Refactoring Databases: Evolutionary Database Design
By Scott W. Ambler, Pramod J. Sadalage

Publisher: Addison Wesley Professional
Pub Date: March 06, 2006

Print ISBN-10: 0-321-29353-3

Print ISBN-13: 978-0-321-29353-4
Pages: 384

Table of Contents | Index
Overview

Refactoring has proven its value in a wide range of development projectshelping software
professionals improve system designs, maintainability, extensibility, and performance. Now, for the
first time, leading agile methodologist Scott Ambler and renowned consultant Pramodkumar
Sadalage introduce powerful refactoring techniques specifically designed for database systems.

Ambler and Sadalage demonstrate how small changes to table structures, data, stored procedures,
and triggers can significantly enhance virtually any database designwithout changing semantics.
You'll learn how to evolve database schemas in step with source codeand become far more effective
in projects relying on iterative, agile methodologies.

This comprehensive guide and reference helps you overcome the practical obstacles to refactoring
real-world databases by covering every fundamental concept underlying database refactoring. Using
start-to-finish examples, the authors walk you through refactoring simple standalone database
applications as well as sophisticated multi-application scenarios. You'll master every task involved in
refactoring database schemas, and discover best practices for deploying refactorings in even the
most complex production environments.

The second half of this book systematically covers five major categories of database refactorings.
You'll learn how to use refactoring to enhance database structure, data quality, and referential
integrity; and how to refactor both architectures and methods. This book provides an extensive set
of examples built with Oracle and Java and easily adaptable for other languages, such as C#, C++,
or VB.NET, and other databases, such as DB2, SQL Server, MySQL, and Sybase.

Using this book's techniques and examples, you can reduce waste, rework, risk, and costand build
database systems capable of evolving smoothly, far into the future.

MEXT B

Refactoring Databases: Evolutionary Database Design
By Scott W. Ambler, Pramod J. Sadalage

Publisher: Addison Wesley Professional
Pub Date: March 06, 2006

Print ISBN-10: 0-321-29353-3

Print ISBN-13: 978-0-321-29353-4
Pages: 384

Table of Contents | Index

~ Copyright
~ Praise for Refactoring Databases

~ The Addison-Wesley Signature Series

~ The Addison-Wesley Signature Series
~ About the Authors
~ Forewords

" Preface
~ Why Evolutionary Database Development?
~ Adgility in a Nutshell
" How to Read This Book
~ About the Cover

~ Acknowledgments
~ Chapter 1. Evolutionary Database Development

~Section 1.1. Database Refactoring

~ Section 1.2. Evolutionary Data Modeling

~ Section 1.3. Database Regression Testing

~ Section 1.4. Configuration Management of Database Artifacts

~ Section 1.5. Developer Sandboxes

~ Section 1.6. Impediments to Evolutionary Database Development Techniques

~ Section 1.7. What You Have Learned

~ Chapter 2. Database Refactoring

~ Section 2.1. Code Refactoring

~ Section 2.2. Database Refactoring

~Section 2.3. Categories of Database Refactorings

~ Section 2.4. Database Smells

~ Section 2.5. How Database Refactoring Fits In

~ Section 2.6. Making It Easier to Refactor Your Database Schema
~ Section 2.7. What You Have Learned

~ Chapter 3. The Process of Database Refactoring

~ Section 3.1. Verify That a Database Refactoring Is Appropriate

~ Section 3.2. Choose the Most Appropriate Database Refactoring

~ Section 3.3. Deprecate the Original Database Schema

~ Section 3.4. Test Before, During, and After
~ Section 3.5. Modify the Database Schema
~ Section 3.6. Migrate the Source Data

~Section 3.7. Refactor External Access Program(s)

~Section 3.8. Run Your Regression Tests

~ Section 3.9. Version Control Your Work

~ Section 3.10. Announce the Refactoring
~ Section 3.11. What You Have Learned

~ Chapter 4. Deploying into Production

~ Section 4.1. Effectively Deploying Between Sandboxes

~ Section 4.2. Applying Bundles of Database Refactorings

~Section 4.3. Scheduling Deployment Windows

~ Section 4.4. Deploying Your System

~ Section 4.5. Removing Deprecated Schema
~ Section 4.6. What You Have Learned

~ Chapter 5. Database Refactoring Strategies

~Section 5.1. Smaller Changes Are Easier to Apply

~ Section 5.2. Uniquely Identify Individual Refactorings

~ Section 5.3. Implement a Large Change by Many Small Ones

~ Section 5.4. Have a Database Configuration Table

~ Section 5.5. Prefer Triggers over Views or Batch Synchronization

~ Section 5.6. Choose a Sufficient Transition Period
~ Section 5.7. Simplify Your Database Change Control Board (CCB) Strategy
~ Section 5.8. Simplify Neqgotiations with Other Teams

~Section 5.9. Encapsulate Database Access

~ Section 5.10. Be Able to Easily Set Up a Database Environment
~ Section 5.11. Do Not Duplicate SOL
~ Section 5.12. Put Database Assets Under Change Control

~ Section 5.13. Beware of Politics
~ Section 5.14. What You Have Learned
~ Online Resources

Chapter 6. Structural Refactorings

~ Common Issues When Implementing Structural Refactorings
" Drop Column
" Drop Table

~ Drop View
~Introduce Calculated Column

~Introduce Surrogate Key

~ Merge Columns

~ Merge Tables
~ Move Column

~ Rename Column

~ Rename Table

~ Rename View

" Replace LOB With Table

~ Replace Column
" Replace One-To-Many With Associative Table

~ Replace Surrogate Key With Natural Key

~ Split Column
~ Split Table

~ Chapter 7. Data Quality Refactorings

~ Common Issues When Implementing Data Quality Refactorings
~Add Lookup Table

~ Apply Standard Codes

~ Apply Standard Type

~ Consolidate Key Strategy

~ Drop Column Constraint

~ Drop Default Value

~ Drop Non-Nullable
" Introduce Column Constraint

~Introduce Common Format

" Introduce Default Value

~ Make Column Non-Nullable

~ Move Data
~ Replace Type Code With Property Flags

~ Chapter 8. Referential Integrity Refactorings

~ Add Foreign Key Constraint

~ Add Trigger For Calculated Column

~ Access Program Update Mechanics

~ Drop Foreign Key Constraint

~Introduce Cascading Delete

" Introduce Hard Delete

" Introduce Soft Delete

~Introduce Trigger For History

" Chapter 9. Architectural Refactorings
~Add CRUD Methods
~ Add Mirror Table
~ Add Read Method
~ Encapsulate Table With View

~Introduce Calculation Method

~Introduce Index
~Introduce Read-Only Table
~ Migrate Method From Database
" Migrate Method To Database
~ Replace Method(s) With View
" Replace View With Method(s)
~ Use Official Data Source
~ Chapter 10. Method Refactorings
~Section 10.1. Interface Changing Refactorings

~ Section 10.2. Internal Refactorings

~ Chapter 11. Transformations

" Insert Data
" Introduce New Column

~Introduce New Table

" Introduce View
~Update Data
~ The UML Data Modeling Notation

~ Glossary
~References and Recommended Reading

~ List of Refactorings and Transformations

" Index

e rrey

e rrey =y

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States, please contact:
International Sales

international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Ambler, Scott W., 1966-
Refactoring databases : evolutionary database design / Scott W. Ambler and Pramod J. Sadalage.
p. cm.
Includes index.
ISBN 0-321-29353-
3 (hardback : alk. paper) 1. Database design. 2. Computer softwareDevelopment. 3.
Evolutionary programming (Computer science) |. Sadalage, Pramod J. Il. Title.
QA76.9.D26A52 2006
005.74dc22
2005031959

Copyright © 2006 Scott W. Ambler and Pramodkumar J. Sadalage

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116

Fax: (617) 848-7047
Text printed in the United States on recycled paper at R. R. Donnelley in Crawfordsville, Indiana.

First printing, March 2006

Dedication

Scott:
For Beverley, my lovely new bride.
Pramod:

To the women | love most, Rupali and our daughter, Arula.

e rrey

e rrey

Praise for Refactoring Databases

"This groundbreaking book finally reveals why database schemas need not be difficult to change,
why data need not be difficult to migrate, and why database professionals need not be
overburdened by change requests from customers and developers. Evolutionary design is at the
heart of agility. Ambler and Sadalage have now shown the world how to evolve agile databases.
Bravo!"

Joshua Kerievsky, founder, Industrial Logic, Inc.; author, Refactoring to Patterns

"This book not only lays out the fundamentals for evolutionary database development, it
provides many practical, detailed examples of database refactoring. It is a must read for
database practitioners interested in agile development.”

Doug Barry, president, Barry & Associates, Inc.; author of Web Services and Service-Oriented
Architectures: The Savvy Manager's Guide

"Ambler and Sadalage have taken the bold step of tackling an issue that other writers have
found so daunting. Not only have they addressed the theory behind database refactoring, but
they have also explained step-by-step processes for doing so in a controlled and thoughtful
manner. But what really blew me away were the more than 200 pages of code samples and deep
technical details illustrating how to overcome specific database refactoring hurdles. This is not
just another introductory book convincing people that an idea is a good onethis is a tutorial and
technical reference book that developers and DBAs alike will keep near their computers. Kudos to
the brave duo for succeeding where others have failed to even try."

Kevin Aguanno, senior project manager, IBM Canada Ltd.

"Anybody working on non-greenfield projects will recognize the value that Scott and Pramod
bring to the software development life cycle with Refactoring Databases. The realities of dealing
with existing databases is one that is tough to crack. Though much of the challenge can be
cultural and progress can be held in limbo by strong-armed DBA tactics, this book shows how
technically the refactoring and evolutionary development of a database can indeed be handled in
an agile manner. | look forward to dropping off a copy on the desk of the next ornery DBA | run
into."

Jon Kern

"This book is excellent. It is perfect for the data professional who needs to produce results in the
world of agile development and object technology. A well-organized book, it shows the what,
why, and how of refactoring databases and associated code. Like the best cookbook, I will use it
often when developing and improving databases."

David R. Haertzen, editor, The Data Management Center, First Place Software, Inc.

"This excellent book brings the agile practice of refactoring into the world of data. It provides
pragmatic guidance on both the methodology to refactoring databases within your organization
and the details of how to implement individual refactorings. Refactoring Databases also
articulates the importance of developers and DBAs working side by side. It is a must have
reference for developers and DBAs alike."

Per Kroll, development manager, RUP, IBM; project lead, Eclipse Process Framework

"Scott and Pramod have done for database refactoring what Martin Fowler did for code
refactoring. They've put together a coherent set of procedures you can use to improve the
quality of your database. If you deal with databases, this book is for you."

Ken Pugh, author, Prefactoring

"It's past time for data people to join the agile ranks, and Ambler and Sadalage are the right
persons to lead them. This book should be read by data modelers and administrators, as well as
software teams. We have lived in different worlds for too long, and this book will help to remove
the barriers dividing us."

Gary K. Evans, Agile Process evangelist, Evanetics, Inc.

"Evolutionary design and refactoring are already exciting, and with Refactoring Databases this
gets even better. In this book, the authors share with us the techniques and strategies to
refactor at the database level. Using these refactorings, database schemas can safely be evolved
even after a database has been deployed into production. With this book, database is within
reach of any developer."

Sven Gorts

"Database refactoring is an important new topic and this book is a pioneering contribution to the
community."

Floyd Marinescu, creator of InfoQ.com and TheServerSide.com; author of EJB Design Patterns

e rrcy | NEXT

e rrey

The Addison-Wesley Signature Series

The Addison-Wesley Signature Series provides readers with practical and authoritative
information on the latest trends in modern technology for computer professionals. The series is based
on one simple premise: great books come from great authors. Books in the series are personally
chosen by expert advisors, world-class authors in their own right. These experts are proud to put their
signatures on the covers, and their signatures ensure that these thought leaders have worked
uniqueness. The expert signautres also symbolize a promise to our raders: you are reading a future
classic.

e rrey

The Addison-Wesley Signature Series

Signers: Kent Beck and Martin Fowler

Kent Beck has pioneered people-oriented technologies like JUnit, Extreme Programming, and
patterns for software development. Kent is interested in helping teams do well by doing goodfinding a
style of software development that simultaneously satisfies ecnomic, aesthetic, emotional, and
practical constraints. His books focus on touching the lives of the creators and users of software.

Martin Fowler has been a pioneeer of object technology in enterprise applications. His central
concern is how to design software well. He focuses on getting to the heart of how to build enterprise
software that will last well into the future. He is interested in looking behind the specifics of
thechnologies to the patterns, practices, and principles that last for many years; these books should
be usable a decade from now. Martin's criterion is that these are books he wished he could write.

TITLES IN THE SERIES

& &

<) . AP
%%’fr%ﬂ

=
o

G qa®™

Test-Drive Development: By Example
Kent Brck, ISBN 0321146530
User Stories Applied: For Agile Software Development

Mike Cohn, ISBN 0321205685

Refactoring Databases: Evolutionary Database Design

Scott W. Ambler and Pramodkumar J. Sadalage, ISBN 0321293533
Patterns of Enterprise Application Architecture

Martin Fowler, ISBN 032112720

Beyond Software Architecture: Creating and Sustaining Winning Solutions
Luke Hohmann, ISBN 0201775948

Enterprise Integration Patterns: Designing, Buliding, and Deploying Messaging
Solutions

Gregor Hohpe and Bobby Woolf, ISBN 0321200683
Refactoring to Patterns

Joshua Kerievsky, ISBN 0321213351

For more information, check out the series web site at www.awprofessional.com

MEXT B

e rrey

About the Authors

Scott W. Ambler is a software process improvement (SPI) consultant living just north of Toronto. He
is founder and practice leader of the Agile Modeling (AM) (www.agilemodeling.com), Agile Data (AD)
(www.agiledata.orq), Enterprise Unified Process (EUP) (www.enterpriseunifiedprocess.com), and Agile
Unified Process (AUP) (www.ambysoft.com/unifiedprocess) methodologies. Scott is the (co-)author of
several books, including Agile Modeling (John Wiley & Sons, 2002), Agile Database Techniques (John
Wiley & Sons, 2003), The Object Primer, Third Edition (Cambridge University Press, 2004), The
Enterprise Unified Process (Prentice Hall, 2005), and The Elements of UML 2.0 Style (Cambridge
University Press, 2005). Scott is a contributing editor with Software Development magazine
(www.sdmagazine.com) and has spoken and keynoted at a wide variety of international conferences,
including Software Development, UML World, Object Expo, Java Expo, and Application Development.
Scott graduated from the University of Toronto with a Master of Information Science. In his spare time
Scott studies the Goju Ryu and Kobudo styles of karate.

Pramod J. Sadalage is a consultant for ThoughtWorks, an enterprise application development and
integration company. He first pioneered the practices and processes of evolutionary database design
and database refactoring in 1999 while working on a large J2EE application using the Extreme
Programming (XP) methodology. Since then, Pramod has applied the practices and processes to many
projects. Pramod writes and speaks about database administration on evolutionary projects, the
adoption of evolutionary processes with regard to databases, and evolutionary practices' impact upon
database administration, in order to make it easy for everyone to use evolutionary design in regards
to databases. When he is not working, you can find him spending time with his wife and daughter and
trying to improve his running.

e rrcv |

e rrey

Forewords

A decade ago refactoring was a word only known to a few people, mostly in the Smalltalk community.
It's been wonderful to watch more and more people learn how to use refactoring to modify working
code in a disciplined and effective manner. As a result many people now see code refactoring as an
essential part of software development.

I live in the world of enterprise applications, and a big part of enterprise application development is
working with databases. In my original book on refactoring, | picked out databases as a major
problem area in refactoring because refactoring databases introduces a new set of problems. These
problems are exacerbated by the sad division that's developed in the enterprise software world where
database professionals and software developers are separated by a wall of mutual incomprehension
and contempt.

One of the things I like about Scott and Pramod is that, in different ways, they have both worked hard
to try and cross this division. Scott's writings on databases have been a consistent attempt to bridge
the gap, and his work on object-relational mapping has been a great influence on my own writings on
enterprise application architecture. Pramod may be less known, but his impact has been just as great
on me. When he started work on a project with me at ThoughtWorks we were told that refactoring of
databases was impossible. Pramod rejected that notion, taking some sketchy ideas and turning them
into a disciplined program that kept the database schema in constant, but controlled, motion. This
freed up the application developers to use evolutionary design in the code, too. Pramod has since
taken these techniques to many of our clients, spreading them around our ThoughtWorks colleagues
and, at least for us, forever banishing databases from the list of roadblocks to continual design.

This book assembles the lessons of two people who have lived in the no-mans land between
applications and data, and presents a guide on how to use refactoring techniques for databases. If
you're familiar with refactoring, you'll notice that the major change is that you have to manage
continual migration of the data itself, not just change the program and data structures. This book tells
you how to do that, backed by the project experience (and scars) that these two have accumulated.

Much though I'm delighted by the appearance of this book, | also hope it's only a first step. After my
refactoring book appeared | was delighted to find sophisticated tools appear that automated many
refactoring tasks. | hope the same thing happens with databases, and we begin to see vendors offer
tools that make continual migrations of schema and data easier for everyone. Before that happens,
this book will help you build your own processes and tools to help; afterward this book will have lasting
value as a foundation for using such tools successfully.

Martin Fowler, series editor; chief scientist, ThoughtWorks

In the years since | first began my career in software development, many aspects of the industry and
technology have changed dramatically. What hasn't changed, however, is the fundamental nature of
software development. It has never been hard to create softwarejust get a computer and start
churning out code. But it was hard to create good software, and exponentially harder to create great
software. This situation hasn't changed today. Today it is easier to create larger and more complex
software systems by cobbling together parts from a variety of sources, software development tools
have advanced in bounds, and we know a lot more about what works and doesn't work for the process
of creating software. Yet most software is still brittle and struggling to achieve acceptable quality
levels. Perhaps this is because we are creating larger and more complex systems, or perhaps it is
because there are fundamental gaps in the techniques still used. | believe that software development
today remains as challenging as ever because of a combination of these two factors. Fortunately, from
time to time new technologies and techniques appear that can help. Among these advances, a rare
few are have the power to improve greatly our ability to realize the potential envisioned at the start of
most projects. The techniques involved in refactoring, along with their associate Agile methodologies,
were one of these rare advances. The work contained in this book extends this base in a very

important direction.

Refactoring is a controlled technique for safely improving the design of code without changing its
behavioral semantics. Anyone can take a chance at improving code, but refactoring brings a discipline
of safely making changes (with tests) and leveraging the knowledge accumulated by the software
development community (through refactorings). Since Fowler's seminal book on the subject,
refactoring has been widely applied, and tools assisting with detection of refactoring candidates and
application of refactorings to code have driven widespread adoption. At the data tier of applications,
however, refactoring has proven much more difficult to apply. Part of this problem is no doubt cultural,
as this book shows, but also there has not been a clear process and set of refactorings applicable to
the data tier. This is really unfortunate, since poor design at the data level almost always translates
into problems at the higher tiers, typically causing a chain of bad designs in a futile effort to stabilize
the shaky foundation. Further, the inability to evolve the data tier, whether due to denial or fear of
change, hampers the ability of all that rests on it to deliver the best software possible. These problems
are exactly what make this work so important: we now have a process and catalog for enabling
iterative design improvements on in this vital area.

I am very excited to see the publication of this book, and hope that it drives the creation of tools to
support the techniques it describes. The software industry is currently in an interesting stage, with the
rise of open-source software and the collaborative vehicles it brings. Projects such as the Eclipse Data
Tools Platform are natural collection areas for those interested in bringing database refactoring to life
in tools. | hope the open-source community will work hard to realize this vision, because the potential
payoff is great. Software development will move to the next level of maturity when database
refactoring is as common and widely applied as general refactoring itself.

John Graham, Eclipse Data Tools Platform, Project Management, committee chair, senior
staff engineer, Sybase, Inc.

In many ways the data community has missed the entire agile software development revolution. While
application developers have embraced refactoring, test-driven development, and other such
techniques that encourage iteration as a productive and advantageous approach to software
development, data professionals have largely ignored and even insulated themselves from these
trends.

This became clear to me early in my career as an application developer at a large financial services
institution. At that time | had a cubicle situated right between the development and database teams.
What I quickly learned was that although they were only a few feet apart, the culture, practices, and
processes of each group were significantly different. A customer request to the development team
meant some refactoring, a code check-in, and aggressive acceptance testing. A similar request to the
database team meant a formal change request processed through many levels of approval before
even the modification of a schema could begin. The burden of the process constantly led to
frustrations for both developers and customers but persisted because the database team knew no
other way.

But they must learn another way if their businesses are to thrive in today's ever-evolving competitive
landscape. The data community must somehow adopt the agile techniques of their developer
counterparts.

Refactoring Databases is an invaluable resource that shows data professionals just how they can leap
ahead and confidently, safely embrace change. Scott and Pramod show how the improvement in
design that results from small, iterative refactorings allow the agile DBA to avoid the mistake of big
upfront design and evolve the schema along with the application as they gradually gain a better
understanding of customer requirements.

Make no mistake, refactoring databases is hard. Even a simple change like renaming a column
cascades throughout a schema, to its objects, persistence frameworks, and application tier, making it
seem to the DBA like a very inaccessible technique.

Refactoring Databases outlines a set of prescriptive practices that show the professional DBA exactly
how to bring this agile method into the design and development of databases. Scott's and Pramod's
attention to the minute details of what it takes to actually implement every database refactoring

technique proves that it can be done and paves the way for its widespread adoption.

Thus, | propose a call to action for all data professionals. Read on, embrace change, and spread the
word. Database refactoring is key to improving the data community's agility.

Sachin Rekhi, program manager, Microsoft Corporation

In the world of system development, there are two distinct cultures: the world dominated by object-
oriented (OO) developers who live and breathe Java and agile software development, and the
relational database world populated by people who appreciate careful engineering and solid relational
database design. These two groups speak different languages, attend different conferences, and rarely
seem to be on speaking terms with each other. This schism is reflected within IT departments in many
organizations. OO developers complain that DBAs are stodgy conservatives, unable to keep up with
the rapid pace of change. Database professionals bemoan the idiocy of Java developers who do not
have a clue what to do with a database.

Scott Ambler and Pramod Sadalage belong to that rare group of people who straddle both worlds.
Refactoring Databases: Evolutionary Database Design is about database design written from the
perspective of an OO architect. As a result, the book provides value to both OO developers and
relational database professionals. It will help OO developers to apply agile code refactoring techniques
to the database arena as well as give relational database professionals insight into how OO architects
think.

This book includes numerous tips and techniques for improving the quality of database design. It
explicitly focuses on how to handle real-world situations where the database already exists but is
poorly designed, or when the initial database design failed to produce a good model.

The book succeeds on a number of different levels. First, it can be used as a tactical guide for
developers in the trenches. It is also a thought-provoking treatise about how to merge OO and
relational thinking. | wish more system architects echoed the sentiments of Ambler and Sadalage in
recognizing that a database is more than just a place to put persistent copies of classes.

Dr. Paul Dorsey, president, Dulcian, Inc.; president, New York Oracle Users Group;
chairperson, J2EE SIG

e rrey

e rrey

Preface

Evolutionary, and often agile, software development methodologies, such as Extreme Programming
(XP), Scrum, the Rational Unified Process (RUP), the Agile Unified Process (AUP), and Feature-Driven
Development (FDD), have taken the information technology (IT) industry by storm over the past few
years. For the sake of definition, an evolutionary method is one that is both iterative and incremental
in nature, and an agile method is evolutionary and highly collaborative in nature. Furthermore, agile
techniques such as refactoring, pair programming, Test-Driven Development (TDD), and Agile Model-
Driven Development (AMDD) are also making headway into IT organizations. These methods and
techniques have been developed and have evolved in a grassroots manner over the years, being
honed in the software trenches, as it were, instead of formulated in ivory towers. In short, this
evolutionary and agile stuff seems to work incredibly well in practice.

In the seminal book Refactoring, Martin Fowler describes a refactoring as a small change to your
source code that improves its design without changing its semantics. In other words, you improve the
quality of your work without breaking or adding anything. In the book, Martin discusses the idea that
just as it is possible to refactor your application source code, it is also possible to refactor your
database schema. However, he states that database refactoring is quite hard because of the
significant levels of coupling associated with databases, and therefore he chose to leave it out of his
book.

Since 1999 when Refactoring was published, the two of us have found ways to refactor database
schemas. Initially, we worked separately, running into each other at conferences such as Software
Development (www.sdexpo.com) and on mailing lists (www.agiledata.org/feedback.html). We
discussed ideas, attended each other's conference tutorials and presentations, and quickly discovered
that our ideas and techniques overlapped and were highly compatible with one another. So we joined
forces to write this book, to share our experiences and techniques at evolving database schemas via
refactoring.

The examples throughout the book are written in Java, Hibernate, and Oracle code. Virtually every
database refactoring description includes code to modify the database schema itself, and for some of
the more interesting refactorings, we show the effects they would have on Java application code.
Because all databases are not created alike, we include discussions of alternative implementation
strategies when important nuances exist between database products. In some instances we discuss
alternative implementations of an aspect of a refactoring using Oracle-specific features such as the
SE,T UNUSED or RENAME TO commands, and many of our code examples take advantage of Oracle's
COMMENT ON feature. Other database products include other features that make database refactoring
easier, and a good DBA will know how to take advantage of these things. Better yet, in the future
database refactoring tools will do this for us. Furthermore, we have kept the Java code simple enough
so that you should be able to convert it to C#, C++, or even Visual Basic with little problem at all.

e prey

e rrey

Why Evolutionary Database Development?

Evolutionary database development is a concept whose time has come. Instead of trying to design
your database schema up front early in the project, you instead build it up throughout the life of a
project to reflect the changing requirements defined by your stakeholders. Like it or not, requirements
change as your project progresses. Traditional approaches have denied this fundamental reality and
have tried to "manage change," a euphemism for preventing change, through various means.
Practitioners of modern development techniques instead choose to embrace change and follow
techniques that enable them to evolve their work in step with evolving requirements. Programmers
have adopted techniques such as TDD, refactoring, and AMDD and have built new development tools
to make this easy. As we have done this, we have realized that we also need techniques and tools to
support evolutionary database development.

Advantages to an evolutionary approach to database development include the following:

1. You minimize waste. An evolutionary, just-in-time (JIT) approach enables you to avoid the
inevitable wastage inherent in serial techniques when requirements change. Any early
investment in detailed requirements, architecture, and design artifacts is lost when a
requirement is later found to be no longer needed. If you have the skills to do the work up front,
clearly you must have the skills to do the same work JIT.

2. You avoid significant rework. As you will see in Chapter 1, "Evolutionary Database
Development,” you should still do some initial modeling up front to think major issues through,
issues that could potentially lead to significant rework if identified late in the project; you just do
not need to investigate the details early.

3. You always know that your system works. With an evolutionary approach, you regularly
produce working software, even if it is just deployed into a demo environment, which works.
When you have a new, working version of the system every week or two, you dramatically
reduce your project's risk.

4. You always know that your database design is the highest quality possible. This is
exactly what database refactoring is all about: improving your schema design a little bit at a
time.

5. You work in a compatible manner with developers. Developers work in an evolutionary
manner, and if data professionals want to be effective members of modern development teams,
they also need to choose to work in an evolutionary manner.

6. You reduce the overall effort. By working in an evolutionary manner, you only do the work
that you actually need today and no more.

There are also several disadvantages to evolutionary database development:

1. Cultural impediments exist. Many data professionals prefer to follow a serial approach to
software development, often insisting that some form of detailed logical and physical data models
be created and baselined before programming begins. Modern methodologies have abandoned
this approach as being too inefficient and risky, thereby leaving many data professionals in the
cold. Worse yet, many of the "thought leaders" in the data community are people who cut their
teeth in the 1970s and 1980s but who missed the object revolution of the 1990s, and thereby
missed gaining experience in evolutionary development. The world changed, but they did not
seem to change with it. As you will learn in this book, it is not only possible for data professionals
to work in an evolutionary, if not agile, manner, it is in fact a preferable way to work.

2. Learning curve. It takes time to learn these new techniques, and even longer if you also need
to change a serial mindset into an evolutionary one.

3. Tool support is still evolving. When Refactoring was published in 1999, no tools supported the
technique. Just a few years later, every single integrated development environment (IDE) has
code-refactoring features built right in to it. At the time of this writing, there are no database
refactoring tools in existence, although we do include all the code that you need to implement
the refactorings by hand. Luckily, the Eclipse Data Tools Project (DTP) has indicated in their
project prospectus the need to develop database-refactoring functionality in Eclipse, so it is only
a matter of time before the tool vendors catch up.

@ prev

e rrey

Agility in a Nutshell

Although this is not specifically a book about agile software development, the fact is that database
refactoring is a primary technique for agile developers. A process is considered agile when it conforms
to the four values of the Agile Alliance (www.agilealliance.org). The values define preferences, not
alternatives, encouraging a focus on certain areas but not eliminating others. In other words, whereas
you should value the concepts on the right side, you should value the things on the left side even
more. For example, processes and tools are important, but individuals and interactions are more
important. The four agile values are as follows:

1. Individuals and interactions OVER processes and tools. The most important factors that
you need to consider are the people and how they work together; if you do not get that right, the
best tools and processes will not be of any use.

2. Working software OVER comprehensive documentation. The primary goal of software
development is to create working software that meets the needs of its stakeholders.
Documentation still has its place; written properly, it describes how and why a system is built,
and how to work with the system.

3. Customer collaboration OVER contract negotiation. Only your customer can tell you what
they want. Unfortunately, they are not good at thisthey likely do not have the skills to exactly
specify the system, nor will they get it right at first, and worse yet they will likely change their
minds as time goes on. Having a contract with your customers is important, but a contract is not
a substitute for effective communication. Successful IT professionals work closely with their
customers, they invest the effort to discover what their customers need, and they educate their
customers along the way.

4. Responding to change OVER following a plan. As work progresses on your system, your
stakeholders' understanding of what they want changes, the business environment changes, and
so does the underlying technology. Change is a reality of software development, and as a result,
your project plan and overall approach must reflect your changing environment if it is to be
effective.

@ prcy | NEXT

e rrey

How to Read This Book

The majority of this book, Chapters 6 through 11, consists of reference material that describes each
refactoring in detail. The first five chapters describe the fundamental ideas and techniques of
evolutionary database development, and in particular, database refactoring. You should read these
chapters in order:

e Chapter 1, "Evolutionary Database Development,” overviews the fundamentals of evolutionary
development and the techniques that support it. It summarizes refactoring, database refactoring,
database regression testing, evolutionary data modeling via an AMDD approach, configuration
management of database assets, and the need for separate developer sandboxes.

e Chapter 2, "Database Refactoring," explores in detail the concepts behind database refactoring
and why it can be so hard to do in practice. It also works through a database-refactoring
example in both a "simple" single-application environment as well as in a complex, multi-
application environment.

e Chapter 3, "The Process of Database Refactoring," describes in detail the steps required to
refactor your database schema in both simple and complex environments. With single-application
databases, you have much greater control over your environment, and as a result need to do far
less work to refactor your schema. In multi-application environments, you need to support a
transition period in which your database supports both the old and new schemas in parallel,
enabling the application teams to update and deploy their code into production.

e Chapter 4, "Deploying into Production," describes the process behind deploying database
refactorings into production. This can prove particularly challenging in a multi-application
environment because the changes of several teams must be merged and tested.

e Chapter 5, "Database Refactoring Strategies,” summarizes some of the "best practices"” that we

have discovered over the years when it comes to refactoring database schemas. We also float a
couple of ideas that we have been meaning to try out but have not yet been able to do so.

e rrcy | NEXT

e rrey

About the Cover

Each book in the Martin Fowler Signature Series has a picture of a bridge on the front cover. This
tradition reflects the fact that Martin's wife is a civil engineer, who at the time the book series started
worked on horizontal projects such as bridges and tunnels. This bridge is the Burlington Bay James N.
Allan Skyway in Southern Ontario, which crosses the mouth of Hamilton Harbor. At this site are three
bridges: the two in the picture and the Eastport Drive lift bridge, not shown. This bridge system is
significant for two reasons. Most importantly it shows an incremental approach to delivery. The lift
bridge originally bore the traffic through the area, as did another bridge that collapsed in 1952 after
being hit by a ship. The first span of the Skyway, the portion in the front with the metal supports
above the roadway, opened in 1958 to replace the lost bridge. Because the Skyway is a major
thoroughfare between Toronto to the north and Niagara Falls to the south, traffic soon exceeded
capacity. The second span, the one without metal supports, opened in 1985 to support the new load.
Incremental delivery makes good economic sense in both civil engineering and in software
development. The second reason we used this picture is that Scott was raised in Burlington Ontarioin
fact, he was born in Joseph Brant hospital, which is near the northern footing of the Skyway. Scott
took the cover picture with a Nikon D70S.

e prey NEXT B

e rrey

Acknowledgments

We want to thank the following people for their input into the development of this book: Doug Barry,
Gary Evans, Martin Fowler, Bernard Goodwin, Joshua Graham, Sven Gorts, David Hay, David
Haertzen, Michelle Housely, Sriram Narayan, Paul Petralia, Sachin Rekhi, Andy Slocum, Brian Smith,
Michael Thurston, Michael Vizdos, and Greg Warren.

In addition, Pramod wants to thank Irfan Shah, Narayan Raman, Anishek Agarwal, and my other
teammates who constantly challenged my opinions and taught me a lot about software development. |
also want to thank Martin for getting me to write, talk, and generally be active outside of
ThoughtWorks; Kent Beck for his encouragement; my colleagues at ThoughtWorks who have helped
me in numerous ways and make working fun; my parents Jinappa and Shobha who put a lot of effort

in raising me; and Praveen, my brother, who since my childhood days has critiqued and improved the
way | write.

e prey

e rrey

Chapter 1. Evolutionary Database
Development

Waterfalls are wonderful tourist attractions. They are spectacularly bad strategies for organizing
software development projects.

Scott Ambler

Modern software processes, also called methodologies, are all evolutionary in nature, requiring you to
work both iteratively and incrementally. Examples of such processes include Rational Unified Process
(RUP), Extreme Programming (XP), Scrum, Dynamic System Development Method (DSDM), the
Crystal family, Team Software Process (TSP), Agile Unified Process (AUP), Enterprise Unified Process
(EUP), Feature-Driven Development (FDD), and Rapid Application Development (RAD), to name a few.
Working iteratively, you do a little bit of an activity such as modeling, testing, coding, or deployment
at a time, and then do another little bit, then another, and so on. This process differs from a serial
approach in which you identify all the requirements that you are going to implement, then create a
detailed design, then implement to that design, then test, and finally deploy your system. With an
incremental approach, you organize your system into a series of releases rather than one big one.

Furthermore, many of the modern processes are agile, which for the sake of simplicity we will
characterize as both evolutionary and highly collaborative in nature. When a team takes a
collaborative approach, they actively strive to find ways to work together effectively; you should even
try to ensure that project stakeholders such as business customers are active team members.
Cockburn(2002) advises that you should strive to adopt the "hottest” communication technique
applicable to your situation: Prefer face-to-face conversation around a whiteboard over a telephone
call, prefer a telephone call over sending someone an e-mail, and prefer an e-mail over sending
someone a detailed document. The better the communication and collaboration within a software
development team, the greater your chance of success.

Although both evolutionary and agile ways of working have been readily adopted within the
development community, the same cannot be said within the data community. Most data-oriented
techniques are serial in nature, requiring the creation of fairly detailed models before implementation
is "allowed" to begin. Worse yet, these models are often baselined and put under change management
control to minimize changes. (If you consider the end results, this should really be called a change
prevention process.) Therein lies the rub: Common database development techniques do not reflect
the realities of modern software development processes. It does not have to be this way.

Our premise is that data professionals need to adopt the evolutionary techniques similar to those of
developers. Although you could argue that developers should return to the "tried-and-true" traditional
approaches common within the data community, it is becoming more and more apparent that the
traditional ways just do not work well. In Chapter 5 of Agile & Iterative Development, Craig Larman
(2004) summarizes the research evidence, as well as the overwhelming support among the thought
leaders within the information technology (IT) community, in support of evolutionary approaches. The
bottom line is that the evolutionary and agile techniques prevalent within the development community
work much better than the traditional techniques prevalent within the data community.

It is possible for data professionals to adopt evolutionary approaches to all aspects of their work, if
they choose to do so. The first step is to rethink the "data culture"” of your IT organization to reflect
the needs of modern IT project teams. The Agile Data (AD) method (Ambler 2003) does exactly that,
describing a collection of philosophies and roles for modern data-oriented activities. The philosophies
reflect how data is one of many important aspects of business software, implying that developers need
to become more adept at data techniques and that data professionals need to learn modern
development technologies and skills. The AD method recognizes that each project team is unique and
needs to follow a process tailored for their situation. The importance of looking beyond your current

project to address enterprise issues is also stressed, as is the need for enterprise professionals such as
operational database administrators and data architects to be flexible enough to work with project
teams in an agile manner.

The second step is for data professionals, in particular database administrators, to adopt new
techniques that enable them to work in an evolutionary manner. In this chapter, we briefly overview
these critical techniques, and in our opinion the most important technique is database refactoring,
which is the focus of this book. The evolutionary database development techniques are as follows:

1. Database refactoring. Evolve an existing database schema a small bit at a time to improve the
quality of its design without changing its semantics.

2. Evolutionary data modeling. Model the data aspects of a system iteratively and incrementally,
just like all other aspects of a system, to ensure that the database schema evolves in step with
the application code.

3. Database regression testing. Ensure that the database schema actually works.

4. Configuration management of database artifacts. Your data models, database tests, test
data, and so on are important project artifacts that should be managed just like any other
artifact.

5. Developer sandboxes. Developers need their own working environments in which they can
modify the portion of the system that they are building and get it working before they integrate
their work with that of their teammates.

Let's consider each evolutionary database technique in detail.

e rrcy | NEXT

e rrey

1.1. Database Refactoring

Refactoring (Fowler 1999) is a disciplined way to make small changes to your source code to improve
its design, making it easier to work with. A critical aspect of a refactoring is that it retains the
behavioral semantics of your codeyou neither add nor remove anything when you refactor; you
merely improve its quality. An example refactoring would be to rename the getPersons() operation to
getPeople(). To implement this refactoring, you must change the operation definition, and then change
every single invocation of this operation throughout your application code. A refactoring is not
complete until your code runs again as before.

Similarly, a database refactoring is a simple change to a database schema that improves its design
while retaining both its behavioral and informational semantics. You could refactor either structural
aspects of your database schema such as table and view definitions or functional aspects such as
stored procedures and triggers. When you refactor your database schema, not only must you rework
the schema itself, but also the external systems, such as business applications or data extracts, which
are coupled to your schema. Database refactorings are clearly more difficult to implement than code
refactorings; therefore, you need to be careful. Database refactoring is described in detail in Chapter
2, and the process of performing a database refactoring in Chapter 3.

e rrey

e rrey

1.2. Evolutionary Data Modeling

Regardless of what you may have heard, evolutionary and agile techniques are not simply "code and
fix" with a new name. You still need to explore requirements and to think through your architecture
and design before you build it, and one good way of doing so is to model before you code. Figure 1.1
reviews the life cycle for Agile Mobile Driven Development (AMDD) (Ambler 2004; Ambler 2002). With
AMDD, you create initial, high-level models at the beginning of a project, models that overview the
scope of the problem domain that you are addressing as well as a potential architecture to build to.
One of the models that you typically create is a "slim" conceptual/domain model that depicts the main
business entities and the relationships between them (Fowler and Sadalage 2003). Figure 1.2 depicts
an example for a simple financial institution. The amount of detail shown in this example is all that you
need at the beginning of a project; your goal is to think through major issues early in your project
without investing in needless details right awayyou can work through the details later on a just-in-time
(JIT) basis.

Figure 1.1. The Agile Model-Driven Development (AMDD) life cycle.

Initial Requirements Initial Architectural
Maodeling - I~ Modeling
(days) (days)

Cycle 0: Initial Modeling

Model Storming
(minutes)

Reviews
{optional)

All Cycles
(hours)

Implementation
(Ideally Test Driven}
(hours)

Cycle 1: Development

| Cycle 2: Development

| Cycle n: Development

Figure 1.2. Conceptual/domain model for a fictional financial institution
using UML.

[View full size image]

fa® awrs e %.." Financial
Custamaes Instrment
I—LI | b [’]
Comparaty a.. 1
Cusiomer Empioyes P Policy Account
[&
Works I I |
at
¥ Aigta Proparty LHe Ehank Brokorago
1 IFsurante IFBuranse [GETFT T, Accoinl Ao
Lgcalian
Branch Kiask] weiomiin Modeiss

Your conceptual model will naturally evolve as your understanding of the domain grows, but the level
of detail will remain the same. Details are captured within your object model (which could be your
source code) and your physical data model. These models are guided by your conceptual domain
model and are developed in parallel along with other artifacts to ensure consistency. Figure 1.3 depicts
a detailed physical data model (PDM) that represents the extent of the model at the end of the third
development cycle. If "cycle 0" was one week in length, a period of time typical for projects of less
than one year, and development cycles are two weeks in length, this is the PDM that exists at the end
of the seventh week on the project. The PDM reflects the data requirements, and any legacy
constraints, of the project up until this point. The data requirements for future development cycles are
modeled during those cycles on a JIT basis.

Figure 1.3. Detailed physical data model (PDM) using UML.

[View full size image]

[t st ks
CustormartnsurancaPelicy 1surancsPalicy

ohssoiEative Tablems
PatzyiD b.gm PR
CuslomanD: blgnt <<PKs=
sPalicyHoldar: bacisan
sPayes; baolaan
Concumencyiian: in

PabcyiD: biginl <<PEzs
Paymant: curanay
Vakig: currgncy
PaymemParicd: int
ncaptonDate: date
GreationData: daba
Concunencyfark: imt

Cusatmis

Cussiomerdooount
e AS SO TS Tablfm

CustomeiiD: Bigird o Y Accoun
Titha: warchan 4|

Firsihame: warchan 30}
MiddbeMarne: varehan 301 1
Surmame: varchas 3o}
PhoneMumbar: varchan 15)
CroationDate: data
ConcumrencyMark: int [T

AcoountiD: bignl 2<Pi>s
CusicamnariD: bigint <<PK>>
HasWithdmwal: boolean
HasChecking: boolaan
ConcurrencyMark: im

AcoounsiD): bignt =<PKs>
AoctauintTypelada: ind <aFlxx
Balance: curmancy
CraationData; data
Goncumencyllark: im

(=]
W

AccouriTyps

Accouni Typalogs: Ind <<PH==
Descrigtion; varchar{40)
ConcurmencyMark: im

1 dascribas

caFhysical Data Models

Evolutionary data modeling is not easy. You need to take legacy data constraints into account, and as
we all know, legacy data sources are often nasty beasts that will maim an unwary software
development project. Luckily, good data professionals understand the nuances of their organization's
data sources, and this expertise can be applied on a JIT basis as easily as it could on a serial basis.
You still need to apply intelligent data modeling conventions, just as Agile Modeling's Apply Modeling
Standards practice suggests. A detailed example of evolutionary/agile data modeling is posted at
www.agiledata.org/essays/agileDataModeling.html.

e rrey

1.3. Database Regression Testing

To safely change existing software, either to refactor it or to add new functionality, you need to be
able to verify that you have not broken anything after you have made the change. In other words, you
need to be able to run a full regression test on your system. If you discover that you have broken
something, you must either fix it or roll back your changes. Within the development community, it has
become increasingly common for programmers to develop a full unit test suite in parallel with their
domain code, and in fact agilists prefer to write their test code before they write their "real” code. Just
like you test your application source code, shouldn't you also test your database? Important business
logic is implemented within your database in the form of stored procedures, data validation rules, and
referential integrity (RI) rules, business logic that clearly should be tested thoroughly.

Test-First Development (TFD), also known as Test-First Programming, is an evolutionary approach to
development; you must first write a test that fails before you write new functional code. As depicted
by the UML activity diagram of Figure 1.4, the steps of TFD are as follows:

Figure 1.4. A test-first approach to development.

!

Add a test F

[Pass]

Run the tests

[Fail]

Make a little
change

S

[Development
[Fail] continues]
Run the tests J

[Development
stops]

1. Quickly add a test, basically just enough code so that your tests now fail.

2. Run your testsoften the complete test suite, although for the sake of speed you may decide to
run only a subsetto ensure that the new test does in fact fail.

3. Update your functional code so that it passes the new test.

4. Run your tests again. If the tests fail, return to Step 3; otherwise, start over again.

The primary advantages of TFD are that it forces you to think through new functionality before you
implement it (you're effectively doing detailed design), it ensures that you have testing code available
to validate your work, and it gives you the courage to know that you can evolve your system because
you know that you can detect whether you have "broken" anything as the result of the change. Just
like having a full regression test suite for your application source code enables code refactoring, having
a full regression test suite for your database enables database refactoring (Meszaros 2006).

Test-Driven Development (TDD) (Astels 2003; Beck 2003) is the combination of TFD and refactoring.
You first write your code taking a TFD approach; then after it is working, you ensure that your design
remains of high quality by refactoring it as needed. As you refactor, you must rerun your regression
tests to verify that you have not broken anything.

An important implication is that you will likely need several unit testing tools, at least one for your
database and one for each programming language used in external programs. The XUnit family of
tools (for example, JUnit for Java, VBUnit for Visual Basic, NUnit for .NET, and OUnit for Oracle) luckily
are free and fairly consistent with one another.

e rrcy | NEXT

e rrey

1.4. Configuration Management of Database Artifacts

Sometimes a change to your system proves to be a bad idea and you need to roll back that change to
the previous state. For example, renaming the Customer.FName column to Customer.FirstName might
break 50 external programs, and the cost to update those programs may prove to be too great for
now. To enable database refactoring, you need to put the following items under configuration
management control:

e Data definition language (DDL) scripts to create the database schema

e Data load/extract/migration scripts

e Data model files

e Object/relational mapping meta data

¢ Reference data

e Stored procedure and trigger definitions

¢ View definitions

e Referential integrity constraints

¢ Other database objects like sequences, indexes, and so on

e Test data

e Test data generation scripts

e Test scripts

e rrcy | NEXT

e rrey

1.5. Developer Sandboxes

A "sandbox" is a fully functioning environment in which a system may be built, tested, and/or run. You
want to keep your various sandboxes separated for safety reasonsdevelopers should be able to work
within their own sandbox without fear of harming other efforts, your quality assurance/test group
should be able to run their system integration tests safely, and your end users should be able to run
their systems without having to worry about developers corrupting their source data and/or system
functionality. Figure 1.5 depicts a logical organization for your sandboxeswe say that it is logical
because a large/complex environment may have seven or eight physical sandboxes, whereas a
small/simple environment may only have two or three physical sandboxes.

Figure 1.5. Logical sandboxes to provide developers with safety.

Highly

EE; oY '; : é;;i;y ::E": Depluvmeni

I ' Demo
. : Sandbox
Development : Project
P 1 Integration Production
Sandbox] Sandb
: n Lo} Pre-
i Production
’ Test/QA
Sandbox
Highly Iterative Project-Level izzt:p':;";: Operations and
Development i
2] Testing Testing Support
j !ém;l;
< Lo '
Heporls
<: Software Problem .
Heporis (SPHRS)

To successfully refactor your database schema, developers need to have their own physical sandboxes
to work in, a copy of the source code to evolve, and a copy of the database to work with and evolve.
By having their own environment, they can safely make changes, test them, and either adopt or back
out of them. When they are satisfied that a database refactoring is viable, they promote it into their
shared project environment, test it, and put it under change management control so that the rest of
the team gets it. Eventually, the team promotes their work, including all database refactorings, into
any demo and/or preproduction testing environments. This promotion often occurs once a
development cycle, but could occur more or less often depending on your environment. (The more
often you promote your system, the greater the chance of receiving valuable feedback.) Finally, after
your system passes acceptance and system testing, it will be deployed into production. Chapter 4,
"Deploying into Production," covers this promotion/deployment process in greater detail.

e rrey

e rrey

1.6. Impediments to Evolutionary Database Development
Techniques

We would be remiss if we did not discuss the common impediments to adopting the techniques
described in this book. The first impediment, and the hardest one to overcome, is cultural. Many of
today's data professionals began their careers in the 1970s and early 1980s when "code-and-fix"
approaches to development were common. The IT community recognized that this approach resulted
in low-quality, difficult-to-maintain code and adopted the heavy, structured development techniques
that many still follow today. Because of these experiences, the majority of data professionals believed
that the evolutionary techniques introduced by the object technology revolution of the 1990s were just
a rehash of the code-and-fix approaches of the 1970s; to be fair, many object practitioners did in fact
choose to work that way. They have chosen to equate evolutionary approaches with low quality; but
as the agile community has shown, this does not have to be the case. The end result is that the
majority of data-oriented literature appears to be mired in the traditional, serial thought processes of
the past and has mostly missed agile approaches. The data community has a lot of catching up to do,
and that is going to take time.

The second impediment is a lack of tooling, although open source efforts (at least within the Java
community) are quickly filling in the gaps. Although a lot of effort has been put into the development
of object/relational (O/R) mapping tools, and some into database testing tools, there is still a lot of
work to be done. Just like it took several years for programming tool vendors to implement refactoring
functionality within their toolsin fact, now you would be hard pressed to find a modern integrated
development environment (IDE) that does not offer such featuresit will take several years for
database tool vendors to do the same. Clearly, a need exists for usable, flexible tools that enable
evolutionary development of a database schemathe open source community is clearly starting to fill
that gap, and we suspect that the commercial tool vendors will eventually do the same.

e rrcv |

e rrey

1.7. What You Have Learned

Evolutionary approaches to development that are iterative and incremental in nature are the de facto
standard for modern software development. When a project team decides to take this approach to
development, everyone on that team must work in an evolutionary manner, including the data
professionals. Luckily, evolutionary techniques exist that enable data professionals to work in an
evolutionary manner. These techniques include database refactoring, evolutionary data modeling,
database regression testing, configuration management of data-oriented artifacts, and separate

developer sandboxes.

e rrcv | NEXT

e rrey

Chapter 2. Database Refactoring

As soon as one freezes a design, it becomes obsolete.

Fred Brooks

This chapter overviews the fundamental concepts behind database refactoring, explaining what it is,
how it fits into your development efforts, and why it is often hard to do successfully. In the following
chapters, we describe in detail the actual process of refactoring your database schema.

@ prcy | NEXT

e rrey

2.1. Code Refactoring

In Refactoring, Martin Fowler (1999) describes the programming technique called refactoring, which is
a disciplined way to restructure code in small steps. Refactoring enables you to evolve your code
slowly over time, to take an evolutionary (iterative and incremental) approach to programming. A
critical aspect of a refactoring is that it retains the behavioral semantics of your code. You do not add
functionality when you are refactoring, nor do you take it away. A refactoring merely improves the
design of your codenothing more and nothing less. For example, in Figure 2.1 we apply the Push Down
Method refactoring to move the calculateTotal() operation from Offering into its subclass Invoice. This
change looks easy on the surface, but you may also need to change the code that invokes this
operation to work with Invoice objects rather than Offering objects. After you have made these
changes, you can say you have truly refactored your code because it works again as before.

Figure 2.1. Pushing a method down into a subclass.

Before: After:

Offering Offering

calculateTotal()

Invoice

Invoice

calculateTotal()

Clearly, you need a systematic way to refactor your code, including good tools and techniques to do
so. Most modern integrated development environments (IDEs) now support code refactoring to some
extent, which is a good start. However, to make refactoring work in practice, you also need to develop
an up-to-date regression-testing suite that validates that your code still worksyou will not have the
confidence to refactor your code if you cannot be reasonably assured that you have not broken it.

Many agile developers, and in particular Extreme Programmers (XPers), consider refactoring to be a
primary development practice. It is just as common to refactor a bit of code as it is to introduce an if
statement or a loop. You should refactor your code mercilessly because you are most productive when
you are working on high-quality source code. When you have a new feature to add to your code, the
first question that you should ask is "Is this code the best design possible that enables me to add this
feature?" If the answer is yes, add the feature. If the answer is no, first refactor your code to make it
the best design possible, and then add the feature. On the surface, this sounds like a lot of work; in
practice, however, if you start with high-quality source code, and then refactor it to keep it so, you will
find that this approach works incredibly well.

e prey

e rrey

2.2. Database Refactoring

A database refactoring (Ambler 2003) is a simple change to a database schema that improves its
design while retaining both its behavioral and informational semanticsin other words, you cannot add
new functionality or break existing functionality, nor can you add new data or change the meaning of
existing data. From our point of view, a database schema includes both structural aspects, such as
table and view definitions, and functional aspects, such as stored procedures and triggers. From this
point forward, we use the terms code refactoring to refer to traditional refactoring as described by
Martin Fowler and database refactoring to refer to the refactoring of database schemas. The process of
database refactoring, described in detail in Chapter 3, is the act of making these simple changes to
your database schema.

Database refactorings are conceptually more difficult than code refactorings: Code refactorings only
need to maintain behavioral semantics, whereas database refactorings must also maintain
informational semantics. Worse yet, database refactorings can become more complicated by the
amount of coupling resulting from your database architecture, overviewed in Figure 2.2. Coupling is a
measure of the dependence between two items; the more highly coupled two things are, the greater
the chance that a change in one will require a change in another. The single-application database
architecture is the simplest situationyour application is the only one interacting with your database,
enabling you to refactor both in parallel and deploy both simultaneously. These situations do exist and
are often referred to as standalone applications or stovepipe systems. The second architecture is much
more complicated because you have many external programs interacting with your database, some of
which are beyond the scope of your control. In this situation, you cannot assume that all the external
programs will be deployed at once, and must therefore support a transition period (also referred to as
a deprecation period) during which both the old schema and the new schema are supported in parallel.
More on this later.

Figure 2.2. The two categories of database architecture.

[View full size image]

Other
o Apn{I]I::TIIrunu. Your Applications
Appllcation S Ko Aol Appiication Kﬁiﬂ’u,

Pergislence
Frameworks

Single Application Database Multi-Application Dalabase

Although we discuss the single-application environment throughout the book, we focus more on the
multi-application environment, in which your database currently exists in production and is accessed
by many other external programs over which you have little or no control. Don't worry. In Chapter 3,

we describe strategies for working in this sort of situation.

To put database refactoring into context, let's step through a quick example. You have been working
on a banking application for a few weeks and have noticed something strange about the Customer and
Account tables depicted in Figure 2.3. Does it really make sense that the Balance column be part of
the Customer table? No, so let's apply the Move Column (page 103) refactoring to improve our
database design.

Figure 2.3. The initial database schema for Customer and Account.

[View full size image]

Cusiomer Account

CustomerD «<PKs> i ACCASSES
FirsiMame
Balance

T AccountiD <=PHss

CustomeriD <<FK==

CheckCusiomerExists

'i':l-pr:lc!‘lt:u-ﬁ.-:f':'l-:l-"lr“ alol [evanl = balore update | before inser)
{ aant efore dalete |

2.2.1. Single-Application Database Environments

Let's start by working through an example of moving a column from one table to another within a
single-application database environment. This is the simplest situation that you will ever be in,
because you have complete control over both the database schema and the application source code
that accesses it. The implication is that you can refactor both your database schema and your
application code simultaneouslyyou do not need to support both the original and new database
schemas in parallel because only the one application accesses your database.

In this scenario, we suggest that two people work together as a pair; one person should have
application programming skills, and the other database development skills, and ideally both people
have both sets of skills. This pair begins by determining whether the database schema needs to be
refactored. Perhaps the programmer is mistaken about the need to evolve the schema, and how best
to go about the refactoring. The refactoring is first developed and tested within the developer's
sandbox. When it is finished, the changes are promoted into the project-integration environment, and
the system is rebuilt, tested, and fixed as needed.

To apply the Move Column (page 103) refactoring in the development sandbox, the pair first runs all
the tests to see that they pass. Next, they write a test because they are taking a Test-Driven
Development (TDD) approach. A likely test is to access a value in the Account.Balance column. After
running the tests and seeing them fail, they introduce the Account.Balance column, as you see in
Figure 2.4. They rerun the tests and see that the tests now pass. They then refactor the existing tests,
which verify that customer deposits work properly with the Account.Balance column rather than the
Customer.Balance column. They see that these tests fail, and therefore rework the deposit
functionality to work with Account.Balance. They make similar changes to other code within the tests
suite and the application, such as withdrawal logic, that currently works with Customer.Balance.

Figure 2.4. The final database schema for Customer and Account.

[View full size image]

Account
Cusiomer

AccountlD <<PE>>
CustomariD ccFKa
Balance

CustomeiD <<PK>x 1 ACCESSES
Firsibame

CheckMoAccounts
| ewant = betors dalste |

ChechCustomerExists
[event = balore update | bedore inser |

After the application is running again, they then back up the data in Customer.Balance, for safety
purposes, and then copy the data from Customer.Balance into the appropriate row of
Account.Balance. They rerun their tests to verify that the data migration has safely occurred. To
complete the schema changes, the final step is to drop the Customer.Balance column and then rerun
all tests and fix anything as necessary. When they finish doing so, they promote their changes into the
project-integration environment as described earlier.

2.2.2. Multi-Application Database Environments

This situation is more difficult because the individual applications have new releases deployed at
different times over the next year and a half. To implement this database refactoring, you do the
same sort of work that you did for the single-application database environment, except that you do
not delete the Customer.Balance column right away. Instead, you run both columns in parallel during
a "transition period" of at least 1.5 years to give the development teams time to update and redeploy
all of their applications. This portion of the database schema during the transition period is shown in
Figure 2.5. Notice how there are two triggers, SynchronizeCustomerBalance and Synchronize
AccountBalance, which are run in production during the transition period to keep the two columns in
sync.

Figure 2.5. The database schema during the transition period.

[View full size image]

Custormer Accaint

Cugiomip|D <K= | . 1| AssaumiD c<PK==
Firgt Bdcessa Custonrir| D weFK»e
Bal Balance
SynchronizefccountBalance SynchronizeCustomerBalance

{ event = on update | on dalate | on inser, { evenl = on update | on ingsert,

drep date = Juna 14 2006 } drop date = June 14 2006 }

ChackNoAccounls ChackCustomercuists

[Evar] = Do dakabs | | ewend = bedore update | bakare insart |

Why such a long period of time for the transition period? Because some applications currently are not
being worked on, whereas other applications are following a traditional development life cycle and only
release every year or soyour transition period must take into account the slow teams as well as the
fast ones. Furthermore, because you cannot count on the individual applications to update both
columns, you need to provide a mechanism such as triggers to keep their values synchronized. There
are other options to do this, such as views or synchronization after the fact, but as we discuss in
Chapter 5, "Database Refactoring Strategies," we find that triggers work best.

After the transition period, you remove the original column plus the trigger(s), resulting in the final
database schema of Figure 2.4. You remove these things only after sufficient testing to ensure that it
is safe to do so. At this point, your refactoring is complete. In Chapter 3, we work through
implementing this example in detail.

2.2.3. Maintaining Semantics

When you refactor a database schema, you must maintain both the informational and behavioral
semanticsyou should neither add anything nor take anything away. Informational semantics refers to
the meaning of the information within the database from the point of view of the users of that
information. Preserving the informational semantics implies that if you change the values of the data
stored in a column, the clients of that information should not be affected by the changefor example, if
you apply the Introduce Common Format (page 183) database refactoring to a character-based phone
number column to transform data such as (416) 555-1234 and 905.555.1212 into 4165551234 and
9055551212, respectively. Although the format has been improved, requiring simpler code to work
with the data, from a practical point of view the true information content has not. Note that you would
still choose to display phone numbers in (XXX) XXX-XXXX format; you just would not store the
information in that manner.

Focusing on practicality is a critical issue when it comes to database refactoring. Martin Fowler likes to
talk about the issue of "observable behavior" when it comes to code refactoring, his point being that
with many refactorings you cannot be completely sure that you have not changed the semantics in
some small way, that all you can hope for is to think it through as best you can, to write what you
believe to be sufficient tests, and then run those tests to verify that the semantics have not changed.
In our experience, a similar issue exists when it comes to preserving information semantics when
refactoring a database schemachanging (416) 555-1234 to 4165551234 may in fact have changed the
semantics of that information for an application in some slightly nuanced way that we do not know
about. For example, perhaps a report exists that somehow only works with data rows that have phone
numbers in the (XXX) XXX-XXXX format, and the report relies on that fact. Now the report is
outputting numbers in the XXXXXXXXXX format, making it harder to read, even though from a
practical sense the same information is still being output. When the problem is eventually discovered,
the report may need to be updated to reflect the new format.

Similarly, with respect to behavioral semantics, the goal is to keep the black-box functionality the
sameany source code that works with the changed aspects of your database schema must be
reworked to accomplish the same functionality as before. For example, if you apply Introduce
Calculation Method (page 245), you may want to rework other existing stored procedures to invoke
that method rather than implement the same logic for that calculation. Overall, your database still
implements the same logic, but now the calculation logic is just in one place.

It is important to recognize that database refactorings are a subset of database transformations. A
database transformation may or may not change the semantics; a database refactoring does not. We
describe several common database transformations in Chapter 11, "Non-Refactoring Transitions,"
because they are not only important to understand, they can often be a step within a database
refactoring. For example, when applying the Move Column earlier to move the Balance column from
Customer to Account, you needed to apply the Introduce Column transformation (page 180) as one of
the steps.

On the surface, the Introduce Column sounds like a perfectly fine refactoring; adding an empty
column to a table does not change the semantics of that table until new functionality begins to use it.
We still consider it a transformation (but not a refactoring) because it could inadvertently change the
behavior of an application. For example, if we introduce the column in the middle of the table, any
program logic using positional access (for example, code that refers to column 17 rather than the
column's name) will break. Furthermore, COBOL code bound to a DB2 table will break if it is not
rebound to the new schema, even if the column is added at the end of the table. In the end,
practicality should be your guide. If we were to label Introduce Column as a refactoring, or as a
"Yabba Dabba Do" for all that matter, would it affect the way that you use it? We hope not.

Why Not Just Get It Right Up Front?

We are often told by existing data professionals that the real solution is to model
everything up front, and then you would not need to refactor your database schema.
Although that is an interesting vision, and we have seen it work in a few situations,
experience from the past three decades has shown that this approach does not seem to
be working well in practice for the overall IT community. The traditional approach to data
modeling does not reflect the evolutionary approach of modern methods such as the RUP
and XP, nor does it reflect the fact that business customers are demanding new features
and changes to existing functionality at an accelerating rate. The old ways are simply no
longer sufficient.

As discussed in Chapter 1, "Evolutionary Database Development," we suggest that you
take an Agile Model-Driven Development (AMDD) approach, in which you do some high-
level modeling to identify the overall "landscape" of your system, and then model storm
the details on a just-in-time (JIT) basis. Take advantage of the benefits of modeling
without suffering from the costs of overmodeling, overdocumentation, and the resulting
bureaucracy of trying to keep too many artifacts up-to-date and synchronized with one
another. Your application code and your database schema evolve as your understanding
of the problem domain evolves, and you maintain quality through refactoring both.

e rrey

2.3. Categories of Database Refactorings

We also distinguish six different categories of database refactorings, as described in Table 2.1. This
categorization strategy was introduced to help organize this book, and hopefully to help organize
future database refactoring tools. Our categorization strategy is not perfect; for example, the Replace
Method With View refactoring (page 265) arguably fits into both the Architectural and Method
categories. (We have put it into the Architectural category.)

Table 2.1. Database Refactoring Categories

Database Refactoring Category Description Example(s)

Structural(Chapter 6) A change to the definition Moving a column from one table to
of one or more tables or another or splitting a multipurpose
views. column into several separate

columns, one for each purpose.

Data Quality(Chapter 7) A change that improves Making a column non-nullable to
the quality of the ensure that it always contains a
information contained value or applying a common format
within a database. to a column to ensure consistency.

Referential Integrity(Chapter 8) A change that ensures that Adding a trigger to enable a
a referenced row exists cascading delete between two
within another table entities, code that was formerly
and/or that ensures that a implemented outside of the
row that is no longer database.
needed is removed
appropriately.

Architectural(Chapter 9) A change that improves Replacing an existing Java operation
the overall manner in in a shared code library with a

which external programs stored procedure in the database.

interact with a database. Having it as a stored procedure
makes it available to non-Java
applications.

Method(Chapter 10) A change to a method (a Renaming a stored procedure to
stored procedure, stored make it easier to understand.
function, or trigger) that
improves its quality. Many
code refactorings are
applicable to database
methods.

Non- A change to your database Adding a new column to an existing
RefactoringTransformation(Chapter schema that changes its table.
11) semantics.

NEXT B

e rrey

2.4. Database Smells

Fowler (1997) introduced the concept of a "code smell,” a common category of problem in your code
that indicates the need to refactor it. Common code smells include switch statements, long methods,
duplicated code, and feature envy. Similarly, there are common database smells that indicate the
potential need to refactor it (Ambler 2003). These smells include the following:

e Multipurpose column. If a column is being used for several purposes, it is likely that extra code
exists to ensure that the source data is being used the "right way," often by checking the values
of one or more other columns. An example is a column used to store either someone's birth date
if he or she is a customer or the start date if that person is an employee. Worse yet, you are
likely constrained in the functionality that you can now supportfor example, how would you store
the birth date of an employee?

e Multipurpose table. Similarly, when a table is being used to store several types of entities,
there is likely a design flaw. An example is a generic Customer table that is used to store
information about both people and corporations. The problem with this approach is that data
structures for people and corporations differpeople have a first, middle, and last name, for
example; whereas a corporation simply has a legal name. A generic Customer table would have
columns that are NULL for some kinds of customers but not others.

¢ Redundant data. Redundant data is a serious problem in operational databases because when
data is stored in several places, the opportunity for inconsistency occurs. For example, it is quite
common to discover that customer information is stored in many different places within your
organization. In fact, many companies are unable to put together an accurate list of who their
customers actually are. The problem is that in one table John Smith lives at 123 Main Street, and
in another table at 456 EIm Street. In this case, this is actually one person who used to live at
123 Main Street but who moved last year; unfortunately, John did not submit two change of
address forms to your company, one for each application that knows about him.

e Tables with too many columns. When a table has many columns, it is indicative that the table
lacks cohesionthat it is trying to store data from several entities. Perhaps your Customer table
contains columns to store three different addresses (shipping, billing, seasonal) or several phone
numbers (home, work, cell, and so on). You likely need to normalize this structure by adding
Address and PhoneNumber tables.

e Tables with too many rows. Large tables are indicative of performance problems. For
example, it is time-consuming to search a table with millions of rows. You may want to split the
table vertically by moving some columns into another table, or split it horizontally by moving
some rows into another table. Both strategies reduce the size of the table, potentially improving
performance.

¢ "Smart"” columns. A smart column is one in which different positions within the data represent
different concepts. For example, if the first four digits of the client ID indicate the client's home
branch, then client ID is a smart column because you can parse it to discover more granular
information (for example, home branch ID). Another example includes a text column used to
store XML data structures; clearly, you can parse the XML data structure for smaller data fields.
Smart columns often need to be reorganized into their constituent data fields at some point so
that the database can easily deal with them as separate elements.

e Fear of change. If you are afraid to change your database schema because you are afraid to
break somethingfor example, the 50 applications that access itthat is the surest sign that you
need to refactor your schema. Fear of change is a good indication that you have a serious
technical risk on your hands, one that will only get worse over time.

It is important to understand that just because something smells, it does not mean that it is
badlimburger cheese smells even when it is perfectly fine. However, when milk smells bad, you know
that you have a problem. If something smells, look at it, think about it, and refactor it if it makes

NEXT B

sense.

e rrey

2.5. How Database Refactoring Fits In

Modern software development processes, including the Rational Unified Process (RUP), Extreme
Programming (XP), Agile Unified Process (AUP), Scrum, and Dynamic System Development Method
(DSDM), are all evolutionary in nature. Craig Larman (2004) summarizes the research evidence, as
well as the overwhelming support among the thought leaders within the IT community, in support of
evolutionary approaches. Unfortunately, most data-oriented techniques are serial in nature, relying on
specialists performing relatively narrow tasks, such as logical data modeling or physical data modeling.
Therein lies the rubthe two groups need to work together, but both want to do so in different
manners.

Our position is that data professionals can benefit from adopting modern evolutionary techniques
similar to those of developers, and that database refactoring is one of several important skills that
data professionals require. Unfortunately, the data community missed the object revolution of the
1990s, which means they missed out on opportunities to learn the evolutionary techniques that
application programmers now take for granted. In many ways, the data community is also missing out
on the agile revolution, which is taking evolutionary development one step further to make it highly
collaborative and cooperative.

Database refactoring is a database implementation technique, just like code refactoring is an
application implementation technique. You refactor your database schema to ease additions to it. You
often find that you have to add a new feature to a database, such as a new column or stored
procedure, but the existing design is not the best one possible to easily support that new feature. You
start by refactoring your database schema to make it easier to add the feature, and after the
refactoring has been successfully applied, you then add the feature. The advantage of this approach is
that you are slowly, but constantly, improving the quality of your database design. This process not
only makes your database easier to understand and use, it also makes it easier to evolve over time; in
other words, you improve your overall development productivity.

Figure 2.6 provides a high-level overview of the critical development activities that occur on a modern
project working with both object and relational database technologies. Notice how all the arrows are
bidirectional. You iterate back and forth between activities as needed. Also notice how there is neither
a defined starting point nor a defined ending pointthis clearly is not a traditional, serial process.

Figure 2.6. Potential development activities on an evolutionary
development project.

Conceptualf
Domain
Modeling

Physical Data
Modeling

QiR
Mapping

Object
Modeling

Database

Application
Implementation

Implemeantation

! }

Database refactoring is only part of the evolutionary database development picture. You still need to
take an evolutionary/agile approach to data modeling. You still need to test your database schema
and put it under configuration management control. And, you still need to tune it appropriately. These

are topics better left to other books.

@ prcy | NEXT

e rrey

2.6. Making It Easier to Refactor Your Database Schema

The greater the coupling, the harder it is to refactor something. This is true of code refactoring, and it
is certainly true of database refactoring. Our experience is that coupling becomes a serious issue when
you start to consider behavioral issues (for example, code), something that many database books
choose not to address. The easiest scenario is clearly the single-application database because your
database schema will only be coupled to itself and to your application. With the multi-application
database architecture depicted in Figure 2.7, your database schema is potentially coupled to
application source code, persistence frameworks and Object-Relational Mapping (ORM) tools, other
databases (via replication, data extracts/loads, and so on), data file schemas, testing code, and even
to itself.

Figure 2.7. Databases are highly coupled to external programs.

i [o
Other Your App-?i::T’:irons
Applications R
Application You Don't
You Know About Wnoi Abakt

e gller

Your
Database

Persistence
Frameworks

Dther
Databases

Data Test
File{s) Code

An effective way to decrease the coupling that your database is involved with is to encapsulate access
to it. You do this by having external programs access your database via persistence layers, as
depicted in Figure 2.8. A persistence layer can be implemented in several waysvia data access objects
(DAOs), which implement the necessary SQL code; by frameworks; via stored procedures; or even via
Web services. As you see in the diagram, you can never get the coupling down to zero, but you can
definitely reduce it to something manageable.

Figure 2.8. Reducing coupling via encapsulating access.

[l [
i

Other
Other .
oot Your Applications
Applications Application You Don't

You Know About Know About

Data Persistence
File(s) Frameworks

Your
Database

Test
Code

Other
Databases

NEXT B

e rrey

2.7. What You Have Learned

Code refactoring is a disciplined way to restructure code in small, evolutionary steps to improve the
quality of its design. A code refactoring retains the behavioral semantics of your code; it neither adds
functionality nor takes functionality away. Similarly, a database refactoring is a simple change to a
database schema that improves its design while retaining both its behavioral and informational
semantics. Database refactoring is one of the core techniques that enable data professionals to take
an evolutionary approach to database development. The greater the coupling that your database is
involved with, the harder it will be to refactor.

e rrcv | NEXT

e rrey

Chapter 3. The Process of Database
Refactoring

A new scientific truth does not triumph by convincing its opponents and making them see the
light, but rather because its opponents eventually die, and a new generation grows up that is
familiar with it.

Max Planck

This chapter describes how to implement a single refactoring within your database. We work through
an example of applying the Move Column (page 103), a structural refactoring. Although this seems
like a simple refactoring, and it is, you will see it can be quite complex to safely implement it within a
production environment. Figure 3.1 overviews how we will move the Customer.Balance column to the
Account table, a straightforward change to improve the database design.

Figure 3.1. Moving the Customer.Balance column to Account.

Before: After:

Customer Customer
CustomerlD <<PK>> CustomerlD <<PK>>
Firstiame FirstName
Balance

Account

AccountiD «<<=PK=>
CustomerlD =<FK=>

Account

AccountlD) <<PK==

CustomerlD <<FK>> Balance

In Chapter 1, "Evolutionary Database Development,” we overviewed the concept of logical working
sandboxesdevelopment sandboxes in which developers have their own copy of the source code and
database to work with; a project-integration environment where team members promote and then
test their changes; preproduction environments for system, integration, and user acceptance testing;
and production. The hard work of database refactoring is done within your development sandboxit is
considered, implemented, and tested before it is promoted into other environments. The focus of this
chapter is on the work that is performed within your development sandbox. Chapter 4, "Deploying into
Production,” covers the promotion and eventual deployment of your refactorings.

Because we are describing what occurs within your development sandbox, this process applies to both
the single-application database as well as the multi-application database environments. The only real
difference between the two situations is the need for a longer transition period (more on this later) in
the multi-application scenario.

Figure 3.2 depicts a UML 2 Activity diagram that overviews the database refactoring process. The
process begins with a developer who is trying to implement a new requirement to fix a defect. The

developer realizes that the database schema may need to be refactored. In this example, Eddy, a
developer, is adding a new type of financial transaction to his application and realizes that the Balance
column actually describes Account entities, not Customer entities. Because Eddy follows common agile
practices such as pair programming (Williams & Kessler 2002) and modeling with others (Ambler
2002), he decides to enlist the help of Beverley, the team's database administrator (DBA), to help him
to apply the refactoring. Together they iteratively work through the following activities:

Figure 3.2. The database refactoring process.

Verify that a
refactoring is
neaded

[Hot
Needed]

[View full size image]

Choose the
Right
Refactoring

Deprecate the
Original

Schema
{optional)

[Pass]

Run the tests

—
[Fail]

Write a

Unit Test

f 1

L J

Change your
schema

Migrate
Data
{optional)

Update External
Access
Programs

!

[Fail]

Run the tests | [Work

continues]

—_—
[Finished]

Version
Control Your
Work

e E———

Announce
The Refactoring

o-

—

o Verify that a database refactoring is appropriate.
e Choose the most appropriate database refactoring.

e Deprecate the original database schema.

e Test before, during, and after.

¢ Modify the database schema.

¢ Migrate the source data.

¢ Modify external access program(s).
¢ Run regression tests.

e Version control your work.

¢ Announce the refactoring.

e rrcy

e rrey

3.1. Verify That a Database Refactoring Is Appropriate

First, Beverley determines whether the suggested refactoring needs to occur. There are three issues to
consider:

1. Does the refactoring make sense?

Perhaps the existing table structure is correct. It is common for developers to either disagree
with, or to simply misunderstand, the existing design of a database. This misunderstanding could
lead them to believe that the design needs to change when it really does not. The DBA should
have a good knowledge of the project team's database, other corporate databases, and will know
whom to contact about issues such as this. Therefore, they will be in a better position to
determine whether the existing schema is the best one. Furthermore, the DBA often understands
the bigger picture of the overall enterprise, providing important insight that may not be apparent
when you look at it from the point of view of the single project. However, in our example, it
appears that the schema needs to change.

2. Is the change actually needed now?

This is usually a "gut call" based on her previous experience with the application developer. Does
Eddy have a good reason for making the schema change? Can Eddy explain the business
requirement that the change supports? Does the requirement feel right? Has Eddy suggested
good changes in the past? Has Eddy changed his mind several days later, requiring Beverley to
back out of the change? Depending on this assessment,Beverley may suggest that Eddy think
the change through some more or may decide to continue working with him, but will wait for a
longer period of time before they actually apply the change in the project-integration
environment (Chapter 4) if they believe the change will need to be reversed.

3. Is it worth the effort?

The next thing that Beverley does is to assess the overall impact of the refactoring. To do this,
Beverley should have an understanding of how the external program(s) are coupled to this part
of the database. This is knowledge that Beverley has built up over time by working with the
enterprise architects, operational database administrators, application developers, and other
DBAs. When Beverley is not sure of the impact, she needs to make a decision at the time and go
with her gut feeling or decide to advise the application developer to wait while she talks to the
right people. Her goal is to ensure that she implements database refactorings that will succeedif
you are going to need to update, test, and redeploy 50 other applications to support this
refactoring, it may not be viable for her to continue. Even when there is only one application
accessing the database, it may be so highly coupled to the portion of the schema that you want
to change that the database refactoring simply is not worth it. In our example, the design
problem is so clearly severe that she decides to implement it even though many applications will
be affected.

Take Small Steps

Database refactoring changes the schema in small steps; each refactoring should be
made one at a time. For example, assume you realize that you need to move an
existing column, rename it, and apply a common format to it. Instead of trying this
all at once, you should instead successfully implement Move Column (page 103), then
successfully implement Rename Column (page 109), and then apply Introduce
Common Format (page 183) one step at a time. The advantage is that if you make a
mistake, it is easy to find the bug because it will likely be in the part of the schema
that you just changed.

e rrcv | NEXT

e rrey

3.2. Choose the Most Appropriate Database Refactoring

As you can see in this book, you could potentially apply a large number of refactorings to your
database schema. To determine which is the most appropriate refactoring for your situation, you must
first analyze and understand the problem you face. When Eddy first approached Beverley, he may or
may not have done this analysis. For example, he may have just gone to her and said that the
Account table needs to store the current balance; therefore, we need to add a new column (via the
Introduce Column transformation on page 180). However, what he did not realize was that the column
already exists in the Customer table, which is arguably the wrong place for it to beEddy had identified
the problem correctly, but had misidentified the solution. Based on her knowledge of the existing
database schema, and her understanding of the problem identified by Eddy, Beverley instead suggests
that they apply the Move Column (page 103) refactoring.

Sometimes the Data Is Elsewhere

Your database is likely not the only source of data within your organization. A good DBA
should at least know about, if not understand, the various data sources within your
enterprise to determine the best source of data. In our example, another database could
potentially be the official repository of Account information. If that is the case, moving the
column may not make sense because the true refactoring would be Use Official Data
Source (page 271).

e rrcy

e rrey

3.3. Deprecate the Original Database Schema

If multiple applications access your database, you likely need to work under the assumption that you
cannot refactor and then deploy all of these programs simultaneously. Instead, you need a transition
period, also called a deprecation period, for the original portion of the schema that you are changing
(Sadalage & Schuh 2002; Ambler 2003). During the transition period, you support both the original
and new schemas in parallel to provide time for the other application teams to refactor and redeploy
their systems. Typical transition periods last for several quarters, if not years. The potentially long
time to fully implement a refactoring underscores the need to automate as much of the process as
possible. Over a several-year period, people within your department will change, putting you at risk if
parts of the process are manual. Having said that, even in the case of a single-application database,
your team may still require a transition period of a few days within your project-integration
sandboxyour teammates need to refactor and retest their code to work with the updated database
schema.

Figure 3.3 depicts the life cycle of a database refactoring within a multi-application scenario. You first
implement it within the scope of your project, and if successful, you eventually deploy it into
production. During the transition period, both the original schema and the new schema exist, with
sufficient scaffolding code to ensure that any updates are correctly supported. During the transition
period, you need to assume two things: first, that some applications will use the original schema
whereas others will use the new schema; and second, that applications should only have to work with
one but not both versions of the schema. In our example, some applications will work with
Customer.Balance and others with Account.Balance, but not both simultaneously. Regardless of which
column they work with, the applications should all run properly. When the transition period has
expired, the original schema plus any scaffolding code is removed and the database retested. At this
point, the assumption is that all applications work with Account.Balance.

Figure 3.3. The life cycle of a database refactoring in a multi-application

scenario.
! ¢ ¢ -
Implement the Transition Refactoring
refactoring Period Completed
Refactored schema and Original schema and the
any scaffolding code scaffolding code removed
deployed into production from production

Figure 3.4 depicts the original database schema, and Figure 3.5 shows what the database schema
would look like during the transition period for when we apply the Move Column database refactoring
to Customer.Balance. In Figure 3.5, the changes are shown in bold, a style that we use throughout the
book. Notice how both versions of the schema are supported during this period. Account.Balance has
been added as a column, and Customer.Balance has been marked for removal on or after June 14,
2006. A trigger was also introduced to keep the values contained in the two columns synchronized, the
assumption being that new application code will work with Account.Balance but will not keep
Customer.Balance up-to-date. Similarly, we assume that older application code that has not been
refactored to use the new schema will not know to keep Account.Balance up-to-date. This trigger is an
example of database scaffolding code, simple and common code that is required to keep your
database "glued together."” This code has been assigned the same removal date as Customer.Balance.

Figure 3.4. The original Customer/Account schema.

[View full size image]

Customer Account
CustomarD «<PHz> i ACCESSES 1| fecauntiD <<PHss
Firsthame CustomerdD <<FK>>
Balanca

CheckCustomerExists
ChatkMoAccounms [event = belore update | before insert §
[event = batore delete)

Figure 3.5. Supporting both versions of the schema.

[View full size image]

Cushomer Acooun

AocotmtiD c=PE=s

=

CustomarD << Pz t T

Firsthama CustomriD <<FK=xs
Balance {removal date = June 14 2004) Balancg
SynchronizeAccountBalance SynchronizeCustomerBalance
{ ewent = on update | on delete | on insert, { event = on update | on insert,
direp date = June 14 2008) drop date = June 14 2008 |
CheckMadccounis CheckCustomerExasts
{ vt = Dabong cadota | [oreer] = Barlong upcdats | baloes inse |

Not all database refactorings require a transition period. For example, neither Introduce Column
Constraint (page 180) nor Apply Standard Codes (page 157) database refactorings require a transition
period because they simply improve the data quality by narrowing the acceptable values within a
column. A narrower value may break existing applications, so beware of the refactorings.

Chapter 5, "Database Refactoring Strategies,” discusses strategies for choosing an appropriate
transition period.

e prey NEXT B

e rrey

3.4. Test Before, During, and After

You can have the confidence to change your database schema if you can easily validate that the
database still works with your application after the change, and the only way to do that is to take a
Test-Driven Development (TDD) approach, as suggested in Chapter 1. With a TDD-based approach,
you write a test and then you write just enough code, often data definition language (DDL), to fulfill
the test. You continue in this manner until the database refactoring has been implemented fully. You
will potentially need to write tests that do the following:

e Test your database schema.

e Test the way your application uses the database schema.

Validate your data migration.

e Test your external program code.

3.4.1. Testing Your Database Schema

Because a database refactoring will affect your database schema, you need to write database-oriented
tests. Although this may sound strange at first, you can validate many aspects of a database schema:

e Stored procedures and triggers. Stored procedures and triggers should be tested just like
your application code would be.

¢ Referential integrity (R1). Rl rules, in particular cascading deletes in which highly coupled
"child" rows are deleted when a parent row is deleted, should also be validated. Existence rules,
such as a customer row corresponding to an account row, must exist before the row can be
inserted into the Account table, and can be easily tested, too.

¢ View definitions. Views often implement interesting business logic. Things to look out for
include: Does the filtering/select logic work properly? Do you get back the right number of rows?
Are you returning the right columns? Are the columns, and rows, in the right order?

e Default values. Columns often have default values defined for them. Are the default values
actually being assigned? (Someone could have accidentally removed this part of the table
definition.)

e Data invariants. Columns often have invariants, implemented in the forms of constraints,
defined for them. For example, a number column may be restricted to containing the values 1
through 7. These invariants should be tested.

Database testing is new to many people, and as a result you are likely to face several challenges when
adopting database refactoring as a development technique:

¢ Insufficient testing skills. This problem can be overcome through training, through pairing
with someone with good testing skills (pairing a DBA without testing skills and a tester without
DBA skills still works), or simply through trial and error. The important thing is that you
recognize that you need to pick up these skills.

¢ Insufficient unit tests for your database. Few organizations have yet to adopt the practice
of database testing, so it is likely that you will not have a sufficient test suite for your existing

schema. Although this is unfortunate, there is no better time than the present to start writing
your test suite.

e Insufficient database testing tools. Luckily, tools such as DBUnit (dbunit.sourceforge.net) for
managing test data and SQLUnit (sqlunit.sourceforge.net) for testing stored procedures are
available as open source software (OSS). In addition, several commercial tools are available for
database testing. However, at the time of this writing, there is still significant opportunity for tool
vendors to improve their database testing offerings.

So how would we test the changes to the database schema? As you can see in Figure 3.5, there are
two changes to the schema during the transition period that we must validate. The first one is the
addition of the Balance column to the Account table. This change is covered by our data migration and
external program testing efforts, discussed in the following sections. The second change is the addition
of the two triggers, SynchronizeAccountBalance and SynchronizeCustomerBalance, which, as their
names imply, keep the two data columns synchronized. We need tests to ensure that if
Customer.Balance is updated that Account.Balance is similarly updated, and vice versa.

3.4.2. Validating Your Data Migration

Many database refactorings require you to migrate and sometimes even cleanse the source data. In
our example, we must copy the data values from Customer.Balance to Account.Balance as part of
implementing the refactoring. In this case, we want to validate that the correct balance was in fact
copied over for individual customers.

In refactorings such as Apply Standard Codes (page 157) and Consolidate Key Strategy (page 168),
you actually "cleanse™ data values. This cleansing logic must be validated. With the first refactoring,
you may convert code values such as USA and U.S. all to the standard value of US throughout your
database. You would want to write tests to validate that the older codes were no longer being used
and that they were converted properly to the official value. With the second refactoring, you might
discover that customers are identified via their customer ID in some tables, by their social security
number (SSN) in other tables, and by their phone number in other tables. You would want to choose
one way to identify customers, perhaps by their customer ID, and then refactor the other tables to use
this type of column instead. In this case, you would want to write tests to verify that the relationship
between the various rows was still being maintained properly. (For example, if the telephone number
555-1234 referenced the Sally Jones customer record, the Sally Jones record should still be getting
referenced when you replace it with customer ID 987654321.)

3.4.3. Testing Your External Access Programs

Your database is accessed by one or more programs, including the application that you are working
on. These programs should be validated just like any other IT asset within your organization. To
successfully refactor your database, you need to be able to introduce the final schema, shown in
Figure 3.6, and see what breaks in your external access programs. The only way that you can have
the confidence to refactor your database schema is if you have a full regression test suite for these
programsyes, we realize that you likely do not have these test suites. Once again, there is no better
time than the present to start building up your test suite. We suggest that you write all the testing
code you require to support each individual database refactoring for all external access programs.
(Actually, the owners of these systems need to write those tests, not you.) If you work this way, over
time you will build up the test suite that you require.

Figure 3.6. The final version of the database schema.

[View full size image]

Customer

CugtomirD <<PK>>
Firstiame

ACLESSES

Account

CheckNoAccounts
| ewant = betore dalate |

AccountiD <<PH>=
CuslomeriD ccFK>
Balance

CheckCustomerExisis
[event = before update | before insert)

NEXT B

e rrey

3.5. Modify the Database Schema

Eddy and Beverley work together to make the changes within their development sandbox. As you see
in Figure 3.5, they need to add the Account.Balance column as well as the two triggers,
SynchronizeAccountBalance and SynchronizeCustomerBalance. The DDL code to do this is shown here:

ALTER TABLE Account ADD Bal ance Nuneri c;
COMMVENT ON Account. Bal ance ' Mbve of Custoner.Bal ance columm, finaldate = 2006-06-14";

CREATE OR REPLACE TRI GGER Synchroni zeCust oner Bal ance
BEFORE | NSERT OR UPDATE
ON Account
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEG N
| F : NEW Bal ance |'S NOT NULL THEN
Updat eCust orrer Bal ance;
END | F;
END;
/
COMVENT ON Synchroni zeCust omrer Bal ance ' Move of Custoner. Bal ance colum to Account,
dropdate = 2006- 06- 14" ;

CREATE OR REPLACE TRI GGER Synchroni zeAccount Bal ance
BEFORE | NSERT OR UPDATE OR DELETE
ON Cust oner
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEG N
| F DELETI NG THEN
Del et eCust oner | f Account Not Found;
END | F;
| F (UPDATI NG OR | NSERTI NG THEN
| F : NEW Bal ance |'S NOT NULL THEN
Updat eAccount Bal anceFor Cust omer ;
END | F;
END | F;
END;
/
COMMENT ON Synchroni zeAccount Bal ance ' Move of Custoner. Bal ance columm to Account,
dropdate = 2006- 06- 14"

At the time of this writing, no automated database refactoring tools are availabletherefore, you need to
code everything by hand for now. Do not worry. This will change in time. For now, you want to write a
single script containing the preceding code that you can apply against the database schema. We
suggest assigning a unique, incremental number to each script. The easiest way to do so is just to start
at the number one and increment a counter each time you define a new database refactoringthe
easiest way to do that is to use the build number of your application. However, to make this strategy
work within a multiple team environment, you need a way to either assign unique numbers across all
teams or to add a unique team identifier to the individual refactorings. Fundamentally, you need to be
able to differentiate between Team A's refactoring number 1701 and Team B's refactoring number
1701. Another option, discussed in more detail in Chapter 5, is to assign timestamps to the refactoring.

There are several reasons why you want to work with small scripts for individual refactorings:

e Simplicity. Small, focused change scripts are easier to maintain than scripts comprising many
steps. If you discover that a refactoring should not be performed because of unforeseen problems
(perhaps you cannot update a major application that accesses the changed portion of the
schema), for example, you want to be able to easily not perform that refactoring.

e Correctness. You want to be able to apply each refactoring, in the appropriate order, to your
database schema so as to evolve it in a defined manner. Refactorings can build upon each other.
For example, you might rename a column and then a few weeks later move it to another table.
The second refactoring would depend on the first refactoring because its code would refer to the
new name of the column.

¢ Versioning. Different database instances will have different versions of your database schema.
For example, Eddy's development sandbox may have version 163, the project-integration
sandbox version 161, the QA/Test sandbox version 155, and the production database version
134. To migrate the project-integration sandbox schema to version 163, you should merely have
to apply database refactoring 162 and 163. To keep track of the version number, you need to
introduce a common table, such as DatabaseConfiguration, that stores the current version
number among other things. This table is discussed in further detail in Chapter 5.

The following DDL code must be run against your database after the transition period has ended
(discussed in Chapter 4). Similarly, this code should be captured in a single script file, along with the
identifier of 163 in this case, and run in sequential order against your database schema as appropriate.

ALTER TABLE Customer DROP COLUWN Bal ance;
DROP TRI GGER Synchroni zeAccount Bal ance;
DROP TRI GGER Synchroni zeCust omer Bal ance;

Follow Your Database Design Conventions

An important part of implementing a refactoring is ensuring that the changed portion of
your database schema follows your corporate database development guidelines. These
guidelines should be provided and supported by your Database Administration group, and
at a minimum should address naming and documentation guidelines.

e rrcy | NEXT

e rrey

3.6. Migrate the Source Data

Many database refactorings require you to manipulate the source data in some way. Sometimes, you
just need to move data from one location to another, something we need to do with Move Data (page
192). Other times, you need to cleanse the values of the data itself; this is common with the data
quality refactorings (Chapter 7, "Data Quality Refactorings') such as Apply Standard Type (page 162)
and Introduce Common Format (page 183).

Similar to modifying your database schema, you will potentially need to create a script to perform the
required data migration. This script should have the same identification number as your other script to
make them easy to manage. In our example of moving the Customer.Balance column to Account, the
data migration script would contain the following data manipulation language (DML) code:

/*
One tine migration of data from Custoner. Bal ance to Account. Bal ance.
*/

UPDATE Account SET Bal ance =
(SELECT Bal ance FROM Cust oner
VWHERE Custoner| D = Account. Custonerl| D);

Depending on the quality of the existing data, you may quickly discover the need to further cleanse
the source data. This would require the application of one or more data quality database refactorings.
It is good practice to keep your eye out for data quality problems when you are working through
structural and architectural database refactorings. Data quality problems are quite common with
legacy database designs that have been allowed to degrade over time.

The Need to Document Reflects a Need to Refactor

When you find that you need to write supporting documentation to describe a table,
column, or stored procedure, that is a good indication that you need to refactor that
portion of your schema to make it easier to understand. Perhaps a simple renaming can
avoid several paragraphs of documentation. The cleaner your design, the less
documentation you require.

e rrc | NEXT

e rrey

3.7. Refactor External Access Program(s)

When your database schema changes, you will often need to refactor any existing external programs
that access the changed portion of the schema. As you learned in Chapter 2, "Database Refactoring,"
this includes legacy applications, persistence frameworks, data replication code, and reporting
systems, to name a few.

Several good books provide guidance for effective refactoring of external access programs:
e Refactoring: Improving the Design of Existing Code (Fowler 1999) is the classic text on the
subject.

¢ Working Effectively with Legacy Code (Feathers 2004) describes how to refactor legacy systems
that have existed within your organization for many years.

e Refactoring to Patterns (Kerievsky 2004) describes how to methodically refactor your code to
implement common design and architectural patterns.

When many programs access your database, you run the risk that some of them will not be updated
by the development teams responsible for them, or worse yet they may not even be assigned to a
team at the present moment. The implication is that someone will need to be assigned responsibility
for updating the application(s), as well as the responsibility to burden the cost. Hopefully, other teams
are responsible for these external programs; otherwise, your team will need to accept responsibility
for making the required changes. It is frustrating to discover that the political challenges surrounding
the need to update other systems often far outweigh the technical challenges of doing so.

Aim for Continuous Development

Ideally, your organization would continuously work on all of their applications, evolving
them over time and deploying them on a regular basis. Although this sounds complicated,
and it can be, shouldn't your IT department actively strive to ensure that the systems
within your organization meet its changing needs? In these environments, you can have a
relatively short transition period because you know that all the applications accessing your
database evolve on a regular basis and therefore can be updated to work with the
changed schema.

So what do you do when there is no funding to update the external programs? You have two basic
strategies from which to choose. First, make the database refactoring and assign it a transition period
of several decades. This way the external programs that you cannot change still work; however, other
applications can access the improved design. This strategy has the unfortunate disadvantage that the
scaffolding code to support both schemas will exist for a long time, reducing database performance
and cluttering your database. The second strategy is to not do the refactoring.

e rrey

e rrey

3.8. Run Your Regression Tests

Part of implementing your refactoring is to test it to ensure that it works. As indicated earlier, you will
test a little, change a little, test a little, and so on until the refactoring is complete. Your testing
activities should be automated as much as possible. A significant advantage of database refactoring is
that because the refactorings represent small changes, when a test breaks you have a pretty good
idea where the problem lieswhere you just made the change.

e rrcy | NEXT

e rrey

3.9. Version Control Your Work

When your database refactoring is successful, you should put all your work under configuration
management (CM) control by checking it into a version control tool. If you treat your database-
oriented artifacts the exact same way that you treat your source code, you should be okay. Artifacts
to version control include the following:

Any scripts that you have created
e Test data and/or generation code
e Test cases

¢ Documentation

¢ Models

e rrcy | NEXT

e rrey

3.10. Announce the Refactoring

A database is a shared resource. Minimally, it is shared within your application development team, if
not by several application teams. Therefore, you need to communicate to interested parties that the
database refactoring has been made. Early in the life cycle of the refactoring, you need to
communicate the changes within your team, something that could be as simple as announcing the
change at your team's next standup meeting. In a multi-application database environment, you must
communicate the changes to other teams, particularly when you decide to promote the refactoring
into your preproduction test environments. This communication might be a simple e-mail on an
internal mailing list specifically used to announce database changes, it could be a line item in your
regular project status report, or it could be a formal report to your operational database
administration group.

An important aspect of your announcement efforts will be the update of any relevant documentation.
This documentation will be critical during your promotion and deployment efforts (see Chapter 4)
because the other teams need to know how the database schema has evolved. A simple approach is to
develop database release notes that summarize the changes that you have made, listing each
database refactoring in order. Our example refactoring would appear in this list as "163: Move the
Customer.Balance column into the Account table.” These release notes will likely be required by
enterprise administrators so that they can update the relevant meta data. (Better yet, your team
should update this meta data as part of their refactoring efforts.)

You will want to update the physical data model (PDM) for your database. Your PDM is the primary
model describing your database schema and is often one of the few "keeper" models created on
application development projects, and therefore should be kept up-to-date as much as possible.

Do Not Publish Data Models Prematurely

Your object and database schemas are likely to fluctuate initially because with an
evolutionary approach to development your design emerges over time. Because of this
initial flux, you should wait until new portions of your schema have stabilized before
publishing updates to your physical data model. This will reduce your documentation effort
as well as minimize the impact to other application teams that rely on your database
schema.

@ prcy | NEXT

e rrey

3.11. What You Have Learned

The hard work of database refactoring is done within your development sandbox, hopefully by a
developer paired with a DBA. The first step is to verify that a database refactoring is even
appropriateperhaps the cost of performing the refactoring currently outweighs the benefit, or perhaps
the current schema is the best design for that specific issue. If a refactoring is required, you must
choose the most appropriate one to get the job done. In a multi-application environment, many
refactorings require you to run both the original and new versions of the schema in parallel during a
transition period that is long enough to allow any applications accessing that portion of the schema
time to be redeployed.

To implement the refactoring, you should take a Test-First approach to increase the chance that you
detect any breakages introduced by the refactoring. You must modify the database schema,
potentially migrate any relevant source data, and then modify any external programs that access the
schema. All of your work should be version controlled, and after the refactoring has been implemented
within your development environment, it should be announced to your teammates and then eventually
to appropriate external teams that might need to know about the schema change.

e rrcy | NEXT

e rrey

Chapter 4. Deploying into Production

If we do not change direction soon we will end up where we are going.
Dr. Irwin Corey

It is not enough just to refactor your database schemas within your development and integration
sandboxes. You must also deploy the changes into production. The way that you do so must reflect
your organization's existing deployment processyou may need to improve this existing process to
reflect the evolutionary approach described in this book. You will likely discover that your organization
already has experience at deploying database changes, but because schema changes are often feared
in many environments, you will also discover that your experiences have not been all that good. Time
to change that.

The good news is that deploying database refactorings is much safer than deploying traditional
database schema changes, assuming, of course, you are following the advice presented in this book.
This is true for several reasons. First, individual database refactorings are less risky to deploy than
traditional database schema changes because they are small and simple. However, collections of
database refactorings, what you actually deploy, can become complex if you do not manage them
well. This chapter provides advice for doing exactly that. Second, when you take a Test-Driven
Development (TDD) approach, you have a full regression test suite in place that validates your
refactorings. Knowing that the refactorings actually work enables you to deploy them with greater
confidence. Third, by having a transition period during which both the old and new schemas exist in
parallel, you are not required to also deploy a slew of application changes that reflect the schema
changes.

To successfully deploy database refactorings into production, you need to adopt strategies for the
following:

o Effectively deploying between sandboxes

¢ Applying bundles of database refactorings

e Scheduling deployment windows

e Deploying your system

¢ Removing deprecated schema

e rrey

e prey

4.1. Effectively Deploying Between Sandboxes

Chapter 1, "Evolutionary Database Development,” described the idea that you need a series of
sandboxes in which to implement, test, and run your systems. As you see in Figure 4.1, each project
team has a collection of developer sandboxes and possibly even their own corresponding demo
sandbox. The preproduction test sandbox is shared between teams, as is the production environment.
You can also see that there are deployment gates between the various sandboxes. It should be
relatively easy to deploy database refactorings from a developer's workstation into your shared
project-integration sandbox because the impact of a mistake is fairly low: You only affect the team. It
should be a little more difficult to deploy into your preproduction testing environment(s) because the
impact of a mistake is much greater: Not only could your system be unavailable to the testers, it could
also cause other systems within these environments to crash, thereby affecting other teams.
Deploying into your production environment is often a rigorous process because the potential cost of a
mistake is quite high because you could easily impact your customers.

Figure 4.1. Deploying between sandboxes.

[View full size image]

Highly
%epiuymn: -D‘EP;"".I"“"E”: Deploymen
Project A
Development Integration
Sandboxes Sandbox e i
Project A Praduetion
| Test'QA
Sandbox
_— ’ Project B
evelopmen Iintearation Production
Sandboxes st:Ed box
Froject B = !
- 1
Demo
A Sandbox(es)
Project X -
Development Integration
Sandboxes Sandbox
Project X a

To deploy into each sandbox, you will need to both build your application and run your database
management scripts (the change log, the update log, and the data migration log, or equivalent,
described in Chapter 3, "The Process of Database Refactoring™). The next step is to rerun your
regression tests to ensure that your system still worksif it does not, you must fix it in your
development sandbox, redeploy, and retest. The goal in your project-integration sandbox is to validate
that the changes made by the individual developer (pairs) work together, whereas your goal in the
preproduction test/QA sandbox is to validate that your system works well with the other systems
within your organization.

It is quite common to see developers promote changes from their development sandboxes into the
project-integration sandbox several times a day. As a team, you should strive to deploy your system

into at least your demo environment at least once an iteration so that you can share your current
working software with appropriate internal project stakeholders. Better yet, you should also deploy
your system into your preproduction test environments so that it can be acceptance tested and
system tested, ideally at least once an iteration. You want to deploy regularly into your preproduction
environment for two reasons. First, you get concrete feedback as to how well your system actually
works. Second, because you deploy regularly, you discover ways to get better at deploymentby
running your installation scripts on a regular basis, including the tests that validate the installation
scripts, you will quickly get them to the point where they are robust enough to deploy your system
successfully into production.

e rrey

e rrey

4.2. Applying Bundles of Database Refactorings

Modern development teams work in short iterations; within an agile team, iterations of one or two
weeks in length are quite common. But just because a team is developing working software each
week, it does not mean that they are going to deploy a new version of the system into production
each week. Typically, they will deploy into production once every few months. The implication is that
the team will need to bundle up all the database refactorings that they performed since the last time
they deployed into production so that they can be applied appropriately.

As you saw in Chapter 3, the easiest way to do this is just to treat each database refactoring as its
own transaction that is implemented as a combination of data definition language (DDL) scripts to
change the database schema and to migrate any data as appropriate, as well as changes to your
program source code that accesses that portion of the schema. This transaction should be assigned a
unique ID, a number or date/timestamp suffices, which enables you to put the refactorings in order.
This allows you to apply the refactorings in order, either with a handwritten script or some sort of
generic tool, in any of your sandboxes as you need.

Because you cannot assume that all database schemas will be identical to one another, you need
some way to safely apply different combinations of refactorings to each schema. For example,
consider the number-based scheme depicted in Figure 4.2. The various developer databases are each
at different versions. Your database is at version 813, another at 811, and another at 815. Because
your project-integration database is at version 811, we can tell that your database schema has been
changed since the last time you synced up with the project-integration environment, that the second
developer has not changed his version of the schema and has not yet obtained the most recent
version (809 is less than 811), and that the third developer has made changes in parallel to yours. The
changes must have been made in parallel because neither of you have promoted your changes to the
integration environment yet (otherwise, that environment would have the same number as one of the
two databases). To update the project-integration database, you need to run it for changes starting at
812; to update the preproduction test database, you start at change script 806; to update the demo
environment, you start at change script 801; and to update the production database, you start at
change number 758. Furthermore, you might not want to apply all changes to all versionsfor example,
you may only bring production up to version 794 for the next release.

Figure 4.2. Different databases, different versions.

Developer
DE Pre-
Version: 813

Production
Test DB
Version: 805

Developer

DB
Varsion: 803

Version: 811

Project
Integration
DB
Version: 811

Demo DB
Version: 800

Production
DB
Version: 758

One way to think about this is that at the beginning of development for a new release of your system,
you start a new stack of database refactorings. Throughout your development efforts, you keep
adding new schema changes to the stack, and sometimes remove some of them that you decide to
back out of. At the end of the development of that release, you baseline the stack, accepting it as the
bundle of schema changes for the current release.

@ prcy | NEXT

e rrey

4.3. Scheduling Deployment Windows

A deployment window, often called a release window, is a specific point in time in which it is
permissible to deploy a system into production. Your operations staff will likely have strict rules
regarding when application teams may deploy systems. It is quite common to have rules such as
application teams only being allowed to deploy new releases on Saturday evening between 2 a.m. and
6 a.m., and bug fixes between 4 a.m. and 6 a.m. on other evenings. These deployment windows are
typically defined to coincide with periods of reduced system activity. Furthermore, they may have
rules about when database schema changes are allowed to be madefor example, only on the third
Saturday of each month. Smaller organizations, particularly those without many development projects
underway, may choose to have deployment windows once every few months.

The implication is that your team will not be allowed to deploy your system into production whenever
you want, but instead it must schedule deployment into a predefined deployment window. Figure 4.3
captures this concept, showing how two project teams schedule the deployment of their changes
(including database refactorings) into available deployment windows. Sometimes there is nothing to
deploy, sometimes one team has changes, and other times both teams have schema changes to
deploy. The deployment windows in Figure 4.3 coincide with the final deployment from your
preproduction test environment into your production environment in Figure 4.1.

Figure 4.3. Deploy schema changes into production at predefined points in
time.

[View full size image]
Project 1 [PRelease 1 | [Release 11 |[Release2 | [

Deployment
Windows

Project 2 l Ralease 1 [Release 1.1 | Bug Fixas ” Release 1.2 ” Releass 1.3 r

You will naturally need to coordinate with any other teams that are deploying during the same
deployment window. This coordination will occur long before you go to deploy, and frankly, the
primary reason why your preproduction test environment exists is to provide a sandbox in which you
can resolve multisystem issues. Regardless of how many database refactorings are to be applied to
your production database, or how many teams those refactorings were developed by, they will have
first been tested within your preproduction testing environment before being applied in production.

The primary benefit of defined deployment windows is that it provides a control mechanism over what
goes into production when. This helps your operations staff to organize their time, it provides
development teams with target dates to aim for, and sets the expectations of your end users as to
when they might receive new functionality.

e rrey

e rrey

4.4. Deploying Your System

You generally will not deploy database refactorings on their own. Instead, you will deploy them as part
of the overall deployment of one or more systems. Deployment is easiest when you have one
application and one database to update, and this situation does occur in practice. Realistically,
however, you must consider the situation in which you are deploying several systems and several data
sources simultaneously. Figure 4.4 depicts a UML activity diagram overviewing the deployment
process. You will need to do the following:

1. Back up your database. Although this is often difficult at best with large production databases,
whenever possible you want to be able to back out to a known state if your deployment does not
go well. One advantage of database refactorings is that they are small, so they are easy to back
out of on an individual basis, an advantage that gets lost the longer you wait to deploy the
refactorings because there is a greater chance that other refactorings will depend on it.

2. Run your previous regression tests. You first want to ensure that the existing production
system(s) are in fact up and running properly. Although it should not have happened, someone
may have inadvertently changed something that you do not know about. If the test suite
corresponding to the previous deployment fails, your best bet is to abort and then investigate the
problem. Note that you also need to ensure that your regression tests do not have any
inadvertent side effects within your production environment. The implication is that you will need
to be careful with your testing efforts.

3. Deploy your changed application(s). Follow your existing procedures to do this.

4. Deploy your database refactorings. You need to run the appropriate schema change scripts
and data migration scripts to your data sources.

5. Run your current regression tests. After the application(s) and database refactorings have
been deployed, you must run the current version of your test suite to verify that the deployed
system(s) work in production. Once again, beware of side effects from your tests.

6. Back out if necessary. If your regression tests reveal serious defects, you must back out your
applications and database schemas to the previous versions, in addition to restoring the database
based on the backup from Step 1. If the deployment is complex, you may want to deploy in
increments, testing each increment one at a time. An incremental deployment approach is more
complex to implement but has the advantage that the entire deployment does not fail just
because one portion of it is problematic.

7. Announce the deployment results. When systems are successfully deployed, you should let
your stakeholders know immediately. Even if you have to abort the deployment, you should still
announce what happened and when you will attempt to deploy again. You need to manage your
stakeholders' expectationsthey are hoping for the successful deployment of one or more systems
that they have been waiting for, so they are likely interested to hear how things have gone.

Figure 4.4. The deployment process.

!

Backup Run Regression | [Fail] Abort
Database Tests Deployment
[Pass] '
Backout
Dapiay Deployed

Application(s; Application(s)

l

Backout
Database
Refactorings

HH

Flefactmings

Run H&gr&ﬂsmn] [Fail]
Tests J

Dep lay
Database

l [Pass]

Announce 1 .@
Deployment J

e rrey

4.5. Removing Deprecated Schema

A database refactoring has not been truly deployed until you have removed the deprecated schema
from production. When the transition period has ended, the deprecated schema and any scaffolding
code, such as triggers to keep different versions of the schema synchronized, must be removed.
Because the transition period may be several years, because that is how long it will take to update all
the programs accessing the database, you need to have a process in place to manage these changes.
The easiest approach, as described in Chapter 3, is to simply have specified dates (perhaps once a
quarter) on which a transition period can end. The implication is that not only will you bundle up
database schema improvements to apply them all at one time, you will also bundle up the removal of
deprecated schema and apply those changes all at once.

We cannot say this enough: You must test thoroughly. Before removing the deprecated portions of the
schema from production, you should first remove it from your preproduction test/QA environment and
retest everything to ensure that it all still works. After you have done that, apply the changes in
production, run your test suite there, and either back out or continue as appropriate.

@ prcy | NEXT

e rrey

4.6. What You Have Learned

Not only do you need to implement database refactorings, you also need to deploy them into
production; otherwise, why do them at all? By having separate sandboxes, you can safely implement
and test your refactorings to get them ready to be deployed. By deploying development versions of
your system into your preproduction test environment on a regular basis, you improve and validate
your deployment scripts long before you need to apply them within a production environment.
Although you may develop working software on a regular basis, sometimes weekly, you generally will
not release it into production that often. Instead, you will bundle up your database refactorings and
deploy a collection of them all at one time during a predefined deployment window. Your application
may not be the only one deploying into production during a given deployment window; therefore, you
may need to coordinate with other teams to deploy successfully.

e rrc | NEXT

e rrey

Chapter 5. Database Refactoring Strategies

Knowing more today than yesterday is good news about today, not bad news about yesterday.
Ron Jeffries

This chapter describes some of our experiences with database refactoring on actual projects, and
suggests a few potential strategies that you may want to consider. In many ways, this chapter
summarizes a collection of "lessons learned" that we hope will help your adoption efforts. These
lessons include the following:

¢ Smaller changes are easier to apply.

¢ Uniquely identify individual refactorings.

¢ Implement a large change by many small ones.

¢ Have a database configuration table.

e Prefer triggers over views or batch synchronization.

e Choose a sufficient deprecation period.

¢ Simplify your database change control board (CCB) strategy.

¢ Simplify negotiations with other teams.

¢ Encapsulate database access.

e Be able to easily set up a database environment.

¢ Do not duplicate SQL.

e Put database assets under change control.

¢ Beware of politics.

@ prcy | NEXT

e rrey

5.1. Smaller Changes Are Easier to Apply

It is tempting to try to make several changes to your database at once. For example, what is stopping
you from moving a column from one table to another, renaming it, and applying a standard type to it
all at the same time? Absolutely nothing, other than the knowledge that doing this all at once is
harder, and therefore riskier, than doing it one step at a time. If you make a small change and
discover that something is broken, you pretty much know which change caused the problem.

Small Changes Decrease Project Risk

It is safer to proceed in small steps, one at time. The larger the change, the greater the
chance that you will introduce a defect, and the greater the difficulty in finding any defects
that you do inject.

| 4 PREY NEXT B

e rrey

5.2. Uniquely Identify Individual Refactorings

During a software development project, you are likely to apply hundreds of refactorings and/or
transformations to your database schema. Because these refactorings often build upon each otherfor
example, you may rename a column and then a few weeks later move it to another tableyou need to
ensure that the refactorings are applied in the right order. To do this, you need to identify each
refactoring somehow and identify any dependencies between them. Table 5.1 compares and contrasts
the three basic strategies for doing so. The strategies in Table 5.1 assume that you are working in a
single-application single-database environment.

Table 5.1. Version Identification Strategies

Approach Advantages Disadvantages
Build number. The Simple strategy. Assumes that your database refactoring
application build number, tool is integrated with your build tool,

typically an integer number Refactorings can be treated or that each refactoring is one or more
that is assigned by your build as a First In, First Out (FIFO) scripts kept under configuration

tool (for example, queue to be applied in order management control.

CruiseControl), whenever by the build number.

your application compiles and Many builds do not involve database

all your unit tests run Database version directly changes. Therefore, the version

successfully after a change linked to application version. identifiers are not contiguous for the

(even if that change is a database. (For example, they may go

database refactoring). 1,7,11, 12, ... rather than 1, 2, 3, 4,
)

Difficult to manage when you have
multiple applications being developed
against the same database, because
each team will have the same build

numbers.
Date/timestamp. The Simple strategy. With a script-based approach to
current date/time is assigned _ implementing refactorings, using a
to the refactoring. Refactorings managed as a date/timestamp for a filename can be
FIFO queue. awkward.

You need a strategy to associate the
refactorings with the appropriate
application build.

Unique identifier. A unique Existing strategies for GUIDs are awkward filenames.

identifier, such as a GUID or generating unique values.

an incremental value, is (For example, a globally With GUIDs, you still need to identify

assigned to the refactoring. unique identifier (GUID) the order in which to apply the
generator can be used.) refactorings.

You need a strategy to associate the
refactorings with the appropriate
application build.

When you are in a multi-application environment in which several project teams may be applying

refactorings to the same database schema, you also need to find a way to identify which team
produced a refactoring. The easiest way to do this is to assign a unique identifier to each team and
then include that value as part of the refactoring identifier. Therefore, with a build number strategy,
team 1 might have refactorings with IDs 1-7, 1-12, 1-15, and so on; and team 7 could have
refactorings with IDs 7-3, 7-7, 7-13, and so on.

Our experience is that when a single team is responsible for a database, the build number strategy
works best. However, when several teams can evolve the same database, a date/timestamp approach
works best because you can readily tell in which order the refactorings were applied from the
date/timestamp. With a build number approach, you cannotfor example, determine which refactoring
comes first, refactoring 1-7 or 7-77?

It is not, however, as simple as applying refactorings in order. Scott worked in an organization in
which four separate teams could evolve the same database schema. There were two database
administrators (DBAs)we will call them Fred and Barneyto support the teams that worked closely
together. Although we tried to coordinate their efforts, and most of the time succeeded, mistakes
would happen. One time Fred applied the refactoring Apply Standard Codes (page 157) to a column,
and a few days later Barney applied the same refactoring on a different team, but used a different set
of "standard" values. As it turned out, Barney's "standard" values was the right set, but we did not
find that out until the two teams promoted their changes into the preproduction testing environment
and effectively clobbered one another. The point to be made is that in a multiple-team environment,
you need a coordination strategy. (Several are discussed later in this chapter.)

@ prcy | NEXT

e rrey

5.3. Implement a Large Change by Many Small Ones

Large changes to your database, such as implementing a common surrogate key strategy across all
tables or applying a consistent naming strategy throughout your database, should be implemented as
a collection of small refactorings. This strategy follows the old adage, "How do you eat an elephant?
One bite at a time."

Consider splitting an existing table in two. Although we have a single refactoring called Split Table
(page 145), the reality is that in practice you need to apply many refactorings to get this done. For
example, you need to apply the Introduce New Table (page 304) transformation to add the new table,
the Move Column (page 103) refactoring several times (one for each column) to move, and potentially
the Introduce Index (page 248) refactoring to implement the primary key of the new table. To
implement each of the Move Column refactorings, you must apply the Introduce New Column (page
301) transformation and the Move Data (page 192) transformation. When doing this, you may
discover that you need to apply one or more data quality refactorings (Chapter 7, "Data Quality
Refactorings") to improve the source data in the individual columns.

e prey

e rrey

5.4. Have a Database Configuration Table

Chapter 3, "The Process of Database Refactoring,” discussed the need to identify the current schema
version of the database to enable you to update the schema appropriately. This schema version should
reflect your database refactoring strategy; for example, if you identify refactorings using a
date/timestamp strategy, you should identify the current schema version with a date/timestamp, too.
The easiest way to do that is to have a table that maintains this information. In the following code, we
create a single-row, single-column table called DatabaseConfiguration that reflects a build number
strategy:

CREATE TABLE Dat abaseConfi guration
(SchemaVer si on NUVBER NOT NULL);

| NSERT | NTO Dat abaseConfi gurati on
(SchemaVersion) VALUES (0);

This table is updated with the identifier value of a database refactoring whenever the refactoring is
applied to the database. For example, when you apply refactoring number 17 to the schema,
DatabaseConfiguration.SchemaVersion, would be updated to 17, as shown in the following code:

UPDATE Dat abaseConfi gurati on
SET SchemaVersion = 17;

@ prcy | NEXT

e rrey

5.5. Prefer Triggers over Views or Batch Synchronization

In Chapter 2, "Database Refactoring,” you learned that when several applications access the same
database schema, you often require a transition period during which both the original and new
schemas exist in production. You need a way to ensure that regardless of which version of the schema
an application accesses, it accesses consistent data. Table 5.2 compares and contrasts the three
strategies that you may use to keep the data synchronized. Our experience is that triggers are the
best approach for the vast majority of situations. We have used views a couple of times and have
taken a batch approach rarely. All of the examples throughout this book assume a trigger-based
synchronization approach.

Table 5.2. Schema Synchronization Strategies

Strategy Advantages Disadvantages

Trigger. One or more Real-time update Potential performance bottleneck.
triggers are implemented

that make the appropriate Potential for trigger cycles.
update to the other version

of the schema. Potential for deadlocks.

Often introduces duplicate data. (Data
is stored in both the original and new

schema.)
Views. View(s) representing Real-time update. Updateable views are not supported by
the original table(s) are some databases, or the database does
introduced; see Encapsulate No need to move physical not support joins within an updateable
Table With View (page 243), data between view.
which updates both the tables/columns.
original and new schemas Additional complexity of introducing
appropriately. and eventually removing the view(s).
Batch updates. A batch job Performance impact from Huge potential for referential integrity
that processes and updates data synchronization is problems.
the data accordingly is run on absorbed during nonpeak
a regular basis (for example, loads. You need to keep track of previous
daily). versions of data to determine which

changes were made to the record.

When multiple changes are made
during the batch periodfor example,
someone updates data contained in
both the original and new schemasit
can be difficult to determine which
change(s) to accept.

Often introduces duplicate data. (Data
is stored in both the original and new
schema.)

NEXT B

e rrey

5.6. Choose a Sufficient Transition Period

The DBA must assign a realistic transition period to the refactoring that is sufficient for all the other
application teams. We have found that the easiest approach is to agree on a common transition period
for the various categories of refactoring and then apply that transition period consistently. For
example, structural refactorings may have a two-year transition period, whereas architecture
refactorings may have a three-year transition period. The primary disadvantage is that this approach
requires you to adopt the longest transition periods, even when you are refactoring schema that is
accessed by a handful of applications that are deployed frequently. You can mitigate this problem by
actively removing schema within your production databases that are no longer required, even though
the transition period may not have expired yet, or by negotiating a shorter transition period via a
database change control board or through direct negotiation with the other teams.

e rrc | NEXT

e rrey

5.7. Simplify Your Database Change Control Board (CCB)
Strategy

Scott worked with one company in which they had a database CCB comprised of the operational DBAs,
people who understood the enterprise data assets well. This CCB met once a week, and at their
meetings the project DBAs would bring a list of suggested changes that their teams wanted to make
to existing production data sources. (The teams were free to change data sources not yet in
production.) The CCB would determine whether the change would be allowed and if so what the
deprecation period would be. The advantage is that there is the perception of tighter control on the
part of the CCB. (Of course, this strategy completely falls apart if a development team chooses to go
around them.) It has the disadvantage that it slows down the development efforts of the teams. Even
when you can get a decision within a few hours or days, that is still time during which the
development team has to tolerate the original schema. Our suggestion is to either give the project
DBA the authority to make the changes to the database schema as needed, with the understanding
that the CCB may later decide to override the change, or to have the CCB meet daily to discuss
changes.

e rrcy | NEXT

e rrey

5.8. Simplify Negotiations with Other Teams

An alternative strategy for defining the transition period is to negotiate individual refactorings with the
owners of any system that might be affected by the database refactoring. You could do this one time
for each refactoring, or in batch during a regular database schema change negotiation meeting. This
approach has the advantages that it will help to communicate the potential changes to everyone
affected and will likely result in the most accurate transition period (assuming that everyone at the
meeting can accurately predict when they can deploy their required changes). The primary
disadvantage is that this approach might be slow and arduous. We have never seen this tried in
practice. If you do try it, however, we suggest that you keep things as simple as possible.

e prey

e rrey

5.9. Encapsulate Database Access

In Chapter 2, we argued that the more database access is encapsulated, the easier it is to refactor.
Minimally, even if your application contains hard-coded SQL, you should at least strive to put that SQL
code in one place so that you can easily find and update it when you need to. You could implement the
SQL logic in a consistent manner, such as having save(), delete(), retrieve(), and find() operations for
each business class. Or you could implement data access objects (DAOSs), classes that implement the
data access logic separately from business classes. For example, your Customer and Account business
classes would have CustomerDAO and AccountDAO classes respectively. Better yet, you could forego
SQL code completely by generating your database access logic from mapping meta data (Ambler
2003).

e rrcy | NEXT

5.10. Be Able to Easily Set Up a Database Environment

People join, and eventually leave, your project throughout its life cycle. As you see in Figure 5.1, your
team(s) will need to be able to create instances of your database, often with different versions of the
schema on a range of machines, as you learned in Chapter 4, "Deploying into Production.” The most
effective way to do this is with an installation script that applies the initial DDL to create the database
schema and any applicable change scripts, and then runs your regression test suite to ensure that the

installation was successful.

Development
Sandboxes
Project A

R

Figure 5.1. Sandboxes.

Project
Integration
Sandbox

Demo
Sandbox

Pre-
Production
Test/QA
Sandbox

Production

NEXT B

e rrey

5.11. Do Not Duplicate SQL

One of the great things about SQL is that it is fairly easy to write. Unfortunately, because it is fairly
easy to write, we have found that SQL code is often duplicated throughout an application, and even
throughout a database within its views, stored procedures, and triggers. The more SQL code you
have, the harder it is to refactor your database schema, because there will potentially be more code
coupled to whatever you are refactoring. It is best if you write SQL in a single package or class, have
the SQL generated from meta data, or store the SQL code in XML files that is accessed at runtime.

e rrey

e rrey

5.12. Put Database Assets Under Change Control

Chapter 1, "Evolutionary Database Development,” described how important it is to put all database
assets, such as data models and database scripts, under change control management. Both of us have
been involved with project teams where the DBAs, and sometimes even the developers, did not do
this. As you would expect, these teams often struggled to identify the proper version of the data
model, or of a change script, when it came time to deploy their applications into preproduction testing
and sometimes even into production. Your database assets, just like the rest of your critical project
assets, should be managed effectively. We have found it most helpful when database assets are co-
located in the same repository as the application, enabling us to see who made changes and
supporting rollback capabilities.

e prey NEXT B

e rrey

5.13. Beware of Politics

Introducing evolutionary database techniques, and in particular database refactoring, is likely to be a
major change within your organization. As Manns and Rising (2005) point out in Fearless Change,
politics is likely to rear its ugly head as you try to make these improvements to the way that you
work. Although many IT professionals prefer to ignore politics, naively believing that they are above it,
they do so at their peril. The techniques that we describe in this book work; we know this because we
have done it. We also know that many traditional data professionals are threatened by these
techniques, and rightfully so, because these techniques force them to make significant changes to the
way that they will work in the future. You will likely need to "play the political game" if you want to
adopt database refactoring within your organization.

e rrcy | NEXT

e rrey

5.14. What You Have Learned

Database refactoring is a relatively new development technique, but you can still learn from the
experiences of other people. In this chapter, we shared some of our experiences and suggested a few
new strategies that you may want to try.

e rrcy | NEXT

e rrey

Online Resources

We administer the Agile Databases mailing list at Yahoo Groups. The URL for the group is
groups.yahoo.com/group/agileDatabases/. We invite you to get involved with the discussions and

share your experiences.

We also maintain both www.databaserefactoring.com and www.agiledata.org where up-to-date lists of
database refactorings are maintained. New refactorings will be added as they are discovered.

e rrcy | NEXT

e rrey

Chapter 6. Structural Refactorings

Structural refactorings, as the name implies, change the table structure of your database schema. The
structural refactorings are as follows:

e Drop Column

e Drop Table

e Drop View

¢ Introduce Calculated Column

¢ Introduce Surrogate Key

¢ Merge Columns

e Merge Tables

¢ Move Column

¢ Rename Column

¢ Rename Table

e Rename View

¢ Replace Large Object (LOB) With Table

¢ Replace Column

¢ Replace One-to-Many With Associative Table

¢ Replace Surrogate Key With Natural Key

e Split Column

e Split Table

@ prcy | NEXT

e rrey

Common Issues When Implementing Structural
Refactorings

When implementing structural refactorings, you need to consider several common issues when
updating the database schema, including the following:

1. Avoid trigger cycles. You need to implement the trigger so that cycles do not occurif the value
in one of the original columns changes, Table.NewColumnl..N should be updated, but that update
should not trigger the same update to the original columns and so on. The following code shows
an example of keeping the value of two columns synchronized:

CREATE OR REPLACE TRI GGER Synchr oni zeFi r st Nane
BEFORE | NSERT OR UPDATE

ON Cust omer

REFERENCI NG OLD AS OLD NEW AS NEW

FOR EACH ROW

DECLARE

BEG N

| F I NSERTI NG THEN

IF :NEWFirstNane | S NULL THEN

:NEW Fi rst Nane : = : NEW FNane;
END | F;
I F : NEW Fnane |'S NULL THEN
: NEW FNane : = : NEW Fi r st Nane;
END | F;
END | F;

| F UPDATI NG THEN
| F NOT(: NEW Fi r st Nane=: OLD. Fi r st Nane) THEN
: NEW FNarre: =: NEW Fi r st Nane;
END | F;
| F NOT(: NEW FNane=: OLD. FNane) THEN
: NEW Fi r st Narre: =: NEW FNane;
END | F;
END | F;
END;
/

2. Fix broken views. Views are coupled to other portions of your database; so when you apply a
structural refactoring, you may inadvertently break a view. View definitions are typically coupled
to other views and table definitions. For example, the VCustomerBalance view is defined by
joining the Customer and Account table together to obtain by CustomerNumber the total balance
across all accounts for each individual customer. If you rename Customer.CustomerNumber, this
view will effectively be broken.

3. Fix broken triggers. Triggers are coupled to table definitions; therefore, structural changes
such as a renamed or moved column could potentially break a trigger. For example, an insert
trigger may validate the data stored in a specific column; and if that column has been changed,
the trigger will potentially be broken. The following code finds broken triggers in Oracle,
something that you should add to your test suite. You still need other tests to find business logic
defects:

SELECT (bj ect _Nanme, Status
FROM User _(bj ect s
WHERE Obj ect Type=' TRI GGER

AND Status="INVALID ;

Fix broken stored procedures. Stored procedures invoke other stored procedures and access
tables, views, and columns. Therefore, any structural refactoring has the potential to break an
existing stored procedure. The following code finds broken stored procedures in Oracle,
something that you should add to your test suite. You still need other tests to find business logic
defects:

SELECT (bj ect _Nane, Status

FROM User (hj ects

WHERE (bj ect _Type=' PROCEDURE'
AND Status="I|NVALID ;

Fix broken tables. Tables are indirectly coupled to the columns of other tables via naming
conventions. For example, if you rename the Customer.CustomerNumber column, you should
similarly rename Account.CustomerNumber and Policy.CustomerNumber. The following code finds
all the tables with column names containing the text CUSTOMERNUMBER in Oracle:

SELECT Tabl e_Nanme, Col unm_Nane
FROM User _Tab_Col umrms
WHERE Col umm_Nane LI KE ' %CUSTOVERNUVBERYS ;

Define the transition period. Structural refactorings require a transition period when you
implement them in a multi-application environment. You must assign the same drop dates to the
original schema that is being refactored as well as any columns and the trigger. This drop date
must take into account the time required to update the external programs accessing that portion
of the database.

e prey NEXT B

e rrey

Drop Column

Remove a column from an existing table.

Figure 6.1. Drop the Customer.FavoriteColor column.

Customer

CustomerlD <<PK>x»
FirstMame

FavoriteColor

Criginal Schema

Customer

CustameariD <<PK=x>
FirstName
FavoriteColor {drop date = September 14 2007}

Transition Period

Customer

CustometiD =<PK==
FirstMame

Resulting Schema

Motivation

The primary reason to apply Drop Column is to refactor a database table design or as the result of the
refactoring of external applications, such that the column is no longer used. Drop Column is often
applied as a step of the Move Column (page 103) database refactoring because the column is removed
from the source table. Or, sometimes you discover that some of the columns are not really used.
Usually, it is better to remove these columns before someone starts using them by mistake.

Potential Tradeoffs

The column being dropped may contain valuable data; in that case, the data may need to be
preserved. You can use Move Data (page 192) to move the data to some other table so that it is
preserved. On tables containing many rows, the dropping of a column may run for a long time, making
your table unavailable for update during the execution of Drop Column.

Schema Update Mechanics

To update the schema to remove a column, you must do the following:

1. Choose a remove strategy. Some database products may not allow for a column to be
removed, forcing you to create a temporary table, move all the data into a temporary table, drop
the original table, re-create the original table without the column, move the data from the
temporary table, and then drop the temporary table. If your database provides a way to remove
columns, you just have to remove the column using the DROP COLUMN option of the ALTER
TABLE command.

2. Drop the column. Sometimes, when the amount of data is large, we have to make sure that the
Drop Column runs in a reasonable amount of time. To minimize the disruption, schedule the
physical removal of the column to a time when the table is least used. Another strategy is to
mark the database column as unused; this can be achieved by using the SET UNUSED option of
the ALTER TABLE command. The SET UNUSED command runs much faster, thus minimizing
disruption. You can then remove the unused columns during scheduled downtimes. When this
option is used, the database does not physically remove the column but hides the column from
everyone.

3. Rework foreign keys. If FavoriteColor is part of a primary key, you must also remove the
corresponding columns from the other tables that use it as (part of) the foreign key to Customer.
You will have to re-create the foreign key constraints on these other tables. In this situation, you
may want to consider applying refactorings such as Introduce Surrogate Key (page 85) or
Replace Surrogate Key with Natural Key (page 135) before applying Drop Column to simplify this
refactoring.

An alternative strategy to physically removing the column is masking its existence by introducing
a table view that does not reference FavoriteColor via the refactoring Encapsulate Table With
View (page 243).

During the transition period, you just associate a comment with Customer.FavoriteColor to
indicate that it will soon be dropped. After the transition period, you remove the column from the
Customer table via the ALTER TABLE command, as you see here:

COMVENT ON Custoner. FavoriteCol or 'Drop date = Septenber 14 2007';

On Septenber 14 2004
ALTER TABLE Custoner DROP COLUWN FavoriteCol or;

If you are using the SET UNUSED option, you can use the following command to make the
Customer.FavoriteColor unused so that it is not really physically removed from the Customer
table, but is made unavailable and invisible to all the clients:

ALTER TABLE Customer SET UNUSED FavoriteCol or;

Data-Migration Mechanics

To support the removal of a column from a table, you may discover that you need to preserve existing
data or you may need to plan for the performance of the Drop Column (because removing a column
from a table will disallow data modifications on the table). The primary issue here is to preserve the
data before you drop the column. When you are going to remove an existing column from a table that
has been in production, you will likely be required by the business to preserve the existing data "just
in case" they need it again at some point in the future. The simplest approach is to create a temporary
table with the primary key of the source table and the column that is being removed and then move
the appropriate data into this new temporary table. You can choose other methods of preserving the
data such as archiving data to external files.

The following code depicts the steps to remove the Customer.FavoriteColor column. To preserve the
data, you create a temporary table called CustomerFavoriteColor, which includes the primary key from
the Customer table and the FavoriteColor column.

CREATE TABLE Custoner Favorit eCol or
AS SELECT Custonerl| D, FavoriteCol or FROM Cust oner;

Access Program Update Mechanics

You must identify and then update any external programs that reference Customer.FavoriteColor.
Issues to consider include the following:

1. Refactor code to use alternate data sources. Some external programs may include code that
still uses the data currently contained within Customer.FavoriteColor. When this is the case,
alternate data sources must be found, and the code reworked to use them; otherwise, the
refactoring must be abandoned.

2. Slim down SELECT statements. Some external programs may include queries that read in the
data but then ignore the retrieved value.

3. Refactor database inserts and updates. Some external programs may include code that puts
a "fake value" into this column for inserts of new data, code that must be removed. Or the
programs may include code to not write over FavoriteColor during an insert or update into the
database. In other cases, you may have SELECT * FROM Customer where the application
expects a certain number of columns and gets the columns from the result set using positional
reference. This application code is likely to break now because the result set of the SELECT
statement now returns one less column. Generally, it is not a good idea to use SELECT * from
any table in your application. Granted, the real problem here is the fact that the application is
using positional references, something you should consider refactoring, too.

The following code shows how you have to remove the reference to FavoriteColor:

/| Bef ore code
public Customer findByCustonerlD(Long custonerlD) ({
stm = DB.prepare("SELECT Custonerld, FirstName, "+
"FavoriteCol or FROM Custoner WHERE Customerld = ?")
stmt.setlLong(1l, custonerlD.|ongVal ue());
stnt . execute();
ResultSet rs = stnt.executeQery();
if (rs.next()) {
customer. set Customer | d(rs. get Long(" Custonerld"));
custoner.setFirstNane(rs.getString("FirstNane"));
cust oner. set FavoriteCol or(rs.getString
("FavoriteColor"));
}

return custoner;

}

public void insert(long custonerld, String firstName, String favoriteColor) {
stm = DB.prepare("INSERT into custoner" +
"(Customerid, FirstNanme, FavoriteColor)" +
"values (?, ?, ?2");
stnt.setlLong(l, customerld);
stmt.setString(2, firstNane);
stnt.setString(3, favoriteColor);
st . execute();

}

public void update(long custonerld, String firstNane, String color) {
stm = DB. prepare("UPDATE Custoner "+
"SET FirstName = ?, FavoriteColor=? " +
"WHERE Custonerid = ?");
stmt.setString(1, firstNane);
stmt.setString(2, color);
stmt.setlLong(3, custonmerld);
st nt . execut eUpdat e() ;

}

[l After code
public Custoner findByCustonerlD(Long custonerlD) {
stnt = DB.prepare("SELECT Custonerld, FirstNane " +
"FROM Cust oner WHERE Custonerld = ?");
stmt.setlLong(1l, custonerlD.|ongVal ue());
stnt . execute();
ResultSet rs = stnt.executeQery();
if (rs.next()) {
customer. set Customer | d(rs. get Long(" Custonerld"));
customner.setFirstNane(rs.getString("FirstNane"));
}

return custoner,

}

public void insert(long custonerld, String firstName) ({
stm = DB.prepare("INSERT into custoner" +
"(Custonerid, FirstName) " +
"values (?, ?2)");
stmt.setlLong(l, custonerld);
stnt.setString(2, firstNane);
stnt . execute();

}

public void update(long custonerld, String firstNane, String color) {
stm = DB. prepare("UPDATE Custoner "+
"SET FirstNane = ? " +
"WHERE Custonerid = ?");
stnt.setString(1, firstNane);
stmt.setlLong(2, customerld);
stnt . execut eUpdat e() ;

@ prcy | NEXT

e rrey

Drop Table

Remove an existing table from the database.

Motivation

Apply Drop Table when a table is no longer required and/or used. This occurs when the table has been
replaced by another similar data source, such as another table or a view, or simply when there is no
longer need for that specific data source.

Potential Tradeoffs

Dropping a table deletes that specific data from your database, so you may need to preserve some or
all of the data. If this is the case, the required data must be stored within another data source,
especially when you are normalizing a database design and find that some of the data exists in other
tables(s). You can replace the table with a view or a query to the data source. In this scenario, you
cannot write back to the same view or data source query.

Schema Update Mechanics

To perform Drop Table, you must resolve data-integrity issues. If TaxJurisdictions is being referenced
by any other tables, you have to either remove the foreign key constraint or point the foreign key
constraint to another table. Figure 6.2 depicts an example of how to go about removing the
TaxJurisdictions tableyou just mark the table as deprecated and then remove it after the transition
date. The following code depicts the DDL to remove the table:

Figure 6.2. Dropping the TaxJurisdictions table.

TaxJurisdictions

Original Schema

TaxJurisdictions
{ drop date = December 31 2007}

Transition Period

drop date = June 14 2007
DROP TABLE TaxJuri sdicti ons;

You can also choose to just rename the table, as shown below. When doing this, some database
products automatically change all references from TaxJurisdictions to TaxJurisdictionsRemoved
automatically. You want to delete those referential integrity constraints by using Drop Foreign Key
(page 213) because you may not want to have referential integrity constraints to a table that is going

to be dropped:

renane date = June 14 2007
ALTER TABLE TaxJuri sdi cti ons RENAMVE TO
TaxJuri sdi cti onsRenoved;

Data-Migration Mechanics

The only data-migration issue with this refactoring is the potential need to archive the existing data so
that it can be restored if needed at a later date. You can do this by using the CREATE TABLE AS
SELECT command. The following code depicts the DDL to optionally preserve data in the
TaxJurisdictions table:

copy data before drop
CREATE TABLE TaxJuri sdi cti onsRenpved AS
SELECT * FROM TaxJuri sdi cti ons;

drop date = June 14 2007
DROP TABLE TaxJuri sdicti ons;

Access Program Update Mechanics

Any external programs referencing TaxJurisdictions must be refactored to access the alternative data
source(s) that have replaced TaxJurisdictions. If there are no alternatives, and the data is still
required, you must not remove the table until the alternative(s) exist.

e rrcv | EXT

e rrey

Drop View

Remove an existing view.

Motivation

Apply Drop View when a view is no longer required and/or used. This occurs when the view has been
replaced by another similar data source, such as another view or a table, or simply when there is no
longer the need for that specific query.

Potential Tradeoffs

Dropping a view does not delete any data from your database; however, it does mean that the view is
no longer available to the external programs that access it. Views are often used to obtain the data for
reports. If the data is still required, the view should have already been replaced by another data
source, either a view or a table, or a query to the source data itself. This new data access approach
should ideally perform as well or better than the view that is being removed. Views are also used to
implement security access control (SAC) to data values within a database. When this is the case, a
new SAC strategy for the tables accessed by the view should have been previously implemented and
deployed. A view-based security strategy is often a lowest-common denominator approach that can be
shared across many applications but is not as flexible as a programmatic SAC strategy (Ambler 2003).

Schema Update Mechanics

To remove the view in Figure 6.3, you must apply the DROP VIEW command to AccountDetails after
the transition period. The following code to drop the AccountDetails view is very straightforwardyou
just mark the view as deprecated and then remove it after the transition date.

Figure 6.3. Dropping the AccountDetails view.

Account

AccountDetails <<Views> |

AR

Customer

Original Schema

Account

AccountDetails <<Views>:= .::
{ drop date = June 14 2007}

/N

Customer

Transition Period

Account

Customer

Resulting Schema

drop date = June 14 2007
DROP VI EW Account Det ai | s;

Data-Migration Mechanics

There is no data to migrate for this database refactoring.

Access Program Update Mechanics

You must identify and then update any external programs that reference AccountDetails. You may
need to refactor SQL code that formerly used AccountDetails to now explicitly access the data directly
from the source tables. Similarly, any meta data used to generate SQL using AccountDetails would
need to be updated. The following code shows how you have to change your application code to use
data from the base tables:

/1 Before code
stm . prepare(
"SELECT * " +
"FROM Account Details "+
"WHERE Custonerld = ?");
st .setlLong(1, custoner. get Customnerl| D);
st . execute();
ResultSet rs = stnt.executeQery();

/'l After code

stm . prepare(

"SELECT * " +

"FROM Cust oner, Account " +

"WHERE" +

" Custoner.Custonerld = Account. Custonerld " +
" AND Custoner.Custonerld = ?");

st . setlLong(1, custoner. get Cust onerl| D);
stm . execute();
ResultSet rs = stnt.executeQery();

e rrcy | NEXT

e rrey

Introduce Calculated Column

Introduce a new column based on calculations involving data in one or more tables. (Figure 6.4 depicts
two tables, but it could be any number.)

Figure 6.4. Introducing the Customer.TotalAccountBalance calculated

column.
1 ooy
Customer 9 Account
Customer|D <<PK>x AccountiD c=PK>x>
Mamea CustomerlD <<FK>>
PhoneMumber Balance
Original Schema
1 0.7
Customer Accoun
Customer/D =<PK>> AccountlD =<PK=>=
MName CustomerlD <<FK=>
PhaneMNumbear Balance
{ TotalAccountBalance
UpdateCustomerTotalAccountBalance
{ event = insert | update | delete }

Resulting Schema

Motivation

The primary reason you would apply Introduce Calculated Column is to improve application
performance by providing prepopulated values for a given property derived from other data. For
example, you may want to introduce a calculated column that indicates the credit risk level (for
example, exemplary, good risk, bad risk) of a client based on that client's previous payment history
with your firm.

Potential Tradeoffs

The calculated column may get out of sync with the actual data values, particularly when external
applications are required to update the value. We suggest that you introduce a mechanism, such as a
regular batch job or triggers on the source data, which automatically update the calculated column.

Schema Update Mechanics

Applying Introduce Calculated Column can be complicated because of data dependencies and the need
to keep the calculated column synchronized with the data values it is based on. You will need to do the
following:

1. Determine a synchronization strategy. Your basic choices are batch jobs, application updates,
or database triggers. A batch job can be used when you do not require the value to be updated in
real time; otherwise, you need to use one of the other two strategies. When the application(s) are
responsible to do the appropriate updates, you run the risk of different applications doing it in
different ways. The trigger approach is likely the safer of the two real-time strategies because the
logic only needs to be implemented once, in the database. Figure 6.4 assumes the use of triggers.

2. Determine how to calculate the value. You have to identify the source data, and how it
should be used, to determine the value of TotalAccountBalance.

3. Determine the table to contain the column. You have to determine which table should
include TotalAccountBalance. To do this, ask yourself which business entity does the calculated
column best describe. For example, a customer's credit risk indicator is most applicable to the
Customer entity.

4. Add the new column. Add Customer.TotalAccountBalance of Figure 6.4 via the Introduce New
Column transformation (page 301).

5. Implement the update strategy. You need to implement and test the strategy chosen in Step
1.

The following code shows you how to add the Customer.TotalAccountBalance column and the
UpdateCustomerTotalAccountBalance trigger, which is run any time the Account table is modified:

Create the new col um Tot al Account Bal ance
ALTER TABLE Cust omer ADD Tot al Account Bal ance NUMBER,

Create trigger to keep data in sync.

CREATE OR REPLACE TRI GGER

Updat eCust oner Tot al Account Bal ance

BEFORE UPDATE OR | NSERT OR DELETE

ON Account

REFERENCI NG OLD AS OLD NEW AS NEW

FOR EACH ROW

DECLARE

NewBal anceToUpdat e NUVBER: =0;

Cust omer | dToUpdat e NUVBER,

BEG N

Cust omer | dToUpdat e : = : NEW Cust oner | D,

| F UPDATI NG THEN
NewBal anceToUpdat e :

END | F;

| F | NSERTI NG THEN
NewBal anceToUpdat e :

END | F;

| F DELETI NG THEN
NewBal anceToUpdat e :
Cust orer | dToUpdat e :

END | F;

UPDATE Cust onmer SET Tot al Account Bal ance =
Tot al Account Bal ance + NewBal anceToUpdat e
WHERE Customrerid = Customnerl|dToUpdat e;

END;

/

: NEW Bal ance-: OLD. Bal ance;

: NEW Bal ance;

-1*: OLD. Bal ance;
:OLD. Custoner | D;

Data-Migration Mechanics

There is no data to be migrated per se, although the value of Customer.TotalAccountBalance must be
populated based on the calculation. This is typically done once using the UPDATE SQL command or
can be done in batch via one or more scripts. The following code shows you how to set the initial value
in Customer.TotalAccountBalance:

UPDATE Custoner SET
Tot al Account Bal ance =
(SELECT SUM bal ance) FROM Account
WHERE Account. Custonerld = Custoner. Customerld)

Access Program Update Mechanics

When you introduce the calculated column, you need to identify all the places in external applications
where this calculation is used and then rework that code to work with TotalAccountBalance. You need
to replace existing calculation logic with access to the value of TotalAccountBalance. You may discover
that the calculation is performed differently in various applications, either because of a bug or because
of a different situation, and therefore you will need to negotiate the correct algorithm with your
stakeholder(s). The following code shows how an application is used to calculate the total balance by
looping through all the accounts of a customer. In the "after version," it simply reads the value into
memory when the customer object is retrieved from the database:

/1 Before code
stm . prepare(
"SELECT SUM Account. Bal ance) Bal ance FROM Custoner, Account " +
"WHERE Cust omer. Custoner| D = Account. Customer|I D "+
"AND Cust oner. Cust oner | D=?");
st . setlLong(1, custonmer. get Cust onerl| D) ;
stm . execute();
ResultSet rs = stnt.executeQery();
return rs. getBi gDeci nal ("Bal ance"));

/1 After code
return custoner. getBal ance();

e rrcv | EXT

e rrey

Introduce Surrogate Key

Replace an existing natural key with a surrogate key. This refactoring is the opposite of Replace
Surrogate Key With Natural Key (page 135).

Motivation

There are several reasons why you want to introduce a surrogate key to a table:

¢ Reduce coupling. The primary reason is to reduce coupling between your table schema and the
business domain. If part of a natural key is likely to changefor example, if a part number stored
within an inventory table is likely to increase in size or change its type (from numeric to
alphanumeric)then having it as a primary key is a dangerous proposition.

¢ Increase consistency. You may want to apply the Consolidate Key Strategy (page 168)
refactoring, potentially improving performance and reducing code complexity.

¢ Improve database performance. Your database performance may have degraded because of
a large composite natural key. (Some databases struggle when a key is made up of several
columns.) When you replace the large composite primary key with a single-column surrogate
primary key, the database will be able to update the index.

Potential Tradeoffs

Many data professionals prefer natural keys. The debate over surrogate and natural keys is a
"religious issue" within the data community, but the reality is that both types of keys have their place.
Even though a table has a surrogate primary key, you may still require natural alternate keys to
support searching. Because a surrogate key has no business meaning, and because it is typically
implemented as a collection of meaningless characters or numbers, your end users cannot use it for
searches. As a result, they still need to identify data via natural identifiers. For example, the
Inventoryltem table has a surrogate primary key called InventoryltemPOID (POID is short for
persistent object identifier) and a natural alternate key called InventoryID. Individual items are
identified uniquely within the system by the surrogate key but identified by users via the natural key.
The value in applying a surrogate key is that it simplifies your key strategy within your database and
reduces the coupling between your database schema and your business domain.

Another challenge is that you may implement a surrogate key when it really is not needed. Many
people can become overzealous when it comes to implementing keys, and often try to apply the same
strategy throughout their schema. For example, in the United States, individual states are identified by
a unique two-letter state code (for example, CA for California). This state code is guaranteed to be
unique with the United States and Canada; the code for the province of Ontario is ON, and there will
never be an American state with that code. The states and provinces are fairly stable entities, there is
a large number of codes still available (only 65 of 676 possible combinations have been used to date),
and, because of the upheaval it would cause within their own systems, the respective governments
are unlikely to change the strategy. Therefore, does it really make sense to introduce a surrogate key
to a lookup table listing all the states and provinces? Likely not.

Also, when OriginalKey is being used as a foreign key in other tables, you want to apply Consolidate
Key Strategy (page 168) and make similar updates to those tables. Note that this may be more work
than it is worth; you might want to reconsider applying this refactoring.

Schema Update Mechanics

Applying Introduce Surrogate Key can be complicated because of the coupling that the original keyin
our example, the combination of CustomerNumber, OrderDate, and StorelDis potentially involved

with. Because it is a primary key of a table, it is likely that it also forms (part of) the foreign key back
to Order from other tables. You will need to do the following:

1. Introduce the new key column. Add the column to the target table via the SQL command

ADD COLUMN. In Figure 6.5, this is OrderPOID. This column will need to be populated with
unique values.

Figure 6.5. Introducing the Order.OrderPOID surrogate key.

[View full size image]

Order Dirdesiitern
C i R T T P 5
’ITJ;C\IE“:':, lh"?}fr : Tq,_g., Jl;l i M Coptomardismbar <«Fiss ccFlxs
CiaaiDEts <Pl < T R :
StorelD < <PR>s <<Maturalss> 1.9 L-Ildﬂ'.zf.llr ::-I-'H . .I._: Wz
shin P o Siirnl e 2 M
:"!II}-rn-- nl‘:"i i O mMuEihae <P
r-:--n:l) - HumbarCndsed

Chrokar Chdkeiliam

b o gt gy OrderPOID <Az <<Fl> ccBemogaess

[fimal date = Jurss 14 2007 | 1 Fira e = o 14 2007)
Gz iy ol 4 5 woFEss <Malurais> i = ;
llll;:il'-’lp:-:::ul .rwflq-" F:E::I;- . f Flaiural ;- |Custemeibiumbet <<PK>o <<Fi=:f drog dite = Jure 14 2007]
Sl-.-ulL F";c e rl,lr ..-', *g CedeaDats <<PHss < <Fi=| drop dabe = Jums 14 2007)
ShipTo «FK) Stofell <<PHa> <<FH>»{ drop dabe = Jure 14 2007)
BT ccFKon Dyt HamNUmDET <<PHss <cAl>s
|;;| ||-I o HumbarCedorod

PopulatelrdarPOID | évend = insar,
drop data = Juna 14 2007)

Transikon Poricd

Chrdar
QroerPOID <<PKx>s 22 SUnmpgniss Ordaribam
Customarhiumbar FKxs
s i = [OrderPOID cxcPKeer cofKxe ccSuntogabess
Sl I Over e mdlumbss <<PK>> c<Naturab>
ShipTp <<FK=> umiser indared
BTy <=FH=>
Total

Rosulleng Schoma

2. Add a new index. A new index based on OrderPOID needs to be introduced for Order.

3. Deprecate the original column. The original key columns must be marked for demotion to
alternate key status, or nonkey status as the case may be, at the end of the transition period. In
our example, the column will not be deleted at this time from Order; they will just no longer be
considered the primary key. They will be deleted from Orderltem.

4. Update and possibly add referential integrity (RI) triggers. Any triggers that exist to
maintain referential integrity between tables need to be updated to work with the corresponding
new key values in the other tables. Triggers need to be introduced to populate the value of the

foreign key columns during the transition period because the applications may not have been
updated to do so.

Figure 6.5 depicts how to introduce OrderPOID, a surrogate key, to the Order table. You also need to
recursively apply Introduce Surrogate Key to the Orderltem table of Figure 6.5 to make use of the
new key column. This is optional. Of course, Orderltem could still use the existing composite key

made up of the CustomerNumber, OrderDate, and StorelD columns, but for consistency, we have
decided to refactor that table, too.

The following SQL code introduces and initially populates the OrderPOID column in both the Order and

Orderltem tables. It obtains unique values for OrderPOID by invoking the GenerateUniquelD stored
procedure as needed, which implements the HIGH-LOW algorithm (Ambler 2003). It also introduces
the appropriate index required to support OrderPOID as a key of Order:

Add new surrogate key to Order table
ALTER TABLE Order ADD Order PO D NUMVBER;

Add new surrogate foreign key to Orderltemtable
ALTER TABLE Orderltem ADD Order PO D NUMBER;

Assign values to surrogate key colum in Order
UPDATE Order SET OrderPO D =
get Or der PO DFr onOr der (Cust oner Nunber, Order Dat e, Storel D) ;

Propagate ForeignKey in Orderltem
UPDATE Orderltem SET OrderPO D =
(SELECT Order PO D FROM Or der
VWHERE Cust oner Nunber = Order. Cust ormer Nunber
AND OrderDate = Order. OrderDate
AND St orel D=Order. Storel D);

CREATE | NDEX Order Order PO DIl ndex ON Order (OrderPO D);

To support this new key, we need to add the PopulateOrderPOID trigger, which is invoked whenever
an insert occurs in Orderltem. This trigger obtains the value of Order.OrderPOID, as you can see in
the following SQL code:

CREATE OR REPLACE TRI GGER Popul at eOrder PO D
BEFORE | NSERT
ON Orderltem
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEG N
IF :NEWOrderPOD IS NULL THEN
:NEWOrderPAO D : =
get Or der PO DFr onOr der (Cust oner Nunber , Or der Dat e, St orel D) ;
END | F;
IF :NEWOrderPOD IS NOT NULL THEN
| F : NEW Cust orrer Nunber 'S NULL
OR :NEW OrderDate |I'S NULL
OR :NEW Storel D I'S NULL
THEN
: NEW Cust omer Nunber
: = get Cust orrer Nunber Fr omOr der (Or der PQOI D) ;
: NEW Or der Dat e
: = get Or der Dat eFr ontor der (Or der PO D) ;

:NEW St orel D

: = get St orel DFronOr der (Or der PO D) ;
END | F;

END | F;

END;

/

June 14 2007

ALTER TABLE Order|tem DROP CONSTRAI NT
O der | t enToOr der For ei gnKey;

ALTER TABLE Order DROP CONSTRAI NT

O der Pri mar yKey;
ALTER TABLE Order MODIFY Order PO D NOT NULL;

ALTER TABLE Order ADD CONSTRAI NT Order Pri mar yKey
PRI MARY KEY (Order PO D);

ALTER TABLE Order|tem DROP CONSTRAI NT
O derl tenPri maryKey;

ALTER TABLE Orderltem MODI FY Order PO D NOT NULL;
ALTER TABLE Orderltem ADD CONSTRAI NT OrderltenPri maryKey
PRI MARY KEY (OrderPAO D, Orderltemunber);

ALTER TABLE Orderltem ADD (CONSTRAI NT
O der | t emToOr der For ei gnKey
FOREI GN KEY (Order PO D) REFERENCES O der;

CREATE UNI QUE | NDEX Order Nat ural Key ON O der
(Cust onmer Nunber, Order Dat e, Storel D) ;

DROP TRI GGER Popul at eOr der PO D;

Data-Migration Mechanics

We must generate data in Order.OrderPOID and assign these values to the foreign key columns in
other tables.

Access Program Update Mechanics

Any external programs referencing the original key columns must be updated to work with
Order.OrderPOID. You may need to rework the code to do the following:

1. Assign new types of key values. If external application code assigns new surrogate key
values, instead of the database itself, all external applications need to be reworked to assign
values to Order.OrderPOID. Minimally, every single program must implement the same algorithm
to do so, but a better strategy is to implement a common service that every application invokes.

2. Join based on the new key. Many external access programs will define joins involving Order,
implemented either via hard-coded SQL or via meta data. These joins should be refactored to
work with Order.OrderPOID.

3. Retrieve based on the new key. Some external programs will traverse the database one or
more rows at a time, retrieving data based on the key values. These retrievals need to be
updated to work with Order.OrderPOID.

The following hibernate mapping shows you how the surrogate key is introduced:

/ | Bef or e mappi ng
<hi ber nat e- mappi ng>
<cl ass name="Order" tabl e="ORDER'>
<many-t o-one nanme="custoner"
cl ass="Customer" col um="CUSTOVERNUVBER" />
<property name="orderDate"/>
<property name="storel D'/ >

<property nanme="shi pTo"/>
<property name="bill To"/>
<property nanme="total"/>
</ cl ass>
</ hi ber nat e- mappi ng>
/1 After mapping
<hi ber nat e- mappi ng>
<cl ass name="Order" tabl e="ORDER'>
<id name="id" col um="CRDERPO D' >
<generator class="Oder PO DGenerator"/>
</id>
<many-t o- one name="custoner"
cl ass="Custoner" col um="CUSTOVERNUVBER" />
<property nanme="orderDate"/>
<property name="storel D'/ >
<property nanme="shi pTo"/>
<property name="bill To"/>
<property nane="total"/>
</cl ass>
</ hi ber nat e- mappi ng>

MEXT B

e rrey

Merge Columns

Merge two or more columns within a single table.

Motivation

There are several reasons why you may want to apply Merge Columns:

¢ An identical column. Two or more developers may have added the columns unbeknownst to eac
common occurrence when the developers are on different teams or when meta data describing the
schema is not available. For example, the FeeStructure table has 37 columns, 2 of which are callec
and CheckingAccountOpeningFee, and both of which store the initial fee levied by the bank when o
checking account. The second column was added because nobody was sure what the CA_INIT colt.
really being used for.

¢ The columns are the result of overdesign. The original columns where introduced to ensure tt
information was stored in its constituent forms, but actual usage shows that you do not need the f
that you originally thought. For example, Customer table of Figure 6.6 includes the columns
PhoneCountryCode, PhoneAreaCode, and PhonelLocal to represent a single phone number.

Figure 6.6. Merging columns in the Customer table.

Customer

PhoneCountryCode
PhoneAreaCode
PhionelLocal

Original Schema

Customer

PhoneCountryCode

PhoneAreaCode {drop date = December 14 2007}
Phonelocal {drop date = December 14 2007}
PhoneMumber

SynchronizePhoneNumber
{ event = update | insert, drop date = December 14 2007 }

Transition Period

Customer

PhoneCountryCode
PhoneNumber

Hesulting Schema

e The actual usage of the columns has become the same. Several columns were originally adc
table, but over time the way that one or more of them are used has changed to the point where tt
being used for the same purpose. For example, the Customer table includes PreferredCheckStyle ¢
SelectedCheckStyle columns (not shown in Figure 6.6). The first column was used to record which
checks to send to the customer from next season's selection, and the second column was used to

style which the customer previously had sent out to them. This was useful 20 years ago when it to
months to order in new checks, but now that they can be printed over night, we have started auto
storing the same value in both columns.

Potential Tradeoffs

This database refactoring can result in a loss of data precision when you merge finely detailed columns.
merge columns that (you believe) are used for the same purpose, you run the risk that you should in fa
using them for separate things. (If so, you will discover that you need to reintroduce one or more of the
columns.) The usage of the data should determine whether the columns should be merged, something 1
will need to explore with your stakeholders.

Schema Update Mechanics

To perform Merge Columns, you must do two things. First, you need to introduce the new column. Add -
column to the table via the SQL command ADD COLUMN. In Figure 6.6, this is Customer.PhoneNumbe
step is optional because you may find it possible to use one of the existing columns into which to merge
You also need to introduce a synchronization trigger to ensure that the columns remain synchronized wi
another. The trigger must be invoked by any change to the columns.

Figure 6.6 shows an example where the Customer table initially stores the phone number of a person in
separate columns: PhoneCountryCode, PhoneAreaCode, and PhonelLocal. Over time, we have discoverei
applications are interested in the country code because they are used only within North America. We ha
discovered that every application uses both the area code and the local phone number together. Theref
have decided to leave the PhoneCountryCode alone but to merge the PhoneAreaCode and PhonelLocal c«
into PhoneNumber, reflecting the actual usage of the data by the application (because the application dc
use PhoneAreaCode or PhoneLocal individually). We introduced the SynchronizePhoneNumber trigger to
values in the four columns synchronized.

The following SQL code depicts the DDL to introduce the PhoneNumber column and to eventually drop t
original columns:

ALTER TABLE Customer ADD PhoneNunmber NUMBER(12);
COVWENT ON Cust oner. PhoneNunber ' Added as the
result of nmerging Custoner.PhoneAreaCode and
Cust oner . PhonelLocal final date = Decenber 14 2007';

On Decenber 14 2007
ALTER TABLE Custoner DROP COLUWN PhoneAr eaCode;
ALTER TABLE Custoner DROP COLUWN Phonelocal ;

Data-Migration Mechanics

You must convert all the data from the original column(s) into the merge column, in this case from
Customer.PhoneAreaCode and Customer.PhoneLocal into Customer.PhoneNumber. The following SQL cc
the DML to initially combine the data from PhoneAreaCode and PhoneLocal into PhoneNumber.

/*One-tinme mgration of data from Custoner. PhoneAreaCode and Customner. PhonelLocal to
Cust omer . PhoneNunber. When both the colums are active, there is a need to have a trig
keeps both the columms in sync */

UPDATE Cust omrer SET PhoneNunber = PhoneAr eaCode* 10000000 + PhonelLocal);

Access Program Update Mechanics

You need to analyze the access programs thoroughly, and then update them appropriately, during the t
period. In addition to the obvious, you need to work with Customer.PhoneNumber rather than the form
unmerged columns. Potentially, you must remove merging code. There may be code that combines the
columns into a data attribute similar to the merged column. This code should be refactored and potentie
removed entirely.

Second, you may also need to update data-validation code to work with merged data. Some data-valide
may exist solely because the columns have not yet been merged. For example, if a value is stored in tw
columns, you may have validation code in place that verifies that the values are the same. After the col
merged, there may no longer be a need for this code.

The before and after code snippet shows how the getCustomerPhoneNumber() method changes when w
the Customer.PhoneAreaCode and Customer.PhonelLocal columns:

/] Bef ore code

public String getCustonerPhoneNunber (Cust oner customer) {
String phoneNunber = custoner. get CountryCode();
phoneNunber . concat (phoneNunberDelim ter());
phoneNunber . concat (cust oner. get PhoneAr eaCode()) ;
phoneNunber . concat (cust oner. get PhoneLocal ());
return phoneNunber;

}

/] After code

public String getCustonerPhoneNunber (Cust oner customer) {
String phoneNunber = custoner. get CountryCode();
phoneNunber . concat (phoneNunberDelimter());
phoneNunber. concat (cust oner. get PhoneNunber ());
return phoneNunber;

}

e rrcy | NEXT

e rrey

Merge Tables

Merge two or more tables into a single table.

Motivation

There are several reasons why you may want to apply Merge Tables:

e The tables are the result of over design. The original tables were introduced to ensure that th
information was stored in its constituent forms, but actual usage shows that you do not need the f
details that you originally thought. For example, the Employee table includes columns for employe
identification, as well as other data, whereas the Employeeldentification table specifically captures
identification information.

¢ The actual usage of the tables has become the same. Over time, the way that one or more t
are used has changed to the point where several tables are being used for the same purpose. You
also have tables that are related to one another in one-to-one fashion; you may want to merge th
tables to avoid making the join to the other table. A good example of this is the Employee table
mentioned previously. It originally was used to record employee information, but the
Employeeldentification was introduced to store just identification information. Some people did not
realize that this table existed, and evolved the Employee table to capture similar data.

¢ A table is mistakenly repeated. Two or more developers may have added the tables unbeknow
each other, a common occurrence when the developers are on different teams or when the meta c
describing the table schema is not available. For example, the FeeStructure and FeeSchedule table
both store the initial fee levied by the bank when opening a checking account. The second table we
added because nobody was sure what the FeeStructure table was really being used for.

Potential Tradeoffs

Merging two or more tables can result in a loss of data precision when you merge finely detailed tables.
When you merge tables that (you believe) are used for the same purpose, you run the risk that you shc
fact be using them for separate things. For example, the Employeeldentification table may have been
introduced to separate security-critical information into a single table that had limited access rights. If s
you will discover that you need to reintroduce one or more of the original tables. The usage of the data
should determine whether the tables should be merged.

Schema Update Mechanics

As depicted in Figure 6.7, to update the database schema when you perform Merge Tables, you must d«
things. First, introduce the merged table by adding the columns from Employeeldentification to Employe
table via the SQL command ADD COLUMN. Note that Employee may already include some or all of the
required columns, in which case inconsistencies or cluttered domain code may exist; this refactoring shc
allow for simplification of the application code.

Figure 6.7. Moving all the columns from Employeeldentification to Employ

[View full size image]

Employaaldentificalion
Employee pioy
EmployeeNumber <<PK>> <<FK>>
E;ﬁléaveehlumher R L 0..1) Picture <<Mullable>»
VoicePrint <=Nullablg==
Py et RetinalPrint <<Muliable>>
Original Schama
Employesa Employeeldentification

{drop date = aDate}

Employeeiumber <<PK==»

MName EmployeaMumber <<PK=> <<FlK==
Phonedumber 1 0.1 | Picture <<MNullable>=

Picture <<Mullables> VoicePrint <<Mullables>
VoicePrint <<MNullable== RefinalPrint <<Mullablas:

RetinalPrint <<MNullable=:=>

SynchronizeWithEmployee
SynchrenizeWithEmployeeldentification { event = update | delete | insert,
{ event = update | delete | insert, drop date = June 14 2007 }

drop date = June 14 2007 }

Transiticn Penod

Employee

EmployeaMumber <=PKx>>
Name

PhoneMNumber

Picture <<Mullable>>
VoicePrint <<MNullable==>
RetinalPrint <<Mullables:>

Resulling Schema

Second, introduce synchronization trigger(s) to ensure that the tables remain synchronized with one an
The trigger(s) must be invoked by any change to the columns. You need to implement the trigger so th
cycles do not occurif the value in one of the original columns changes, Employee should be updated, but
update should not trigger the same update to the original tables and so on.

Figure 6.7 depicts an example where the Employee table initially stores the employee data. Over time, \
have also added Employeeldentification table that stores employee identification information. Therefore
have decided to merge the Employee and Employeeldentification tables so that we have all the informat
regarding the employee at one place. We introduced the Synchronizeldentification trigger to keep the v
in the tables synchronized. The following SQL code depicts the DDL to introduce the Picture, VoicePrint,
RetinalPrint columns, and then to eventually drop the Employeeldentification table.

[View full width] ALTER TABLE Enpl oyee ADD Pi cture BI NARY;

COMMVENT ON Enpl oyee. Picture ' Added as the result of merging Enpl oyee and
CEnpl oyeel denti fi cation

final date = Decenber 14 2007';

ALTER TABLE Enpl oyee ADD Voi cePrint BI NARY;

COMMENT ON Enpl oyee. Voi cePrint ' Added as the result of merging Enpl oyee and
Enpl oyeel dentification finaldate = Decenber 14 2007';

ALTER TABLE Enpl oyee ADD Reti nal Print Bl NARY;

COMMVENT ON Enpl oyee. Retinal Print ' Added as the result of merging Enpl oyee and
Enpl oyeel dentification finaldate = Decenber 14 2007';

Data-Migration Mechanics

You must copy all the data from the original tables(s) into the merge tablein this case, from
Employeeldentification to Employee. This can be done via several meansfor example, with an SQL scrip
with an extract-transform-load (ETL) tool. (With this refactoring, there should not be a transform step.)

The following SQL code depicts the DDL to initially combine the data from the Employee and

Employeeldentification tables:

[View full width]/*One-tinme nmigration of data from Enpl oyee to
Enpl oyeel dentification. When both the tables are active, there is a need to have a tri

Léhat

keeps both the tables in sync
*/

UPDATE Enpl oyee e SET e.Picture

(SELECT ei . Picture FROM
Enpl oyeel denti ficai on ei
VWHERE

ei . Enpl oyeeNunber = e. Enpl oyeeNunber) ;

UPDATE Enpl oyee e SET e. VoicePrint =

(SELECT ei . Voi cePrint FROM
Enpl oyeel denti fi cai on ei
VWHERE

ei . Enpl oyeeNunber = e. Enpl oyeeNunber);

UPDATE Enpl oyee e SET e.Retinal Print =

(SELECT ei . Retinal Print FROM

Enpl oyeel denti fi cai on ei
VWHERE

ei . Enpl oyeeNunber = e. Enpl oyeeNunber);

On Decenber 14 2007

DROP TRI GGER Synchr oni zeW t hEnpl oyee;
DROP TRI GGER Synchroni zeW t h-

Enpl oyeel denti fication;

DROP TABLE Enpl oyeel dentificati on;

The following code shows how SynchronizeWithEmployeeldentification and SynchronizeWithEmployee
triggers are used to keep the values in the tables synchronized:

CREATE TRI GGER Synchroni zeW t hEnpl oyeel denti fi cati on
BEFORE | NSERT OR UPDATE OR DELETE

ON Enpl oyee

REFERENCI NG OLD AS OLD NEW AS NEW

FOR EACH ROW
DECLARE

BEG N

| F updating THEN

updat eOr Cr eat eEnpl oyeel denti ficati on;

END | F;
I F inserting THEN

creat eNewknpl oyeel dentificati on;

END | F;
| F del eting THEN

del et eEnpl oyeel denti fication;

END | F;
END;
/

CREATE TRI GGER Synchroni zeW t hEnpl oyee

BEFORE | NSERT OR UPDATE OR DELETE
ON Enpl oyeel denti fication
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEG N
| F updati ng THEN
updat eOr Cr eat eEnpl oyee;
END | F;
I F inserting THEN
cr eat eNewEnpl oyee;
END | F;
| F del eti ng THEN
del et eEnpl oyee;
END | F;
END;

Access Program Update Mechanics

In addition to the obvious need to work with Employee rather than the former unmerged table(s), poter
updates you need to make are as follows:

1.

Simplify data access code. Some access code may exist that accesses two or more of the tables
involved with the merge. For example, the Employee class may update its information into the two
tables in which it is currently stored, tables that have now been merged into one.

Incomplete or contradictory updates. Now that the data is stored in one place, you may discov
that individual access programs worked only with subsets of the data. For example, the Customer ¢
currently updates its home phone number information in two tables, yet it is really stored in three t
(which have now been merged into one). Other programs may realize that the data quality in the tt
table was not very good and may include code that counteracts the problems. For example, a repor
class may convert NULL phone numbers to "Unknown," but now that there are no NULL phone num
this code can be removed.

Some merged data is not required by some access programs. Some of the access programs
currently work with Employee need only the data that it contains. However, now that columns from
Employeeldentification have been added, the potential exists that the existing access programs will
update these new columns appropriately. Existing access programs may need to be extended to acc
and work with the new columns. For example, the source table for the Employee class may have he
BirthDate column merged into it. Minimally, the Employee class should not overwrite this column wi
invalid data, and it should insert an appropriate value when a new customer object is created. You |
need to apply Introduce Default Value (page 186) to the columns that are merged into Employee.

The following example shows example code changes when you apply Merge Tables to Employee and
Employeeldentification:

/1

Bef ore code

public Enpl oyee get Enpl oyeel nformati on (Long
enpl oyeeNunber) throws SQLException {

Enmpl oyee enpl oyee = new Enpl oyee();

st . prepare(

"SELECT Enpl oyeeNunber, Nane, PhoneNumber " +
"FROM Enpl oyee" +

"WHERE Enpl oyeeNunmber = ?");

st . setLong(1, enpl oyeeNunber) ;

}

stnt . execute();

ResultSet rs = stnt.executeQery();

enpl oyee. set Enpl oyeeNunber (rs. get Long

(" Empl oyeeNunber™));

enpl oyee. set Nanme(rs. get Long(" Nane"));

enpl oyee. set PhoneNunber (rs. get Long(" PhoneNunber ")) ;

stnt . prepare(

"SELECT Picture, VoicePrint, RetinalPrint " +

"FROM Enpl oyeel dentification" +

"WHERE Enpl oyeeNunber = ?");

st . setLong(1, enpl oyeeNunber) ;

st . execute();

rs = stm.executeQuery();

enpl oyee. set Pi cture(rs. getBl ob("Picture"));

enpl oyee. set Voi cePrint (rs. get Bl ob("VoicePrint"));
enpl oyee. setRetinal Print(rs.getBlob("Retinal Print"));

return enpl oyee;

[l After code
publ i c Enpl oyee get Enpl oyeel nformati on (Long
enpl oyeeNunber) throws SQLException {

Enpl oyee enpl oyee = new Enpl oyee();

stnt. prepare(

"SELECT Enpl oyeeNunber, Nane, PhoneNunmber " +
"Picture, VoicePrint, RetinalPrint "+

"FROM Enpl oyee" +

"WHERE Enpl oyeeNunmber = ?");

st . setLong(1, enpl oyeeNunber) ;

stnt . execute();

ResultSet rs = stnt.executeQery();

enpl oyee. set Enpl oyeeNunber (rs. get Long

(" Empl oyeeNunber ™)) ;

enpl oyee. set Nane(rs. get Long(" Nane"));

enpl oyee. set PhoneNunber (rs. get Long(" PhoneNunber ")) ;
enpl oyee. set Pi cture(rs. getBl ob("Picture"));

enpl oyee. set Voi cePrint (rs. get Bl ob("VoicePrint"));
enpl oyee. set Retinal Print(rs.getBlob("Retinal Print"));
return enpl oyee;

e rrey

Move Column

Migrate a table column, with all of its data, to another existing table.

Motivation

There are several reasons to apply Move Column. The first two reasons may appear contradictory, but r
database refactoring is situational. Common motivations to apply Move Column include the following:

¢ Normalization. It is common that an existing column breaks one of the rules of normalization. By
column to another table, you can increase the normalization of the source table and thereby reduc
within your database.

¢ Denormalization to reduce common joins. It is quite common to discover that a table is incluc
to gain access to a single column. You can improve performance by removing the need to perform
moving the column into the other table.

¢ Reorganization of a split table. You previously performed Split Table (page 145), or the table v
in the original design, and you then realize that one more column needs to be moved. Perhaps the
the commonly accessed table but is rarely needed, or perhaps it exists in a rarely accessed table b
often. In the first case, network performance would be improved by not selecting and then transm
to the applications when it is not required; in the second case, database performance would be imj
few joins would be required.

Potential Tradeoffs

Moving a column to increase normalization reduces data redundancy but may decrease performance if ¢
required by your applications to obtain the data. Conversely, if you improve performance by denormaliz
through moving the column, you will increase data redundancy.

Schema Update Mechanics

To update the database schema when you perform Move Column, you must do the following:

1. ldentify deletion rule(s). What should happen when a row from one table is deleted? Should the
row in the other table be deleted, should the column value in the corresponding be nulled/zeroed ot
corresponding value be set to some sort of default value, or should the corresponding value be left.
will be implemented in trigger code (as discussed later in this section). Note that zero or more delet
already exist to support referential integrity rules between the tables.

2. ldentify insertion rule(s). What should happen when a row is inserted into one of the tables? Sh
corresponding row in the other table be inserted or should nothing occur? This rule will be implemer
code, and zero or more insertion triggers may already exist.

3. Introduce the new column. Add the column to the target table via the SQL command ADD COLI
6.8, this is Account.Balance.

Figure 6.8. Moving the Balance column from Customer to Acco

[View full size image]

Customer Accour

FirsiMarne 1 ACCRESES B
Customer|D caPE=x
Balanos

AccoantlD <<PE>>

Customer D cofF K

- CheckCustomarExists

CheckNoAccounts [avant = bafore update | balare irsen |
{ event = belore daleta]

Original Schema

Custamer Aot

FesiNama | P {..*| AccoamtID <<FK>>
CustomenD <<P== —— CustomarlD ==FH==
Batance [removal date = June 14 2007 Balance
SynchronizeAccouniBalance SynchronizeCustomerBalance

{ avent = on update | on delote | on insert, { evant = on update | on insert,

drop date = June 14 2007 | drop dale = June 14 2007)

ChachMoAsoouns CheckCustomarExisks

[even = before delete | { evenl = before update | balore insen |

Transiton Perod

Customar Account
Firsttama 1 ACCESSES i | AccoumtiD <<Pia>
CustomenD P> CuglomarD <oF K
— Balance
:Hﬁﬁ'muamw:m ; CheckCustomarE xists
O . [evenl = befora update | belore insen |

Fegulting Schama

4. Introduce triggers. You require triggers on both the original and new column to copy data from o
other during the transition period. These trigger(s) must be invoked by any change to a row.

Figure 6.8 depicts an example where Customer.Balance is moved into the Account table. This is a norm
issueinstead of storing a balance each time a customer's account is updated, we can instead store it onc
individual account. During the transition period, the Balance column appears in both Customer and Accc
expect.

The existing triggers are interesting. The Account table already had a trigger for inserts and updates the
that the corresponding row exists in the Customer table, a basic referential integrity (RI) check. This tri¢
The Customer table had a delete trigger to ensure that it is not deleted if an Account row refers to it, an
The advantage of this is that we do not need to implement a deletion rule for the moved column becaus
the wrong thing" and delete a Customer row that has one or more Account rows referencing it.

In the following code, we introduce the Account.Balance column and the SynchronizeCustomerBalance ¢
SynchronizeAccountBalance triggers to keep the Balance columns synchronized. The code also includes
the scaffolding code after the transition period ends:

ALTER TABLE Account ADD Bal ance NUMBER(32,7);
COMMVENT ON Account. Bal ance ' Moved from Custoner table, finaldate = June 14 2007';

COMMENT ON Custoner. Bal ance ' Moved to Account table, dropdate = June 14 2007';

CREATE OR REPLACE TRI GGER Synchroni zeCust oner Bal ance
BEFORE | NSERT OR UPDATE
ON Account
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEA N
| F : NEW Bal ance 1S NOT NULL THEN
Updat eCust orrer Bal ance;
END | F;
END;

CREATE OR REPLACE TRI GGER Synchr oni zeAccount Bal ance
BEFORE | NSERT OR UPDATE OR DELETE
ON Cust oner
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEGA N
| F DELETI NG THEN
Del et eCust oner | f Account Not Found;
END | F;
| F (UPDATI NG OR | NSERTI NG THEN
| F : NEW Bal ance |'S NOT NULL THEN
Updat eAccount Bal anceFor Cust omer ;
END | F;
END | F;
END;

On June 14 2007

ALTER TABLE Customer DROP COLUWN Bal ance;
DROP TRI GGER Synchr oni zeCust orer Bal ance,;
DROP TRI GGER Synchroni zeAccount Bal ance;

Data-Migration Mechanics

Copy all the data from the original column into the new columnin this case, from Customer.Balance to A
This can be done via several meansfor example, with a SQL script or with an ETL tool. (With this refacto
not be a transform step.) The following code depicts the DML to move the Balance column values from ¢
Account:

[View full width]/*One-time migration of data from Customner. Bal ance to Account. Bal ance
Lol ums are

active, there is a need to have a trigger that keeps both the bal ance colums in sync
*/

UPDATE Account SET Bal ance =
(SELECT Bal ance FROM Cust omer
WHERE Customrer| D = Account. Custonerl| D);

Access Program Update Mechanics

You need to analyze the access programs thoroughly and then update them appropriately during the tre
Potential updates you need to make are as follows:

1. Rework joins to use the moved column. Joins, either hard-coded in SQL or defined via meta da
refactored to work with the moved column. For example, when you move Customer.Balance to Acci
have to change your queries to get the balance information from Account and not from Customer.

2. Add the new table to joins. The Account table must now be included in joins if it is not already ir
degrade performance.

3. Remove the original table from joins. There may be some joins that included the Customer tab
purpose of joining in the data from Customer.Balance. Now that this column has been moved, the (
can be removed from the join, which could potentially improve performance.

The following code shows you how the Customer.Balance column is referenced in the original code and 1
that works with Account.Balance:

/] Bef ore code
public Bi gDeci mal get Cust oner Bal ance(Long
customerld) throws SQ.Exception {
PreparedStatenment stnt = null;
Bi gDeci mal custonerBal ance = nul | ;
stm = DB. prepare("SELECT Bal ance FROM
Cust omer " +
"WHERE Custonerld = ?");
stnt.setlLong(1l, custonerld.|ongVal ue());
ResultSet rs = stnt.executeQery();
if (rs.next()) {
cust omer Bal ance = rs. get Bi gDeci mal (" Bal ance");

}

return custoner Bal ance;

}

/1 After code
publ i c Bi gDeci mal get Cust oner Bal ance(Long
custonerld) throws SQ.Exception {
PreparedSt atement stnt = nul | ;
Bi gDeci mal custonerBal ance = nul | ;
stnt = DB. prepar e
"SELECT SUM Account. Bal ance) Bal ance " +
"FROM Cust oner, Account " +
"WHERE Cust omer . Cust oner | d=
Account . Customerld " +
"AND Custonerld = ?");
stnt.setlLong(1l, custonerld.longVal ue());
ResultSet rs = stnt.executeQery();
if (rs.next()) {
cust onmer Bal ance = rs. get Bi gDeci mal (" Bal ance");

}

return custonerBal ance;

@ prcy | NEXT

e rrey

Rename Column

Rename an existing table column.

Motivation

The primary reasons to apply Rename Column are to increase the readability of your database schema,
to conform to accepted database naming conventions in your enterprise, or to enable database porting.
For example, when you are porting from one database product to another, you may discover that the
original column name cannot be used because it is a reserved keyword in the new database.

Potential Tradeoffs

The primary trade-off is the cost of refactoring the external applications that access the column versus
the improved readability and/or consistency provided by the new name.

Schema Update Mechanics

To rename a column, you must do the following:

1. Introduce the new column. In Figure 6.9, we first add FirstName to the target table via the SQL
command ADD COLUMN.

Figure 6.9. Renaming the Customer.FName column.

Customer

CustomerlD «<PK>x>
Fname

Original Schema

Customer

CustomeriD <<PK==
Fname {drop date = November 14 2007}
FirstMame

SynchronizeFirstName
{ event = update | insert,
drop date = November 14 2007 }

ransition Period

Customer

CustomerlD <<PK>>
FirstName Resulting Schema

2. Introduce a synchronization trigger. As you can see in Figure 6.9, you require a trigger to copy
data from one column to the other during the transition period. This trigger must be invoked by any
change to the data row.

3. Rename other columns. If FName is used in other tables as (part of) a foreign key, you may wan
to apply Rename Column recursively to ensure naming consistency. For example, if
Customer.CustomerNumber is renamed as Customer.CustomerID, you may want to go ahead and
rename all instances of CustomerNumber in other tables. Therefore, Account.CustomerNumber will
now be renamed to Account.CustomerID to keep the column names consistent.

The following code depicts the DDL to rename Customer.FName to Customer.FirstName, creates the
SynchronizeFirstName trigger that synchronizes the data during the transition period, and removes the
original column and trigger after the transition period ends:

ALTER TABLE Custoner ADD First Nane VARCHAR(40);
COMMENT ON Custoner. First Nane ' Renam ng of FName columm, finaldate = Novenber 14 2007’

COMMENT ON Custoner. FNane ' Renaned to FirstNane,
dropdate = Novenber 14 2007';

UPDATE Custoner SET FirstNane = FNane;

CREATE OR REPLACE TRI GGER Synchr oni zeFi r st Nane
BEFORE | NSERT OR UPDATE
ON Cust omer
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEG N
| F 1 NSERTI NG THEN
IF :NEWFirstName |'S NULL THEN

: NEW Fi rst Nane : = : NEW FNane;
END | F;
IF :NEW Fnane |'S NULL THEN
: NEW FNare : = : NEW Fi r st Nane;
END | F;
END | F;

| F UPDATI NG THEN
I F NOT(: NEW Fi r st Nane=: CLD. Fi r st Nane) THEN
: NEW FNarre: =: NEW Fi r st Name;
END | F;
I F NOT(: NEW FNane=: OLD. FNane) THEN
: NEW Fi r st Narre: =: NEW FNane;
END | F;
END | F;
END;
/

On Nov 30 2007

DROP TRI GGER Synchroni zeFi r st Nane;
ALTER TABLE Custormer DROP COLUWN FNane;

Data-Migration Mechanics

You need to copy all the data from the original column into the new column, in this case from FName to
FirstName. See the refactoring Move Data (page 192) for details.

Access Program Update Mechanics

External programs that reference Customer.FName must be updated to reference columns by its new
name. You should simply have to update any embedded SQL and/or mapping meta data. The following
hibernate mapping files show how your mapping files would change when the fName column is renamec

/I Bef ore mappi ng
<hi ber nat e- mappi ng>
<cl ass nane="Custoner" tabl e="Custoner">
<id nanme="id" col um="CUSTOVERI D' >
<gener ator cl ass="Custonerl dCGenerator"/>
</id>
<property name="f Nanme"/>
</cl ass>
</ hi ber nat e- mappi ng>
/1 Transiti on mappi ng
<hi ber nat e- mappi ng>
<cl ass nane="Custoner" tabl e="Custoner">
<id nanme="id" col um="CUSTOVERI D' >
<gener ator cl ass="CustonerldCGenerator"/>
</id>
<property name="f Nanme"/>
<property name="first Nanme"/>
</cl ass>
</ hi ber nat e- mappi ng>

/1 After mapping
<hi ber nat e- mappi ng>

<cl ass nane="Custoner" tabl e="Custoner">
<id name="id" col um="CUSTOVERI D' >
<gener ator cl ass="CustonerldCenerator"/>
</id>
<property nane="first Nane"/>
</cl ass>
</ hi ber nat e- mappi ng>

e rrcy | NEXT

e rrey

Rename Table

Rename an existing table.

Motivation

The primary reason to apply Rename Table is to clarify the table's meaning and intent in the overall
database schema or to conform to accepted database naming conventions. Ideally, these reasons are
one in the same.

Potential Tradeoffs

The primary tradeoff is the cost to refactoring the external applications that access the table versus
the improved readability and/or consistency provided by the new name.

Schema Update Mechanics via a New Table

To perform Rename Table, you create a new table using the SQL command CREATE TABLE, in this
case Customer. If any columns of Cust_TB_Prod are used in other tables as (part of) a foreign key,
you must refactor those constraints and/or indices implementing the foreign key to refer to Customer.

We want to rename Cust_TB_Prod to Customer as depicted in Figure 6.10. The
SynchronizeCust_TB_Prod and SynchronizeCustomer triggers keep the two tables synchronized with

each other. Each trigger is invoked by any change to a row in the Cust_TB_Prod or Customer table,
respectively. The following code depicts the DDL to rename the table and introduce the triggers:

Figure 6.10. Renaming the Cust_TB_Prod table to Customer.

[View full size image]

Cust TE_Prod

Origanal Schema

Cust_TB_Prod Custormar
{drop date = November 30 2007)

SynchronizeWithCust_TB_Prod
SynchronizeWithCustomer [avan! = updats | ingart | dodote,
{ event = update | insert | delete, drop date = Novemnber 30 2007 |
drop date = Movember 30 2007)

Transition Panod

Custombr

Fgsulting Schdma

CREATE TABLE Cust oner
(FirstName VARCHAR(40),
Last Name VARCHAR(40),

);

COMMENT ON Custoner ' Renaming of Cust_ TB Prod,
final date = Septenber 14 2006';

COVWMENT ON Cust _TB Prod ' Renanmed to Custormer,
dropdate = Septenber 14 2006';

CREATE OR REPLACE TRI GGER Synchr oni zeCust omer
BEFORE | NSERT OR UPDATE
ON Cust _TB Prod
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEG N
| F updating THEN
fi ndAndUpdat el f Not FoundCr eat eCust oner ;
END | F;
IF inserting THEN
cr eat eNewl nt oCust oner ;
END | F;
| F del eti ng THEN
del et eFr onCust omer ;
END | F;
END;
/

CREATE OR REPLACE TRI GGER Synchroni zeCust _TB_Prod
BEFORE | NSERT OR UPDATE
ON Cust omner
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEG N
| F updating THEN
fi ndAndUpdat el f Not FoundCr eat eCust _TB_Pr od;

END | F;
| F inserting THEN

creat eNewl nt oCust _TB _Prod;
END | F;
| F del eting THEN

del et eFronCust _TB_Pr od;
END | F;
END;
/

Schema Update Mechanics via an Updateable View

The second approach is to rename the table and then introduce an updateable view with the original
name of the table. Note that some database products supports the RENAME option of the ALTER
TABLE command. If yours does not, you must re-create the table with the new name, and then load
the data into the table. You should schedule the drop of the old table so that it is not accidentally used
by someone. As you see in Figure 6.11, the updateable view is needed during the transition period to
support external access programs that have yet to be refactored to use the renamed table. This
strategy is viable only if your database supports updateable views.

Figure 6.11. Renaming the Cust_TB_Prod table to Customer via a view.

Cust_TB_Prod

Original Schema

Cust_TB_Prod
czVipwss
{ access = updateable }
{ drop date = November 30 2007 }

| — —— Customer

Transition Perod

Customer

Resulting Schema

Figure 6.11 shows how to rename the table using a view. You simply use the RENAME TO clause of
ALTER TABLE SQL command to rename the table and create the view, as shown here:

ALTER TABLE Cust _tb_Prod RENAME TO Cust omer;

CREATE VI EW Cust _tb Prod AS
SELECT * FROM Cust ormrer ;

As with the new table approach, if any columns of Cust_TB_Prod are used in other tables as (part of)
a foreign key, you must re-create those constraints and/or indices implementing the foreign key to
refer to Customer.

Data-Migration Mechanics

With the updateable view approach, you do not need to migrate data. However, with the new table
approach, you must first copy the data. Copy all the data from the original table into the new tablein
this case, from Cust_TB_Prod to Customer. Second, you must introduce triggers on both the original
and new table to copy data from one table to the other during the transition period. These triggers
must be invoked by any change to the tables. You need to implement the triggers so that cycles do
not occurif Cust_TB_Prod changes, Customer must also be updated, but that update should not trigger
the same update to Cust_TB_Prod and so on. The following code shows how to copy the data from
Cust_TB_Prod into Customer:

| NSERT | NTO Cust oner
SELECT * FROM CUST_TB_PROD;

Access Program Update Mechanics

External access programs must be refactored to work with Customer rather than Cust_TB_Prod. The
following hibernate mapping shows the change you have to make when you rename the Cust_TB_Prod
table:

/ 1 Bef or e mappi ng

<hi ber nat e- mappi ng>

<cl ass nane="Custoner" table="Cust_ TB Prod">
</cl ass>

</ hi ber nat e- mappi ng>

/1 After mapping
<hi ber nat e- mappi ng>
<cl ass nanme="Custoner" tabl e="Custoner">

</cl ass>
</ hi ber nat e- mappi ng>

e rrcv |

e rrey

Rename View

Rename an existing view.

Motivation

The primary reason to apply Rename View is to increase the readability of your database schema or to
conform to accepted database naming conventions. ldeally, these reasons are one in the same.

Potential Tradeoffs

The primary tradeoff is the cost of refactoring the external applications that access the view versus the
improved readability and/or consistency provided by the new name.

Schema Update Mechanics

To perform Rename View, you must do the following:

1. Introduce the new view. Create a new view using the SQL command CREATE VIEW. In Figure
6.12, this is CustomerOrders, the definition of which has to match with CustOrds.

Figure 6.12. Renaming the CustOrds view to CustomerOrders.

CustOrds
<=z \jgw=
= & Criginal Schema
CustOrds c<=Views> CustomerQOrders
| drop date = September 15 2007 | <<Views>>

Transition Period

CustomerQOrders
z<Views=

Resulting Schema

2. Deprecate the original view. After you create CustomerOrders, you want to indicate that
CustOrds should no longer be updated with new features or bug fixes.

3. Redefine the old view. You should redefine CustOrds to be based on CustomerOrders to avoid
duplicate code streams. The benefit is that any changes to CustomerOrders, such as a new data
source for a column, will propagate to CustOrds without any additional work.

The following code depicts the DDL to create CustomerOrders, which is identical to the code that was
used to create CustOrds:

CREATE VI EW Cust oner Orders AS
SELECT
Cust oner . Cust oner Code,
Order. Order | D,
Order. Order Dat e,
Or der. Product Code
FROM Cust oner, Or der
VWHERE
Cust oner . Cust oner Code = Order. Cust orrer Code
AND Or der. Shi pDate = TOMORROW

COMMVENT ON CustonerOrders ' Renaned from Cust Ords,
Cust Ords dropdate = Septenber 15 2007';

The following code drops and then re-creates the CustOrds so that it derives its results from the
CustomerOrders:

DROP VI EW Cust O ds;

CREATE VI EW Cust Ords AS
SELECT Custoner Code, Orderl D, OrderDate, ProductCode
FROM Cust oner Orders

Data-Migration Mechanics

There is no data to migrate for this database refactoring.

Access Program Update Mechanics

You must refactor all the external programs currently accessing CustOrds to access CustomerOrders.
In the case of hard-coded SQL, this will simply be the update of the FROM/INTO clauses, and in the
case of meta data-driven approaches, the update of the name within the representation for this view.

The following code shows how a reference to CustOrds should be changed to CustomerOrders:

/1 Before code

stm . prepar¢e(
"SELECT * " +
"FROM CustOrds "+
"WHERE Custonerld = ?");
stnt.setlLong(1, custoner. get Custonerl D);
stnt . execute();
ResultSet rs = stnt.executeQuery();

/1 After code
stmt . prepar¢g(

"SELECT * " +
"FROM CustonerOrders " +
"WHERE " +

" Customerld = ?");

stmt.setlLong(1, custoner. get Custonerl| D);
stnt . execute();

ResultSet rs = stnt.executeQery();

e rrey

Replace LOB With Table

Replace a large object (LOB) column that contains structured data with a new table or with new
columns in the same table. LOBs are typically stored as either a binary large object (BLOB), a variable
character (VARCHAR), or in some cases as XML data.

Motivation

The primary reason to replace a LOB with a table is because you need to treat parts of the LOB as
distinct data elements. This is quite common with XML data structures that have been stored in a
single column, often to avoid "shredding" the structure into individual columns.

Potential Tradeoffs

The advantage of storing a complex data structure in a single column is that you can quickly get that
specific data structure easily. This proves particularly valuable when existing code already works with
the data structure in question and merely needs to use the database as a handy file-storage
mechanism. By replacing the LOB with a table, or perhaps several tables if the structure of the data
contained within the LOB is very complex, you can easily work with the individual data elements within
your database. You also make the data more accessible to other applications that may not need the
exact structure contained within the LOB. Furthermore, if the LOB contains some data that is already
present within your database, you can potentially use those existing data sources to represent the
appropriate portions of the LOB, reducing data redundancy (and thus integrity errors). The
disadvantage of this approach is the increased time and complexity required to shred the data to store
it within the database and similarly to retrieve and convert it back into the required structure.

Schema Update Mechanics

As you see in Figure 6.13, applying Replace LOB With Table is straightforward. You need to do the
following:

Figure 6.13. Replacing a LOB with a table.

[View full size image]

USAGmar

CustomerPOID c<PRss
Masingaddrass: VARCHARIB0O)

MNim
P mibed
Cnginal Schama
0.1
Customer CustomerAddress
CustomerPOHD <<PKss CustomerPOID c<FKs»
heallingAodress: VARCHAR (S00) Street
{drop date = Decamber 14 2007 City
S Tag State
P Lirrilas ZipCioht
SynehranizeWithCustomerAddrass 55'"':';:“:;:?":;:‘;{‘::2‘”: S
avent e | imgert, drog dabe = Decamber 14 2007 2 .
{ W w iy 1 P o ! drop date = Decomber 14 2007 |

Transition Pariod

LT =Ty L Customaor Addross
CustomarPOID c<Pk s> CustomerPOID ccFK»>
Naime Stroat
PharsaMumbes City

Stata
ZipTode

Resulting Schema

Determine a table schema. You need to analyze Customer.MailingAddress to determine the
data that it contains, and then develop a table schema to store that data. If the structure
contained within MailingAddress is complex, you either need to have smaller LOB columns within
the new table or recursively apply Replace LOB With Table to deal with these smaller structures.

Add the table. In Figure 6.13, this is CustomerAddress. The columns of this table are the
primary key of Customer, the CustomerPOID column, and the new columns containing the data
from MailingAddress.

Deprecate the original column. MailingAddress must be marked for deletion at the end of the
deprecation period.

Add a new index. For performance reasons, you may need to introduce an new index for
CustomerAddress via the CREATE INDEX command.

Introduce synchronization triggers. Customer will require a trigger to populate the values in
CustomerAddress appropriately. This trigger will need to shred the MailingAddress structure and
store it appropriately. Similarly, a trigger on CustomerAddress is needed to update Customer
during the transition period.

The code to create the CustomerAddress table, add an index, define the synchronization triggers, and
eventually drop the column and triggers is shown here:

CREATE TABLE Cust oner Address (

)

Cust oner PO D NUMBER NOT NULL,
Street VARCHAR(40),

Cty VARCHAR(40),

St at e VARCHAR(40),

Zi pCode VARCHAR(10)

CREATE | NDEX | ndexCust oner Addr ess ON

Cust omer Addr ess(Cust oner PO D) ;

Triggers to keep the tables synchronized
CREATE OR REPLACE TRI GGER Synchroni zeW t hCust oner Addr ess
BEFORE | NSERT OR UPDATE COR DELETE

ON Cust oner
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEG N
| F updati ng THEN
Fi ndOr Cr eat eCust oner Addr ess;
END | F;
I F inserting THEN
Cr eat eCust oner Addr ess;
END | F;
| F del eti ng THEN
Del et eCust oner Addr ess;
END | F;
END;
/

CREATE OR REPLACE TRI GGER Synchroni zeW t hCust orrer
BEFORE | NSERT OR UPDATE OR DELETE
ON Cust omrer
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEG N
| F updating OR inserting THEN
Fi ndAndUpdat eCust omer ;
END | F;
| F del eti ng THEN
Updat eCust oner Nul | Addr ess;
END | F;
END;
/

On Dec 14 2007
DROP TRI GGER Synchroni zeW t hCust oner Addr ess;
DROP TRI GGER Synchr oni zeW t hCust omer ;

ALTER TABLE Customer DROP COLUMN Mai |l i ngAddr ess;

Data-Migration Mechanics

CustomerAddress must be populated by shredding and then copying the data contained in
Customer.MailingAddress. The value of Customer.CustomerPOID must also be copied to maintain the
relationship. If MailingAddress has a NULL or empty value, a row in CustomerAddress does not need to
be created. This can be accomplished via one or more SQL scripts, as you see in the following code:

| NSERT | NTO Cust oner Addr ess

SELECT
Cust oner PA D,
Extract Street (Mai |l i ngAddr ess),
Extract G ty(MilingAddress),
Extract St at e(Mai | i ngAddr ess) ,
Ext ract Zi pCode(Mai | i ngAddr ess)

FROM Cust oner
WHERE Mai | i ngAddress |'S NOT NULL;

Access Program Update Mechanics

You must identify any external programs referencing Customer.MailingAddress so that they can be
updated to work with CustomerAddress as appropriate. You will need to do the following:

1. Remove translation code. External programs could have code that shreds the data within
MailingAddress to work with its subdata elements, or they could contain code that takes the
source data elements and builds the format to be stored into MailingAddress. This code will no
longer be needed with the new data structure.

2. Add translation code. Conversely, some external programs may require the exact data
structure contained within MailingAddress. If several applications require this, you should consider
introducing stored procedures or introduce a library within the database to do this translation,
enabling reuse.

3. Write code to access the new table. After you add CustomerAddress, you have to write
application code that uses this new table rather than MailingAddress.

The following code shows how the code to retrieve data attributes from Customer.MailingAddress is
replaced with a SELECT against the Customer-Address table:

/1 Before code
public Custoner findByCustonerlD(Long custoner PO D) {

Cust oner custonmer = new Custoner();

stm = DB. prepare("SELECT CustonerPO D, " +
“Mai | i ngAddr ess, Name, PhoneNunber " +
"FROM Cust oner " +
"WHERE CustonerPO D = ?");

stnt.setlLong(1, custoner PO D);

stnt . execute();

ResultSet rs = stnt.executeQery();

if (rs.next()) {
cust omer. set Custoner |l d(rs. get Long(" CustonerPO D"));
customer. set Nanme(rs. getString("Nane"));
cust oner. set PhoneNunber (rs. get String
(" PhoneNunber"));
String mailingAddress = rs.getString
(" MailingAddress");
customer. set Street (extract Street (nmai |l i ngAddr ess)) ;
customer.setCity(extractCty(mailingAddress));
customer. set Stat e(extract St at e(mai | i ngAddr ess));
cust omer . set Zi pCode(extract Zi pCode(mai | i ngAddr ess)) ;

}

return custoner;
}
/1 After code
public Custoner findByCustomerl D(Long custonmer PO D) {
Cust omer customer = new Custoner();
stm = DB. prepare("SELECT CustonerPO D, "+
"Name, PhoneNunber, "+
"Street, City, State, Z pCode " +
"FROM Cust onmer, Customer Address " +
"WHERE Custoner.CustomerPOD = ? " +
"AND Cust oner. Custonmer PO D =
Cust omrer Addr ess. Cust oner PO D") ;
stnt.setlLong(1l, custonmerPO D);
st . execute();
ResultSet rs = stnt.executeQery();
if (rs.next()) {
customer. set Custoner | d(rs. get Long(" CustonerPQ D"));

customer. set Name(rs. getString("Nane"));

cust oner . set PhoneNunber (rs. get String

(" PhoneNunber"));

customer.setStreet(rs.getString("Street"));

customer.setCity(rs.getString("City"));

customer.setState(rs.getSring("State"));

cust oner. set Zi pCode(rs. get String("Zzi pCode"));
}

return custoner;

}

| 4 PREY | NEXT B

e rrey

Replace Column

Replace an existing nonkey column with a new one.

For replacing a column that is part of a key, either the primary key or an alternate key, see the Introdu
Surrogate Key (page 85) and Replace Surrogate Key With Natural Key (page 135) refactorings.

Motivation

There are two reasons why you want to apply Replace Column. First, the most common reason is that
usage of the column has changed over time, requiring you to change its type. For example, you previou
had a numeric customer identifier, but now your business stakeholders have made it alphanumeric.
Second, this may be an intermediate step to implement other refactorings. Another common reason to
replace an existing column is that it is often an important step in merging two similar data sources, or
applying Consolidate Key Strategy (page 168) because you need to ensure type and format consistency
with another column.

Potential Tradeoffs

A significant risk when replacing a column is information loss when transferring the data to the
replacement column. This is particularly true when the types of the two columns are significantly
differentconverting from a CHAR to a VARCHAR is straightforward as is NUMERIC to CHAR, but
converting CHAR to NUMERIC can be problematic when the original column contains non-numeric
characters.

Schema Update Mechanics

To apply Replace Column, you must do the following:

1. Introduce the new column. Add the column to the target table via the SQL command ADD
COLUMN. In Figure 6.14, this is CustomerlD.

Figure 6.14. Replacing the Customer.CustomerNumber column.

Customer

CustomerPOID =<PK>=>
CustomerNumber: integer
FirstMamea

LastMame

Original Schema

Customer

CustomerPOID <<PK>>

CustomerMumber: integer {drop date = June 14 2007}
CustomerlD: char(12)

FirstMamea

LastMame

SynchronizeCustomeriDNumber
{ event = update | insert, drop date = June 14 2007 }

Transiticn Period

Customer

CustomerPOID <<PK=>
CustomerlD: char{12)
FirstName

LastName

Resulting Schema

2. Deprecate the original column. CustomerNumber must be marked for deletion at the end of yot
chosen transition period.

3. Introduce a synchronization trigger. As you can see in Figure 6.14, you require a trigger to cog
data from one column to the other during the transition period. This trigger must be invoked by any
change to a data row.

4. Update other tables. If CustomerNumber is used in other tables as part of a foreign key, you will
want to replace those columns similarly, as well as update any corresponding index definitions.

The following SQL code depicts the DDL to replace the column, create the synchronization trigger, and
eventually drop the column and trigger after the transition period:

ALTER TABLE Custoner ADD Customerl D CHAR(12);
COMMVENT ON Customer. Customer| D ' Repl aces Customer Number col um, final date = 2007-06-14
COMVENT ON Cust omer . Cust orer Nunber ' Repl aced with Customerl| D, dropdate = 2007-06-14";

CREATE OR REPLACE TRI GGER Synchr oni zeCust oner | DNuber
BEFORE | NSERT OR UPDATE
ON Cust omer
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE

BEG N

| F : NEW Customer| D | S NULL THEN

: NEW Cust oner | D: =
f or mat Cust omer Nunber (: New. Cust onmer Nunber) ;
END | F;
| F : NEW Cust orer Nunber 1S NULL THEN

: New. Cust orrer Nunber : = : New. Custoner| D
END | F;
END;
/

On June 14 2007
DROP TRI GGER Synchr oni zeCust orrer | DNunber ;
ALTER TABLE Custoner DROP COLUWN Cust omer Nunber ;

Data-Migration Mechanics

The data must be initially copied from CustomerNumber to CustomerlID and then kept synchronized dur
the transition period (for example, via stored procedures). As described earlier, this can be problematic
with the data formats are significantly different from one another. Before applying Replace Column, you
may discover that you need to apply one or more data quality refactorings to clean up the source data
first. The code to copy the values into the new column is shown here:

UPDATE Cust oner SET Custoner| D = Custoner Nunber;

Access Program Update Mechanics

The primary issue is that external programs need to be refactored to work with the new data type and
format of CustomerlID. This could imply that conversion code be written that converts back and forth
between the old data format and the new. A longer-term strategy, although potentially a more expensi\
one, would be to completely rework all the external program code to use the new data format. The
following code snippet shows you how the column name and the data type needs to change in the
application code:

/1 Before code
public Customer findByCustonerlD(Long custonerlD) ({
Cust onmer custonmer = new Custoner();
stm = DB. prepare("SELECT CustonerPO D, " +
"Cust oner Nunmber, FirstNane, LastNane " +
"FROM Custonmer " +
"WHERE CustonmerPO D = ?");
stmt.setlLong(l, customerlD);
st . execute();
ResultSet rs = stnt.executeQery();
if (rs.next()) {
cust oner. set Cust oner PO D(r s. get Long
("CustomerPA D"));
cust omer . set Cust oner Nunber (rs. get I nt
(" Cust omer Nurrber ")) ;
custoner.setFirstNane(rs.getString("FirstNane"));
customer. set Last Nane(rs. get String("Last Nane"));

}

return custoner;

}

/1 After code
public Customer findByCustonerlD(Long custonerlD) ({
Cust onmer custonmer = new Custoner();
stmt = DB. prepare("SELECT CustonerPO D, " +
"Custoner| D, FirstNanme, LastNane " +
"FROM Cust oner " +
"WHERE CustonerPO D = ?");

stmt.setlLong(l, custonerlD);

stnt. execute();

ResultSet rs = stnt.executeQery();

if (rs.next()) {
cust omer. set Cust omer PO D(rs. get Long

("CustonmerPA D"));

custoner.set Custoner| D(rs. get String("CustoneriD"));
customner.setFirstNane(rs.getString("FirstNane"));
customer. set Last Nane(rs. get String("Last Nane"));

}

return custoner;

}

e rrcy | NEXT

e rrey

Replace One-To-Many With Associative Table

Replace a one-to-many association between two tables with an associative table.

Motivation

The primary reason to introduce an associative table between two tables is to implement a many-to-
many association between them later on. It is quite common for a one-to-many association to evolve
into a many-to-many association. For example, any given employee currently has at most one
manager. (The president of the company is the only person without a manager.) However, the
company wants to move to a matrix organization structure where people can potentially report to
several managers. Because a one-to-many association is a subset of a many-to-many association, the
new associative table would implement the existing hierarchical organization structure yet be ready for
the coming matrix structure. You may also want to add information to the relationship itself that does
not belong to either of the existing tables.

Potential Tradeoffs

You are overbuilding your database schema when you use an associative table to implement a one-to-
many association. If the association is not likely to evolve into a many-to-many relationship, it is not
advisable to take this approach. When you add associative tables, you are increasing the number of
joins you have to make to get to the relevant data, thus degrading performance and making it harder
to understand the database schema.

Schema Update Mechanics

To apply Replace One-To-Many With Associative Table, you must do the following:
1. Add the associative table. In Figure 6.15, this is Holds. The columns of this table are the
combination of the primary keys of Customer and Policy. Note that some tables may not

necessarily have a primary key, although this is rarewhen this is the case, you may decide to
apply the Introduce Surrogate Key refactoring.

Figure 6.15. Replacing a one-to-many with an associative table.

[View full size image]

Customer

i holds 0.

CustomerPOID <<PK>>
Mamea

—— m— e — m— mm— e — — —

Customer 1 0. Holds J

Paolicy

P:ﬂlchD PR ==
CugtomPOID <<FK==
Amoaanl

Original Schema

cohssociative Tabless

Policy

CustomerPOID <<PK>> CustomerPOID <<FKs>

Mame PolicylD <<FK>=

UpdatePolicyCustomerPOID
{ event = insaer,
drop date = Mar 15 2007 }

Customer - 0. Holde]

PolicyiD c<PK=x
CustomarPOID <<FK=>
AL

IngertHoldsRow | event = inser,
drop date = Mar 15 2007 }

Transiticn Pariod

<<Agsociative Tables>

CustomarPOID <<PK== CustomerPOID <<FK>>

Mame PolicylD <<FK>x>

Policy

F'l,'}l.ll:.:lliD =z PK==
Armoaart

Resulling Schema

2. Deprecate the original column. Because we no longer maintain the relationship directly from
Policy to Customer, Policy.CustomerPOID must be marked for deletion at the end of the transition
period, because it is currently used to maintain the one-to-many relationship with Customer but

will no longer be needed.

3. Add a new index. A new index for Holds should be introduced via the Introduce Index (page

248) refactoring.

4. Introduce synchronization triggers. Policy will require a trigger that will populate the key
values in the Holds table, if the appropriate values do not already exist, during the transition
period. Similarly, there will need to be a trigger on Holds that verifies that Policy.CustomerPOID is

populated appropriately.

The code to add the Holds table, to add an index on Holds, to add the synchronization triggers, and

finally to drop the old schema and triggers is shown here:

CREATE TABLE Hol ds (
Cust oner PO D Bl G NT,
Pol i cyl D I NT,

)

CREATE | NDEX Hol dsl ndex ON Hol ds

(CustonerPA D, PolicylD);

CREATE OR REPLACE TRI GGER I nsert Hol dsRow
BEFORE | NSERT OR UPDATE OR DELETE
ON Policy
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEG N

I F updating THEN

Updat el nsert Hol ds;

END | F;

I F inserting THEN
Cr eat eHol ds;

END | F;

I F del eting THEN
RenoveHol ds;
END I F;
END;

/

CREATE OR REPLACE TRI GGER Updat ePol i cyCust oner PO D
BEFORE | NSERT OR UPDATE OR DELETE
ON Hol ds
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
BEG N
| F updating THEN
Updat el nsert Pol i cy;
END | F;
| F inserting THEN
Creat ePol i cy;
END | F;
| F del eting THEN
RenovePol i cy;
END | F;
END;
/

On Mar 15 2007

DROP TRI GGER | nsert Hol dsRow;

DROP TRI GGER Updat ePol i cyCust oner PO D;
ALTER TABLE cust oner

DROP COLUMWN bal ance;

Set a Naming Convention

There are two common naming conventions for associative tableseither assign the table
the same name as the original association, as we have done, or concatenate the two table
names, which would have resulted in CustomerPolicy for the name.

Data-Migration Mechanics

The associative table must be populated by copying the values of Policy.CustomerPOID and
Policy.PolicyID into Holds.CustomerPOID and Holds.PolicylD, respectively. This can be accomplished
via a simple SQL script, as follows:

| NSERT | NTO Hol ds (Cust omer PO D, Pol i cyl D)
SELECT Custoner PO D, Pol i cyl D FROM Pol i cy

Access Program Update Mechanics

To update external programs, you must do the following:

1. Remove updates to the foreign key. Any code to assign values to Policy.CustomerPOID
should be refactored to write to Holds to maintain the association properly.

2. Rework joins. Many external access programs will define joins involving Customer and Policy,
implemented either via hard-coded SQL or via meta data. These joins should be refactored to
work with Holds.

3. Rework retrievals. Some external programs will traverse the database one or more rows at a
time, retrieving data based on the key values, traversing from Policy to Customer. These
retrievals will need to be updated similarly.

The following code shows how to change your application code so that retrieval of data is now done via
a join using the associative table:

/] Bef ore code

stm . prepare(
"SELECT Custoner. Custoner PO D, Custoner.Nane, " +
"Policy.PolicylD, Policy. Amount " +
"FROM Cust oner, Policy" +
"WHERE Cust oner. Custoner PO D = Policy. CustomerPOD " +
"AND Custoner. CustonmerPOD = ? ");

stmt . setLong(1l, customer PO D);

ResultSet rs = stnt.executeQery();

/1 After code

stmt . prepare(
"SELECT Custoner. Custoner PO D, Custoner. Nane, " +
"Policy.PolicylD, Policy. Ambunt " +
"FROM Cust oner, Hol ds, Policy" +
"WHERE Cust oner. Customer PO D = Hol ds. CustonerPO D " +
“"AND Hol ds. Policyld = Policy.Policyld " +
"AND Custoner. CustonerPO D = ? ");

stmt . setLong(1l, customer PO D) ;

ResultSet rs = stnt.executeQery();

e rrc | NEXT

e rrey

Replace Surrogate Key With Natural Key

Replace a surrogate key with an existing natural key. This refactoring is the opposite of Introduce
Surrogate Key (page 85).

Motivation

There are several reasons to apply Replace Surrogate Key with Natural Key:

¢ Reduce overhead. When you replace a surrogate key with an existing natural key, you reduce
the overhead within your table structure of maintaining the additional surrogate key column(s).

e To consolidate your key strategy. To support Consolidate Key Strategy (page 168), you may
decide to first replace an existing surrogate primary key with the "official” natural key.

¢ Remove nonrequired keys. You may have discovered that a surrogate key was introduced to
a table when it really was not needed. It is always better to remove unused indexes to improve
performance.

Potential Tradeoffs

Although many data professionals debate the use of surrogate versus natural keys, the reality is that
both types of keys have their place. When you have tables with natural keys, each external
application, as well as the database itself, must access data from each table in its own unique way.
Sometimes, the key will be a single numeric column, sometimes a single character column, or
sometimes a combination of several columns. With a consistent surrogate key strategy, tables are
accessed in the exact same manner, enabling you to simplify your code. Thus, by replacing a
surrogate key with a natural key, you potentially increase the complexity of the code that accesses
your database. The primary advantage is that you simplify your table schema.

Schema Update Mechanics

Applying Replace Surrogate Key With Natural Key can be complicated because of the coupling that the
surrogate key is potentially involved with. Because it is a primary key of a table, it is likely that it also
forms (part of) foreign keys within other tables. You will need to do the following:

1. ldentify the column(s) to form the new primary key. In Figure 6.16, this is StateCode.
(This could be several columns.) StateCode must have a unique value within each row for it to
qualify to be a primary key.

Figure 6.16. Replacing a surrogate key with a natural key.

[View full size image]

Address
State
Streal
City 0.* 1 StatePOID «<PK>> <<Surrogates:=
StalePOID <<FK=> StateCode
PostCode MName
CountryCode <<FKs=x
Qriginal Schema
Address
Street State
City
: . StatePOID
btaw;fi;ﬂ ':";;K:jum S 0 1 [drop date = June 14 2007}
P % I StateCode <<PK>> <<Natural>>
StateCode <<FK>> Flarng
PostCode
CountryCode <<FK>>
PopulateStateCode { event = insart,
drop date = June 14 2007 } Teansition Pedod
Address
Streat State
City v 1
StateCode <<FKs> ﬁ’;antiﬂade <cPK>> ccNatural>»
PostCode : a
RN St Tt Rasulting Schema

2. Add a new index. If one does not already exist, a new index based on StateCode needs to be
introduced for State.

3. Deprecate the original column. StatePOID must be marked for deletion at the end of the
transition period.

4. Update coupled tables. If StatePOID is used in other tables as part of a foreign key, you will
want to update those tables to use the new key. You must remove the column(s) using Drop
Column (page 172), which currently corresponds to StatePOID. You also need to add new
column(s) that correspond to StateCode if those columns do not already exist. The corresponding
index definition(s) need to be updated to reflect this change. When StatePOID is used in many
tables, you may want to consider updating the tables one at a time to simplify the effort.

5. Update and possibly add RI triggers. Any triggers that exist to maintain referential integrity
between tables must be updated to work with the corresponding StateCode values in the other
tables.

Figure 6.16 depicts how to remove State.StatePOID, a surrogate key, replacing it with the existing
State.StateCode as key. To support this new key, we must add the PopulateStateCode trigger, which
is invoked whenever an insert occurs in Address, obtaining the value of State.StateCode.

CREATE OR REPLACE TRI GGER Popul at eSt at eCode

BEFORE | NSERT
ON Address
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEGA N
I F : NEW St at eCode |'S NULL THEN
: NEW St at eCode : = get St at ePO DFr onfst at e(St at ePA D) ;
END | F;
END,;
/

ALTER TABLE Address ADD (CONSTRAI NT
Addr essToSt at eFor ei gnKey FOREI GN KEY (St at eCode)
REFERENCES St at e;

June 14 2007

ALTER TABLE Address DROP CONSTRAI NT

Addr essToSt at eFor ei gnKey;

ALTER TABLE State DROP CONSTRAI NT St atePri maryKey;

ALTER TABLE State MODI FY StateCode NOT NULL;

ALTER TABLE State ADD CONSTRAI NT St at ePri mar yKey
PRI MARY KEY (St at eCode);

DROP TRI GGER Popul at eSt at eCode;

Data-Migration Mechanics

There is no data to migrate for this database refactoring.

Access Program Update Mechanics

To update external access programs, you need to do the following:

1. Remove surrogate key code. The code to assign values to the surrogate key column (which
may be implemented either within external applications or the database) should no longer be
invoked. It may not even be needed any longer at all.

2. Joining based on the new key. Many external access programs will define joins involving
State, implemented either via hard-coded SQL or via meta data. These joins should be refactored
to work with StateCode, not StatePOID.

3. Retrievals based on the new key. Some external programs will traverse the database one or
more rows at a time, retrieving data based on the key values. These retrievals must be updated
similarly.

The following hibernate mappings show how the referenced tables must refer to the new keys, and
how the POID columns are no longer generated:

/ | Bef or e mappi ng
<hi ber nat e- mappi ng>
<cl ass nane="State" tabl e="STATE">
<id nane="id" col um="STATEPO D'>
<generator class="ldGenerator"/>
</id>
<property nanme="st at eCode" />

<property nanme="nane" />
</ cl ass>
</ hi ber nat e- mappi ng>

<hi ber nat e- mappi ng>
<cl ass nane="Address" tabl e=" ADDRESS" >
<id nane="id" col um="ADDRESSI D' >
<generator class="IdCGenerator"/>
</id>
<property nanme="streetline" />
<property name="city" />
<property nane="postal Code" />
<many-to-one name="state" class="State"
col um="STATEPO D' not-nul |l ="true"/>
<many-to-one nane="country" class="Country"
col utm="COUNTRYI D' not-null="true"/>
</ cl ass>
</ hi ber nat e- mappi ng>

/1 After mapping

<hi ber nat e- mappi ng>

<cl ass nanme="State" tabl e="STATE">
<property name="st at eCode" />
<property name="nane" />

</cl ass>

</ hi ber nat e- mappi ng>

<hi ber nat e- mappi ng>
<cl ass nanme="Address" tabl e=" ADDRESS" >
<id nane="id" col um="ADDRESSI D' >
<generator class="IdGenerator"/>
</id>
<property nanme="streetlLine" />
<property name="city" />
<property name="post al Code" />
<many-to-one name="state" class="State"
col utm="STATECODE" not-nul |l ="true"/>
<many-to-one nane="country" class="Country"
col um="COUNTRYI D' not-null="true"/>
</cl ass>
</ hi ber nat e- mappi ng>

MEXT B

e rrey

Split Column

Split a column into one or more columns within a single table.

Note

If one or more of the new columns needs to appear in another table, first apply Split Column and tl
Column (page 103).

Motivation

There are two reasons why you may want to apply Split Column. First, you have a need for fine-grainec
Customer table has a Name column, which contains the full name of the person, but you want to split tt
store FirstName, MiddleName, and LastName as independent columns.

Second, the column has several uses. The original column was introduced to track the Account status, a
using it to track the type of Account. For example, the Account.Status column contains the status of the
Closed, OverDrawn, and so on). Unknowingly, someone else has also started using it for account type ir
Checking, Savings, and so on. We need to split these usages into their own fields to avoid introduction c
usage.

Potential Tradeoffs

This database refactoring can result in duplication of data when you split columns. When you split a colt
used for different purposes, you run the risk that you should in fact be using the new columns for same
discover that you need to apply Merge Columns.) The usage of a column should determine whether it st

Schema Update Mechanics

To perform Split Column, you must first introduce the new columns. Add the column to the table via the
COLUMN. In Figure 6.17, this is FirstName, MiddleName, and LastName. This step is optional because
use one of the existing columns into which to split the data. Then you must introduce a synchronization
columns remain in sync with one another. The trigger must be invoked by any change to the columns.

Figure 6.17. Splitting the Customer.Name column.

Customer

CustomeriD
MName
PhoneMumber

Original Schema

Customer
CustomeriD
Mame {drop date = June 14 2007
FirstName
MiddleMame
LastName

PhoneMumber

SynchronizeCustomerMame
{ event = update | insert, drop date = June 14 2007 }

Transition Pariod

Customer

CuslomerlD
FirstName
MiddleName
LastMame
PhonaMumber

Resulting Schema

Figure 6.17 depicts an example where the Customer table initially stores the name of a person in the co
we have discovered that few applications are interested in the full name, but instead need components «
particular the last name of the customer. We have also discovered that many applications include duplic
Name column, a source of potential bugs. Therefore, we have decided to split the Name column into Fir:
LastName columns, reflecting the actual usage of the data. We introduced the SynchronizeCustomerNar
values in the columns synchronized. The following code implements the changes to the schema:

[View full width] ALTER TABLE Custoner ADD First Name VARCHAR(40);

COMMVENT ON Customer. FirstName ' Added as the result of splitting Custoner.Nane final dat
Decenber 14 2007';

ALTER TABLE Customner ADD M ddl eNarme VARCHAR(40);

COMMENT ON Cust omer. M ddl eNanme ' Added as the result of splitting Customer.Nanme final da
Decenber 14 2007';

ALTER TABLE Custoner ADD Last Nane VARCHAR(40);

COMMENT ON Custoner. LastNane ' Added as the result of splitting Custoner.Nane final date
Checenmber
14 2007';

COMMENT ON Cust oner. Nane ' Replaced with FirstNane,
Last Name and M ddl eNane, will be dropped Decenber 14 2007';

Trigger to keep all the split colums in sync
CREATE OR REPLACE TRI GGER Synchr oni zeCust omer Nane
BEFORE | NSERT OR UPDATE
ON Cust oner
REFERENCI NG OLD AS OLD NEW AS NEW

FOR EACH ROW
DECLARE
BEG N
IF :NEWFirstName IS NULL THEN
: NEW Fi rst Nane : = getFirst Narme(Nane) ;
END | F;
| F : NEW M ddl eNanme |'S NULL THEN
: NEW M ddl eName : = get M ddl eNane(Nane) ;
END | F;
I F : NEW Last Nane |'S NULL THEN
: NEW Last Name : = get Last Nanme(Nane) ;
END | F;
END;
/

On Decenber 14 2007
ALTER TABLE Custoner DROP COLUWN Nare;
DROP TRI GGER Synchr oni zeCust oner Nane;

Data-Migration Mechanics

You must copy all the data from the original column(s) into the split columnsin this case, from Custome!
MiddleName, and, LastName. The following code depicts the DML to initially split the data from Name in
(The source code for the three stored functions that are invoked are not shown for the sake of brevity.)

[View full width]/*One-tinme mgration of data from Custoner. Name to Custoner. FirstNanme
Jand

Cust oner. Last Nane. When both set of colums are active, there is a need to have a trig
keeps both set of columms in sync

*/

UPDATE Custoner SET FirstNane = getFirst Nane(Nane) ;
UPDATE Customer SET M ddl eNane = get M ddl eName(Name) ;
UPDATE Custoner SET LastNanme = get Last Nane(Nane);

Access Program Update Mechanics

You need to analyze the access programs thoroughly, and then update them appropriately, during the t
addition to the obvious need to work with FirstName, MiddleName, and LastName rather than the forme
updates you need to make are as follows:

1. Remove splitting code. There may be code that splits the existing columns into a data attribute s
columns. This code should be refactored and potentially removed entirely.

2. Update data-validation code to work with split data. Some data-validation code may exist thz
the columns have not been split. For example, if a value is stored in the Customer.Name column, yt
code in place that verifies that the values contain the FirstName and LastName. After the column is
longer be a need for this code.

3. Refactor the user interface. After the original column is split, the presentation layer should makse
data, if it was not doing so already, as appropriate.

The following code shows how the application makes use of the finer-grained data available to it:

// Before code

public Custoner findByCustonerlD(Long custonerlD) {
Cust omer custonmer = new Custoner();
stm = DB.prepare("SELECT Custoner|ID, "+
"Name, PhoneNunber " +
"FROM Cust onmer " +
"WHERE Custoner|ID = ?");
stm.setlLong(l, custonerlD);
stm . execute();
ResultSet rs = stnt.executeQery();
if (rs.next()) {
cust oner. set Custonerl d(rs. get Long(" Customer| D"));
String name = rs.getString("Name");
cust omer. set Fi r st Nane(get Fi r st Nane(nane)) ;
cust oner . set M ddl eNarre(get M ddl eName(nane)) ;
cust omer . set Last Nane(get M ddl eNane(nane)) ;
cust oner . set PhoneNunber (rs. get St ri ng(" PhoneNunber"));
}

return custoner;

}

/1 After code

public Customer findByCustonerlD(Long custonerlD) ({

Cust omer custonmer = new Custoner();

stm = DB.prepare("SELECT CustonerI D, "+

"FirstName, M ddl eNane, LastNane, PhoneNunber " +

"FROM Cust omer " +

"WHERE CustonerlD = ?");

stmt.setlLong(l, custonerlD);

stm . execute();

ResultSet rs = stnt.executeQery();

if (rs.next()) {
cust omer. set Custoner 1 d(rs. get Long(" Custonerl D"));
customer.set First Name(rs. getString("FirstNane"));
customer. set M ddl eName(rs. getString("M ddl eNane")) ;
customer. set Last Nane(rs. get String("Last Nanme"));
cust oner . set PhoneNunber (rs. get Stri ng(" PhoneNunber ")) ;

}

return customer;

}

e prey NEXT B

e rrey

Split Table

Vertically split (for example, by columns) an existing table into one or more tables.

Note

If the destination of the split columns happens to be an existing table, then in reality you would be
Column(s) (page 103). To split a table horizontally (for example, by rows), apply Move Data (page

Motivation

There are several reasons why you may want to apply Split Table:

¢ Performance improvement. It is very common for most applications to require a core collection
any given entity, and then a specific subset of the noncore data attributes. For example, the core «
Employee table would include the columns required to store their name, address, and phone numt
columns would include the Picture column as well as salary information. Because Employee.Picture
only by a few applications, you would want to consider splitting it off into its own table. This would
retrieval access times for applications that select all columns from the Employee table yet do not ri

¢ Restrict data access. You may want to restrict access to some columns, perhaps the salary infor
Employee table, by splitting it off into its own table and assigning specific security access control (!

¢ Reduce repeating data groups (apply 1NF). The original table may have been designed when
yet finalized, or by people who did not appreciate why you need to normalize data structures (Dat
For example, the Employee table may store descriptions of the five previous evaluation reviews foi
information is a repeating group that you would want to split off into an Employee-Evaluation table

Potential Tradeoffs

When you split a table that (you believe) is used for different purposes, you run the risk that you would
new tables for same things; if so, you will discover that you need to apply Merge Tables (page 96). The
determine whether it should be split.

Schema Update Mechanics

To perform Split Table, you must first add the table(s) via the SQL command CREATE TABLE. This stef
you may find it possible to use an existing table(s) into which to move the columns. In this situation, yo
apply the Move Column refactoring (page 103). Second, you must introduce a trigger to ensure that the
synchronized with one another. The trigger must be invoked by any change to the tables. You need to it
that cycles do not occur.

Figure 6.18 depicts an example where the Address table initially stores the address information along w
state name. To reduce data duplication, we have decided to split Address table into Address and State t
current refactor of the table design. We introduced the SynchronizeWithAddress and SynchronizeWithSt
values in the tables synchronized:

Figure 6.18. Splitting the Address table.

[View full size image]

StateCode <<FK>>
StateMName {drop date = March 14 2007]

Addrass
Addrass|D «<PK>>
Streel
City
StateCode
StateM
crame Original Schema
Address
AddrassiD <<PK>> State
el StateCode <<PK>>
City

MName

SynchronizeWithState
{ event = update | delete | insert,
drop date = March 14 2007 }

SynchronizeWithAddress
[event = update | delete | insert,
drop date = March 14 2007 }

Transition Period

Addrass
AddrassiD <<PR>=
Straet
City

StateCode c<FK>>

State

StateCode <<PK>>
Name

[View full width] CREATE TABLE State (
St at eCode VARCHAR(2) NOT NULL,
Name VARCHAR(40) NOT NULL,
CONSTRAI NT PKSt at e
PRI MARY KEY (St at eCode)

)

Resulting Schema

COMMENT ON State.Nane 'Added as the result of splitting Address into Address and State

Ldrop date
= Decenber 14 2007';

Trigger to keep all the split tables in sync
CREATE OR REPLACE TRI GGER Synchroni zeW t hAddr ess
BEFORE | NSERT OR UPDATE
ON Addr ess
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEG N
| F updating THEN
Fi ndOr Creat eSt at e;
END | F;
I F inserting THEN
CreateSt at e;
END | F;
END;
/

CREATE OR REPLACE TRI GGER Synchroni zeWthState
BEFORE UPDATE OF St at enane

ON State
REFERENCI NG OLD AS OLD NEW AS NEW
FOR EACH ROW
DECLARE
BEG N
| F updati ng THEN
Fi ndAndUpdat eAl | Addr essesFor St at eNane;
END | F;
END;
/

On Decenber 14 2007

ALTER TABLE Address DROP COLUWN St at eNane;
DROP TRI GGER Synchr oni zeW t hAddr ess;

DROP TRI GGER Synchroni zeWt hSt at e;

Data-Migration Mechanics

You must copy all the data from the original column(s) into the new table's columns. In the case of Figu
from Address.StateCode and Address.StateName into State.StateCode and State.Name, respectively. Tl
how to initially migrate this data:

[View full width]/*One-time migration of data from Address. St at eCode and Address. State
Choth set

of colums are active, there is a need to have a trigger that keeps both set of colum
Cdync

*/

I NSERT | NTO State (StateCode, Nane)
SELECT St at eCode, St at eNane FROM Addr ess
VWHERE St ateCode |'S NOT NULL AND StateNane |'S NOT NULL
GROUP BY St at eCode, StateNane;

Access Program Update Mechanics

You must analyze the access programs thoroughly, and then update them appropriately, during the trar
addition to the obvious need to work with the new columns rather than the former columns, potential uj
make are as follows:

1. Introduce new table meta data. If you are using a meta data-based persistence framework, yol
meta data for State and change the meta data for Address.

2. Update SQL code. Similarly, any embedded SQL code that accesses Address must be updated to j
appropriate. This may slightly reduce performance of this code.

3. Refactor the user interface. After the original table is split, the presentation layer should make u
data, if it was not doing so already, as appropriate.

The following hibernate mappings show how we split the Address table and create a new State table:

/ 1 Bef or e mappi ng
<hi ber nat e- mappi ng>
<cl ass nanme="Address" tabl e=" ADDRESS" >
<id nane="id" col um="ADDRESSI D' >
<generator class="IdCenerator"/>

</id>
<property nane="street" />
<property nanme="city" />
<property name="st at eCode" />
<property nane="stat eNane" />
</cl ass>
</ hi ber nat e- nappi ng>
/1 After mapping

/1 Address table
<hi ber nat e- mappi ng>
<cl ass nanme="Address" tabl e=" ADDRESS" >
<id nane="id" col unm="ADDRESSI D' >
<generator class="IdGenerator"/>
</id>
<property nane="street" />
<property name="city" />
<many-to-one name="state" class="State"
col um="STATECODE" not-nul |l ="true"/>
</ cl ass>
</ hi ber nat e- mappi ng>

/[l State table
<hi ber nat e- mappi ng>
<cl ass nane="State" tabl e="STATE">
<i d nane="st at eCode" col um="st at eCode" >
<gener ator cl ass="assi gned"/>
</id>
<property nane="stat eNane" />
</cl ass>
</ hi ber nat e- mappi ng>

e rrc | NEXT

e rrey

Chapter 7. Data Quality Refactorings

Data quality refactorings are changes that improve the quality of the information contained within a
database. Data quality refactorings improve and/or ensure the consistency and usage of the values
stored within the database. The data quality refactorings are as follows:

e Add Lookup Table

e Apply Standard Codes

e Apply Standard Type

e Consolidate Key Strategy

e Drop Column Constraint

e Drop Default Value

e Drop Non-Nullable Constraint

¢ Introduce Column Constraint

¢ Introduce Common Format

¢ Introduce Default Value

¢ Make Column Non-Nullable

e Move Data

¢ Replace Type Code With Property Flags

e rrc | NEXT

e rrey

Common Issues When Implementing Data Quality
Refactorings

Because data quality refactorings change the values of the data stored within your database, several
issues are common to all of them. As a result, you need to do the following:

1. Fix broken constraints. You may have constraints defined on the affected data. If so, you can
apply Drop Column Constraint (page 172) to first remove the constraint and then apply Introduce
Column Constraint (page 180) to add the constraint back, reflecting the values of the improved
data.

2. Fix broken views. Views will often reference hard-coded data values in their WHERE clauses,
usually to select a subset of the data. As a result, these views may become broken when the
values of the data change. You will need to find these broken views by running your test suite and
by searching for view definitions that reference the columns in which the changed data is stored.

3. Fix broken stored procedures. The variables defined within a stored procedure, any
parameters passed to it, the return value(s) calculated by it, and any SQL defined within it are
potentially coupled to the values of the improved data. Hopefully, your existing tests will reveal
business logic problems arising from the application of any data quality refactorings; otherwise,
you will need to search for any stored procedure code accessing the column(s) in which the
changed data is stored.

4. Update the data. You will likely want to lock the source data rows during the update, affecting
performance and availability of the data for the application(s). You can take two strategies to do
this. First, you can lock all the data and then do the updates at that time. Second, you can lock
subsets of the data, perhaps even just a single row at a time, and do the update just on the
subset. The first approach ensures consistency but risks performance degradation with large
amounts of dataupdating millions of rows can take time, preventing applications from making
updates during this period. The second approach enables applications to work with the source
data during the update process but risks inconsistency between rows because some will have the
older, "low-quality" values, whereas other rows will have been updated.

e prey NEXT B

e rrey

Add Lookup Table

Create a lookup table for an existing column.

Motivation

There are several reasons why you may want to apply Add Lookup Table:

¢ Introduce referential integrity. You may want to introduce a referential integrity constraint
on an existing Address.State to ensure the quality of the data.

e Provide code lookup. Many times you want to provide a defined list of codes in your database
instead of having an enumeration in every application. The lookup table is often cached in
memory.

¢ Replace a column constraint. When you introduced the column, you added a column
constraint to ensure that a small number of correct code values persisted. But, as your
application(s) evolved, you needed to introduce more code values, until you got to the point
where it was easier to maintain the values in a lookup table instead of updating the column
constraint.

e Provide detailed descriptions. In addition to defining the allowable codes, you may also want
to store descriptive information about the codes. For example, in the State table, you may want
to relate the code CA to California.

Potential Tradeoffs

There are two issues to consider when adding a lookup table. The first is data populationyou need to
be able to provide valid data to populate the lookup table. Although this sounds simple in practice, the
implication is that you must have an agreement as to the semantics of the existing data values in
Address.State of Figure 7.1. This is easier said than done. For example, in the case of introducing a
State lookup table, some applications may work with all 50 U.S. states, whereas others may also
include the four territories (Puerto Rico, Guam, the District of Columbia, and the U.S. Virgin Islands).
In this situation, you may either need to add two lookup tables, one for the 50 states and the other for
the territories, or implement a single table and then the appropriate validation logic within applications
that only need a subset of the lookup data.

Figure 7.1. Adding a State lookup table.

Address

Street char (40)
State char (2)

PostCode char (15)
Original Schema
Addrass State
Street char {40) 0.* 1
State char (2) <<FK>> —m—ouou = rsqtate [:E‘;.Iar {zg;{FK}}
PostCode char (15) B CHAr 0)

Resulting Schema

The second issue is that there will be a performance impact resulting from the addition of a foreign
key constraint. (See the refactoring Add Foreign Key Constraint on page 204 for details.)

Schema Update Mechanics

As depicted in Figure 7.1, to update the database schema, you must do the following:

1. Determine the table structure. You must identify the column(s) of the lookup table (State).
2. Introduce the table. Create State in the database via the CREATE TABLE command.

3. Determine lookup data. You have to determine what rows are going to be inserted in the
State. Consider applying the Insert Data refactoring (page 296).

4. Introduce referential constraint. To enforce referential integrity constraints from the code
column in the source table(s) to State, you must apply the Add Foreign Key refactoring.

The following code depicts the DDL to introduce the State table and add a foreign key constraint
between it and Address:

Create the | ookup table.
CREATE TABLE State (
State CHAR(2) NOT NULL,
Name CHAR(50),
CONSTRAI NT PKSt at e
PRI MARY KEY (St ate)

)

Introduce Foreign Key to the | ookup table
ALTER TABLE Address ADD CONSTRAINT FK Address_State
FORElI GN KEY (State) REFERENCES St ate;

Data-Migration Mechanics

You must ensure that the data values in Address.State have corresponding values in State. The
easiest way to populate State.State is to copy the unique values from Address.State. With this
automated approach, you need to remember to inspect the resulting rows to ensure that invalid data
values are not introducedif so, you need to update both Address and State appropriately. When there

are descriptive information columns, such as State.Name, you must provide the appropriate values;
this is often done manually via a script or a data-administration utility. An alternative strategy is to
simply load the values into the State table from an external file.

The following code depicts the DDL to populate the State table with distinct values from the
Address.State column. We then cleanse the data, in this case ensuring that all addresses use the code
TX instead of Tx or tx or Texas. The final step is to provide state names corresponding to each state
code. (In the example, we populate values for just three states.)

Popul ate data in the | ookup table
I NSERT | NTO State (State)
SELECT DI STI NCT UPPER(St ate) FROM Address;

Updat e the Address. StateCode to valid val ues and
cl ean data

UPDATE Address SET State = 'TX WHERE
UPPER(State) ='TX ;

Now provi de state nanes
UPDATE State SET Nane
UPDATE State SET Nanme
UPDATE State SET Nane

"Florida" WHERE State='FL';
"I'llinois' WHERE State="IL";
"California'" WHERE State='CA';

Access Program Update Mechanics

When you add State, you have to ensure that external programs now use the data values from the
lookup table. The following code shows how external programs can now get the name of the state
from the State table; in the past, they would have to get this information from an internally hard-
coded collection:

/] After code
ResultSet rs = statenent.executeQuery(
"SELECT State, Name FROM State");

Some programs may choose to cache the data values, whereas others will access State as
neededcaching works well because the values in State rarely change. Furthermore, if you are also
introducing a foreign key constraint along with Lookup Table, external programs will need to handle
any exceptions thrown by the database. See the Add Foreign Key refactoring (page 204) for details.

e rrcy | NEXT

e rrey

Apply Standard Codes

Apply a standard set of code values to a single column to ensure that it conforms to the values of
similar columns stored elsewhere in the database.

Motivation

You may need to apply Apply Standard Codes to do the following:

¢ Cleanse data. When you have the same semantic meaning for different code values in your
database, it is generally better to standardize them so that you can apply standard logic across
all data attributes. For example, in Figure 7.2, when the values in Country.Code is USA and
Address.CountryCode is US, you have a potential problem because you can no longer accurately
join the two tables. Apply a consistent value, one or the other, throughout your database.

Figure 7.2. Applying standard state codes.

[View full size image]

Baloenn] AB
I
Addross 1 Afcirass
syl City State | CounbryCode] Stroat City State | CountryCods
123 Main St Barington OM CAN : 123 Main 351 Bonington oM ca
458 Flm 52 Hukran A LISA 4ZE Elm 58 Hisckdon A us
4321 Oak Lane M Tork NY LS : 4321 Ok Lang Mgw vark M Us
Coundry I Couritry
CavnbryCoda Maien 1 CountryCods sty
CAN Canada | |ca Canada
LIS A Unifed Stmtes I |us Unied Siates
1
]

e Support referential integrity. When you want to apply Add Foreign Key Constraint (page 204)
to tables based on the code column, you need to standardize the code values first.

¢ Add a lookup table. When you are applying Add Lookup Table (page 153), you often need to
first standardize the code values on which the lookup is based.

e Conform to corporate standards. Many organizations have detailed data and data modeling
standards that development teams are expected to conform to. Often when applying Use Official
Data Source (page 271), you discover that your current data schema does not follow your
organization's standards and therefore needs to be refactored to reflect the official data source
code values.

¢ Reduce code complexity. When you have a variety of values for the semantically same data,
you will be writing extra program code to deal with the different values. For example, your
existing program code of countryCode = 'US' || countryCode = 'USA'. . . would be simplified to
something like country Code = 'USA'.

Potential Tradeoffs

Standardizing code values can be tricky because they are often used in many places. For example,

several tables may use the code value as a foreign key to another table; therefore, not only does the
source need to be standardized but so do the foreign key columns. Second, the code values may be
hard-coded in one or more applications, requiring extensive updates. For example, applications that
access the Country table may have the value USA hard-coded in SQL statements, whereas
applications that use the Address table have US hard-coded.

Schema Update Mechanics

To Apply Standard Codes to the database schema, you must do the following:

1. ldentify the standard values. You need to settle on the "official" values for the code.
Are the values being provided from existing application tables or are they being provided by your
business users? Either way, the values must be accepted by your project stakeholder(s).

2. ldentify the tables where the code is stored. You must identify the tables that include the
code column. This may require extensive analysis and many iterations before you discover all the
tables where the code is used. Note that this refactoring is applied a single column at a time; you
will potentially need to apply it several times to ensure consistency across your database.

3. Update stored procedures. When you standardize code values, the stored procedures that
access the affected columns may need to be updated. For example, if getUSCustomerAddress has
the WHERE clause as Address.CountryCode="USA", this needs to change to
Address.CountryCode="US".

Data-Migration Mechanics

When you standardize on a particular code, you must update all the rows where there are
nonstandard codes to use the standard ones. If you are updating small numbers of rows, a simple SQL
script that updates the target table(s) is sufficient. When you have to update large amounts of data,
or in cases where the code in transactional tables is being changed, apply Update Data (page 310)
instead.

The following code depicts the DML to update data in the Address and Country tables to use the
standard code values:

UPDATE Address SET CountryCode = 'CA" WHERE CountryCode = ' CAN ;
UPDATE Address SET CountryCode = 'US' WHERE CountryCode = ' USA';
UPDATE Country SET CountryCode = 'CA'" WHERE CountryCode = ' CAN ;
UPDATE Country SET CountryCode = 'US' WHERE CountryCode = ' USA';

Access Program Update Mechanics

When Apply Standard Codes is applied, the following aspects of external programs must be examined:

1. Hard-coded WHERE clauses. You may need to update SQL statements to have the correct
values in the WHERE clause. For example, if the Country.Code row values changes from 'US' to
'USA', you will have to change your WHERE clause to use the new value.

2. Validation code. Similarly, you may need to update source code that validates the values of
data attributes. For example, code that looks like countryCode = 'US' must be updated to use the
new code value.

3. Lookup constructs. The values of codes may be defined in various programming "lo