. Instead, we can create the following denormalized
columns in the USER table:

• Message_Quota_Allocated

• Message_Quota_Available

• File_Quota_Allocated

• File_Quota_Available

Note that the name of table USERS does not really match the data in the denormalized
table.

8-12

EMail Example Keeping Detail with Master

Add the repeating detail columns to the master table.

USERS (USR)

pk *
*

Id
Name

STORAGE_QUOTAS (SQA)

pk,fk
pk

*
*
*
*

Usr_Id
Storage_type
Allocated
Available

USERS (USR)

pk *
*
*
*
*
*

Id
Name
Message_Quota_Allocated
Message_Quota_Available
File_Quota_Allocated
File_Quota_Available

Before

After

...
8-14 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

Repeating Single Detail with Master
Often when the storage of historical data is necessary, many queries require only the
most current record. You can add a new foreign key column to store this single detail
with its master. Make sure you add code to change the denormalized column any time
a new record is added to the history table.

Appropriate
• When detail records per master have a property such that one record can be

considered “current” and others “historical”

• When queries frequently need this specific single detail, and only occasionally
need the other details

• When the Master often has only one single detail record

Advantages
• No join is required for queries that only need the specific single detail

Disadvantages
• Detail value must be repeated, with the possibility of data inconsistencies

Additional code must be written to maintain the duplicated single detail value at the
master record.

8-13

Repeating Current Detail with Master

Add a column to the master to store the most current details.

A

pk * Id

B

pk,fk
pk

*
*
*

A_Id
Start_date
Price

A

pk *
*

Id
Current_price

Before

After

..
8-15

..
Repeating Single Detail with Master

®

Example

Any time a message is sent, it can be sent with attachments included. Messages can
have more than one attachment. Suppose in the majority of the messages that there is
no or only one attachment. To avoid a table join, you could store the attachment name
in the MESSAGES table. For those messages containing more than one attachment,
only the first attachment would be taken. The remaining attachments would be in the
ATTACHMENTS table.

8-14

EMail Example of Repeating Single Detail
with Master

Add a column to the master to store the most current details.

MESSAGES (MSE)

pk *
*
*

Id
Subject
Text

ATTACHMENTS (ATT)

pk
pk,fk

*
*
*

Id
Mse_id
Name

MESSAGES (MSE)

pk *
*
*
*

Id
First_attachment_name
Subject
Text

Before

After

...
8-16 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

Short-Circuit Keys
For database designs that contain three (or more) levels of master detail, and there is a
need to query the lowest and highest level records only, consider creating short-circuit
keys. These new foreign key definitions directly link the lowest level detail records to
higher level grandparent records. The result can produce fewer table joins when
queries execute.

Appropriate
• When queries frequently require values from a grandparent and grandchild, but not

from the parent

Advantages
• Queries join fewer tables together

Disadvantages
• Extra foreign keys are required

• Extra code is required to make sure that the value of the denormalized column
A_id is consistent with the value you would find after a join with table B.

8-15

Short-Circuit Keys

Create a new foreign key from the lowest detail to the
highest master.

B

pk
fk

*
*

Id
A_id

A

pk * Id
pk
fk

*
*

Id
B_id

C

A

pk * Id pk
fk
fk

*
*
*

Id
B_id
A_id

CB

pk
fk

*
*

Id
A_id

Before

After

..
8-17

..
Short-Circuit Keys

®

Example
Suppose frequent queries are submitted that require data from the
RECEIVED_MESSAGES table and the USERS table, but not from the FOLDERS
table. To avoid having to join USERS and FOLDERS, the primary or a unique key of
the USERS table can been migrated to the RECEIVED_MESSAGES table, to provide
information about USERS and RECEIVED_MESSAGES with one less, or no, table
join.

8-16

EMail Example of Short-Circuit Keys

Create a new foreign key from the lowest detail to the highest
master.

FOLDERS (FDR)

pk
fk

*
*

Name
Usr_id

RECEIVED_
MESSAGES (RME)

pk
fk

*
*

Id
Fdr_name

USERS (USR)

pk *
*

Id
Name

FOLDERS (FDR)

pk
fk

*
*

Name
Usr_id

RECEIVED_
MESSAGES (RME)

pk
fk
fk

*
*
*

Id
Fdr_name
Usr_name

USERS (USR)

pk
uk

*
*

Id
Name

Before

After

...
8-18 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

End Date Columns
The most common denormalization decision is to store the end date for periods that
are consecutive; then the end date for a period can be derived from the start date of the
previous period.

If you do this, to find a detail record for a particular date you avoid the need to use a
complex subquery.

Appropriate
• When queries are needed from tables with long lists or records that are historical

and you are interested in the most current record

Advantages
• Can use the between operator for date selection queries instead of potentially time-

consuming synchronized subquery

Disadvantages
• Extra code needed to populate the end date column with the value found in the

previous start date record

8-17

End Date Column

 Add an end date column to speed up queries so that they can
use a between operator.

B

pk,fk
pk

*
*
*

A_Id
Start_date
End_date

B

pk,fk
pk

*
*

A_id
Start_date

A

pk * Id

Before

After

..
8-19

..
End Date Columns

®

Example
When a business wishes to track the price history of a product, they may use a PRICES
table that contains columns for the price and its start date and a foreign key to the
PRODUCTS table. To avoid using a subquery when looking for the price on a specific
date, you could consider adding an end date column. You should then write some
application code to update the end date each time a new price is inserted.

Compare:
...WHERE pdt_id = ...

AND start_date = (SELECT max(start_date)

FROM prices

WHERE start_date <= sysdate

AND pdt_id = ...

)

and
...WHERE pdt_id = ...

AND sysdate between start_date and nvl(end_date, sysdate)

Note that the first table structure presupposes that products always have a price since
the first price start date of that product. This may very well be desirable but not always
the case in many business situations.

Note also that you would need code to make sure periods do not overlap.

8-18

Example of End Date Column

Create an extra column derivable End_date column.

PRODUCTS (PDT)

pk *
*

Id
Name

PRICES (PCE)

pk,fk
pk

*
*
*

Pdt_id
Start_date
Price

PRICES (PCE)

pk,fk
pk

*
*
*
o

Pdt_id
Start_date
Price
End_date

Before

After

...
8-20 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

Current Indicator Column
This type of denormalization can be used in similar situations to the end date column
technique. It can even be used in addition to an end date. It is a very common type of
denormalization.

Suppose most of the queries are to find the most current detail record. With this type of
requirement, you could consider adding a new column to the details table to represent
the currently active record.

You would need to add code to update that column each time you insert a new record.

Appropriate
• When the situation requires retrieving the most current record from a long list

Advantages
• Less complicated queries or subqueries

Disadvantages
• Extra column and application code to maintain it

• The concept of “current” makes it impossible to make data adjustments ahead of
time

8-19

Current Indicator Column

Add a column to represent the most current record in a
long list of records .

B

pk,fk
pk

*
*
o

A_Id
Start_date
Current_indicator

B

pk,fk
pk

*
*

A_id
Start_date

A

pk * Id

Before

After

..
8-21

..
Current Indicator Column

®

Example
In the first table structure, when the current price of a product is needed, you need to
query the PRICES table using:

...WHERE pdt_id = ...

AND start_date = (SELECT max(start_date)

FROM prices

WHERE start_date <= sysdate

AND pdt_id = ...

)

The query in the second situation would simply be:
...WHERE pdt_id = ...

AND current_indicator = ’Y’

8-20

Example of Current Indicator Column

PRODUCT (PDT)

pk *
*

Id
Name

PRICES (PCE)

pk,fk
pk

*
*
*

Pdt_id
Start_date
Price

PRICES (PCE)

pk,fk
pk

*
*
*
o

Pdt_id
Start_date
Price
Current_indicator

Add a column to represent the most current record, in a long
list of records.

Before

After

...
8-22 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

Hierarchy Level Indicator
Suppose there is a business limit to the number of levels a particular hierarchy may
contain. Or suppose in many situations you need to know records that have the same
level in a hierarchy. In both these situations, you will need to use a connect-by clause
to traverse the hierarchy. This type of clause can be costly on performance. You could
add a column to represent the level of a record in the hierarchy, and then just use that
value instead of the connect-by clause in SQL.

Appropriate
• When there are limits to the number of levels within a hierarchy, and you do not

want to use a connect-by search to see if the limit has been reached

• When you want to find records located at the same level in the hierarchy

• When the level value is often used for particular business reasons

Advantages
• No need to use the connect-by clause in query code

Disadvantages
• Each time a foreign key is updated, the level indicator needs to be recalculated,

and you may need to cascade the changes

8-21

Hierarchy Level Indicator

A

pk
fk

*
*

Id
A_id

A

pk
fk

*
*
*

Id
A_id
Level_no

Create a column to represent the hierarchy level of a record.

Before

After

..
8-23

..
Hierarchy Level Indicator

®

Example
Imagine that because of storage limitations, a limit has been placed on the number of
nested folders. Each time a user wants to create a new instance of a folder within an
existing folder instance, code must decide if that limit has been reached. This can be a
slow process.

If you add a column to indicate at what nested level a FOLDER is, then when you
create a new folder in it, you can decide immediately if this is allowed. If it is, the level
of the new folder is simply one more than the level of the folder it resides in.

8-22

Example of Hierarchy Level Indicator

FOLDERS (FDR)

pk
fk

*
*
*

Id
Fdr_id
Name

FOLDERS (FDR)

pk
fk

*
*
*
*

Id
Fdr_id
Name
Level_no

Create a column to represent the hierarchy level of a record.

Before

After

...
8-24 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

Denormalization Summary
Denormalization is a structured process and should not be done lightly. Every
denormalization step will require additional application code. Be confident you do
want to introduce this redundant data.

8-23

Denormalization Summary

Denormalization Techniques

• Storing Derivable Information
– End Date Column

– Current Indicator

– Hierarchy Level Indicator

• Pre-Joining Tables

• Hard-Coded Values

• Keeping Detail with Master

• Repeating Single Detail with Master

• Short-Circuit Keys

...
8-25

...
Practice 8—1: Name that Denormalization

®

Practice 8—1: Name that Denormalization

Goal
Learn to discriminate the type of denormalization depicted.

Your Assignment
For the following table diagrams, decide what type of

denormalization is used and explain why the diagram depicts the denormalization you
have listed.
Use one of:
• Storing derivable information
• Pre-Joining Tables
• Hard-Coded Values
• Keeping Details with Master
• Repeating Single Detail with Master
• Short-Circuit Keys
1

2

3

Moonlight Coffees

WEEKDAYS (WDY)

pk *
*

Code
Name

SHIFTS (SFT)
pk
fk

*
*
*
*
*

No
Wdy_code
Start_time
End_time
Wdy_name

PRODUCTS (PDT)

pk
fk

*
*

Code
Pgp_Name

Name
Pdt_code
Pgp_name

PROD_GRPS (PGP)

pk * Name

PROD_NAMES (PNE)

pk
fk
fk

*
*
*

pk,fk
pk

*
*
o
*

Cty_code
Start_date
End_date
Current_price_ind

COUNTRIES (CTY)
pk *

*
Code
Name

PRICE_LISTS (PLT)

...
8-26 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

Practice 8—2: Triggers

Goal
The purpose of this practice is to investigate which database triggers are needed to
handle a suggested denormalization.

Your Assignment
1 Indicate which triggers are needed and what they should do to handle the

denormalized column Order_total of ORDER_HEADERS.

ORDER_HEADERS (OHR)

pk *

*

Id

Order_total

ORDER_ITEMS (OIM)
pk
pk

*
*

*

Ohr_id
Seqno

Item_total

8-29

Table Trg Type Column Needed? What should it do?

OHR Insert

 Delete

 Update Id

 Order_total

 OIM Insert

 Delete

 Update Ohr_id

 Item_total

..
8-27

..
Practice 8—2: Triggers

®

2 Indicate which triggers are needed and what they should do to handle the
denormalized column Lcn_address of EMPLOYEES.

LOCATIONS (LCN)

pk *

*

Id

Address

EMPLOYEES (EPE)
pk
fk

*
*
*

*

Id
Lcn_id
Name

Lcn_address

8-31

Table Trg Type Column Needed? What should it do?

 LCN Insert

 Delete

 Update Address

 other cols

 EPE Insert

 Delete

 Update Lcn_id

 Lcn_address

...
8-28 Data Modeling and Relational Database Design

..
Lesson 8: Denormalized Data

3 Indicate which triggers are needed and what they should do to handle the
denormalized column Curr_price_ind of table PRICES.

PRODUCTS (PDT)

pk *
*

Id
Name

PRICES (PCE)
pk
pk

*
*
o

*

Pdt_id
Start_date
End_date

Curr_price_ind

8-33

Table Trg Type Column Needed? What should it do?

 PDT Insert

 Delete

 PCE Insert

 Delete

 Update Pdt_id

 Start_date

 End_date

 Curr_price_Ind

...
8-29

...
Practice 8—3: Denormalize Price Lists

®

Practice 8—3: Denormalize Price Lists

Goal
The aim of this practice is to decide on the type of
denormalization you could use, and what code is needed to ensure
database integrity.

Scenario
End users have started to complain about query performance. One of the areas where
this is particularly noticeable is when querying the price of a global product. Since
there is a large list of records in the GLOBAL_PRICES table, and it needs to be joined
with the PRICE_LISTS table, it is not surprising the queries can take a long time.
Optimizing the queries using other techniques have failed to result in acceptable
response times.Therefore the decision is to use some denormalization to correct this
problem.
The corporate office also has another concern. They would like to notify the local
shops of any new price list changes of global products, prior to their effective date.
They would like to enter the new price list information when it is decided, not when
the start date is reached. You need to add provision to alleviate this restriction.

Your Assignment
Describe what type of denormalization you would implement and what code you
would add to ensure the database does not lose any integrity. The next diagram shows
the current table schema. Consider both issues described above when deciding which
types of denormalization to implement.

Moonlight Coffees

GLOBAL_PRICES (GPE)

pk,fk
pk,fk

*
*
*

Plt_start_date
Plt_cty_code
Amount

PRICE_LISTS (PLT)

pk
pk,fk

*
*

Start_date
Cty_code

...
8-30 Data Modeling and Relational Database Design

...
Lesson 8: Denormalized Data

Practice 8—4: Global Naming

Goal
To convert user requirements into denormalized table designs

Scenario
The corporate office has decided to formalize English as the

corporate language. Headquarters has asked the IS department to arrange for all global
products to store their names in English. On the other hand, countries must be able to
store their native language equivalent.

Your Assignment
Using the design below, denormalize the table design and describe the additional code
that will allow this requirement to be implemented.

Moonlight Coffees

PRODUCT_NAMES (PNE)

pk,fk
pk,fk

*
*
*

Pdt_code
Lge_code
Name

LANGUAGES (LGE)

pk *
*

Code
Name

PRODUCTS (PDT)

pk *
o

Code
Size

Database Design
Considerations

..
9-2 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Introduction

Lesson Aim
This lesson illustrates some principles of the Oracle RDBMS and presents the various
techniques that can be used to refine the physical design.

Topic See Page

Introduction 2

Reconsidering the Database Design 4

Oracle Data Types 5

Most Commonly-Used Oracle Data Types 6

Column Sequence 7

Primary Keys and Unique Keys 8

Artificial Keys 11

Sequences 13

Indexes 16

Choosing Columns to Index 19

When Are Indexes Used? 21

9-2

Overview

• Oracle specific Design Considerations

• Data Integrity Issues

• Performance Considerations

• Storage Issues

..
9-3

..Introduction

®

Objectives
At the end of this lesson, you should be able to do the following:

• Describe which data types to use for columns

• Evaluate the quality of the Primary key

• Use artificial keys and sequences where appropriate

• Define rules for referential integrity

• Explain the use of indexes

• Discuss partitioning and views

• Recognize old-fashioned database techniques

• Explain the principle of distributed databases

• Describe the Oracle database model

Views 23

Use of Views 24

Old-Fashioned Design 25

Distributed Design 27

Benefits of Distributed Design 28

Oracle Database Structure 29

Summary 31

Practice 9—1: Data Types 32

Practice 9—2: Artificial Keys 34

Practice 9—3: Product Pictures 35

Topic See Page

..
9-4 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Reconsidering the Database Design
Each RDBMS has its own internal mechanism. This lesson discusses the major
features provided by Oracle to get the best RDBMS performance.

You have to analyze a large number of parameters to obtain a correct adapted physical
design from the initial design. Note the “a correct”, not “the correct”. Like many
design issues, there is no absolute truth here.

The points noted here are the most important ones—there are others.

• The expected volume of tables, the hardware characteristics like CPU speed,
memory size, number of disks and corresponding space, the architecture—client/
server or three tier, the network bandwidth, speed, and the operating systems are
determinants.

• User requirements are an other big issue. Depending on the response time, the GUI
and the frequency of use of modules, they influence the objects that can be used in
Oracle to cope with user expectations.

• Depending on the version of Oracle you are using, some elements may or may not
exist.

9-3

Why Adapt Data Design?

• User Expectations

• Oracle specifics

• Volumes

• Hardware

• Network

• O.S.

Adapted

Physical

Design

Initial design

..
9-5

..Oracle Data Types

®

Oracle Data Types

When you create a table or cluster, you must specify an internal data type for each of
its columns. These data types define a generic domain of values that each column can
contain.

• Some data types have a narrow focus, like number and date. Some data types are
general purpose data types, like the various character data types.

• Some data types allow for variable length, some do not.

Choosing a large fixed length for a column to store very few bytes for most of the
rows can result in a huge table size. This may affect performance as a row may
actually contain only a few bytes and yet be stored on multiple blocks, resulting in
a great number of I/O’s, and therefore decreasing performance.

• One cannot search against the Large Object Data Types; they cannot be used in a
where clause. They are only retrievable by searching against other columns.

9-4

Oracle Data Types

• Depending on:

– Domains

– Storage issue

– Performance

– Use

• Select a data type for columns:

– Character

– Number

– Date

– Large Objects

..
9-6 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Most Commonly-Used Oracle Data Types
• CHAR(size) These are fixed-length character data of length-sized bytes.

Maximum size is 2000 bytes.

Typical use: for official International Currency Codes which are a fixed three
characters in length such as USD, FFR.

• VARCHAR2(size) Variable-length character string having maximum length-sized
bytes. Maximum size is 4000, and minimum is 1. This is the most commonly-used
data type and you should use it if you are not sure which one to use. It replaces the
old Oracle version 6 CHAR data type.

Typical use: for storing individual ASCII text lines of unlimited length ASCII
texts on which you need to be able to search using a wildcard.

• NUMBER This data type is used for numerical values, with or without a decimal,
of virtually unlimited size. Use this data type for data on which calculation or
sorting should be possible. Avoid its use for numbers like a phone number, where
the value does not have any meaning.

Typical use: amount of money, quantities, generated unique key values.

• DATE Valid date range from January 1, 4712 BC to December 31, 4712 AD. A
date data type also contains time components. You should use it only when you
know the full date including day, month, and year. The time component is often set
to 00:00 (midnight) in normal use of dates.

Typical use: any date where the full date is known.

• LONG Character data of variable length up to 2 gigabytes. Obsolete since
Oracle8. Was used for ASCII text files where you do not need to search using the
wildcard or substring functionality. Use CLOB data type instead.

Typical use: for storing the source code of HTML pages.

• LONG RAW Raw binary data of variable length up to 2 gigabytes. Obsolete since
Oracle8. Was used for large object types where the database should not try to
interpret the data. Use BLOB data type instead.

Typical use: images or video clips.

• CLOB Character large object type. Replaces LONG. Major difference: a table can
have more than one CLOB column where there was only one LONG allowed.
Maximum size is 4 gigabytes.

Typical use: see LONG.

• BLOB Character large object type. Replaces LONG RAW. Major difference: a
table can have more than one BLOB column where there was only one
LONGRAW allowed. Maximum size is 4 gigabytes.

Typical use: see LONG RAW.

• BFILE Contains a locator to a large binary file stored outside the database to
enable byte stream I/O access to external LOBs residing on the database server.

Typical use: movies

..
9-7

..Column Sequence

®

Column Sequence

The sequence of columns in a table is relevant, although any column sequence would
allow all table operations. The column sequence can influence, in particular, the
performance of data manipulation operations. It may also influence the size of a table.

The suggested optimal column sequence is the following:

1 Primary key columns

2 Unique key columns

3 Foreign key columns

4 Remaining mandatory columns *

5 Remaining optional columns *

* In cases where the table contains a LONG or LONG RAW column, even if it is a
mandatory column, make it the last column of the table.

The rationale is that null columns should be at the end of the table; columns that are
often used in search conditions should be up front. This is for both storage and
performance reasons.

9-5

Suggested Column Sequence

• Primary key columns

• Unique Key columns

• Foreign key columns

• Mandatory columns

• Optional columns

Large object columns always at the end

..
9-8 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Primary Keys and Unique Keys

Primary Keys
They are a strong concept that is usually enforced for every table.

• They can be made up of one or more columns; each has to be mandatory.

• They are declarative as a constraint and can be named. When creating a primary
key constraint, Oracle automatically creates a unique index in association with it.

• A foreign key usually refers to the primary key of a table, but may also refer to a
unique key.

Tables that do not have a primary key should have a unique key.

Note: Although Oracle allows a primary key to be updated, relational theory strongly
advises against this.

Unique Keys
A unique key is a key that for some reason was not selected to be the primary key. The
reasons may have been:

• Allowed nulls. Nulls may be allowed in Unique keys columns.

• Updatable. Unique key values may change but still need to remain unique. For
example, the home phone number of an employee or the license plate for a car.

There may be more than one unique key for each table.

Note: A Unique index is the additional structure Oracle uses to check the uniqueness
of values for primary keys and unique keys. Creating a unique key results
automatically in the creation of a unique index.

9-6

Primary Keys

CREATE TABLE countries

(code NUMBER(6) NOT NULL

, name VARCHAR2(25) NOT NULL

, currency NUMBER (10,2) NOT NULL

);

ALTER TABLE countries

ADD CONSTRAINT cty_pk PRIMARY KEY

(code);

Constraint and Index name

..
9-9

..Primary Keys and Unique Keys

®

How to Choose the Primary Key
Following analysis there is a choice of what you want to use for a primary key. It does
not have to be seen or known by the user—it can do its work completely in the
background.

Desirable Properties for Primary Key

Simple: A primary key should be as simple as possible although Oracle8 allows it to
consist of up to 32 columns. Primary key columns can be of various data types. Note
that UIDs, as they arise from data analysis, are often composed, not simple. You need
to consider replacing such a primary key by a simple key.

Easy to Use: Primary keys are normally used in join statements, so a primary key
should be easy to use. Writing a SQL statement to create a join between two tables is
easier if two columns only, rather than a large number, are involved in the join
predicate.

Does Not Kill Performance: A join operation using a single key usually performs
much better than a join using four key columns.

Small Size: Large-sized primary keys lead to large-sized foreign keys referencing
them. In general, the referencing table contains far more rows than the referenced
table. An oversized primary key can lead to a multiple of unnecessary bytes.

9-7

Primary Keys

• Choosing the Right Key

– Simplicity

– Ease of use

– Performance

– Size

– Meaningless

– Stability

..
9-10 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Meaningless: You could, for example, choose to use the name of a country as a
primary key, but even recent history has shown that countries may change their names.
Opt for numeric values rather than character values, and if using numbers, avoid
numbers with any particular meaning.

Stable: You should try to avoid selecting a primary key that is likely to be updated.
Bear in mind that it is very rare for real world things to stay stable for ever.

..
9-11

..Artificial Keys

®

Artificial Keys
An artificial key is a meaningless, usually numeric, value that is assigned to a record
which functions as the primary key for the table. Artificial keys provide an interesting
alternative to complex primary keys. Artificial keys are also called surrogate keys.

Advantages
Artificial keys have the following advantages over composed keys:

• The extra space that is needed for the artificial key column and index is less, often
far less, than the space you save for the foreign key columns of referring tables.

• Join conditions consist of a single equation.

• The joins perform better.

• Internal references, which are completely invisible to the user, can be managed.
The modeled UID can than be implemented as a unique key, and made updatable
without needing cascade updates.

• Because they are meaningless, it is difficult to memorize them. Users will not even
attempt this.

• Some people really like them.

Disadvantages
Disadvantages of artificial keys are:

• Because they are meaningless, they always require joins to collect the meaning of
the foreign key column.

9-8

Artificial Keys

DS (D)

pk
pk
pk

fk1 = d_a_fk fk2 = d_b_fk fk3 = d_c_fk

fk = x_d_fk

u
u
u

pk * Id

,fk1
,fk2
,fk3

*
*
*
*

A_id
B_id
C_id
C4

pk * Id
 * C2

BS (B)

XS (X)

pk
fk1
fk1
fk1

*
*
*
*
o

Id
D_a_id
D_b_id
D_c_id
C5

fk * D_id

pk * Id
 * C3

CS (C)

pk * Id
 * C1

AS (A)

..
9-12 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

• More space is required for the indexes, if you decide to create an additional unique
key that consists of the original primary key columns.

• Because they are meaningless, it is difficult to memorize them. Users always need
a list of values or other help for entering the foreign key values.

• Some people really hate them.

Deciding About Artificial Keys?

Before Design
Negative: It would corrupt your data model, as you would add elements that have
no business meaning.

Positive: There is a close mapping between the conceptual and technical model
that reduces the chances of misunderstanding.

After Design
Positive: It really is a design decision based on current performance
considerations.

Tools like Oracle Designer let you decide about artificial keys during the initial
mapping of the ER model. This is a nice compromise.

..
9-13

..Sequences

®

Sequences

Some Sequence Characteristics
• A sequence is a database object that can generate a serial list of unique numbers

for columns of database tables.

• A sequence provides the quickest way of generating unique numbers.

• Sequences simplify application programming by automatically generating unique
numerical values that can be used as artificial key values.

• A sequence may be used to generate sequence numbers for any number of tables.
Usually a separate sequence is created for each table with an artificial key,
although there is no special need for that.

• A sequence guarantees generation of unique ascending or descending numbers. A
sequence does not guarantee that all consecutive numbers are actually used.

9-9

Sequences

CREATE SEQUENCE sequence_name
INCREMENT BY number
START WITH number
MINVALUE number
MAXVALUE number
CACHE number | NOCACHE
CYCLE | NOCYCLE;

223

224
225

..
9-14 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Foreign Key
By definition, Foreign Keys must refer to primary key or unique key values. You
should consider what should happen if the primary key (or unique key) value changes.

Referential Integrity
There are two aspects to consider:

• The rules you want to implement to support business constraints

• The functionalities Oracle provides for these rules

Relational theory describes four possible kinds of behavior for a foreign key. For every
foreign key decide what kind of behavior you want it to have.

The behaviors describe what the foreign key should do when the value of the key it
refers to changes.

Restrict Delete
Restrict delete means that no deletes of a primary (or unique) key value are allowed
when referencing values exist. This is supported by Oracle. This is the most
commonly used foreign key behavior.

Restrict Update
Restrict update means that no updates of a primary (or unique) key value are allowed
when referencing values exist. This is supported by Oracle. Note that this behavior is
unnecessary in the case of artificial keys as these are probably never updated.

9-10

Foreign Key Behavior

Restrict

Cascade

Default / Nullify

Delete Update

Supported by Oracle through declaration

..
9-15

..Sequences

®

Note that restrict update is not the same concept as nontransferability. Restrict update
prevents the update of a referenced primary key value. Nontransferability means that
the foreign key columns are not updatable.

Cascade Delete
Cascade delete means that deletion of a row causes all rows that reference that row
through a foreign key marked as “cascade” will be deleted automatically. Cascade
delete is an option that Oracle supports.

The complete delete operation will fail if, during the cascade, there is a record
somewhere that cannot be deleted. This may happen if the record to be deleted is
referred to through a restrict delete foreign key.

Cascade delete is a very powerful mechanism that should be used with care.

Cascade Update
Cascade update means that after a primary key value is updated, this change is
propagated to all the foreign key columns referencing it.

Cascade update and nontransferability often come together.

Default and Nullify
The default and the nullify option mean that on delete or update of the primary key
value, the related foreign key values will acquire a default value or will be set to
NULL.

These options can be implemented by creating an update database trigger on the table
referred to by the foreign key. Clearly, the nullify option is only valid if the foreign key
is optional.

Typical Use
Usually, many foreign keys are defined as restrict delete. This does not prevent the
referred record being deleted; it just forces the user to consciously remove or transfer
all referring rows.

Of course, when you use artificial keys you can set all foreign key update properties to
“restrict” as there will never be a good reason for updating an artificial key value.

..
9-16 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Indexes
Indexes are database structures that are stored separately from the tables they depend
on. In a relational database you can query any column, independently of the existence
of an index on that column.

Indexes are used for two reasons:

• To speed up queries

• To ensure uniqueness if required

Performance
Indexes are created to provide a fast method to retrieve values. However, indexes can
slow down performance on DML statements.

Oracle provides a wide range of index types. You must choose the type which is
suitable for its intended use.

Uniqueness
A unique index is an efficient structure to ensure that the values are not duplicated
within the set of columns included in the index. Unique indexes are automatically
created when you create a primary or unique key. The name of the index in that case is
the same as the name of the key constraint.

9-11

Indexes

• Performance

 ALBERT 2655

 ALFRED 3544

 ALICE 7593

 ALLISON 3456

 ALVIN 8642

 ALPHONSO 2841

Name Phone

• Uniqueness

bb

cc

dd

efef

ghgh

ijij

klkl

mm

nono

pqpq

rsrs

tutu

vwvw

xyzxyz

..
9-17

..Indexes

®

Index Types

B*Tree
The classical structure of an index, if not explicitly specified otherwise, is the B*Tree
(also known as Tree balanced) index. It is specially designed for online transaction
processing systems. They have a proven efficiency and Oracle has offered them for
some time. They easily support insert, update, and delete.

Typical use: General purpose

Reverse Key
Based on that classical structure of the B*Tree, Oracle offers a reverse key index
which has most of the properties of the B*Tree but in which the bytes of each indexed
column are reversed.

Typical use: In an Oracle Parallel Server environment, where such an arrangement
can help avoid performance degradation in indexes

Bitmap
A bitmap index stores for each individual value of the indexed column, if a row
contains this value or not.

Typical use: Data warehouse environment. Bitmap indexes have a proven efficiency
in On Line Analytical Process systems when ad-hoc queries can be intensive and the
number of distinct values for the indexed column is not high.

See page 38

9-12

Choosing Indexes

aba .1.2.5
abb .1.3.5
abc .1.1.5
bba .1.4.5
. . .

B*tree

aba .1.2.5
abb .1.4.5
bba .1.3.5
cba .1.1.5
...

Reverse

Y
X
Z
X
Z

abc
aba
abb
bba
bbc

C1 C2

Bitmap

Y
1
0
0
0
0

X
0
1
0
1
0

Z
0
0
1
0
1

X
Z
Y
Z
X

aba
abb
abc
bba
bbc

I.O.TableC1 C2

..
9-18 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Bitmap indexes require less space than a B*Tree index but they do not support inserts,
updates, and deletes as well as a B*Tree.

Index Organized Table
An index organized table is a table that contains rows that are stored in an ordered
way, using the B*Tree technique. It provides the speed that indexes provide and does
not require a separate index. The only restriction in its use is that you cannot create
additional indexes for this Index Organized table.

Typical use: Tables that are always accessed through exactly the same path, in
particular when storing large objects.

Concatenated Index
You can create an index that includes more than one column. These are called
concatenated indexes. The order in which you specify the columns has a strong impact
on the way Oracle can use the index. Set the column that is always in a Where clause
as the first column of the index. This is called the leading part of the index.

Function Based Index
Since Oracle8i it is possible to create an index based on a SQL function.

Typical use: Create an index on the first three characters of a name using the substr
function or the year component of a date using the to_char function.

..
9-19

..Choosing Columns to Index

®

Choosing Columns to Index

Candidate Columns for Regular B*Tree Indexing
• Columns used in join conditions to improve performance on joins

• Columns that contain a wide range of values

• Columns that are often used in the Where clause of query

• Columns that are often used in an Order By clause of a query

Candidate Columns for Bitmap Indexing
• Columns that have few distinct values such as, for example, a column containing

indicator values (Y/N) or a column for gender

Columns Less Suitable for Indexing
• Columns that contain many NULL values where you usually search rows with the

NULL values

Columns that Cannot or Should Not be Indexed
• LONG and LONG RAW columns cannot be indexed

• Columns that are hardly ever used in Where / Order By clauses

• Small tables occupying only few data blocks

9-13

Which Columns to Index?

• Primary key columns and Unique Key columns
(Up to Version 6)

• Foreign Key columns

• When significant better performance can be
observed in SELECT statements

Avoid indexing:

• Small tables

• Columns frequently updated

!

..
9-20 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Temporary Indexes
• Indexes can be created and dropped for a particular incidental use. For example,

you can decide to create an index right before a report is run and then drop it
afterwards.

General Recommendations
• Limit the number of indexes per table. Although a table can have any number of

indexes this does not necessarily improve performance; the more indexes, the
more overhead is incurred when there are updates or deletes.

• As a rule of thumb, if there is any doubt, do not create the index. You can always
create it later.

• It is very likely that the initial set of indexes will have to change after some time,
because of changes of the characteristics of the system. Typically, the number of
different values in a column can initially be very low but increase during the life
cycle of a system. Initially, an index would not be of value but it would be later.

..
9-21

..When Are Indexes Used?

®

When Are Indexes Used?

You may have created an index to improve performance but without seeing any
benefits.

For Oracle to use them, indexed columns need to be referenced in the Where clause of
a SQL statement, or in the order by, while the Where clause must not include the
following:

• IS NULL

• IS NOT NULL

• !=

• LIKE

• When the column is affected by an operation or function (unless you use a
function-based index and the condition uses the same function)

For example, suppose column X contains many nulls and a few numeric, positive
values. Suppose queries often select all rows having a NOT NULL value. Finally,
suppose an index is created on X.

In this case, the condition WHERE X > 0 is preferable to WHERE X IS NOT NULL
because in the first situation Oracle would use an index on X and in the second Oracle
would not.

Yet, even if it was written in this way, it is the optimizer’s choice to decide whether to
use indexes or not. The decision is based on rules or on statistics.You can stimulate the
optimizer to use indexes using hints in your SQL statements.

9-14

When Can Indexes be Used?

• When referenced in a Where clause or Order By

• When the Where clause does not include some
operators

• When the optimizer decides

• With hints in the SQL statement

..
9-22 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Table Partitioning
Oracle provides an interesting feature to solve performance and administration
problems on tables with a large number of rows.

Partitioned Table
Since Oracle8, when creating a table, you can specify the criteria on which you want
to divide the table and make a horizontal partitioning. There are then as many
partitioned tables as there are distinct values in the column. Each partitioned table has
a specific name but access is made referring to the global name of the table. The
optimizer then decides which partition to access, depending on the value of the Where
clause.

The main issue of this feature is to manipulate considerably smaller pieces of data and
then improve the speed of SQL statements. Suppose you want to query on customers
located in a specific region, Oracle does not need to access all rows of the
CUSTOMERS table but can limit its search to the piece holding all customers of this
region only.

Logically, the table behaves as one object; physically, data is stored in different places.

Partitioned Index
Using the same idea, an index may be partitioned. It does not need to match with the
table partitioning. It may have different partitioning criteria and have a different
number of partitions to the table. This may be useful in the situation where the answer
to particular queries can always be found in the partitioned index.

9-15

Partitioning Tables and Indexes

CUSTOMERS

RegionCol1 Col2 Col3

CUSTOMERS_R1

RegionCol1 Col2 Col3

CUSTOMERS_R2

RegionCol1 Col2 Col3

..
9-23

..Views

®

Views
A view is a window onto the database. It is defined by a SELECT statement which is
named and stored in the database. Therefore a view has no data of its own—it relays
information from underlying tables.

Usages of Views
• Restricting access: The view mechanism is one of the possible ways to hide

columns and rows from the tables it is based on.

• Presenting data: A view can be used to present data in a more understandable way
to end-users. For example, a view can present calculated data built from
elementary information that is stored in tables.

• Isolating application from data structures: Applications may be based on views
rather than tables, where there is a high risk that the structure might change. If a
view is used, the application would need no maintenance providing the view
remains untouched, even though the underlying tables were modified.

• Saving complex queries and simplifying commands: Views can be used to hide the
complexity of the data structure, allowing users to create queries over multiple
tables without having to know how to join the tables together.

• Simplifying user commands.

9-16

Views

• Restricting access

• Presentation of data

• Isolate applications from data structure

• Save complex queries

• Simplify user commands

T1T1 T2T2 T3T3 T4T4

V1 V2 V3 V4

..
9-24 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Use of Views

Advantages
• You can use a view to present derived data to end users without having to store

them in the database. Typically, you would show completely denormalized, pre-
joined information in views that would allow end users to write simple SELECT
statements like SELECT * FROM ... WHERE ...

• Views can be made dynamic, for example, showing data that depend on which user
you are or what day it is.

For example, you could create a view that shows localized help messages.
According to the user name, the system can find the preferred language in a
PREFERENCES table and next return a message in this language. A single view
returns different values depending on the name of the user.

Another example type of view can be used to allow a user to access data between
8:00 am and 6:00 pm on weekdays only.

Disadvantages
• Views are always somewhat slower, which is due to the fact that the parse time is

slightly longer. Once a table and its columns are found, the query can be
immediately executed. Query criteria are linked with “and” to the criteria of the
view. This can affect the execution plan generated by the optimizer.

• Even if views behave almost like tables, there are still some restrictions when
using views for insert, update, and delete statements.

9-17

Reasons for Views

• Advantages

– Dynamic views

– Present denormalized data from normalized
tables

– Simplify SQL statements

• Disadvantages

– May affect performances

– Restricted DML in some cases

..
9-25

..Old-Fashioned Design

®

Old-Fashioned Design

Going through existing systems, you may find some old-fashioned design techniques.
These techniques were used at the time the RDBMS features were not so advanced.

Unique Index
Unique Indexes used to be created manually on the primary key columns because the
primary key constraint could not be declared up to Oracle7.

Check Option Views
In earlier versions of Oracle, it was not unusual to create a view “with a check option”.
These views, now obsolete, could be used to some extent to enforce data integrity and
referential integrity before Oracle7.

There is no functionality in a view with a check option that cannot be coded in a
database trigger. The declaration of integrity constraints and coding of database
triggers is now the preferred way to handle this.

See page 40

9-18

Old Fashioned Design

• Unique index

• Views with “Check option” clause

• Generic Arc implementation

..
9-26 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Generic Arc Implementation

The generic arc implementation is a fossil construction you may find in old systems.

In the implementation of the arc of entity A in the example, the three relationships in
the arc were merged into one generic foreign key column Fk_id. Added to table AS is
a NOT NULL column that keeps the information about which table the foreign key
value refers to. This used to be a popular technique because it could make use of a
NOT NULL constraint on Fk_id when the arc was mandatory.

This solution for implementing arcs should now be avoided for the following
limitations:

• Since Oracle7 the arc can now be implemented by simply declaring two foreign
keys and writing one check constraint.

• The joins may be very inefficient as, in many cases, you would need the time-
consuming union operator:

select A.Name, X.Name, ’X’ Type

from AS A, XS X

where ...

union

select A.Name, Y.Name, ’Y’

from AS A, YS Y

where ...

• Foreign key constraint for the foreign key column cannot be declared since it
cannot reference more than one primary key.

9-19

Generic Arc Implementation

A
Id
* Name

AS (A)

Y
Id
* Name

*
*

. . .
Table_name
Fk_id

(X or Y)

X
Id
* Name

..
9-27

..Distributed Design

®

Distributed Design
This is characterized as many physical databases, located at different nodes, but
appearing to be a single “logical database”.

Characteristics
• Multiple physical databases

• One logical database view

• Possibly dissimilar processors

• Kernel runs wherever a part of the database exists

The multiple physical databases are not necessarily copies of each other or part of each
other.

You can decide on how to spread the individual table content across the different
databases on the different partitioning principles. You can decide for a vertical or
horizontal technique, or a combination of both.

9-20

Distributed Database

• Different physical databases appear as one logical
database

..
9-28 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Benefits of Distributed Design

• Improved flexibility and resilience. Access to data is not dependent on only one
machine or link. If there is any failure then some data is still accessible on the local
nodes. A failing link can automatically be rerouted via alternative links.

• Improved response time by having the data close to the usual users of the data.
This may reduce the line traffic dramatically. For example, in the model of
ElectronicMail, it is very likely that each country will have its own database. This
database will store in its own messages table the messages that belong to the
people registered in that country.

• Location transparency allows the physical data to be moved without the need to
change applications or notify users.

• Local autonomy allows each of the physical databases:
– To be managed independently.
– To have definitions and access rights created and controlled locally.

• An easier growth path is achieved:
– More processes can be added to the network
– More databases can be included on a node.
– Software update is independent of physical structure.

Disadvantage
A major disadvantage of distributed design is the often very complex configuration:
with the data the complexity is also distributed. System maintenance is complicated.

9-21

Benefits of Distributed Databases

• Resilience

• Reduced line traffic

• Location transparency

• Local autonomy

• Easier growth path

but

• Increased, distributed, complexity

..
9-29

..Oracle Database Structure

®

Oracle Database Structure

Tablespaces
The diagram shows the structure of a Oracle database.

An Oracle database consists of one or more tablespaces. Each tablespace can
hold a number of segments, and each segment must be wholly contained in
its tablespaces. The SYSTEM tablespace is created as part of the database
creation, and should be reserved for the Oracle Data Dictionary and related
tables only. You should not create application data structures in this
tablespace. You are advised to create separate tablespaces for different types
of segments.

Segments
A segment is the space occupied by a database object. There are three types
of segments: a table segment, an index segment or an other segment, that is
used for clusters. Only the other segments must be part of one tablespace.

Partitions
Usually, a segment is assigned to a single tablespace. However, with Oracle8
it is possible to spread a table or index segment into more than one
tablespace. This technique is called partitioning. A partition is the part of a
table segment (or index segment) that resides in one tablespace.

Database Structure

DATA BLOCK

SEGMENT

DATABASE

DATA FILE

INDEX
SEGMENT

TABLESPACE

TABLE OR INDEX PARTITION

EXTENT FREE

TABLE
SEGMENT

part of

located in

part of
residence

of

part of
consists

of

resides
in

consists
of

container
 of

consists
of

part of part of
sliced in sliced in

USED

OTHER
SEGMENT

consists
of

part of

resides in

residence of

..
9-30 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Extents
Each time more space is needed by a segment, a number of contiguous
blocks is allocated as an extent. There is no maximum limit on the number
of extents that can be allocated to a segment. It is usually preferable to avoid
an excessive number of small extents by ensuring that the segment has a
sufficiently large initial extent.

Data Files
Data files are the operating system files that physically contain the database data. Data
files consist of data blocks.

Data Blocks
A data block is the smallest amount of data Oracle reads in one read operation. A data
block always contains information from one extent only.

There is a distinction between the logical table, made up of rows with columns, and
the physical table, taking space that is made up of database blocks organized in extents
and located in data files.

..
9-31

..Summary

®

Summary

• Oracle provides a large choice of data types for the columns of the tables.

• Primary keys are needed for tables. Artificial keys can be a good solution to
implement complex primary keys.

• Indexes improve performance of queries and provide a mechanism for
guaranteeing unique values.

• Partitioning tables can also be a solution to performance problems.

• Views are a flexible, secure, and convenient object for users.

• Distributed Design is a complex technique. It allows data to be located closer to
the user.

9-23

Summary

• Data Types

• Primary, Foreign, and Artificial Keys

• Indexes

• Partitioning

• Views

• Distributed design

..
9-32 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Practice 9—1: Data Types

Goal
The purpose of this practice is to perform a quality check on
proposed data types.

Scenario
Use the model that illustrates Moonlight pricing.

Moonlight Coffees

9-25

LOCAL PRICE
Start Date
o End Date
* Amount

in

in
with

for

with

in

COUNTRY
Code

PRODUCT

SHOP
No
* Name
* Address
* City

PRICELIST
Start Date
* End Date

GLOBAL PRICE
* Amount

with

PRODUCT GROUP
Name

LOCAL
Name

of

with

GLOBAL
Code
o Size

of

PRODUCT NAME
* Name

with

LANGUAGE
Code

of
in

with

of

with

of

with

CURRENCY
Code

from to

inin

of

EXCHANGE
RATE
Month
* Rate

with
Moonlight Pricing

..
9-33

..Practice 9—1: Data Types

®

Your Assignment
1 Here you see table names and column names and the suggested data type. Do a

quality check on these. If you think it is appropriate, suggest an alternative.

2 Suggest data types for the following columns. They are all based on previous
practices.

3 What data type would you use for a column that contains times only?

Table

COUNTRIES
CURRENCIES

EXCHANGE_RATES

PRICE_LISTS

PRODUCT_GROUPS
PRODUCTS

Column

Code
Code
Month
Rate
Start_date
End_date
Name
Code
Size
Pdt_type

Suggested
Data Type

Varchar2(2)
Varchar2(3)
Date
Number(8,4)
Date
Date
Char(8)
Char(10)
Number(4,2)
Number(1)

Your Choice
Data Type

Table

GLOBAL_PRICES
LOCAL_PRICES

SHOPS

Column

Amount
Start_date
End_date
Amount
Name
Address
City

Your Choice Data Type

..
9-34 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Practice 9—2: Artificial Keys

Goal
You are coming to the end of your contract for Moonlight Coffees.
The job is almost finished!

Scenario
You need to make decisions on possible artificial keys for some of the Moonlight
tables. The model is the same as the one used in the previous practice.

Your Assignment
1 Indicate for each table if you see benefits of creating an artificial key and why.

COUNTRIES
GLOBAL_PRICES
PRICE_LISTS

2 For which tables (if any) based on the Moonlight model does it not make any sense
at all to create artificial keys?

Moonlight Coffees

..
9-35

..Practice 9—3: Product Pictures

®

Practice 9—3: Product Pictures

Goal

The purpose of this practice is to modify a design to serve new
requirements.

Scenario
This is your last task for Moonlight coffees. Tomorrow you are free to forget all about
Moonlight and only drink coffee!
The decision has been made to make the first steps into the e-commerce market. One
objective is to allow customers to consult Moonlight’s website. This site should
provide product information. For each product at least two additional attributes have
been identified.
The first is the attribute Picture for images of the products. The second is an attribute
HTML Document that holds the product description that can be displayed with a
browser. Other attributes may follow.

Your Assignment
1 Decide what data type you would advise to be used for each column.
2 You have heard that an old Oracle version would not accept more than one long

type column per table. You are not sure if this is still a limitation. Advise about the
implementation.

Moonlight Coffees

..
9-36 Data Modeling and Relational Database Design

..Lesson 9: Database Design Considerations

Normalization

...
B-2

..
Appendix B: Normalization

Introduction

Lesson aim
This lesson describes the steps involved in order to normalize table data to the third
normal form for cases when there is no possibility of performing a full data analysis.

Objectives

At the end of this lesson, you should be able to do the following:

• Define normalization and explain its benefits

• Place tables in Third Normal Form

Topic See Page

Introduction 2

Normalization and its Benefits 3

First Normal Form 7

Second Normal Form 9

Third Normal Form 11

Summary 13

B-2

Overview

• Table Normalization

• Normal Forms of Tables

..
B-3

..
Normalization and its Benefits

®

Normalization and its Benefits

Why and When to Normalize Tables
Before we even talk about why you should normalize, first consider when you should
normalize. If you are developing an application and use the techniques of entity
relationship (ER) modeling, then you will not need to normalize. One of the
advantages of entity relationship modeling is that the resulting table design is already
normalized, provided there are no obvious errors in the ER model.

The only time you will need to normalize the data is if there has been no time to build
an entity model and when a set of tables is already available. You can then employ the
normalization techniques following the initial database design as a last chance to
check for existing database integrity.

History of Normalization
Normalization is a technique established by the originator of the relational model, E.F.
Codd. The complete set of normalization techniques, include twelve rules that
databases need to follow in order to be described as truly normalized. It is a technique
that was created in support of relational theory, years before entity relationship
modeling was developed. The entity relationship modeling process has incorporated
many of the normalization techniques to produce a normalized entity relationship
diagram.

Two terms that have their origins in the normalization technique are still widely in use.
One is normalized data, the other is denormalization.

Objective of Normalization
The major objective of normalization is to remove redundant data from an existing set
of tables or table definitions, thereby increasing the integrity of the database design
and to maximize flexibility of data storage. Removing redundant data helps to
eliminate update anomalies. The first three normal forms progress in a systematic
manner to achieve this objective.

There are many other normal forms in addition to the first three, and they deal with
more subtle anomalies. In general, the IT industry considers normalization to the Third
form an acceptable level to remove redundancy. With a few exceptions, higher
normalization levels are not widely used.

The major subject of normalization is tables, not entities.

...
B-4

..
Appendix B: Normalization

Normalization Compared to Normalized Data
Normalized data is data that contains no redundancies. This is important as data
redundancy may cause integrity problems. Normalization is the activity, the process,
that leads to a normalized data structure as does entity relationship modeling.

Benefits of Normalized Data
The major benefits of a correctly normalized database from an Information Systems
perspective include:

• Refinement of the strategy for constructing tables and selecting keys.

• Improved communication with the end-users’ application activities.

• Reduced problems associated with inserting and deleting data.

• Reduced enhancement and modification time associated with changing the data
structure.

• Improved information for decisions relating to the physical database design.

• Identification of potential problems that may have been overlooked during
analysis.

B-3

Why Normalize?

Note: Third normal form is the generally-accepted
goal for a database design that eliminates
redundancy.

• An Entity Model is not always available as a
starting point for design

• To reduce redundant data in existing design

• To increase integrity of data, and stability of
design

• To identify missing tables, columns and
constraints

..
B-5

..
Normalization and its Benefits

®

Unnormalized Data
Data that has not been “normalized” is considered to be “unnormalized” data or data in
zero-normal form. This data is not to be confused with data that is denormalized. If no
ER Model was created at the start of a database design project, you are likely to have
unnormalized data, not denormalized data. If you want to add redundancy, for faster
performance or other reasons, you follow the rules defined during the process of
denormalization. But, to denormalize data you must start with normalized data. You
cannot denormalize an unnormalized design, just as you cannot de-ice your car, if
there is no ice on it.

B-4

Recognize Unnormalized Data

USER USER MSE REC_ SRVR SERVER
_ID _NAME _ID DATE SUBJECT TEXT _ID _NAME

---- ----- ----- ----- --------------- ---------- ---- ------
2301 Smith 54101 05/07 Meeting Today There is.. 3786 IMAP05
2301 Smith 54098 07/12 Promotions I like to. 3786 IMAP05
2301 Smith 54445 10/06 Next Assignment Your next. 3786 IMAP05
5607 Jones 54101 05/07 Meeting Today There is.. 6001 IMAP08
5607 Jones 54512 06/07 Lunch? Can you... 6001 IMAP08
5607 Jones 54660 12/01 Jogging Today? Can you... 6001 IMAP08
7773 Walsh 54101 05/07 Meeting Today There is.. 9988 EMEA01
7773 Walsh 54554 03/17 Stock Quote The latest 9988 EMEA01
0022 Patel 54101 05/07 Meeting Today There is.. 2201 EMEA09
0022 Patel 54512 06/07 Lunch? Can we ... 2201 EMEA09

...
B-6

..
Appendix B: Normalization

Normalization
Normalization consists of a series of rules that must be applied to move from a
supposedly unnormalized set of data to a normalized structure. The process is
described in various steps which lead to a “higher” level of normalization. These
levels are called normal forms.

B-5

Normalization Rules
Normal Form Rule Description

First Normal Form The table must express a set of
(1NF) unordered, two-dimensional tables.

The table cannot contain repeating
groups.

Second Normal Form (2NF) The table must be in 1NF. Every
non-key column must be dependent
on all parts of the primary key.

Third Normal Form (3NF) The table must be in 2NF. No non-key
column may be functionally dependent
on another non-key column.

“Each non-primary key value MUST be dependent on the key,
the whole key, and nothing but the key.”

..
B-7

..
First Normal Form

®

First Normal Form

Definition of First Normal Form (1NF)
The table must express a set of unordered, two-dimensional table structures. A table is
considered in the first normal form if it contains no repeating groups.

Steps to Remove Repeating Groups
1 Remove the repeating columns from the original unnormalized table.

2 Create a new table with the primary key of the base table and the repeating
columns.

3 Add another appropriate column to the primary key, which ensures uniqueness.

4 Create a foreign key in the new table to link back to the original unnormalized
table.

B-6

Converting to First Normal Form
USER USER
_ID _NAME
---- -----
2301 Smith
2301 Smith
2301 Smith
5607 Jones
5607 Jones
5607 Jones
7773 Walsh
7773 Walsh
0022 Patel
0022 Patel

MSE REC_
_ID DATE SUBJECT TEXT

----- ----- --------------- ------------
54101 05/07 Meeting Today There is....
54098 07/12 Promotions I like to...
54445 10/06 Next Assignment Your next...
54512 06/07 Lunch? Can you.....
54101 05/07 Meeting Today There is....
54660 12/01 Jogging Today? Can you.....
54101 05/07 Meeting Today There is....
54554 03/17 Stock Quote The latest..
54101 05/07 Meeting Today There is....
54512 06/07 Lunch? Can we

SRVR SERVER
_ID _NAME
---- ------
3786 IMAP05
3786 IMAP05
3786 IMAP05
6001 IMAP08
6001 IMAP08
6001 IMAP08
9988 EMEA01
9988 EMEA01
9988 EMEA01
9988 EMEA01

1. Remove repeating group from the base table.

2. Create a new table with the PK of the base table and the
repeating group.

...
B-8

..
Appendix B: Normalization

First create a second table to contain the repeating group columns. Then create a
primary key composed of the primary key from the unnormalized table and another
column that is unique. Finally create a foreign key to link back to the first table.

B-7

USERS

First Normal Form—Single Record
USERS

USER USER
_ID _NAME
---- -----
2301 Smith
5607 Jones
7773 Walsh
0022 Patel

SRVR SERVER
_ID _NAME
---- ------
3786 IMAP05
6001 IMAP08
9988 EMEA01
9988 EMEA01

USER USER
_ID _NAME
---- -----
2301 Smith

5607 Jones

7773 Walsh

0022 Patel

MSE REC_
_ID DATE SUBJECT TEXT

----- ----- ------------- ----------
54101 05/07 Meeting Today There is..

54512 06/07 Lunch? Can you...

54101 05/07 Meeting Today There is..

54101 05/07 Meeting Today There is..

SRVR SERVER
_ID _NAME
---- ------
3786 IMAP05

6001 IMAP08

9988 EMEA01

9988 EMEA01

B-8

USER
_ID

2301
2301
2301
5607
5607
5607
7773
7773
0022
0022

RECEIVED_
MESSAGES
(1NF)

USERS (1NF)

MSE REC_
_ID DATE SUBJECT TEXT

----- ----- --------------- ----------
54101 05/07 Meeting Today There is..
54098 07/12 Promotions I like to.
54445 10/06 Next Assignment Your next.
54101 05/07 Meeting Today There is..
54512 06/07 Lunch? Can you...
54660 12/01 Jogging Today? Can you...
54101 05/07 Meeting Today There is..
54554 03/17 Stock Quote The latest
54101 05/07 Meeting Today There is..
54512 06/07 Lunch? Can we ...

USER USER
_ID _NAME
---- -----
2301 Smith
5607 Jones
7773 Walsh
0022 Patel

SRVR SERVER
_ID _NAME
---- ------
3786 IMAP05
6001 IMAP08
9988 EMEA01
9988 EMEA01

First Normal Form—Repeating Groups

..
B-9

..
Second Normal Form

®

Second Normal Form

Definition of Second Normal Form (2NF)
A table is in second normal form if the table is in the first normal form and every non-
primary key column is functionally dependent upon the entire primary key. No non-
primary key column can be functionally dependent on part of the primary key.

Depends on is defined as: a column B depends on column A means that B must be re-
evaluated whenever A changes.

A table in the first normal form will be in second normal form if any one of the
following apply:

• The primary key is composed of only one column.

• No nonkeyed columns exist in the table.

• Every nonkeyed attribute is dependent on all of the columns contained in the
primary key.

Steps to Remove Partial Dependencies
1 Determine which nonkey columns are dependent upon the table’s entire primary

key.

2 Remove those columns from the base table. Create a second table with those
nonkeyed columns and a copy of the columns from the primary key that they are
dependent upon.

3 Create a foreign key from the original base table to the new table, linking to the
new primary key.

B-9

Converting to Second Normal Form

1. Determine which non-key columns are not
dependent upon the table’s entire primary key.

2. Remove those columns from the base table.

3. Create a second table with those columns and the
columns from the PK that they are dependent
upon.

...
B-10

..
Appendix B: Normalization

B-10

Tables Already in Second Normal Form

USERS

USER USER
_ID _NAME
---- -----
2301 Smith
5607 Jones
7773 Walsh
0022 Patel

SRVR SERVER
_ID _NAME
---- ------
3786 IMAP05
6001 IMAP08
9988 EMEA01
9988 EMEA01

Is the USERS table already in 2NF?

B-11

USER
_ID

2301
2301
2301
5607
5607
5607
7773
7773
0022
0022

MSE REC_
_ID DATE SUBJECT TEXT

----- ----- -------------- ---------
54101 05/07 Meeting Today There is.
54098 07/12 Promotions I like to
54445 10/06 Next Assignmen Your next
54101 05/07 Meeting Today There is.
54512 06/07 Lunch? Can you..
54660 12/01 Jogging Today? Can you..
54101 05/07 Meeting Today There is.
54554 03/17 Stock Quote The lates
54101 05/07 Meeting Today There is.
54512 06/07 Lunch? Can we ..

RECEIVED_
MESSAGES
(2NF)

MESSAGES
(2NF)

RECEIVED_
MESSAGES

(1NF)

MSE
_ID SUBJECT TEXT

----- ------------ ---------
54101 Meeting Toda There is.
54098 Promotions I like to
54445 Next Assignm Your next
54512 Lunch? Can you..
54660 Jogging Toda Can you..
54554 Stock Quote The lates

Convert to Second Normal Form

USER
_ID

2301
2301
2301
5607
5607
5607
7773
7773
0022
0022

MSE REC_
_ID DATE

----- -----
54101 05/07
54098 07/12
54445 10/06
54101 05/07
54512 06/07
54660 12/01
54101 05/07
54554 03/17
54101 05/07
54512 06/07

..
B-11

..
Third Normal Form

®

Third Normal Form

Definition of Third Normal Form (3NF)
A table is in third normal form if every nonkeyed column is directly dependent on the
primary key, and not dependent on another nonkeyed column. If the table is in second
normal form and all of the “transitive dependencies” are removed, then every non-
keyed column is said to be “dependent upon the key, the whole key, and nothing but
the key”.

Steps to Remove Transitive Dependencies
1 Determine which columns are dependent on another non-keyed column.

2 Remove those columns from the base table.

3 Create a second table with those columns and the non-key columns that they are
dependent upon.

4 Create a foreign key in the original table linking to the primary key of the new
table.

B-12

Converting to Third Normal Form

Remove any columns that are dependent upon
another non-key column:

1. Determine which columns are dependent upon
another non-key column.

2. Remove those columns from the base table.

3. Create a second table with those columns and the
non-key columns that they are dependent upon.

...
B-12

..
Appendix B: Normalization

The theory of normalization goes further than the third normal form to cater for
several problematic constructions that may remain. Those normal forms are outside
the scope of this lesson.

B-13

No non-key column can be functionally dependent
upon another non-key column.

Are these two tables in third
normal form? Why?

Tables Already in Third Normal Form

RECEIVED_
MESSAGES
(2NF)
USER
_ID

2301
2301
2301
5607
5607
5607
7773
7773
0022
0022

MSE REC_
_ID DATE

----- -----
54101 05/07
54098 07/12
54445 10/06
54101 05/07
54512 06/07
54660 12/01
54101 05/07
54554 03/17
54101 05/07
54512 06/07

MESSAGES
(2NF)
ID SUBJECT TEXT
----- -------------- ---------
54101 Meeting Today There is.
54098 Promotions I like to
54445 Next Assignmen Your next
54512 Lunch? Can you..
54660 Jogging Today? Can you..
54554 Stock Quote The lates

B-14

Converting to Third Normal Form

USERS

USERS

MAIL_
SERVER

USER USER
_ID _NAME
---- -----
2301 Smith
5607 Jones
7773 Walsh
0022 Patel

SRVR SERVER
_ID _NAME
---- ------
3786 IMAP05
6001 IMAP08
9988 EMEA01
9988 EMEA01

ID NAME
---- -----
2301 Smith
5607 Jones
7773 Walsh
0022 Patel

SRVR
_ID

3786
6001
9988
9988

ID NAME
---- ------
3786 IMAP05
6001 IMAP08
9988 EMEA01

..
B-13

..
Summary

®

Summary

B-15

Summary

The table must express a set of unordered, two-
dimensional tables. The table cannot contain
repeating groups.

The table must be in 1NF. Every non-key column must
be dependent on all parts of the primary key.

The table must be in 2NF. No non-key column may be
functionally dependent on another non-key column.

An entity relationship model transforms into normalized
data design.

1NF

2NF

3NF

...
B-14

..
Appendix B: Normalization

...
Index-1®

...
Index

Index

A

arc 1-27, 4-12
both supertype and subtype implemen-
tation 7-25
exclusive 4-12
rules 4-14

arc implementation 7-25
generic 9-26
rules 7-25

arc or subtypes 4-16
arcs

incorrect 4-15
mapping 7-19

artificial key 9-11
attribute 1-13

multiple
UID 4-7

redundancy 2-16
single

UID 4-7
single valued 1-13

attribute constraint 4-19
attribute representation

mandatory 1-19
optional 1-19

attributes 3-19
naming 2-15
recycling 6-20
tracking 2-14
volatile 1-14

attributes modeled as PROPERTY in-
stance 6-20

B

B*Tree
index 9-17

barred relationship 4-6
basket, pattern 6-6
BFILE 9-6
bill of material

pattern 6-12
binary table 3-26
bitmap index 9-17

BLOB 9-6
business function 1-23
business rules 4-2

C

cascade composed UID 4-7
cascade delete 9-15
cascade update 9-15
chain

pattern 6-10
CHAR 9-6
check

conditional domain 4-20
conditional relationship 4-20
front door 4-20
range 4-20
state value transition 4-20
state value triggered 4-20

check constraint 4-14
classification, pattern 6-7
CLOB 9-6
column

current indicator 8-20
column sequence 9-7
columns 7-5

choosing for index 9-19
end date 8-18
foreign key

naming 7-9
composed

UID 4-7
concatenated index 9-18
concept

evolution 2-11
conceptual data modeling 1-8, 2-5, 3-26
conceptual model 7-6
conceptual modeling 1-4
conceptual models 1-28
conditional domain check 4-20
conditional nontransferability 5-9
conditional relationship 4-20
constraint

check 4-14
declarative 7-7

constraints 4-2
check

...
Index-2®

...
Index

naming 7-10
foreign key

naming 7-9
hierarchy 6-9
special 4-20
time-related 5-8

convention
naming 7-8

conventions
sensible use 6-18

crowsfoot 3-7
current indicator column 8-20

D

data 2-4
normalized B-3
unnormalized B-5

data blocks 9-30
data files 9-30
data modeling

conceptual 2-5
physical 2-5

data type
BFILE 9-6
BLOB 9-6
CHAR 9-6
CLOB 9-6
DATE 9-6
LONG 9-6
LONG RAW 9-6
NUMBER 9-6
VARCHAR2 9-6

data types
Oracle 9-5

data warehouse 2-6
pattern 6-16

data warehouse system
design strategy 7-8
star model 7-10, 9-14

database
hierarchical 2-6
network 2-6
object oriented 2-6
relational 2-6
semantic 2-6

database structure

data blocks 9-30
data files 9-30
extents 9-30
Oracle 9-29
partitions 9-29
segments 9-29
tablespaces 9-29

DATE 9-6
date

end 5-7
start 5-7

date as Opposed to day 5-5
date or day 5-5
date time 5-6
declarative constraint 7-7
default and nullify 9-15
definition

denormalization 8-4
definition of an entity 1-10
degree 3-7
delete

cascade 9-15
restrict 9-14

denormalization
definition 8-4

denormalization techniques
derivable values 8-5
hard-coded values 8-5
pre-joining tables 8-5

derivable 1-8
derivable values

storing 8-6
design

distributed 9-27
old fashioned 9-25

design strategy
client-server 7-12
data warehouse approach 7-8

discriminator column 7-20
distributed design 9-27

benefits 9-28
domain 4-19

conditional 4-20
drawing conventions 6-17

...
Index-3®

...
Index

E

electronic mail 2-9
elements

arc 1-27
nontransferability 1-27
subtype 1-27
unique identifier 1-27

end date 5-7
end date columns 8-18
entities

event 2-20
intangible 2-20
tangible 2-20

entity 3-25
formal description 2-7
inheritance 2-17
intersection 3-25
naming 2-7
subtypes 2-17
supertype 2-17

entity DAY 5-6
entity definition

evolution 2-11
entity life cycle 2-12
entity relationship diagram 1-17
entity relationship model 1-17
entity relationship modeling 1-7, 1-28
ER diagram

soft box 1-18
ER model

transform 7-4
evolution of a concept 2-11
exclusive arc 4-12
extents 9-30

F

fan trap
pattern 6-15

first normal form B-7
foreign key

cascade delete 9-15
cascade update 9-15
columns 7-13
constraints 7-13
default and nullify 9-15

optional composed 7-15
foreign keys 7-5
form

first normal B-7
second normal B-9

formal description of the entity 2-7
front door check 4-20
function

business 1-23
modeling 1-23

function based index 9-18
functionality 1-23, 2-13

G

generic arc implementation 9-26
generic model 6-22
generic modeling 6-19
generic models 6-20, 6-21
graphical elements 1-17

H

hard-coded values 8-10
hidden relationships 4-18
hierarchies

disputable 6-8
false 6-8

hierarchy
constraints 6-9
pattern 6-8

hierarchy level indicator 8-22
historical price 5-10
homonyms 2-8
house building metaphor 1-5

I

identification 4-4
in database 4-5
indirect 4-8
problems 4-4
real world 4-5

identifiers
information-bearing 4-11

incorrect arcs 4-15
incorrect UIDs 4-10

...
Index-4®

...
Index

index
choosing columns 9-19
partitioned 9-22
unique 9-8
when used 9-21

index organized table 9-18
index types 9-17

B*Tree 9-17
bitmap 9-17
concatenated index 9-18
function based index 9-18
reverse key 9-17
tree balanced 9-17

indexes 9-16
indicator

hierarchy level 8-22
indirect identification 4-8
information 2-4

types 1-24
information-bearing identifiers 4-11
inheritance 2-17
instances 1-10, 1-11
integrity

referential 9-14
intersection entity 3-25

J

journalling 5-4, 5-17

K

keeping details with master 8-12
key

artificial 9-11
foreign 9-14
primary

desirable properties 9-9
keys

foreign 7-5
primary 7-5, 9-8
short-circuit 8-16
unique 7-5, 9-8

L

life cycle

entity 2-12
logging 5-4, 5-17
logic

referential 5-9
LONG 9-6
LONG RAW 9-6

M

mandatory 3-7, 3-10
many to many (m:m) 3-9
mapping

basic 7-12
entity 7-12
nontransferable relationships 7-15
relationship 7-14
terminology 7-7

mapping arcs 7-19
mapping barred relationships 7-15
mapping many-to-many relationships 7-
17
mapping one-to-one relationships 7-18
mapping subtypes 7-20
master

keeping details 8-12
repeating single detail 8-14

master detail, pattern 6-5
model

conceptual 7-6
relational 7-6

modeling
generic 6-19

modeling time 5-4
multiple attribute

UID 4-7

N

name space 7-11
naming

attributes 2-15
check constraints 7-10
convention 7-8
entities 2-7
foreign key columns 7-9
foreign key constraints 7-9
relationships 3-5

...
Index-5®

...
Index

restrictions with Oracle 7-10
tables 7-8

naming relationships 3-5
negotiated prices 5-14
nested subtypes 2-19
network

pattern 6-11
network structures 6-11
nontransferability 1-27, 3-8

conditional 5-9
normalization B-3
normalized data B-3
nouns 2-7
NUMBER 9-6

O

old fashened design
generic arc implementation 9-26
unique index 9-25

old fashioned design
check option views 9-25

OLTP system 7-6
one to many (1:m) 3-9
one to one (1:1) 3-9
onstraint

attribute 4-19
optional 3-7
optionality 3-6
Oracle data types 9-5
Oracle database structure 9-29

P

partitioned index 9-22
partitioning tables 9-22
partitions 9-29
pattern

basket 6-6
bill of material 6-12
chain 6-10
classification 6-7
data warehouse 6-16
fan trap 6-15
hierarchy 6-8
master detail 6-5
network 6-11

roles 6-14
patterns 6-4
physical data modeling 2-5
pre-joining tables 8-8
price 5-10

negotiated 5-14
price history 5-10
price list 5-10, 5-12
priced product 5-10
primary key

desirable properties 9-9
primary keys 7-5, 9-8
primary UID 4-9
primary unique identifier 3-18
product 5-10
properties

primary key 9-9

R

range check 4-20
recursive relationship 3-4
recycling of attributes 6-20
redundancy 2-16

relationships 3-15
referential integrity 9-14
referential logic 5-9
relational databases 2-6
relational model 7-6
relationship

conditional 4-20
many to many 3-11
mapping 7-14
master-detail 6-5
one to many 6-5
recursive 3-4

relationship ends
degree 3-7
optionality 3-6

relationship name 3-5
relationship representation 1-20
relationships 1-15, 3-19

barred
mapping 7-15

hidden 4-18
mandatory 1-21
many to many 3-9

...
Index-6®

...
Index

mapping 7-17
many to one 3-9
mapping nontransferable 7-15
mapping one to many 7-14
one to many 3-9
one to one 3-13
one-to-one

mapping 7-18
resolving 3-25
resolving other 3-26
symmetric 6-13
UID 4-8

relationsships
optional 1-21

repeating single detail with master 8-14
representation 4-4
reserved words. 2-15
resolving other relationships 3-26
resolving relationships 3-25
restrict

delete 9-14
update 9-14

reverse key index 9-17
roles

pattern 6-14
rows 7-5
rules

about arcs 4-14
business 4-2
subtype 2-18
transformation 7-6

S

second normal form B-9
secondary UID 4-9
segments 9-29
sequences 9-13
set theory 1-12
sets. 1-12
short-circuit keys 8-16
similar structure 6-4
single attribute

UID 4-7
Snowflake model 6-16
soft box 1-18
special constraints 4-20

start date 5-7
state value transition check 4-20
state value triggered check 4-20
storage implication 7-27

arc implementation 7-29
subtype implementation 7-27
supertype implementation 7-27

storing derivable values 8-6
subtype 1-27

implementatioin
rules 7-23

implementation 7-23
rules 2-18

subtypes 2-17
mapping 7-20
nested 2-19

subtypes or arcs 4-16
supertype 2-17

implementatioin
rules 7-20

implementation 7-20
supertype and subtype implementation

arc 7-25
symmetric relationships 6-13

problem 6-13
solution 6-13

synonyms 2-7

T

table
binary 3-26
index organized 9-18
naming 7-8

tables 7-5
partitioning 9-22
pre-joining 8-8

tablespaces 9-29
terminology mapping 7-7
three-tiered architecture 7-13
time

modeling 5-4
time-related constraints 5-8
tracking attributes 2-14
transformation rules 7-6
transforming the ER model 7-4
tree balanced index 9-17

...
Index-7®

...
Index

types of information 1-24

U

UID
cascade composed 4-7
composed 4-7
multiple attribute 4-7
primary 4-9
relationships 4-8
secondary 4-9
single attribute 4-7

unique identifier 1-27, 4-6
primary 3-18

unique index 9-8
unique key 7-18
unique keys 7-5, 9-8
unnormalized data B-5
update

cascade 9-15
restrict 9-14

V

values 1-13
derivable

storing 8-6
hard-coded 8-10

VARCHAR2 9-6
views

usage 9-23
volatile attributes 1-14

W

words
reserved 2-15

...
Index-8

...
Index

	Les02.pdf
	2
	Entities and Attributes in Detail

	Introduction
	Lesson Aim
	Objectives

	Data Compared to Information
	Data:
	Information:

	Data
	Conceptual Data Modeling
	Physical Data Modeling
	Database
	Data Warehouse

	Tracking Entities
	Naming an Entity Uniquely
	Creating a Formal Description
	Be Aware of Synonyms
	Avoid Homonyms
	Avoid Reserved Words
	Remove Relationship Name from Entity Name

	Electronic Mail Example
	Evolution of an Entity Definition
	Entity Life Cycle
	Creating a Message
	Removing a Message
	Changing a Message
	Draft
	Template

	Functionality
	Tracking Attributes
	Naming Attributes
	Entities Compared to Attributes
	Redundancy

	Subtypes and Supertypes
	Inheritance
	Always More Than One Subtype
	Nested Subtypes
	Subtypes Always Exist
	Implementing Subtypes

	Summary
	Practice 2—1: Books
	Goal
	Your Assignment
	1 In this text the word book is used with several meanings. These meanings are different entities...
	2 Create an ER model based on the text. Put the most general entity at the top of your page and t...

	Practice 2—2: Moonlight
	Scenario
	Your Assignment
	1 Make a list of about 15 different entities that you think are important for Moonlight Coffees. ...
	2 Write a formal definition of the entity that represents:

	Practice 2—3: Shops
	Scenario
	Your Assignment

	Practice 2—4: Subtypes
	Goal
	Your Assignment

	Practice 2—5: Schedule
	Scenario
	Your Assignment

	Practice 2—6: Address
	Goal
	Your Assignment
	1 How would you model the address information if the future system is required to produce accurat...

	Practice 2—6: Address (continued)
	Your Assignment
	2 Would your model from the previous practice also accept the addresses below?
	3 Check if your model would be different if the system is also required to have facilities to sea...

	Les03.pdf
	3
	Relationships in Detail

	Introduction
	Lesson Aim
	Objectives

	Establishing a Relationship
	Determining the Existence of a Relationship
	Choosing a Name for the Relationship
	Determining Optionality of Both the Relationship Ends
	Determining Degree of Both the Relationship Ends
	Determine Nontransferability of Both the Relationship Ends

	Relationship Types
	Relationships—1:m
	a Mandatory at both ends. This type of relationship typically models entities that cannot exist w...
	Circumventing Mandatory 1 to Mandatory m
	Why Circumvent?

	b Optional 1: mandatory m. This is a very common type of relationship, together with (d). Normall...
	c Mandatory 1: optional m. This is not common. You will see it only when the relationship express...
	d Optional at both ends. See remarks for (b).

	Relationships—m:m
	e Mandatory at both sides is very uncommon in normal circumstances. This relationship seems to me...
	f Mandatory at one end is not uncommon in early versions of a model although they usually disappe...
	g Optional at both ends is common in early versions of a model. These also usually disappear at a...

	Relationships—1:1
	h A 1:1 relationship, mandatory at both ends, tightly connects two entities: when you create an i...
	i Mandatory at one end is often in a model where roles are modeled, for example, in this hospital...
	j Optional at both ends is uncommon. However, they can occur, for example, when there is a relati...

	Redundancy

	Relationships and Attributes
	Attribute Compared to Relationship
	Nonexistence of Foreign Key Attributes
	No Entity Name in Attribute Name

	Relationship Compared to Attribute
	m:m Relationships May Hide Something
	Resolving Relationships
	Relationships and Intersection Entities
	Resolving a Relationship
	1 First create a new intersection entity. You will experience that sometimes there is no suitable...
	2 Next create two new m:1 relationships from entity A/B COMBINATION, one to A and one to B. Initi...
	3 Name the relationships. You can often name both relationships “in / of”.
	4 The next step is to remove the m:m relationship you started with.
	5 Finally, reconsider the newly-drawn relationships. They may be optional at the A/ B COMBINATION...

	Should Every m:m Relationship be Resolved?
	No
	Yes

	Resolving Other Relationships

	Normalization During Data Modeling
	Summary
	Practice 3—1: Read the Relationship
	Goal
	Your Assignment

	Practice 3—2: Find a Context
	Goal
	Your Assignment
	1
	2
	3
	4

	Practice 3—3: Name the Intersection Entity
	Goal
	Your Assignment
	1 Resolve the following m:m relationships. Find an acceptable name for the intersection entity.
	2 Invent at least one attribute per intersection entity that could make sense in some serious bus...

	Practice 3—4: Receipt
	Goal
	Scenario
	Your Assignment

	Practice 3—5: Moonlight P&O
	Goal
	Scenario
	Your Assignment
	1 Create a entity relationship model based on the following personnel and organization information:
	2 Extend or modify the diagram based on this information:
	3 And again:
	4 Change the model—if necessary and if possible—to allow for the following new information.
	a Jan takes shifts in two different shops in Prague.
	b Last year Tess resigned in Brazil as a shop manager and moved to Toronto. Recently she joined t...
	c To reduce the number of direct reports, departments and country organizations may also report t...
	d The shops in Luxembourg report to Belgium.
	e To prevent conflicting responsibilities, employees are not allowed to work for a department and...

	5 Would your model be able to answer the next questions?
	a Who is currently working for Operations?
	b Who is currently working for Moonlight La Lune at the Mont Martre, France?
	c Are there currently any employees working for Marketing in France?
	d What is the largest country in terms of number of employees? In terms of managers? In terms of ...
	e When can we celebrate Lynn’s fifth year with the company? When can we do the same with Tess’ fi...
	f What country has the lowest number of resignations?

	Practice 3—6: Price List
	Goal
	Scenario
	Your Assignment

	Practice 3—7: E-mail
	Goal
	Scenario.
	Your Assignment
	1 A user must be able to create nick names (aliases) for other users.
	2 A folder may contain other folders.
	3 A user must be able to forward a composition. A forward is a new message that is automatically ...
	4 All folders and lists are owned by a user.
	5 A mail list may contain both users and other lists.
	6 A mail list may contain external addresses, like “giovanni_papini@yahoo.com”.
	7 A nickname may be an alias for an external address.

	Practice 3—8: Holiday
	Goal
	Scenario
	Your Assignment

	Practice 3—9: Normalize an ER Model
	Your Assignment
	1 For the following ER Model, evaluate each entity against the rules of normalization, identify t...
	2 Optionally, redraw the ER diagram in third normal form.

	Les04.pdf
	4
	Constraints

	Introduction
	Objectives

	Identification
	What Are We Talking About?
	The Problem of Identification
	Identification in the Real World
	Identification Within a Database
	Representation

	Unique Identifier
	UID Representation
	Single Attribute UID
	Multiple Attribute UID
	Composed UID
	You may argue that a USER also has a composed UID, as the Name must be unique, within this mail s...
	Cascade Composed UID
	UID: Relationships Only
	Indirect Identification
	Examples
	Multiple UIDs
	UID in Diagram
	Where UIDs Lead
	Unique Identifier Examples
	Examples of Incorrect Unique Identifiers
	Information-Bearing Identifiers

	Arcs
	Arc Representation
	Mandatory Compared to Optional Relationships in an Arc
	Another Arc Example
	Note
	Where Arcs Lead
	Some Rules About Arcs
	Tips About Arcs
	Incorrect Arcs

	Arc or Subtypes
	More About Arcs and Subtypes
	Hidden Relationships
	Domains
	Some Special Constraints
	Categories: Examples
	Range Check: Example
	State Value Transition: Example
	Conditional Relationship: Example
	Derived Attribute?
	Rules May Lead to Attributes
	Model for Overview
	Boundaries

	Summary
	Practice 4—1: Identification Please
	Your Assignment

	Practice 4—2: Identification
	Your Assignment
	1
	2
	3
	4
	5
	6
	7 Given the above model, answer the following questions.
	a Can person A marry twice?
	b Can person A marry twice on the same day?
	c Can person A marry with person B twice?
	d Can person A marry with person B twice on the same day?
	e Can person A be married to person B and person C simultaneously?
	f Can person A be married to person A?

	Practice 4—3: Moonlight UID
	Goal
	Scenario
	1 Given the model below, indicate UIDs for the various entities. Add whatever attributes you cons...
	2 Are there any arcs missing?

	Practice 4—4: Tables
	Goal
	Your Assignment

	Practice 4—5: Modeling Constraints
	Goal
	Your Assignment
	1 Every EMPLOYEE must have a manager, except the Chief Executive Officer.
	2 A user may not use the same name for both NICKNAME and LIST name.
	3 A top level FOLDER must have a unique name per user; sub folders must have a unique name within...

	Les05.pdf
	5
	Modeling Change

	Introduction
	Lesson Aim
	Objectives

	Time
	Modeling Time

	Date as Opposed to Day
	Entity DAY
	Date and Time

	Modeling Changes Over Time
	End Date Redundant?
	Countries Have a Life Cycle Too
	Time-related Constraints
	Referential Logic
	Not in Diagram
	Implementation

	A Time Example: Prices
	Introducing Order Header and Order Item
	Order
	Price List
	Buying a PRODUCT or a PRICED PRODUCT?
	Negotiated Prices
	Which Variant to Use and When?

	Current Price
	Journalling
	Consequences for the Model
	No Journal Entity
	Journalling Registers Only

	Summary
	Practice 5—1: Shift
	Goal
	Scenario
	Your Assignment

	Practice 5—2: Strawberry Wafer
	Scenario
	Your Assignment

	Practice 5—3: Bundles
	Goal
	Scenario
	Your Assignment
	1 Modify the product part of the model in such a way that the desired calculations can be completed.
	2 Change the model in such a way that it allows for:

	Practice 5—4: Product Structure
	Goal
	Scenario
	Your Assignment
	1 Create a model for a product classification structure.
	2 (Optional) How would you treat the bundled products?

	Les06.pdf
	6
	Advanced Modeling Topics

	Introduction
	Lesson Aim
	Objectives

	Patterns
	Similar Structure
	Why Search for Similarities?

	Master Detail
	Implementation

	Basket
	Classification
	Hierarchy
	Disputable or False Hierarchies
	Recursive Relationship and Optionality
	Constraints Applying to a Hierarchy
	Implementation

	Chain
	Network
	Characteristics
	Bill of Material

	Symmetric Relationships
	Symmetric Relationships: Problem
	Symmetric Relationships: Solution

	Roles
	Fan Trap
	Why Traps Occur

	Data Warehouse
	Drawing Conventions
	Use Conventions Sensibly

	Generic Modeling
	What is Generic Modeling?

	Generic Models
	Recycling of Attributes
	Attributes Modeled as PROPERTY Instance

	More Generic Models
	Everything is a “Thing”

	Most Generic Model
	Value of Generic Modeling
	Best of Two Worlds

	Summary
	Practice 6—1: Patterns
	Goal
	Your Assignment

	Practice 6—2: Data Warehouse
	Goal
	Scenario
	Your Assignment
	1 Check the Moonlight models you created so far. Do they cater for answering the listed questions...
	2 For a data warehouse data model, suggest the central “facts” entity.

	Practice 6—3: Argos and Erats
	Goal
	Scenario
	Your Assignment

	Practice 6—4: Synonym
	Scenario
	Your Assignment

	Les08.pdf
	8
	Denormalized Data

	Introduction
	Lesson aim
	Objectives

	Why and When to Denormalize
	Definition of Denormalization
	Hints for Denormalizing
	Denormalization Techniques and Issues

	Storing Derivable Values
	Appropriate:
	Advantages:
	Disadvantages:
	E-mail Example of Storing Derivable Values

	Pre-Joining Tables
	Appropriate:
	Advantages
	Disadvantages
	Example

	Hard-Coded Values
	Appropriate
	Advantages
	Disadvantages
	Example

	Keeping Details With Master
	Appropriate
	Advantages
	Disadvantages
	Example

	Repeating Single Detail with Master
	Appropriate
	Advantages
	Disadvantages
	Example
	Any time a message is sent, it can be sent with attachments included. Messages can have more than...

	Short-Circuit Keys
	Appropriate
	Advantages
	Disadvantages
	Example

	End Date Columns
	Appropriate
	Advantages
	Disadvantages
	Example

	Current Indicator Column
	Appropriate
	Advantages
	Disadvantages
	Example

	Hierarchy Level Indicator
	Appropriate
	Advantages
	Disadvantages
	Example

	Denormalization Summary
	Practice 8—1: Name that Denormalization
	Goal
	Your Assignment
	1
	2
	3

	Practice 8—2: Triggers
	Goal
	Your Assignment
	1 Indicate which triggers are needed and what they should do to handle the denormalized column Or...
	2 Indicate which triggers are needed and what they should do to handle the denormalized column Lc...
	3 Indicate which triggers are needed and what they should do to handle the denormalized column Cu...

	Practice 8—3: Denormalize Price Lists
	Goal
	Scenario
	Your Assignment

	Practice 8—4: Global Naming
	Goal
	Scenario
	Your Assignment

	Xpp_A.pdf
	A
	Solutions

	Introduction to Solutions
	Before You Proceed
	Solution List

	Practice 1—1 Instance or Entity: Solution
	Practice 1—2 Guest: Solution
	Practice 1—3 Reading: Solution
	Practice 1—4 Read and Comment: Solution
	Practice 1—5 Hotel: Solution
	1 Possible comments:
	2 See the diagram for possible relationships between person and hotel.

	Practice 1—6 Recipe: Solution
	Practice 2—1 Books: Solution
	Practice 2—2 Moonlight: Solution
	1 Possible entities sorted alphabetically:
	2 Possible definition:

	Practice 2—3 Shops: Solution
	Practice 2—4 Subtypes: Solution
	Improvements

	Practice 2—5 Schedule: Solution
	Practice 2—6 Address: Solution
	1 Solution 1 can easily cope with the various address formats. It simply recognizes the fact that...
	2 Solution 2 cuts the address into individual pieces and accounts for post boxes as well. It assu...
	3 The second model does allow most of the required queries, although the last one may need some t...

	Practice 3—1 Read the Relationship: Solution
	Practice 3—2 Find a Context: Solution
	Practice 3—3 Name the Intersection Entity: Solution
	Practice 3—4 Receipt: Solution
	Practice 3—5 Moonlight P&O: Solution
	1 Note the optional relationships from EMPLOYEE to DEPARTMENT and SHOP. These result from “... co...
	2
	3
	4 a. Does not require changes in the model. People can be employed in various places—the model al...
	5 a, b. Given the previous models, these questions can be answered.
	Note:

	Practice 3—6 Price List: Solution
	Practice 3—7 E-mail: Solution
	Practice 3—8 Holiday: Solution
	Practice 3—9: Normalize an ER Model: Solution
	Your Assignment
	1 For the following ER Model, evaluate each entity against the rules of normalization, identify t...
	2 Optionally, re-draw the ER diagram in third normal form.

	Practice 4—1 Identification Please: Solution
	A city
	A Contact Person for a Customer
	A Train
	A Road
	A Financial Transaction
	An Academy Award
	A Painting
	A T.V. show

	Practice 4—2 Identification: Solution
	1 Because every A is identifiable by attribute Xx, every B and C are as well.
	2 B is identifiable by Id. A is identifiable, only if B and C are. This leaves C. Because of the ...
	3 D is identifiable by Id. Every C is identifiable by ZZ and D. Every B is identifiable by Yy. As...
	4 Every Q is identifiable by Id. P’s that are related to an instance of Q are identifiable by tha...
	5 Conceptually there is no problem here. Every P is identified by its Name and the reference to i...
	6 Entity FEMALE is identified by Name and Birth Date. This may not be true for the entire populat...
	7
	a Yes
	b Yes
	c Yes
	d No
	e Yes
	f No, because a marriage is always between a male and a female and person. A cannot be both male ...

	Practice 4—3 Moonlight UID: Solution
	Practice 4—4 Tables: Solution
	Practice 4—5 Constraints: Solution
	1 By creating a CEO subtype of EMPLOYEE the constraint is easily modeled. You may argue the use o...
	2 LIST and NICKNAME share the same namespace.This can be modeled with a supertype. Note the repos...
	3 Adding the arc and barred relationships is enough. Note that the recursive relationship from FO...

	Practice 5—1 Shift: Solution
	Practice 5—2 Strawberry Wafer: Solution
	Practice 5—3 Bundles: Solution
	1 The first model is probably what you came up with first. A bundle consists of several products....
	2 This is a tricky one. You can regard a DecafPunch as a product group with two products: DecafPu...

	Practice 5—4 Product Structure: Solution
	1 When the number of levels is known and fixed, the left model can be used. Note that the model f...
	2 The problem with the bundles is that, strictly speaking, they cannot be classified in class Dri...

	Practice 6—1 Patterns: Solution
	Moves in a Chess Game
	Quotations
	Recipes
	People Involved in a College
	Rentals in Video Shop
	Phases in a Process

	Practice 6—2 Data Warehouse: Solution
	1 No formal solution.
	2 The diagram answers more than the practice asked for. The central entity is SALES VOLUME.

	Practice 6—3 Argos and Erats: Solution
	Practice 6—4 Synonym: Solution
	Practice 7—1 Mapping basic Entities, Attributes and Relationships: Solution
	Practice 7—2 Mapping Supertype: Solution
	1 Possible considerations:
	2 See the diagram below.

	Practice 7—3 Quality Check Subtype Implementation: Solution
	Practice 7—4 Quality Check Arc Implementation: Solution
	Practice 7—5 Primary Keys and Columns: Solution
	Practice 8—1 Name that Denormalization: Solution
	1
	Type
	Why

	2
	Type
	Why

	3
	Type
	Why

	Practice 8—2 Triggers: Solution
	1 How to handle Order_total for ORDER_HEADERS
	2 How to handle Lcn_address for EMPLOYEES
	3 How to handle Curr_price_ind for PRICES

	Practice 8—3 Denormalize Price Lists: Solution
	Slow Performance
	Pre-entering Price Lists

	Practice 8—4 Global Naming: Solution
	Practice 9—1 Data Types: Solution
	1
	2
	3 A time (like attribute Start_time and End_time in entity SHIFT) can be implemented in several w...

	Practice 9—2 Artificial Keys: Solution
	1
	a COUNTRIES have an three-character internationally-used code, which can be used as a primary key...
	b GLOBAL_PRICES has no need for an artificial key as there are currently no tables referring to i...
	c PRICE_LISTS seems a good candidate for an artificial key, as the UID consists of two components...

	2 An artificial key on tables EXCHANGE_RATES, GLOBAL_PRICES (see above), LOCAL_PRICES, PRODUCT_NA...

	Practice 9—3 Product Pictures: Solution
	1 Which data type would you use for each column?
	2 Advise about the implementation. See the table structure diagram. There can be one table for mu...

	Xpp_B.pdf
	B
	Normalization

	Introduction
	Lesson aim
	Objectives

	Normalization and its Benefits
	Why and When to Normalize Tables
	History of Normalization
	Objective of Normalization
	Normalization Compared to Normalized Data
	Benefits of Normalized Data
	Unnormalized Data
	Normalization

	First Normal Form
	Definition of First Normal Form (1NF)
	Steps to Remove Repeating Groups
	1 Remove the repeating columns from the original unnormalized table.
	2 Create a new table with the primary key of the base table and the repeating columns.
	3 Add another appropriate column to the primary key, which ensures uniqueness.
	4 Create a foreign key in the new table to link back to the original unnormalized table.

	Second Normal Form
	Definition of Second Normal Form (2NF)
	Steps to Remove Partial Dependencies
	1 Determine which nonkey columns are dependent upon the table’s entire primary key.
	2 Remove those columns from the base table. Create a second table with those nonkeyed columns and...
	3 Create a foreign key from the original base table to the new table, linking to the new primary ...

	Third Normal Form
	Definition of Third Normal Form (3NF)
	Steps to Remove Transitive Dependencies
	1 Determine which columns are dependent on another non-keyed column.
	2 Remove those columns from the base table.
	3 Create a second table with those columns and the non-key columns that they are dependent upon.
	4 Create a foreign key in the original table linking to the primary key of the new table.

	Summary

