Course Code 20000GC12
Edition 1.2

July 2001

D33098

ORACLE

Data Modeling and Relational
Database Design
Volume 1 « Student Guide

Authors

Jan Speelpenning
Patrice Daux
Jeff Gallus

Technical Contributors
and Reviewers

Simmie Kastner
Sunshine Salmon
Satyajit Ranganathan
Stijn Vanbrabant

Joni Lounsberry
Kate Heap
GabriellaVarga

Publishers

Auvril Price-Budgen
Fiona Simpson
Don Griffin

Copyright © Oracle Corporation, 1998, 1999,2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure
and is also protected by copyright law. Reverse engineering of the software is
prohibited. If this documentation is delivered to a U.S. Government Agency of the
Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights
software under Federal law, as set forth in subparagraph (c) (1) (ii) of DFARS
252.227-7013, Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of the Worldwide Education Services
group of Oracle Corporation. Any other copying is a violation of copyright law and
may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Right,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate 1l (June 1987).

The information in this document is subject to change without notice. If you find
any problems in the documentation, please report them in writing to Education
Products, Oracle Corporation, 500 Oracle Parkway, Box 659806, Redwood
Shores, CA 94065. Oracle Corporation does not warrant that this document is
error-free.

Oracle, SQL*Plus, SQL*Net, Oracle Developer, Oracle7, Oracle8, Oracle
Designer and PL/SQL are trademarks or registered trademarks of Oracle
Corporation.

All other products or company names are used for identification purposes only,
and may be trademarks of their respective owners.

Contents

Contents

Lesson 1: Introduction to Entities, Attributes, and Relationships
Introduction 1-2
Why Conceptual Modeling? 1-4
Entity Relationship Modeling 1-7
Goals of Entity Relationship Modeling 1-8
Database Types 1-9
Entities 1-10
Entitiesand Sets 1-12
Attributes 1-13
Relationships 1-15
Entity Relationship Models and Diagrams 1-17
Representation 1-18
Attribute Representation 1-19
Relationship Representation 1-20
Data and Functionality 1-23
Types of Information 1-24
Other Graphical Elements 1-27
Summary 1-28
Practice 1—1: Instance or Entity 1-29
Practice 1—2: Guest 1-30
Practice 1—3: Reading 1-31
Practice 1—4: Read and Comment 1-32
Practice 1—5: Hotel 1-33
Practice 1—6: Recipe 1-34
General Instructor Notes 1-35
Practices 1-38
Suggested Timing 1-41
Workshop Interviewing 1-42

ORACLE i

Contents

Lesson 2: Entities and Attributes in Detail
Introduction 2-2
Data Compared to Information 2-4
Data 2-5
Tracking Entities 2-7
Electronic Mail Example 2-9
Evolution of an Entity Definition 2-11
Functionality 2-13
Tracking Attributes 2-14
Subtypes and Supertypes 2-17
Summary 2-20
Practice 2—1: Books 2-21
Practice 2—2: Moonlight 2-22
Practice 2—3: Shops 2-23
Practice 2—4: Subtypes 2-24
Practice 2—5: Schedule 2-25
Practice 2—6: Address 2-26
Practice 2—6: Address (continued) 2-27

Lesson 3: Relationships in Detail
Introduction 3-2
Establishing a Relationship 3-4
Relationship Types 3-9
Relationships and Attributes 3-16
Attribute Compared to Relationship 3-18
Relationship Compared to Attribute 3-19
m:m Relationships May Hide Something 3-20
Resolving Relationships 3-25
Normalization During DataModeling 3-28
Summary 3-32
Practice 3—1: Read the Relationship 3-33
Practice 3—2: Find aContext 3-34
Practice 3—3: Name the Intersection Entity 3-35
Practice 3—4: Receipt 3-36
Practice 3—5: Moonlight P&O 3-37
Practice 3—6: PriceList 3-39

iv Data Modeling and Relational Database Design

Contents
Practice 3—7: E-mail 3-40
Practice 3—8: Holiday 3-41
Practice 3—9: Normalize an ER Model 3-42

Lesson 4: Constraints
Introduction 4-2
Identification 4-4
Unique Identifier 4-6
Arcs 4-12
Arc or Subtypes 4-16
More About Arcs and Subtypes 4-17
Hidden Relationships 4-18
Domains 4-19
Some Specia Constraints 4-20
Summary 4-24
Practice 4—1: |dentification Please 4-25
Practice 4—2: |dentification 4-26
Practice 4—3: Moonlight UID 4-28
Practice 4—4: Tables 4-29
Practice 4—5: Modeling Constraints 4-30

Lesson 5: Modeling Change
Introduction 5-2
Time 54
Dateas Opposed to Day 5-5
Entity DAY 5-6
Modeling Changes Over Time 5-7
A Time Example: Prices 5-10
Current Price 5-16
Journaling 5-17
Summary 5-19
Practice 5—1: Shift 5-20
Practice 5—2: Strawberry Wafer 5-21
Practice 5—3: Bundles 5-22
Practice 5—4: Product Structure 5-24

ORACLE v

Contents

Lesson 6: Advanced Modeling Topics
Introduction 6-2
Patterns 6-4
Master Detail 6-5
Basket 6-6
Classification 6-7
Hierarchy 6-8
Chain 6-10
Network 6-11
Symmetric Relationships 6-13
Roles 6-14
FanTrap 6-15
Data Warehouse 6-16
Drawing Conventions 6-17
Generic Modeling 6-19
Generic Models 6-20
More Generic Models 6-21
Most Generic Model 6-22
Summary 6-23
Practice 6—1: Patterns 6-24
Practice 6—2: DataWarehouse 6-25
Practice 6—3: Argosand Erats 6-26
Practice 6—4: Synonym 6-27

Lesson 7: Mapping the ER Model
Introduction 7-2
Why Create a Database Design? 7-4
Transformation Process 7-6
Naming Convention 7-8
Basic Mapping 7-12
Relationship Mapping 7-14
Mapping of Subtypes 7-20
Subtype Implementation 7-23
Summary 7-30
Practice 7—1: Mapping basic Entities, Attributes and Relationships 7-31
Practice 7—2: Mapping Supertype 7-32

Vi Data Modeling and Relational Database Design

Contents
Practice 7—3: Quality Check Subtype Implementation 7-33
Practice 7—4: Quality Check Arc Implementation 7-34
Practice 7—5: Mapping Primary Keys and Columns 7-35

Lesson 8: Denormalized Data
Introduction 8-2
Why and When to Denormalize 8-4
Storing Derivable Values 8-6
Pre-Joining Tables 8-8
Hard-Coded Vaues 8-10
Keeping Details With Master 8-12
Repeating Single Detail with Master 8-14
Short-Circuit Keys 8-16
End Date Columns 8-18
Current Indicator Column 8-20
Hierarchy Level Indicator 8-22
Denormalization Summary 8-24
Practice 8—1: Name that Denormalization 8-25
Practice 8—2: Triggers 8-26
Practice 8—3: Denormalize Price Lists 8-29
Practice 8—4: Global Naming 8-30

Lesson 9: Database Design Considerations
Introduction 9-2
Reconsidering the Database Design 9-4
Oracle Data Types 9-5
Most Commonly-Used Oracle Data Types 9-6
Column Sequence 9-7
Primary Keysand Unique Keys 9-8
Artificia Keys 9-11
Sequences 9-13
Indexes 9-16
Choosing Columnsto Index 9-19
When Are Indexes Used? 9-21
Views 9-23
Useof Views 9-24
Old-Fashioned Design 9-25

ORACLE vil

Contents
Distributed Design 9-27
Benefits of Distributed Design 9-28
Oracle Database Structure 9-29
Summary 9-31
Practice 9—1: Data Types 9-32
Practice 9—2: Artificial Keys 9-34
Practice 9—3: Product Pictures 9-35

Appendix A: Solutions
Introduction to Solutions A-2
Practice 1—1 Instance or Entity: Solution A-4
Practice 1—2 Guest: Solution A-5
Practice 1—3 Reading: Solution A-6
Practice 1—4 Read and Comment: Solution A-7
Practice 1—5 Hotel: Solution A-8
Practice 1—6 Recipe: Solution A-9
Practice 2—1 Books: Solution A-11
Practice 2—2 Moonlight: Solution A-12
Practice 2—3 Shops: Solution A-13
Practice 2—4 Subtypes. Solution A-14
Practice 2—5 Schedule: Solution A-15
Practice 2—6 Address: Solution A-16
Practice 3—1 Read the Relationship: Solution A-18
Practice 3—2 Find a Context: Solution A-19
Practice 3—3 Name the Intersection Entity: Solution A-20
Practice 3—4 Receipt: Solution A-21
Practice 3—5 Moonlight P&O: Solution A-23
Practice 3—6 PricelList: Solution A-27
Practice 3—7 E-mail: Solution A-28
Practice 3—8 Holiday: Solution A-30
Practice 3—9: Normalize an ER Model: Solution A-32
Practice 4—1 ldentification Please: Solution A-34
Practice 4—2 ldentification: Solution A-36
Practice 4—3 Moonlight UID: Solution A-39
Practice 4—4 Tables: Solution A-40
Practice 4—5 Congtraints: Solution A-41

viii Data Modeling and Relational Database Design

Contents
Practice 5—1 Shift: Solution A-42
Practice 5—2 Strawberry Wafer: Solution A-43
Practice 5—3 Bundles: Solution A-44
Practice 5—4 Product Structure: Solution A-46
Practice 6—1 Patterns. Solution A-47
Practice 6—2 Data Warehouse: Solution A-49
Practice 6—3 Argos and Erats: Solution A-50
Practice 6—4 Synonym: Solution A-51

Practice 7—1 Mapping basic Entities, Attributes and Relationships:
Solution A-52

Practice 7—2 Mapping Supertype: Solution A-53

Practice 7—3 Quality Check Subtype Implementation: Solution A-54
Practice 7—4 Quality Check Arc Implementation: Solution A-55
Practice 7—5 Primary Keys and Columns; Solution A-56
Practice 8—1 Namethat Denormalization: Solution A-57
Practice 8—2 Triggers. Solution A-58

Practice 8—3 Denormalize Price Lists: Solution A-61

Practice 8—4 Global Naming: Solution A-63

Practice 9—1 Data Types. Solution A-64

Practice 9—2 Artificial Keys: Solution A-66

Practice 9—3 Product Pictures: Solution A-67

Appendix B: Normalization
Introduction B-2
Normalization and its Benefits B-3
First Normal Form B-7
Second Normal Form B-9
Third Normal Form B-11
Summary B-13

ORACLE ix

Contents

X Data Modeling and Relational Database Design

Introduction to
Entities, Attributes, and
Relationships

Lesson 1: Introduction to Entities, Attributes, and Relationships

Introduction

Lesson Aim

Thislesson explains the reasons for conceptual modeling and introduces the key role
players: entities, attributes, and rel ationships.

Overview

* Why conceptual modeling?

* Introduction of the Key role players:
— Entities
— Attributes
— Relationships

1-2

Topic See Page
Introduction 2
Why Conceptual Modeling? 4
Entity Relationship Modeling 7
Goals of Entity Relationship Modeling 8
Database Types 9
Entities 10
Entities and Sets 12
Attributes 13
Relationships 15
Entity Relationship Models and Diagrams 17
Representation 18
Attribute Representation 19
Relationship Representation 20
Data and Functionality 23

1-2 Data Modeling and Relational Database Design

Introduction

Topic See Page
Types of Information 24
Other Graphical Elements 27
Summary 28
Practice 1—1.. Instance or Entity 29
Practice 1—2: Guest 30
Practice 1—3: Reading 31
Practice 1—4: Read and Comment 32
Practice 1—5: Hotel 33
Practice 1—6: Recipe 34
Objectives

At the end of this lesson, you should be able to do the following:
» Explain why conceptual modeling isimportant

» Describe what an entity is and give examples

* Describe what an attribute is and give examples

» Describe what arelationship is and give examples

* Draw asimple diagram

* Read asimplediagram

ORACLE 1-3

Lesson 1: Introduction to Entities, Attributes, and Relationships

Why Conceptual Modeling?

Thisisacourse on conceptua data modeling and physical data modeling. Why do you
need to learn this? Why invest time in creating entity models when you need tables?
Why bother about business functionality and interviews and feedback sessions when
you need programs? In this course you learn why. You learn why it is a wise decision
to spend time in modeling and why it is a good investment. You will learn even more,
including how to create, read, and understand models and how to check them, as well
as how to derive table and key definitions from them.

Why Create a Conceptual Model?

* |t describes exactly the information needs of the
business

* |t facilitates discussion
* |t helps to prevent mistakes, misunderstanding
* |tforms important “ideal system” documentation

* |[tforms asound basis for physical database
design

* |tis avery good practice with many practitioners

1-3

Thislist shows the reasons for creating a conceptual model. The most important
reason isthat a conceptual model facilitates the discussion on the shape of the future
system. It hel ps communication between you and your sponsor aswell asyou and your
colleagues. A model also forms abasis for the default design of the physical database.
Last but not least, it isrelatively cheap to make and very cheap to change.

What You Learn in This Course

In this course you learn how to analyze the requirements of a business, how to
represent your findingsin an entity relationship diagram and how to define and refine
the tables and various other database objects from that model.

In summary, as aresult of what you learn in this course you will know:

* How to model the information needs of a business and the rules that apply.
* Which tables you need in your database, and why.

* Which columns you need in your tables, and why.

» Which constraints and other database objects you require.

1-4 Data Modeling and Relational Database Design

Why Conceptual Modeling?

You will also know how to explain this to:
* Your Sponsors.

* Thedevelopers.
* Your fellow designers.

The House Building Metaphor

I magine someone who wants to have a house built. Initially, the house only existsin
the minds of the future home owners as ideas, or as pieces of various dreams.
Sometimes the future inhabitants may not even know what they want, or know if what
they want is even feasible. Dreams may be full of internal contradictions and
impossibilities. Thisis not a problem in the dream world, but in the physical realm any
inconsistencies and obstacles need to be resolved before someone can construct the
house.

Between Dream and Reality...

=m=2
offlo

\

1-4

A building contractor needs a solid plan, a set of blueprints of the house with a
description of the materialsto be used, the size of the roof beams, the capacity of the
plumbing and many, many other things. The contractor follows the plan, and has the
knowledge to construct what is on the blueprint. But how do the ideas of the home
owner become the blueprint for contractor? This is where the architect becomes
involved.

ORACLE' 1-5

Lesson 1: Introduction to Entities, Attributes, and Relationships

The Architect

The architects are the intermediary between sponsor and constructor. They are trained
in the skills of trandlating ideas into models. The architect listens to the description of
the ideas and asks all kinds of questions. The architect’s skills in extracting the idess,
putting it down in aformat that allows discussion and analysis, giving advice,
describing sensible options, documenting it, and confirming it with the home owners,
are the cornerstones to providing the future home-owner with a plan of the home they
want.

Sketches

The architect’s understanding of the dreamsis transformed into sketches of the new
house—only sketches! These consist of floor plans and severa artist’s impressions,
and show the functional requirements of the house, not the details of the construction.
Thisisaconceptual model, the first version.

Easy Change

If parts of the model are not satisfactory or are misunderstood, the model can easily be
changed. Such a change would only need alittle time and an eraser, or afresh sheet of
paper. Remember, it is only changing a model. The cost of change at this stage isvery
low. Certainly it isfar less costly than making changes to the floor plan or roof
dimensions after construction has started. The house model is then reviewed again,
and further changes are made. The architect continues to explore and clarify the
dreams and make aternative suggestions until all controversial issues are settled, and
the model is stable and ready for the final approval by the sponsor.

Technical Design

Then the architect converts the model into atechnical design, a plan the contractor can
useto build the house. Cal culations are made to determine, for example, the number of
doors, how thick the walls and floor beams must be, the dimensions of the plumbing,
and the exact construction of the roof. These are technical issues that need not involve
the customer.

What? as Opposed to How?

While the conceptual model addresses the What? phase in the process, the design
addresses the question of How? it isto be constructed.

Conceptua modeling is similar to the work of an architect—transforming things that

only exist in people’'s minds into adesign that is sufficiently substantial to be created
physically.

1-6 Data Modeling and Relational Database Design

Entity Relationship Modeling

Entity Relationship Modeling

Entity Relationship Modeling

* Models business,
not implementation

* |s awell-established
technique

®* Has arobust syntax

* Results in easy-to-
read diagrams...

...although they may
look rather complex
at first sight

1-5

What is Involved in Modeling?

Entity Relationship modeling is about modeling a business. To be more precise: it is
about modeling the data requirements for a business based on the current or desired
functionality of the future system.

To model abusiness you have to understand to afair degree of detail what the business
is about.

Entity Relationship modeling is a technique used to describe the shared understanding
of the information needs of abusiness. It is awell-established technique that leads to
diagrams which are quite easy to read and therefore also easy to check.

ORACLE' 1-7

Lesson 1: Introduction to Entities, Attributes, and Relationships

Goals of Entity Relationship Modeling

Goals of Entity Relationship Modeling

® Capture all required information
* Information appears only once

* Model no information that is derivable from other
information already modeled

* Information is in a predictable, logical place

1-6

The goals of conceptual data modeling are to ensure that:

* All pieces of information that are required to run a business properly are
recognized.

Models should be complete. Requirements should be known before you start
implementing. Dependencies must be clear.

» Every single piece of required information appears only once in the model.

Thisisan important goal. As soon as a system stores particular information twice,
you run into the possibility that thisinformation is not the same in both places. If
you are auser of an information system and discover inconsistencies in the data,
which information would you to trust?
Thisgoal impliesthat an ideal system does not contain derivable information.

* Inthefuture system, the information is made available in a predictable, logical
place; related information is kept together.

* A proper Entity Relationship model leads to a set of logically coherent tables.

1-8 Data Modeling and Relational Database Design

Database Types

Database Types

Database Types
ER Model
| AN
C+— 1
— Déu
Hierarchical Network
Relational
1-7

Entity Relationship modeling is independent of the hardware or software used for
implementation. Although you can use an Entity Relationship model as a basis for
hierarchical databases, network databases, and relational databases, it is strongly
connected to the | atter.

ORACLE

Lesson 1: Introduction to Entities, Attributes, and Relationships

Entities
This section gives definitions and examples.

Entity

* An Entity is:

— “Something” of significance to the business
about which data must be known.

— A name for the things that you can list.
— Usually a noun.

* Examples: objects, events

* Entities have instances.

1-8

Definition of an Entity

There are many definitions and descriptions of an entity. Here are afew; some are
quite informal, some are very precise.

* An entity is something of interest.

* Anentity isacategory of things that are important for a business, about which
information must be kept.

* An entity is something you can make alist of, and which isimportant for the
business.

* Anentity isaclass or type of things.
* Anentity isanamed thing, usualy anoun.

Two important aspects of an entity arethat it has instances and that the instances of the
entity somehow are of interest to the business.

Note the difference between an entity and an instance of an entity.

1-10 Data Modeling and Relational Database Design

Entities

More on Entities

Entities and Instances

PERSON Mahatma Gandhi
PRODUCT 2.5 x 35 mm copper nail
PRODUCT TYPE nail
EMPLOYMENT CONTRACT my previous contract
JOB violinist
SKILL LEVEL fluent
TICKET RESERVATION tonight: Hamlet in the Royal
PURCHASE the CD I bought yesterday

ELECTION for parliament next fall

PRINTER PREFERENCE

DOCUMENT VERSION

1-9

Theillustration shows examples of entities and examples of instances of those entities.
Note:

There are many entities.

Some entities have many instances, some have only afew.
Entities can be:

— Tangible, like PERSON or PRODUCT.

— Non-tangible, like REQUIRED SKILL LEVEL.

— Anevent, like ELECTION.

Aninstance of one entity may be an entity in itsown right: the instance “violinist”
of entity JOB could be the name of another entity with instances like “David
Oistrach”, “Kyung-Wha Chung.”

ORACLE' 1-11

Lesson 1: Introduction to Entities, Attributes, and Relationships

Entities and Sets

Entities and Sets

* An entity represents a set of instances that are of
interest to a particular business.

JOB

Yr manager

5\} waitress #}Z
dish washer

)Vgporter

piano player

*financial controller

Ys}’waiter

You can regard entities as sets. Theillustration shows a set JOB and the set shows
some of itsinstances. At the end of the entity modeling process entities are
transformed into tables; the rows of those tables represent an individual instance.

During entity modeling you look for properties and rules that are true for the whole
set. Often you can decide on the rules by thinking about example instances. The
following lessons contain many examples of this.

Set Theory

Entity relationship modeling and the theory of relational databases are both based on a
sound mathematical theory, that is, set theory.

1-12 Data Modeling and Relational Database Design

Attributes

Attributes

Attribute

* Also represents something of significance to the
business

* |s asingle valued property detail of an entity
* |s aspecific piece of information that:

— Describes

— Quantifies

— Qualifies

— Classifies

— Specifies

an entity.

What is an Attribute?

An attribute is a piece of information that in some way describes an entity. An attribute
isaproperty of the entity, asmall detail about the entity.

Entities Have Attributes

For now, assume that all entities have at |east one attribute. Later, you discover
exceptions to this assumption. The attribute describes, quantifies, qualifies, classifies,
and specifies an entity. Usually, there are many attributes for an entity, but again, we
are only interested in those attributes that are of importance to the business.

Values and Data Types

Attributes have values. An attribute value can be a number, a character string, a date,
an image, a sound, and even more. These are called data types or formats. Usually the
valuesfor aparticular attribute of theinstances of an entity all have the same datatype.
Every attribute has a data type.

Attribute is Single Valued

An attribute for an entity must be single valued. In more precise terms, an entity
instance can have only one value for that attribute at any point in time. Thisisthe most
important characteristic of an attribute.

The attribute value, however, may change over time.

ORACLE' 1-13

Lesson 1: Introduction to Entities, Attributes, and Relationships

Attribute Examples

Attribute Examples

Entity | Attribute
EMPLOYEE | Family Name, Age, Shoe Size,
Town of Residence, Email, ...
CAR | Model, Weight, Catalog Price, ...
ORDER | Order Date, Ship Date, ...
JOB | Title, Description, ...
TRANSACTION | Amount, Transaction Date, ...

EMPLOYMENT | Start Date, Salary, ...
CONTRACT

Note:

» Attribute Town of Residence for EMPLOY EE is an example of an attribute that is
quite likely to change, but is probably single valued at any point in time.

» Attribute Shoe Size may seem to be of no importance, but that depends on the
business: if the business suppliesindustrial clothing to its employees, thismay be a
very sensible attribute to take.

» Attribute Family Name may not seem to be single-valued for someone with a
double name. This double name, however, can be regarded as a single string of
characters that forms just one name.

Volatile Attributes

Some attributes are volatile (unstable). An example is the attribute Age. Always ook
for nonvolatile, stable, attributes. If there is a choice, use the nonvolatile one. For
example, use the attribute Birth Date instead of Age.

1-14 Data Modeling and Relational Database Design

Relationships

Relationships

Relationships

* Also represent something of significance to the
business

* Express how entities are mutually related

* Always exist between two entities (or one entity twice)
* Always have two perspectives

®* Are named at both ends

Entities usually have relationships. Here are some examples.

Relationship Examples

EMPLOYEES have JOBS
JOBS are held by EMPLOYEES

PRODUCTS are classified by a PRODUCT TYPE
PRODUCT TYPE is a classification for a PRODUCT

PEOPLE make TICKET RESERVATIONS
TICKET RESERVATIONS are made by PEOPLE

ORACLE' 1-15

Lesson 1: Introduction to Entities, Attributes, and Relationships

A relationship connects two entities. A relationship represents a significant
dependency of two entities—always two entities.

A particular relationship can be worded in many ways. An EMPLOY EE hasaJOB, or
an EMPLQY EE performs a JOB, or an EMPLOY EE holds a JOB.

An EMPLOY EE appliesfor a JOB expresses a different relationship. Note that this
example shows that two entities can have more than one relationship.

Employees have Jobs

JOB ¢ manager
EMPLOYEE s »5¢ cook
. waitress
Shintaro & ﬁfx\z dish washer
Adam j K financial controller
* 2},’Lporter

> waiter
A .

v

Maria‘/

piano player

Numerical observation:

* All EMPLOYEES have a JOB

* No EMPLOYEE has more than one JOB

* Not all JOBS are held by an EMPLOYEE

* Some JOBS are held by more than one EMPLOYEE

Based on what you know about instances of the entities, you can decide on four
guestions:

* Must every employee have ajob?
In other words, is this a mandatory or optional relationship for an employee?
» Can employees have more than one job?
and
» Must every job be done by an employee?
In other words, is this a mandatory or optional relationship for ajob?
* Can ajob be done by more than one employee?

Later on we will see why these questions are important and why (and how) the
answers have an impact on the table design.

1-16 Data Modeling and Relational Database Design

Entity Relationship Models and Diagrams

Entity Relationship Models and Diagrams

An Entity Relationship Model (ER Mode!) isalist of al entities and attributes as well
as all relationships between the entities that are of importance. The model also
provides background information such as entity descriptions, data types and
constraints. The model does not necessarily include a picture, but usually a diagram of
the model isvery valuable.

An Entity Relationship Diagram (ER Diagram) is a picture, arepresentation of the
model or of apart of the model. Usually one model isrepresented in several diagrams,
showing different business perspectives.

Graphical Elements

Entity Relationship diagramming uses a number of graphical elements. These are
discussed in the next pages.
Unfortunately, there isno I SO standard representation of ER diagrams. Oracle has its

own convention. In this course we use the Oracle diagramming technique, which is
built into the Oracle Designer tool.

ORACLE' 1-17

Lesson 1: Introduction to Entities, Attributes, and Relationships

Representation

Entity

Entity Representation in Diagram

e Drawn as a “softbox”

* Name singular - N
* Nameinside > EMPLOYEE JoB
. .)
* Neither size, 5
nor position w
has a special L TICKET
meanin RESERVATION
9 [ORDER) \)
JOB ASSIGNMENT

During design, entities usually lead to tables.

1-16

In an ER diagram entities are drawn as soft boxes with the entity nameinside. Borders
of the entity boxes never cross each other. Entity boxes are always drawn upright.

Throughout this book, entity names are printed in capitals. Entity names are preferably
in the singular form; you will find that diagrams are easier to read this way.

Box Size

Neither the size of an entity, nor its position, has a special meaning. However, a reader
might construe alarger entity to be of more importance than a smaller one.

Where Entities Lead
During the design for arelational database, an entity usually leads to atable.

1-18 Data Modeling and Relational Database Design

Attribute Representation

Attribute Representation

Attributes in Diagrams

EMPLOYEE JOB
*Family Name % Title

% Address o Description
o Birth Date

o Shoe Size

o Email

% Mandatory attribute, that is, known and available
for every instance

o Optional attribute, that is, unknown or unimportant
to know for some instances

During design, attributes lead to columns.

1-17

Attributes are listed within the entity box. They may be preceded by a* or an ©. These
symbols mean that the attribute is mandatory or optional, respectively. Throughout
this book attributes are printed in Initial Capital format.

* Mandatory: Itisreadlistic to assume that for every instance of the entity the
attribute value is known and available when the entity instance is recorded and that
there is a business need to record the value.

o Optional: Thevaue of the attribute for an instance of the entity may be unknown
or unavailable when that instance is recorded or the value may be known but of no
importance.

Not all attributes of an entity need to be present in the diagram, but all attributes must
be known before making the table design. Often only afew attributes are shownin a
diagram, for reasons of clarity and readability. Usually you choose those attributes that
help understanding of what the entity is about and which more or less “define” the
entity.

Where Attributes Lead

During design an attribute usually leadsto a column. A mandatory attribute leadsto a
not null column.

ORACLE' 1-19

Lesson 1: Introduction to Entities, Attributes, and Relationships

Relationship Representation

Relationships are represented by aline, connecting the entities. The name of the
relationship, from either perspective, is printed near the starting point of the
relationship line.

The shape of the end of the relationship line represents the degree of the relationship.
Thisis either one or many. One means exactly one; many means one or more.

Relationship in Diagrams

An employee has exactly one job

EMPLOYEE JOB

Jobs are held by one or more employees

During design, relationships lead to foreign keys.

1-18

In the above example, it is assumed that JOBS are held by one or more EMPLOY EES.
Thisis shown by the tripod (or crowsfoot), at EMPLOY EE.

An EMPLOY EE, on the other hand, is assumed here to have exactly one JOB. Thisis
represented by the single line at JOB.

The relationship line may be straight, but may also be curved; curves have no special
meaning, nor does the position of the starting point of the relationship line. The
diagram below represents exactly the same model, but arguably less clearly.

|

1-20 Data Modeling and Relational Database Design

Relationship Representation
Mandatory and Optional Relationships

Relationships can be mandatory or optional, in the same way as attributes. Mandatory
relationships are drawn as a solid line; optional relationships as dotted lines.

MaNdatory: —— optional; == = = =

Relationship and Relationship Ends

Here, the relationship between EMPLOY EE and JOB is modeled using the optional
relationship end and mandatory relationship end notation.

EMPLOYEE [has JOB
held by

When you read the relationship, imagine it split into two perspectives:

EMPLOYEE | has JOB
held by

Every EMPLOY EE has exactly one JOB or, alternatively:
An EMPLOY EE must have exactly one JOB.

EMPLOYEE ; JOB
held by

A JOB may be held by one or more EMPLOY EES.

ORACLE 1-21

Lesson 1: Introduction to Entities, Attributes, and Relationships

Reading a Relationship End

Reading a Relationship End

part of

1] .]
Each P may be split into one or more QS

(11 7
Each Q mustibe part of exactly one P

1-24

A relationship from entityl to entity2 must be read:

Each entityl { must be | may be}
relationship_name
{one or more | exactly one} entity2

Where Relationships Lead

During design relationships lead to foreign keys and foreign key columns. An optional
relationship leads to non mandatory foreign key columns.

Relationship Name in the Diagram

Throughout this book relationship names in the diagrams are printed in lower case
italics.

For reasons of space and readability of the diagramsin this book, relationship names
are sometimes kept very short, and sometimes only a preposition is used.

1-22 Data Modeling and Relational Database Design

Data and Functionality

Data and Functionality

Functions Drive Data

* Business functions are always present.
— Explicit
— Assumed

* Business functions need data.

* An entity, attribute, or relationship may be
modeled because:

— ltis used by a business function.

— The business need may arise in the near
future.

1-25

Functions Drive the Conceptual Data Model

Although this course does not cover the method of function modeling, functions are
present at any time, in any discussion on a conceptual data model. You cannot talk
about, nor judge a conceptual data model without knowing or assuming the desired
functionality of the future system.

Often a conceptual data model discussion may seem to be about the data structure but
actually isabout functionality, usually unclear or undetermined pieces of functionality.
The language used is that of the conceptual data model, the representation used is that
of the entity relationship diagram, but the discussion in fact is about functionality.

Functions drive the conceptual data model. The question “Do we need to take Shoe
Sizefor an employee?’ can only be answered by answering positively the question “Is
there a business function that needsit?’

Consider the conceptual data model as the shadow of the functions of a system.

Most of the time during this course, functionality isonly briefly sketched, or merely
assumed, to prevent you from reading page after page of functional descriptions.

ORACLE' 1-23

Lesson 1: Introduction to Entities, Attributes, and Relationships

Types of Information

Weather Forecast

January 26

Kobenhavn 7175 | >3
Bremen [£5]0/-3| 44
Berlin 74| 3/-1 | = 3
Miinchen LD 5/-3 | =3
Amsterdam 71 8/3 |4 4
Bruxelles £ 4/0 | » 2
Paris LH|4/1 |» 3
Bordeaux ALl 7/2 | o4 3

1-26

What Information is Available?

Theillustration shows a piece of aweather forecast torn from a European newspaper,
showing various types of information. What are the types of information? One of the
first thingsyou will see are, for example, “Kgbenhavn”, “Bremen”. These are cities, or
more precisely, names of cities. The little drawings represent the type of wesather;
these drawings are icons. The next columns are temperatures, probably maximum and
minimum; the arrows indicate wind direction and the number next to it is the wind
force. Then thereis adate on top which isthe forecast date. Therefore we have:

» City

» Name of the city (such as“Kgbenhavn)

* Weather type (such as“cloudy with rain™)
* lcon of the weather type

e Minimum temperature

* Maximum temperature

* Wind direction arrow

* Wind force
* Forecast date
Isthisall?

No, you can find out even more information. To do this you have to have some
“business” knowledge. In thiscaseit is geographical knowledge.

1-24 Data Modeling and Relational Database Design

Types of Information

Kgbenhavn
(Copenhagen)

@ Bremen

. -
Berlin

BE e Bruxelles
(B ssels)

Miinchen
(Mugich)

®Bordeaux

1-27

You may notice that the citiesin the weather forecast are not printed in arandom order.
The German cities (Bremen, Berlin and Munchen) are grouped together, just as the
French citiesare. Moreover, the cities are not ordered al phabetically by name but seem
to be ordered North-South. Apparently this report “knows” something to facilitate the
grouping and sorting. This could be:

» Country of the city

» Geographical position of the city
and maybe even

» Geographical position of the country

Next Step

Try to identify which of the above types of information is probably an entity, which is
an attribute and which is a relationship.

City and Country are easy. These are entities, both with, at least, attribute Name and
Geographical Position. Weather Type could also be an entity asthereis an attribute
available: Icon. For the same reason there could be an entity Wind Direction. Now,
where does this |eave the temperatures and forecast date? These cannot be attributes of
City astheforecast date isnot single value for a City: there can be many forecast dates
for acity. Thisishow you discover that thereis still one entity missing, such as
Forecast, with attributes Date, Minimum and Maximum Temperature, Wind Force.

ORACLE 1-25

Lesson 1: Introduction to Entities, Attributes, and Relationships
There are likely to be relationships between:

e COUNTRY and CITY

 CITY and FORECAST

» FORECAST and WEATHER TYPE

e FORECAST and WIND DIRECTION.

Weather Forecast, a Solution

CITY) COUNTRY

* Name . ocated in * Name

o Geographical
Position

o Geographical
Position

FORECAST referring to WEATHER TYPE
* Date > --------- ~‘ *Icon
o Minimum referred in| + pescription

Temperature .
o Maximum referring to

WIND DIRECTION
* |con
* Description

Temperature ;
P referred in

o Wind Force

1-28

In this entity relationship diagram some assumptions are made about the relationships:
* Every FORECAST must be about one CITY, and
not all CITIES must bein aFORECA ST—but may be in many
* Every CITY islocated inaCOUNTRY, and
every COUNTRY hasone or more CITIES
* A FORECAST must not always contain a WEATHER TY PE, and
not all WEATHER TY PES arein a FORECA ST—hut may be in many
* A FORECAST must not always contain aWIND DIRECTION, and
not all WIND DIRECTIONS are in a FORECAST—but may be in many

The rational e behind these assumptionsis that we consider an incomplete FORECAST
still to be aFORECAST, unlesswe do not know the date or the CITY the FORECAST
refersto.

1-26 Data Modeling and Relational Database Design

Other Graphical Elements

Other Graphical Elements

Graphical Elements of ER Diagram

Entity

Attribute — — =

Relationship - =

Subtype

Unique identifier >

Arc P S_
/

Nontransferability p— =
= [#LJ

1-29

Theillustration shows al graphical elements you can encounter in a ER diagram. You
saw earlier how to represent an entity, an attribute, and a relationship.

The lessons following this one discuss the remaining four types of elements:
» Subtype, represented as an entity within the boundary of another entity

* Unique identifier, represented as a# in front of an attribute or as a bar across a
relationship line

* Arc, represented as an arc-shaped line across two or more relationship lines
* Nontransferability symbol, represented as a diamond across arelationship line

Limited Set of Graphical Elements

Asyou can see, the set of graphical elementsin ER diagramming isvery limited. The
complexity of ER modeling is clearly not in the representation. The main complexity
of ER modeling lies in the understanding of the business, in the recognition of the
entities that play arole in that business, the relevant attributes that describe the
entities, and the relationships that connect them.

ORACLE' 1-27

Lesson 1: Introduction to Entities, Attributes, and Relationships

Summary

Conceptua models are created to model the functional and information needs of a
business. These models may be based on the current needs but can also be areflection
of future needs. This course is about modeling the information needs. Functional
needs cannot be ignored while modeling data, as these form the only legitimate basis
for the datamodel. Ideally, the conceptual models are created free of any consideration
of the possible technical problems during implementation. Consequently the model is
only concerned with what the business does and needs and not with how it can be
realized.

Summary

* ER Modeling models information conceptually

* Based on functional business needs

* “What”, not “How”

¢ Diagrams provide easy means of communication
® Detailed, but not too much

1-30

Entity Relationship modeling is awell-established technique for catching the
information needs. The ER model formsthe basis for the technical data model.
Technical considerations take place at that level.

Entity Relationship diagrams provide an easy-to-read and relatively easy-to-create
diagrammatic representation of the ER model. These diagramsinitially form the
foundation for the discussion of business needs. Later they provide the best possible
map of afuture system.

The diagrams show afair amount of detail, but are not too detailed to become
cluttered.

1-28 Data Modeling and Relational Database Design

Practice 1—1: Instance or Entity

Practice 1—1: Instance or Entity

Goal
The goal of this practice isto learn to make a distinction between an entity, an
attribute, and an instance of an entity.

Your Assignment

List which of the following concepts you think is an Entity, Attribute, or Instance. If
you mark one as an entity, then give an example instance. If you mark one as an
attribute or instance, give an entity. For the last three rows, find a concept that fits.

Practice: Instance or Entity?
Concept E/A/I?|Example Instance or Entity
PRESIDENT
ELLA FITZGERALD
DOG
ANIMAL
HEIGHT
E CAR
A CAR
| CAR
1-32

ORACLE

Lesson 1: Introduction to Entities, Attributes, and Relationships

Practice 1—2: Guest
Goal
The goal of this practice isto recognize attributes for an entity.

Scenario

On the | eft side of the illustration are three entities that play arole in a hotel
environment: GUEST, HOTEL, and ROOM. On the right is a choice of attributes.

Your Assignment
Draw aline between the attribute and the entity or entities it describes.

Practice: Guest

Address
Arrival Date

Family Name
GUEST—

Room Number
HOTEL

ROOM

Floor Number

Number of Beds
Number of Parking Lots
Price

TV set available?

1-33

1-30 Data Modeling and Relational Database Design

Practice 1—3: Reading

Practice 1—3: Reading

Goal
The goal of this practice isto read arelationship.

Your Assignment
Which text corresponds to the diagram?

Practice: Reading

EMPLOYEE assignedto DEPARTMENT
responsible for

A Each EMPLOYEE may be assigned to one or more DEPARTMENTS
Each DEPARTMENT must be responsible for one or more EMPLOYEES

B Each EMPLOYEE must be assigned to one or more DEPARTMENTS
Each DEPARTMENT may be responsible for one or more EMPLOYEES

C Each EMPLOYEE must be assigned to exactly one DEPARTMENT
Each DEPARTMENT may be responsible for exactly one EMPLOYEE

1-34

ORACLE 1-31

Lesson 1: Introduction to Entities, Attributes, and Relationships

Practice 1—4: Read and Comment

Your Assignment
1 Read each of the relationships in the model presented here.

2 Next, comment on the relationship you just read. Use your knowledge of people
and towns.

Practice: Read and Comment

— . SR
PERSON |bornin 1| TOWN

birthplace of

ST

home town of

visitor of

— with mayor

1-35

1-32 Data Modeling and Relational Database Design

Practice 1—5: Hotel

Practice 1—5: Hotel

Your Assignment
1 Comment on the relationships of the model presented here.

Practice: Hotel

HOTEL
* Address

for,

. [room
! * Room Number

the lodging | host of \l./
|
1
1
|
1
I
1

T
1 with

1-36

2 Make up two more possible relationships between PERSON and HOTEL that
might be of some use for the hotel business.

ORACLE 1-33

Lesson 1: Introduction to Entities, Attributes, and Relationships

Practice 1—6: Recipe

Goal

The goal of this practiceisto discover the various types of information that are present
in a given source of information.

Scenario

You work as an analyst for a publishing company that wants to make recipes available
on the Web. It wants the public to be able to search for recipesin avery easy way.
Your ideas about easy ways are highly esteemed.

Your Assignment

1 Analyze the example page from Ralph’s famous Raving Recipes book and list as
many different types of information that you can find that seem important.

Ralph’s Raving Recipes

<hlllell Acorda alentejana
bread soup from Portugal

vegetarian for 4 persons:

15 min 1 onion

easy 4 cloves of garlic

1 red pepper

1 liter of vegetable broth

4 tablespoons of olive oil

4 fresh eggs

1 handful of parsley or coriander
salt, pepper

9-12 slices of (old) bread

preparation Cut the onion into small pieces and fry together
with the garlic. Wash the red pepper, cut it in
half, remove the seeds and fry it for at least 15

page 127

1-37

2 Group the various types of information into entities and attributes.
3 Name the relationships you discover and draw a diagram.

1-34 Data Modeling and Relational Database Design

Entities and Attributes
in Detall

Lesson 2: Entities and Attributes in Detail

Introduction

Lesson Aim

Thislesson provides you with a detailed discussion about entities and attributes and
how you can track these in various sources of information. The lesson looks at the
evolution of an entity definition and the concept of subtype and supertype entity. The
lesson also introduces the imaginary business of ElectronicMail Inc.whichisused in
many examples throughout this book.

Overview

* Data compared to information

* Entities and how to track them down
* Attributes

* Subtypes and supertypes

2-2

Topic See Page

Introduction

2

Data Compared to Information 4
Data 5
7

9

Tracking Entities

Electronic Mail Example

Evolution of an Entity Definition 11
Functionality 13
Tracking Attributes 14
Subtypes and Supertypes 17
Summary 20
Practice 2—1: Books 21

2-2 Data Modeling and Relational Database Design

Introduction

Topic See Page

Practice 2—2: Moonlight 22

Practice 2—3: Shops 23

Practice 2—4. Subtypes 24

Practice 2—5: Schedule 25

Practice 2—6: Address 26
Objectives

At the end of thislesson, you should be able to do the following:

e Track entities from various sources

» Track attributes from various sources

» Decide when you should model a piece of information as an entity or an attribute
* Model subtypes and supertypes

ORACLE 2-3

Lesson 2: Entities and Attributes in Detail

Data Compared to Information

Data Compared to Information

e Data

— Facts given from which other facts may be
inferred

— Raw material
Example: Telephone Directory

* |nformation

— Knowledge, intelligence
Example: Telephone number of florist

2-3

The words data and information are often used asif they are synonyms. Nevertheless,
they have a different meaning.

Data: Raw material, from which you can draw conclusions. Facts from which you
can infer new facts. A typical exampleis atelephone directory. Thisisahuge
collection of facts with some internal structure.

Information: Knowledge, intelligence, a particular piece of datawith a special
meaning or function. Often information leads to data. In reverse, information is often
the result of the deriving process from data—this may be a particular piece of data. If
datais structured in some way, thisisvery helpful in the process of finding
information. To expand the telephone directory data example, information is the
telephone number of your dentist or the home address of a colleague.

2-4 Data Modeling and Relational Database Design

Data

Data~

* Modeling, Conceptual
Structuring data concepts into logical, coherent,
and mutually related groups

* Modeling, Physical
Modeling the structure of the (future) physical
database

* Base
A set of data, usually in a variety of formats, such
as paper and electronically-based

* Warehouse
A huge set of organized information

2-4

Conceptual Data Modeling

Conceptual data modeling is the examination of a business and business datain order
to determine the structure of business information and the rules that govern it. This
structure can later be used as the basis for the definition of the storage of the business
data. Conceptual data modeling is independent of possible technical implementations.
For that reason, a conceptual data model isrelatively stable over longer periods of
time, as businesses change, often only gradually, over a period of time. Conceptual
Datamodeling is also called Information Engineering.

Physical Data Modeling

Physical data modeling is concerned with implementation in a given technical
software and hardware environment. The physical implementation is highly dependent
on the current state of technology and is subject to change as available technologies
rapidly change. A technical design made five years ago is likely to be quite outdated
today.

By distinguishing between the conceptual and physical models, you separate the rather
stable from the rather unstable parts of adesign. Thisistrue for both data models and
functional specifications.

ORACLE 25

Lesson 2: Entities and Attributes in Detail

Database

A database is a set of data. The various parts of the data are usually available in
different forms, such as paper and electronic-based. The electronic-based data may
reside, for example, in spreadsheets, in all kinds of files, or in aregular data base.
Today, relational databases are very common; but many older systems are still around.
The older systems are mostly hierarchical databases and network databases. Systems
of more recent date are semantic databases and object oriented databases.

Data Warehouse

A data warehouse is composed of data from multiple sources placed into one logical
database. This datawarehouse database, (or, more correctly, this database structure), is
optimized for Online Analytical Processing (OLAP) actions.

Often a data warehouse contains summarized data from day-to-day transaction
systems with additional information from other sources. An exampleis a phone
company that tracksthe traffic load for arouting system. The system does not store the
individual telephone calls, but stores the data summarized by hour.

From a data analysis point of view a data warehouse is just a database, like any other,
only with very specific and characteristic functional requirements.

2-6 Data Modeling and Relational Database Design

Tracking Entities

Tracking Entities

The nounsin, for example, the texts, notes, brochures, and screens you see concerning
abusiness often refer to entities, attributes of entities, or instances of entities.

Entities

* Give the entity a unigue name

® Create a formal description of
the entity

* Add afew attributes, if possible

[

®* Be aware of homonyms

®* Check entity names and descriptions regularly
* Avoid use of reserved words

* Remove relationship name from entity name

2-5

Naming an Entity Uniquely

First distinguish an entity by outlining the concept in your mind. Next, try to find a
unique and clear name for an entity. Thisis not aways easy as there are far more
concepts than clear names. Use your imagination. Use a dictionary. Use a combination
of words, use ‘X’ if necessary, but do not let the lack of a good name stop you from
modeling. Good names evolve over time.

Check the names you used every now and then. The implicit definition of an entity
may change during analysis, for instance, as aresult of adding an attribute or changing
the optionality of arelationship.

Creating a Formal Description

Create aformal description of the entity. Thisis usualy not difficult and the writing
helps clarify your thinking about what you are talking about. Check this description
regularly. Sometimes concepts evol ve during the modeling process. The definitions, of
course, should follow that evolution.

Be Aware of Synonyms

In many business contexts one and the same concept is known under different names.
Select one and mention the synonyms in the description: “...also known as....”.

ORACLE 27

Lesson 2: Entities and Attributes in Detail

Avoid Homonyms

Often in abusiness one word is used for different concepts. Sometimes even the same
person will use the same word but with different meanings as you can seein the next
example.

“The data modeling course you attend now was written in 1999 and requires modeling
skillsto teach.” In this sentence the word “course’ refersto three different concepts: a
course event (like the one you are attending today), a course text (which was writtenin
1999) and the course type (that apparently needs particular skills).

Avoid Reserved Words

Although you are free to use any hame you want for an entity, try to avoid database
and programming terms as entity names if possible. This may prevent naming
problems and confusion later on in the design stage.

Remove Relationship Name from Entity Name

Often you can select entity names in amore or less generic way. In the example, both
diagrams model the same context. In thefirst the “ guest” aspect is part of the entity
name as well as part of the relationship name.

The second model is more general in its naming. There aguest is seen as a PERSON
playing the role of being a guest.

Asarule, if thereis choice take the more general name. It allows, for example, for the
addition of a second relationship between the same entities that shows, for example,
person isworking for or is owning shares in the accommodation. The first model
would require new entities.

Thissubject is closely related to the concept of subtypes and roles. You find more on
this later in this lesson and when we discuss Patterns.

2-8 Data Modeling and Relational Database Design

Electronic Mail Example

Electronic Mail Example

In this course we investigate various business contexts. Oneisthat of ElectronicMail,
acompany that supplies an e-mail service. Here is some background information.

Some Background Information

“ElectronicMail (EM) wants to provide an attractive and user- friendly
Web-based e-mail system. Important concepts are user and message.

An EM user has a unique address of 30 characters at most and a
password supplied by the person who set up the EM user. Who the
person really is, we do not know, although we ask for some additional
information, such as the name, country, birth date, line of business, and
a few more things.

Users must be able to send and receive mail messages. A mail
message is usually a piece of straight text. A message may have
attached files. An attachment is a file, like a spreadsheet, that is sent
and kept with the message, but not created with our software.

Messages are kept in folders. Every user has three folders to start with:
Inbox, Outbox, and Wastebasket. Additional folders can be created by
the user.”

2-7

]ZEM

5 Compose Template

Folders

Subject: || test /l]\ ((\ S |
Addresses =2\ -
To: || bipi, giovanni_papini@yahog.etm ,d)o’ 7~ I Save Draft |
o~ o~

Ce: [Fmysett |
o~ 1) -
Bec: I

Preferences

Save Template

Cancel I
e:

Get New Mail

Message
text:

ttachments:

Aftach Typ:
I Add

< abc.html Hypertext z
Signature

xyz.doc Word document

ORACLE 2-9

Lesson 2: Entities and Attributes in Detail

The screenshots may give an idea of how the Compose a Mail Message screen and the
Maintain Addresses screen will ook like.

ddresses
Nicknames
e,

Some Desired Functionality

“Users of ElectronicMail must be able to address messages to a mail
list, for example, a group of e-mail addresses. The system should only
keep one copy of the message sent (to save database space) plus
information about whom the message was sent to.

Users must be able to create templates for their messages. A template
must be named and may contain everything a real message contains.
A template may be used for new messages.

Users must be able to reply to a message. By replying the user creates
a new message to which the old message is added.

Users must be able to create an alias for an e-mail address, to hide the
often complex addresses behind an easy-to-remember nickname.”

2-10

2-10 Data Modeling and Relational Database Design

Evolution of an Entity Definition

Evolution of an Entity Definition

To illustrate the evolution of a concept, consider ElectronicMail’s entity MESSA GE.
The first intuitive description of this entity may be:

A message is a piece of text sent by a user.

Any user? Well, no.

A message is a piece of text sent by an EM user.

Must every message contain text? Should it not be possible to send a message that
only transports an attachment, without additional text?

A message is a note that is sent by an EM user. A
message does not necessarily contain text, nor a
subject, etc.

And what about a message that comes from an external source and isreceived by an
EM user? Should those not be kept as well?

A message is a note that is sent by an EM user or
received by an EM user or both. A message does not
necessarily contain text, nor a subject, etc.

Now suppose amessage is sent by an EM user to an external e-mail address only.
Suppose the EM user does not want to keep a copy of the mail message. In that case
thereis no need for the system to keep the message asthereisno internal EM user that
needs the message. In fact, it isnot important at al to keep messages that were sent by
aEM user; only those that were actually received by an EM user are of interest.

A message is a note that is received by an EM user. A
message does not necessarily contain text, nor a
subject, etc.

The thinking process shown hereistypical for the change of adefinition from the first
ideato something that is much more well thought-out—though this does not mean that
the definition isfinal.

ORACLE 2-11

Lesson 2: Entities and Attributes in Detail

Entity Life Cycle
It often helpsto make things clear if you think about the life cycle of an entity. Thelife

cycle refers to the functional steps of the entity. For example, how can the entity
instance come into existence? How can it change? How does it disappear?

In case of entity MESSAGE the questions are:

* When does “something” become a message?
* When does a message change?

* When can a message be removed?

Creating a Message

When | type in some text in the compose screen, is that text a message? You will
probably agree that it does not make much senseto consider it as amessage until some
fields are completed, such as the To or Subject field. The checks must take place after
I hit the send key. Only after all checks have been made is the message born.

Removing a Message

When can the system remove a message? When a user hits the delete key? But what
should the system do when there are other receivers of that same message? It is better
to consider the deleting of a message as the signal to the system that you no longer
need the right to read the message. When all users that did receive the same message
have done this, then the message can be deleted. Apparently, for amessage to exist it
must have receivers that still need the message.

Changing a Message

Changing a message? Aslong as the text is not sent, it isno problem asit is not yet
considered to be a message. Changing it after sending it? Changing something that is
history? This cannot be done. Changing the text should lead to a new message.

Draft

What about a message that is not yet ready for sending? Suppose auser wantsto finish
amessage at a later date. |s there a place for this? Do we want an unsent, or draft,
message in the system? IsaDRAFT a specia case of entity MESSAGE, or should we
treat a DRAFT as a separate entity?

Template

What about the templates? A template is about everything a message can be, but a
template is only used as a kind of stamp for a message. Templates are named,
messages are not. ISTEMPLATE a special case of entity MESSAGE, or should we
look upon it as a separate entity?

2-12 Data Modeling and Relational Database Design

Functionality

Functionality

In the previous evolution of the entity definition, the definition changes were invoked
by thinking and rethinking the functionality of the system around messaging. This
illustrates the statement made earlier: functions drive the conceptual data model.

Business Functions

“Users of ElectronicMail must be able to address messages to a mail
list, for example, a group of e-mail addresses. The system should only
keep one copy of the message sent (to save data base space) plus
information about whom the message was sent to.

Users must be able to|create templates for their messages. A template
must be named and may contain everything a real message contains.
A template may be used for new messages.

Users must be able toreply to a message. By replying the user
creates|a new message to which the old message is added.

Users must be able to create an alias for an e-mail address, to hide
the often complex addresses behind an easy-to-remember nickname.”

2-11

Thefirst idea of the functionality of a system, or desired functionality, can be derived
from the verbsin, for example, descriptive texts and interview notes. In the above text
the functionality is expressed at a high level, without much detail. Nevertheless, you
can probably imagine more detailed functionality.

In this course functionality is aways present, often implicitly assumed, sometimesin
detail.

ORACLE 213

Lesson 2: Entities and Attributes in Detail

Tracking Attributes

An Attribute...

* Always answers “of what?”
* |s the property of entity, not of relationship
®* Must be single valued
* Has format, for example:
— Character string
— Number
- Date

— Picture
— Sound

* |s an elementary piece of data

Asdiscussed earlier, the nounsin, for example, the texts, notes, brochures, and screens
you see used in a business often refer to entities, attributes of entities, or instances of
entities. You can usually easily recognize attributes by asking the questions “ Of
what?’ and “ Of what format?’. Attributes describe, quantify, qualify, classify, specify
or give a status of the entity they belong to. We define an attribute as a property of an
entity; thisimplies there is no concept of a standalone attribute.

In the background information text on ElectronicMail that is shown below, the first
occurrence of the (probable) entities are capitalized, the attributes are boxed and
instances are shown in italics.

“ElectronicMail (EM) wants to provide an attractive and user friendly
Web-based email system. Important concepts are user and message.

An EM USER has a unique|address| of 30 characters at most and a
password|supplied by the PERSON who set up the EM user. Who the
person really is, we do not know, although we ask for some additional
information, like the [hame, COUNTRY, birth date, line of business, and
a few things more.

Users must be able to send and receive mail MESSAGES. A mail
message is usually a piece of straight text. A message may have
attached files. An ATTACHMENT is alfile, like a spreadsheet, that is
sent and kept with the message, but not created with our software.

Messages are kept in FOLDERS. Every user has three folders to start
with: Inbox, Outbox and Wastebasket. Additional folders can be created
by the user.”

2-14 Data Modeling and Relational Database Design

Tracking Attributes

List the types of information, distinguish the probabl e entities and attributes and group
them. Add attributes, if necessary, (like Name of COUNTRY) in the example. Distill
one or more attributes from the instances (like Name of FOLDER).

EM Entities and Attributes

Nouns Entities/Attributes/ Entities with their
Instances Attributes

user USER USER
address Address - Address
password Password - Password
person PERSON PERSON
name Name - Name
country COUNTRY - Birth Date
birth date Birth Date - Occupation
occupation Occupation COUNTRY
message MESSAGE —i Name
text Text MESSAGE
attachment ATTACHMENT - Text
file File ATTACHMENT
folder FOLDER - Filename
inbox Inbox FOLDER
outbox Outbox - Name
wastebasket Wastebasket T

Naming Attributes

Attribute names become the candidate column names at a later stage. Column names
must follow conventions. Try to name attributes avoiding the use of reserved words.
Do not use abbreviations, unless these were decided beforehand. Examples of
frequently-used abbreviations are 1d, No, Descr, Ind(icator).

Do not use attribute names like Amount, Value, Number. Always add an explanation
of the meaning of the attribute name: Amount Paid, Estimated Value, Licence No.
Always put frequently-used name components, such as “date” or “indicator”, of
attribute names in the same position, for example, at the end—Start Date, Creation
Date, and Purchase Date.

Do not use underscoresin attribute names that consist of more than oneword. Keep in
mind that attribute names, like entity names, must be as clear and understandable as
possible.

ORACLE 2-15

Lesson 2: Entities and Attributes in Detail

Entities Compared to Attributes

Sometimes a piece of information that is an attribute in one context is an entity in
another context. Thisis purely specific to the business. A typical attribute, like Name,
may need to be modeled as an entity. This happens, for example, when the model
needs an extra dimension, such as the language. If product names must be kept in
several languages and prices must be kept in various currencies, you may suddenly
find one product has several names. For example: “This particular article of clothing is
named ‘ Acapulco swimming trunks' in English, and * Akapulko Badehose' in
German.”

A commonly encountered dimension istime. Thisis discussed later.

Attribute and Entity

GARMENT
Name

Price

* Attributes in one model can be entities in another.

[GARMENT]

A A

[CURRENCY]_ - _<[PR|CE] [NAME]>__ _{LANGUAGE

Redundancy

Y ou should take special care to prevent using redundant attributes, that is, attribute
values that can be derived from the values of others. An example is shown below.
Using derivable information istypically a physical design decision. Thisisalso true
for audit type attributes such as Date Instance Created, and User Who Modified.

COMMODITY

* Name

* Price exclusive VAT
* Price inclusive VAT
* VAT %

2-16 Data Modeling and Relational Database Design

Subtypes and Supertypes

Subtypes and Supertypes

Sometimesit makes sense to subdivide an entity X into subtypes. This may be the case
when a group of instances has special properties, such as attributes or relationships
that only exist for that group, or afixed value for one of the attributes, or when thereis
some functionality that only appliesto the group. Such a group is called a subtype of
X. Entity X is called the supertype as a consequence. Subtypes are also modeled when
particular constraints apply to the subtype only. Thisis discussed further in the lesson
on Constraints.

A Subtype ...

* Inherits all attributes of supertype
* Inherits all relationships of supertype

® Usually has its own attributes or
relationships or business functions

* |s drawn within supertype
* Never exists alone (ADDRESS)

®* May have subtypes of its own USER I

* Is also known as “Subentity”)
LIST]
S /)

3

2-18

Subtypes have all properties of X and usually have additional ones. In the example,
supertype ADDRESS is divided into two subtypes, USER and LIST. One thing USER
and LIST have in common is an attribute NAME and the functional fact that they can
both be used in the To field when writing a message.

Inheritance

In the next illustration, is a new entity, COMPOSITION, as a supertype of
MESSAGE, DRAFT, and TEMPLATE. The subtypes have several attributesin
common. These common attributes are listed at the supertype level. The same applies
to relationships. Subtypes inherit al attributes and relationships of the supertype
entity.

ORACLE 217

Lesson 2: Entities and Attributes in Detail

(" COMPOSITION)
o Subject
o Cc

o Bcc DRAFT
o Text * Name
MESSAGE TEMPLATE
* Name
3 J

Read the diagram as:
Every MESSAGE (DRAFT, or TEMPLATE) isaCOMPOSITION
and thus has attributes like Subject and Text. Conversely:
Every COMPOSITION is either aMESSAGE, aDRAFT, or aTEMPLATE

Always More Than One Subtype

Entity relationship modeling prescribes that when an ER model is complete subtypes
never stand alone. In other words, if an entity has a subtype, there should always be at
least a second subtype. This makes sense. What use would there be for distinguishing
between an entity and the single subtype? This idealeads to the two subtype rules.

Subtype: Rules

Subtypes of the same entity must be:

* Exhaustive:
Every instance of a supertype is also instance of
one of the subtypes

and

* Mutually exclusive:
Every instance of the supertype is of one and only
one subtype

Name subtypes A
adequately:

B C W B~ OTHER A

2-20

2-18 Data Modeling and Relational Database Design

Subtypes and Supertypes

Nested Subtypes

You can nest Subtypes. For readability, you would not usually subtype to more than
two levels, but there is no major reason not to do so. Reconsider the placement of the
attributes and relationships after creating a new level.

[COMPOSITION OTHER)

o Subject COMPOSITION
o Cc * Name

o Bcc
o Text DRAFT

S J

Subtypes Always Exist

Every entity can always be subtyped. You can always make up arule to subdivide the
instances in groups, but that is not the issue. The reason for subtyping should always
be that there is a business need to show similarities and differences at the same time.

More on Subtypes

Subtypes always exist...

EMPLOYEE
CURRENT OTHER
EMPLOYEE EMPLOYEE

... but do not all make sense

EMPLOYEE
EMPLOYEE WITH OTHER
SHOE SIZE > 45 EMPLOYEE

Implementing Subtypes
Y ou can implement subtype entitiesin various ways, for example, as separate tables or
asasingle table, based on the super entity.

ORACLE

Lesson 2: Entities and Attributes in Detail

Summary

Entities can often be recognized as nouns in texts that functionally describe abusiness.
Entities can be tangible, intangible, and events. Subtypes of an entity share all
attributes and relationships of that entity, but may have additional ones.

Summary

* Entities

— Nouns in texts

— Tangible, intangible, events
* Attributes

— Single-valued qualifiers of entities
* Subtypes

— Inherit all attributes and relationships of
supertype

— May have their own attributes and relationships

Attributes are single-valued elementary pieces of information that describe, qualify,
quantify, classify, specify or give a status of the entity they belong to.

Most entities have attributes.

Every attribute can be promoted to a separate entity which is related to the entity the
attribute initially belonged to. You must do thiswhen you discover that the attribute is

not single valued, for example, when names must be kept in multiple languages or
values in multiple currencies.

2-20 Data Modeling and Relational Database Design

Practice 2—1: Books

Practice 2—1: Books

Goal

The goal of this practiceisto differentiate between various meanings of aword used in
atext.

Your Assignment

1 Inthistext the word book is used with several meanings. These meanings are
different entities in the context of a publishing company or a book reseller. Try to
distinguish the various entities, all referred to as book. Give more adequate names
for these entities and make up one or two attributes to distinguish them.

0

1. I have just finished writing a book. It's a novel about justice and
power.

2. We have just published this book. The hard cover edition is available
now.

3. Did you read that new book on Picasso? | did. It's great!
4. If you like you can borrow my book.

5. I have just started translating this book into Spanish. | use the modern
English text as a basis and not the original, which is 16th century.

| ordered that book for my parents.
Yes, we have that book available. You should find it in Art books.
A second printing of the book War and Peace is very rare.

© ® N o

| think My name is Asher Lev is one of the best books ever written.
Mine is autographed.

10. I want to write a book on entity relationship modeling when | retire.

2-25

2 Create an ER model based on the text. Put the most general entity at the top of your
page and the most specific one at the bottom. Fit the othersin between. Do not
worry about the relationship names.

ORACLE 2-21

Lesson 2: Entities and Attributes in Detail

Practice 2—2: Moonlight

Moonlight Coffees Scenario
i B Youwork asa contractor for Moonlight Coffees Inc. One of your
- @ : colleagues, who is a business analyst, has prepared some

documentation. Below you find an extract from the summary
document.

Your Assignment
1 Makealist of about 15 different entities that you think are important for
Moonlight Coffees. Use your imagination and common sense and, of course, use
what you find in the summary that is printed below.

Moonlight Coffees

e
Summary

Moonlight Coffees is a fast growing chain of high quality coffee shops with currently
over 500 shops in 12 countries of the world. Shops are located at first-class
locations, such as major shopping, entertainment and business areas, airports,
railway stations, museums. Moonlight Coffees has some 9,000 employees.

Products

All shops serve coffees, teas, soft drinks, and various kinds of pastries. Most shops
sell nonfoods, like postcards and sometimes even theater tickets.

Financial

Shop management reports sales figures on a daily basis to Headquarters, in local
currency. Moonlight uses an internal exchange rates list that is changed monthly.
Since January 1, 1999, the European Community countries must report in Euros.

Stock
Moonlight Coffees is a public company; stock is traded at NASDAQ, ticker symbol
MLTC. Employees can participate in a stock option plan.

2-26

2 Writeaformal definition of the entity that represents:
— The coffee shops.
— The Moonlight employees.

2-22 Data Modeling and Relational Database Design

Practice 2—3: Shops

Practice 2—3: Shops

Scenario

Moonlight Coffees

. ® , create a conceptual data model for their business. Y ou have

of ashop list.

Your Assignment

Y ou work as a contractor for Moonlight Coffees. Y our task isto

collected al kinds of documents about Moonlight. Below isa page

Use the information from the list as abasis for an ER model. Pay special attention to

find all attributes.

Shop List

Shoplist, ordered to date opened page 4

181 The Flight, JFK Airport terminal 2, New York, USA, 212.866.3410, Airport, 12-oct-97
182 Hara, Kita Shinagawa,Tokyo, JP, 3581.3603/4, Museum, 25-oct-97

183 Phillis, 25 Phillis Rd, Atlanta, USA, 405.867.3345, Shopping Centre, 1-nov-97

184 JFK, JFK Airport terminal 4, New York, USA, 212.866.3766, Airport, 1-nov-97

185 VanGogh, Museumplein 24, Amsterdam, NL, 76.87.345, Museum, 10-nov-97

186 The Queen, 60 Victoria Street, London, UK, 203.75.756, Railway Station, 25-nov-97
187 Wright Bros, JFK Airport terminal 1, New York, USA, 212.866.9852, Airport, 6-jan-98
188 La Lune, 10 Mont Martre, Paris, FR, 445 145 20, Entertainment, 2-feb-98

1 ng

2-27

ORACLE

Lesson 2: Entities and Attributes in Detail

Practice 2—4: Subtypes

Goal
The goal of this practice is to determine correct and incorrect subtyping.

Your Assignment

Find all incorrect subtyping in theillustration. Explain why you think the subtyping is
incorrect. Adjust the model to improveit.

Subtypes

(DISABLED) CAR
PERSON [STATIONWAGON]

‘OTHER DISABLED’

PERSON BUILDING |HOUSE
\é , [HousE |
HOTEL DOG
[ROOM WITH BATH]
ANIMAL
[OTHER ROOM]

2-24 Data Modeling and Relational Database Design

Practice 2—5: Schedule

Practice 2—5: Schedule

Scenario

Moonlight Coffees
8 Youwork asacontractor for Moonlight Coffees.

Your Assignment

Use the schedule that is used in one of the shopsin Amsterdam as
abasis for an entity relationship model. The schedule shows, for example, that in the
week of 12 to 18 October Annet B is scheduled for the first shift on Monday, Friday,
and Saturday.

van Gogh, Museumplein, Amsterdam

Schedule Cct 12 - Cct 18 | prepared by Janet
Shift | Mon | Tue | Wed | Thu | Fri | Sat | Sun

Annet S 2 2 2 1

Annet B 1 1 1

Denni s 2 2 1 2 3

Jur gen 5 4

Kiri 3 4 4

W I

2-29

The scheme suggests there is only one shift per person per day.

ORACLE 2-25

Lesson 2: Entities and Attributes in Detail

Practice 2—6: Address

Goal
The goal of this practice isto sort out various ways of modeling addresses.

Your Assignment

An entity, possibly PERSON (or ADDRESS) may have attributes that describe the
address as in the examples below.

Practice: Address (1/2)

Rheingasse 123 34 Oxford Road

53111 Bonn Reading

Germany Berkshire RG1 8JS
UK

1020 Maple Drive
Kirkland WA 98234
USA

1 How would you model the address information if the future system is required to
produce accurate international mailings?

2-26 Data Modeling and Relational Database Design

Practice 2—6: Address (continued)

Practice 2—6: Address (continued)

Your Assignment
2 Would your model from the previous practice also accept the addresses below?

P.O. Box 66708 c/o Mrs Smith
Nairobi Maude Street
Kenya Sandton

Johannesburg 2144
South Africa

3 Check if your model would be different if the system is also required to have
facilities to search addresses in the following categories. Make the necessary
changes, if any.

All addresses:
* InKirkland
* With postal code 53111 in Bonn
e That are PO. Boxes
e On:
— Oxford Road or
— Oxford Rd or
— OXFORD ROAD or
— OXFORD RD
in Reading

ORACLE 2-21

Lesson 2: Entities and Attributes in Detail

2-28 Data Modeling and Relational Database Design

Relationships
In Detail

Lesson 3: Relationships in Detail

Introduction

Lesson Aim

Thislesson discussesin detail how to establish arelationship between two entities.
You meet the ten types of relationship and examples of the less frequent types. This
lesson looks at nontransferabl e relationships and discusses the differences and
similarities between relationships and attributes. It also provides a solution for the
situation where arelationship seems to have an attribute. Finally, the rules of
normalization are discussed in the context of conceptual models.

Overview

* Relationships

* Ten different relationship types

* Nontransferability

* Relationships that seem to have attributes
* Rules of Normalization

3-2

Topic See Page
Introduction 2
Establishing a Relationship 4
Relationship Types 9
Relationships and Attributes 16
Attribute Compared to Relationship 18
Relationship Compared to Attribute 19
m:m Relationships May Hide Something 20
Resolving Relationships 25
Summary 32
Practice 3—1. Read the Relationship 33

3-2 Data Modeling and Relational Database Design

Introduction

Topic See Page
Practice 3—2: Find a Context 34
Practice 3—3: Name the Intersection Entity 35
Practice 3—4: Receipt 36
Practice 3—5: Moonlight P& O 37
Practice 3—6: Price List 39
Practice 3—7: E-mail 40
Practice 3—8: Holiday 41
Objectives

At the end of this lesson, you should be able to do the following:

» Create awell-defined relationship between entities

* ldentify which relationship types are common and which are not
» Giveredl-life examples of uncommon relationship types

» Choose between using an attribute or a relationship to model particular
information

* Resolve am:m relationship into an intersection entity and two relationships
* Resolve other relationships and know when to do so
* Rulesof Normalization

ORACLE 33

Lesson 3: Relationships in Detail

Establishing a Relationship

Establishing a Relationship

* Determine the existence of a relationship

®* Choose a name for the relationship from both
perspectives

* Determine optionality
* Determine degree
* Determine nontransferability

3-3

Determining the Existence of a Relationship

» Ask, for each of your entities, if itissomehow related to one or more of the entities
in your model, and, if so, draw a dotted “ skeleton” relationship line.

e Usudly al entitiesin amodel arerelated to at least one other entity. Exceptions
arerare, but they do exist.

» Two entities can be related more than once. For example, in the Electronic Mail
system there are two rel ationships between entities MESSAGE and USER, one is
about who is sending a MESSAGE and one about who receives a MESSAGE.

* Anentity can berelated to itself. Thisis called arecursive relationship. For
example, aMESSA GE can be areply to another MESSAGE. See the paragraph on
recursive relationships for more details on this.

)
MESSAGE sending USER
receiving
: ———
replying

3-4 Data Modeling and Relational Database Design

Establishing a Relationship
Choosing a Name for the Relationship

» Sometimes the relationship name for the second perspective is simply the passive
tense of the other one, such asis owner of and is owned by. Sometimes there are
distinct words for both concepts, such as parent of / child of or composed of / part
of.

* Try to use namesthat end in a preposition.
» If you cannot find a name, you may find these relationship names useful:
— Consistsof / is part of
— Isclassified as/ is classification for
— Isassignedto/ is assignment of
— Isreferred to/ referring to
— Responsible for / the responsibility of

* Sometimes avery short nameis sufficient, for example, with, in, of, for, by, about,
at, into.

Relationship Names

sender USER
MESSAGE |sentby . . of
sentto ...
receiver
“--.reply of of
_ .
replied -
toby

3-5

Are sent to and receiver of really opposite? If so, the assumptionisthat if a
MESSAGE issent to aUSER, it also arrives. Maybe it is safer to name the
relationship received by / receiver of...

ORACLE 35

Lesson 3: Relationships in Detail
Determining Optionality of Both the Relationship Ends
* Answer the questions:
— Must every MESSAGE be sent by a USER?
— Must every USER be sender of an MESSAGE?
— Must every MESSAGE be sent to a USER?
— Must every USER be addressed in aMESSAGE?
When an answer is Yes the relationship end is mandatory, otherwiseit is optional.

* Becareful at this point. Often arelationship end seems to be mandatory, but
actualy it isnot. In the ElectronicMail example it seems that every MESSAGE
must be sent by a USER. But a MESSAGE that was sent by an external user to an
internal USER has no relationship to a USER, unless the system were to keep
external users aswell.

» Sometimes arelationship is ultimately mandatory, but not initially. Such a
relationship should be modeled as optional.

Optionality

MESSAGE author | sgR
written by _ _ _ of
received by
" receiver |
= ~reply of of
q) -
replied ’

toby ~--7

3-7

3-6 Data Modeling and Relational Database Design

Establishing a Relationship

Determining Degree of Both the Relationship Ends
* Answer the questions:

— Can aMESSAGE be written by more than one USER?

— Can aUSER be author of more than one MESSAGE?

If the answer isNo the degreeiscaled “1”.

If the answer is Yesthe degreeis called “many” or just “m”.
* Thismust be determined for all relationship ends.

* Notethat amandatory “many” relationship end from A to B does not mean that it
ismandatory for A to be split into more than one B. One B isfine. Read it as:
every A must be split into at least one B.

A split into B
part of >

* Anoptional “many” relationship end means zero, one or more. In the e-mail
example a USER can be author of 0,1 or more MESSAGES.

» Sometimes the degree is afixed value, or there is a maximum number. Assume a
MESSAGE may be containing one or more ATTACHMENTS, but for some
business reason, the number of ATTACHMENTS per MESSAGE may not exceed
4. The degree then is <5. The diagram, however, shows a crowsfoot.

Degree

author ()
MESSAGE of | USER
e
of

\
A}

containing 1 ' replied 1 —
o by .7

with /l\<5 -
ATTACHMENT
3-10

ORACLE 37

Lesson 3: Relationships in Detail

Determine Nontransferability of Both the Relationship Ends

« When aMESSAGE is created, the USER who is the author of the MESSAGE isa

fact. It would be strange if amail system allowed you to change the author after the
MESSAGE is completed.

» Often relationships have the following property: you cannot change the
connection, once made. That property is called nontransferability.
Nontransferability leads to nonupdatable foreign keys. Nontransferability is shown
in the diagram with alittle diamond-shaped symbol through the line of the
relationship end.

Nontransferability

FOLDER

: containing

USER

' replied !
AY 7/
N by .

3-12

* Not al relationships are nontransferable. Assume the mail system allows auser to
filleaMESSAGE in aFOLDER. Thisisonly avaluable functionadlity if the user is
allowed to change the FOLDER in which aMESSAGE isfiled.

3-8 Data Modeling and Relational Database Design

Relationship Types

Relationship Types

There are three main groups of relationships, named after their degrees:

e Oneto many (1:m)

e Many to many (m:m)

* Onetoone(1:1)

This paragraph discusses the various types and gives some examples of their variants.

Relationships—1:m

The various types of 1:m relationships are most common in an ER Model. You have
seen several examples aready.

Relationship Types
1:m

3-13

a Mandatory at both ends. Thistype of relationship typically models entities that
cannot exist without each other. Often the existence of mandatory details for a
master is more wishful thinking than a strict business rule. Often the
relationship expresses that an entity is always split into details. Seen from the
other perspective, it often expresses an entity that is aways classified,
assigned.

ORACLE 39

Lesson 3: Relationships in Detail

Circumventing Mandatory 1 to Mandatory m Usually you would try to avoid
relationship type (@) in favor of type (b), by taking a different perspective on the
subject. For example, suppose an order is defined as something with at least one
order item. In other words, an order is regarded as a composed concept. You can
avoid modeling order as an entity as you can decide to model adlightly different
concept instead, say ORDER HEADER. Next, define an ORDER HEADER to
have zero, one or more ORDER ITEMS. An order would then be athing
composed of two entities: any ORDER HEADER with one or more ORDER
ITEMS. Empty headers would not be considered to be an order.

Why Circumvent? Implementing a 1:m relationship that is mandatory at both
ends causes technical problems. In particular it is difficult to make sure details
exist for anewly-created record. In most relational database environmentsitis
even impossible.

b Optional 1: mandatory m. Thisisavery common type of relationship, together
with (d). Normally, at least 90% all relationships are of type (b) and (d). The
relationship expresses that the entity at the 1-end can stand alone, whereas the
entity at the many end can only exist in the context of the other entity.

¢ Mandatory 1: optional m. Thisisnot common. You will seeit only when the
relationship expresses that an entity instance only existswhen it isanon-empty
set, and where the elements of the set can exist independently. In the example
below a PRODUCT may be part of one BUNDLE. According to the model, a
BUNDLE isof nointerest if it isempty.

PRODUCT

part

of BUNDLE
> «
consists
of

d Optiona at both ends. See remarksfor (b).

3-10 Data Modeling and Relational Database Design

Relationship Types

Relationships—m:m

The various types of m:m relationships are common in afirst version of an ER Model.
In later stages of the model most m:m relationships, and possibly all, will disappear.

Relationship Types
m:m

3-15

e Mandatory at both sides is very uncommon in normal circumstances. This
relationship seems to mean that an entity instance can only be created if it is
immediately assigned to an instance of the other entity, as well as conversely.
But how can this occur when we do not have an instance of either entity?
Enforcing the mandatory rule from scratch leads to a conflict.

The relationship can, however, be part of amodel of atheoretical nature, like
the mathematical: a LINE always consists of many POINTS and a POINT is
always part of many LINES. It can also describe an existing situation: a
DEPARTMENT aways has EMPLOY EES and an EMPLOY EE is always
assigned to aDEPARTMENT. Here the question may ariseif it is guaranteed
that the situation will always remain this way.

A m:m relationship that is mandatory at both sides can occur when the
relationship is part of an arc. See the lesson on Constraints for more details.

ORACLE

Lesson 3: Relationships in Detail

f Mandatory at one end is not uncommon in early versions of amodel although
they usually disappear at alater stage.

g Optional at both endsis common in early versions of amodel. These also
usually disappear at alater stage.

3-12 Data Modeling and Relational Database Design

Relationship Types

Relationships—1:1

Usually you will find just afew of the various types of 1:1 relationshipsin every ER
Model.

Relationship Types
1.1

3-17

h A 1:1relationship, mandatory at both ends, tightly connects two entities: when
you create an instance of one entity there must be exactly one dedicated
instance for the other simultaneously; for example, entity PERSON and entity
BIRTH. Thisleadsto the question why you want to make a distinction between
the two entities anyway. The only acceptable answer is: only if thereisa
functional need.

If you have thisrelationship in your model, it is often, possibly always, part of
an arc.

i Mandatory at one end is often in amodel where roles are modeled, for
example, in this hospital model.

PERSON | acting as PATIENT
*Name [~~~ 77 role of | * Blood Type

acting as (EMPLOYEE
""" - - |*Job

See Page 46

role of

Note: These role-based relationships are often named is/is type of or smply
idis.

ORACLE 3-13

Lesson 3: Relationships in Detail

Both PATIENT and EMPLOY EE areroles played by a PERSON. The
attribute BLOOD TY PE is, according to this model, only of interest when this
person isa PATIENT. Note that PATIENT and EMPLQOY EE cannot be
modeled as subtypes of PERSON, as a PERSON may play both roles. You
meet the concept of roles again in alater lesson.

j Optional at both ends is uncommon. However, they can occur, for example,
when there is arelationship between two entities that are conceptually the
same but exist in different systems. An example of thisis entity EMPLOY EE
in one system and entity PERSON in a different, possibly athird-party, system.
Many 1:1 relationships (of all three variants) do occur when some of the
entities represent various stages in a process, such asin the next example.
Relationship namesin this case can aways be leads to / result of or something
similar.

MESSAGE
DRAFT

basis for

result of

If you consider a person to be a process as well, the earlier example of BIRTH
and PERSON fit nicely into this general idea.

3-14 Data Modeling and Relational Database Design

Relationship Types

Redundancy
Like attributes, relationships can be redundant.

Redundant Relationships

COUNTRY COUNTRY
location of location 1 I of birth
of ' |ocated of 'located | of
/{\in /{\i” !
1
TOWN TOWN I
hometown hometown !
oftliving | iy of \ living born
in in /{\in in
[PERSON] [PERSON]

3-20

In the left-hand exampl e you can derive the relationship from PERSON to COUNTRY
from the other two relationships and you should remove them from the model.

Thisis asemantic issue and cannot be concluded from the structure alone, as the right-
hand example shows.

ORACLE

Lesson 3: Relationships in Detail

Relationships and Attributes

Attributes can hide arelationship. In fact, any attribute can hide a relationship.

Relationships and Attributes

* An attribute can hide a relationship
* Relationship can be “downgraded” to attribute

[ATTACHMENT TYPE]

* Name
I of
with
ATTACHMENT AN
* Type ATTACHMENT
* Content * Content

3-21

See Page 48

In the example, attribute TY PE of entity ATTACHMENT can be replaced by an entity

ATTACHMENT TY PE plus arelationship from ATTACHMENT to
ATTACHMENT TYPE.

You would have no choice other than to model it this way as soon as you need to keep
extra attributes for ATTACHMENT TY PE. If there are no important attributes for
ATTACHMENT TY PE to keep other than the Name of the type, you could consider

removing the entity and take Type as an attribute of ATTACHMENT.

You could also consider using the left-hand option when the number of typesis afixed
and small amount, such asin the context of a chain of hotelswhere there are only three

types of rooms: single, double, and suite.

3-16 Data Modeling and Relational Database Design

Relationships and Attributes

Attribute Compared to Relationship

* Easy model * Value control
* Fewer tables * List of values
®* No join ® Other relationships

ATTACHMENT TYPE
* Name

I of

with

ATTACHMENT
* Type ATTACHMENT
* Content * Content

The table based on entity ATTACHMENT would contain the same columns in both
situations, but the Attachment Type Name column would be a foreign key columnin
the second implementation. This would mean that an Attachment Type Name entered
for an ATTACHMENT can only be taken from the types listed in the table based on
entity ATTACHMENT TYPE. Thelist serves asapick list and spelling check.

There are advantages and disadvantages for both models.

The one entity model is somewhat easier to read becauseit isless packed with lines. In
the table implementation you would need no joins to get the required information.

However, atwo-entity model is usually far more flexible. It |eaves the option open to
create relationships from other entities to the new entity. You would have control over
the values entered as they are checked against a given set. Usually, the two-table
implementation takes less (sometimes even much less) space in the database.

Use your common sense when you select the attributes and entities.

) o=
Ay)--—< b (DeE)
(GENDER J._ _4 > _ [NATIONALITY |
Ew J-—<_ b o)

ORACLE 3-17

Lesson 3: Relationships in Detail

Attribute Compared to Relationship

Attribute Compared to Relationship

* Thereis no such thing as a foreign key attribute.
* Usually, the attribute name should not contain an

entity name.
FOLDER
* Name

containing !
|

/{\placed in

MESSAGE
* Messadfe |d
* Text

2Leldevripamer

3-24

Nonexistence of Foreign Key Attributes

Be aware of foreign key attributes such as attribute Folder Name of entity MESSAGE
in the example. In ER modeling there is no such thing as aforeign key attribute. The
future foreign key is represented by the relationship between MESSAGE and
FOLDER. A foreign key column (or columns) will result from the primary unique
identifier of the entity FOLDER. See the lesson on CONSTRAINTS for more details
on unique identifiers.

No Entity Name in Attribute Name

When an attribute name contains an entity name, it usually comes from one of the
following situations:

» Theattribute hides arelationship to an entity, asin the above example. The second
entity was probably added in alater stage.

* The attribute hides an entity. A typical example is an attribute Employment Date
of entity EMPLOY EE. This might hide the entity EMPLOY MENT, asthereis
probably no rule that an employee may be employed by the same company only
once.

* Theentity name in the attribute name is redundant. A typical example is attribute
Message Id of entity MESSAGE. The name “1d” would suffice.

* The attribute is the result of a one-to-one relationship that is not modeled, for

example, attributes Birth Date and Birthplace of entity EMPLOYEE. These arein
fact attributes of an entity BIRTH that is not (and probably will never be) model ed.

3-18 Data Modeling and Relational Database Design

Relationship Compared to Attribute

Relationship Compared to Attribute

Relationship Compared to Attribute

)
MESSAGE Eaddressed to ¢ USER
addressee of
—
R
T
MESSAGE USER
* Addressee
— —
R
MESSAGE | addressed to USER
o Addressee - - ------ <
addressee of)
—

3-25

Sometimes a piece of information looks like a relationship between entities, but
actually is not arelationship.

In ElectronicMail’s Compose Message screen thereisafield labeled “ To” where the
user is supposed to enter the names of the addressees. Initially you may want to model
that as arelationship addressed to / addressee of between MESSA GE and USER, but
thisis a questionable approach. If a message is sent to an external user would it make
sense for ElectronicMail to keep track of all external user addresses that were used to
send messagesto, just for the sake of maintaining the relationship? Would this be
possible?

In this case it would be a better choice to see the Addressee as an attribute of the
MESSAGE. Thisattribute may contain avalue that is also known asa USER. In other
words, entity USER contains only suggestions for addressees.

Another possibility isto do both—model an optional relationship and an optional
attribute that cooperatively handle the addressee. An extra constraint (which cannot be
shown in the diagram) must then make sure that at least one of the attributes or the
relationship is actually given avalue for aMESSAGE.

ORACLE 3-19

Lesson 3: Relationships in Detail

m:m Relationships May Hide Something

During the process of modeling you will find many relationships to be of type m:m.
Often thisisatemporary thing. After you have been able to add more details to the
model, alot of the m:m relationships will disappear as, after consideration, they
simply do not model the business properly.

A typical exampleis about the CUSTOMER/PRODUCT relationship.

m:m Relationships May Hide Something

CUSTOMER PRODUCT

*d buyer of * Code

*xName |/~~~ ~~°-°°° * Name
DL bought by

Suppose you make amodel for aretail company that sells PRODUCTS. A
CUSTOMER buys PRODUCTS. Suppose future customers are accepted into the
system as well. Thiswould mean:

A CUSTOMER may buy one or more PRODUCTS

A PRODUCT may be bought by one or more CUSTOMERS
A typical event for this company would be customer Nick Sanchez buying two shirts.

“Nick Sanchez” isa CUSTOMER Name, “shirt” isa PRODUCT Name. This leaves
the question of where to put the “two”, the quantity information.

3-20 Data Modeling and Relational Database Design

m:m Relationships May Hide Something

Quantity is Attribute of ...
?

CUSTOMER

- N * Code
* Name

PRODUCT
buyer of

bought by | « Name

t)
CUSTOMER | PRODUCT
buyer of
*Id 0 N - - - - * Code
* Name bought by | * Name

3-27

It isclear that Quantity is neither a property of CUSTOMER nor of PRODUCT.
Quantity seems to be an attribute of the relationship between CUSTOMER and

PRODUCT.
CUSTOMER PRODUCT
. buyer of
Id e * Code
*Name bought by | * Name

Relationships do not and cannot have attributes. Apparently an entity of which
quantity is a property, is missing. For that reason we need to change the model. Entity
ORDER (or SALE or PURCHASE) enters the scene.

ORACLE 3-21

Lesson 3: Relationships in Detail

New Entity ORDER

CUSTOMER)

* 1d with Ve

* Name) -t ofE ORDER
PRODUCT with < ZQuantiy sold_]
* Code --- ‘Tf

* Name) -

CUSTOMERS PRODUCTS ORDERS

The table design here is the default design for implementing the model. Note the two
foreign key columnsin the ORDERStable, Ctr_id (foreign key to CUSTOMERS) and
Pdt_code (to PRODUCTYS).

Now suppose Pepe Yomita enters the store and buys one pair of jeans, two shirts, and
onesilk tie. Given the current model this would mean that Pepe places three orders:
one for the jeans, one for the shirts and one for the tie. Three orders, al at the same
time, from one and the same customer. No problem so far asthe model alowsfor this.

Now suppose the store wants to automate the billing of the orders. (Thisis probably
one of the reasons for making the model anyway.) Using the above model, this would
mean three orders and, as a consequence, three hills, as the system has no way of
knowing these three orders somehow belong to each other.

It is better to change the model in such away that one order can be for more than one
product. That means we should have a m:m relationship between ORDER and
PRODUCT, which we should investigate next.

3-22 Data Modeling and Relational Database Design

m:m Relationships May Hide Something

3-30

Multiple PRODUCTS for an ORDER

*1d

CUSTOMER
* Name

* Code

PRODUCT
* Name

of

ORDER
*|d
* Date

Then there is the question again: where do you put quantity? Quantity can now no
longer be an attribute of an order because the attribute must be single-valued and
cannot contain three values 1, 2 and 1 at the same time. Quantity has become a
property of the m:m relationship between PRODUCT and ORDER.

ORACLE

Lesson 3: Relationships in Detail

Thisleads to:
Another New Entity: ORDER ITEM
CUSTOMER |
*1d with ORDER
*Name) HEADER
PRODUCT) NS
* Code ate
* Name)
; : with
1
with 1
/Lfor for /L
[ORDER ITEM]
3-31

Note the name change from ORDER to ORDER_HEADER, to avoid the 1: m
relationship that is mandatory at both ends. The set of tables for this model could be:

Tables

CUSTOMERS
ORDER_HEADERS

ORDER_ITEMS PRODUCTS

3-32

3-24 Data Modeling and Relational Database Design

Resolving Relationships

Resolving Relationships

Relationships and Intersection Entities

Earlier in thislesson you saw atypical example of relationships seeming to have
attributes. The relationships in the example were many-to-many relationships. You
deal with the situation by creating a new entity, an intersection entity, that replaces the
relationship and can hold attributes.

Thisleads to the following questions:

* What arethe stepsin resolving arelationship in general?
» Should every m:m relationship be resolved?

e Can other relationships than m:m be resolved?

Resolving a Relationship
Suppose we want to resolve the m:m relationship between entities A and B.

Resolving m:m Relationship

n - D
A ”_<
of | A/B
\%

COMBINATION

XXX

* Create new intersection entity
* Create two m:1relationships, derive optionality
®* Remove m:m relationship

3-33

1 First create anew intersection entity. You will experience that sometimesthereis
no suitable word available for the concept you are modeling. The new entity can
aways be named with the neologism “A/B COMBINATION”, or anamethat is
somehow derived from the name of the original m:m relationship. Do not let the
unavailability of a proper name for the entity stop you from modeling it.

2 Next create two new m:1 relationships from entity A/B COMBINATION, oneto
A and oneto B. Initidly, draw these as mandatory at A/B COMBINATION, as
you will probably only be interested in complete pairs of A and B. If the original

ORACLE 3-25

Lesson 3: Relationships in Detail

m:m relationship was optional (or mandatory) at A’s side, then the new
relationship from A to A/B COMBINATION is aso optional (or mandatory).

3 Name the relationships. You can often name both relationships “in / of”.
4 The next step is to remove the m:m relationship you started with.
5 Finally, reconsider the newly-drawn relationships. They may be optional at the A/

B COMBINATION side. Also, they may turn out to be of type m:m and require
resolving, as you have seen in the example of customers buying products.

Should Every m:m Relationship be Resolved?
The answer depends on a number of factors.

Given the usua scenario, when you start creating an ER model you will discover that
many of the relationships you draw are of type m:m. Most of these will appear to hide
entities that you need in alater stage as you need to have a place in which to put

specific attributes. Finally, you will have only afew “genuine m:m” relationships left.

No Purely from aconceptual data modeling point of view, thereisno need to resolve
these genuine m:m relationships. The model is rich enough to be the basis for table
design. A m:m relationship will transform into a binary table; thisis atable that
consists of the columns of two foreign keys only. Thisis exactly the same table as the
one that would result from the intersection entity when you resolved the m:m
relationship.

A m:m relationship in a conceptua data diagram needs | ess space than a separate
entity plus two relationships. For this reason a diagram with unresolved m:m
relationships is more transparent and easier to read.

Yes From afunction modeling point of view the answer is different. If your model
contains a true m:m relationship there is apparently a business need to keep
information on the combinations of, say, entity A and B. In other words, the system
would contain at least one business function that creates the relationship. This* create
relationship” cannot be expressed as a usage of entities of attributes, although thisis
usually what design tools require of the functional model. Oracle Designer isno
exception. This means that when you create an ER model in Oracle Designer you
would always resolve the m:m relationships in order to create afully-defined
functional model with all data usages included.

Resolving Other Relationships

Can relationships other than m:m be resolved? Yes. Every relationship, evenal:1, can
be resolved into an intersection entity and two relationships, just like am:m
relationship. When would you want to do this? It is quite rare to find a situation where
you haveto do this. A typical situation where you may like to resolve anon m:m
relationship is when one entity represents something that is outside your system, for
example, when the entity is part of athird-party package.

3-26 Data Modeling and Relational Database Design

Resolving Relationships

Suppose you need your system to create am:1 relationship from external entity
PERSON to CUSTOMER TY PE, one of your interna entities (asin the diagram
below):

Resolving m:1 Relationship

external

PERSON
CUSTOMER
TYPE

internal

3-35

Thiswould result later on in a change of the table structure of the third-party
PERSONS table. Thisisundesirable (third parties often ask you to you sign a contract
that simply forbids you to do that) and sometimes even impossible if you have no
authority over that table.

external

PERSON CUSTOMER
TYPE

CLASSIFICATION

internal

The above model |eaves the external entity PERSON asis and does the referencing
frominside. The m:1 relationship isreplaced by an entity CLASSIFICATION and two
relationships.

ORACLE 3-27

Lesson 3: Relationships in Detail

Normalization During Data Modeling

Normalization isarelational database concept. However, if you have created a correct
entity model, then the tables created during design will conform to the rules of
normalization. Each formal normalization rule from relational database design has a
corresponding data model interpretation. The interpretations which can be used to
validate the placement of attributesin an ER Model are asfollows.

Normalization Rules

Normal Form Rule Description
First Normal Form All attributes are single valued.
Second Normal Form (2NF) An attribute must be dependent upon

entity’s entire unique identifier.

Third Normal Form (3NF) No non-UID attribute can be dependent
on another non-UID attribute.

“A normalized entity-relationship data model automatically translates
into a normalized relational database design”

“Third normal form is the generally accepted goal for a database
design that eliminated redundancy”

3-28 Data Modeling and Relational Database Design

Normalization During Data Modeling

First Normal Form in Data Modeling
All attributes must be single-valued.

Validate that each attribute has a single value for each occurrence of the entity. No
attribute should have repeating values.

You can often recognize the misplaced attributes by the fact that there is the same
(entity) name in the attribute name, such as Message Subject and Message Text.

If the attribute has multiple values, create an additional entity and relate it to the
origina entity with am:1 relationship.

First Normal Form in Data Modeling

USER

Name

* Person Name

* Message Receive Date
o Message Subject

o MessageText

All attributes must be single-valued.

RECEIVED _

MESSAGE received by USER

Receive Date - - —-| #Name

0 Subject receiver | * Person Name
o Text of

3-38

ORACLE 3-29

Lesson 3: Relationships in Detail

Second Normal Form in Data Modeling

Second Normal Form in Data Modeling

An attribute must be dependent upon its entity’s entire
unique identifier.

N
RECEIVED including MESSAGE
MESSAGE #1d
User Name > | included | © Text
* Receive Date in
* Subject

N -~
RECEIVED including MESSAGE
MESSAGE #1d
User Name >‘I—‘i ncluded | o Text
* Receive Date | in{ * Subject

3-39

An attribute must be dependent upon its entity’s entire unique identifier.

Validate that each attribute is dependent upon its entity’s entire unique identifier. Each
specific instance of the UID must determine a single instance of each attribute.
Validate that an attribute does not depend upon only part of its entity’s UID. If it does,
then it is misplaced and you must move it.

3-30 Data Modeling and Relational Database Design

Normalization During Data Modeling

Third Normal Form in Data Modeling

Third Normal Form in Data Modeling

USER

Name

* Person Name
* Password

* Server Id

* Server Name

No non-UID attribute can be dependent upon another
non-UID attribute.

USER

Name assigned to L/lﬁ‘j”‘ HlERER
* Person Name [d_ _t_'b_t_ * Name
Istribute

* Password mail to

3-40

No non-UID attribute can be dependent upon another non-UID attribute. If an attribute
is dependent upon anon-UID attribute, then move both the dependent attribute and the
attribute it is dependent upon to a new, related entity.

ORACLE 3-31

Lesson 3: Relationships in Detail

Summary

Summary

* Relationships express how entities are connected.
* Initially relationships often seem to be of type m:m.
* Finally relationships are most often of type m:1.
* Relationships can be resolved into:

— Two new relationships.

— One intersection entity.
* Third Normal form is generally accepted standard.

3-41

Rel ationships connect entities and express how they are connected. There are ten types
of relationships, 4 of typel:m, 3 of type m:m and 3 of type 1:1.

The m:1 relationship that is optional at the 1 sideis by far the most common typein
finished ER models. Thisone isvery easy to implement in arelational database.

At the beginning of the process of creating an ER model there are often many m:m
relationships. Many of these disappear after closer investigation.

Relationships cannot have attributes. If this seems to be the case, you need to resolve
the relationship into an intersection entity plus two relationships.

The other types are less common—some express more a desired situation rather than
reality, such as the m:1 relationship that is mandatory at both ends.

A normalized data model yields anormalized relational database design. Third normal
form isthe generally accepted standard.

3-32 Data Modeling and Relational Database Design

Practice 3—1: Read the Relationship

Practice 3—1: Read the Relationship

Goal
The goal of this practiceisto learn to read relationships from an ER diagram.

Your Assignment

Read the diagrams aloud, from both perspectives. Make sentences that can be
understood and verified by people who know the business area, but do not know how
to read ER models.

Practice: Read the Relationship

ALU EOf BRY
with
N/ .
PUR fozoonedin . - YOK
bazooned by
N/

3-39

ORACLE 3-33

Lesson 3: Relationships in Detail

Practice 3—2: Find a Context

Goal
The purpose of this practice is to use your modeling skills.

Your Assignment
Given the following ER diagrams, find a context that fits the model.

e
el
)

3-34 Data Modeling and Relational Database Design

Practice 3—3: Name the Intersection Entity

Practice 3—3: Name the Intersection Entity

Goal
The goal of this practiceisto find a proper name for the intersection entity after
resolving the m:m relationship.

Your Assignment
1 Resolve the following m:m relationships. Find an acceptable name for the
intersection entity.

Practice: Name the Intersection Entity
[PRODUCT |sold by [DEPARTMENT |
P> - - --------<| STORE
selling
[PERSON \>crewing [SAILBOAT
crewed by
INTERPRETER |fluent in LANGUAGE
spoken by
3-44

2 Invent at least one attribute per intersection entity that could make sense in some
serious business context. Give it a clear name.

ORACLE

Lesson 3: Relationships in Detail

Practice 3—4: Receipt

Moonlight Coffees Goal
o 8 The purpose of this practiceisto use asimple source of real life
- @ , dataas abasisfor a conceptua data model.
Scenario

Y ou work as a contractor for Moonlight Coffees. Y our task isto create a conceptual
datamodel for their business. Y ou have collected all kinds of documents about
Moonlight. Below you see an example of areceipt given at one of the shops.

Your Assignment
Use the information from the receipt and make a list of entities and attributes.

Served by: Dennis

Till: 3 Dec 8, 4:35 pm
CAPPUCC M 3. 60
* 2 7.20
CREAM .75
* 2 1.50
APPLE Pl E 3.50
BLACKB MJF 4.50
<SUB> 16. 70
tax 12% 2.00
<TOTAL> 18. 70
CASH 20. 00
RETURN 1.30

Hope to serve you again
@/MOONLI GHT COFFEES
25 Phillis Rd, Atlanta

3-45

3-36 Data Modeling and Relational Database Design

Practice 3—5: Moonlight P&O

Practice 3—5: Moonlight P&O

Moonlight Coffees Goal
_ B The purpose of this practiceisto create a ER model iteratively,
- @ : based on new pieces of information and new requirements.
Scenario

You are still working as a contractor for Moonlight Coffees—apparently you are doing
very well!
Your Assignment

1 Create aentity relationship model based on the following personnel and
organization information:

All Moonlight Coffee employees work for a department such as
“Global Pricing” or “HQ", or for a shop. All employees are at the
payroll of one of our country organizations. Jill, for example,
works as a shop manager in London; Werner is a financial
administrator working for Accounting and is located in Germany.

2 Extend or modify the diagram based on this information:

All shops belong to one country organization (“the countries”).
There is only one country organization per country. All countries
and departments report to HQ, except HQ itself.

3 And again:

Employees can work part time. Lynn has had an 80%
assignment for Product Development since the 1st September.
Before that she had a full-time position.

ORACLE 3-37

Lesson 3: Relationships in Detail

4 Change the model—if necessary and if possible—to alow for the following new
information.

a Jan takes shiftsin two different shopsin Prague.

b Last year Tessresigned in Brazil as a shop manager and moved to Toronto.
Recently she joined the shop at Toronto Airport.

¢ Toreduce the number of direct reports, departments and country organizations
may also report to another department instead of Headquarters.

The shopsin Luxembourg report to Belgium.

To prevent conflicting responsibilities, employees are not allowed to work for
adepartment and for a shop at the same time.

5 Would your model be able to answer the next questions?

a Whoiscurrently working for Operations?

b Who s currently working for Moonlight La Lune at the Mont Martre, France?
¢ Arethere currently any employees working for Marketing in France?
d

Wheat is the largest country in terms of number of employees? In terms of
managers? In terms of part-timers?

e When can we celebrate Lynn’s fifth year with the company? When can we do
the same with Tess' fifth year with Moonlight?

f What country has the lowest number of resignations?

3-38 Data Modeling and Relational Database Design

Practice 3—6: Price List

Moonlight Coffees

Goal

Scenario

Practice 3—6: Price List

Y ou work as a contractor for Moonlight Coffees.

Your Assignment

Make a ER model based on the pricelist from one of the Moonlight Coffee Stores.

Sales Tax included
September 16

3-47

price list

25 Phillis Road, Atlanta
visit us at www.moonlight.com

small medium large
regular coffee 2.25 2.90 3.50
cappuccino 2.90 3.60 4.20
café latte 2.60 3.20 3.90
special coffee 3.10 3.70 4.40
espresso 2.25 2.90 3.50
coffee of the day 2.00 2.50 3.00
decaffeinated .25 .50 .75 extra
black tea 2.25 2.90 3.50
infusions 2.60 3.20 3.90
herbal teas 2.90 3.60 4.20
tea of the day 2.00 2.50 3.00
decaffeinated .25 .50 .75 extra
milk 1.25 1.90 2.50
soft drinks 2.25 2.90 3.50
soda water 2.25 2.90 3.50
mineral water 2.90 3.60 4.20
apple pie 3.50
strawberry cheesecake 3.50
whole wheat oats muffin with almonds 3.90
blackberry muffin 4.50
fruitcake 4.50
cake of the day 4.00
additional whipped cream .75

The purpose of this practiceisto use a simple source of redl life
dataas abasisfor a conceptua data model.

ORACLE

Lesson 3: Relationships in Detail

Practice 3—7: E-malil

Goal
The goal of this practice is to extend an existing conceptual data model.

Scenario.

FOLDER

,containing

COMPOSITION) written by

> -0 - = - = o O t
MESSAGE received by of _ LIST
= - - - 3 > - —<]
receiver consists
OTHER of of
COMPOSITION

= . qreply of
containing | ‘\ replied
Joby

~_ -

with ASS
ATTACHMENT _JATT. TYPE

3-48

Your Assignment

Take the given model as starting point. Add, delete, or change any entities, attributes,
and relationships so that you can facilitate the following functionality:

1 A user must be able to create nick names (aliases) for other users.
2 A folder may contain other folders.

3 A user must be able to forward a composition. A forward isanew message that is
automatically sent together with the forwarded message.

4 All folders and lists are owned by a user.
Challenge:
5 A mail list may contain both users and other lists.
6 A mail list may contain external addresses, like “giovanni_papini @yahoo.com”.
7 A nickname may be an aliasfor an external address.

3-40 Data Modeling and Relational Database Design

Practice 3—8: Holiday

Practice 3—8: Holiday

Goal
The purpose of this practice is to do aquality check on a conceptual data model.

Scenario

“Paul and | hiked in the USA. Eric and | hiked in France and we rented a car in the
USA last year”.

Your Assignment
Comment on the model given below that was based on the scenario text.

COUNTRY | TRANSPORT

France Boots
USA Boots
USA Car

3-49

ORACLE 3-41

Lesson 3: Relationships in Detail

Practice 3—9: Normalize an ER Model

GoalThe purpose of this practice isto place an unnormalized ER Model into third
Normal Form.

Your Assignment

1 For the following ER Model, evaluate each entity against the rules of
normalization, identify the misplaced attributes and explain what rule of
normalization each misplaced attribute violates.

2 Optionally, redraw the ER diagram in third normal form.

Practice: Normalize an ER Model

ENROLLMENT | for COURSE
gradecode [[-~~~ 7 course number
teacher number complet_ed course name
grade description with teacher number
course name department code
department name
>K for teacher name
I. assigned
STUDENT
#* student id
last name
first name

3-42 Data Modeling and Relational Database Design

Constraints

Lesson 4: Constraints

Introduction

Thislesson is about constraints that apply to abusiness. Constraints are also known as
business rules. Some of these constraints can be easily modeled. Some can be
diagrammed but the resulting decreased clarity may not be acceptable. Some
constraints cannot be modeled at all. These should be listed in a separate document.

Overview

* Unique Identifiers

* Arcs

* Domains

* Various other constraints

4-2

Topic See Page
Introduction 2
Identification 4
Unique Identifier 6
Arcs 12
Arc or Subtypes 16
More About Arcs and Subtypes 17
Hidden Relationships 18
Domains 19
Some Specia Constraints 20
Summary 24
Practice 4—1.: Identification Please 25
Practice 4—2: Identification 26
Practice 4—3: Moonlight UID 28

4-2 Data Modeling and Relational Database Design

Introduction

Topic See Page

Practice 4—4: Tables 29

Practice 4—5: Modeling Constraints 30
Objectives

At the end of this lesson, you should be able to do the following:

» Describe the problem of identification in the real world

e Add uniqueidentifiers to your model and know how they are represented
* Recognize correct and incorrect unique identifiers

» Decide when an arc is needed in your model

» Describe the similarities between arcs and subtypes

» Describe various types of business constraints that cannot be represented in an ER
diagram

ORACLE 4-3

Lesson 4: Constraints

Identification

What Are We Talking About?

It is not unreasonable to assume everybody knows Rembrandt was born in the
Netherlands. What most people probably do not know isthat Rembrandt was bornon a
farm as the son of Pajamas and an unknown father. Rembrandt had atwin sister.
Although Rembrandt never married, he was the father of numerous children. You can
easily recognize Rembrandt and his offspring asthey all have four white stripes at the
end of their tails.

Identification is about knowing what or who you are talking about. Obviously, the
name Rembrandt is not unique to the famous painter; other human beings and even
cats have the same name.

In day-to-day conversations, you can usually assume that you and the people you talk
to share enough of the same context and know enough about each other’s jobs and
interests, to understand what you are both talking about. Language is dways arather
nonspecific way to communicate, with lots of ambiguities, but people are very capable
of interpretation. Computers must communicate in a more specific way that is not
open to much interpretation. It would help asystem to be told “ Rembrandt the painter”
or “Rembrandt van Rijn, born in 1606 or maybe even the combination of all:
“Rembrandt van Rijn, the painter, born in 1606”, to distinguish this Rembrandt from
the other famous creatures with the same name.

The Problem of Identification

There are three sides to the problem of identification. One isidentification in the rea
world—how do we distinguish two real world thingsthat have very similar properties?
Thisisthe most difficult side. The second is identification within a database system—
how do we distinguish rows in tables? Thisoneisfar less complex. A third issue deals
with representation: how do we know what real world thing arow in atable
represents?

4-4 Data Modeling and Relational Database Design

Identification

Identification in the Real World Many things in the real world are difficult, if not
impossible, to identify—distinguishing between two cabs, two customers, two versions
of acontract, or two performances of the fourth string quartet by Shostakovich. Asa
general rule, real world things cannot be identified with certainty. You haveto live
with asubstantial level of ambiguity. For example, how can | be sure that the car at the
other side of the street with license plate MN4606 is the same car asthe one | saw last
week with that number? | cannot even be sure it is the same license plate. In normal
circumstances there in no reason for doubt, but that is not the same as certainty.
Sometimes people have their reasons for creating confusion.

Fortunately, some thingsin the real world are easier as they are within your reach.
There you can define the rules. When a company sends out, for example, invoices, it
can give every single invoice a unique number. When a business lets people create
ElectronicMail usernames (identities), they can force these names to be unique.

Identification Within a Database Usually, database systems can make sure that a
row is not stored twice, or, to be more exact, that a particular combination of valuesis
not stored twice, within the same table. The technical problem is solved for you by the
standard software you use.

Representation The remaining problem is to make sure that you can always know
what real world thing is represented by a particular row in atable. The solution to this
problem depends highly on the context. How likely do you consider it to be that two
different employees for the same company have the same family name, or the same
family name plusinitias, or the same family name plusinitials plus birthdate?

G. Papini, please?
EMPLOYEES (

Name [Initials Birthdate

PAPINI| G. 02-FEB-1954 <€
HIDE |T.M. 11-JUN-1961 7
PAPINI| G 02-FEB-1945 [

BAKER| S.J.T. 24-SEP-1958

Clearly, the answer could be different when your company employs five or 50,000
employees.

Be aware that adding a new identifying attribute for EMPLOY EE, say, Id, only
partially solves the above problem. It would be very useful within the database. It
would not help much in the real world where employees usually would not know their
IDs, let alone the IDs of others. Thiskind of 1d attribute often works only as an
internal, but not as an external identification.

ORACLE 4-5

Lesson 4: Constraints

Unique Identifier

To know what you are talking about, you need to find, for every entity, avalue, or a
combination of values, that uniquely identifies the entity instance. This value or
combination is caled the Unique Identifier for the entity.

Unique ldentifier Examples

JOB Name
COMPUTER IN NETWORK IP Address
TELEPHONE Country code,
Area code,
Telephone number
EMPLOYEE Employee number Or
Name,
Initials,
Birth Date
MAIL LIST Name,
Owner

4-5

The MAIL LIST example shows that a unique identifier is not necessarily a
combination of attributes: the owner of aMAIL LIST is actually represented by a
relationship.

UID Representation
In an ER diagram, the components of the UID of an entity are marked:
o #for attributes.

» With asmall bar across the relationship end for relationships (a barred
relationship).

Indicates Unique Identifier CUSTOMER

Family Name
o Initials
— — - " # Address

responsil?le o Telephone
or

Indicates Unique Identifier

4-6 Data Modeling and Relational Database Design

Unique Identifier

Name

I 1
part ofY | owner
' y of

MAIL LIS
Name

Single Attribute UID

The model shows that a USER of ElectronicMail isidentified by attribute Name only.
Many entities will be identified by a single attribute. Typical candidate attributes, if
available, for single attribute UIDs are: Id, Code, Name, Description, Reference.

Multiple Attribute UID

An entity may have a UID that consists of multiple attributes; for example, a software
package can usually be identified by its Name and its Version, such as Oracle
Designer, version 7.0.

Composed UID

A MAIL LIST, illustrated above, isidentified by the Name of the LIST plusthe USER
that ownsthe LIST. That means that the combination of OWNER and a Name of alist
must be a unique pair.

This means that every USER must name their LIST instances uniquely, but need not
worry about names given by other users. It also means that the system may have many
LIST instances with the same name, as long as they are owned by different USERS.

You may argue that a USER also has acomposed UID, as the Name must be unigue,
within this mail system. To show this, you could add an extra high level entity, MAIL
PROVIDER, plus arelationship form USER to PROVIDER. The relationship then is
part of the UID of a USER.

Cascade Composed UID

It is not uncommon that an entity has a barred relationship to another entity that has a
barred relationship to athird entity, and so on.

ROOM | FLOOR | HOTEL |
No T ™~ 7| #No T "~ "|#Name P I~ 7

ORACLE 4-7

Lesson 4: Constraints

UID: Relationships Only

Multiple Relationship UID

USER USER
Name # Name

part ofv is
LIST
Name

referred to

contains

LIST
Name

contains
referring .
to ___contalned
in
PLLIST ITEM

4-8

A Unique Identifier can also consist of relationships only.

At the lower right side of the diagram, entity LIST ITEM is shown, which resulted
from the resolved m:m relationship between LIST and USER.

The model showsthat aLIST ITEM isidentified by the combination of the USER and
the LIST. In other words, the model saysthat a LIST may contain asmany ITEMS as
you like, aslong as they refer to different USERS.

Thisresults in the next definition:

A Unique Identifier (UID) of an entity is a constraint that declares the uniqueness
of values; aUID is composed of one or more attributes, one or more relationships,
or acombination of attributes and relationships of the entity.

Consequently, not all components of the UID may be optional.

Indirect Identification

Identification regularly takes place using an indirect construction, that is, when the
instance of an entity isidentified only by the instance of another entity it refersto.

Examples

* In many office buildings employees are identified by their badge, whichis
identified by a code.

* Around the world a person isidentified by the picture on their passport.

4-8 Data Modeling and Relational Database Design

Unique Identifier

* All cowsin the European Community are identified by the number of the tag they
are supposed to wear in their ear.

* When you park acar at Amsterdam International Airport you enter the parking lot
by inserting a credit card into aslot at the gate. The parking event isidentified by
the credit card of the person that parked the car. Thisis adouble indirect
identification.

Clearly, these identification constructions are not 100% reliable, but are probably as

far asyou can go in a situation.

The model of theseindirect identificationsis shown in the next illustration, at the right
bottom corner. An instance of Sisidentified by the single instance of T it refersto. In
other words, the UID consists of one relationship only.

Multiple UIDs

Entities may have multiple UIDs. Earlier, you saw the example of entity EMPLOY EE
that can be identified by an Employee Number, and possibly by a combination of, for
example, Name, Initials and Birth Date.

At some point in time, usually at the end of your analysis, you promote one of the
UIDsto be the primary UID. All the other UIDs are called secondary UIDs.

You would usually select the UID that is most compact or easy to remember to
become primary UID. The reason, of course, isthat the UID leads to one or more
foreign key columns in related tables. These columns should not be too sizeable.
Preferably, the primary UID of an entity does not consist of optional elements.

UID in Diagram
Only the primary UID isshown in ER Diagrames.

Where UIDs Lead
Unique Identifierslead to Primary Key and Unique Key constraints.

ORACLE 4-9

Lesson 4: Constraints

Unique Identifier Examples

Well-defined Unique Identifiers

#271
0Z2
0Z3
#74

4-9

Examples of Incorrect Unique Identifiers

Incorrect Unique Identifiers
” L F G
-- #G1

b o

| |

1 1)

P R

K K #P1 - - —44 #R1

[KL

\V/

T |

o#T1 Q .
#0Q1 2L

G |]H

#G1 N

4-10

4-10 Data Modeling and Relational Database Design

Unique Identifier

Information-Bearing Identifiers

When things in the real world are coded, you need to be especially careful. Codes that
have been used for some time are often information bearing. An example isacompany
that uses product codes like 54.0.093.81, where 54 refers to the product group, O
shows that the product is till in production, 093 identifies the factory where the
product is made and 81 is a sequence number. These codes come from the timewhen a
maximum amount of information had to be squeezed into a minimum number of bits.

The example above would be modeled conceptually:

Information-Bearing Codes

54.0.093.81

Product Group -« |
In Production?
Factory

Sequence Number

PRODUCT PRODUCT GROUP
>—=- -4 Code
Code

* In Production?

* Sequence No EACTORY
-

The Code attribute would contain the same codes, for reasons of compatibility, but
now without meaning, as the old meaning is transferred to the attributes and
relationships. Product 54.0.093.81 may now be produced by factory 123 and may no
longer be in Product Group 54.

4-11

ORACLE 4-11

Lesson 4: Constraints

Arcs

Suppose ElectronicMail rentsthe Advertisement Areasthat are located in their various
mail screens on the Web. Thisrenting is controlled by contracts; contracts consist of
one or more standard conditions and customized conditions. This can be modeled with
four entities: CONTRACT, CONTRACT COMPONENT, STANDARD
CONDITION and CUSTOMIZED CONDITION. See the model below. How do we
model the following constraint: every instance of CONTRACT COMPONENT refers
to either a STANDARD CONDITION or aCUSTOMIZED CONDITION, but not to
both at the same time?

An arcisaconstraint about two or more relationships of an entity. An arc indicates
that any instance of that entity can have only one valid relationship of the relationships
in the arc a any one time. An arc models an exclusive or across the relationships. An
arc istherefor also called exclusive arc.

Thereisno similar constraint construct for attributes of an entity.

Arcs
Contract “A contract consists of contract
—_—— components; these are standard
Conditions Std? . . s »
1 ==y | conditions or customized conditions
2 o —
3 —
4
5 Y CONTRACT| (STANDARD
@ CONDITION
:consists in :
! of | CUSTOMIZED
X : CONI?ITION Arc
) InI |
In_dlcatgs | \\,\ Y A
relationship | partof Y LA
in arc referring to A\ referring to

CONTRACT COMPONENT

4-12

Arc Representation

The arc isdrawn as an arc-shaped line, around an entity. Where the arc crosses a

relationship line asmall circleis drawn, but only if the relationship participatesin the
arc.

4-12 Data Modeling and Relational Database Design

Mandatory Compared to Optional Relationships in an Arc

When the arc is drawn across two mandatory relationships, asin the example above, it
means that every instance of CONTRACT COMPONENT must have one valid
relationship. When the arc is drawn across two optional relationships, it would mean
that an instance may have one valid relationship.

Another Arc Example

Exclusive Arc

USER

| LIST |

. [N
is referred to : is referred
1 1to

referring toi i referring to

[LIST ITEM]

4-13

Suppose aMAIL LIST may contain USERS as well as other MAIL LISTS. This
means that a particular LIST ITEM may refer toaUSER or aLIST. To be more
precise, it must be areferenceto a USER or to a LIST, but not to both at the same
time.

Note

» Therelationship contained in/container of from LIST ITEM to LIST (the one that
isprinted in gray) isnot part of the arc asthereisno small circle at the intersection
with the arc.

* A relationship that is part of aUID may also be part of an arc.

* Theconstraint that aLIST may only contain LISTS other than itself cannot be
shown in the model.

ORACLE 4-13

Lesson 4: Constraints

Where Arcs Lead

An arcisnormally implemented as acheck constraint in an Oracle database. Note that
acheck constraint is not an SO standard relational database object. In other words, an
arc must be implemented differently in other database systems.

See Page 36
Possible Arc Constructs

A
|
N
>___
/\1

oA | F --
A "4 <
(.
o
AN 4
\f\ Fan _/ oD
A\ 4 N)\J

4-14

Some Rules About Arcs

* Anarc dways belongs to one entity.

* Arcscaninclude more than two relationships.

* Not al relationships of an entity need to be included in an arc.
e Anentity may have several arcs.

e Anarc should always consist of relationships of the same optionality:
al relationshipsin an arc must be mandatory or al must be optional.

* Relationshipsin an arc may be of different degree, although thisisrare.

Tips About Arcs
* Do not include arelationship in more than one arc, for clarity reasons.
» Consider modeling subtypesinstead of arcs (see the next paragraph).

4-14 Data Modeling and Relational Database Design

Incorrect Arcs

Some Incorrect Arc Constructs

* The arc “belongs” to one Y Y,
entity N Y
* Relationships in the arc -=
must be of the same
optionality
* Arcs must contain at least
two relationships
o~

An arc may be correct, but is

quite difficult to implement ... | |

You cannot capture al possible relationship constraints with arcs. For example, if two
out of three relationships must be valid, this cannot be represented. The table below
shows what an arc can express.

Number of Valid Relationships in Arc

Per Entity Instance Minimum Maximum

=— }n n n

:% In 1 1
EEEE }n 0 n

P

4-16

ORACLE 4-15

Lesson 4: Constraints

Arc or Subtypes

Relationships within an arc are often of avery similar nature. They frequently carry
exactly the same names. If that is the case, an arc can often be replaced by a subtype
construction, as the illustration shows. On the left you see the arc that contains both
referring to relationships of LIST ITEM. In the model on the right there is only one
relationship left, now connected to an entity ADDRESS, a new supertype entity of
USER and LIST.

Both models are equivalent.

Arc or Subtype

USER
| LIST I
is referred | is referred contains

to! 1 to
referring ! ‘referring is referred !
to to tO

referring to7k
[LIST ITEM] (LIST ITEM |

The model on the left emphasizes the difference between USER and LIST, which
clearly exists; the other model emphasizes the commonality. This commonality is
mainly afunctional issue. Both USERS and LISTS can be part of aLIST and both can
be used as the address in the To, Cc or Bcec field in the screen for composing a
message.

Generally speaking, you can replace every arc with a supertype/subtype construction
and every supertype/subtype construction with an arc.

4-16 Data Modeling and Relational Database Design

More About Arcs and Subtypes

More About Arcs and Subtypes

Arcsand Subtypes are similar notions. The five modelsthat are printed below all show
the same context.

Model 1 and 2 are equivalent models to what you have seen before.

If every instance of A isrelated to aP or aQ, then you could say there are P-related-
A'sand Q-related-A’s. These two subtypes of A are shown in model 3.

Model 4 goes one step beyond this and shows subtypes of entity A and a supertype R
of Pand Q.

Though models 3 and 4 are completely correct, it islikely they both model something
twice.

Arc and Subtypes
1 Y SN A

B o
A [c
AT l’lﬁ[ﬁ

\//
|

3 \ 4 5

o B [

4-18

Note that only model 5 does not present the same information. In model 5, an instance
of B may be related to an instance of Q, unlike that which is modeled in 3 and 4.

ORACLE 4-17

Lesson 4: Constraints

Hidden Relationships

Every subtype hides a relationship between the subtype and its supertype. Moreover,
the relationships are in an arc, as the next illustration shows. Both relationships are
mandatory 1:1 ig/is relationships.

Subtypes Hide Relationships in Arc

(A)
A

is| B
isV
i]

{ >
.i
[&
)

—
* Every A * Every A must
is eitheraBoracC beaBor beaC
* EveryBisanA * Every B must bean A
* EveryCisanA * Every Cmust bean A
4-19

4-18 Data Modeling and Relational Database Design

Domains

Domains

A very common type of attribute constraint is a set of values that shows the possible
values an attribute can have. Such aset is called a domain.

Very common domains are, for example:

* Yesno: Yes, No

* Gender: Mae, Female, Unknown

* Weekday: Sun, Mon, Tue, Wed, Thu, Fri, Sat

In a conceptual data model you can recognize these as entities with, usually, only two
attributes: Code and Description. These domain entities are referred to frequently but
do not have any “many” relationships of their own, (see model A below). Typically,

you would know all the values before the system is built. The number of valuesis
normally low. Often you would deliver such a system with non-empty code tables

An alternative model for the (sometimes many) code entities is a more generic, two-
entity approach: CODE and CODE TY PE, model B.

Model A has the advantage of fewer relationships per entity aswell as easy-to-
understand entities; B has obviously fewer entities and therefore will lead to fewer
tables.

Value sets

CODE TYPE
#1d

* Name
* Max Length
of Description

1
WEEKDAY |
_ _ _|#Code 1
* Description !
1 1

4-20

Domains that have alarge number of values, such as all positive integersup to a
particular value, are usually not modeled.

You should list and describe such a constraint in a separate document.

ORACLE 4-19

Lesson 4: Constraints

Some Special Constraints

Although an entity relationship model can express many of the constraints that are not
too complex, there are many types of constraints left that cannot be modeled. These
constraints must be listed on a separate document and often need to be handled
programmatically.

Categories: Examples

Conditional domain: The domain for an attribute depends on the value of one or
more attributes of the same entity.

Sate value transition: The set of values an attribute may be changed to depends
on the current value of that attribute.

Range check: A numeric attribute must be between attribute values of arelated
instance.

Front door check: A valid relationship must only exist at creation time.

Conditional relationship: A relationship must exist or may not exist, if an
attribute (of arelated entity) has a specia value.

Satevaluetriggered check: A check must take place when an attributeisgiven a
value that indicates a certain state.

There are a so combinations of the above.

Range Check: Example

See Page 37

EMPLOYEE JOB

* Name * Title
* Address * Minimum Salary ~between—
etween
with | * Maximum Salary _:
! | of
for /{\referring to

EMPLOYMENT

* Start Date

° End Date

* Salary -

Constraint: Employee salary must be within the salary range of the job of the
employee.

4-20 Data Modeling and Relational Database Design

Some Special Constraints

State Value Transition: Example

Possible -
i to | | 5| 2|.2|a
EMPLOYEE ¥r3%§'ti§;§t“5(A EE R
* Name rom
* Address Single v v
* Current Marital Status Married v]v
Widowed v v
Divorced v v
Domestic Partnership | V|V

Constraint: Marital Status of employees cannot change from any value to al other
values.

Conditional Relationship: Example

CONTRACT

#Id

* Standard Indicator STANDARD
| CONDITION

consists, in :
of1 1 [cusTomizED
; 1 |CONDITION
, in,
part of e N
referring to referring to
CONTRACT COMPONENT
4-23

Constraint; If aCONTRACT has Standard Indicator set to Yes, the CONTRACT
COMPONENT may not refer to a CUSTOMIZED CONDITION.

ORACLE 4-21

Lesson 4: Constraints

Derived Attribute?

You may argue that the attribute Standard Indicator of CONTRACT isderivable. If
the contract contains CUSTOMIZED CONDITIONS, it is, by consequence, not a
standard CONTRACT. This may betrue, but it is not necessarily so. Suppose the
contract is created in various steps, by various people with different responsibilities.
Then, the creation of a CONTRACT is a process that may take days. The Standard
Indicator, then, is an attribute of that process. Only when the CONTRACT isfinalized,
should a check be made that the Indicator corresponds with the actual STANDARD
and CUSTOMIZED CONDITIONS. In those situations, the entity CONTRACT will
usually have an attribute Completed Indicator that triggers the check when set to Yes.

Rules May Lead to Attributes

If you cannot capture a constraint in the model, the best you can do within the model is
make the model rich enough so that a program for constraint checking performs well.
Consider therule:

If the Standard Indicator is set to No, and thereisno CUSTOMIZED
CONDITION, then the CONTRACT isnot yet ready for being sent to the
CUSTOMER.

This rule deals with a procedure and cannot be modeled as such, but it callsfor an
indicator at entity CONTRACT to indicate something like a Ready To Send status.

Model for Overview

An analyst often runsinto constraints that cannot be modeled and thus must be
documented separately. Thisis not aweakness of the model. An important goal of a
diagram isto give an overal picture, not all the details. The model should let you view
the key areas clearly.

4-22 Data Modeling and Relational Database Design

Some Special Constraints

Boundaries

More than once the checking of constraints or special rules needs to use information
that is not directly related to one of the entities in the model.

Typical examples are rules and boundaries set by external sources, like a mother
company or national legislation. If reasonably possible, these rules should be part of
your conceptual data model, and should not be hard coded in your programs. The
reason isobvious: if the rule changes, which is beyond your power, there is a chance
you do not have to make changes to your programs. Only an update of avaluein a
table would be necessary. The time spent developing a complete model is fully
justified by the programming time saved.

Boundaries

EXTERNAL
unrelated entity |#1d

* Description
* Value

and possible implementation

EXTERNALS
Id Description Value
1 Value added tax % 15
2 Maximum available Space per Mail User in Mbyte 500
3 Maximum level of Nested Mail Folders 3
4 Maximum level of Nested Mail Lists 16
4-24

ORACLE 4-23

Lesson 4: Constraints

Summary

Entities in the real world must be individually identified before they can be
represented in a database. You would not know what you are talking about, otherwise.
Some entities are redlly difficult to identify, such as people and paintings. Some are
more easy, especialy when they are part of the domain as you can make up the rules,
such as a unigue number for each of the invoices you send to your customers. Some
unique identifiers are already present in the real world, often as a combination of
attributes and relationships of the entity.

Summary

* |dentification
— Can be areal problem in the real world
— Models cannot overcome this
* Entities must have at least one Unique Identifier

* Unique Identifiers consist of attributes or
relationships or both

* Arcs

* Many types of constraint are not represented
in ER model

4-25

Arcsin adiagram represent a particular type of constraint for the relationships of one
entity.

Many business constraints cannot be represented in a diagram and must be listed
separately. Thisway the model remains clear and not too full of graphical elements.

4-24 Data Modeling and Relational Database Design

Practice 4—1: Identification Please

Practice 4—1: Identification Please

Your Assignment

Describe how you would identify the following entities, making up any attributes and
relationships you consider appropriate.

Practice: Identification Please

* Acity

* A contact person for a customer
* Atrain

* Aroad

* A financial transaction

* An Academy Award (Oscar)

* A painting

* AT.V.show

4-27

ORACLE 4-25

Lesson 4: Constraints

Practice 4—2: Identification

Your Assignment
Arethe entities in the next diagrams identifiable?

1
A B C
XX *Yy HZz
2
A > ---------- B
C o #1d
Code
3
A
* XX
B C with D
42z P T |#d
4

4-26 Data Modeling and Relational Database Design

Practice 4—2: ldentification

Name S

6

Note: the next model describes a context that may be different from the world you are
familiar with.

PERSON

FEMALE
Name

A U
1partner in partner in,
: :
1 1
1
j:with husband with wife
MARRIAGE
Start Date

7 Given the above model, answer the following questions.
a Can person A marry twice?
Can person A marry twice on the same day?
Can person A marry with person B twice?
Can person A marry with person B twice on the same day?
Can person A be married to person B and person C simultaneously?
Can person A be married to person A?

- ®O QO O T

ORACLE 4-27

Lesson 4: Constraints

Practice 4—3: Moonlight UID

Goal

Moonlight Coffees
B The purpose of this practiceisto define UIDsfor given entities.

Scenario
Moonlight Coffees, organization model.
Your Assignment
Use what you know about Moonlight Coffees by now, and, most importantly, use your
imagination.
1 Given the model below, indicate UIDs for the various entities. Add whatever

attributes you consider appropriate. Country organizations have a unique “tax
registration number” in their countries.

2 Arethereany arcs missing?

I

reportingto ,” "+ report of
1

DEPARTMENT| =3 cport o

OTHER ;l\ reporting to
DEPARTMENT COUNTRY in COUNTRY
ORGANIZATION - =
¥ with of
; with,~ with | with !
: // /i\belongs to /i\in
Vwith, | [SHOP
of 1
1

4-34

4-28 Data Modeling and Relational Database Design

Practice 4—4: Tables

Practice 4—4: Tables

Goal
The purpose of this practice is to match a given context with a ER model.

Your Assignment
Read the text on |SO Relational tables.

Do aquality check on the ER model based on the quoted text and what you know
about this subject. Also list constraints that are mentioned in the text but not modeled.

Practice: Table 1

“In a relational database system, data is stored in tables. Tables of a
database user must have a unique name. A table must have at least
one column. A column has a uniqgue name within the table. A column
must have a data type and may be Not Null.

Tables can have one primary key and any number of unique keys. A
key contains one or more columns of the table. A column can be part
of more than one key.

A table can have foreign keys. A foreign key always connects one
table with another. A foreign key consists of one or more columns of
the one table that refers to key columns of the other table.

The sequence of columns within the key and foreign key is important.”

from with g e KEY
Name . # Name

>

—— referenced

with in | with UNIQUE

FOREIGN KEY
Name

with

for A
from for
pp— INf COLUMN :
ASSOCIATION P>~ - - # Name In USAGE
Segno _Jn|* pata Type of | # Segno
to o Not Null

ORACLE 4-29

Lesson 4: Constraints

Practice 4—5: Modeling Constraints

Goal
The purpose of this practice is to learn what constraints can be modeled and how, and
which cannot be modeled.

Your Assignment
Change the diagrams to model the constraint given.

EMPLOYEE
Name

managed by

manager of ’
N

1 Every EMPLOY EE must have a manager, except the Chief Executive Officer.

owner of

T owned
owner of by [LIST
Name -——- # Name
owned

by

NICKNAME
—# Alias

2 A user may not use the same name for both NICKNAME and LIST name.

with +77 7~
subfolder \ USER
Name

3 A top level FOLDER must have a unique name per user; sub folders must have a
unique name within the folder where they are located.

Data Modeling and Relational Database Design

Modeling Change

Lesson 5: Modeling Change

Introduction

Every update of an attribute or transfer of arelationship means loss of information.
Often that information is no longer of use, but some systems need to keep track of
some or al of the old values of an attribute. This may lead to an explicit time
dimension in the model which is usually quite a complicated issue.

Lesson Aim

Timeisoften present in abusiness context, as many entitiesarein fact arepresentation
of an event. This lesson discusses the possibilities and difficulties that arise when you
incorporate time in your entity model.

Overview

* Date and time

®* Modeling change over time
* Prices change

* Journalling

5-2

Topic See Page
Introduction 2
Time 4
Date as Opposed to Day 5
Entity DAY 6
Modeling Changes Over Time 7
A Time Example: Prices 10
Journalling 17
Summary 19
Practice 5—1: Shift 20

5-2 Data Modeling and Relational Database Design

Introduction

Topic See Page

Practice 5—2: Strawberry Wefer 21

Practice 5—3: Bundles 22

Practice 5—4. Product Structure 24
Objectives

At the end of this lesson, you should be able to do the following:

» Makeawel considered decision about using entity DATE or attribute Date
* Modéd life cycle attributes to all entities that need them

e Listall constraints that arise from using atime dimension

* Copewithjournalling

ORACLE 5-3

Lesson 5: Modeling Change

Time

Modeling Time

In many modelstime plays arole. Often entities that are essentialy events are part of a
model, for example, PURCHASE, ASSIGNMENT. One of the properties you record
about these entities is the date or date and time of the event. Often the date and time
are part of aunique identifier.

Change and Time

* Every update means loss of information.

®* Time in your model makes the model more
complex.

* There are often complex join conditions.

* Users can work in advance.

* When do you model date/time as an entity?
* What constraints do arise?

®* How do you handle journalling?

A second time-related issue often hel ps to increase the usability of a system
dramatically. By adding dates like Start, Expiry, End Date, to data in the system, you
allow users to work in advance. Suppose a particular value, say the price of gas or
diesdl, will change as of January 1. It isvery useful to be able to tell the system the
new value long before New Year’s Eve. By adding atime dimension to the model you
make the system independent of the now.

Asaways, thereisa price for adding things such as this. Adding a time dimension to
your conceptual data model makes the model considerably more complex. In
particular, the number of constraints and business rules that must be checked will
increase.

A third time-related issue in conceptua data modelsis connected to the concept of
logging or journalling. Suppose you alow values to be updated, but you want to keep
track of some of the old values. In other words, what do you do when you need to keep
arecord of the history of attribute values, of relationships, of entire entities?

The following issues arise:
* When do you model date/time as an entity, and when as an attribute?

* How do you handle the constraints that arise in systemsthat deal with time-related
data?

e How do you handle journalling?

5-4 Data Modeling and Relational Database Design

Date as Opposed to Day

Date as Opposed to Day

Probably al current operating systems and database systems have types “date’ and
“time” available that know, for example, that 29-OCT-1983 was a Saturday in the 10th
month, called October, of 1983.

Some database systems, like Oracle, see time as a component of a date and store them
in one. Knowing that, you are likely to decide that dates can be modeled as attributes
with the format date.

Entity DAY or Attribute Date

A

[PURCHASE |

on

\r Single attribute entity without m:1 relationships
I is usually replaced by attribute /l\
1
,of

PURCHASE
DAY * Date
Date

5-4

A day, however, isnot just adate. My great-grand father was born on aday in 1852,
but the exact date is unknown. A Genealogical Register System should therefore be
able to store fragments of a date, such as*1852", or even a description, such as
“around 1765".

Systems that store historical information often have to deal with several dates for one
event, according to multiple sources with nonidentical information.

Some systems have to take dates in conjunction with the reliability of that date.
Clearly, in these cases a simple attribute would not suffice.

Loosely speaking, when you are interested in the date only, and these dates are known
to the user, model an attribute; on the other hand, when you are interested in the day,
model it as an entity with attribute Date, which is possibly a unique identifying
attribute.

ORACLE 55

Lesson 5: Modeling Change

Entity DAY

It isnot only systems that deal with historical information that struggle with dates.
Sometimes a system needs to know more about a day than can be derived from its
date. A planning system, for example, often needs to know if a particular day isa
public holiday. Many data warehouse systems use a calendar that is different from the
normal one, for example, where ayear is divided into four-week periods or 30 day
Months or Quarters where Q1 startsin the middle of May.

Some warehouses need weather information about daysin order to do statistical

analysis about the influence of the weather on, for example, their sales. In these cases
aday has attributes or relationships of its own and should be modeled as entity DAY.

Entity DAY

DAY
Date
* Public Holiday Indicator

: first day of

;kstarts on

\f
TASK or TASK
ASSIGNMENT > in |#1d

* Duration in Hours

of EMPLOYEE
>——- - -
J with

Name

5-5

The above model shows part of a planning system where tasks are assigned to
employees. Tasks may take from afew hours to, at maximum, several days.

Based on thismodel, table TASK_ASSIGNMENTS will contain adate column that is
aforeign key column to the DAY S table.

Date and Time

As stated earlier, an Oracle DATE column always contains date and time. This needs
some special attention as two DATE columns may apparently contain the same date
but they are not equal because of a differencein their time component.

While modeling, aways make explicitly clear when time of the day is an issue, for
instance, by naming the attribute DateTime. As soon as hours and minutes play arole,
the concepts of “time zone” and “daylight saving time” may become important.

5-6 Data Modeling and Relational Database Design

Modeling Changes Over Time

Modeling Changes Over Time

Date and Time in your models may substantially increase the complexity of your
system, as the next example shows.

The context for this exampleis that of an Embassy Information System, but could
have been chosen from almost any business area.

Embassy employees have an assignment for a country, but, of course, the assignments
may change over time. Therefore, the model would need an entity ASSIGNMENT
with amandatory attribute Start Date and an optional End Date. Start Date is modeled
as part of the UID for ASSIGNMENT. This means that the model alows an employee
to have two assignments in the same country, aslong as they start on different days. It
aso allows the employee to have two assignments that start on the same day, aslong
asthese are for different countries.

Suppose we know today that Jacqueline will switch from Chili to Morocco on the first
of next month. This fact can be fed into the system immediately, by creating a new
instance of ASSIGNMENT with a Start Date that is still in the future at create time.
The future users will appreciate this kind of functionality.

EMPLOYEE
#1d

COUNTRY
Name

|

of |
|

*for

T.
yin
1

5y

Start Date

ASSIGNMENT
o End Date

End Date Redundant?

You may argue that attribute End Date of ASSIGNMENT is redundant because
Jacqueline's assignments follow each other: the End Date of Jacqueline’s assignment
in Chili matches the Start Date of the onein Morocco. Thismay betrue, but it does not
take into consideration that embassy people may take aleave and return after a couple
of years. In other words, if you do not model attribute End Date you ignore the
possibility that the assigned periods of a person are not contiguous.

Note that the model does alow an employee to have two assignmentsin, for example,
Honduras, that overlap! The unique identifier does not protect the data against
overlapping periods. Adding End Date to the UID does not help.

You would need a whole series of extra constraints to cope with this.

ORACLE

Lesson 5: Modeling Change

Countries Have a Life Cycle Too

Suppose the Embassy Information System contains data that goes back to at least the
late eighties. In those days the USSR and Zaire were still countries. Suppose there are
ASSIGNMENTS that refer to the USSR and Zaire. In the case of Zaire, you could
consider an update of the Name of the COUNTRY: Democratic Republic Congo is
essentially just the new name for Zaire. In case of the USSR this would not make
sense. There is not a new name for the old country. The old country simply ceased to
exist when it broke into several countries. Although the concept of a country seems
very stable, countries may change fundamentally during the lifetime of the
information system.

This leads to the next model.

Even a Country Has a Life Cycle

COUNTRY
Name
Start Date

* End Date -«
J

EMPLOYEE
#1d

of | jin

[! life cycle

j: j: attributes
for as

Start Date
o End Date

[ASSIGNMENT

5-7

Time-related Constraints

Be aware of the numerous constraints that result from the time dimension! Hereisa

selection:

* ANnASSIGNMENT may only refer to a COUNTRY that isvalid at the Start Date
of the ASSIGNMENT.

* Theobviousone: End Date must be past Start Date.

* A businessrule: ASSIGNMENT periods may not overlap. The Start Date of an

ASSIGNMENT for an EMPLOY EE may not be between any Start Date and End
Date of an other ASSIGNMENT for the same EMPLOY EE.

» Asfor the previous constraint, but for End Date.

5-8 Data Modeling and Relational Database Design

Modeling Changes Over Time

* You would probably not allow an ASSIGNMENT to be transferred to another
COUNTRY, unlessthe ASSIGNMENT has not yet started, that is, the Start Date
of the ASSIGNMENT is still in the future.

Thisis an example of conditional nontransferability.
For updates of the attribute Start Date here are some possible constraints:

e A Start Date of an ASSIGNMENT may be updated to alater date, unlessthis date
islater then the End Date (if any) of the COUNTRY it refersto.

* A Start Date of an ASSIGNMENT may be updated to alater date, if the current
Start Date is still in the future.

o A Start Date of an ASSIGNMENT may be updated to an earlier date, unlessthis
date is earlier than the Start Date of the COUNTRY it refers to.

* A Start Date of an ASSIGNMENT may be updated to an earlier date, if this new
dateisstill in the future.

* A Start Date of a COUNTRY may be updated to alater date, if there are no
ASSIGNMENTS that would get disconnected.

Similar constraints apply to attribute End Date.

Referential Logic

Note that, except for two, these constraints result from referential logic only. There
may be more additional business constraints.

Imagine the sheer number of constraintsif atime-affected entity is related to several
other time-affected entities! Fortunately, these constraints all have asimilar pattern;
these result from the referential, time related, logic.

Not in Diagram
You cannot model any of these constraints in the diagram as they all have to be listed
separately.

Implementation

In an Oracle environment, one of these constraints can be implemented as a check
constraint, (End Date must be later than Start Date). All the others will be
implemented as database triggers.

ORACLE 5-9

Lesson 5: Modeling Change

A Time Example: Prices

Products and Prices

PRODUCT
#1d
* Name

: with

PRICE =
*of PRICED PRODUCT=
HISTORICAL PRICE

PRICE

* Price in $
Start date
° End Date

5-8

Products have a price. Prices change. Old prices are probably of interest. That leadsto
amodel with entities PRODUCT and PRICE. The latter entity contains the prices and
the time periods they are applicable. In real-life situations you find the concept of
PRICE aso named PRICED PRODUCT, HISTORICAL PRICE (and less appropriate:
pricelist or price history); all these names more or less describe the concept.

You may argue the need for an End Date attribute. If the various periods of a product
price are contiguous, End Date is obsolete. If, on the other hand, the products are not
always available, asin the fruit and vegetable market, the periods should have an

explicit End Date.

Data Modeling and Relational Database Design

A Time Example: Prices

Introducing Order Header and Order Iltem

What Price to Pay?

ORDER HEADER
#PII?dODUCT referred J# Id]
- =
i \by fy * Order Date
Name \ (Z;@ ! with
Fwith VoS '
A 2)

L N Ko

\
|ORDER ITEM
PRICE v h _
* Price in $ referring Quantity Ordered]
Start date ., to
° End Date
5-9

Here, entities ORDER HEADER and ORDER ITEM are introduced. An ORDER
HEADER holds the information that applies to all items, like the Order Date and the
relationship to the CUSTOMER that placed the order or the EMPLOY EE that handled
it. (For clarity, these relationships are not drawn here.) The ORDER ITEM holds the
Quantity Ordered and refers to the PRODUCT ordered. The price that must be paid
can be found by matching the Order Date between Start Date and End Date of PRICE.
Note that you cannot model this *between relationship”.

Thismodel isafairly straightforward product pricing model and is often used.

Order

Note that the concept of an order in thismodel is composed of ORDER HEADER and
ORDER ITEM.

To find the order total for an order, it would need ajoin over four tables.

ORACLE 511

Lesson 5: Modeling Change

Price List

A variant on the above model is often used when prices as agroup are usually changed
at the sametime. The period that prices are valid is the same for many prices; that
would lead to this model:

Price List Search

beween}——

PRICE LIST
#1d

[ORDER HEADER]

PRODUCT #1d
*
. Eta(.:ll’tg?te T #1d \ —* Order Date
nd Date * Name referred L with

1 with 'with | by
.) *
on of \ of

PRICED PRODUCT Pgl?aErsit;/TEM
* Price in $ referring Orclams)
to

5-10

Entity PRICE LIST represents the set of prices for the various products; PRICED
PRODUCT representsthe price list items. To know the price paid for an ordered item,
you take the Order Date of the ORDER HEADER, and take the PRICE LIST that is
applicable at that date. Next, you go from ORDER ITEM to the PRODUCT that is
referred to and from there to the PRICED PRODUCT of the PRICE LIST you have
just found. To find the order total for an order, it would need ajoin over five tables.

5-12 Data Modeling and Relational Database Design

A Time Example: Prices

Buying a PRODUCT or a PRICED PRODUCT?
Another variant of a pricing model is shown here.

Order for Priced Products

;TdICE L= ORDER HEADER
PRODUCT # 1d
*
Start Date #1d * Order Date

(o)
End Date « Name : with

1 with : with
1
*on * *of

of
PRICED PRODUCT referred by ORDER ITEM
* Price in $ - * Quantity
referring Ordered
to

Herean ORDER ITEM refersdirectly to a PRICED PRODUCT. At create time of the
ORDER ITEM the constraint is applied that the Order Date must mach the correct
PRICE LIST period. To find the order total for an order now only requires three tables.

ORACLE

Lesson 5: Modeling Change

Negotiated Prices

Negotiated Prices

;ITdICE LIST ORDER HEADER
* Start Dat PRODUCT #1d
o Brn o #1d \ * Order Date
End Date * Name T
|

referred by

1 with 'with

| ! ' *
on of \ of

ORDER ITEM
fRI.CEP PRCILET - * Quantity Ordered
Price in $ referring |« Negotiated Price
to

5-12

When prices are subject to negotiation, the model becomes simpler. Negotiated Price
isnow an attribute of entity ORDER ITEM; ORDER ITEM refersto PRODUCT.
Every referential constraint can be modeled.

This model may seem to hold derivable information, but thisis not true. Even in the
case that amost all Negotiated Prices are equal to the current product price, you have
to model Negotiated Price at ORDER ITEM level, just because of the small chance of
an exception. To find the order total you require only two tables. You can imagine that
many analysts choose this variant of the model as a safeguard, even if there is nothing
to negotiate at present.

5-14 Data Modeling and Relational Database Design

A Time Example: Prices

Which Variant to Use and When?

Typically, the model with the negotiated prices will occur where the number of
ORDER ITEMS per ORDER HEADER islow, often just asingle one, and where the
valueis high, as, for example, in the context of a used car business.

You see ORDER ITEM referring to a PRODUCT most often in the situation where
prices do not change frequently. The number of items per ORDER HEADER is often
well over one, and the overall value limited. Typical examples are the fashion industry
and grocery stores.

The model with ORDER ITEM referring to PRICED PRODUCT is often used in
businesses where prices often change, as in the fresh fruit and vegetable markets.
Prices there may even change during the day.

The model with attribute Current Price for a PRODUCT istypically the model for the
supermarket environment where instant availability of prices at the checkoutsis vital.
As stated earlier, the best model for a particular context depends on functional needs.
See more on this in the chapters on Denormalized Data and Design Considerations.

ORACLE 5-15

Lesson 5: Modeling Change

Current Price

Current Prices

PRODUCT PRODUCT
#1d
* Name
\with
1
* of
PRICE PRICE
* Price in $ * Price in $ * Price in $
Start Date # Start Date # Start date
* End Date o End Date o End Date

o Current Indicator]

5-13

These models are variants on the PRODUCT-PRICE model you have seen before.

In the left-hand model the 1:m relationship between PRODUCT and PRICE showsthe
real historical pricesonly. You can guess that only historical prices are kept because
attribute End Date is mandatory; an additional constraint is that this value should
always bein the past. The Current Price of aPRODUCT isrepresented as an attribute.
This model does not have any redundancies.

In many situations it would be a good design decision to keep the current product
prices aswell asthe old pricesin one table based on entity PRICE. The middle model
isan ER representation of that situation. Note that End Date is how optional.

The right-hand model is another model that contains a subtle redundancy. See more on
this type of redundancy in the lesson on Denormalized Data.

Data Modeling and Relational Database Design

Journalling

Journalling

When a system allows a user to modify or remove particular information, the question
should arise if the old values must be kept on record. Thisis called logging or
journalling. You will often encounter this when the information is of afinancial
nature.

Consequences for the Model

Journalling

Ao

PAYMENT to

° Date Paid -
PAYMENT * Amount in $

*Date Paid —

*Amount in $ p with

Ko

AMOUNT
MODIFICATION

* Old Amount in $
* Modified by

* Date Modification

5-14

A journal usually consists of both the modified value and the information about who
did the modification and when it was done. This extrainformation can, of course, be
expanded if you wish.

Apart from the consequences for the conceptual data model, the system needs specia
journalling functionality: any business function that allows an update of Amount In
should result in the requested update, plusthe creation of an entity instance AMOUNT
MODIFICATION with the proper values. Of course, the system would need special
functions as well in order to do something with the logged data.

No Journal Entity

When several, or al, attributes of an entity need to be journalled, it is often
implemented by maintaining a full shadow table that has the same columns as the
origina plus some extrato store information about the who, when, and what of the
change. This table does not result from a separate entity; it isjust a second, special,
implementation of one and the same entity.

ORACLE 5-17

Lesson 5: Modeling Change

Journalling Registers Only

Note that logging does not prevent a user from making updates. Preventing updates
entirely isafunctional issue and isinvisible in the conceptual data model. Be aware
that preventing updates altogether would also block the possibility to change typos or
other mistakes.

At this stage, decisions must be made about the behavior of the system with respect to
updates; sometimes this leads to modifications in the conceptual data model.

For example, suppose that in a particular business context a certain group of usersis
allowed to create instances of PAYMENT but is not allowed to change them. Changes
can only be made by, say, afinancial manager. Suppose you just created a PAYMENT
instance and you discover you made a mistake. For those cases the business would
need some mechanism to stop the erroneous instance. One mechanism would be to ask
one of the financial managersto make the change. A far better mechanism would be to
add functionality so that a payment can be neutralized. This may be represented in the
model as an attribute Neutralized Indicator that users can set to Yes.

5-18 Data Modeling and Relational Database Design

Summary

Every update in a system means|oss of information. To avoid that you can create your
model to keep a history of the old situations. Sometimes relationships refer to atime-
dependent state of an entity. In other words, the updated entity isin fact anew instance
of the entity and not an updated existing instance. If thisis the case, the time-
dependent referential constraints cannot be modeled by arelationship only.

Time in your model isacomplicated issue. Many models have some time-related
entities.

Summary

®* Consider the need for keeping old values.
®* Timein your model is complicated:

— Implicit versions

— References
* Journalling

ORACLE 5-19

Lesson 5: Modeling Change

Practice 5—1: Shift

Goal

Moonlight Coffees
B The purpose of this practice isto model various aspects of time.

Scenario

Some shops are open 24 hours a day, seven days aweek. Others
close at night. Employees work in shifts. Shifts are subject to local legislation. Below
you see the shifts that are defined in one of the shops in Amsterdam.

Your Assignment

List the various date/time elements you find in this Shift scheme and make a
conceptual data model.

Practice: Shift

Museumplein, Amsterdam, march 21
Shift 1 2 3 4 5

Mon 6:30|11:30|16:00[20: 30| -
11: 30| 16: 00 |20: 30 [23: 00

7:00(11:30(16:00)20:30| -
11:30(16:00(20: 30|23: 00

7:00|11: 30|16: 00 |20: 30 -
e 11: 30| 16: 00]20: 30 |23: 00

7:00|11: 30|16: 00 |20: 30 -

Tue

Thu 11: 30| 16: 00 |20: 30 [23: 00

= 7:00(11: 30[16: 00]20: 30| -

i 11: 30| 16: 00 |20: 30 |24: 00
Sat/Sun | & 00[11:30(15: 0018: 00 [21: 00

11: 30|15: 00|18: 00 |21: 00 |24: 00

5-20 Data Modeling and Relational Database Design

Practice 5—2: Strawberry Wafer

Practice 5—2: Strawberry Wafer

Moonlight Coffees Scenario
; B Y ou have modeled apricelistin an earlier lesson. Now some new
@ . information is available.

Your Assignment
Revisit your model and make changes, if necessary, given this extrainformation.

Prices are at the same level within a country; prices are determined
by the Global Pricing Department. Usually the prices for regular,
global products are re-established once a year.

Prices and availability for local specialties are determined by the
individual shops. For example, the famous Norwegian Vafler med
Jordbeer (a delicious wafer with fresh strawberries) is only available
in summer. Its price depends on the current local market price of
fresh strawberries.

=g == de Keyzer, Keyzerlei 15, Antwerpen
p r IJ S I |J St bezoekt ons op ‘t Web: www.moonlight.com
klein middel groot
gewone koffie 60 90 120
cappuccino 90 110 140
koffie verkeerd 75 100 130
speciale koffies 99 125 150
espresso 60 95 110
koffie van de dag 45 75 100
caffeine vrij 5 10 15 toeslag
zwarte thees 60 100 120
vruchten thees 75 110 130
kruiden thees 80 120 140
dag thee 50 85 100
caffeine vrij 5 10 15 toeslag
frisdranken 60 100 130
diverse sodas 60 100 130
mineraal water 75 120 140
- appel taart 180
é 8 brusselse wafel 150
T2 portie chocolade bonbons 150
23 koekje van eigen deeg 120
£3 portie slagroom 30

ORACLE 5-21

Lesson 5: Modeling Change

Practice 5—3: Bundles

Goal
! The purpose of this practiceis to expand the concept of an old
. ® , entity.

Moonlight Coffees

Scenario

Asatest, Moonlight sellsbundled productsin some shops, for aspecial price. Here are
some examples.

A SweetTreat™ consists of a large soft drink plus cake of
the day.

A BigBox({™ consist of a large coffee of the day plus two
cakes of the day.

A SuperSweetTreat®™) consists of a SweetTreat(t™) plus
whipped cream (on the cake).

A FamilyFeast(™ consists of two BigBoxes™) plus two
SweetTreats™ plus a small surprise.

Bundles sell very well; all kinds of new bundles are expected to come.

The system should know how all these products are composed, in order to complete
various calculations.

Your Assignment
1 Modify the product part of the model in such away that the desired calculations
can be completed.

PRODUCT GROUP
Name

1 g .
| classification
1

classified for
as/i\

PRODUCT
#1d
* Name

5-22 Data Modeling and Relational Database Design

Practice 5—3: Bundles

2 Change the model in such away that it allows for:

A DecafPunch() consists of a regular decaffeinated coffee
or aregular decaffeinated tea, plus a blackberry muffin.

ORACLE 5-23

Lesson 5: Modeling Change

Practice 5—4: Product Structure

Goal

Moonlight Coffees
B The purpose of this practice isto model a hierarchical structure.

Scenario

Moonlight needs to make sales information available as atool to
optimizeitsbusiness. A hierarchical product structure is being developed to be able to
report on different summary levels. This hierarchical structure should replace the
single level product group classification. Below you see the current idea about a
product structure. This structure isfar from complete, but it should give you an idea of
the shape the structure will take. The + signs mean that the structure will be expanded
at that point.

Your Assignment
1 Create amodel for aproduct classification structure.

+ Products
— + Drinks
[—+ Coffees
-Regular
I-Cappuccino
-Café Latte
—+ Special Coffee
-Teas
-+ Black
Chinese
Indian
English
I+ Infusions
—+ Herbal
—Soft drinks
~Juices
Orange
Grape
[+ Waters
—+ Sodas
—+ Dairy Products
— +Foods
~+ Pastry
-+ Candy Bars
—+ Local Specialties
— +Non Foods
—Merchandise
CDs
+ Stationary
—Other
t+ Tickets
+ Art

5-22

2 (Optional) How would you treat the bundled products?

5-24 Data Modeling and Relational Database Design

Advanced Modeling
Topics

Lesson 6: Advanced Modeling Topics

Introduction

Lesson Aim

Thislesson gives an overview of patternsyou can discover in datamodels. Thislesson
introduces some generic models. You can use these to make your model withstand
future changes that are predictable but not yet known.

Objectives

Overview

* Patterns
* Drawing conventions
®* Generic modeling

6-2

Topic See Page
Introduction 2
Patterns 4
Master Detail 5
Basket 6
Classification 7
Hierarchy 8
Chain 10
Network 11
Symmetric Relationships 13
Roles 14
Fan Trap 15

6-2 Data Modeling and Relational Database Design

Introduction

Topic See Page
Data Warehouse 16
Drawing Conventions 17
Generic Modeling 19
Generic Models 20
Summary 23
Practice 6—1: Patterns 24
Practice 6—2: Data Warehouse 25
Practice 6—3: Argos and Erats 26
Practice 6—4: Synonym 27

At the end of this lesson, you should be able to do the following:

* Recognize common patterns in conceptual data models

* Know the general behavior, such as the common constraints, of these patterns
e Useparticular drawing conventions

» Create amore generic model for selected sections of a conceptual data model

ORACLE 6-3

Lesson 6: Advanced Modeling Topics

Patterns

Similar Structure

Many models contain parts that have a similar structure, although the context may be
completely different. For example, the structure of a conceptual data model in the
context of adictionary that deals with concepts such as headword, entry, meaning,
synonym is, surprisingly, almost identical to the structure of arailroad with track,
station, connection, and also to the structure of a baseball or soccer competition.

Easier to see are the similarities between, for example, ORDER HEADER with
ORDER ITEM and QUOTATION HEADER with QUOTATION ITEM, or between
MARRIAGE and JOB ASSIGNMENT.

Int -
-t
A

®* Similar structure

®* Similar rules and constraints?

Why Search for Similarities?

The main reason why it isimportant to look for similaritiesisthat it will save you
time. If you have solved a problem in a particular context and you can apply the
solution to another, it obviously savestime. Moreover, you will feel confident that you
know about the situation. It will help you to ask the right questions. It will help you
identify the really complex and unpleasant things and will prevent you from making
the same mistakes twice.

Are there similarities between marriage and job assignment? Of course, the business
rulesin the context of amarriage are different, because they are determined differently
compared to those of ajob assignment. But when you are aware of the similarities, you
can easily check if businessrules of thefirst context apply in the second, by asking, for
example:

e Can an assignment be for more than one job?

» Can someone have two assignments simultaneously? Unofficially?

* How does an assignment start? How does it end?

The following paragraphs discuss a series of patterns that you will encounter while
creating your models. For all these patterns you will see the characteristics and the
rules that usually apply.

6-4 Data Modeling and Relational Database Design

Master Detail

Master Detalil

Patterns: Master—Detalil

1 .
, consists
of

part of
° |
®* Characteristic: consists of
An instance of B only exists in the context of an A

* Metaphor: Master-Detail

6-3

Master-detail constructions are very common, as 1:m relationships are very common.
Distinguish between a 1:m relationship that is typically directed from the 1 to the
many and a relationship that is directed the other way around (see below). Master-
detail is characterized by the fact that the master A isdivided into B’s. B’s do not exist
alone; they are always in the context of an A.

It isvery rare that these relationships are transferable; if an instance of B is connected
to the wrong instance of A, it isfar more likely that the instance of B is deleted and
then recreated in the context of the correct A.

Typical master-detail relationship names:
» Consists of

e Divided into
« Made of
» (Exists) With

Often amaster A isof no value when it hasno B’s, for example, therelationship is
mandatory at the 1 side. This mandatory relationship end can usually be circumvented,
as you have seen before.

Implementation
The tables that come from this master-detail pattern should be considered as clustered.

ORACLE 6-5

Lesson 6: Advanced Modeling Topics

Basket

Pattern: Basket

:consists /
of ! 5
part of -
-

® Characteristic:
container for various types of items

* [tems may be of different types
®* Metaphor: Shopping Basket

6-4

A basket construction is aspecia case of amaster-detail pattern. A basket can contain
one or more things, but these things (often named: items) can be of different types. A
single item is aways of one type only. That isthe reason for the arc. The arc shows
that an item must be of one and only one of the types.

Data Modeling and Relational Database Design

Classification

Classification

Patterns: Classification

classifying:
/l\classified by
& |

* Characteristic: classified by, grouped by
Q exists independently, may be related

®* Metaphor: EMPLOYEE-DEPARTMENT

6-5

Thisisagain a 1:m relationship, but now the main orientation is from P to Q.

Thisistypically the case when Q can exist independently from P. Q actsas aclassfor
P, something with which to group P's.

Usualy entitiesin a conceptual data model have several of these classes.
Typical classification-type relationship names:

» Classfied by
» Grouped by
* Assignedto
e (Exists) In

The relationship is usually transferable as classifications may change over time.

ORACLE P

Lesson 6: Advanced Modeling Topics

Hierarchy

Patterns: Hierarchy

> - - - —
* >
o
———
I\
~ -~
i it

® Characteristic: manager of / subordinate of
* Additional constraints to guard hierarchical nature
* Metaphor: Mother—Child

6-6

Most hierarchical structures have aknown limit for the maximum number of levels. If
that is the case and the limit isalow number of 5, for example, then usually the best
model isthe onethat is shown in the |eft of the illustration, one entity per level.
Model the structure with the recursive relationship if:

* The structure has no known level limit.

» Thestructure has alevel limit, but the limit is high, say six or more.

* Aninstance of the structure can easily have achange of position, thus changing its
level.

* You like maintaining constraints.

Disputable or False Hierarchies

Often structures should be hierarchical but you cannot be sure. Sometimes they seem
hierarchical but actually are not so. You can have, for example, theis owner of
relationship between companies. Suppose company C, owns company C,, company
C, owns company Cs, could it be that company C; owns the shares of company C,?
Even if legislation would prohibit such strange constructions, would you be sure?

Many people see the parent/child relationship as a metaphor for a hierarchical
relationship. Clearly thisiswrong asachild usually has two parents and can have step-
parents as well.

6-8 Data Modeling and Relational Database Design

Hierarchy

Also the hierarchical structure of a FILE SY STEM with files and folders, which are
files of aparticular type, is a disputable hierarchy when you think of the concept of a
shortcut in Windows (or a Link in UNIX). These shortcuts transform the hierarchy
conceptually into a network although technically a shortcut and alink are just files
with a specia role.

Recursive Relationship and Optionality

Recursive relationshipsthat describe areal hierarchy are usually optional at both ends,
asthe hierarchy must start or end somewhere.

Constraints Applying to a Hierarchy

The recursive model, as you see in the centre of the illustration, only requires an
instance of A to refer to avalid instance of A. A, referring to A, isfine, according to
themodel. A, referring to Az and Ag referring to A, isfine aswell. These are the only
obvious diversions from areal hierarchy.

Constraints that apply in a hierarchical structure deal with safeguarding the hierarchy
and should prevent the table from containing the above kind of data.

Implementation

Thefirst constraint, A; may not refer to A4, and you can easily check thiswith an
Oracle check constraint. The others need some programming and lead to database
triggers.

Possibly you may have to check extrabusinessrules, for example, when the number of
levels may not exceed a given value.

ORACLE 6-9

Lesson 6: Advanced Modeling Topics

Patterns: Chain

TG
preceded ., N

by’ A
BEAD ,
#1d _-7
followed
by

BEAD
Mm # Segno

® Characteristic: preceded by / followed by

®* Sequence is important
®* Metaphor: Elephants

6-7

A Chain (of beads) can be regarded as a special kind of hierarchy. A chainisa
recursive relationship of an entity. The relationship of the chainisa1:1 relationship as
achainischaracterized by the fact that an object in the chain is preceded and followed
by one object at most.

A chain is a structure where sequence is of importance, for example, the sequence of
the pages in a chapter and of the chaptersin a document, of the critical pathin a
procedure, of the preferred road from A to B.

A chain can also be modeled as a master-detail. The recursive model allows an easy
insertion in the chain. The right-hand model with entity CHAIN and BEAD may need
to change the sequence numbers of all the beads behind the inserted one.

6-10 Data Modeling and Relational Database Design

Network

Patterns: Network

® Characteristic: pairs
Every A can be connected to every A
(sometimes: to every other A)

®* Metaphor: Web Document with Hyperlinks

6-8

Network structurestypically describe pairs of things of the same type, for example,
marriage, railroad track (pair of start and end stations), synonyms (two words with the
same meaning), and Web documents with hyperlinks to other Web documents.

Characteristics
Often:

» Them:m relationship must be resolved to hold specific information about the pair
such as the date of the marriage, or the length of the railroad track.

* Thetwo relationships of the intersection entity form the unique identifier.

» Time-related constraints apply in networks that must guard, for example, the kind
of rulesthat deal with “sequentially monogamous’.

» Thetwo relationships refer to different subtypes of the entity:

—

>.|__

0
i

Note that a hierarchy is a network where a particular set of business rules apply.

ORACLE 6-11

Lesson 6: Advanced Modeling Topics

Bill of Material

A specia example of anetwork structureis aBill of Material (BOM). A BOM
describes the way things are composed of other things, and how many of these other
things (here it is instances of PRODUCT) are needed. Entity COMPOSITION isthe
intersection entity with attribute Quantity Needed.

Bill of Material

product of
PRODUCT [yt <3

part in

COMPOSITION
* Quantity Needed

PRODUCTS COMPOSITIONS

6-12 Data Modeling and Relational Database Design

Symmetric Relationships

Symmetric Relationships

Symmetric recursive relationships cause a very specia kind of problem whichismore
complex than you would assume.

In most contexts arecord of apair (Aq, A,) has a different meaning when referred to
as (Ao, Aq). For example, if the model is about entity PERSON and the relationship is
mother of /daughter of, then the existence of person pair (P, P,) would mean the
exclusion of the possibility of pair (P,, P;).

The recursive relationship of PERSON and family of / family of. Here, if (P, P,) is
true, then (P,, P;) isequally true. Thisis called a symmetric relationship. There are
other symmetric recursive relationships such as. STATION directly connected by rail
with STATION,

Symmetric Relationships: Problem

When in asymmetric relationship the pair (S;, Sy) isvalid, the pair (S, S;) must be
valid aswell. Nevertheless, it would not make much sense to record both pairs as that
would essentially store the same information twice—which would oppose one of the
basic principles of database design.

But if we record only one pair, which should we record? And how would you know
which of the two pairs was used if someone else had recorded it?

Symmetric Relationships: Solution

A way which is often used to model these symmetric situations is based on the
following idea: think of (S, S;) as Groupy, (S, S4) as Group, and so on. Looking at
the relationship this way, you can say that a GROUP always consists of exactly two
instances of S. The model and the table implementation are shown below.

GROUP Group_id [S
#1d 1]s;
consists of 2 11S,
— 4
° 3| s,
3 -~

ORACLE 6-13

Lesson 6: Advanced Modeling Topics

Patterns: Roles

® Characteristic: is/is 1.m (or 1:1) relationships

* Metaphor: Person-Many Hats
(not necessarily concurrent...)

Roles often occur when a system needs to know more about people than the basic
Name/Address/City information. Modeling the roles as separate entities offers the
possibility to show which attributes are mandatory for a particular role, and, if
necessary, to show relationships between the various roles. The example below shows
that aperson in their role as president of a country can appoint a person in the role of
minister of a department. Possibly the words “presidency” and “ministership” are
closer to the concepts than the ones in the diagram.

| PERSONI ROLE
TYPE
] 1

A A
ROLE

roles

)
PERSON| _ ___{PRESIDENT | _ _[COUNTRY

appointing !
_\appointed by

| _ g MINISTER S - .DEPARTMENTI

| _ B PARTY _ |PARTY
LEADER —

6-14 Data Modeling and Relational Database Design

Fan Trap

® Characteristic: ring of m:m related entities
* Metaphor: ABC Combination

6-15

A Fan Trap (named after the characteristic shape of the solution) occurs when three or
more entities are related through m:m relationships and form aring. Usually you
should replace the relationships with a central entity having several m:1 relationships.
Preventing afan trap is similar to resolving a m:m relationship between two entities.

Why Traps Occur

Resolving the three m:m relationships results into three intersection entities, AB, BC
and AC. These will contain related pairs. Joining AB and BC may, however, result in
different information to what AC contains which you may have seen in practice 3-8.

Note there are various ways of avoiding thetrap, asisshown intheillustration. All can
be correct, depending on the context.

e CEsEm ()6 e
1 1 1

W R

ORACLE 6-15

Lesson 6: Advanced Modeling Topics

Data Warehouse

Patterns: Data Warehouse

B C i R
o, »
N A . A
J o\ Ve
R
F E m
® Characteristic: multidimensional, many, many
detail instances

®* Metaphor: star model
Stars may be strangely shaped:

> —
> —
> —

* Snowflake model

A datawarehouse system can be modeled as any system. Data warehouses contain the
same sort of information as any straightforward transaction processing information
system. Data warehouses usually contain less detailed, summarized, information as
warehouses are mainly built for overview and statistical analysis. However, Data
warehouses in genera receive the input from online transaction systems that do
contain details.

Data warehouses often have a star-shaped model: thisis made up of one central entity
(the facts) containing the condensed, summarized, information, and several
dimensions that classify and group the details.

Common dimensions represent entities such as:

 Time

» Geography

» Actor (for example, salesperson, patient, customer, instructor)
* Product (for example, article, medical treatment, course)

Often the dimensions are classified as well. Time may be structured in day, week,
month, quarter, year. You can classify products in various ways as you have seenin
earlier examples. If thisisthe case, the model is usually described as the Snowflake
model, asit looks like the crystal shape of a snowflake.

6-16 Data Modeling and Relational Database Design

Drawing Conventions

Drawing Conventions

Drawing Conventions

high volumes

}_
> —
D == - -
- >--
—<
--=----=<
—<

--—<

high volumes

Y—<

Not important which convention you choose,
as long as you follow one of them

6-18

Two drawing conventions are widely in use: one that positions the entities with the
high volumes at the top of the paper and one that does the opposite. Both try to avoid
crossing relationship lines, partially overlapping entities, and relationship lines that
cross entities. Whatever convention you choose, choose one and use it consistently.
Thiswill prevent errors and make the reading of large diagrams much easier.

Keep the overall structure of the layout unchanged during the modeling project as
many people are disoriented when you change the structure.

Make separate diagrams for every business area. These may have a different layout;
these diagrams are mainly used for communication with subject matter experts.

At the end of this course, you should be able to read models created in any drawing
convention, and you should be able to complete a model following any convention
used.

ORACLE 6-17

Lesson 6: Advanced Modeling Topics

Use Conventions Sensibly

=2 0 53

But:
Readability first

The major goal of creating the diagram (but not the model) isto give arepresentation
of the model that can be used for communication purposes. This means that you must
never let a convention interfere with readability and clarity. Do not be concerned that
readability takes space. Usually an entity model is represented by several diagrams
that show only the entities and relationships that deal with a particular functional part
of the future system. Splitting the model over various diagrams adds to the readability.

Model Readability

o

>

* Takes space

®* Subject to taste

6-20

6-18 Data Modeling and Relational Database Design

Generic Modeling

Generic Modeling

Generic Modeling

MANUFACTURER MANUFACTURER | ARTICLE
* Name * Name TYPE
7
| I
A 1o
. /I\ /1\

B A
A

ARTICLE

o Weight

o Focal Distance
o Height

o Asa Number
© aoo

_—— e = = = =

6-21

What is Generic Modeling?

Generic modeling islooking at the same context from another, more distant
perspective. From a distance many things looks the same.

Suppose you are to make amodel for a photographer’s shop. The business typically
sells many different articles, for example, camera bodies, compact cameras, lenses,
films. For each type of article, there are between, say, 10 and 500 different types. You
can model every type as an entity, for example, CAMERA BODY, LENS, FILM.

You could also model them all as subtypes of the entity ARTICLE, or al asjust
ARTICLE, without the subtypes.

This, however, would not work. For example, thereis the fact that every now and then
new kinds of articles are stocked in the shop. Every time this happensit leads to a new
entity with its own attributes in the model.

The model with entity ARTICLE would only be aworkable model if there were no (or
possibly only very few) new instances of ARTICLE TY PE during the life cycle of the
system.

ORACLE 6-19

Lesson 6: Advanced Modeling Topics

Generic Models
More generic models are shown below. They may be useful in particular situations.

ARTICLE TYPE
* Definition Propl

ARTICLE

o Definition Prop2 o llerperty;.
o Definition Prop3 < z P:gggrr:yys

o Definition Prop4

o Property4
o Property5
o Property6

Property7
MANUFACTURER -

Recycling of Attributes You can usethismodel if it is safe to assume the articles
will have alimited number of attributes. This limit may be a high number but must be
set beforehand. Propertyl may contain the Asa Number for instances of ARTICLE of
TYPE Film and may contain Weight for instances of ARTICLE of TYPE Camera
Body and so on. The major advantage of this model is the possibility of adding new
instances of ARTICLE TY PE without the need to change the model.

The type of information that should be entered for Property1, Property2, and so on can
be described by using, for example, the Definition Propl, attributes of ARTICLE
TYPE. Here you can also store information about the data type of these properties.

ARTICLE TYPE

/1\
PROPERTY

ARTICLE PROPERTY VALUE
o Value

Attributes M odeled as PROPERTY Instance This model takes another approach.
Every value for aPROPERTY of an ARTICLE is stored separately. This model gives
alot of freedom to define new articles and properties during the life cycle of the
system.

6-20 Data Modeling and Relational Database Design

More Generic Models

More Generic Models

Everything is a “Thing”
The world isfull of things that may be related to things:

having some kind of _
relationship with »~ "~ ~ .
1

7
‘having some kind of
relationship with

Resolving the m:m relationship:

THING
- __|< ASSOCIATION
- -4

Now add some definition information:

THING
TYPE BIEPZ ASSOCIATION
TYPE
- -4
1
1
| 1

[\
- _.|.< ASSOCIATION

6-26

Thisisarather generic model. In fact, it isamodel of the universe and beyond. Note
that the number of attributes for entity THING may be substantial.

ORACLE 6-21

Lesson 6: Advanced Modeling Topics

Most Generic Model

THING TYPE - _.|.< ASSOCIATION
TYPE
- 44
I

I

1 I

I

AN
A - - ASSOCIATION
PROPERTY +<
]
1 1

THING PROPERTY VALUE

6-27

Thismodel combines the concepts of “thing” and the property/property value and thus
allows everything to be represented with a free number of properties per type.

Value of Generic Modeling

The use of generic modeling is mainly to reduce to a minimum the number of possible
future changes of the conceptual data model. This can be an enormous advantage asiit
cuts maintenance costs during the lifetime of a system. The other side of the coinis
that the initial coding of the programs is more complex as the entities are not “down-
to-earth” things.

Best of Two Worlds

In many models you would use a mix of the easy-to-understand, straightforward
entities and the more generic thing-like entities.

o]
T

x’x’x’ff’fx’x’x’x’x’x’x’x’x’f
ng%ﬁﬁ;fffgffzf

,,,,,,, e
ORDER HEADER |

ol Wx" 37;-‘" e
.
/ﬁ ﬁézﬂz{gﬁ;ﬁ ,

" RITEM [P

e _'.'"
f’f;“f‘?r'z‘"rrﬁf;"

-

o
)
R

R
R
S|

O
2y
W,
I

)
|

'
e
=
=
=
e
=
=
=
=
e
=
.

&
=
<,

3
s
S

6-22 Data Modeling and Relational Database Design

Summary

Summary

* Patterns
— Show similarities
— Invent your wheel only once
®* Generic models
— Reduce the number of entities dramatically
— Are more complex to implement
— Arevery flexible

— Are usually the best choice in unstable
situations

Thinking in terms of patterns forms a valuable way of doing quality checks on a
conceptual data model. Often constraints and considerations in one context can be
transferred to the other context with a simple translation.

Using adrawing convention in your models helps to improve readability and clarity.
Thismay prevent mistakes and inaccuracies.
Generic modeling can prevent the need to change data structures in the future and can

reduce the number of tables and programs dramatically. The priceis increased
complexity in both data model and programs.

ORACLE 6-23

Lesson 6: Advanced Modeling Topics

Practice 6—1: Patterns

Goal
The purpose of this practice is to predict the main pattern in a given context.

Your Assignment

What pattern do you expect to find in the given contexts? If you do not see it, make a
quick sketch of the model. Use your imagination and common sense.

Practice: Patterns

®* Model of moves in a chess game
* Model of tenders (quotations)
* Model of recipes

* Model of all people involved in college: students,
teachers, parents, ...

* Rentals in avideo shop
®* Model of phases in a process

6-31

6-24 Data Modeling and Relational Database Design

Practice 6—2: Data Warehouse

Practice 6—2: Data Warehouse

Moonlight Coffees Goal
5 B |n this practice you create a conceptual data model for a data
. @ , warehouse for Moonlight Coffees Inc.
Scenario

Moonlight wants to build a data warehouse based on the detailed sales figures the
shops report back on adaily basis. Examples of questions Moonlight wants the data
warehouse to answer are printed below.

*What is the sales volume in $ of coffee last month compared with the coffee sales
volume same month last year?

*What is the sales volume in $ of coffee per head in Japan compared with the
average coffee sales volume in the Moonlight countries around the world?

*What is the growth of the sales volume in $ of coffee in Sweden compared with the
growth of sales volume of all products in the same geographical area? What is the
growth in local currency?

*What was the total sales volume in $ of coffee last month, compared with the total
coffee sales volume in the same month last year, for the shops that have been open
for at least 18 months?

*What is the growth of the sales volume in $ of nonfoods compared to that of foods?

*What is the best day of the week for total sales in the various countries? How is that
related to the average? Is the best day of the week dependent on the type of
location?

*What products are most profitable per country? Globally?
*Does the service level (#employees per 1000 items sold) have influence on sales?

6-32

Your Assignment

1 Check the Moonlight models you created so far. Do they cater for answering the
listed questions. If not, make the appropriate changes.

2 For adatawarehouse data model, suggest the central “facts’ entity.

ORACLE 6-25

Lesson 6: Advanced Modeling Topics

Practice 6—3: Argos and Erats

Goal

When you model information, you make alot of assumptions, often without being
aware of this. Most of these assumptions are likely to be correct asthey are usualy
based on experience in similar contexts or common.

This practice helps to increase your awareness of this.

Scenario

The scenario for this practice is Stranger in a Strange Land. Lost in Darkness. The
Wanderer in the Mist. You nameit!

Your Assignment

Make a conceptual datamodel based on theinformation in the text. Mark all the pieces
in the diagram that can be confirmed from the text.

"Erats have names that are unique. Erats can have argos.
Argos have names as well. The name of an argo must be
unique within the erat it belongs to. Erats mutually have
rondels. There are only a few different types of rondels. Erats
can have one or more ubins. A ubin always consists of one or
more argos of the erat, one or more rondels of the erat, or
combinations of the two."

6-26 Data Modeling and Relational Database Design

Practice 6—4: Synonym

Practice 6—4: Synonym

Scenario

A synonym s, according to adictionary, “aword having the same meaning with
another (usually almost the same).”

Examples:

practice - exercise
order - command
entity - being

order - sequence
order - arrangement
Command - demand

Your Assignment
Make a conceptual data model that could be the basis for a dictionary of synonyms.

ORACLE 6-27

Lesson 6: Advanced Modeling Topics

6-28 Data Modeling and Relational Database Design

Mapping the ER Model

Lesson 7: Mapping the ER Model

Introduction

Lesson Aim

This lesson describes some principles of relational databases and presents the various
techniques that you can use to transform your Entity Relationship model into a
physical database design.

Overview

®* Why use design modeling?

* Introduction to the components:
— Tables
— Columns
— Constraints

* Basic Mapping

* Complex mapping

7-2
Topic See Page
Introduction 2
Why Create a Database Design? 4
Transformation Process 6
Naming Convention 8
Basic Mapping 12
Relationship Mapping 14
Mapping of Subtypes 20
Summary 30
Practice 7-1: Mapping basic Entities, Attributes and 31
Relationships
Practice 7—2: Mapping Supertype 32

7-2 Data Modeling and Relational Database Design

Introduction

Topic See Page
Practice 7—3: Quality Check Subtype Implementation 33
Practice 7—4. Quality Check Arc Implementation 34
Practice 7—5: Mapping Primary Keys and Columns 35

Objectives

At the end of this lesson, you should be able to do the following:

» Explain the need of a physical database design

» Know the concepts of the relational model

» Agreeon the necessity of naming rules

» Perform abasic mapping

Decide how to transform complex concepts

ORACLE

Lesson 7: Mapping the ER Model

Why Create a Database Design?

The Entity Relationship model describesthe datarequired for the business. Thismodel
should be totally independent from any implementation considerations. This same ER
model could aso be used as a basis for implementation of any type of DBMS or even
afile system.

Why Create a Data Design Model?

* Closer to the implementation solution

* Facilitates discussion

* Ideal model can be adapted to an RDBMS model
* Sound basis for physical database design

7-3

A New Sarting Point An Entity Relationship model is a high-level representation
which cannot be implemented asiis.

Peopl e creating these models may not be aware of physical and database constraints,
but they still have to provide a conceptually “workable” solution. Thisiswhy itis
important to have a validated and agreed ER model before going into the physical
database design.

Transforming the ER model, creates a“first-cut” database design. Thisfirst-cut design
isintended to serve as anew basis for defining the physical implementation of the
database.

This new model can easily be used for further discussions between designers,
developers, and database administrators.

7-4 Data Modeling and Relational Database Design

Why Create a Database Design?

Presenting Tables

Tables are supported by integrity rules that protect the data and the structures of the
database. Integrity rulesrequire each table to have a primary key and each foreign key
to be consistent with its corresponding primary key.

Presenting Tables

Table: EMPLOYEES

ﬁ columns * * +

Id | Name Address Birth date|Dpt id
126[/PAGE |12, OXFORD ST| 03-03-66 10
rows 349| PAPINI |53, HAYES AVE| 10-08-77 20
785| GARRET 08-12-55 10
primary keyT A uniquekey A Tforeign key
EMPLOYEES (EPE)
Table diagram: EMPLOYEES [Pt |+ [19
g : uk, | * | Name ’_
o | Address foreign
uky [+ [Birth_date key
fk | + | Dpt_id

7-4

Tables A tableisavery simple structure in which datais organized and stored.
Tables have columns and rows. Each column is used to store a specific type of value.
In the above example, the EMPLOY EES table is the structure used to store
employees’ information.

Rows Each row describes an occurrence of an employee. In the example, each row
describesin full all properties required by the system.

Columns Each column holds information of a specific type like Id, Name, Address,
Birth Date, and the Id of the department the employee is assigned to.

Primary keys Theld columnisaprimary key, that is, every employee has a unique
identification number in this table which distinguishes each individual row.

Unique keys Both columns Name and Birth_date are associated with a Unique key
constraint which means that the system does not allow two rows with the same name
and Birth_date. This restriction defines the limits of the system.

Foreign keys Theforeign key column enablesthe use of the Dpt_id valueto retrieve
the department properties for which a specific employee isworking.

ORACLE 7-5

Lesson 7: Mapping the ER Model

Transformation Process
Using transformation rules you create a new model based on the conceptual model.

Transformation Process

Conceptual Model

T.
/

Relational Model

7-5

Conceptual Model The way you can describe requirements for the data business
requires using a semantically rich syntax through graphical representation. As you
have seen in previous chapters, you can describe many of the business rules with
graphical elements such as subtypes, arcs, and relationships (barred and
nontransferable ones). The only constraintsin expressing business complexity that you
have encountered so far are the graphical limitations. We know that this model acts as
ageneric one, because it is not related to any physical considerations. Therefore you
can use it for any type of database. Nevertheless, it may be that the DBMS type you
want to use (relational or others) does not support all of the semantic rules graphically
expressed in your ER model.

Relational Model The Relational model is based on mathematical rules. This means
that when you try to fit all of the syntax from the ER model into the physical database
model, some of it may not have any correspondence in the relational model. To
preserve these specified rules, you have to keep track of them and find the correct way
to implement them.

7-6 Data Modeling and Relational Database Design

Transformation Process

Terminology Mapping

Terminology Mapping

ANALYSIS DESIGN

ER Model Physical Design

Entity — 3 Table
Attribute ———» Column

Primary UID ———————» Primary Key

Secondary UID — Unique Key

Relationship ——» Foreign Key

Business Constraints ——» Check Constraints

7-6

Changing from analysis to design also means changing terminology.

Using avery smple basis:

* Anentity leadsto atable.

* An attribute becomes a column.

e A primary unique identifier produces a Primary key.

* A secondary unique identifier produces a Unique key.

» A relationship is transformed into a Foreign key and foreign key columns.

* Constraints are the rules with which the database must cope to be consistent. Some
of the businessrules are trandated into Check Constraints, other complex ones
require additional programming and you can implement them at client side or
server side or both.

Thisinitial mapping of an ER model islimited to the design of tables, columns, and
constraints that can be declared. A declarative constraint is a business constraint that

can be ensured at the server level using database language statements only and
requires no coding.

ORACLE -7

Lesson 7: Mapping the ER Model

Naming Convention

Before transforming the ER diagram you probably need to define a naming convention
so that people working on the project use the same standards and produce the same
model from the same source. Rules explained here are the ones used within Oracle.
Even though they are efficient, they are not the only ones that you can use. You or
your company can provide the company’s own standard as part of its method.

General Naming Topics

Decide on a convention for:

* Table names

* Special characters (%, *, #, -, space, ...)

* Table short names

* Column names

* Primary and Unique Key Constraint names
* Foreign Key Constraint names

* Foreign Key Column names

7-7

Naming of Tables

The plural of the entity name is used as the corresponding table name. Theideaisthat
the Entity is the concept of an abstract thing—you can talk about EMPLOY EE,
CUSTOMER, and so on, so singular isagood naming rule, but atable is made up of
rows (the EMPLOY EES table, or CUSTOMERS table) where the plural is more

appropriate.

Naming of Columns

Column names are identical to the attribute names, with afew exceptions. Replace
special characters with an underscore character. In particular, remove the spaces from
attribute names, as SQL does not allow spaces in the names of relational elements.
Attribute Start Date convertsto column Start_date; attribute Delivered Y/N transforms
to Delivered y n (or preferably Delivered Ind). Often column names use more
abbreviations than attribute names.

7-8 Data Modeling and Relational Database Design

Naming Convention
Short Names

A unique short name for every table isavery useful element for the naming of foreign
key columns or foreign key constraints. A suggested way to make these short namesis
based on the following rules:

* For entity names of more than one word, take the:

— First character of the first word.

— First character of the second word.

— Last character of the last word.

For example entity PRICED PRODUCT produces PPT as a short table name.
» For entity names of one word but more than one syllable, take the:

— First character of thefirst syllable.

— First character of the second syllable.

— Last character of the last syllable.

For example EMPL QY EE gives EPE as a short name.
» For entity names of one syllable, but more than one character, take the:

— First character.

— Second character.

— Last character.

For example FLIGHT gives FLT.

This short name construction rule does not guarantee unigueness among short names
but experience has proved that duplicated names are relatively rare.

In case two short names happen to be the same, just add a number to the one that is
used less often giving, for example, CTR for the most frequently used one and then
CTR1 for the second one.

Naming of Foreign Key Constraints
The recommended rule for naming foreign key constraintsis
<short name of the fromtable> _ < short name of theto table> _ < fk>.

For example, aforeign key between tables EMPLOY EES and DEPARTMENT results
in constraint name epe_dpt_fk.

Naming of Foreign Key Columns

Foreign key columns are prefixed with the short name of the table they refer to. This
leads to foreign key column names like dpt_no. Limiting the attribute name to 22
characters enables you to add two prefixes plus two underscores to the column name.
This may occur in the event of cascade barred relationships. Thisis discussed later in
the lesson.

ORACLE 7-9

Lesson 7: Mapping the ER Model

Multiple Foreign Keys Between Two Tables

If there are two (or more) foreign keys between two tables then the foreign keys and
foreign key columns would be entitled to the same name. In this situation, add the
name of the relationship to both foreign key names. Do the same with the foreign key
columns. Thisway you will never mistake one foreign key for the other.

For example, in the model of Electronic Mail entity LIST ITEM has two relationships
with ALIAS (one of them is at the subtype level). The naming would result in the two
foreign key names: lim_als in and lim_als referring_to. The foreign key columns
would be named Als_id_in and Als_id_referring_to.

Naming of Check Constraints

Check Constraints are named <table short name>_ck_<sequence_number>, such as
epe _ck 1, epe ck_2for thefirst and second check constraint on table EMPLOY EES.

Naming Restrictions with Oracle

Each RDBMS can have its own naming restrictions. You need to know if the
convention you decide to use is compatible with it.

Naming Restrictions with Oracle

®* Table and column names:
— Must start with a letter
— May contain up to 30 alphanumeric characters
— Cannot contain space or special characters

®* Table names must be unique within a schema.

®* Column names must be unique within a table.

7-8

* You can use any apha-numeric character for naming tables and columns aslong
asthe name:

— Startswith aletter.
— Isupto 30 characters long.
— Doesnot include specia characterssuch as“!” but “$",’#’ and “_” permitted.

7-10 Data Modeling and Relational Database Design

Naming Convention

» Table names must be unique within the schemathat is shared with views and
synonymes.

* Within the same table two columns cannot have the same name.

* Beaware also of the reserved programming language words that are not allowed

for naming objects. Avoid names like:

— Number

— Seguence

— Vaues

— Level

— Type

for naming tables or columns. Refer to the RDBMS reference books for these.

ORACLE

Lesson 7: Mapping the ER Model

Basic Mapping

Entity Mapping

Before going into complex transformation we will look at the way to transform simple
entities.

Basic Mapping

1 - Entities

2 - Attributes

3 - Unique identifiers Table Name: EMPLOYEES
Short Name: EPE

U EMPLOYEE EMPLOYEES (EPE)
uiD #1d pk | *]id
—— T[] uk, | * | Name
o Address o | Address
M. « Birth Date uky | * [Birth_date
Secondary
uiD

7-11

1 Transform entitiesinto tables using your own naming convention or the one
previously described.

In this example the entity EMPLOY EE produces a table name EMPLOY EES and
ashort name EPE.

Use a box to represent tables on a diagram.

2 Each attribute creates a column in the table and the characteristics such as
mandatory or optional have to be kept for each column. Using the same notation
“*" or “0” facilitates recognition of these characteristics on adiagram.

3 All unique identifiers are transformed. A primary unique identifier is transformed
into a Primary key. The notation “pk” next to the column name indicates the
Primary key property. If more than one column is part of the primary key, use the
“pk” notation for each column.

You need to implement secondary unique identifiers, even if they do not appear on
your ER diagram. To preserve this property, secondary UIDs are transformed as
unique keys. In the above example, the values for the combination of two columns
must be unique. They belong to the same unique key and each column has a uk4
notation to indicate this. If, in future, another unique key comesto exist for that table,
it would be notated as uk.

7-12 Data Modeling and Relational Database Design

Basic Mapping

Rules for Relationships

Rules for Relationships

EMPLOYEE
#1d

DEPARTMENT

* Name #1d

o Address
* Birth Date

* Name

fk, = epe_epe_fk: :
EMPLOYEES (EPE) :

pk| « [Id -
* [Name DEPARTMENTS (DPT)
tk,| + | Dpt_id ok |+ id
fky| o |Epe_id fk, = epe_dpt_fk |uk | * |[Name
7-12

Foreign Key Columns. A relationship creates one or more foreign key columnsin
the table at the many side. Using previous naming rules, the name of this foreign key
column is Dpt_id for the relationship with Department and Epe_id for the recursive
relationship. This ensures that column names such as Id, coming from different tables,
still provide a unique column name in the table.

Depending on whether or not the relationship is required, the foreign key column is
mandatory or optional.

Foreign Key Constraints: Theforeign key constraints between EMPLOY EES and
DEPARTMENTS isepe dpt_fk. The recursive one between EMPLOY EES and
EMPLOYEES s called epe_epe fk.

ORACLE 7-13

Lesson 7: Mapping the ER Model

Relationship Mapping

Mapping of One-to-Many Relationships

As previously mentioned, some of the meaning that is expressed in an ERD cannot be
reproduced in the physical database design.

Mapping 1:m Relationships

____< XS
- <
———< fk |o [Y_id

—_—— _< XS
—_< fk |* |v_id

A relationship in an ER Diagram expresses the rules that apply between two entities,
from two points of view. The notation used in the ERD isrich enough to tell, for
example, that the relationship is mandatory on both sides. The illustration shows that
the 1:m relationships that are mandatory at the one side are implemented in exactly the
same way as the ones that are optional at the one side. This means that part of the
content of the ER model islost during transformation, due to the relational model
limitations. You need to keep track of these incomplete transformations; they must be
implemented using a mechanism other than a declarative constraint.

Mapping of Mandatory Relationship at the One Side

In case of the implementation of arelationship that is mandatory at the one side you
need to check two things.

* You cannot create any master record without at least one detail record.

* When deleting details you must be sure that you do not delete the last detail for a
master record, or alternatively, you must delete the master record together with its
last detail .

7-14 Data Modeling and Relational Database Design

Relationship Mapping

You can implement code to check this on the server side or on the client side. In an
Oracle environment this was usually done at the client side. Since Oracle 8, on the
server side Oracle offers implementation possibilities that were not available in
previous releases.

Optional Composed Foreign Keys

When aforeign key is made of two or more columns, and the foreign key is optional,
al foreign key columns must be defined as optional. Note that if you enter avaluein
one of the foreign key columns, but not in the other one, Oracle will not fire the
foreign key constraint check.

You would need additional code to check that either all or none of the foreign key
columns have a value, but exclude the possibility of a partially-entered key.

Mapping of Nontransferable Relationships

Mapping Barred and Nontransferable
Relationships

XS () YS(Y)
pk [* | 1d fk=y x_fk pk |* [Id
et — o | |0
* |1 C2

This relationship property does not migrate to the physical database design because it
has no natural counterpart in an RDBMS, although you can code a solution at the
server side. In the example, you would create an update trigger at table Y S that fails
when the foreign key column X _id is updated.

Mapping Barred Relationships

A barred relationship, like any other relationship, is mapped into aforeign key. The
foreign key column is also part of the primary key, and thus plays a double role.

ORACLE 7-15

Lesson 7: Mapping the ER Model

Mapping of Cascade Barred Relationships
A Cascade Barred relationship may lead to long column names as the illustration

shows.
Mapping Cascade Barred Relationships
AS (A) BS (B) CS () DS (D
pk [*|Id pk | *|Id pk |*|Id pk | *|I1d
*1c1 *|Cc2 *|C3 x| C4
fkopk) * [A_id] - fic,pk|* |B_id fk [*|Cid
fk=b_a_fk fk,pk|* |B_a_id]E'; :(f—_-bz'd\
fk = c_b_fk | < ~
T fk =d_c_fk
7-15

To avoid column names that could end up with more than 30 characters, the suggested
convention is never to use more than two table prefixes.

The usual choice for the foreign key column namesis:

<nearest by table short name> _ <farthest table short name> _ <column name>

In the above example the foreign key column in DS that comes all the way from AS
through BSand CSisnamed C _a idinstead of C b a id.

As the short names are usually three characters|ong, this rule explains why attribute
names should not have more than 22 characters.

Data Modeling and Relational Database Design

Relationship Mapping

Mapping of Many-to-Many Relationships
When transforming a many-to-many relationship, you create an intersection table.

Mapping m:m Relationships

=

XS YS
pk| * | 1d pk Z Id
«|c1 X_YS c2

pk.fka[* | X_id

< pk.fk2|* [Y
fkl =xy _x_fk

Y_i .
fk2 =xy_y fk

7-16

The intersection table contains all the combinations that exist between XSand Y S.

» Thistable has no columns other than foreign key columns. These columnstogether
form the primary key.

* Therulefor naming thistableis short name of thefirst table (in aphabetical order)
and full name of the second one. This would give a many-to-many relationship

between tables EMPLOY EES and PROJECTS an intersection table named
EPE_PROJECTS.

* Whether the relationship was mandatory or not, the foreign key columns are
always mandatory.

Notethistableisidentical (except, possibly, for its name) to the table that would result
from an intersection entity that could replace the m:m relationship.

ORACLE 17

Lesson 7: Mapping the ER Model

Mapping of One-to-One Relationships

Mapping 1:1 Relationships

U (X) fk=y x fk pk * |1d
pk| * |[Id ‘ * [c2
c fik,uk| |X_id

Choose which side for FK for other cardinalities

7-17

When transforming a one-to-one relationship, you create aforeign key and a unique
key. All columns of thisforeign key are also part of aunique key.

If the relationship is mandatory on one side, the foreign key is created at the
corresponding table. If the relationship is mandatory on both sides or optional on both
sides, you can choose on which table you want to create the foreign key. Thereisno
absolute rule for deciding on which side to implement it.

If the relationship is optional on both sides you may decide to implement the foreign
key in the table with fewer numbers of rows, as this would save space.

If the relationship is mandatory at both ends, we are facing the sasme RDBMS
limitation you saw earlier. Therefore, you need to write code to check the mandatory
one at the other side, just as you did to implement m:1 rel ationships that are mandatory
at the one end.

Alternative Implementations

A 1:1 relationship between two entities can be implemented by asingle table. Thisis
probably the first implementation to consider. It would not need aforeign key
constraint.

A third possible implementation isto create an intersection table, asif the relationship
was of type m:m. The columns of each of the foreign keys of the intersection table
would be part of unique keys as well.

7-18 Data Modeling and Relational Database Design

Relationship Mapping

Mapping of Arcs

Mapping Arcs

Explicit implementation

D

AN 4

a
N

~/

A fk1 = lim_x_fk

A\ >4

USERS (USR)
LIST_ITEMS (LIM) ~ 12 = im_ust 1k [pk[* [1d
pk,fk, [*] X_id ’J * | Name
fk o| Usr_id
fk§ o| Als id >0 ALIASES (ALS)
—/ k3 =lim_als_fk |pk|* |Id

+ check constraint

7-18

Thefirst solution illustrated above shows that there are as many foreign keys created
asthere are relationships. Therefore arule must be set to verify that if one of the
foreign keys is populated, the others must not be populated (which is the exclusivity
principle of the relationshipsin an arc) and that one foreign key value must aways
exist (to implement the mandatory condition).

From a diagram point of view, all foreign keys must be optional, but additional code

will perform the logical control. One solution on the server side isto create a check
constraint at LIST_ITEMSasis:

CHECK (usr_id IS NOT NULL
AND als_id IS NULL)
OR (usr_id IS NULL

AND als id IS NOT NULL) .

This controls the exclusivity of mandatory relationships.
In case the relationships are optional, you need to add:

OR (usr_id IS NULL AND als id IS NULL)
An other syntax that is often used:

DECODE (usr_ id,NULL,O0,1)
+ DECODE (als_ id,NULL,0,1)=1;
(or =<1 for optional relationship) .

You can also map arcsin adifferent way using the generic arc implementation. Thisis
a historical solution that you may encounter in old systems. You should not useitin
new systems. It is discussed in the lesson on Design Considerations.

ORACLE 7-19

Lesson 7: Mapping the ER Model

Mapping of Subtypes

In mapping subtypes, you must make a choice between three different types of
implementations. All three are discussed in detail.

Mapping Subtypes
Variety of implementation choices
P - -
#1d
* XXX
Q > - * Supertype
% * Subtype

Both Supertype
R
S - - ' and Subtype (“Arc”)

]

7-19

Supertype Implementation

This choice produces one single table for the implementation of the entities P, Q, and
R. The supertype implementation is also called single (or one) table implementation.

Rules
1 Tables:
— Independent of the number of subtypes, only one single table is created.
2 Columns:
— Thetable getsacolumn for all attributes of the supertype, with the original
optionality.
— Thetable also gets a column for each attribute bel onging to the subtype but the
columns are all switched to optional.

— Additionally, amandatory column should be created to act as a discriminator
column to distinguish between the different subtypes of the entity. The value it
can take is from the set of all the subtype short names (DBE, DBU in the
example). Thisdiscriminator column is usually called <table_short _name> _
type, in the example Dba_type.

3 ldentifiers:

— Uniqueidentifiers transate into primary and unique keys.

7-20 Data Modeling and Relational Database Design

Mapping of Subtypes

— Uniqueidentifiers at subtype level usually trandlate into a unique key or check
constraint only.

Supertype Implementation

PS (P)
pk |*|Id
* [Xxx »—
o|Yyy
0 |Zzz
fk, |*|A id '
Mandatory o 2 E—'S,pe
discriminator =~ = =
column |
* Additional

constraints

7-20

4 Relationships:

— Relationships at the supertype level transform as usual. Relationships at
subtype level are implemented as foreign keys, but the foreign key columns all
become optional.

5 Integrity constraints:

— For each particular subtype, all columns that come from mandatory attributes
must be checked to be NOT NULL.

— For each particular subtype, all columns that come from attributes or
relationships of other subtypes must be checked to be NULL.

Note: You may avoid the use of the discriminator column if you have one
mandatory attribute in each subtype. The check is done directly on these columns to
find out what type a specific row belongsto.

When to Consider Supertype Implementation

The single table implementation is a common and flexible implementation. It isthe
oneyou are likely to consider first and is specially appropriate when:

* Most of the attributes are at the supertype level.
* Most of the relationships are at the supertype level.
» Thevarious subtypes overlap in the required functionality.

ORACLE 7-21

Lesson 7: Mapping the ER Model

» The access path to the data of the various typesis the same.
* Businessrulesare globally the same for the subtypes.

» The number of instances per subtype does not differ too much, for example, one
type having more than, say, 1000 times the number of instances of the other.

* Aninstance of one subtype can become an instance of another, for example,
imagine an entity ORDER with subtypes OPEN ORDER and PROCESSED
ORDER, each subtype having its own properties. An OPEN ORDER may
eventually become a PROCESSED ORDER.

Additional Objects

Usually you would create aview for every subtype, showing only the columns that
belong to that particular subtype. The correct rows are selected using a condition based
on the discriminator column. These views are used for all data operations, including
inserts and updates. All applications can be based on the view, without |oss of
performance.

The supertype table plus subtype views is an elegant and appropriate implementation
and should be considered asfirst choice.

Consequences for Tables Based on K and L
The foreign key in the table based on K is straightforward.

The foreign key of the table based on L is more complex. The supertype
implementation would mean that the foreign key refersto avalid P, not to the more
limited set of R's. This must be checked with an additional constraint.

7-22 Data Modeling and Relational Database Design

Subtype Implementation

Subtype Implementation

This subtype table implementation (often loosely referred to as two-table
implementation) produces one table for each of the subtypes, assuming there are only
two subtypes, such as Q and R.

Subtype Implementation

P QS (Q
#1d "_<| I pk |*| 1d q_a_fk
* XXX };

* Xxx

o Yyy
fk |*| A_id
RS (R)
ok [*] Id ' fk,=r_a_fk

Zzz | fk,=r_b_fk

_..
~
&
* X 4%
>
o

B_id

Rules
1 Tables:
— Onetable per first level subtype.
2 Columns:
— Each table gets a column for all attributes of the supertype, with the original
optionality.
— Each table also gets a column for each attribute belonging to the subtype, also
with the original optionality.
3 ldentifiers:

— The primary unique identifier at the supertype level creates a primary key for
each of the tables. Alternatively, if the subtypes had their own UID, thisone
are used as the basis for the primary key.

— Secondary identifiers of the supertype become unique keys within each table.
4 Relationships:

— All tables get aforeign key for arelationship at the supertype level with the
original optionality.

ORACLE 7-23

Lesson 7: Mapping the ER Model

— For the relationships at the subtype levels, the foreign key isimplemented in
the table it is mapped to. The original optionality is retained.

5 Integrity constraints:

— No specific additional checks are required. Only when the Id values must be
unique across all subtypes would it need further attention.

When to Consider a Subtype Implementation

You can regard this implementation as a horizontal partitioning of the supertype. It

may be appropriate when:

* Theresulting tables will reside in different databases (distribution). This may
occur when different business locations are only interested in a specific part of the
information.

* When the common access paths for the subtypes are different.

» Subtypes have almost nothing in common. This may occur when there are few
attributes at the supertype and many at the subtype levels. An example can be
found in the Electronic Mail model. Entity ADDRESS has two subtypes. MAIL
LIST and ALIAS. These subtypes only share the fact that they can be used as
addressee for amessage, but their other properties are completely different.

* Most of therelationships are at the subtype level. Thisisthe case especidly if both
tables are to be implemented in different databases, and the foreign key integrity
constraint for the supertype may not be verified in all cases.

» Business functionality and business rules are quite different between subtypes.

» Theway tablesare used isdifferent, for example, one table being queried while the
other oneis being updated. A one-table solution could result in performance
problems.

* The number of instances of one subtypeisvery small compared to the other one.

Additional Objects

Usually you would create an additional view that represents the supertype showing all
columns of the supertype and various subtypes. The view select statement must use the
union operator. The view can be used for queries only, not for data manipulation.

Consequences for Tables Based on K and L

The foreign key in the table based on L is straightforward and should refer to the table
based on R.

The foreign key of the table based on K is now more complex. This must be
implemented as two optional foreign keys, one to each of the tables based on Q and R.

An extracheck is needed to make sure that both foreign keys do not have avalue at the
same time; thisisidentical to an ordinary arc check.

7-24 Data Modeling and Relational Database Design

Subtype Implementation

Both Supertype and Subtype “Arc” Implementation

Supertype and Subtype (Arc) Implementation
5 PS (P) E—
#1d -- —é[j pk |+]1d
*X % | XXX »—

o fky,uk, [o | Q_id Lk3a= o
- fk,,uk,| o | R_id _a_
>)|
R B \X cv\J
* 777 - #1d fk, = fky=
1 p_q_fk p_r fk
1
C] Q5 (Q RS (R)
pk [*[1d | |pk [*|Id r_b_fk
o | Yyy *| 777 »_
fk |[*]| B id
7-22

This choice produces one table for every entity, linked to foreign keysin an exclusive
arc at the PS side. It is the implementation of the model asif the subtypes were
modeled as standalone entities with each one having an is subtype of / is supertype of
relationship to the supertype. These relationships are in an arc. Therefore this
implementation isalso called Arc | mplementation. See also the chapter on Constraints
for more details about subtypes compared to the arc.

Rules
1 Tables:
— Asmany tables are created as there are subtypes, as well as one for the
supertype.
2 Columns:
— Each table gets acolumn for all attributes of the entity it is based on, with the
original optionality.
3 ldentifiers:
— Theprimary UID at the supertype level creates aprimary key for each of the
tables.
— All other unique identifiers transform to unique keys in their corresponding
tables.
4 Relationships:
— All tables get aforeign key for arelevant relationship at the entity level with

ORACLE 7-25

Lesson 7: Mapping the ERMODEI e eeeeee e
the original optionality.
5 Integrity constraints:

— Two additional columns are created in the table based on the supertype. They
are foreign key columns referring to the tables that implement the subtypes.
The columns are clearly optional asthe foreign keysarein an arc. The foreign
key columns are also part of the unique keys because, in fact, they implement a
mandatory one-to-one relationship.

— An additiona check constraint is needed to implement the arc.

When to Consider a Both Supertype and Subtype Implementation

This solution performs a double partitioning. It is used relatively rarely, but could
be appropriate when:

— Theresulting tablesreside in different databases (distribution). This may occur
when different business locations are only interested in a specific part of the
information.

— Subtypes have ailmost nothing in common and each table represents
information that can be used independently, for example, when the PS table
givesall global information and both QS and RS give specific information, and
the combination of global and specific information is hardly ever needed.

— Businessrules are quite different between all types.
— Theway tables are used and accessed is different.

— Usersfrom different business areas need to work with the same rows at the
same time, but with different parts of the rows, which could result in locking
problems and a performance issue.

Additional Objects

Although you would hardly use them, you could consider creating additional views
that represent the supertype and various subtypesin full.

Consequences for Tables Based on K and L
Both foreign keys can be implemented straightforwardly without additional checks.

7-26 Data Modeling and Relational Database Design

Subtype Implementation

Storage Implication

Theillustrations show the differences between the one, two, and three table
implementations. In most database systems empty column values do take some bytes
of database space (although this sounds contradictory). In Oraclethisisvery low when
the empty columns are at the end of the table and when the datatype is of variable size.

Supertype Implementation All rows for both types are in one table. Note the
empty space in the Q rows at the R columns and vice-versa.

Storage Implication
Supertype Implementatioin

discriminator column

l _cols cols cols
P Q R

rows|(Q £ s e

[F"]

rows|R CemEm

ORACLE 727

Lesson 7: Mapping the ER Model

Subtype Implementation In the two table implementation the “empty space” of
the one-table implementation is gone. Thisis a horizontal split of the table.

Storage Implication
Subtype Implementation

Lols cos cols, cols
P R P Q
| .|| 1L I |
= Ee——
. o | s | —
== rows|Q o E—
=- o | s | —
rows|R --
[|
[[
.
o [
' EIE

7-28 Data Modeling and Relational Database Design

Subtype Implementation

Arc Implementation In thisthree table implementation the onetableis sliced
vertically into a P-columns-only portion. The remaining part is horizontally split into
the Q and R columns and rows. An additional foreign key column at P, or aforeign
key column at both Q and R is needed to connect all the pieces together.

Storage Implication
Supertype and Subtype (Arc) Implementation

=
(@)
o
w

o
EEEED ¢
MO -t

Py)
DEERDERNENE

rows (R me=a rows

ORACLE 7-29

Lesson 7: Mapping the ER Model

Summary

Summary

* Relational concepts

* Naming rules convention
* Basic mapping

* Complex mapping

7-27

Relationa databases implement the relational theory they are based on.

A coherent naming rule can prevent many errors and frustrations and adds to the
understanding of the structure of the database schema.

You have seen how to map basic elements from an ER model such as entities and
relationships. You can do this very ssimply. There are also complex structures which
reguire decisions on how to transform them. Some ER model elements can only be
implemented by coding check constraints or database triggers. These are specific to
Oracle and not part of the | SO standard for relational databases.

7-30 Data Modeling and Relational Database Design

Practice 7—1: Mapping basic Entities, Attributes and Relationships

Practice 7—1: Mapping basic Entities, Attributes and
Relationships

Moonlight Coffees Goal
oy In this practice, you are to create a basic mapping of a conceptual
. ® : model into afirst cut logical mapping of your database.
Scenario

The following is part of the ssmple Moonlight ER model showing the entities of
DEPARTMENT and EMPLOY EE. Map the entities, attributes, relationships,
optionality, and keys of the following diagram.

EMPLOYEE
#1d assigned DEPARTMENT
* First Name to #1d
*LastName [P———— "~ --- *Name

* Date of Birth * Location

responsible
0 Home Phone P

for

Your Assignment
1 Map both entities to tables and all attributes to columns.
Map relationships to foreign keys columns and mark as (fk).
Map all optionality tags to not nulls (*).
Map UID tags to primary keys (pk).
On the table diagram, name all the elements that must be created following this

implementation. Use the naming convention as described in this lesson, or use
your own rules. Give proper names to the columns and foreign key constraints.

g h~h W N

ORACLE 7-31

Lesson 7: Mapping the ER Model

Practice 7—2: Mapping Supertype

Moonlight Coffees Goal
i 8 |n this practice, you create a complex mapping and test your
. @ : understanding of the transformation process.
Scenario

Hereis part of the Moonlight ER model showing the entity DEPARTMENT. One of
the analysts has decided to implement the DEPARTMENT entity and its subtypesasa
singletable.

-

reporting to / ‘\ report of
DEPARTMENT 1

#1d HQ report (COUNTRY
* Name * Address - = ORGANIZATION
* Head Count reportlr;g # Tax |d Number

OTHER DEPARTMENT]

Your Assignment
1 What would have been the rational e of this choice?
2 Onthetable diagram, name al the elements that must be created following this
supertype implementation. Use the naming convention as described in this lesson,

or use your own rules. Give proper names to the columns and foreign key
constraints and identify check constraints, if any.

DEPARTMENTS ()

7-29

7-32 Data Modeling and Relational Database Design

Practice 7—3: Quality Check Subtype Implementation

Practice 7—3: Quality Check Subtype Implementation

Moonlight Coffees Goal
5 B [N this practice you perform a quality check on table mappings
- @ : that were created by someone who is supposed to use the naming

convention that is described in this lesson.

Scenario
Hereisapart of the Moonlight ER model.

COUNTRY
Code
(With (BRODUCT GROUP with |
| # Name n
\ _(SHOP
W|th W|th - | #No
* Name
PRODUCT * Address
A\ GLOBAL * City
PRICE LIST # Code LOCAL
Start Date o Size # Name

* End Date

1 with with :

of

/N /1\
GLOBAL PRICE
* Amount

7-30

Your Assignment
Perform a quality check on the proposed subtype implementation of entity

PRODUCT.
Lpt_shop_fk
GLOBAL_PRODUCTS (GPT) LOCAL_PRODUCTS (LPT)
pk| = | Code pk #| Name
o | Size fk * | Shop_no
* | Pgp_name fk * | Pgp_name

ORACLE 7-33

Lesson 7: Mapping the ER Model

Practice 7—4: Quality Check Arc Implementation

Moonlight Coffees Goal
i B The purpose of this practice isto do a quality check on table
. @ , mappings that were created by someone else who is supposed to

use the naming convention that is described in this lesson.

Scenario
This practice is based on the same ER diagram as the previous practice.

Practice: Quality Check
Arc Implementation

PRODUCTS (PDT) fk,=pdt_pgp_name
pk | x| Code fk,=pdt_gpt_code
fk, | «| Pgp_name
fk, | *| Gpt_code fky=pdt_Ipt_name
fk, | *| Lpt_name >
GLOBAL_PRODUCTS (GPT)|
gpt_pgp_fk

pk| * | Code ’

o | Size

LOCAL_PRODUCTS (LPT)

fk,=shp_lIpt_fk

pk * | Name
pk, fk, | © | Shp_no fk,=pgp_Ipt_fk
fk1 * | Pgp_name >

7-32

Your Assignment

Perform a quality check on the proposed supertype and subtype implementation of the
entity PRODUCT and its subtypes. Also, check the selected names.

7-34 Data Modeling and Relational Database Design

Practice 7—5: Mapping Primary Keys and Columns

Practice 7—5: Mapping Primary Keys and Columns

Moonlight Coffees Goal
5 : The purpose of this practice is to do a complex mapping of
- @ _ primary keys and columns.
Scenario

This practice is based on the same model that was used in the previous practice.

Your Assignment

Identify the Primary key columns and names resulting from the transformation of the
GLOBAL PRICE entity. Give the short name.

ORACLE 7-35

Lesson 7: Mapping the ER Model

7-36 Data Modeling and Relational Database Design

Denormalized Data

Lesson 8: Denormalized Data

Introduction

Lesson aim
This lesson shows you the most common types of denormalization with examples.

Overview

* Denormalization
* Benefits
* Types of denormalization

8-2

Topic See Page
Why and When to Denormalize 4
Storing Derivable Values 6
Pre-Joining Tables 8
Hard-Coded Values 10
Keeping Details With Master 12
Repeating Single Detail with Master 14
Short-Circuit Keys 16
End Date Columns 18
Current Indicator Column 20
Hierarchy Level Indicator 22
Denormalization Summary 24
Practice 8—1: Name that Denormalization 25
Practice 8—3: Denormalize Price Lists 29
Practice 8—4: Global Naming 30

8-2 Data Modeling and Relational Database Design

Introduction

Objectives

At the end of this lesson, you should be able to do the following:

» Define denormalization and explain its benefits

» Differentiate and describe the different circumstances where denormalization is
appropriate

ORACLE 8-3

Lesson 8: Denormalized Data

Why and When to Denormalize

Definition of Denormalization

Denormalization aids the process of systematically adding redundancy to the database
to improve performance after other possibilities, such asindexing, have failed. You
will read more on indexing in the lesson on Design Considerations.

Denormalization can improve certain types of data access dramatically, but thereisno
success guaranteed and there is aways a cost. The data model becomes less robust,
and it will always slow DML down. It complicates processing and introduces the
possibility of dataintegrity problems. It always requires additional programming to
maintain the denormalized data.

Denormalization Overview

Denormalization

® Starts with a“normalized” model

* Adds “redundancy” to the design

* Reduces the “integrity” of the design

* Application code added to compensate

8-3

Hints for Denormalizing

* Always create a conceptual data model that is completely normalized.
* Consider denormalization as the last option to boost performance.

* Never presume denormalization will be required.

» To meet performance objectives, denormalization should be done during the
database design.

» Once performance objectives have been met, do not implement any further
denormalization.

* Fully document al denormalization, stating what was done to the tables, what
application code was added to compensate for the denormalization, and the
reasons for and against doing it.

8-4 Data Modeling and Relational Database Design

Why and When to Denormalize

Denormalization Techniques and Issues

In the next pages you see a number of denormalization techniques that are used
regularly. For every type of denormalization you see an indication of wheniitis
appropriate to use it and what the advantages and disadvantages are.

Denormalization Techniques

® Storing Derivable Values

* Pre-joining Tables

* Hard-Coded Values

* Keeping Details with Master

®* Repeating Single Detail with Master
® Short-Circuit Keys

8-4

The following topics are covered:

» Storing Derivable Values

* Prejoining Tables

» Hard-Coded Vaues

» Keeping Details with Master

* Repeating Single Detail with Master
e Short-Circuit Keys

and the most common specific examples:
» Derivable End Date Column

» Derivable Current Indicator column
e Hierarchy Level Indicator

ORACLE 8-5

Lesson 8: Denormalized Data

Storing Derivable Values

When acalculation isfrequently executed during queries, it can be worthwhile storing
the results of the calculation. If the calculation involves detail records, then store the
derived calculation in the master table. Make sure to write application code to re-
calculate the value, each time that DML is executed against the detail records.

In al situations of storing derivable values, make sure that the denormalized values
cannot be directly updated. They should always be recalculated by the system.

Storing Derivable Values

Before

A B

pk |*| Id ‘pk,fk*A_id
| X pk | [Sequence_No

Quanity

*

Add a column to store derivable data in the
“referenced” end of the foreign key.

After '

8-5

Appropriate:

* When the source values are in multiple records or tables

* When derivable values are frequently needed and when the source values are not
* When the source values are infrequently changed

Advantages.

» Source values do not need to be looked up every time the derivable valueis
required

» The calculation does not need to be performed during a query or report

Disadvantages:

» DML against the source data will require recalculation or adjustment of the
derivable data

» Dataduplication introduces the possibility of data inconsistencies

8-6 Data Modeling and Relational Database Design

Storing Derivable Values

E-mail Example of Storing Derivable Values

EMail Example of Storing Derivable Values

Before
MESSAGES (MSE
USERS (USR) REC_MESSAGES (RME) - = (MSE)
pk,fk |*| Usr_Id pK | *
pk|*|id * kik [« m | >_ * | Subject
*[Per_name PK; se_ld * Texé

Store derivable column in the ‘referenced’ end of the foreign key.

MESSAGES (MSE)

After pk Id
A Subject H
Text

Number_of_times_received

8-6

When amessage is delivered to arecipient, the user only receives a pointer to that
message, which isrecorded in RECEIVED_MESSAGES. The reason for this, of
course, isto prevent the mail system from storing a hundred copies of the same
message When one message is sent to a hundred recipients.

Then, when someone del etes a message from their account, only the entry in the
RECEIVED_MESSAGES tableisremoved. Only after all RECEIVED MESSAGE
entries, for a specific message, have been deleted, the should the actual message be
deleted too.

We could consider adding a denormalized column to the MESSA GES table to keep
track of the total number of RECEIVED_MESSAGES that are still kept for a
particular message. Then each time users delete arow in RECEIVED MESSAGES,
in other words, they delete a pointer to the message, the Number_of times _received
column can be decremented. When the value of the denormalized column equals zero,
then we know the message can a so be deleted from the MESSAGES table.

ORACLE 8-7

Lesson 8: Denormalized Data

Pre-Joining Tables

You can pre-join tables by including a nonkey column in atable, when the actual value
of the primary key, and consequentially the foreign key, has no business meaning. By
including a nonkey column that has business meaning, you can avoid joining tables,
thus speeding up specific queries.

You must include application code that updates the denormalized column, each time
the “master” column value changes in the referenced record.

Pre-Joining Tables

Before
B
A
k *
pk [*] 1d p Id
*| Col_a <fk | Alid

Add the non_key column to the table with the foreign key.

After

8-7

Appropriate:
* When frequent queries against many tables are required
* When dlightly stale datais acceptable

Advantages
e Time-consuming joins can be avoided
» Updates may be postponed when stale data is acceptable

Disadvantages
» ExtraDML needed to update origina nondenormalized column

» Extracolumn and possibly larger indices require more working space and disk
space

8-8 Data Modeling and Relational Database Design

Pre-Joining Tables

EMail Example of Pre-Joining Tables

Before

FOLDERS (FDR) RECEIVED_MESSAGES (RME)

pk,fk | | Mse_id

*1 1d :
PR Name —|ok ik | | Fir_id '
*| Date_received

Create a table with all the frequently queried columns.

RECEIVED_MESSAGES (RME)
After pkfk * Mse_id
* | Fr_id
* Date_received
* Fdr_Name

pk, fk

8-8

Example

Suppose users often need to query RECEIVED MESSAGES, using the name of the
folder where the received message isfiled. In this case it saves time when the name of
the folder isavailable in the RECEIVED MESSAGES table.

Now, if auser needsto find all messagesin a particular folder, only aquery on
RECEIVED_MESSAGES is needed.

Clearly, the disadvantage is extra storage space for the extra column in a, potentialy,
very large table.

ORACLE 8-9

Lesson 8: Denormalized Data

Hard-Coded Values

If areference table contains records that remain constant, then you can consider hard-
coding those values into the application code. Thiswill mean that you will not need to
join tablesto retrieve the list of reference values. Thisis a special type of
denormalization, when values are kept outside atable in the database. In the example,
you should consider creating a check constraint to the B table in the database that will
validate values against the allowable reference values. Note that a check constraint,
though it resides in the database, is still aform of hardcoding.

Whenever a new value of A is needed the constraint must be rewritten.

Hard-Coded Values
Before
A B
P T fk |+ | A_id
* ype
Remove the foreign key and hard code the allowable values and
validation in the application.
After
8-9

Appropriate

* When the set of allowable values can reasonably be considered to be static during
the life cycle of the system

* When the set of possible valuesis small, say, less than 30

Advantages
* Avoidsimplementing alook-up table
* Avoidsjoinsto alook-up table

Disadvantages
» Changing look-up values requires recoding and retesting

8-10 Data Modeling and Relational Database Design

Hard-Coded Values

Email Example of Hard-Coded Values

Before

BUSINESS_TYPES (BTE) USERS (USR)
s [1d

pk
pk |+ | Id «fk * | Bte_id

Name * | Per_name

Hard code the allowable values and validation in the

application.
After USERS (USR)
Id
Business_type
* Per_name
8-10
Example

ElectronicMail would like to know some background information about their users,
such as the type of business they work in. Therefore EM have created a table to store
al thevalid BUSINESS TY PES they want to distinguish. The valuesin thistable are
set up front and not likely to change.

Thisisacandidate for hard-coding the allowable values. You could consider placing a
check constraint on the column in the database. In addition to that, or instead of that,
you could build the check into the field validation for the screen application where
users can sign in to the EM service.

ORACLE

Lesson 8: Denormalized Data

Keeping Details With Master

In a situation where the number of detail records per master is afixed value (or hasa
fixed maximum) and where usually all detail records are queried with the master, you
may consider adding the detail columns to the master table. This denormalization
works best when the number of records in the detail table are small. Thisway you will
reduce the number of joins during queries. An example is a planning system where
thereisone record per person per day. This could be replaced by one record per person
per month, the table containing a column for each day of the month.

Keeping Details with Master

Before

B
A
&~ || An
pk |*] Id pk |*]| Type

* | Amount

Add the repeating detail columns to the master table.

After Id
Amount_1

Amount_2

Amount_3
Amount_4
Amount_5
Amount_6

8-11

Appropriate
* When the number of detail records for all mastersisfixed and static

* When the number of detail records multiplied by the number of columns of the
detall issmall, say lessthan 30

Advantages
* Nojoinsarerequired
e Saves space, as keys are not propagated

Disadvantages

* Increases complexity of data manipulation language (DML) and SELECTS across
detail values

e Checksfor Amount column must be repeated for Amountl, Amount2 and so on
e Table name A might no longer match the actual content of the table

8-12 Data Modeling and Relational Database Design

Keeping Details With Master

EMail Example Keeping Detail with Master

Before

STORAGE_QUOTAS (SQA)
USERS (USR) pk,fk| = | Usr_lId

pk |* | 1d 4 pk | * | Storage_type
* | Name * | Allocated
*

Available

Add the repeating detail columns to the master table.

USERS (USR)

After [2)s o]
Name

Message Quota_Allocated
Message_Quota_Available
File_Quota_Allocated
File_Quota_Available

8-12

Example

Suppose each e-mail user is assigned two quotas—one for messages and one for files.
The amount of each quotais different, so both have to be tracked individually. The
guota does not change very frequently. To be relationally pure, we would create a two-
record STORAGE_TYPES table and a STORAGE_QUOQOTAS table with records for
each user, one for each quotatype. Instead, we can create the following denormalized
columnsin the USER table:

* Message Quota Allocated

* Message Quota Available

* File Quota Allocated

* File Quota Available

Note that the name of table USERS does not really match the datain the denormalized
table.

ORACLE 8-13

Lesson 8: Denormalized Data

Repeating Single Detail with Master

Often when the storage of historical datais necessary, many queries require only the
most current record. You can add a new foreign key column to store this single detail
with its master. Make sure you add code to change the denormalized column any time
anew record is added to the history table.

Repeating Current Detail with Master

Before
B
A ok.fk| *[A Id
pk|*| Id Hpk *| Start_date
*| Price

Add a column to the master to store the most current details.

After ‘

8-13

Appropriate
* When detail records per master have a property such that one record can be
considered “current” and others * historical”

* When queries frequently need this specific single detail, and only occasionally
need the other details

* When the Master often has only one single detail record

Advantages
* Nojoinisrequired for queries that only need the specific single detail

Disadvantages

* Detail value must be repeated, with the possibility of datainconsistencies

Additional code must be written to maintain the duplicated single detail value at the
master record.

8-14 Data Modeling and Relational Database Design

Repeating Single Detail with Master

EMail Example of Repeating Single Detail
with Master

Before

MESSAGES (MSE) ATTACHMENTS (ATT)

pk [*] Id <pk * | Id
*| Subject pk,fk [+ | Mse_id

*| Text * | Name

Add a column to the master to store the most current details.

MESSAGES (MSE)
Id

First_attachment_name
Subject
Text

Example

Any time amessage is sent, it can be sent with attachments included. Messages can
have more than one attachment. Suppose in the majority of the messages that there is
no or only one attachment. To avoid atable join, you could store the attachment name
in the MESSAGES table. For those messages containing more than one attachment,
only the first attachment would be taken. The remaining attachments would be in the
ATTACHMENTS table.

ORACLE

Lesson 8: Denormalized Data

Short-Circuit Keys

For database designs that contain three (or more) levels of master detail, and thereisa
need to query the lowest and highest level records only, consider creating short-circuit
keys. These new foreign key definitions directly link the lowest level detail records to
higher level grandparent records. The result can produce fewer table joins when
gueries execute.

Short-Circuit Keys

Before

i pk |*| 1d pk|=]Id
pk|*| 1d Aﬂ(«| Aid *fk * | B_id

Create a new foreign key from the lowest detail to the
highest master.

After

8-15

Appropriate

* When queriesfrequently require values from agrandparent and grandchild, but not
from the parent

Advantages
* Queriesjoin fewer tables together

Disadvantages
» Extraforeign keys are required

» Extracodeisrequired to make sure that the value of the denormalized column
A_idis consistent with the value you would find after ajoin with table B.

8-16 Data Modeling and Relational Database Design

Short-Circuit Keys

EMail Example of Short-Circuit Keys

Before

RECEIVED
USERS (USR) FOLDERS (FDR) MESSAGES (RME)
pk | *| Id Apk *|Name _<pk * [1d
| Name fk ||Usr_id fk | * | Fdr_name

Create a new foreign key from the lowest detail to the highest
master.

e FOLDERS (FDR RECEIVED_

USERS (USR) (B2 MESSAGES (RME)
pk * Name pk '+ 1d

e pL fk * Usr_id fk * Fdr_name

uk * Name fk * Usr_name

8-16

Example

Suppose frequent queries are submitted that require data from the
RECEIVED_MESSAGES table and the USERS table, but not from the FOLDERS
table. To avoid having to join USERS and FOLDERS, the primary or a unique key of
the USERS table can been migrated to the RECEIVED_MESSAGES table, to provide
information about USERS and RECEIVED MESSAGES with one less, or no, table

join.

ORACLE

Lesson 8: Denormalized Data

End Date Columns

The most common denormalization decision is to store the end date for periods that
are consecutive, then the end date for a period can be derived from the start date of the
previous period.

If you do this, to find adetail record for a particular date you avoid the need to use a
complex subquery.

End Date Column

Before
B
A okfic | *| Aid
pk |+ | I1d <pk * | Start_date

Add an end date column to speed up queries so that they can
use a between operator.

B
After pkfk * A_ld

pk * Start_date
* End_date

Appropriate
* When queries are needed from tables with long lists or records that are historical
and you are interested in the most current record

Advantages

» Can usethe between operator for date selection queriesinstead of potentially time-
consuming synchronized subquery

Disadvantages

» Extracode needed to populate the end date column with the value found in the
previous start date record

8-18 Data Modeling and Relational Database Design

End Date Columns

Example of End Date Column

Before PRICES (PCE)

PRODUCTS (PDT)

pkfk |*| Pdt_id

pk [*] Id ‘pk x| Start_date
*| Name | Price

Create an extra column derivable End_date column.

After PRICES (PCE)

pk,fk =~ * Pdt_id
* Start_date
* Price

o End_date

pk

Example

When abusiness wishesto track the price history of a product, they may use a PRICES
table that contains columns for the price and its start date and a foreign key to the
PRODUCTS table. To avoid using a subquery when looking for the price on a specific
date, you could consider adding an end date column. You should then write some
application code to update the end date each time a new price isinserted.

Compare:
. .WHERE pdt_id = ...
AND start_date = (SELECT max(start_date)
FROM prices
WHERE start_date <= sysdate
AND pdt_id = ...
)
and

. .WHERE pdt_id = ...
AND sysdate between start date and nvl(end date, sysdate)

Note that the first table structure presupposes that products always have a price since
thefirst price start date of that product. Thismay very well be desirable but not always
the case in many business situations.

Note also that you would need code to make sure periods do not overlap.

ORACLE 8-19

Lesson 8: Denormalized Data

Current Indicator Column

Thistype of denormalization can be used in similar situations to the end date column
technique. It can even be used in addition to an end date. It is avery common type of
denormalization.

Suppose most of the queries are to find the most current detail record. With thistype of
requirement, you could consider adding a new column to the details table to represent
the currently active record.

You would need to add code to update that column each time you insert a new record.

Current Indicator Column

Before

A B

R ‘ pk.fk | | A_id
pk ld pk Start_date

*

Add a column to represent the most current record in a
long list of records .

After B

pk,fk = * A_ld
< pk * Start_date

o Current_indicator

Appropriate
* When the situation requires retrieving the most current record from along list

Advantages
» Lesscomplicated queries or subqueries

Disadvantages
» Extracolumn and application code to maintain it

» The concept of “current” makes it impossible to make data adjustments ahead of
time

8-20 Data Modeling and Relational Database Design

Current Indicator Column

Example of Current Indicator Column

Before PRICES (PCE)
PRODUCT (PDT
(PDT) pk.fk [+ [Pdt id

pk [*] Id ‘ pk * | Start_date
*| Name * | Price

Add a column to represent the most current record, in a long
list of records.
PRICES (PCE)

After pk,fk = Pdt_id

pk Start_date
Price
Current_indicator

Example
In the first table structure, when the current price of a product is needed, you need to
guery the PRICES table using:

...WHERE pdt_id = ...

AND start date = (SELECT max (start date)
FROM prices
WHERE start_date <= sysdate
AND pdt_id = ...

The query in the second situation would simply be:
...WHERE pdt_id = ...
AND current indicator = 'Y’

ORACLE

Lesson 8: Denormalized Data

Hierarchy Level Indicator

Suppose there is abusiness limit to the number of levels a particular hierarchy may
contain. Or suppose in many situations you need to know records that have the same
level in ahierarchy. In both these situations, you will need to use a connect-by clause
to traverse the hierarchy. This type of clause can be costly on performance. You could
add a column to represent the level of arecord in the hierarchy, and then just use that
value instead of the connect-by clausein SQL.

Hierarchy Level Indicator

Before PRGN

i A

N Pk x| 1d
ﬁfk [A id

Create a column to represent the hierarchy level of a record.

After i

Appropriate

* When there are limits to the number of levels within a hierarchy, and you do not
want to use a connect-by search to seeif the limit has been reached

* When you want to find records located at the same level in the hierarchy

* When the level valueis often used for particular business reasons

Advantages
* No need to use the connect-by clause in query code

Disadvantages

» Eachtimeaforeign key is updated, the level indicator needs to be recalculated,
and you may need to cascade the changes

8-22 Data Modeling and Relational Database Design

Hierarchy Level Indicator

Example of Hierarchy Level Indicator

-~
’ N

Before ’ S
i FOLDERS (FDR)

‘\<pk *|ld
fk |* | Fdr_id

* | Name

Create a column to represent the hierarchy level of a record.

After FOLDERS (FDR)
o}

Fdr_id
Name
Level_no

Example

Imagine that because of storage limitations, alimit has been placed on the number of
nested folders. Each time a user wants to create a new instance of afolder within an
existing folder instance, code must decideif that limit has been reached. Thiscan bea
slow process.

If you add a column to indicate at what nested level a FOLDER is, then when you
create anew folder init, you can decideimmediately if thisisallowed. If itis, thelevel
of the new folder is ssimply one more than the level of the folder it residesin.

ORACLE 8-23

Lesson 8: Denormalized Data

Denormalization Summary

Denormalization is a structured process and should not be done lightly. Every
denormalization step will require additional application code. Be confident you do
want to introduce this redundant data.

Denormalization Summary

Denormalization Techniques

* Storing Derivable Information
— End Date Column
— Current Indicator
— Hierarchy Level Indicator

* Pre-Joining Tables

* Hard-Coded Values

¢ Keeping Detail with Master

* Repeating Single Detail with Master
* Short-Circuit Keys

8-24 Data Modeling and Relational Database Design

Practice 8—1: Name that Denormalization

Practice 8—1: Name that Denormalization

Goal
Learn to discriminate the type of denormalization depicted.

Moonlight Coffees

Your Assignment

For the following table diagrams, decide what type of
denormalization is used and explain why the diagram depicts the denormalization you
have listed.

Use one of:

» Storing derivable information

* Pre-Joining Tables

» Hard-Coded Values

» Keeping Details with Master

* Repeating Single Detail with Master
* Short-Circuit Keys

SHIFTS (SFT)

* No
Wdy_code
Start_time
End_time
Wdy_name

WEEKDAYS (WDY)

pk * Code
* Name

*
*
*
*

PROD_GRPS (PGP) PRODUCTS (PDT) PROD_NAMES (PNE)

pk * Name pk * Code pk * Name
fk * Pgp_Name fk =+ Pdt_code
fk * Pgp_name

PRICE_LISTS (PLT)

COUNTRIES (CTY
() pk,fk * Cty_code

pk * Code
* Name

pk * Start_date
o End_date

*

Current_price_ind

ORACLE 8-25

Lesson 8: Denormalized Data

Practice 8—2: Triggers

Goal

The purpose of this practice is to investigate which database triggers are needed to
handle a suggested denormalization.

Your Assignment

1 Indicate which triggers are needed and what they should do to handle the
denormalized column Order_total of ORDER_HEADERS.

ORDER_HEADERS (OHR) ORDER_ITEMS (OIM)
pk | = |Ohr_id
pk * Id pk | * |Seqno
* Order_total % = | ltem_total T

Table | Trg Type | Column Needed?|What should it do?
OHR [Insert
Delete
Update Id
Order_total
OIM | Insert
Delete
Update Ohr_id
Item_total
8-29

8-26 Data Modeling and Relational Database Design

Practice 8—2: Triggers

2 Indicate which triggers are needed and what they should do to handle the
denormalized column Lcn_address of EMPLOY EES.

LOCATIONS (LCN) EMPLOYEES (EPE)
k = Id
I p
pk| * | 1d i * Len_id
* Name
* | Address

*= Lcn_address

Table| Trg Type | Column Needed?| What should it do?
LCN | Insert
Delete

Update Address

other cols
EPE | Insert
Delete
Update Len_id
Lcn_address
8-31

ORACLE

Lesson 8: Denormalized Data

3 Indicate which triggers are needed and what they should do to handle the
denormalized column Curr_price_ind of table PRICES.

PRODUCTS (PDT) PRICES (PCE)
~T-T73 pk * Pdt_id
‘ pk * Start_date
*| Name o End_date

1 7

* Curr_price_ind

Table | Trg Type | Column Needed?|What should it do?
PDT [Insert
Delete
PCE | Insert
Delete
Update [Pdt_id
Start_date
End_date
Curr_price_Ind

8-33

8-28 Data Modeling and Relational Database Design

Practice 8—3: Denormalize Price Lists

Practice 8—3: Denormalize Price Lists

Moonlight Coffees Goal
5 8 Theaim of this practice isto decide on the type of
. ® , denormalization you could use, and what code is needed to ensure

database integrity.

Scenario

End users have started to complain about query performance. One of the areas where
thisis particularly noticeable is when querying the price of aglobal product. Since
thereisalargelist of recordsin the GLOBAL_PRICEStable, and it needsto bejoined
with the PRICE_LISTStable, it is not surprising the queries can take along time.
Optimizing the queries using other techniques have failed to result in acceptable
response times. Therefore the decision is to use some denormalization to correct this
problem.

The corporate office also has another concern. They would like to notify the local
shops of any new price list changes of global products, prior to their effective date.
They would like to enter the new price list information when it is decided, not when
the start date is reached. Y ou need to add provision to alleviate this restriction.

Your Assignment

Describe what type of denormalization you would implement and what code you
would add to ensure the database does not |ose any integrity. The next diagram shows
the current table schema. Consider both issues described above when deciding which
types of denormalization to implement.

PRICE_LISTS (PLT) GLOBAL_PRICES (GPE)
pk |*| Start_date |— < pk,fk [*| PIt_start_date
pk,fk [*| Cty_code pk,fk|[*[PIt_cty code

— *[Amount

ORACLE 8-29

Lesson 8: Denormalized Data

Practice 8—4: Global Naming

Goal

Moonlight Coffees
B To convert user requirements into denormalized table designs

Scenario

The corporate office has decided to formalize English as the
corporate language. Headquarters has asked the | S department to arrange for all global
products to store their namesin English. On the other hand, countries must be able to
store their native language equivalent.

Your Assignment

Using the design below, denormalize the table design and describe the additional code
that will allow this requirement to be implemented.

LANGUAGES (LGE)

pk|* [Code
* [Name

A

PRODUCTS (PDT) PRODUCT_NAMES (PNE)
k,fk| * | Pdt_code
pk [* | Code 4 PK, _
o | Size pk,fk| * | Lge_code
* | Name

8-30 Data Modeling and Relational Database Design

Database Design
Considerations

Lesson 9: Database Design Considerations

Introduction

Lesson Aim

Thislesson illustrates some principles of the Oracle RDBM S and presents the various
techniques that can be used to refine the physical design.

Overview

* Oracle specific Design Considerations
¢ Data Integrity Issues

* Performance Considerations

® Storage Issues

9-2

Topic See Page
Introduction 2
Reconsidering the Database Design 4
Oracle Data Types 5
Most Commonly-Used Oracle Data Types 6
Column Sequence 7
Primary Keys and Unique Keys 8
Artificial Keys 1
Sequences 13
Indexes 16
Choosing Columns to Index 19
When Are Indexes Used? 21

9-2 Data Modeling and Relational Database Design

Introduction

Topic See Page
Views 23
Useof Views 24
Old-Fashioned Design 25
Distributed Design 27
Benefits of Distributed Design 28
Oracle Database Structure 29
Summary 31
Practice 9—1. Data Types 32
Practice 9—2: Artificial Keys 34
Practice 9—3: Product Pictures 35

Objectives

At the end of this lesson, you should be able to do the following:

» Describe which data types to use for columns

» Evaluate the quality of the Primary key

» Useartificial keys and sequences where appropriate
» Definerulesfor referentia integrity

» Explain the use of indexes

» Discuss partitioning and views

* Recognize old-fashioned database techniques

» Explain the principle of distributed databases

» Describe the Oracle database model

ORACLE

Lesson 9: Database Design Considerations

Reconsidering the Database Design

Each RDBMS has its own internal mechanism. This lesson discusses the major
features provided by Oracle to get the best RDBM S performance.

Why Adapt Data Design?

* User Expectations

* Volumes

* Hardware _ A Adapted
e Network T I - Physical
. OS. Design

* Oracle specifics

9-3

You have to analyze alarge number of parameters to obtain a correct adapted physical
design from theinitial design. Note the “a correct”, not “the correct”. Like many
design issues, there is no absolute truth here.

The points noted here are the most important ones—there are others.

» The expected volume of tables, the hardware characteristics like CPU speed,
memory size, number of disks and corresponding space, the architecture—client/
server or threetier, the network bandwidth, speed, and the operating systems are
determinants.

» User requirements are an other big issue. Depending on the response time, the GUI
and the frequency of use of modules, they influence the objects that can be used in
Oracle to cope with user expectations.

* Depending on the version of Oracle you are using, some elements may or may not
exist.

Data Modeling and Relational Database Design

Oracle Data Types

Oracle Data Types

Oracle Data Types

* Depending on:
— Domains
— Storage issue
— Performance
— Use
* Select a data type for columns:
— Character
— Number
— Date
— Large Objects

9-4

When you create atable or cluster, you must specify an internal datatype for each of
its columns. These data types define a generic domain of values that each column can
contain.

» Some data types have a narrow focus, like number and date. Some data types are
genera purpose data types, like the various character data types.
» Some datatypes alow for variable length, some do not.

Choosing alarge fixed length for a column to store very few bytes for most of the
rows can result in a huge table size. This may affect performance as arow may
actually contain only afew bytes and yet be stored on multiple blocks, resulting in
agreat number of 1/0’s, and therefore decreasing performance.

* One cannot search against the Large Object Data Types; they cannot be used in a
where clause. They are only retrievable by searching against other columns.

ORACLE 9-5

Lesson 9: Database Design Considerations

Most Commonly-Used Oracle Data Types

CHAR(size) These are fixed-length character data of length-sized bytes.
Maximum size is 2000 bytes.

Typical use: for officia International Currency Codes which are afixed three
charactersin length such as USD, FFR.

VARCHARZ2(size) Variable-length character string having maximum length-sized
bytes. Maximum size is 4000, and minimum is 1. Thisis the most commonly-used
datatype and you should useit if you are not sure which one to use. It replacesthe
old Oracle version 6 CHAR data type.

Typical use: for storing individual ASCII text lines of unlimited length ASCI|
texts on which you need to be able to search using a wildcard.

NUMBER This datatype is used for numerical values, with or without a decimal,
of virtualy unlimited size. Use this data type for data on which calculation or
sorting should be possible. Avoid its use for numbers like a phone number, where
the value does not have any meaning.

Typical use: amount of money, quantities, generated unique key values.

DATE Valid date range from January 1, 4712 BC to December 31, 4712 AD. A
date data type also contains time components. You should use it only when you
know the full date including day, month, and year. The time component is often set
to 00:00 (midnight) in normal use of dates.

Typical use: any date where the full date is known.

L ONG Character data of variable length up to 2 gigabytes. Obsolete since
Oracle8. Was used for ASCII text files where you do not need to search using the
wildcard or substring functionality. Use CLOB data type instead.

Typical use: for storing the source code of HTML pages.

LONG RAW Raw binary data of variable length up to 2 gigabytes. Obsolete since
Oracle8. Was used for large object types where the database should not try to
interpret the data. Use BLOB data type instead.

Typical use: images or video clips.

CL OB Character large object type. Replaces LONG. Mgjor difference: atable can
have more than one CLOB column where there was only one LONG allowed.
Maximum size is 4 gigabytes.

Typical use: see LONG

BL OB Character large object type. Replaces LONG RAW. Mgjor difference: a
table can have more than one BLOB column where there was only one
LONGRAW adlowed. Maximum size is 4 gigabytes.

Typical use: see LONG RAW.

BFILE Contains alocator to alarge binary file stored outside the database to
enable byte stream /O access to external LOBs residing on the database server.

Typical use: movies

Data Modeling and Relational Database Design

Column Sequence

Column Sequence

The sequence of columnsin atable isrelevant, although any column sequence would
alow all table operations. The column sequence can influence, in particular, the
performance of data manipulation operations. It may also influence the size of atable.

Suggested Column Sequence

* Primary key columns
* Unique Key columns
®* Foreign key columns
* Mandatory columns
* Optional columns

Large object columns always at the end

9-5

The suggested optimal column sequence is the following:
1 Primary key columns
2 Unique key columns
3 Foreign key columns
4 Remaining mandatory columns”
5 Remaining optional columns”

" In cases where the table contains aLONG or LONG RAW column, even if itisa
mandatory column, make it the last column of the table.

The rationale isthat null columns should be at the end of the table; columns that are
often used in search conditions should be up front. Thisisfor both storage and
performance reasons.

ORACLE 9-7

Lesson 9: Database Design Considerations

Primary Keys and Unique Keys

Primary Keys

CREATE TABLE countries

(code NUMBER(6) NOT NULL
, hame VARCHAR2(25) NOT NULL
, currency NUMBER (10,2) NOT NULL

);

ALTER TABLE countries

ADD CONSTRAINT cty_pk PRIMARY KEY
(code);

Constraint and Index name

9-6

Primary Keys
They are a strong concept that is usually enforced for every table.
» They can be made up of one or more columns; each has to be mandatory.

» They are declarative as a constraint and can be named. When creating a primary
key constraint, Oracle automatically creates a unique index in association with it.

» A foreign key usually refersto the primary key of atable, but may also refer to a
unique key.
Tables that do not have a primary key should have a unique key.

Note: Although Oracle allows a primary key to be updated, relational theory strongly
advises againgt this.

Unique Keys
A unique key isakey that for some reason was not selected to be the primary key. The
reasons may have been:

* Allowed nulls. Nulls may be allowed in Unigue keys columns.

» Updatable. Unigque key values may change but still need to remain unique. For
example, the home phone number of an employee or the license plate for a car.

There may be more than one unigue key for each table.

Note: A Uniqueindex isthe additional structure Oracle uses to check the uniqueness
of valuesfor primary keys and unique keys. Creating a unique key results
automatically in the creation of a unique index.

9-8 Data Modeling and Relational Database Design

Primary Keys and Unique Keys

How to Choose the Primary Key

Following analysisthere is a choice of what you want to use for a primary key. It does
not have to be seen or known by the user—it can do its work completely in the
background.

Primary Keys

* Choosing the Right Key —
— Simplicity

— Ease of use

— Performance >
— Size

— Meaningless

— Stability

9-7

Desirable Properties for Primary Key

Simple: A primary key should be as simple as possible athough Oracle8 allowsit to
consist of up to 32 columns. Primary key columns can be of various data types. Note

that UIDs, asthey arise from data analysis, are often composed, not simple. You need
to consider replacing such a primary key by asimple key.

Easy toUse: Primary keys are normally used in join statements, so a primary key
should be easy to use. Writing a SQL statement to create ajoin between two tablesis
easier if two columns only, rather than alarge number, are involved in thejoin
predicate.

Does Not Kill Performance: A join operation using asingle key usually performs
much better than ajoin using four key columns.

Small Size: Large-sized primary keys lead to large-sized foreign keys referencing
them. In general, the referencing table contains far more rows than the referenced
table. An oversized primary key can lead to a multiple of unnecessary bytes.

ORACLE 9-9

Lesson 9: Database Design Considerations

Meaningless: You could, for example, choose to use the name of a country asa
primary key, but even recent history has shown that countries may change their names.
Opt for numeric values rather than character values, and if using numbers, avoid
numbers with any particular meaning.

Sable: You should try to avoid selecting a primary key that islikely to be updated.
Bear in mind that it is very rare for real world thingsto stay stable for ever.

9-10 Data Modeling and Relational Database Design

Artificial Keys

Artificial Keys

An artificial key isameaningless, usually numeric, value that is assigned to arecord
which functions as the primary key for the table. Artificial keys provide an interesting
aternative to complex primary keys. Artificial keys are also called surrogate keys.

Artificial Keys
AS (A) BS (B) CS (C)
pk|*| Id pk[*|1d pk[*| 1d
glieal glicz glies
fk, = d_a_fk fk, = d_b_fk i fky = d_c_fk
DS (D)
I‘uk,fkl * | A_id 4
uk ,fk, [* | B_id
XS (X) uk,fky | * | C_id
pk * Id * C4
p— ok |*|id
fk = x_d_fk
fk | *|D_id
o |C5
9-8
Advantages

Artificia keys have the following advantages over composed keys:

The extra space that is needed for the artificial key column and index isless, often
far less, than the space you save for the foreign key columns of referring tables.

Join conditions consist of a single equation.
Thejoins perform better.

Internal references, which are completely invisible to the user, can be managed.
The modeled UID can than be implemented as a unique key, and made updatable
without needing cascade updates.

Because they are meaningless, it is difficult to memorize them. Userswill not even

attempt this.

Some people redly like them.

Disadvantages
Disadvantages of artificial keys are:

Because they are meaningless, they always require joins to collect the meaning of
the foreign key column.

ORACLE

Lesson 9: Database Design Considerations

» Morespaceisrequired for theindexes, if you decide to create an additional unique
key that consists of the original primary key columns.

» Because they are meaningless, it is difficult to memorize them. Users always need
alist of values or other help for entering the foreign key values.

» Some peoplerealy hate them.
Deciding About Artificial Keys?

Before Design

Negative: It would corrupt your data model, as you would add elements that have
no business meaning.

Positive: Thereis a close mapping between the conceptua and technical model
that reduces the chances of misunderstanding.

After Design

Positive: It really is adesign decision based on current performance
considerations.

Toolslike Oracle Designer let you decide about artificial keys during the initial
mapping of the ER model. Thisis anice compromise.

9-12 Data Modeling and Relational Database Design

Sequences

Sequences

9-9

J

Sequences

CREATE SEQUENCE sequence_name
INCREMENT BY number

START WITH number
MINVALUE number
MAXVALUE number

CACHE number | NOCACHE
CYCLE | NOCYCLE;

Some Sequence Characteristics

* A sequenceis adatabase object that can generate a serial list of unique numbers
for columns of database tables.

» A sequence provides the quickest way of generating unique numbers.

» Sequences simplify application programming by automatically generating unique
numerical values that can be used as artificial key values.

* A sequence may be used to generate sequence numbers for any number of tables.
Usually a separate sequence is created for each table with an artificial key,
although there is no special need for that.

* A sequence guarantees generation of unique ascending or descending numbers. A
sequence does not guarantee that all consecutive numbers are actually used.

ORACLE

Lesson 9: Database Design CONSIAEIations o eeeeeeeeeeeeee e eseeeeeesenes
Foreign Key

By definition, Foreign Keys must refer to primary key or unique key values. You
should consider what should happen if the primary key (or unique key) value changes.

Foreign Key Behavior

Delete
Restrict

Cascade

Default / Nullify

J Supported by Oracle through declaration

9-10

Referential Integrity

There are two aspectsto consider:

* Therulesyou want to implement to support business constraints
» Thefunctionalities Oracle provides for these rules

Relational theory describes four possible kinds of behavior for aforeign key. For every
foreign key decide what kind of behavior you want it to have.

The behaviors describe what the foreign key should do when the value of the key it
refers to changes.

Restrict Delete

Restrict delete means that no deletes of a primary (or unique) key value are allowed
when referencing values exist. Thisis supported by Oracle. Thisis the most
commonly used foreign key behavior.

Restrict Update

Restrict update means that no updates of a primary (or unique) key value are allowed
when referencing values exist. Thisis supported by Oracle. Note that this behavior is
unnecessary in the case of artificia keys as these are probably never updated.

9-14 Data Modeling and Relational Database Design

Sequences

Note that restrict update is not the same concept as nontransferability. Restrict update
prevents the update of areferenced primary key value. Nontransferability means that
the foreign key columns are not updatable.

Cascade Delete

Cascade delete means that deletion of arow causes all rows that reference that row
through aforeign key marked as “cascade” will be deleted automatically. Cascade
delete is an option that Oracle supports.

The complete delete operation will fail if, during the cascade, there is arecord
somewhere that cannot be deleted. This may happen if the record to be deleted is
referred to through arestrict delete foreign key.

Cascade delete is avery powerful mechanism that should be used with care.

Cascade Update

Cascade update means that after a primary key value is updated, this changeis
propagated to al the foreign key columns referencing it.

Cascade update and nontransferability often come together.

Default and Nullify

The default and the nullify option mean that on delete or update of the primary key
value, the related foreign key values will acquire a default value or will be set to
NULL.

These options can be implemented by creating an update database trigger on the table
referred to by the foreign key. Clearly, the nullify optionisonly valid if the foreign key
isoptional.

Typical Use

Usually, many foreign keys are defined as restrict delete. This does not prevent the
referred record being deleted; it just forces the user to consciously remove or transfer
all referring rows.

Of course, when you use artificial keysyou can set all foreign key update propertiesto
“restrict” asthere will never be a good reason for updating an artificial key value.

ORACLE 9-15

Lesson 9: Database Design Considerations

Indexes

Indexes are database structures that are stored separately from the tables they depend
on. In arelational database you can query any column, independently of the existence
of an index on that column.

Indexes

* Performance

ALBERT

ALFRED

f”'\ ALVIN

=) ALPHONSO 2841 ||fi-

* Unigueness

9-11

Indexes are used for two reasons:
* To speed up queries
» To ensure uniquenessif required

Performance

Indexes are created to provide afast method to retrieve values. However, indexes can
slow down performance on DML statements.

Oracle provides a wide range of index types. You must choose the type which is
suitable for its intended use.

Uniqueness

A unique index is an efficient structure to ensure that the values are not duplicated
within the set of columns included in the index. Unique indexes are automatically
created when you create aprimary or unique key. The name of theindex in that caseis
the same as the name of the key constraint.

9-16 Data Modeling and Relational Database Design

Indexes

Index Types
See page 38
Choosing Indexes
B*tree
Bitmap E
aba .1.2.5 X Y z
aba .1.25 abb 145| Reverse o 1 |o
abb .1.35 bba .1.3.5 0 5 9
abc .1.1.5 cha.1.1.5 a o i
bba .1.4.5 0 0 1
—— * |
C1|C2| |0o.Table %1 C$
aba X abc
abb V4 aba | X
abc Y abb Z
bba | Z bba | X
bbc X bbc Z
9-12
B*Tree

The classical structure of an index, if not explicitly specified otherwise, isthe B* Tree
(also known as Tree balanced) index. It is specially designed for online transaction
processing systems. They have a proven efficiency and Oracle has offered them for
sometime. They easily support insert, update, and delete.

Typical use: General purpose

Reverse Key

Based on that classical structure of the B* Tree, Oracle offers areverse key index
which has most of the properties of the B* Tree but in which the bytes of each indexed
column are reversed.

Typical use: Inan Oracle Paralel Server environment, where such an arrangement
can help avoid performance degradation in indexes

Bitmap

A bitmap index stores for each individual value of the indexed column, if arow
contains this value or not.

Typical use: Datawarehouse environment. Bitmap indexes have aproven efficiency
in On Line Analytical Process systems when ad-hoc queries can be intensive and the
number of distinct values for the indexed column is not high.

ORACLE 9-17

Lesson 9: Database Design Considerations

Bitmap indexes require less space than a B* Tree index but they do not support inserts,
updates, and deletes as well asaB* Tree.

Index Organized Table

Anindex organized table is atable that contains rows that are stored in an ordered
way, using the B* Tree technique. It provides the speed that indexes provide and does
not require a separate index. The only restriction in its useis that you cannot create
additional indexes for this Index Organized table.

Typical use: Tablesthat are always accessed through exactly the same path, in
particular when storing large objects.

Concatenated Index

You can create an index that includes more than one column. These are called
concatenated indexes. The order in which you specify the columns has a strong impact
on the way Oracle can use the index. Set the column that is alwaysin a Where clause
asthe first column of theindex. Thisis called the leading part of the index.

Function Based Index
Since Oracle8i it is possible to create an index based on a SQL function.

Typical use: Create an index on the first three characters of a name using the substr
function or the year component of a date using theto_char function.

9-18 Data Modeling and Relational Database Design

Choosing Columns to Index

Choosing Columns to Index

Which Columns to Index?

* Primary key columns and Unique Key columns
(Up to Version 6)

®* Foreign Key columns

* When significant better performance can be
observed in SELECT statements

" H
! :Avoidindexing: ZB H A

* Small tables -
* Columns frequently updated

9-13

Candidate Columns for Regular B*Tree Indexing

* Columnsused in join conditions to improve performance on joins
» Columnsthat contain a wide range of values

» Columnsthat are often used in the Where clause of query

* Columnsthat are often used in an Order By clause of a query

Candidate Columns for Bitmap Indexing

» Columnsthat have few distinct values such as, for example, a column containing
indicator values (Y/N) or a column for gender

Columns Less Suitable for Indexing

* Columnsthat contain many NULL values where you usually search rows with the
NULL values

Columns that Cannot or Should Not be Indexed
 LONG and LONG RAW columns cannot be indexed

* Columnsthat are hardly ever used in Where / Order By clauses
* Small tables occupying only few data blocks

ORACLE 9-19

Lesson 9: Database Design Considerations

Temporary Indexes

» Indexes can be created and dropped for a particular incidental use. For example,
you can decide to create an index right before areport is run and then drop it
afterwards.

General Recommendations

» Limit the number of indexes per table. Although atable can have any number of
indexes this does not necessarily improve performance; the more indexes, the
more overhead is incurred when there are updates or deletes.

e Asaruleof thumb, if there is any doubt, do not create the index. You can aways
create it later.

* Itisvery likely that theinitial set of indexes will have to change after some time,
because of changes of the characteristics of the system. Typically, the number of
different valuesin a column can initially be very low but increase during the life
cycle of asystem. Initially, an index would not be of value but it would be later.

9-20 Data Modeling and Relational Database Design

When Are Indexes Used?

When Are Indexes Used?

When Can Indexes be Used?

* When referenced in a Where clause or Order By

* When the Where clause does not include some
operators

* When the optimizer decides
* With hints in the SQL statement

9-14

You may have created an index to improve performance but without seeing any
benefits.

For Oracle to use them, indexed columns need to be referenced in the Where clause of
a SQL statement, or in the order by, while the Where clause must not include the
following:

* ISNULL
* ISNOT NULL

° !:

« LIKE

* When the column is affected by an operation or function (unless you use a
function-based index and the condition uses the same function)

For example, suppose column X contains many nulls and afew numeric, positive

values. Suppose queries often select all rows having aNOT NULL value. Finally,

suppose an index is created on X.

In this case, the condition WHERE X > 0 is preferable to WHERE X ISNOT NULL

because in the first situation Oracle would use an index on X and in the second Oracle

would not.

Yet, even if it was written in thisway, it isthe optimizer’s choice to decide whether to

useindexes or not. The decision is based on rules or on statistics.You can stimulate the

optimizer to use indexes using hints in your SQL statements.

ORACLE 9-21

Lesson 9: Database Design Considerations e s
Table Partitioning

Oracle provides an interesting feature to solve performance and administration
problems on tables with alarge number of rows.

Partitioning Tables and Indexes

CUSTOMERS
Coll |Col2 |Col3 [Region

\J

CUSTOMERS_R1
Coll [Col2 |[Col3 [Region

CUSTOMERS_R2

Coll|Col2 |Col3 |Region
Partitioned Table

Since Oracle8, when creating atable, you can specify the criteria on which you want
to divide the table and make a horizontal partitioning. There are then as many
partitioned tables as there are distinct values in the column. Each partitioned table has
a specific name but access is made referring to the globa name of the table. The
optimizer then decides which partition to access, depending on the value of the Where
clause.

The main issue of thisfeatureisto manipulate considerably smaller pieces of data and
then improve the speed of SQL statements. Suppose you want to query on customers
located in a specific region, Oracle does not need to access all rows of the
CUSTOMERS table but can limit its search to the piece holding all customers of this
region only.

Logically, the table behaves as one object; physically, datais stored in different places.

9-15

Partitioned Index

Using the same idea, an index may be partitioned. It does not need to match with the
table partitioning. It may have different partitioning criteria and have a different
number of partitions to the table. This may be useful in the situation where the answer
to particular queries can always be found in the partitioned index.

9-22 Data Modeling and Relational Database Design

Views

A view isawindow onto the database. It is defined by a SELECT statement whichis
named and stored in the database. Therefore aview has no data of its own—it relays
information from underlying tables.

¥
[
v

N
N
N
S 2
-
N [}
I3
N
\
» N
-

v
S > i

N \

V1
o * Restricting access
* Presentation of data

* |solate applications from data structure

* Save complex queries

* Simplify user commands

9-16

Usages of Views

* Restricting access. The view mechanism is one of the possible ways to hide
columns and rows from the tables it is based on.

* Presenting data: A view can be used to present data in a more understandable way
to end-users. For example, aview can present calculated data built from
elementary information that is stored in tables.

» |solating application from data structures. Applications may be based on views
rather than tables, where there is a high risk that the structure might change. If a
view is used, the application would need no maintenance providing the view
remains untouched, even though the underlying tables were modified.

» Saving complex queries and simplifying commands. Views can be used to hide the
complexity of the data structure, allowing users to create queries over multiple
tables without having to know how to join the tables together.

* Simplifying user commands.

ORACLE 9-23

Lesson 9: Database Design Considerations

Use of Views

Reasons for Views

* Advantages
— Dynamic views

— Present denormalized data from normalized
tables

— Simplify SQL statements
* Disadvantages
— May affect performances
— Restricted DML in some cases

9-17

Advantages

You can use aview to present derived data to end users without having to store
them in the database. Typically, you would show completely denormalized, pre-
joined information in views that would allow end users to write simple SELECT
statementslike SELECT * FROM ... WHERE

Views can be made dynamic, for example, showing data that depend on which user
you are or what day it is.

For example, you could create aview that shows localized help messages.
According to the user name, the system can find the preferred languagein a
PREFERENCES table and next return a message in thislanguage. A single view
returns different values depending on the name of the user.

Another example type of view can be used to allow a user to access data between
8:00 am and 6:00 pm on weekdays only.

Disadvantages

Views are always somewhat slower, which is due to the fact that the parsetime is
dlightly longer. Once a table and its columns are found, the query can be
immediately executed. Query criteria are linked with “and” to the criteria of the
view. This can affect the execution plan generated by the optimizer.

Even if views behave almost like tables, there are still some restrictions when
using views for insert, update, and delete statements.

9-24 Data Modeling and Relational Database Design

Old-Fashioned Design

Old-Fashioned Design

Going through existing systems, you may find some old-fashioned design techniques.
These techniques were used at the time the RDBM S features were not so advanced.

See page 40

Old Fashioned Design

* Unique index
* Views with “Check option” clause
* Generic Arc implementation

9-18

Unique Index

Unique Indexes used to be created manually on the primary key columns because the
primary key constraint could not be declared up to Oracle?.

Check Option Views

In earlier versions of Oracle, it was not unusual to create aview “with acheck option”.
These views, now obsolete, could be used to some extent to enforce data integrity and
referential integrity before Oracle?.

There is no functionality in aview with a check option that cannot be coded in a
database trigger. The declaration of integrity constraints and coding of database
triggersis now the preferred way to handle this.

ORACLE 9-25

Lesson 9: Database Design Considerations

Generic Arc Implementation

Generic Arc Implementation

'
1
1
1
1
1
1
1
1
1
H*
o

3

AS (A)

*

x |Fk_id

e "
T Table_name | (X or Y)

9-19

The generic arc implementation isafossil construction you may find in old systems.

In the implementation of the arc of entity A in the example, the three relationshipsin
the arc were merged into one generic foreign key column Fk_id. Added to table ASis
aNOT NULL column that keeps the information about which table the foreign key
value refersto. This used to be a popular technique because it could make use of a

NOT NULL constraint on Fk_id when the arc was mandatory.

This solution for implementing arcs should now be avoided for the following
limitations:

» Since Oracle7 the arc can now be implemented by simply declaring two foreign

keys and writing one check constraint.

* Thejoins may be very inefficient as, in many cases, you would need the time-

consuming union operator:

select A.Name, X.Name, ’'X’ Type
from AS A, XS X

where

union

select A.Name, Y.Name, 'Y’

from AS A, YS Y

where

Foreign key constraint for the foreign key column cannot be declared since it
cannot reference more than one primary key.

Data Modeling and Relational Database Design

Distributed Design

Distributed Design

Thisis characterized as many physical databases, located at different nodes, but
appearing to be asingle “logical database”.

Distributed Database

* Different physical databases appear as one logical
database

9-20

Characteristics

* Multiple physical databases

* Onelogical database view

» Possibly dissimilar processors

» Kernel runs wherever apart of the database exists

The multiple physical databases are not necessarily copies of each other or part of each
other.

You can decide on how to spread the individual table content across the different
databases on the different partitioning principles. You can decide for avertical or
horizontal technique, or a combination of both.

ORACLE 9-27

Lesson 9: Database Design Considerations

Benefits of Distributed Design

Benefits of Distributed Databases

* Resilience

* Reduced line traffic

* Location transparency

®* Local autonomy

® Easier growth path

but

* Increased, distributed, complexity

9-21

» Improved flexibility and resilience. Access to datais not dependent on only one
machine or link. If thereisany failure then some datais still accessible on the local
nodes. A failing link can automatically be rerouted via alternative links.

» Improved response time by having the data close to the usual users of the data.
This may reduce the line traffic dramatically. For example, in the model of
ElectronicMail, it is very likely that each country will have its own database. This
database will store in its own messages table the messages that belong to the
people registered in that country.

» Location transparency allows the physical datato be moved without the need to
change applications or notify users.

» Local autonomy allows each of the physical databases:

— To be managed independently.

— To have definitions and access rights created and controlled locally.
* Aneasier growth path is achieved:

— More processes can be added to the network

— More databases can be included on a node.

— Software update is independent of physical structure.

Disadvantage

A magjor disadvantage of distributed design is the often very complex configuration:
with the data the complexity is also distributed. System maintenance is complicated.

9-28 Data Modeling and Relational Database Design

Oracle Database Structure

Oracle Database Structure

@] Database Structure

consists
of A part of

TABLESPACE |consists
\ of

resides| container: art of
of! SEGMENT

; OTHER

SEGMENT
| J\ sliced in sliced in C?nsists
i 0
residence | located in part off * part Of* \

of (| TABLE OR INDEX PARTITION) | part of
DATA FILE [EXTENT (USED |(FREE l]

consists resides in
of L part of residence of
[DATA BLOCK]

Tablespaces
The diagram shows the structure of a Oracle database.

An Oracle database consists of one or more tablespaces. Each tablespace can
hold a number of segments, and each segment must be wholly contained in
its tablespaces. The SY STEM tablespace is created as part of the database
creation, and should be reserved for the Oracle Data Dictionary and related
tables only. You should not create application data structuresin this
tablespace. You are advised to create separate tablespaces for different types
of segments.

Segments
A segment is the space occupied by a database object. There are three types

of segments: atable segment, an index segment or an other segment, that is
used for clusters. Only the other segments must be part of one tablespace.

Partitions

Usually, asegment is assigned to a single tablespace. However, with Oracle8
it is possible to spread atable or index segment into more than one
tablespace. Thistechniqueis called partitioning. A partition is the part of a
table segment (or index segment) that resides in one tablespace.

ORACLE 9-29

Lesson 9: Database Design Considerations

Extents

Each time more space is needed by a segment, a number of contiguous
blocksis allocated as an extent. There is no maximum limit on the number
of extentsthat can be allocated to a segment. It isusually preferable to avoid
an excessive number of small extents by ensuring that the segment has a
sufficiently largeinitial extent.

Data Files

Datafiles are the operating system files that physically contain the database data. Data
files consist of data blocks.

Data Blocks

A data block isthe smallest amount of data Oracle readsin one read operation. A data
block always contains information from one extent only.

There is adistinction between the logical table, made up of rows with columns, and
the physical table, taking space that is made up of database blocks organized in extents
and located in datafiles.

9-30 Data Modeling and Relational Database Design

Summary

Summary

¢ Data Types

* Primary, Foreign, and Artificial Keys
* Indexes

® Partitioning

* Views

* Distributed design

9-23

» Oracle provides alarge choice of datatypes for the columns of the tables.

* Primary keys are needed for tables. Artificial keys can be a good solution to
implement complex primary keys.

» Indexesimprove performance of queries and provide a mechanism for
guaranteeing unigue values.

* Partitioning tables can aso be a solution to performance problems.

* Viewsare aflexible, secure, and convenient object for users.

» Didtributed Design is a complex technique. It allows data to be located closer to
the user.

ORACLE 9-31

Lesson 9: Database Design Considerations

Practice 9—1: Data Types

Moonlight Coffees Goal
i B The purpose of this practice isto perform a quality check on
- @ , proposed data types.
Scenario

Use the model that illustrates Moonlight pricing.

CURRENCY | of COUNTRY . ..
O—ﬁ # Code Moonlight Pricing
Wi
:in : in

with with

PRODUCT GROUP /

Name SHOP
‘with #No

EXCHANGE in * Name
RATE * Address

Month * City
* Rate

PRICELIST
Start Date
* End Date

LOCAL PRICE | | LANGUAGE
Start Date # Code

o End Date

* Amount

PRODUCT NAME ’
* Name

9-25

9-32 Data Modeling and Relational Database Design

.. Practice 9—1: Data Types
Your Assignment

1 Here you see table names and column names and the suggested data type. Do a
quality check on these. If you think it is appropriate, suggest an alternative.

Table | Column Suggested Your Choice
Data Type Data Type
COUNTRIES | Code Varchar2(2)
CURRENCIES | Code Varchar2(3)
EXCHANGE_RATES | Month Date
Rate Number(8,4)
PRICE_LISTS | Start_date Date
End_date Date
PRODUCT_GROUPS | Name Char(8)
PRODUCTS | Code Char(10)
Size Number(4,2)
Pdt_type Number(1)

2 Suggest data types for the following columns. They are all based on previous
practices.

Table | Column Your Choice Data Type

GLOBAL_PRICES | Amount
LOCAL_PRICES | Start_date
End_date
Amount
SHOPS | Name
Address
City

3 What data type would you use for a column that contains times only?

ORACLE 9-33

Lesson 9: Database Design Considerations

Practice 9—2: Artificial Keys

Moonlight Coffees Goal
i B Y ou are coming to the end of your contract for Moonlight Coffees.
- @ , Thejob is amost finished!
Scenario

Y ou need to make decisions on possible artificial keys for some of the Moonlight
tables. The model is the same as the one used in the previous practice.

Your Assignment
1 Indicate for each tableif you see benefits of creating an artificial key and why.
COUNTRIES
GLOBAL_PRICES
PRICE_LISTS

2 For which tables (if any) based on the Moonlight model doesit not make any sense
at al to create artificial keys?

9-34 Data Modeling and Relational Database Design

Practice 9—3: Product Pictures

Practice 9—3: Product Pictures

Moonlight Coffees Goal

The purpose of this practice is to modify adesign to serve new
requirements.

Scenario

Thisisyour last task for Moonlight coffees. Tomorrow you are freeto forget all about
Moonlight and only drink coffee!

The decision has been made to make the first steps into the e-commerce market. One
objectiveisto allow customersto consult Moonlight’ s website. This site should
provide product information. For each product at least two additional attributes have
been identified.

Thefirst is the attribute Picture for images of the products. The second is an attribute
HTML Document that holds the product description that can be displayed with a
browser. Other attributes may follow.

Your Assignment
1 Decide what datatype you would advise to be used for each column.

2 You have heard that an old Oracle version would not accept more than one long
type column per table. Y ou are not sureif thisisstill alimitation. Advise about the
implementation.

ORACLE 9-35

Lesson 9: Database Design Considerations

9-36 Data Modeling and Relational Database Design

Normalization

Appendix B: Normalization

Introduction

Lesson aim

This lesson describes the steps involved in order to normalize table data to the third
normal form for cases when there is no possibility of performing afull data analysis.

Overview

* Table Normalization
* Normal Forms of Tables

B-2

Topic See Page
Introduction 2
Normalization and its Benefits 3

First Normal Form 7

Second Normal Form 9

Third Normal Form 11
Summary 13

Objectives

At the end of thislesson, you should be able to do the following:
» Define normalization and explain its benefits
* Placetablesin Third Normal Form

Normalization and its Benefits

Normalization and its Benefits

Why and When to Normalize Tables

Before we even talk about why you should normalize, first consider when you should
normalize. If you are developing an application and use the techniques of entity
relationship (ER) modeling, then you will not need to normalize. One of the
advantages of entity relationship modeling is that the resulting table design is already
normalized, provided there are no obvious errorsin the ER model.

The only time you will need to normalize the dataisif there has been no timeto build
an entity model and when a set of tablesis already available. You can then employ the
normalization techniques following the initial database design as alast chance to
check for existing database integrity.

History of Normalization

Normalization is atechnique established by the originator of the relational model, E.F.
Codd. The complete set of normalization techniques, include twelve rules that
databases need to follow in order to be described as truly normalized. It isatechnique
that was created in support of relational theory, years before entity relationship
modeling was developed. The entity relationship modeling process has incorporated
many of the normalization techniques to produce a normalized entity relationship
diagram.

Two termsthat have their origins in the normalization technique are still widely in use.
Oneis normalized data, the other is denormalization.

Objective of Normalization

The major objective of normalization isto remove redundant data from an existing set
of tables or table definitions, thereby increasing the integrity of the database design
and to maximize flexibility of data storage. Removing redundant data helps to
eliminate update anomalies. The first three normal forms progressin a systematic
manner to achieve this objective.

There are many other normal formsin addition to the first three, and they deal with
more subtle anomalies. In general, the I T industry considers normalization to the Third
form an acceptable level to remove redundancy. With afew exceptions, higher
normalization levels are not widely used.

The major subject of normalization istables, not entities.

ORACLE B-3

Appendix B: Normalization

Why Normalize?

* An Entity Model is not always available as a
starting point for design

®* To reduce redundant data in existing design

* To increase integrity of data, and stability of
design

* To identify missing tables, columns and
constraints

Note: Third normal form is the generally-accepted
goal for a database design that eliminates
redundancy.

B-3

Normalization Compared to Normalized Data

Normalized data is data that contains no redundancies. Thisisimportant as data
redundancy may cause integrity problems. Normalization is the activity, the process,
that leads to a normalized data structure as does entity relationship modeling.

Benefits of Normalized Data

The major benefits of a correctly normalized database from an Information Systems
perspective include:

» Refinement of the strategy for constructing tables and selecting keys.
* Improved communication with the end-users' application activities.
* Reduced problems associated with inserting and deleting data.

* Reduced enhancement and modification time associated with changing the data
structure.

* Improved information for decisions relating to the physical database design.

* ldentification of potential problems that may have been overlooked during
analysis.

Normalization and its Benefits

USER USER MSE REC SRVR SERVER
_ID NAME _ID DATE SUBJECT TEXT _ID _NAME
2301 Smith 54101 05/07 Meeting Today There is.. 3786 IMAPOS5
2301 Smith 54098 07/12 Promotions I like to. 3786 IMAPOS5
2301 Smith 54445 10/06 Next Assignment Your next. 3786 IMAPO5
5607 Jones 54101 05/07 Meeting Today There is.. 6001 IMAPOS8

5607 Jones 54512 06/07 Lunch? Can you... 6001 IMAPOS8

5607 Jones 54660 12/01 Jogging Today? Can you... 6001 IMAPOS

7773 Walsh 54101 05/07 Meeting Today There is.. 9988 EMEAO1l

7773 Walsh 54554 03/17 Stock Quote The latest 9988 EMEAOl

0022 Patel 54101 05/07 Meeting Today There is.. 2201 EMEAO9

0022 Patel 54512 06/07 Lunch? Can we ... 2201 EMEAOY
B-4

Unnormalized Data

Datathat has not been “normalized” is considered to be “unnormalized” data or datain
zero-normal form. This datais not to be confused with data that is denormalized. If no
ER Model was created at the start of a database design project, you are likely to have
unnormalized data, not denormalized data. If you want to add redundancy, for faster
performance or other reasons, you follow the rules defined during the process of
denormalization. But, to denormalize data you must start with normalized data. You
cannot denormalize an unnormalized design, just as you cannot de-ice your car, if
thereisnoiceonit.

ORACLE' B-5

Appendix B: Normalization

Normalization

Normalization consists of a series of rules that must be applied to move from a
supposedly unnormalized set of datato a normalized structure. The processis
described in various steps which lead to a“higher” level of normalization. These
levels are called normal forms.

Normalization Rules

Normal Form Rule Description

First Normal Form The table must express a set of

(INF) unordered, two-dimensional tables.
The table cannot contain repeating
groups.

Second Normal Form (2NF) The table must be in INF. Every

non-key column must be dependent
on all parts of the primary key.

Third Normal Form (3NF) The table must be in 2NF. No non-key
column may be functionally dependent
on another non-key column.

“Each non-primary key value MUST be dependent on the key,
the whole key, and nothing but the key.”

B-5

First Normal Form

First Normal Form

Definition of First Normal Form (1NF)

The table must express a set of unordered, two-dimensional table structures. A tableis
considered in the first normal form if it contains no repeating groups.

Steps to Remove Repeating Groups
1 Remove the repeating columns from the original unnormalized table.

2 Create anew table with the primary key of the base table and the repeating
columns.

3 Add another appropriate column to the primary key, which ensures uniqueness.

4 Create aforeign key in the new table to link back to the original unnormalized
table.

Converting to First Normal Form

USER USER SRVR SERVER
_ID _NAME _ID _NAME
2301 Smith 3786 IMAPOS
2301 Smith 3786 IMAPOS
2301 Smith 3786 IMAPOS
5607 Jones 6001 IMAPOS8
5607 Jones 6001 IMAPOS8
5607 Jones 6001 IMAPOS8
7773 Walsh 9988 EMEAO1
7773 Walsh 9988 EMEAO1
0022 Patel 9988 EMEAO1
0022 Patel 9988 EMEAO1

1. Remove repeating group from the base table.

2. Create a new table with the PK of the base table and the
repeating group.

B-6

ORACLE B-7

Appendix B: Normalization

USERS

USER USER SRVR SERVER
_ID _NAME _ID _NAME
2301 Smith 3786 IMAPO5
5607 Jones 6001 IMAPOS
7773 Walsh 9988 EMEAO1
0022 Patel 9988 EMEAOL

USER USER SRVR SERVER
ID NAME ID NAME
USERS | _---- —--__- -
2301 Smith 3786 IMAPO5
5607 Jones 6001 IMAPOS8
7773 Walsh 9988 EMEAOl
0022 Patel 9988 EMEAO1l

B-7

First create a second table to contain the repeating group columns. Then create a
primary key composed of the primary key from the unnormalized table and another
column that is unique. Finally create aforeign key to link back to the first table.

First Normal Form—Repeating Groups

USER MSE REC

RECEIVED
—~| 1 ID DATE SUBJECT TEXT
MESSAGES | -___ __ -
(INF) 2301 54101 05/07 Meeting Today There is..
2301 54098 07/12 Promotions I like to.

_< 2301 54445 10/06 Next Assignment Your next.

5607 54101 05/07 Meeting Today There is..
5607 54512 06/07 Lunch? Can you...
5607 54660 12/01 Jogging Today? Can you...
277354101 05/07 Meeting Today There is..

USER USER SRVR SERVER ||/17 Stock Quote The latest
D NAME ID NaME [/07 Meeting Today There is..
- - - - /07 Lunch? Can we ...

2301 Smith 3786 IMAPO5
5607 Jones 6001 IMAPO8
7773 Walsh 9988 EMEAO01 | USERS (INF)
0022 Patel 9988 EMEAOl

B-8

Second Normal Form

Second Normal Form

Definition of Second Normal Form (2NF)

A tableisin second normal form if the tableisin the first normal form and every non-
primary key column is functionally dependent upon the entire primary key. No non-
primary key column can be functionally dependent on part of the primary key.

Depends on is defined as. a column B depends on column A means that B must be re-
evaluated whenever A changes.

A tablein the first normal form will be in second normal form if any one of the
following apply:
» Theprimary key is composed of only one column.

* No nonkeyed columns exist in the table.

» Every nonkeyed attribute is dependent on all of the columns contained in the
primary key.

Converting to Second Normal Form

1. Determine which non-key columns are not
dependent upon the table’s entire primary key.

2. Remove those columns from the base table.

3. Create a second table with those columns and the
columns from the PK that they are dependent
upon.

B-9

Steps to Remove Partial Dependencies
1 Determine which nonkey columns are dependent upon the table’s entire primary
key.
2 Remove those columns from the base table. Create a second table with those

nonkeyed columns and a copy of the columns from the primary key that they are
dependent upon.

3 Create aforeign key from the original base table to the new table, linking to the
new primary key.

ORACLE B-9

Appendix B: Normalization

Tables Already in Second Normal Form

USERS

USER USER SRVR SERVER
_ID NAME _ID _NAME
2301 Smith 3786 IMAPOS
5607 Jones 6001 IMAPOS8
7773 Walsh 9988 EMEAO1l
0022 Patel 9988 EMEAO1l

Is the USERS table already in 2NF?

B-10

Convert to Second Normal Form

RECEIVED_ | USER
MESSAGES

(ANF) | 2301

RECEIVED_
MESSAGES 5607
(2NF) 5607
USER MSE REC
_ID _ID DATE

2301 54101 05/07
2301 54098 07/12

2301 54445 10/06 | MESSAGES MSE

5607 54101 05/07 D BJECT TEXT

5607 54512 06/07 (2NF)| ___ID SUBJECT = TEXT

5607 54660 12/01 54101 Meeting Toda There is.

7773 54101 05/07 ’— 54098 Promotions I like to

7773 54554 03/17 54445 Next Assignm Your next

0022 54101 05/07 54512 Lunch? Can you..

0022 54512 06/07 54660 Jogging Toda Can you..
54554 Stock Quote The lates

B-11

Third Normal Form

Third Normal Form

Definition of Third Normal Form (3NF)

A tableisin third normal form if every nonkeyed column is directly dependent on the
primary key, and not dependent on another nonkeyed column. If the tableisin second
normal form and all of the “transitive dependencies’ are removed, then every non-
keyed column is said to be “ dependent upon the key, the whole key, and nothing but
thekey”.

Converting to Third Normal Form

Remove any columns that are dependent upon
another non-key column:

1. Determine which columns are dependent upon
another non-key column.

2. Remove those columns from the base table.

3. Create a second table with those columns and the
non-key columns that they are dependent upon.

B-12

Steps to Remove Transitive Dependencies
1 Determine which columns are dependent on another non-keyed column.
2 Remove those columns from the base table.

3 Create a second table with those columns and the non-key columns that they are
dependent upon.

4 Create aforeign key in the original table linking to the primary key of the new
table.

ORACLE' B-11

Appendix B: Normalization

Tables Already in Third Normal Form

No non-key column can be functionally dependent
upon another non-key column.

RECEIVED_

MESSAGES MESSAGES

(2NF) (2NF)

USER MSE REC ID SUBJECT TEXT

_ID _ID DATE | | ===== ===mmmmmmmmmme e
-------------- 54101 Meeting Today There is.
2301 54101 05/07 54098 Promotions I like to
2301 54098 07/12 54445 Next Assignmen Your next
2301 54445 10/06 54512 Lunch? Can you..
5607 54101 05/07 [JP— 54660 Jogging Today? Can you..
5607 54512 06/07 54554 Stock Quote The lates

0022 54101 05/07 Are these two tables in third
normal form? Why?

B-13
Converting to Third Normal Form
USERS
SRVR
ID NAME _ID
USERS | eeee aeo- -
2301 Smith 3786
UigR U;iﬁE 5607 Jones 6001
. C____ 7773 Walsh 9988
2301 Smith 0022 Patel 9988
5607 Jones
7773 Walsh
0022 Patel MAIL_ [1p .
SERVER | oo .
3786 IMAPOS5
6001 IMAPOS
9988 EMEAOL
B-14

The theory of normalization goes further than the third normal form to cater for
several problematic constructions that may remain. Those normal forms are outside
the scope of this lesson.

Summary

Summary

INF The table must express a set of unordered, two-
dimensional tables. The table cannot contain
repeating groups.

2NF The table must be in INF. Every non-key column must
be dependent on all parts of the primary key.

3NF The table must be in 2NF. No non-key column may be
functionally dependent on another non-key column.

An entity relationship model transforms into normalized
data design.

B-15

ORACLE B-13

Appendix B: Normalization

arc 1-27, 4-12

both supertype and subtype implemen-

tation 7-25

exclusive 4-12

rules 4-14
arc implementation 7-25

generic 9-26

rules 7-25
arc or subtypes 4-16
arcs

incorrect 4-15

mapping 7-19
artificial key 9-11
atribute 1-13

multiple

uUID 4-7
redundancy 2-16
single
UlID 4-7

single valued 1-13
attribute constraint 4-19
attribute representation

mandatory 1-19

optional 1-19
attributes 3-19

naming 2-15

recycling 6-20

tracking 2-14

volatile 1-14
attributes modeled as PROPERTY in-
stance 6-20

B*Tree

index 9-17
barred relationship 4-6
basket, pattern 6-6
BFILE 9-6
bill of material

pattern 6-12
binary table 3-26
bitmap index 9-17

ORACLE

BLOB 9-6
business function 1-23
businessrules 4-2

cascade composed UID 4-7
cascade delete 9-15
cascade update 9-15
chain

pattern 6-10
CHAR 9-6
check

conditional domain 4-20

conditional relationship 4-20

front door 4-20

range 4-20

state value transition 4-20

state value triggered 4-20
check constraint 4-14
classification, pattern 6-7
CLOB 9-6
column

current indicator 8-20
column sequence 9-7
columns 7-5

choosing for index 9-19

end date 8-18

foreign key

naming 7-9

composed

uID 4-7
concatenated index 9-18
concept

evolution 2-11
conceptual data modeling 1-8, 2-5, 3-26
conceptual model 7-6
conceptual modeling 1-4
conceptual models 1-28
conditional domain check 4-20
conditional nontransferability 5-9
conditional relationship 4-20
constraint

check 4-14

declarative 7-7
constraints 4-2

check

naming 7-10
foreign key
naming 7-9
hierarchy 6-9
specia 4-20
time-related 5-8
convention
naming 7-8
conventions
sensible use 6-18
crowsfoot 3-7
current indicator column 8-20

data2-4
normalized B-3
unnormalized B-5
data blocks 9-30
datafiles 9-30
datamodeling
conceptual 2-5
physical 2-5
datatype
BFILE 9-6
BLOB 9-6
CHAR 9-6
CLOB 9-6
DATE 9-6
LONG 9-6
LONG RAW 9-6
NUMBER 9-6
VARCHAR?2 9-6
datatypes
Oracle 9-5
data warehouse 2-6
pattern 6-16
datawarehouse system
design strategy 7-8
star model 7-10, 9-14
database
hierarchical 2-6
network 2-6
object oriented 2-6
relational 2-6
semantic 2-6
database structure

ORACLE

data blocks 9-30
datafiles 9-30
extents 9-30
Oracle 9-29
partitions 9-29
segments 9-29
tablespaces 9-29
DATE 9-6
date
end 5-7
start 5-7
date as Opposed to day 5-5
date or day 5-5
date time 5-6
declarative constraint 7-7
default and nullify 9-15
definition
denormalization 8-4
definition of an entity 1-10
degree 3-7
delete
cascade 9-15
restrict 9-14
denormalization
definition 8-4
denormalization techniques
derivable values 8-5
hard-coded values 8-5
pre-joining tables 8-5
derivable 1-8
derivable values
storing 8-6
design
distributed 9-27
old fashioned 9-25
design strategy
client-server 7-12
data warehouse approach 7-8
discriminator column 7-20
distributed design 9-27
benefits 9-28
domain 4-19
conditional 4-20
drawing conventions 6-17

electronic mail 2-9
elements
arc 1-27
nontransferability 1-27
subtype 1-27
unique identifier 1-27
end date 5-7
end date columns 8-18
entities
event 2-20
intangible 2-20
tangible 2-20
entity 3-25
formal description 2-7
inheritance 2-17
intersection 3-25
naming 2-7
subtypes 2-17
supertype 2-17
entity DAY 5-6
entity definition
evolution 2-11
entity life cycle 2-12
entity relationship diagram 1-17
entity relationship model 1-17
entity relationship modeling 1-7, 1-28
ER diagram
soft box 1-18
ER model
transform 7-4
evolution of a concept 2-11
exclusive arc 4-12
extents 9-30

fan trap
pattern 6-15
first normal form B-7
foreign key
cascade delete 9-15
cascade update 9-15
columns 7-13
constraints 7-13
default and nullify 9-15

ORACLE

optional composed 7-15
foreign keys 7-5
form

first normal B-7

second normal B-9
formal description of the entity 2-7
front door check 4-20
function

business 1-23

modeling 1-23
function based index 9-18
functionality 1-23, 2-13

generic arc implementation 9-26
generic model 6-22

generic modeling 6-19

generic models 6-20, 6-21
graphical elements 1-17

hard-coded values 8-10
hidden relationships 4-18
hierarchies

disputable 6-8

false 6-8
hierarchy

constraints 6-9

pattern 6-8
hierarchy level indicator 8-22
historical price 5-10
homonyms 2-8
house building metaphor 1-5

identification 4-4
in database 4-5
indirect 4-8
problems 4-4
real world 4-5
identifiers
information-bearing 4-11
incorrect arcs 4-15
incorrect UIDs 4-10

index

choosing columns 9-19

partitioned 9-22

unique 9-8

when used 9-21
index organized table 9-18
index types 9-17

B*Tree 9-17

bitmap 9-17

concatenated index 9-18

function based index 9-18

reverse key 9-17

tree balanced 9-17
indexes 9-16
indicator

hierarchy level 8-22
indirect identification 4-8
information 2-4

types 1-24
information-bearing identifiers 4-11
inheritance 2-17
instances 1-10, 1-11
integrity

referential 9-14
intersection entity 3-25

journalling 5-4, 5-17

keeping details with master 8-12
key

artificial 9-11

foreign 9-14

primary

desirable properties 9-9

keys

foreign 7-5

primary 7-5, 9-8

short-circuit 8-16

unique 7-5, 9-8

life cycle

ORACLE

entity 2-12
logging 5-4, 5-17
logic

referential 5-9
LONG 9-6
LONG RAW 9-6

mandatory 3-7, 3-10
many to many (m:m) 3-9
mapping
basic 7-12
entity 7-12
nontransferable relationships 7-15
relationship 7-14
terminology 7-7
mapping arcs 7-19
mapping barred relationships 7-15
mapping many-to-many relationships 7-
17
mapping one-to-one relationships 7-18
mapping subtypes 7-20
master
keeping details 8-12
repeating single detail 8-14
master detail, pattern 6-5
model
conceptual 7-6
relational 7-6
modeling
generic 6-19
modeling time 5-4
multiple attribute
uID 4-7

name space 7-11

naming
attributes 2-15
check constraints 7-10
convention 7-8
entities 2-7
foreign key columns 7-9
foreign key constraints 7-9
relationships 3-5

restrictions with Oracle 7-10
tables 7-8
naming relationships 3-5
negotiated prices 5-14
nested subtypes 2-19
network
pattern 6-11
network structures 6-11
nontransferability 1-27, 3-8
conditiona 5-9
normalization B-3
normalized data B-3
nouns 2-7
NUMBER 9-6

old fashened design
generic arc implementation 9-26
unigque index 9-25
old fashioned design
check option views 9-25
OLTP system 7-6
oneto many (1:m) 3-9
onetoone(1:1) 3-9
onstraint
attribute 4-19
optiona 3-7
optionality 3-6
Oracle datatypes 9-5
Oracle database structure 9-29

partitioned index 9-22
partitioning tables 9-22
partitions 9-29
pattern
basket 6-6
bill of material 6-12
chain 6-10
classification 6-7
data warehouse 6-16
fan trap 6-15
hierarchy 6-8
master detail 6-5
network 6-11

ORACLE

roles 6-14
patterns 6-4
physical data modeling 2-5
pre-joining tables 8-8
price 5-10

negotiated 5-14
price history 5-10
pricelist 5-10, 5-12
priced product 5-10
primary key

desirable properties 9-9
primary keys 7-5, 9-8
primary UID 4-9
primary unique identifier 3-18
product 5-10
properties

primary key 9-9

range check 4-20
recursive relationship 3-4
recycling of attributes 6-20
redundancy 2-16

relationships 3-15
referential integrity 9-14
referential logic 5-9
relational databases 2-6
relational model 7-6
relationship

conditiona 4-20

many to many 3-11

mapping 7-14

master-detail 6-5

one to many 6-5

recursive 3-4
relationship ends

degree 3-7

optionality 3-6
relationship name 3-5
relationship representation 1-20
relationships 1-15, 3-19

barred

mapping 7-15

hidden 4-18

mandatory 1-21

many to many 3-9

mapping 7-17
many to one 3-9
mapping nontransferable 7-15
mapping one to many 7-14
one to many 3-9
oneto one 3-13
one-to-one
mapping 7-18
resolving 3-25
resolving other 3-26
symmetric 6-13
uUiD 4-8
relationsships
optional 1-21
repeating single detail with master 8-14
representation 4-4
reserved words. 2-15
resolving other relationships 3-26
resolving relationships 3-25
restrict
delete 9-14
update 9-14
reverse key index 9-17
roles
pattern 6-14
rows 7-5
rules
about arcs 4-14
business 4-2
subtype 2-18
transformation 7-6

second normal form B-9
secondary UID 4-9
segments 9-29
sequences 9-13
set theory 1-12
sets. 1-12
short-circuit keys 8-16
similar structure 6-4
single attribute

uUID 4-7
Snowflake model 6-16
soft box 1-18
specia constraints 4-20

ORACLE

start date 5-7
state value transition check 4-20
state value triggered check 4-20
storage implication 7-27
arc implementation 7-29
subtype implementation 7-27
supertype implementation 7-27
storing derivable values 8-6
subtype 1-27
implementatioin
rules 7-23
implementation 7-23
rules 2-18
subtypes 2-17
mapping 7-20
nested 2-19
subtypes or arcs 4-16
supertype 2-17
implementatioin
rules 7-20
implementation 7-20
supertype and subtype implementation
arc 7-25
symmetric relationships 6-13
problem 6-13
solution 6-13
synonyms 2-7

table

binary 3-26

index organized 9-18

naming 7-8
tables 7-5

partitioning 9-22

pre-joining 8-8
tablespaces 9-29
terminology mapping 7-7
three-tiered architecture 7-13
time

modeling 5-4
time-related constraints 5-8
tracking attributes 2-14
transformation rules 7-6
transforming the ER model 7-4
tree balanced index 9-17

types of information 1-24

uiD
cascade composed 4-7
composed 4-7
multiple attribute 4-7
primary 4-9
relationships 4-8
secondary 4-9
single attribute 4-7
unique identifier 1-27, 4-6
primary 3-18
unigque index 9-8
unique key 7-18
unique keys 7-5, 9-8
unnormalized data B-5
update
cascade 9-15
restrict 9-14

values 1-13

derivable

storing 8-6

hard-coded 8-10
VARCHAR?2 9-6
views

usage 9-23
volatile attributes 1-14

words
reserved 2-15

ORACLE Index-7

	Les02.pdf
	2
	Entities and Attributes in Detail

	Introduction
	Lesson Aim
	Objectives

	Data Compared to Information
	Data:
	Information:

	Data
	Conceptual Data Modeling
	Physical Data Modeling
	Database
	Data Warehouse

	Tracking Entities
	Naming an Entity Uniquely
	Creating a Formal Description
	Be Aware of Synonyms
	Avoid Homonyms
	Avoid Reserved Words
	Remove Relationship Name from Entity Name

	Electronic Mail Example
	Evolution of an Entity Definition
	Entity Life Cycle
	Creating a Message
	Removing a Message
	Changing a Message
	Draft
	Template

	Functionality
	Tracking Attributes
	Naming Attributes
	Entities Compared to Attributes
	Redundancy

	Subtypes and Supertypes
	Inheritance
	Always More Than One Subtype
	Nested Subtypes
	Subtypes Always Exist
	Implementing Subtypes

	Summary
	Practice 2—1: Books
	Goal
	Your Assignment
	1 In this text the word book is used with several meanings. These meanings are different entities...
	2 Create an ER model based on the text. Put the most general entity at the top of your page and t...

	Practice 2—2: Moonlight
	Scenario
	Your Assignment
	1 Make a list of about 15 different entities that you think are important for Moonlight Coffees. ...
	2 Write a formal definition of the entity that represents:

	Practice 2—3: Shops
	Scenario
	Your Assignment

	Practice 2—4: Subtypes
	Goal
	Your Assignment

	Practice 2—5: Schedule
	Scenario
	Your Assignment

	Practice 2—6: Address
	Goal
	Your Assignment
	1 How would you model the address information if the future system is required to produce accurat...

	Practice 2—6: Address (continued)
	Your Assignment
	2 Would your model from the previous practice also accept the addresses below?
	3 Check if your model would be different if the system is also required to have facilities to sea...

	Les03.pdf
	3
	Relationships in Detail

	Introduction
	Lesson Aim
	Objectives

	Establishing a Relationship
	Determining the Existence of a Relationship
	Choosing a Name for the Relationship
	Determining Optionality of Both the Relationship Ends
	Determining Degree of Both the Relationship Ends
	Determine Nontransferability of Both the Relationship Ends

	Relationship Types
	Relationships—1:m
	a Mandatory at both ends. This type of relationship typically models entities that cannot exist w...
	Circumventing Mandatory 1 to Mandatory m
	Why Circumvent?

	b Optional 1: mandatory m. This is a very common type of relationship, together with (d). Normall...
	c Mandatory 1: optional m. This is not common. You will see it only when the relationship express...
	d Optional at both ends. See remarks for (b).

	Relationships—m:m
	e Mandatory at both sides is very uncommon in normal circumstances. This relationship seems to me...
	f Mandatory at one end is not uncommon in early versions of a model although they usually disappe...
	g Optional at both ends is common in early versions of a model. These also usually disappear at a...

	Relationships—1:1
	h A 1:1 relationship, mandatory at both ends, tightly connects two entities: when you create an i...
	i Mandatory at one end is often in a model where roles are modeled, for example, in this hospital...
	j Optional at both ends is uncommon. However, they can occur, for example, when there is a relati...

	Redundancy

	Relationships and Attributes
	Attribute Compared to Relationship
	Nonexistence of Foreign Key Attributes
	No Entity Name in Attribute Name

	Relationship Compared to Attribute
	m:m Relationships May Hide Something
	Resolving Relationships
	Relationships and Intersection Entities
	Resolving a Relationship
	1 First create a new intersection entity. You will experience that sometimes there is no suitable...
	2 Next create two new m:1 relationships from entity A/B COMBINATION, one to A and one to B. Initi...
	3 Name the relationships. You can often name both relationships “in / of”.
	4 The next step is to remove the m:m relationship you started with.
	5 Finally, reconsider the newly-drawn relationships. They may be optional at the A/ B COMBINATION...

	Should Every m:m Relationship be Resolved?
	No
	Yes

	Resolving Other Relationships

	Normalization During Data Modeling
	Summary
	Practice 3—1: Read the Relationship
	Goal
	Your Assignment

	Practice 3—2: Find a Context
	Goal
	Your Assignment
	1
	2
	3
	4

	Practice 3—3: Name the Intersection Entity
	Goal
	Your Assignment
	1 Resolve the following m:m relationships. Find an acceptable name for the intersection entity.
	2 Invent at least one attribute per intersection entity that could make sense in some serious bus...

	Practice 3—4: Receipt
	Goal
	Scenario
	Your Assignment

	Practice 3—5: Moonlight P&O
	Goal
	Scenario
	Your Assignment
	1 Create a entity relationship model based on the following personnel and organization information:
	2 Extend or modify the diagram based on this information:
	3 And again:
	4 Change the model—if necessary and if possible—to allow for the following new information.
	a Jan takes shifts in two different shops in Prague.
	b Last year Tess resigned in Brazil as a shop manager and moved to Toronto. Recently she joined t...
	c To reduce the number of direct reports, departments and country organizations may also report t...
	d The shops in Luxembourg report to Belgium.
	e To prevent conflicting responsibilities, employees are not allowed to work for a department and...

	5 Would your model be able to answer the next questions?
	a Who is currently working for Operations?
	b Who is currently working for Moonlight La Lune at the Mont Martre, France?
	c Are there currently any employees working for Marketing in France?
	d What is the largest country in terms of number of employees? In terms of managers? In terms of ...
	e When can we celebrate Lynn’s fifth year with the company? When can we do the same with Tess’ fi...
	f What country has the lowest number of resignations?

	Practice 3—6: Price List
	Goal
	Scenario
	Your Assignment

	Practice 3—7: E-mail
	Goal
	Scenario.
	Your Assignment
	1 A user must be able to create nick names (aliases) for other users.
	2 A folder may contain other folders.
	3 A user must be able to forward a composition. A forward is a new message that is automatically ...
	4 All folders and lists are owned by a user.
	5 A mail list may contain both users and other lists.
	6 A mail list may contain external addresses, like “giovanni_papini@yahoo.com”.
	7 A nickname may be an alias for an external address.

	Practice 3—8: Holiday
	Goal
	Scenario
	Your Assignment

	Practice 3—9: Normalize an ER Model
	Your Assignment
	1 For the following ER Model, evaluate each entity against the rules of normalization, identify t...
	2 Optionally, redraw the ER diagram in third normal form.

	Les04.pdf
	4
	Constraints

	Introduction
	Objectives

	Identification
	What Are We Talking About?
	The Problem of Identification
	Identification in the Real World
	Identification Within a Database
	Representation

	Unique Identifier
	UID Representation
	Single Attribute UID
	Multiple Attribute UID
	Composed UID
	You may argue that a USER also has a composed UID, as the Name must be unique, within this mail s...
	Cascade Composed UID
	UID: Relationships Only
	Indirect Identification
	Examples
	Multiple UIDs
	UID in Diagram
	Where UIDs Lead
	Unique Identifier Examples
	Examples of Incorrect Unique Identifiers
	Information-Bearing Identifiers

	Arcs
	Arc Representation
	Mandatory Compared to Optional Relationships in an Arc
	Another Arc Example
	Note
	Where Arcs Lead
	Some Rules About Arcs
	Tips About Arcs
	Incorrect Arcs

	Arc or Subtypes
	More About Arcs and Subtypes
	Hidden Relationships
	Domains
	Some Special Constraints
	Categories: Examples
	Range Check: Example
	State Value Transition: Example
	Conditional Relationship: Example
	Derived Attribute?
	Rules May Lead to Attributes
	Model for Overview
	Boundaries

	Summary
	Practice 4—1: Identification Please
	Your Assignment

	Practice 4—2: Identification
	Your Assignment
	1
	2
	3
	4
	5
	6
	7 Given the above model, answer the following questions.
	a Can person A marry twice?
	b Can person A marry twice on the same day?
	c Can person A marry with person B twice?
	d Can person A marry with person B twice on the same day?
	e Can person A be married to person B and person C simultaneously?
	f Can person A be married to person A?

	Practice 4—3: Moonlight UID
	Goal
	Scenario
	1 Given the model below, indicate UIDs for the various entities. Add whatever attributes you cons...
	2 Are there any arcs missing?

	Practice 4—4: Tables
	Goal
	Your Assignment

	Practice 4—5: Modeling Constraints
	Goal
	Your Assignment
	1 Every EMPLOYEE must have a manager, except the Chief Executive Officer.
	2 A user may not use the same name for both NICKNAME and LIST name.
	3 A top level FOLDER must have a unique name per user; sub folders must have a unique name within...

	Les05.pdf
	5
	Modeling Change

	Introduction
	Lesson Aim
	Objectives

	Time
	Modeling Time

	Date as Opposed to Day
	Entity DAY
	Date and Time

	Modeling Changes Over Time
	End Date Redundant?
	Countries Have a Life Cycle Too
	Time-related Constraints
	Referential Logic
	Not in Diagram
	Implementation

	A Time Example: Prices
	Introducing Order Header and Order Item
	Order
	Price List
	Buying a PRODUCT or a PRICED PRODUCT?
	Negotiated Prices
	Which Variant to Use and When?

	Current Price
	Journalling
	Consequences for the Model
	No Journal Entity
	Journalling Registers Only

	Summary
	Practice 5—1: Shift
	Goal
	Scenario
	Your Assignment

	Practice 5—2: Strawberry Wafer
	Scenario
	Your Assignment

	Practice 5—3: Bundles
	Goal
	Scenario
	Your Assignment
	1 Modify the product part of the model in such a way that the desired calculations can be completed.
	2 Change the model in such a way that it allows for:

	Practice 5—4: Product Structure
	Goal
	Scenario
	Your Assignment
	1 Create a model for a product classification structure.
	2 (Optional) How would you treat the bundled products?

	Les06.pdf
	6
	Advanced Modeling Topics

	Introduction
	Lesson Aim
	Objectives

	Patterns
	Similar Structure
	Why Search for Similarities?

	Master Detail
	Implementation

	Basket
	Classification
	Hierarchy
	Disputable or False Hierarchies
	Recursive Relationship and Optionality
	Constraints Applying to a Hierarchy
	Implementation

	Chain
	Network
	Characteristics
	Bill of Material

	Symmetric Relationships
	Symmetric Relationships: Problem
	Symmetric Relationships: Solution

	Roles
	Fan Trap
	Why Traps Occur

	Data Warehouse
	Drawing Conventions
	Use Conventions Sensibly

	Generic Modeling
	What is Generic Modeling?

	Generic Models
	Recycling of Attributes
	Attributes Modeled as PROPERTY Instance

	More Generic Models
	Everything is a “Thing”

	Most Generic Model
	Value of Generic Modeling
	Best of Two Worlds

	Summary
	Practice 6—1: Patterns
	Goal
	Your Assignment

	Practice 6—2: Data Warehouse
	Goal
	Scenario
	Your Assignment
	1 Check the Moonlight models you created so far. Do they cater for answering the listed questions...
	2 For a data warehouse data model, suggest the central “facts” entity.

	Practice 6—3: Argos and Erats
	Goal
	Scenario
	Your Assignment

	Practice 6—4: Synonym
	Scenario
	Your Assignment

	Les08.pdf
	8
	Denormalized Data

	Introduction
	Lesson aim
	Objectives

	Why and When to Denormalize
	Definition of Denormalization
	Hints for Denormalizing
	Denormalization Techniques and Issues

	Storing Derivable Values
	Appropriate:
	Advantages:
	Disadvantages:
	E-mail Example of Storing Derivable Values

	Pre-Joining Tables
	Appropriate:
	Advantages
	Disadvantages
	Example

	Hard-Coded Values
	Appropriate
	Advantages
	Disadvantages
	Example

	Keeping Details With Master
	Appropriate
	Advantages
	Disadvantages
	Example

	Repeating Single Detail with Master
	Appropriate
	Advantages
	Disadvantages
	Example
	Any time a message is sent, it can be sent with attachments included. Messages can have more than...

	Short-Circuit Keys
	Appropriate
	Advantages
	Disadvantages
	Example

	End Date Columns
	Appropriate
	Advantages
	Disadvantages
	Example

	Current Indicator Column
	Appropriate
	Advantages
	Disadvantages
	Example

	Hierarchy Level Indicator
	Appropriate
	Advantages
	Disadvantages
	Example

	Denormalization Summary
	Practice 8—1: Name that Denormalization
	Goal
	Your Assignment
	1
	2
	3

	Practice 8—2: Triggers
	Goal
	Your Assignment
	1 Indicate which triggers are needed and what they should do to handle the denormalized column Or...
	2 Indicate which triggers are needed and what they should do to handle the denormalized column Lc...
	3 Indicate which triggers are needed and what they should do to handle the denormalized column Cu...

	Practice 8—3: Denormalize Price Lists
	Goal
	Scenario
	Your Assignment

	Practice 8—4: Global Naming
	Goal
	Scenario
	Your Assignment

	Xpp_A.pdf
	A
	Solutions

	Introduction to Solutions
	Before You Proceed
	Solution List

	Practice 1—1 Instance or Entity: Solution
	Practice 1—2 Guest: Solution
	Practice 1—3 Reading: Solution
	Practice 1—4 Read and Comment: Solution
	Practice 1—5 Hotel: Solution
	1 Possible comments:
	2 See the diagram for possible relationships between person and hotel.

	Practice 1—6 Recipe: Solution
	Practice 2—1 Books: Solution
	Practice 2—2 Moonlight: Solution
	1 Possible entities sorted alphabetically:
	2 Possible definition:

	Practice 2—3 Shops: Solution
	Practice 2—4 Subtypes: Solution
	Improvements

	Practice 2—5 Schedule: Solution
	Practice 2—6 Address: Solution
	1 Solution 1 can easily cope with the various address formats. It simply recognizes the fact that...
	2 Solution 2 cuts the address into individual pieces and accounts for post boxes as well. It assu...
	3 The second model does allow most of the required queries, although the last one may need some t...

	Practice 3—1 Read the Relationship: Solution
	Practice 3—2 Find a Context: Solution
	Practice 3—3 Name the Intersection Entity: Solution
	Practice 3—4 Receipt: Solution
	Practice 3—5 Moonlight P&O: Solution
	1 Note the optional relationships from EMPLOYEE to DEPARTMENT and SHOP. These result from “... co...
	2
	3
	4 a. Does not require changes in the model. People can be employed in various places—the model al...
	5 a, b. Given the previous models, these questions can be answered.
	Note:

	Practice 3—6 Price List: Solution
	Practice 3—7 E-mail: Solution
	Practice 3—8 Holiday: Solution
	Practice 3—9: Normalize an ER Model: Solution
	Your Assignment
	1 For the following ER Model, evaluate each entity against the rules of normalization, identify t...
	2 Optionally, re-draw the ER diagram in third normal form.

	Practice 4—1 Identification Please: Solution
	A city
	A Contact Person for a Customer
	A Train
	A Road
	A Financial Transaction
	An Academy Award
	A Painting
	A T.V. show

	Practice 4—2 Identification: Solution
	1 Because every A is identifiable by attribute Xx, every B and C are as well.
	2 B is identifiable by Id. A is identifiable, only if B and C are. This leaves C. Because of the ...
	3 D is identifiable by Id. Every C is identifiable by ZZ and D. Every B is identifiable by Yy. As...
	4 Every Q is identifiable by Id. P’s that are related to an instance of Q are identifiable by tha...
	5 Conceptually there is no problem here. Every P is identified by its Name and the reference to i...
	6 Entity FEMALE is identified by Name and Birth Date. This may not be true for the entire populat...
	7
	a Yes
	b Yes
	c Yes
	d No
	e Yes
	f No, because a marriage is always between a male and a female and person. A cannot be both male ...

	Practice 4—3 Moonlight UID: Solution
	Practice 4—4 Tables: Solution
	Practice 4—5 Constraints: Solution
	1 By creating a CEO subtype of EMPLOYEE the constraint is easily modeled. You may argue the use o...
	2 LIST and NICKNAME share the same namespace.This can be modeled with a supertype. Note the repos...
	3 Adding the arc and barred relationships is enough. Note that the recursive relationship from FO...

	Practice 5—1 Shift: Solution
	Practice 5—2 Strawberry Wafer: Solution
	Practice 5—3 Bundles: Solution
	1 The first model is probably what you came up with first. A bundle consists of several products....
	2 This is a tricky one. You can regard a DecafPunch as a product group with two products: DecafPu...

	Practice 5—4 Product Structure: Solution
	1 When the number of levels is known and fixed, the left model can be used. Note that the model f...
	2 The problem with the bundles is that, strictly speaking, they cannot be classified in class Dri...

	Practice 6—1 Patterns: Solution
	Moves in a Chess Game
	Quotations
	Recipes
	People Involved in a College
	Rentals in Video Shop
	Phases in a Process

	Practice 6—2 Data Warehouse: Solution
	1 No formal solution.
	2 The diagram answers more than the practice asked for. The central entity is SALES VOLUME.

	Practice 6—3 Argos and Erats: Solution
	Practice 6—4 Synonym: Solution
	Practice 7—1 Mapping basic Entities, Attributes and Relationships: Solution
	Practice 7—2 Mapping Supertype: Solution
	1 Possible considerations:
	2 See the diagram below.

	Practice 7—3 Quality Check Subtype Implementation: Solution
	Practice 7—4 Quality Check Arc Implementation: Solution
	Practice 7—5 Primary Keys and Columns: Solution
	Practice 8—1 Name that Denormalization: Solution
	1
	Type
	Why

	2
	Type
	Why

	3
	Type
	Why

	Practice 8—2 Triggers: Solution
	1 How to handle Order_total for ORDER_HEADERS
	2 How to handle Lcn_address for EMPLOYEES
	3 How to handle Curr_price_ind for PRICES

	Practice 8—3 Denormalize Price Lists: Solution
	Slow Performance
	Pre-entering Price Lists

	Practice 8—4 Global Naming: Solution
	Practice 9—1 Data Types: Solution
	1
	2
	3 A time (like attribute Start_time and End_time in entity SHIFT) can be implemented in several w...

	Practice 9—2 Artificial Keys: Solution
	1
	a COUNTRIES have an three-character internationally-used code, which can be used as a primary key...
	b GLOBAL_PRICES has no need for an artificial key as there are currently no tables referring to i...
	c PRICE_LISTS seems a good candidate for an artificial key, as the UID consists of two components...

	2 An artificial key on tables EXCHANGE_RATES, GLOBAL_PRICES (see above), LOCAL_PRICES, PRODUCT_NA...

	Practice 9—3 Product Pictures: Solution
	1 Which data type would you use for each column?
	2 Advise about the implementation. See the table structure diagram. There can be one table for mu...

	Xpp_B.pdf
	B
	Normalization

	Introduction
	Lesson aim
	Objectives

	Normalization and its Benefits
	Why and When to Normalize Tables
	History of Normalization
	Objective of Normalization
	Normalization Compared to Normalized Data
	Benefits of Normalized Data
	Unnormalized Data
	Normalization

	First Normal Form
	Definition of First Normal Form (1NF)
	Steps to Remove Repeating Groups
	1 Remove the repeating columns from the original unnormalized table.
	2 Create a new table with the primary key of the base table and the repeating columns.
	3 Add another appropriate column to the primary key, which ensures uniqueness.
	4 Create a foreign key in the new table to link back to the original unnormalized table.

	Second Normal Form
	Definition of Second Normal Form (2NF)
	Steps to Remove Partial Dependencies
	1 Determine which nonkey columns are dependent upon the table’s entire primary key.
	2 Remove those columns from the base table. Create a second table with those nonkeyed columns and...
	3 Create a foreign key from the original base table to the new table, linking to the new primary ...

	Third Normal Form
	Definition of Third Normal Form (3NF)
	Steps to Remove Transitive Dependencies
	1 Determine which columns are dependent on another non-keyed column.
	2 Remove those columns from the base table.
	3 Create a second table with those columns and the non-key columns that they are dependent upon.
	4 Create a foreign key in the original table linking to the primary key of the new table.

	Summary

