
1 |

Java: How To Program

Mix Edition

2 |

Introduction to Computers & Java

Objectives

In this chapter we’ll

 Introduction to Computer Hardware & Software.

 Data Hierarchy

 Computer Organization

 Computer Languages

 Introduction to Object Oriented Programming

3 |

1.1- Introduction to Computer Hardware & Software

Computer:

A computer is a device that can perform computations and make logical decisions phenomenally

faster than human beings can.

Program:

Computers process data under the control of sets of instructions called computer programs.

Programmer:

These programs guide the computer through orderly sets of actions specified by people called

computer programmers.

Software:

The programs that run on a computer are referred to as software.

Moore’s Law:

Moore's law refers to an observation made by Intel co-founder Gordon Moore in 1965. He noticed

that the number of transistors per square inch on integrated circuits had doubled every year since

their invention. Moore's law predicts that this trend will continue into the foreseeable future.

Computer Organization

Chapter#1: Introduction to Computers and Java

4 |

Computer Languages:

Following are the programming languages used by the programmers.

 Machine Language

 Assembly Language

 High-Level Languages

1.2- Object Oriented Programming & Designing

Object-oriented programming (OOP) is a programming language model organized around

objects rather than "actions" and data rather than logic. Historically, a program has been viewed

as a logical procedure that takes input data, processes it, and produces output data.

Objects:

Object refers to a particular instance of a class where the object can be a combination of variables,

functions, and data structures. An object is referred to the instance of the class.

Methods & Class:

A function is independent and not associated with a class. Object-oriented programming uses a

number of core concepts: abstraction, encapsulation, inheritance and polymorphism. These

concepts are implemented using classes, objects and methods.

Attributes and Instance Variables:

In object-oriented programming with classes, an instance variable is a variable defined in a class

(i.e. a member variable), for which each instantiated object of the class has a separate copy,

or instance. An instance variable is similar to a class variable.

Variables are properties an object knows about itself.

Encapsulation:

Encapsulation is an Object Oriented Programming concept that binds together the data and

functions that manipulate the data, and that keeps both safe from outside interference and misuse

(Data Hiding).

Chapter#1: Introduction to Computers and Java

5 |

Inheritance:

In object-oriented programming, inheritance is when an object or class is based on another object

or class, using the same implementation or specifying a new implementation to maintain the same

behavior.

1.3- Object-oriented analysis and design (OOAD):

Object-oriented analysis and design (OOAD) is a popular technical approach for

analyzing, designing an application, system, or business by applying the object-oriented paradigm

and visual modeling throughout the development life cycles to foster better stakeholder

communication and product quality.

1.4- The UML (Unified Modeling Language):

The Unified Modeling Language (UML) is a general-purpose, developmental, modeling language

in the field of software engineering that is intended to provide a standard way to visualize the

design of a system.

Chapter#1: Introduction to Computers and Java

6 |

Introduction to Java Applications

Objectives

In this chapter we’ll learn

 To write simple Java applications.

 To use input and output statements.
 Java’s primitive types.

 To use arithmetic operators.

 The precedence of arithmetic operators

 To write decision-making statements.

 To use relational and equality operators

7 |

2.1- Your First Program in Java: Printing a Line of Text

Commenting Your Program:

We insert comments to document programs and improve their readability. The Java compiler

ignores comments, so they do not cause the computer to perform any action when

the program is run.

The commenting of the program line is done by using ‘//’.For example

// Text-printing program.

Declaring a Class:

Every Java program consists of at least one class that you (the programmer) define. The class

keyword introduces a class declaration and is immediately followed by the class name.eg.

public class Welcome1

Declaring a Method:

public static void main (String[] args) is the starting point of every Java application. The

parentheses after the identifier main indicate that it’s a program building block called a method.

Java class declarations normally contain one or more methods.

Performing Output with System.out.println:

System.out.println ("Welcome to Java Programming!") Instructs the computer to perform an

action—namely, to print the string of characters contained between the double quotation marks

(but not the quotation marks themselves).

Implementation:

// Text-printing program.

public class Welcome1

 {

 // main method begins execution of Java application

 public static void main(String[] args)

 {

 System.out.println("Welcome to Java Programming!");

 } // end method main

 } // end class Welcome1
Output: Welcome to Java Programming!

Chapter#2: Introduction to Java Application

8 |

2.2- Modifying Your First Program in Java

Displaying a Single Line of Text with Multiple Statements:

Implementation:

2.3- Displaying Text with printf:

Displaying Multiple Lines of Text with a Single Statement:

// Text-printing program.

public class Welcome1

 {

 // main method begins execution of Java application

 public static void main(String[] args)

 {

 System.out.print("Welcome to ");

System.out.println("Java Programming!")

} // end method main

 } // end class Welcome1

Output: Welcome to Java Programming!

// Text-printing program.

public class Welcome1

 {

 // main method begins execution of Java application

 public static void main(String[] args)

 {
 System.out.println("Welcome\n to\n Java\n Programming!");

} // end method main

 } // end class Welcome1

Output:
 Welcome

 to

 Java

 Programming!

Chapter#2: Introduction to Java Application

9 |

System.out.printf ("%s\n%s\n","Welcome to", "Java Programming!");

 // Displaying multiple lines with method System.out.printf.

public class Welcome4

 {

 // main method begins execution of Java application

 public static void main(String[] args)

 {

System.out.printf("%s\n%s\n","Welcome to", "Java Programming!");

 } // end method main

 } // end class Welcome4
Output:
Welcome to

Java Programming!

2.4- Another Application (Adding Integers):

Declaring & Creating a Scanner to Obtain User Input from the Keyboard:

A variable is a location in the computer’s memory where a value can be stored for use later

in a program. All Java variables must be declared with a name and a type before they can

be used. A variable’s name enables the program to access the value of the variable in memory. A

variable’s name can be any valid identifier.

Scanner input = new Scanner(System.in);

is a variable declaration statement that specifies the name (input) and type (Scanner) of

a variable that’s used in this program. A Scanner enables a program to read data (e.g.,

numbers and strings) for use in a program. The data can come from many sources, such

as the user at the keyboard or a file on disk. Before using a Scanner, you must create it and

specify the source of the data.

Using Variables in a Calculation:

sum = number1 + number2; // add numbers then store total in sum

is an assignment statement that calculates the sum of the variables number1 and number2 then

assigns the result to variable sum by using the assignment operator, =. The statement is read

Chapter#2: Introduction to Java Application

10 |

as “sum gets the value of number1 + number2.”

Implementation:

// Addition program that displays the sum of two numbers.

import java.util.Scanner; // program uses class Scanner

public class Addition

 {

 // main method begins execution of Java application

 public static void main(String[] args)

{

 // create a Scanner to obtain input from the command window

Scanner input = new Scanner(System.in);

int number1; // first number to add

int number2; // second number to add

int sum; // sum of number1 and number2

System.out.print("Enter first integer: "); // prompt

number1 = input.nextInt(); // read first number from user

System.out.print("Enter second integer: "); // prompt

number2 = input.nextInt(); // read second number from user

sum = number1 + number2; // add numbers, then store total in sum

System.out.printf("Sum is %d\n", sum); // display sum

} // end method main

 } // end class Addition

Output:
Enter first integer: 45

Enter second integer: 72

Sum is 117

2.5 Airthematic Operators

Chapter#2: Introduction to Java Application

11 |

Rules of Operator Precedence:

Following are the rules of operator precedence.

1. Multiplication, division and remainder operations are applied first. If an expression

contains several such operations, they’re applied from left to right. Multiplication, division

and remainder operators have the same level of precedence.

2. Addition and subtraction operations are applied next. If an expression contains several

such operations, the operators are applied from left to right. Addition and subtraction

operators have the same level of precedence.

Decision Making Equality and Relational Operators:

Implementation:

 // Compare integers using if statements, relational operators

 // and equality operators.

 import java.util.Scanner; // program uses class Scanner

public class Comparison

 {

 // main method begins execution of Java application

 public static void main(String[] args)

 {

 // create Scanner to obtain input from command line

 Scanner input = new Scanner(System.in);

 int number1; // first number to compare

 int number2; // second number to compare

 System.out.print("Enter first integer: "); // prompt

 number1 = input.nextInt(); // read first number from user

Chapter#2: Introduction to Java Application

12 |

 System.out.print("Enter second integer: "); // prompt

 number2 = input.nextInt(); // read second number from user

if (number1 == number2)

System.out.printf("%d == %d\n", number1, number2);

if (number1 != number2)

System.out.printf("%d != %d\n", number1, number2);

if (number1 < number2)

System.out.printf("%d < %d\n", number1, number2);

if (number1 > number2)
System.out.printf("%d > %d\n", number1, number2);

if (number1 <= number2)

System.out.printf("%d <= %d\n", number1, number2);

if (number1 >= number2)

System.out.printf("%d >= %d\n", number1, number2);

} // end method main

} // end class Comparison

Output:
Enter first integer: 777

Enter second integer: 777

777 == 777

777 <= 777

777 >= 777

Precedence and associativity of operators discussed

Chapter#2: Introduction to Java Application

13 |

Introduction to Classes, Objects,

Methods & String

Objectives

In this chapter we’ll

 How to create a class and use it to create an object.

 How to implement a class’s behaviors as methods.

 How to call an object’s methods to make them perform their tasks.

 What instance variables of a class and local variables of a method are.

 How to use a constructor to initialize an object’s data.

 The differences between primitive and reference types

 How to implement a class’s attributes as instance variables and properties.

14 |

3.1 Declaring a Class with a Method and Instantiating an Object of

a Class

Creating a Class:

Create a class having name GradeBook that simply shows the message “Welcome to the Grade

Book”.

Class GradeBook

// Class declaration with one method.

public class GradeBook

 {

// display a welcome message to the GradeBook user

 public void displayMessage()

 {

 System.out.println("Welcome to the Grade Book!");} // end method displayMessage

 } // end class GradeBook

Creating a Main Class:

Create a main class having name GradeBookTest. Then create an object of class GradeBook and

call the member function of the class using that object.

Main Class GradeBookTest

public class GradeBookTest

 {

 // main method begins program execution

 public static void main(String[] args)

 {

 // create a GradeBook object and assign it to myGradeBook

GradeBook myGradeBook = new GradeBook();

 // call myGradeBook's displayMessage method

myGradeBook .displayMessage();

} // end main

} //

Output:
Welcome to the Grade Book!

Chapter#3: Introduction to Classes, Objects, Methods & String

15 |

3.2 Declaring a Method with a Parameter

Arguments to a Method:

A method call supplies values—called arguments—for each of the method’s parameters. For

example, the method System.out.println requires an argument that specifies the data to output in

a command window.

Class GradeBook

 // Class declaration with one method that has a parameter.

public class GradeBook

 {

 // display a welcome message to the GradeBook user

 public void displayMessage()

 {

System.out.printf("Welcome to the grade book for\n%s!\n",

courseName);
 } // end method displayMessage

 } // end class GradeBook

Main Class GradeBookTest

// GradeBookTest.java

 // Create GradeBook object and pass a String to

// its displayMessage method.

 import java.util.Scanner; // program uses Scanner

public class GradeBookTest

 {

 // main method begins program execution

 public static void main(String[] args)

 {

 // create Scanner to obtain input from command window

 Scanner input = new Scanner(System.in);

 // create a GradeBook object and assign it to myGradeBook

 GradeBook myGradeBook = new GradeBook();

 // prompt for and input course name

 System.out.println("Please enter the course name:");

 String nameOfCourse = input.nextLine(); // read a line of text System.out.println(); // outputs

a blank line

 // call myGradeBook's displayMessage method

Chapter#3: Introduction to Classes, Objects, Methods & String

16 |

 // and pass nameOfCourse as an argument

 myGradeBook.displayMessage(nameOfCourse);

 } // end main

} // end class GradeBookTest

Output:
Please enter the course name:

CS101 Introduction to Java Programming
Welcome to the grade book for

CS101 Introduction to Java Programming!

UML Diagram of Class GradeBook:

3.3 Instance Variables, set Methods and get Methods

Class GradeBook

public class GradeBook

 {

private String courseName; // course name for this GradeBook

// method to set the course name

public void setCourseName(String name)

{

courseName = name; // store the course name

} // end method setCourseName

// method to retrieve the course name

public String getCourseName()

{

return courseName;

} // end method getCourseName

Chapter#3: Introduction to Classes, Objects, Methods & String

17 |

// display a welcome message to the GradeBook user

public void displayMessage

 {

 // calls getCourseName to get the name of

 // the course this GradeBook represents

 System.out.printf("Welcome to the grade book for\n%s!\n");

 } // end method displayMessage

 } // end class GradeBook

Main Class GradeBook

.// Creating and manipulating a GradeBook object.

 import java.util.Scanner; // program uses Scanner

public class GradeBookTest

 {

 // main method begins program execution

 public static void main(String[] args)

 {

 // create Scanner to obtain input from command window

 Scanner input = new Scanner(System.in);

 // create a GradeBook object and assign it to myGradeBook

 GradeBook myGradeBook = new GradeBook();

// display initial value of courseName

System.out.printf("Initial course name is: %s\n\n");

// prompt for and read course name

 System.out.println("Please enter the course name:");

 String theName = input.nextLine(); // read a line of text

 myGradeBook.setCourseName(theName); // set the course name

 System.out.println(); // outputs a blank line

// display welcome message after specifying course name

} // end main

 } // end class GradeBookTest

Output:
Initial course name is: null

Please enter the course name:

CS101 Introduction to Java Programming
Welcome to the grade book for

CS101 Introduction to Java Programming!

Chapter#3: Introduction to Classes, Objects, Methods & String

Chapter#3: Introduction to Classes, Objects, Methods & String

18 |

3.4 (Optional) GUI and Graphics Case Study: Using Dialog Boxes

Displaying Text in a Dialog Box:

The programs presented thus far display output in the command window. Many applications use

windows or dialog boxes (also called dialogs) to display output. Typically, dialog boxes are

windows in which programs display important messages to users. Class JOptionPane provides

prebuilt dialog boxes that enable programs to display windows containing messages—such

windows are called message dialogs.

Displaying Text in a Dialog Box:

// Fig. 3.17: Dialog1.java

 // Using JOptionPane to display multiple lines in a dialog box.

 import javax.swing.JOptionPane; // import class JOptionPane

public class Dialog1

 {

7 public static void main(String[] args)

 {

 // display a dialog with a message

 JOptionPane.showMessageDialog(null, "Welcome\nto\nJava");

} // end main

 } // end class Dialog1

Output:

Chapter#3: Introduction to Classes, Objects, Methods & String

19 |

Entering Text in a Dialog:

 // Basic input with a dialog box.

 import javax.swing.JOptionPane;
public class NameDialog

 {

 public static void main(String[] args)

{

 // prompt user to enter name

String name =

JOptionPane.showInputDialog("What is your name?");

String message =

String.format("Welcome, %s, to Java Programming!", name);

// display the message to welcome the user by name

 JOptionPane.showMessageDialog(null, message);

 } // end main

} // end class NameDialog

Output:

Chapter#3: Introduction to Classes, Objects, Methods & String

20 |

Control Statements: Part 1

Objectives
In this chapter you’ll learn:

■ Basic problem-solving

techniques.

■ To develop algorithms

through the process of top down, stepwise refinement.

■ To use the if and if…else

selection statements to

choose among alternative

actions.

■ To use the while repetition

statement to execute

statements in a program

repeatedly.

■ To use counter-controlled

repetition and sentinel controlled repetition.

■ To use the compound assignment, increment and

decrement operators.

■ The portability of primitive

data types.

21 |

Introduction:

Before writing a program to solve a problem, you should have a thorough understanding of

the problem and a carefully planned approach to solving it.

Algorithms:

Any computing problem can be solved by executing a series of actions in a specific order.

A procedure for solving a problem in terms of

1. The actions to execute and

2. The order in which these actions execute

is called an algorithm.

Pseudo code:

Pseudo code is an informal language that helps you develop algorithms without having to

worry about the strict details of Java language syntax.

Pseudo code is similar to everyday English—it’s convenient and user friendly.

Control structures:

Normally, statements in a program are executed one after the other in the order in which

they’re written. This process is called sequential execution.

The term structured programming became almost synonymous with “goto

elimination.” [Note: Java does not have a statement; however, the word is

reserved by Java and should not be used as an identifier in programs.]

A UML activity diagram models the workflow (also called the activity) of a portion

of a software system. Such workflows may include a portion of an algorithm, like the

sequence structure in Fig. 4.1. Activity diagrams are composed of symbols, such as action state symbols

(rectangles with their left and right sides replaced with outward arcs), diamonds and small circles. These

symbols are connected by transition arrows, which represent the flow of the activity—that is, the order in

which the actions should occur.

Selection Statements in Java:

Chapter#4: Control Statements: Part I

Chapter#4: Control Statements: Part I

22 |

Java has three types of selection statements single-selection statement because it selects or ignores a

single action double-selection statement because it selects between two different actionsmultiple-selection

statement because it selects

 among many different actions

Repetition Statements in Java:

Java provides three repetition statements (also called looping statements) that enable programs to perform

statements repeatedly as long as a condition (called the loop-continuation condition) remains true.

If single selection statement:

Programs use selection statements to choose among alternative courses of action. For example, suppose

that the passing grade on an exam is 60. The pseudocode statement

If…else double Selection statement:

The if single-selection statement performs an indicated action only when the condition

is true; otherwise, the action is skipped. The if…else double-selection statement allows you to specify an

action to perform when the condition is true and a different action when

the condition is false. For example, the pseudocode statement

if (studentGrade >= 60)

System.out.println("Passed");

if (grade >= 60)

System.out.println("Passed");

else

System.out.println("Failed");

23 |

While Repetition Statement:

A repetition (or looping) statement allows you to specify that a program should repeat an

action while some condition remains true. The pseudocode statement

4.8 Formulating Algorithms: Counter-Controlled

Repetition:

Output:
Enter grade: 67

Enter grade: 78

while (product <= 100)

product = 3 * product;

 import java.util.Scanner;

public class GradeBook

 private String courseName;

public GradeBook(String name)

 courseName = name; // initializes courseName

1 public void setCourseName(String name)

courseName = name; // store the course name

public String getCourseName()

 return courseName;}

public void displayMessage()

{System.out.printf("Welcome to the grade book for\n%s!\n\n",

 getCourseName());

} // end method displayMessage

{ Scanner input = new Scanner(System.in);

 int total; // sum of grades entered by user

int grade; // grade value entered by user

int average; // average of grades

 total = 0;

while () // loop 10 times

 {System.out.print("Enter grade: "); // prompt

 grade = input.nextInt(); // input next grade

 total = total + grade; }

Chapter#4: Control Statements: Part I

24 |

Enter grade: 89

Enter grade: 67

Enter grade: 87

Enter grade: 98

Enter grade: 93

Enter grade: 85

Enter grade: 82

Enter grade: 100

Total of all 10 grades is 846

Class average is 84

4.9 Formulating Algorithms: Sentinel-Controlled

Repetition:

Developing the Pseudocode Algorithm with Top-Down, Stepwise Refinement:

The Top and First Refinement.

Initialize variables

Initialize total to zero

Initialize counter to zero

Input, sum and count the quiz grades

Prompt the user to enter the first grade

Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel

Add this grade into the running total

Add one to the grade counter

Prompt the user to enter the next grade

Input the next grade (possibly the sentinel

Calculate and print the class average

If the counter is not equal to zero

Set the average to the total divided by the counter

Print the average

else

Print “No grades were entered”)

Implementing Sentinel-Controlled Repetition in Class GradeBook
Figure 4.9 shows the Java class Grade Book containing method determine Class Average

that implements the pseudocode algorithm of Fig. 4.8. Although each grade is an integer,

the averaging calculation is likely to produce a number with a decimal point—in other

words, a real (i.e., floating-point) number. The type int cannot represent such a number,

so this class uses type double to do so.

Chapter#4: Control Statements: Part I

25 |

Output

Enter grade or -1 to quit: 97

Enter grade or -1 to quit: 88

Enter grade or -1 to quit: 72

Enter grade or -1 to quit: -1

4.10 Formulating Algorithms: Nested Control Statements

import java.util.Scanner;

public class Analysis

 {

 public static void main(String[] args)

{ Scanner input = new Scanner(System.in);

int passes = 0; // number of passes

int failures = 0; // number of failures

int studentCounter = 1;

int result; // one exam result (obtains value from user)

while (studentCounter <= 10)

{ System.out.print("Enter result (1 = pass, 2 = fail): ");

 result = input.nextInt();

if (result == 1) // if result 1,

passes = passes + 1; // increment passes;

else // else result is not 1, so

failures = failures + 1;

studentCounter = studentCounter + 1; }

System.out.printf("Passed: %d\nFailed: %d\n", passes, failures);

if (passes > 8)

System.out.println("Bonus to instructor!");}}

import java.util.Scanner; // program uses class Scanner
public class GradeBook

 { private String courseName; // name of course this GradeBook represents

 public GradeBook(String name)

 { courseName = name; // initializes courseName

 public void setCourseName(String name)

 { courseName = name; // store the course name

 public String getCourseName()

 {return courseName;

 public void displayMessage()

{ System.out.printf("Welcome to the grade book for\n%s!\n\n",

 getCourseName());

public void determineClassAverage(){

 Scanner input = new Scanner(System.in);
 int total; // sum of grades

 int gradeCounter; // number of grades entered

 int grade; // grade value

double average;

 total = 0;

gradeCounter = 0; // initialize loop counter

System.out.print("Enter grade or -1 to quit: ");

grade = input.nextInt();while (grade != -1)

 {total = total + grade; // add grade to total

 gradeCounter = gradeCounter + 1; // increment counter

System.out.print("Enter grade or -1 to quit: ");

grade = input.nextInt();}

if(gradeCounter != 0)

{average = (double) total / gradeCounter;

System.out.printf("\nTotal of the %d grades entered is %d\n",

 gradeCounter, total);

System.out.printf("Class average is %.2f\n", average);

 System.out.println("No grades were entered");

 }

 }

Chapter#4: Control Statements: Part I

26 |

Output:

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 2

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Enter result (1 = pass, 2 = fail): 1

Passed: 6

Failed: 4

4.11 Compound Assignment Operators:

The compound assignment operators abbreviate assignment expressions. Statements like variable = variable

operator expression; where operator is one of the binary operators +, -, *, / or % (or others we discuss later

in the text) can be written in the form

c=c+3

For example, you can abbreviate the statement with the addition compound assignment operator, +=, as

C+=3

The += operator adds the value of the expression on its right to the value of the variable on its left and stores

the result in the variable on the left of the operator. Thus, the assignment expression c += 3 adds 3 to c. Figure

4.13 shows the arithmetic compound assignment operators, sample expressions using the operators and

explanations of what the operators do.

4.12 Increment and Decrement Operators:

Chapter#4: Control Statements: Part I

27 |

Output:

(optional) GUI and graphic case study: cresting simple drawings:

An appealing feature of Java is its graphics support, which enables you to visually enhance your

applications. We now introduce one of Java’s graphical capabilities—drawing lines. It also covers the

basics of creating a window to display a drawing on the computer screen.

public class Increment

 { public static void main(String[] args)

{ int c;

 c = 5;

 System.out.println(c);

System.out.println(c++);

System.out.println(c);

System.out.println();

System.out.println(++c);

System.out.println(c);}}

Chapter#4: Control Statements: Part I

28 |

Output:

import java.awt.Graphics;

import javax.swing.JPanel;

public class DrawPanel extends JPanel

{public void paintComponent(Graphics g)

{super.paintComponent(g);

int width = getWidth();

int height = getHeight();

g.drawLine(0, 0, width, height);

g.drawLine(0, height, width, 0);

}

}

Chapter#4: Control Statements: Part I

29 |

G

Control Statement: Part 2

Objectives
In this chapter you’ll learn:

■ The essentials of counter controlled repetition.

■To use the for and

do…while repetition

statements to execute

statements in a program

repeatedly.

■To understand multiple

selection using the switch

selection statement.

■To use the break and

continue program control

statements to alter the flow

of control.

■To use the logical operators

to form complex conditional

expressions in control

statements

.

30 |

5.1 Introduction:

This chapter continues our presentation of structured programming theory and principles

by introducing all but one of Java’s remaining control statements. We demonstrate Java’s

for, do…while and switch statements.

5.2 Essentials of Counter-Controlled Repetition:

This section uses the while repetition statement introduced in Chapter 4 to formalize the

elements required to perform counter-controlled repetition, which requires

1. a control variable (or loop counter)

2. the initial value of the control variable

3. the increment (or decrement) by which the control variable is modified each

time through the loop (also known as each iteration of the loop)

4. the loop-continuation condition that determines if looping should continue.

public class WhileCounter

 { public static void main(String[] args)

 {

int counter = 1;

while(counter<=10)

System.out.printf("%d ", counter);

++counter;

}

System.out.println();

 }

 }

Chapter#5: Control Statements: Part:2

31 |

5.4 Examples Using the for Statement:

The following examples show techniques for varying the control variable in a for statement. In each case,

we write the appropriate for header. Note the change in the relational

operator for loops that decrement the control variable.

public class Sum

 {

 public static void main(String[] args)

{
int total = 0;

for (int number = 2; number <= 20; number += 2)

total += number;

System.out.printf("Sum is %d\n", total);}}

public static void main(String[] args)

{

8 double amount; // amount on deposit at end of each year

9 double principal = 1000.0; // initial amount before interest

 double rate = 0.05; // interest rate

13 System.out.printf("%s \n", "Year", "Amount on deposit");

for (int year = 1; year <= 10; year++)

{

amount = principal * Math.pow(1.0 + rate, year);

System.out.printf("%4d%,20.2f\n", year, amount);

} /}}

Chapter#5: Control Statements: Part:2

32 |

Output:

Year Amount on deposit

1 1,050.00

2 1,102.50

3 1,157.63

4 1,215.51

5 1,276.28

6 1,340.10

7 1,407.10

8 1,477.46

9 1,551.33

10 1,628.89

5.5 do…while Repetition Statement:

The do…while repetition statement is similar to the while statement. In the while, the

program tests the loop-continuation condition at the beginning of the loop, before executing the loop’s

body; if the condition is false, the body never executes.

 Output:

public class DoWhileTest

5 {

6 public static void main(String[] args)

7 { int counter = 1;

{

System.out.printf("%d ", counter);

++counter;

} while (counter <= 10);

System.out.println();

 }

 }

Chapter#5: Control Statements: Part:2

33 |

5.6 switch Multiple-Selection Statement:

in this example to determine which counter to increment based on the grade.

When the flow of control reaches the switch, the program evaluates the expression in

the parentheses (grade / 10) following keyword switch. This is the switch’s controlling

expression. The program compares this expression’s value (which must evaluate to an

integral value of type byte, char, short or int) with each case label.

public class GradeBookTest

 {

 public static void main(String[] args)

 {

 GradeBook myGradeBook = new GradeBook(

 "CS101 Introduction to Java Programming");

 myGradeBook.displayMessage(); // display welcome message

myGradeBook.inputGrades(); // read grades from user

myGradeBook.displayGradeReport();

}

}

Chapter#5: Control Statements: Part:2

34 |

public class LogicalOperators

{

 public static void main(String[] args)

 {

 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",

 "Conditional AND (&&)", "false && false", ,

 "false && true", ,

 "true && false", ,

"true && true",);

 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n","Conditional OR (||)", "false || false", ,

"false || true", , "true || false", ,"true || true");

 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n","Boolean logical AND (&)", "false &

false", "false & true", "true & false");

}}

Output: UML diagram:

Logical Operators:

Java’s logical operators enable you to form more complex conditions by combining

simple conditions. The logical operators are && (conditional AND), || (conditional OR),

& (boolean logical AND), | (boolean logical inclusive OR), ^ (boolean logical exclusive

OR) and ! (logical NOT). [Note: The &, | and ^ operators are also bitwise operators when

they’re applied to integral operands. We discuss the bitwise operators in Appendix N.]

Output:

Chapter#5: Control Statements: Part:2

35 |

Operations:

Chapter#5: Control Statements: Part:2

36 |

5.9 Structured Programming Summary:

Just as architects design buildings by employing the collective wisdom of their profession,

so should programmers design programs. Our field is much younger than architecture,

and our collective wisdom is considerably sparser. We’ve learned that structured programming produces

programs that are easier than unstructured programs to understand, test,

debug, modify and even prove correct in a mathematical sense

5.11 Wrap-Up:

In this chapter, we completed our introduction to Java’s control statements, which enable

you to control the flow of execution in methods.

Chapter#5: Control Statements: Part:2

37 |

User Defined Functions

O b j e c t i v e s
In this chapter you’ll learn:
■ How static methods and

fields are associated with

classes rather than objects.

■ How the method call/return

mechanism is supported by

the method-call stack.

■ How packages group related

classes.

■ How to use random-number

generation to implement

game-playing applications.

■ How the visibility of

declarations is limited to

specific regions of programs.

■ What method overloading is

and how to create overloaded

methods.

38 |

6.1 Introduction:

Experience has shown that the best way to develop and maintain a large program is to construct it from

small, simple pieces, or modules. This technique is called divide and conquer.

6.2 Program Modules in Java:

You write Java programs by combining new methods and classes with predefined ones available in the Java

Application Programming Interface (also referred to as the Java API or Java class library) and in various

other class libraries. Related classes are typically grouped into packages so that they can be imported into

programs and reused

6.3 static Methods, static Fields and Class Math:

Although most methods execute in response to method calls on specific objects, this is not always the case.

Sometimes a method performs a task that does not depend on the contents of any object. Such a method

applies to the class in which it’s declared as a whole and is known as a static method or aclassmethod.

ClassName.methodName(arguments)

Math.sqrt(900.0)

System.out.println(Math.sqrt(900.0));

System.out.println(Math.sqrt(c + d * f));

Chapter#6: User Defined Functions

39 |

6.4 Declaring Methods with Multiple Parameters:

Methods often require more than one piece of information to perform their tasks. We now

consider how to write your own methods with multiple parameters.

import java.util.Scanner;

45
public class MaximumFinder

 {

8 public static void main(String[] args)

{

11 Scanner input = new Scanner(System.in);

14 System.out.print(

15 "Enter three floating-point values separated by spaces: ");
double number1 = input.nextDouble(); // read first double

17 double number2 = input.nextDouble(); // read second double

18 double number3 = input.nextDouble(); // read third double

20 // determine the maximum value

21

22

23 // display maximum value

24 System.out.println();

25 } // end main

26// returns the maximum of its three double parameters

public static double maximum(double x, double y, double z)

{

double maximumValue = x; // assume x is the largest to start

// determine whether y is greater than maximumValue

if (y > maximumValue)

maximumValue = y;

// determine whether z is greater than maximumValue

if (z > maximumValue)

maximumValue = z;

return maximumValue;

Chapter#6: User Defined Functions

40 |

6.5 Notes on Declaring and Using Methods

There are three ways to call a method:

1. Using a method name by itself to call another method of the same class—such as maximum(number1,

number2, number3) in line 21 of Fig. 6.3.

2. Using a variable that contains a reference to an object, followed by a dot (.) and the method name to

call a non-static method of the referenced object—such as the method call in line 13 of Fig. 5.10,

myGradeBook.displayMessage(), which calls a method of class GradeBook from the main method of

GradeBookTest.

3. Using the class name and a dot (.) to call a static method of a class—such as

Math.sqrt(900.0) in Section 6.3.

6.6 Method-Call Stack and Activation Records

To understand how Java performs method calls, we first need to consider a data structure

(i.e., collection of related data items) known as a stack. You can think of a stack as analogous to a pile of

dishes. When a dish is placed on the pile, it’s normally placed at the top

(referred to as pushing the dish onto the stack). Similarly, when a dish is removed from

the pile, it’s always removed from the top (referred to as popping the dish off the stack).

Stacks are known as last-in, first-out (LIFO) data structures—the last item pushed (inserted) on the stack is

the first item popped (removed) from the stack.

6.7 Argument Promotion and Casting

Another important feature of method calls is argument promotion—converting an argument’s value, if

possible, to the type that the method expects to receive in its corresponding parameter. For example, a

program can call Math method sqrt with an int argument even though a double argument is expected. The

statement correctly evaluates Math.sqrt(4) and prints the value 2.0. The method declaration’s parameter list

causes Java to convert the int value 4 to the double value 4.0 before passing the value

to method sqrt. Such conversions may lead to compilation errors if Java’s promotion rules

are not satisfied. These rules specify which conversions are allowed—that is, which ones can

be performed without losing data. In the sqrt example above, an int is converted to a double without changing

its value. However, converting a double to an int truncates the fractional part of the double value—thus, part of

the value is lost. Converting large integer types

to small integer types (e.g., long to int, or int to short) may also result in changed values.

Chapter#6: User Defined Functions

41 |

6.8 Java API Packages

As you’ve seen, Java contains many predefined classes that are grouped into categories of

related classes called packages.

6.9 Case Study: Random-Number Generation

We now take a brief diversion into a popular type of programming application—simulation and game

playing. In this and the next section, we develop a nicely structured gameplaying program with multiple

methods. The program uses most of the control statements

Chapter#6: User Defined Functions

42 |

presented thus far in the book and introduces several new programming concepts.There’s something in the

air of a casino that invigorates people—from the high rollers at the plush mahogany-and-felt craps tables

to the quarter poppers at the one-armed bandits. It’s the element of chance, the possibility that luck will

convert a pocketful of money into a mountain of wealth. The element of chance can be introduced in a

program via an object of class Random (package java.util) or via the static method random of class Math. Objects of

class Random can produce random boolean, byte, float, double, int, long and Gaussian values, whereas Math method

random can produce only double values in the range 0.0 ≤x 1.0, where x is the value returned by method random.

In the next several examples, we use objects of class Random to produce random values.

A new random-number generator object can be created as follows: It can then be used to generate random

boolean, byte, float, double, int, long and Gaussian values—we discuss only random int values here. For more

information on the Random class, see download.oracle.com/javase/6/docs/api/java/util/Random.html.

Consider the following statement: Random method nextInt generates a random int value in the range –

2,147,483,648 to +2,147,483,647, inclusive. If it truly produces values at random, then every value in the

range should have an equal chance (or probability) of being chosen each time nextInt is called. The numbers

are actually pseudorandom numbers—a sequence of values projavax.swing.event The Java Swing Event Package

contains classes and interfaces that enable event handling (e.g., responding to button clicks) for GUI components in

package javax.swing. (See Chapter 14, GUI Components: Part 1, and Chapter 25, GUI Components: Part 2.) javax.xml.ws

The JAX-WS Package contains classes and interfaces for working with web services in Java. (See Chapter 31, Web

Services.) Random randomNumbers = new Random(); int randomValue = randomNumbers.nextInt();

duced by a complex mathematical calculation. The calculation uses the current time of day

(which, of course, changes constantly) to seed the random-number generator such that

each execution of a program yields a different sequence of random values.

The range of values produced directly by method nextInt generally differs from the

range of values required in a particular Java application. For example, a program that simulates coin tossing

might require only 0 for “heads” and 1 for “tails.” A program that simulates the rolling of a six-sided die

might require random integers in the range 1–6. A

program that randomly predicts the next type of spaceship (out of four possibilities) that

will fly across the horizon in a video game might require random integers in the range 1–

4. For cases like these, class Random provides another version of method nextInt that

receives an int argument and returns a value from 0 up to, but not including, the argument’s value. For

example, for coin tossing, the following statement returns 0 or 1.

public class RandomIntegers

6 {

7 public static void main(String[] args)

 {Random randomNumbers = new Random()

import java.util.Random;
public class RollDie

6 {

7 public static void main(String[] args)

8 {

9 Random randomNumbers = new Random(); // random number generator

11 int frequency1 = 0; // maintains count of 1s rolled

12 int frequency2 = 0; // count of 2s rolled

13 int frequency3 = 0; // count of 3s rolled

14 int frequency4 = 0; // count of 4s rolled

15 int frequency5 = 0; // count of 5s rolled

16 int frequency6 = 0; // count of 6s rolled

Chapter#6: User Defined Functions

43 |

6.11 Scope of Declarations

You’ve seen declarations of various Java entities, such as classes, methods, variables and parameters.

Declarations introduce names that can be used to refer to such Java entities. The scope of a declaration is

the portion of the program that can refer to the declared entity by

its name. Such an entity is said to be “in scope” for that portion of the program. This section introduces

several important scope issues.

The basic scope rules are as follows:

1. The scope of a parameter declaration is the body of the method in which the declaration appears.

2. The scope of a local-variable declaration is from the point at which the declaration appears to the end

of that block.

3. The scope of a local-variable declaration that appears in the initialization section

of a for statement’s header is the body of the for statement and the other expressions in the header.

4. A method or field’s scope is the entire body of the class. This enables non-static

methods of a class to use the fields and other methods of the class.

Any block may contain variable declarations. If a local variable or parameter in a

method has the same name as a field of the class, the field is “hidden” until the block terminates

execution—this is called shadowing. In Chapter 8, we discuss how to access shadowed fields.

6.12 Method Overloading

Methods of the same name can be declared in the same class, as long as they have different

sets of parameters (determined by the number, types and order of the parameters)—this

Chapter#6: User Defined Functions

44 |

import java.awt.Color;

import java.awt.Graphics;

 import javax.swing.JPanel;
public class DrawSmiley extends JPanel

 {

 public void paintComponent(Graphics g)

 {

 super.paintComponent(g);

g.setColor(Color.YELLOW);

g.fillOval(10, 10, 200, 200)
g.setColor(Color.BLACK);

g.fillOval(55, 65, 30, 30);

g.fillOval(135, 65, 30, 30);
g.fillOval(50, 110, 120, 60)
g.setColor(Color.YELLOW);

g.fillRect(50, 110, 120, 30);

g.fillOval(50, 120, 120, 40);

is called method overloading. When an overloaded method is called, the compiler selects

the appropriate method by examining the number, types and order of the arguments in

the call. Method overloading is commonly used to create several methods with the same

name that perform the same or similar tasks, but on different types or different numbers

of arguments. For example, Math methods abs, min and max (summarized in Section 6.3)

are overloaded with four versions each:

1. One with two double parameters.

2. One with two float parameters.

3. One with two int parameters.

4. One with two long parameters.

6.13 (Optional) GUI and Graphics Case Study: Colors and filled shapes

Although you can create many interesting designs with just lines and basic shapes, class

Graphics provides many more capabilities. The next two features we introduce are colors

and filled shapes. Adding color enriches the drawings a user sees on the computer screen.

Shapes can be filled with solid colors. Colors displayed on computer screens are defined by their red,

green, and blue components (called RGB values) that have integer values from 0 to 255. The higher the

value of a component color, the richer that shade will be in the final color. Java uses class Color

in package java.awt to represent colors using their RGB values. For convenience, class

Color (package java.awt) contains 13 predefined static Color objects—BLACK, BLUE,

CYAN, DARK_GRAY, GRAY, GREEN, LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, WHITE and

YELLOW. Each can be accessed via the class name and a dot (.) as in Color.RED. Class Color

also contains a constructor of the form:

public Color(int r, int g, int b)

Graphics methods fillRect and fillOval draw filled rectangles and ovals, respectively. These have the same

parameters as drawRect and drawOval; the first two are the coordinates for the upper-left corner of the shape,

while the next two determine the width and height. The example in Fig. 6.11 and Fig. 6.12 demonstrates

colors and filled shapes by drawing and displaying a yellow smiley face on the screen.

The import statements in lines 3–5 of Fig. 6.11 import classes Color, Graphics and

JPanel. Class DrawSmiley (lines 7–30) uses class Color to specify drawing colors, and uses

class Graphics to draw.

Class JPanel again provides the area in which we draw. Line 14 in method paintComponent uses Graphics

method setColor to set the current drawing color to Color.YELLOW.
Method setColor requires one argument, the Color to set as the drawing color. In this

case, we use the predefined object Color.YELLOW.

Chapter#6: User Defined Functions

45 |

Output:

6.14 Wrap-Up

In this chapter, you learned more about method declarations. You also learned the difference between

non-static and static methods and how to call static methods by preceding the method name with the name of

the class in which it appears and the dot (.)

separator. You learned how to use operators + and += to perform string concatenations.

We discussed how the method-call stack and activation records keep track of the methods

that have been called and where each method must return to when it completes its task.

We also discussed Java’s promotion rules for converting implicitly between primitive types

and how to perform explicit conversions with cast operators. Next, you learned about

some of the commonly used packages in the Java API.

import javax.swing.JFrame;

public class DrawSmileyTest

 {

 public static void main(String[] args)

 { DrawSmiley panel = new DrawSmiley();

 JFrame application = new JFrame();
 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 application.add(panel);

 application.setSize(230, 250);

 application.setVisible(true);

 }

 }

46 |

Arrays and ArrayLists

Objectives

In this chapter we’ll

 To use arrays to store data in

and retrieve data from lists

and tables of values.
 To iterate through arrays with

the enhanced for statement.

 To declare and manipulate

multidimensional arrays.

 To read command-line

arguments into a program.

 To use variable-length

argument lists.

47 |

An array is a group of variables (called elements or components) containing values that all

have the same type. Arrays are objects, so they’re considered reference types. As you’ll soon

see, what we typically think of as an array is actually a reference to an array object in memory.

public class InitArray

 {

 public static void main(String[] args)

 {

int[] array; // declare array named array

array = new int[10]; // create the array object

 System.out.printf("%s%8s\n", "Index", "Value"); // column headings

 // end main // end class InitArray

// output each array element's value

for (int counter = 0; counter < array.length; counter++)

System.out.printf("%5d%8d\n", counter, array[counter]);

Calculating the Values to Store in an Array

public class InitArray

 {

 public static void main(String[] args)

 {

 // calculate value for each array element

 for (int counter = 0; counter < array.length; counter++)

// initializer list specifies the value for each element

int[] array = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

final int ARRAY_LENGTH = 10; // declare constant

int[] array = new int[ARRAY_LENGTH]; // create array

array[counter] = 2 + 2 * counter;

 System.out.printf("%s%8s\n", "Index", "Value"); // column headings

 // output each array element's value

 for (int counter = 0; counter < array.length; counter++)

 System.out.printf("%5d%8d\n", counter, array[counter]);

 } // end main

 } // end class InitArray

Chapter#7: Array and ArrayLists

48 |

Exception Handling: Processing the Incorrect Response

An exception indicates a problem that occurs while a program executes. The name “exception”

suggests that the problem occurs infrequently—if the “rule” is that a statement normally executes

correctly, then the problem represents the “exception to the rule.”

Exception handling enables you to create fault-tolerant programs that can resolve (or

handle) exceptions. In many cases, this allows a program to continue executing as if no

problems were encountered. For example, the StudentPoll application still displays results (Fig.

7.8), even though one of the responses was out of range. More severe problems

might prevent a program from continuing normal execution, instead requiring the program to

notify the user of the problem, then terminate. When the JVM or a method detects a problem, such

as an invalid array index or an invalid method argument, it throws

an exception—that is, an exception occurs.

The try Statement
To handle an exception, place any code that might throw an exception in a try statement

(lines 17–26). The try block (lines 17–20) contains the code that might throw an exception, and

the catch block (lines 21–26) contains the code that handles the exception if one

occurs. You can have many catch blocks to handle different types of exceptions that might

be thrown in the corresponding try block. When line 19 correctly increments an element

of the frequency array, lines 21–26 are ignored. The braces that delimit the bodies of the

try and catch blocks are required.

Executing the catch Block

When the program encounters the value 14 in the responses array, it attempts to add 1

to frequency[14], which is outside the bounds of the array—the frequency array has only

six elements. Because array bounds checking is performed at execution time, the JVM generates

Chapter#7: Array and ArrayLists

49 |

an exception—specifically line 19 throws an ArrayIndexOutOfBoundsException to

notify the program of this problem. At this point the try block terminates and the catch

block begins executing—if you declared any variables in the try block, they’re now out of

scope and are not accessible in the catch block.

The catch block declares a type (IndexOutOfRangeException) and an exception

parameter (e). The catch block can handle exceptions of the specified type. Inside the

catch block, you can use the parameter’s identifier to interact with a caught exception

object.

// Fig. 7.9: Card.java

 // Card class represents a playing card.

public class Card

 {

 private String face; // face of card ("Ace", "Deuce", ...)

 private String suit; // suit of card ("Hearts", "Diamonds", ...)

// two-argument constructor initializes card's face and suit

 public Card(String cardFace, String cardSuit)

 {

 face = cardFace; // initialize face of card

 suit = cardSuit; // initialize suit of card

} // end two-argument Card constructor

 } // end class Card

 // Fig. 7.10: DeckOfCards.java

 // DeckOfCards class represents a deck of playing cards. import java.util.Random;

public class DeckOfCards

 {

private int currentCard; // index of next Card to be dealt (0-51)

 private static final int NUMBER_OF_CARDS = 52; // constant # of Cards

 // random number generator

 private static final Random randomNumbers = new Random();

 // constructor fills deck of Cards

 public DeckOfCards()

 currentCard = 0; // set currentCard so first Card dealt is deck[0]

 // end DeckOfCards constructor

/ return String representation of Card

public String toString()

{

return face + " of " + suit;

} // end method toString

Chapter#7: Array and ArrayLists

50 |

Method Description

add Adds an element to the end of the ArrayList.

clear Removes all the elements from the ArrayList.

contains Returns true if the ArrayList contains the specified element; otherwise,

returns false.

get Returns the element at the specified index.

indexOf Returns the index of the first occurrence of the specified element in the

ArrayList.

remove Overloaded. Removes the first occurrence of the specified value or the

element at the specified index.

size Returns the number of elements stored in the ArrayList.

trimToSize Trims the capacity of the ArrayList to current number of elements.

Chapter#7: Array and ArrayLists

51 |

Classes and Objects

Objectives

In this chapter we’ll

 Encapsulation and data

hiding.
 To use static variables and

methods.

 To use the enum type to

create sets of constants with

unique identifiers.

 To declare enum constants

with parameters.

 To organize classes in

packages to promote reuse.

52 |

// Fig. 8.5: Time2.java

 // Time2 class declaration with overloaded constructors.

public class Time2

 {

 private int hour; // 0 - 23

 private int minute; // 0 - 59

 private int second; // 0 - 59

Fig. 8.5 | Time2 class with overloaded constructors. (Part 1 of 3.)

// Time2 no-argument constructor:

// initializes each instance variable to zero

public Time2()

{

this(0, 0, 0); // invoke Time2 constructor with three arguments

} // end Time2 no-argument constructor

// Time2 constructor: hour supplied, minute and second defaulted to 0

public Time2(int h)

{

this(h, 0, 0); // invoke Time2 constructor with three arguments

} // end Time2 one-argument constructor

// Time2 constructor: hour and minute supplied, second defaulted to 0

public Time2(int h, int m)

{

this(h, m, 0); // invoke Time2 constructor with three arguments

} // end Time2 two-argument constructor

// Time2 constructor: hour, minute and second supplied

public Time2(int h, int m, int s)

{

setTime(h, m, s); // invoke setTime to validate time

} // end Time2 three-argument constructor

// Time2 constructor: another Time2 object supplied

public Time2(Time2 time)

{

// invoke Time2 three-argument constructor

this(time.getHour(), time.getMinute(), time.getSecond());

} // end Time2 constructor with a Time2 object argument

// Set Methods

 // set a new time value using universal time;

 // validate the data

 public void setTime(int h, int m, int s)

 {

 setHour(h); // set the hour

Chapter#8: Classes and Objects

53 |

 setMinute(m); // set the minute

 setSecond(s); // set the second

 } // end method setTime

 // validate and set hour

 public void setHour(int h)

 {

 if (h >= 0 && h < 24)

 hour = h;

 else

 throw new IllegalArgumentException("hour must be 0-23");

 } // end method setHour

 // validate and set minute

 public void setMinute(int m)

 {

 if (m >= 0 && m < 60)

 minute = m;

 else

 throw new IllegalArgumentException("minute must be 0-59");

 } // end method setMinute

 // validate and set second

 public void setSecond(int s)

 {

 if (s >= 0 && s < 60)

 second = ((s >= 0 && s < 60) ? s : 0);

// Time2 constructor: hour and minute supplied, second defaulted to 0

public Time2(int h, int m)

{

this(h, m, 0); // invoke Time2 constructor with three arguments

} // end Time2 two-argument constructor

// Time2 constructor: hour, minute and second supplied

public Time2(int h, int m, int s)

{

setTime(h, m, s); // invoke setTime to validate time

} // end Time2 three-argument constructor

// Time2 constructor: another Time2 object supplied

public Time2(Time2 time)

{

// invoke Time2 three-argument constructor

this(time.getHour(), time.getMinute(), time.getSecond());

} // end Time2 constructor with a Time2 object argument

Chapter#8: Classes and Objects

54 |

Class Time2’s Constructors

Lines 12–15 declare a so-called no-argument constructor that’s invoked without arguments.

Once you declare any constructors in a class, the compiler will not provide a default

constructor. This no-argument constructor ensures that class Time2’s clients can create

Time2 objects with default values. Such a constructor simply initializes the object as specified in

the constructor’s body. In the body, we introduce a use of the this reference that’s

allowed only as the first statement in a constructor’s body. Line 14 uses this in methodcall syntax

to invoke the Time2 constructor that takes three parameters (lines 30–33) with

values of 0 for the hour, minute and second. Using the this reference as shown here is a

popular way to reuse initialization code provided by another of the class’s constructors

rather than defining similar code in the no-argument constructor’s body. We use this syn-

 else

 throw new IllegalArgumentException("second must be 0-59");

 } // end method setSecond

 // Get Methods

 // get hour value

 public int getHour()

 {

 return hour;

 } // end method getHour

 // get minute value

 public int getMinute()

 {

 return minute;

 } // end method getMinute

 // get second value

 public int getSecond()

 {

 return second; } // end method getSecond

 // convert to String in universal-time format (HH:MM:SS)

 public String toUniversalString()

 {

 return String.format(

 "%02d:%02d:%02d", getHour(), getMinute(), getSecond());

 } // end method toUniversalString

 // convert to String in standard-time format (H:MM:SS AM or PM)

 public String toString()

 {

 return String.format("%d:%02d:%02d %s",

Chapter#8: Classes and Objects

55 |

 ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12),

 getMinute(), getSecond(), (getHour() < 12 ? "AM" : "PM"));

 } // end method toString

 } // end class Time2

8.6 Default and No-Argument Constructors
Every class must have at least one constructor. If you do not provide any in a class’s declaration,

the compiler creates a default constructor that takes no arguments when it’s invoked. The default

constructor initializes the instance variables to the initial values

specified in their declarations or to their default values (zero for primitive numeric types,

false for boolean values and null for references). In Section 9.4.1, you’ll learn that the

default constructor performs another task also.

If your class declares constructors, the compiler will not create a default constructor.

In this case, you must declare a no-argument constructor if default initialization is

required. Like a default constructor, a no-argument constructor is invoked with empty

parentheses. The Time2 no-argument constructor (lines 12–15 of Fig. 8.5) explicitly initializes a

Time2 object by passing to the three-argument constructor 0 for each parameter.

Since 0 is the default value for int instance variables, the no-argument constructor in this

example could actually be declared with an empty body. In this case, each instance variable

would receive its default value when the no-argument constructor was called. If we omit

the no-argument constructor, clients of this class would not be able to create a Time2

object with the expression new Time2().

8.12 static Import

In Section 6.3, you learned about the static fields and methods of class Math. We invoked class

Math’s static fields and methods by preceding each with the class name Math

and a dot (.). A static import declaration enables you to import the static members of

a class or interface so you can access them via their unqualified names in your class—the

class name and a dot (.) are not required to use an imported static member.

A static import declaration has two forms—one that imports a particular static

member (which is known as single static import) and one that imports all static members of a

class (known as static import on demand). The following syntax imports a particular static

member:

where packageName is the package of the class (e.g., java.lang), ClassName is the name of

the class (e.g., Math) and staticMemberName is the name of the static field or method

(e.g., PI or abs). The following syntax imports all static members of a class:

The asterisk (*) indicates that all static members of the specified class should be available

for use in the file. static import declarations import only static class members. Regular

import statements should be used to specify the classes used in a program.

Figure 8.14 demonstrates a static import. Line 3 is a static import declaration,

which imports all static fields and methods of class Math from package java.lang. Lines

9–12 access the Math class’s static fields E (line 11) and PI (line 12) and the static

Chapter#8: Classes and Objects

56 |

methods sqrt (line 9) and ceil (line 10) without preceding the field names or method

names with class name Math and a dot.

Employees before instantiation: 0

Employee constructor: Susan Baker; count = 1

Employee constructor: Bob Blue; count = 2

Employees after instantiation:

via e1.getCount(): 2

via e2.getCount(): 2

via Employee.getCount(): 2

Employee 1: Susan Baker

Employee 2: Bob Blue

import static packageName.ClassName.staticMemberName;

import static packageName.ClassName.*;

8.15 Package Access
If no access modifier (public, protected or private—we discuss protected in

Chapter 9) is specified for a method or variable when it’s declared in a class, the method

or variable is considered to have package access. In a program that consists of one class.

Chapter#8: Classes and Objects

57 |

Object Oriented Programming: Inheritance

Objectives

In this chapter we’ll

 The notions of superclasses

and subclasses and the

relationship between them.
 To access superclass

members with super.

 To use access modifier

protected to give subclass

methods access to superclass

members.

 The methods of class

Object, the direct or indirect

superclass of all classes.

58 |

9.2 Superclasses and Subclasses

Often, an object of one class is an object of another class as well. Figure 9.1 lists several

simple examples of superclasses and subclasses—superclasses tend to be “more general”

and subclasses “more specific.” For example, a CarLoan is a Loan as are

HomeImprovementLoans and MortgageLoans. Thus, in Java, class CarLoan can be said to

inherit from class

Loan. In this context, class Loan is a superclass and class CarLoan is a subclass. A CarLoan

is a specific type of Loan, but it’s incorrect to claim that every Loan is a CarLoan—the Loan

could be any type of loan.

Because every subclass object is an object of its superclass, and one superclass can have

many subclasses, the set of objects represented by a superclass is often larger than the set

of objects represented by any of its subclasses. For example, the superclass Vehicle represents all

vehicles, including cars, trucks, boats, bicycles and so on. By contrast, subclass Car

represents a smaller, more specific subset of vehicles.

University Community Member Hierarchy

Inheritance relationships form treelike hierarchical structures. A superclass exists in a

hierarchical relationship with its subclasses. Let’s develop a sample class hierarchy (Fig. 9.2),

also called an inheritance hierarchy. A university community has thousands of members,

including employees, students and alumni. Employees are either faculty or staff members.

Faculty members are either administrators (e.g., deans and department chairpersons) or

teachers. The hierarchy could contain many other classes. For example, students can be

graduate or undergraduate students. Undergraduate students can be freshmen, sophomores,

juniors or seniors.

Superclass Subclasses

Student GraduateStudent, UndergraduateStudent

Shape Circle, Triangle, Rectangle, Sphere, Cube

Loan CarLoan, HomeImprovementLoan, MortgageLoan

Employee Faculty, Staff

BankAccount CheckingAccount, SavingsAccount

9.4 Relationship between Superclasses and Subclasses
We now use an inheritance hierarchy containing types of employees in a company’s payroll application to

discuss the relationship between a superclass and its subclass. In this

company, commission employees (who will be represented as objects of a superclass) are

paid a percentage of their sales, while base-salaried commission employees (who will be

represented as objects of a subclass) receive a base salary plus a percentage of their sales.

We divide our discussion of the relationship between these classes into five examples.

The first declares class CommissionEmployee, which directly inherits from class Object and

declares as private instance variables a first name, last name, social security number, commission rate and

gross (i.e., total) sales amount.

Chapter#9: Object Oriented Programming: Inheritance

59 |

The second example declares class BasePlusCommissionEmployee, which also directly

inherits from class Object and declares as private instance variables a first name, last

name, social security number, commission rate, gross sales amount and base salary. We

create this class by writing every line of code the class requires—we’ll soon see that it’s much

more efficient to create it by inheriting from class CommissionEmployee.

The third example declares a new BasePlusCommissionEmployee class that extends

class CommissionEmployee (i.e., a BasePlusCommissionEmployee is a CommissionEmployee who also

has a base salary). This software reuse lets us write less code when developing

the new subclass. In this example, class BasePlusCommissionEmployee attempts to access

class CommissionEmployee’s private members—this results in compilation errors,

because the subclass cannot access the superclass’s private instance variables.

The fourth example shows that if CommissionEmployee’s instance variables are

declared as protected, the BasePlusCommissionEmployee subclass can access that data

directly. Both BasePlusCommissionEmployee classes contain identical functionality, but

we show how the inherited version is easier to create and manage.

After we discuss the convenience of using protected instance variables, we create the

fifth example, which sets the CommissionEmployee instance variables back to private to

enforce good software engineering. Then we show how the BasePlusCommissionEmployee subclass can

use CommissionEmployee’s public methods to manipulate (in a controlled manner) the private.

// Fig. 9.10: CommissionEmployee.java

 // CommissionEmployee class uses methods to manipulate its

 // private instance variables.

 public class CommissionEmployee

 // five-argument constructor

 public CommissionEmployee(String first, String last, String ssn,

 double sales, double rate)

 {

 // implicit call to Object constructor occurs here

 firstName = first;

 lastName = last;

 socialSecurityNumber = ssn;

 setGrossSales(sales); // validate and store gross sales

 setCommissionRate(rate); // validate and store commission rate

 } // end five-argument CommissionEmployee constructor

 // set first name

 public void setFirstName(String first)

 {

 firstName = first; // should validate

 } // end method setFirstName

 // return first name

 public String getFirstName()

 {

 return firstName;

 } // end method getFirstName

 // set last name

Chapter#9: Object Oriented Programming: Inheritance

60 |

 public void setLastName(String last)

 {

variables. (Part 1 of 3.)

private String firstName;

private String lastName;

private String socialSecurityNumber;

private double grossSales; // gross weekly sales

private double commissionRate; // commission percentage

la5stName = last; // should validate

 } // end method setLastName

 // return last name

 public String getLastName()

 {

 return lastName;

 } // end method getLastName

 // set social security number

 public void setSocialSecurityNumber(String ssn)

 {

 socialSecurityNumber = ssn; // should validate

 } // end method setSocialSecurityNumber

 // return social security number

 public String getSocialSecurityNumber()

 {

 return socialSecurityNumber;

 } // end method getSocialSecurityNumber

 // set gross sales amount

 public void setGrossSales(double sales)

 {

 if (sales >= 0.0)

 grossSales = sales;

 else

 throw new IllegalArgumentException(

 "Gross sales must be >= 0.0");

 } // end method setGrossSales

 // return gross sales amount

 public double getGrossSales()

 {

 return grossSales;

 } // end method getGrossSales

 // set commission rate

 public void setCommissionRate(double rate)

 {

 if (rate > 0.0 && rate < 1.0)

 commissionRate = rate;

 else

Chapter#9: Object Oriented Programming: Inheritance

61 |

 throw new IllegalArgumentException(

 "Commission rate must be > 0.0 and < 1.0");

 } // end method setCommissionRate

 // return commission rate

 public double getCommissionRate()

 {

 return commissionRate;

 } // end method getCommissionRate

 // calculate earnings

 public double earnings()

 {

 return * ;

 } // end method earnings

 // return String representation of CommissionEmployee object

 @Override // indicates that this method overrides a superclass method

 public String toString()

 {

return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f",

 "commission employee", , ,

 "social security number", ,

 "gross sales", ,

 "commission rate",);

 } // end method toString

} // end class CommissionEmployee

Chapter#9: Object Oriented Programming: Inheritance

62 |

Object Oriented Programming: Polymorphism

Objectives:
In this chapter you’ll learn:

■ The concept of polymorphism.

■ To distinguish between

abstract and concrete classes.

■ To declare abstract methods

to create abstract classes.

■ How polymorphism makes

systems extensible and

maintainable.

■ To distinguish between

Interface and abstract classes.

■ To declare and implement

interfaces.

63 |

10.1: Polymorphism

For Polymorphism we use “extends” keyword

“Public class SalariedEmployee extends Employee”

Polymorphism enables you to deal in generalities and let the execution-time environment handle

the specifics. You can command objects to behave in manners appropriate to those objects,

without knowing their types (as long as the objects belong to the same inheritance hierarchy).

Polymorphism promotes extensibility: Software that invokes polymorphic behavior is

independent of the object types to which messages are sent. New object types that can respond to

existing method calls can be incorporated into a system without modifying the base system.

Chapter 10: Object Oriented Programming: Polymorphism

64 |

10.2 Abstract Class:

10.2.1: Declaring an Abstract Class and Abstract Methods

We make a class abstract by declaring it with keyword abstract. An abstract class normally

contains one or more abstract methods. An abstract method is one with keyword abstract in its

declaration, as in

“Public abstract void draw(); // abstract method”.

Abstract methods don’t provide implementations. A class that contains any abstract methods

must be explicitly declared abstract even if that class contains some concrete (nonabstract)

methods. Each concrete subclass of an abstract superclass also must provide concrete

implementations of each of the superclass’s abstract methods. Constructors and static methods

cannot be declared abstract. Constructors are not inherited, so an abstract constructor could never

be implemented.

Chapter 10: Object Oriented Programming: Polymorphism

65 |

Abstract Class Employee:

public abstract class Employee

{

 private String firstName;

 private String lastName;

 private String socialSecurityNumber;

 public Employee(String first, String last, String ssn) // three-argument constructor

 {

 firstName = first;

 lastName = last;

 socialSecurityNumber = ssn;

 } // end three-argument Employee constructor

19 public void setFirstName(String first) // set first name

20 {

21 firstName = first; // should validate

22 }

23 // end method setFirstName

25 public String getFirstName()// return first name

26 {

27 return firstName;

28 } // end method getFirstName

31 public void setLastName(String last) // set last name

32 {

33 lastName = last; // should validate

34 } // end method setLastName

37 public String getLastName() // return last name

38 {

39 return lastName;

40 } // end method getLastName

43 public void setSocialSecurityNumber(String ssn) // set social security number

44 {

45 socialSecurityNumber = ssn; // should validate

46 } // end method setSocialSecurityNumber

49 public String getSocialSecurityNumber() // return social security number

50 {

51 return socialSecurityNumber;

52 } // end method getSocialSecurityNumber

54 // return String representation of Employee object

55 @Override

56 public String toString()

57 {

58 return String.format("%s %s\nsocial security number: %s",

59 getFirstName(), getLastName(), getSocialSecurityNumber());

60 } // end method toString

62 // abstract method overridden by concrete subclasses

63 public abstract double earnings(); // no implementation here

64 }

Chapter 10: Object Oriented Programming: Polymorphism

66 |

Class SalariedEmployee:

public class SalariedEmployee extends Employee

{

6 private double weeklySalary;

78

// four-argument constructor

9 public SalariedEmployee(String first, String last, String ssn,

10 double salary)

11 {

12 super(first, last, ssn); // pass to Employee constructor

13 setWeeklySalary(salary); // validate and store salary

14 } // end four-argument SalariedEmployee constructor

15

16 // set salary

17 public void setWeeklySalary(double salary)

18 {

19 if (salary >= 0.0)

20 baseSalary = salary;

21 else

22 throw new IllegalArgumentException(

23 "Weekly salary must be >= 0.0");

24 } // end method setWeeklySalary

25

// return salary

27 public double getWeeklySalary()

28 {

29 return weeklySalary;

30 } // end method getWeeklySalary

// calculate earnings; override abstract method earnings in Employee

@Override

public double earnings()

{

return getWeeklySalary();

} // end method earnings

Class HourlyEmployee:

public class HourlyEmployee extends Employee

{

6 private double wage; // wage per hour

7 private double hours; // hours worked for week

// five-argument constructor

10 public HourlyEmployee(String first, String last, String ssn,

11 double hourlyWage, double hoursWorked)

12 {

13 super(first, last, ssn);

14 setWage(hourlyWage); // validate hourly wage

15 setHours(hoursWorked); // validate hours worked

Chapter 10: Object Oriented Programming: Polymorphism

67 |

16 } // end five-argument HourlyEmployee constructor

17

18 // set wage

19 public void setWage(double hourlyWage)

20 {

21 if (hourlyWage >= 0.0)

22 wage = hourlyWage;

23 else

24 throw new IllegalArgumentException(

25 "Hourly wage must be >= 0.0");

26 } // end method setWage

27

28 // return wage

29 public double getWage()

30 {

31 return wage;

32 } // end method getWage

34 // set hours worked

35 public void setHours(double hoursWorked)

36 {

37 if ((hoursWorked >= 0.0) && (hoursWorked <= 168.0))

38 hours = hoursWorked;

39 else

40 throw new IllegalArgumentException(

41 "Hours worked must be >= 0.0 and <= 168.0");

42 } // end method setHours

43

44 // return hours worked

45 public double getHours()

46 {

47 return hours;

48 } // end method getHours

// calculate earnings; override abstract method earnings in Employee

@Override

public double earnings()

{

if (getHours() <= 40) // no overtime

return getWage() * getHours();

else

return 40 * getWage() + (getHours() - 40) * getWage() * 1.5;

} // end method earnings

// return String representation of HourlyEmployee object

@Override

public String toString()

{

return String.format("hourly employee: %s\n%s: $%,.2f; %s: %,.2f",

super.toString(), "hourly wage", getWage(),

"hours worked", getHours());

} // end method toString

} // end class HourlyEmployee

Chapter 10: Object Oriented Programming: Polymorphism

68 |

Class CommissionEmployee:

public class CommissionEmployee extends Employee

{

6 private double grossSales; // gross weekly sales

7 private double commissionRate; // commission percentage

// five-argument constructor

10 public CommissionEmployee(String first, String last, String ssn,

11 double sales, double rate)

12 {

13 super(first, last, ssn);

setGrossSales(sales);

15 setCommissionRate(rate);

16 } // end five-argument CommissionEmployee constructor

17

18 // set commission rate

19 public void setCommissionRate(double rate)

20 {

21 if (rate > 0.0 && rate < 1.0)

22 commissionRate = rate;

23 else

24 throw new IllegalArgumentException(

25 "Commission rate must be > 0.0 and < 1.0");

26 } // end method setCommissionRate

28 // return commission rate

29 public double getCommissionRate()

30 {

31 return commissionRate;

32 } // end method getCommissionRate

34 // set gross sales amount

35 public void setGrossSales(double sales)

36 {

37 if (sales >= 0.0)

38 grossSales = sales;

39 else

40 throw new IllegalArgumentException(

41 "Gross sales must be >= 0.0");

42 } // end method setGrossSales

44 // return gross sales amount

45 public double getGrossSales()

46 {

47 return grossSales;

48 } // end method getGrossSales

// calculate earnings; override abstract method earnings in Employee

@Override

public double earnings()

{

return getCommissionRate() * getGrossSales();

} // end method earnings

// return String representation of CommissionEmployee object

Chapter 10: Object Oriented Programming: Polymorphism

69 |

@Override

public String toString()

{

return String.format("%s: %s\n%s: $%,.2f; %s: %.2f",

"commission employee", super.toString(),

"gross sales", getGrossSales(),

"commission rate", getCommissionRate());

} // end method toString

} // end class CommissionEmployee

Class BasePlusCommissionEmployee:

public class BasePlusCommissionEmployee extends CommissionEmployee

{

6 private double baseSalary; // base salary per week

// six-argument constructor

9 public BasePlusCommissionEmployee(String first, String last,

10 String ssn, double sales, double rate, double salary)

11 {

12 super(first, last, ssn, sales, rate);

13 setBaseSalary(salary); // validate and store base salary

14 } // end six-argument BasePlusCommissionEmployee constructor

17 public void setBaseSalary(double salary) // set base salary

18 {

19 if (salary >= 0.0)

20 baseSalary = salary;

21 else

22 throw new IllegalArgumentException(

23 "Base salary must be >= 0.0");

24 } // end method setBaseSalary

27 public double getBaseSalary()// return base salary

28 {

29 return baseSalary;

30 } // end method getBaseSalary

// calculate earnings; override method earnings in CommissionEmployee

@Override

public double earnings()

{

return getBaseSalary() + super.earnings();

} // end method earnings

// return String representation of BasePlusCommissionEmployee object

@Override

public String toString()

{

return String.format("%s %s; %s: $%,.2f",

"base-salaried", super.toString(),

"base salary", getBaseSalary());

} // end method toString

} // end class BasePlusCommissionEmployee

Chapter 10: Object Oriented Programming: Polymorphism

70 |

Class PayrollSystemTest:

public class PayrollSystemTest

 {

public static void main(String[] args)

 {

// create subclass objects

SalariedEmployee salariedEmployee = new SalariedEmployee(

"John", "Smith", "111-11-1111", 800.00);

HourlyEmployee hourlyEmployee =

new HourlyEmployee("Karen", "Price", "222-22-2222", 16.75, 40);

CommissionEmployee commissionEmployee =

new CommissionEmployee("Sue", "Jones", "333-33-3333", 10000, .06);

BasePlusCommissionEmployee basePlusCommissionEmployee =

new BasePlusCommissionEmployee(

"Bob", "Lewis", "444-44-4444", 5000, .04, 300);

System.out.println("Employees processed individually:\n");

21

22 System.out.printf("%s\n%s: $%,.2f\n\n",

23 salariedEmployee, "earned", salariedEmployee.earnings());

24 System.out.printf("%s\n%s: $%,.2f\n\n",

25 hourlyEmployee, "earned", hourlyEmployee.earnings());

26 System.out.printf("%s\n%s: $%,.2f\n\n",

27 commissionEmployee, "earned", commissionEmployee.earnings());

28 System.out.printf("%s\n%s: $%,.2f\n\n",

29 basePlusCommissionEmployee,

30 "earned", basePlusCommissionEmployee.earnings());

31

32 // create four-element Employee array

Employee[] employees = new Employee[4];

// initialize array with Employees

employees[0] = salariedEmployee;

employees[1] = hourlyEmployee;

employees[2] = commissionEmployee;

employees[3] = basePlusCommissionEmployee;

System.out.println("Employees processed polymorphically:\n");

42

43 // generically process each element in array employees

44 for (Employee currentEmployee : employees)

45 {

46 System.out.println(); // invokes toString

47

48 // determine whether element is a BasePlusCommissionEmployee

49 if ()

50 {

51 // downcast Employee reference to

52 // BasePlusCommissionEmployee reference

53 BasePlusCommissionEmployee employee =

employee.setBaseSalary(1.10 * employee.getBaseSalary());

57

Chapter 10: Object Oriented Programming: Polymorphism

71 |

58 System.out.printf(

59 "new base salary with 10%% increase is: $%,.2f\n",

60 employee.getBaseSalary());

61 } // end if

System.out.printf(

64 "earned $%,.2f\n\n",);

65 } // end for

// get type name of each object in employees array

for (int j = 0; j < employees.length; j++)

System.out.printf("Employee %d is a %s\n", j,

employees[j].getClass().getName());

 } // end main

 } // end class PayrollSystemTest

10.5: Interface and Abstract

 To use an interface, a concrete class must specify that it implements the interface and

must declare each method in the interface with the signature specified in the interface declaration.

To specify that a class implements an interface add the implements keyword and the name of the

interface to the end of your class declaration’s first line. A class that does not implement all the

methods of the interface is an abstract class and must be declared abstract.

 An interface is often used in place of an abstract class when there’s no default

implementation to inherit—that is, no fields and no default method implementations. Like public

abstract classes, interfaces are typically public types. Like a public class, a public interface must

be declared in a file with the same name as the interface and the .java file-name extension.

Chapter 10: Object Oriented Programming: Polymorphism

72 |

Interface:

Public interface Payable

{

double getPaymentAmount(); // calculate payment; no implementation

} // end interface Payable

Class Invoice:

Public class Invoice implements Payable

{

6 private String partNumber;

7 private String partDescription;

8 private int quantity;

9 private double pricePerItem;

10

11 // four-argument constructor

12 public Invoice(String part, String description, int count,

13 double price)

14 {

15 partNumber = part;

16 partDescription = description;

17 setQuantity(count); // validate and store quantity

18 setPricePerItem(price); // validate and store price per item

19 } // end four-argument Invoice constructor

20

21 // set part number

22 public void setPartNumber(String part)

23 {

24 partNumber = part; // should validate

25 } // end method setPartNumber

26

27 // get part number

28 public String getPartNumber()

29 {

30 return partNumber;

31 } // end method getPartNumber

32

33 // set description

34 public void setPartDescription(String description)

35 {

36 partDescription = description; // should validate

37 } // end method setPartDescription

38

39 // get description

40 public String getPartDescription()

41 {

Chapter 10: Object Oriented Programming: Polymorphism

73 |

42 return partDescription;

43 } // end method getPartDescription

44

45 // set quantity

46 public void setQuantity(int count)

47 {

48 if (count >= 0)

49 quantity = count;

50 else

51 throw new IllegalArgumentException("Quantity must be >= 0");

52 } // end method setQuantity

// get quantity

55 public int getQuantity()

56 {

57 return quantity;

58 } // end method getQuantity

59

60 // set price per item

61 public void setPricePerItem(double price)

62 {

63 if (price >= 0.0)

64 pricePerItem = price;

65 else

66 throw new IllegalArgumentException(

67 "Price per item must be >= 0");

68 } // end method setPricePerItem

69

70 // get price per item

71 public double getPricePerItem()

72 {

73 return pricePerItem;

74 } // end method getPricePerItem

75

76 // return String representation of Invoice object

77 @Override

78 public String toString()

79 {

80 return String.format("%s: \n%s: %s (%s) \n%s: %d \n%s: $%,.2f",

81 "invoice", "part number", getPartNumber(), getPartDescription(),

82 "quantity", getQuantity(), "price per item", getPricePerItem());

83 } // end method toString

// method required to carry out contract with interface Payable

@Override

public double getPaymentAmount()

{

return getQuantity() * getPricePerItem(); // calculate total cost

} // end method getPaymentAmount

} // end class Invoice

Chapter 10: Object Oriented Programming: Polymorphism

74 |

Abstract Class Employee:

public abstract class Employee implements Payable

{

6 private String firstName;

7 private String lastName;

8 private String socialSecurityNumber;

9

10 // three-argument constructor

11 public Employee(String first, String last, String ssn)

12 {

13 firstName = first;

14 lastName = last;

15 socialSecurityNumber = ssn;

16 } // end three-argument Employee constructor

17

18 // set first name

19 public void setFirstName(String first)

20 {

21 firstName = first; // should validate

22 } // end method setFirstName

23

24 // return first name

25 public String getFirstName()

26 {

27 return firstName;

28 } // end method getFirstName

// set last name

31 public void setLastName(String last)

32 {

33 lastName = last; // should validate

34 } // end method setLastName

35

36 // return last name

37 public String getLastName()

38 {

39 return lastName;

40 } // end method getLastName

41

42 // set social security number

43 public void setSocialSecurityNumber(String ssn)

44 {

45 socialSecurityNumber = ssn; // should validate

46 } // end method setSocialSecurityNumber

47

48 // return social security number

49 public String getSocialSecurityNumber()

50 {

Chapter 10: Object Oriented Programming: Polymorphism

Chapter 10: Object Oriented Programming: Polymorphism

75 |

51 return socialSecurityNumber;

52 } // end method getSocialSecurityNumber

53

54 // return String representation of Employee object

55 @Override

56 public String toString()

57 {

58 return String.format("%s %s\nsocial security number: %s",

59 getFirstName(), getLastName(), getSocialSecurityNumber());

60 } // end method toString

// Note: We do not implement Payable method getPaymentAmount here so

// this class must be declared abstract to avoid a compilation error

} // end abstract class Employee

Class SalariedEmployee:

public class SalariedEmployee extends Employee

5 {

6 private double weeklySalary;

78

// four-argument constructor

9 public SalariedEmployee(String first, String last, String ssn,

10 double salary)

11 {

super(first, last, ssn); // pass to Employee constructor

13 setWeeklySalary(salary); // validate and store salary

14 } // end four-argument SalariedEmployee constructor

15

16 // set salary

17 public void setWeeklySalary(double salary)

18 {

19 if (salary >= 0.0)

20 baseSalary = salary;

21 else

22 throw new IllegalArgumentException(

23 "Weekly salary must be >= 0.0");

24 } // end method setWeeklySalary

25

26 // return salary

27 public double getWeeklySalary()

28 {

29 return weeklySalary;

30 } // end method getWeeklySalary

// calculate earnings; implement interface Payable method that was

// abstract in superclass Employee

@Override

public double getPaymentAmount()

{

return getWeeklySalary();

Chapter 10: Object Oriented Programming: Polymorphism

76 |

} // end method getPaymentAmount

// return String representation of SalariedEmployee object

41 @Override

42 public String toString()

43 {

44 return String.format("salaried employee: %s\n%s: $%,.2f",

45 super.toString(), "weekly salary", getWeeklySalary());

46 } // end method toString

47 } // end class SalariedEmployee

Class PayableInterfaceTest:

public class PayableInterfaceTest

5 {

6 public static void main(String[] args)

7 {

8 // create four-element Payable array

Payable[] payableObjects = new Payable[4];

// populate array with objects that implement Payable

12 payableObjects[0] = new Invoice("01234", "seat", 2, 375.00);

13 payableObjects[1] = new Invoice("56789", "tire", 4, 79.95);

14 payableObjects[2] =

15 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);

16 payableObjects[3] =

17 new SalariedEmployee("Lisa", "Barnes", "888-88-8888", 1200.00);

18

19 System.out.println(

20 "Invoices and Employees processed polymorphically:\n");

21

22 // generically process each element in array payableObjects

23 for (Payable currentPayable : payableObjects)

24 {

25 // output currentPayable and its appropriate payment amount

26 System.out.printf("%s \n%s: $%,.2f\n\n",

"payment due", currentPayable.getPaymentAmount(

} // end for

30 } // end main

31 } // end class PayableInterfaceTest

Chapter 10: Object Oriented Programming: Polymorphism

77 |

Exception Handling: A Deeper Look

Objectives:
In this chapter you’ll learn:

■ What exceptions are and

how they’re handled.

■ When to use exception

handling.

■ To use try blocks to delimit

code in which exceptions

might occur.

■ To throw exceptions to

indicate a problem.

■ To use catch blocks to

specify exception handlers.
■ To use the finally block to

release resources.

■ The exception class

hierarchy.

■ Assertions

78 |

11. 1: Exception Handling:

 Exception handling is the process of responding to the occurrence, during

computation, of exceptions – anomalous or exceptional conditions requiring special processing –

often changing the normal flow of program execution.

 Exception handling is the process of responding to the occurrence, during

computation, of exceptions – anomalous or exceptional conditions requiring special processing –

often changing the normal flow of program execution.

try (ClassName theObject = new ClassName())

{

// use theObject here

}

catch (Exception e)

{

// catch exceptions that occur while using the resource

}

11.4: Throw Exception:

Syntax of Throw exception

throw AnyThrowableInstance;

Example:

//A void method

public void sample()

{

 //Statements

 //if (somethingWrong) then

 IOException e = new IOException();

 throw e;

 //More Statements

 }

Chapter 11: Exception Handling: A Deeper Look

79 |

11.5: Catch Exception:

MyClass obj = new MyClass();

try{

 obj.sample();

}catch(IOException ioe)

 {

 //Your error Message here

 System.out.println(ioe);

 }

11.6: Finally Exception Block:

try {

 line = console.readLine();

 if (line.length() == 0) {

 throw new EmptyLineException("The line read from console was empty!");

 }

 console.printLine("Hello %s!" % line);

 console.printLine("The program ran successfully");

}

catch (EmptyLineException e) {

 console.printLine("Hello!");

Chapter 11: Exception Handling: A Deeper Look

80 |

}

catch (Exception e) {

 console.printLine("Error: " + e.message());

}

finally {

 console.printLine("The program terminates now");

}

11.7 Java Exception hierarchy:

 All Java exception classes inherit directly or indirectly from class Exception,

forming an inheritance hierarchy. Only Throwable objects can be used with the exception-

handling mechanism. Class Throwable has two subclasses: Exception and Error. Class

Exception and its subclasses—for instance, RuntimeException (package java.lang) and

IOException (package java.io)—represent exceptional situations that can occur in a Java program

and that can be caught by the application.

Chapter 11: Exception Handling: A Deeper Look

81 |

Exception Handling:

import java.util.InputMismatchException;

import java.util.Scanner;

56

public class DivideByZeroWithExceptionHandling

7 {

8 // demonstrates throwing an exception when a divide-by-zero occurs

9 public static int quotient(int numerator, int denominator)

throws ArithmeticException

{

12 return numerator / denominator; // possible division by zero

13 }

 // end method quotient

14

15 public static void main(String[] args)

16 {

17 Scanner scanner = new Scanner(System.in); // scanner for input

18 boolean continueLoop = true; // determines if more input is needed

do

{

try // read two numbers and calculate quotient

{

System.out.print("Please enter an integer numerator: ");

int numerator = scanner.nextInt();

System.out.print("Please enter an integer denominator: ");

int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);

System.out.printf("\nResult: %d / %d = %d\n", numerator,

denominator, result);

continueLoop = false; // input successful; end looping

} // end try

catch (InputMismatchException inputMismatchException)

{

System.err.printf("\nException: %s\n",

inputMismatchException);

scanner.nextLine(); // discard input so user can try again

System.out.println(

"You must enter integers. Please try again.\n");

} // end catch

catch (ArithmeticException arithmeticException)

{

System.err.printf("\nException: %s\n", arithmeticException);

System.out.println(

"Zero is an invalid denominator. Please try again.\n");

} // end catch

} while (continueLoop); // end do...while

} // end main

} // end class DivideByZeroWithExceptionHandling

Chapter 11: Exception Handling: A Deeper Look

82 |

Finally Block Exception:

public class UsingExceptions

5 {

6 public static void main(String[] args)

7 {

8 try

9 {

10 throwException(); // call method throwException

11 } // end try

12 catch (Exception exception) // exception thrown by throwException

13 {

14 System.err.println("Exception handled in main");

15 } // end catch

16

17 doesNotThrowException();

18 } // end main

20 // demonstrate try...catch...finally

21 public static void throwException() throws Exception

22 {

 try // throw an exception and immediately catch it

24 {

System.out.println("Method throwException");

throw new Exception(); // generate exception

} // end try

28 catch (Exception exception) // catch exception thrown in try

29 {

30 System.err.println(

31 "Exception handled in method throwException");

throw exception; // rethrow for further processing

// code here would not be reached; would cause compilation errors

36 } // end catch

finally // executes regardless of what occurs in try...catch

{

System.err.println("Finally executed in throwException");

} // end finally

// code here would not be reached; would cause compilation errors

44 } // end method throwException

46 // demonstrate finally when no exception occurs

47 public static void doesNotThrowException()

48 {

49 try // try block does not throw an exception

50 {

51 System.out.println("Method doesNotThrowException");

52 } // end try

53 catch (Exception exception) // does not execute

54 {

55 System.err.println(exception);

56 } // end catch

finally // executes regardless of what occurs in try...catch

Chapter 11: Exception Handling: A Deeper Look

83 |

{ System.err. println(

"Finally executed in doesNotThrowException");

} // end finally

System.out.println("End of method doesNotThrowException");

64 } // end method doesNotThrowException

65 } // end class UsingExceptions

11.8: Assertions:

When implementing and debugging a class, it’s sometimes useful to state conditions that should

be true at a particular point in a method. These conditions, called assertions, help ensure a

program’s validity by catching potential bugs and identifying possible logic errors during

development.

assert expression;

assert expression1 : expression2;

import java.util.Scanner;

45

public class AssertTest

6 {

7 public static void main(String[] args)

8 {

9 Scanner input = new Scanner(System.in);

System.out.print("Enter a number between 0 and 10: ");

12 int number = input.nextInt();

13

14 // assert that the value is >= 0 and <= 10

15 assert (number >= 0 && number <= 10) : "bad number: " + number;

16

17 System.out.printf("You entered %d\n", number);

18 } // end main

19 } // end class AssertTest

Chapter 11: Exception Handling: A Deeper Look

84 |

ATM Case Study, Part I:

Object Oriented Design With UML Diagram:

Objectives

In this chapter you’ll learn:

■ A simple object-oriented

design methodology.

■ What a requirements

document is.

■ To identify classes and class

attributes from a

requirements document.

■ To identify objects’ states,

activities and operations from

a requirements document.

■ To work with the UML’s use

case, class, state, activity,

communication and

sequence diagrams to

graphically model an object

oriented system.

85 |

12.2 Examining the Requirements Document:

Requirements Document:

 A local bank intends to install a new automated teller machine (ATM) to allow

users (i.e., bank customers) to perform basic financial transactions. Each user can have only one

account at the bank. ATM users should be able to view their account balance and withdraw cash

(i.e., take money out of an account) and deposit funds. The user interface of the automated teller

machine contains:

• a screen that displays messages to the user

• a keypad that receives numeric input from the user

• a cash dispenser that dispenses cash to the user and

• a deposit slot that receives deposit envelopes from the user.

Functions:

The screen displays Welcome! and prompts the user to enter an account number.

2. The user enters a five-digit account number using the keypad.

3. The screen prompts the user to enter the PIN (personal identification number)

associated with the specified account number.

4. The user enters a five-digit PIN using the keypad.1

5. If the user enters a valid account number and the correct PIN for that account, the screen

displays the main menu. If the user enters an invalid account number or an incorrect PIN, the

screen displays an appropriate message,

then the ATM returns to Step 1 to restart the authentication process.

Chapter 12: ATM case study Part I: UML Diagram

86 |

Chapter 12: ATM case study Part I: UML Diagram

87 |

Use Case Diagram:

We create a use case diagram to model the interactions between a system’s clients (in this case

study, bank customers) and its use cases. The goal is to show the kinds of interactions users have

with a system without providing the details—these are provided in other UML diagrams. Use

case diagrams are often accompanied by informal text that gives more detail—like the text that

appears in the requirements document.

12.3 Identifying the Classes in a Requirements Document:

Modeling Classes:

The UML enables us to model, via class diagrams, the classes in the ATM system and their

interrelationships. Each class is modeled as a rectangle with three compartments. The top one

contains the name of the class centered horizontally in boldface. The middle compartment

contains the class’s attributes.

Chapter 12: ATM case study Part I: UML Diagram

88 |

Aggregation:

 From UML specification composition relationships have properties:

1. Only one class in the relationship can represent the whole. For example, either the screen is

part of the ATM or the ATM is part of the screen, but the screen and the ATM cannot both

represent the whole in the relationship.

2. The parts in the composition relationship exist only as long as the whole does, and the whole

is responsible for the creation and destruction of its parts.

3. A part may belong to only one whole at a time, although it may be removed and

attached to another whole, which then assumes responsibility for the part.

Chapter 12: ATM case study Part I: UML Diagram

89 |

12.4 Identifying Class Attributes:

Identifying Attributes:

Chapter 12: ATM case study Part I: UML Diagram

90 |

UML Diagram:

12.5 Identifying Class Operations:

Chapter 12: ATM case study Part I: UML Diagram

91 |

Modeling Operations:

12.7 Indicating Collaboration among Objects:

When two objects communicate with each other to accomplish a task, they’re said to

collaborate—objects do this by invoking one another’s operations. A collaboration consists of

an object of one class sending a message to an object of another class.

Chapter 12: ATM case study Part I: UML Diagram

92 |

Sequence of Messages in a Communication Diagram:

Sequence Diagrams:

Chapter 12: ATM case study Part I: UML Diagram

93 |

ATM Case Study Part2

Objectives

In this chapter we’ll

 Incorporate inheritance into

the design of the ATM.
 Incorporate polymorphism into

the design of the ATM.
 Fully implement in Java the

UML-based object-oriented

design of the ATM software.
 Study a detailed code

walkthrough of the ATM

software system that explains

the implementation issues.

94 |

13.1 Introduction

In Chapter 12, we developed an object-oriented design for our ATM system. We

now implement our object-oriented design in Java. In Section 13.2, we show how to

convert class diagrams to Java code. In Section 13.3, we tune the design with

inheritance and polymorphism. Then we present a full Java code implementation of

the ATM software in Section 13.4.

13.2 Starting to program the Classes of ATM System

Visibility
We now apply access modifiers to the members of our classes. We’ve introduced access

modifiers public and private. Access modifiers determine the visibility or accessibility of

an object’s attributes and methods to other objects. Before we can begin implementing our design, we must

consider which attributes and methods of our classes should be public

and which should be private. We’ve observed that attributes normally should be private and that methods

invoked by clients of a given class should be public. Methods that are called as “utility methods” only by

other methods of the same class normally should be private. The UML employs visibility markers for

modeling the visibility of attributes and operations. Public visibility is indicated by placing a plus sign (+)

before an operation or an attribute, whereas a minus sign (–) indicates private visibility. Figure 13.1 shows

our updated class diagram with visibility markers included.

Navigability

Before we begin implementing our design in Java, we introduce an additional UML notation. The

class diagram in Fig. 13.2 further refines the relationships among classes in the ATM system by

adding navigability arrows to the association lines. Navigability arrows (represented as arrows

with stick () arrowheads in the class diagram) indicate in the direction which an association can

be traversed. When implementing a system designed using the UML, you use navigability arrows

to determine which objects need references to other objects. For example, the navigability arrow

pointing from class ATM to class BankDatabase indicates that we can navigate from the former to the

latter, thereby enabling the ATM to invoke the BankDatabase’s operations.

Chapter#13: ATM Case Study Part2

95 |

 Fig. 13.1 | Class diagram with visibility markers.

However, since Fig. 13.2 does not contain a navigability arrow pointing from class BankDatabase to class ATM,

the BankDatabase cannot access the ATM’s operations. Associations in a class diagram that have navigability

arrows at both ends or have none at all indicate bidirectional navigability—navigation can proceed in either

direction across the association.

Like the class diagram of Fig. 12.10, that of Fig. 13.2 omits classes BalanceInquiry and

Deposit for simplicity. The navigability of the associations in which these classes participate closely parallels

that of class Withdrawal. Recall from Section 12.3 that BalanceInquiry has an association with class Screen. We can

navigate from class BalanceInquiry to class Screen along this association, but we cannot navigate from class Screen

to class BalanceInquiry. Thus, if we were to model class BalanceInquiry in Fig. 13.2, we would place a navigability

arrow at class Screen’s end of this association. Also recall that class Deposit associates with classes Screen, Keypad

and DepositSlot. We can navigate from class Deposit to each of these classes, but not vice versa. We therefore

would place navigability arrows at the Screen, Keypad and DepositSlot ends of these associations.

Chapter#13: ATM Case Study Part2

96 |

 Fig. 13.2 | Class diagram with navigability arrows.

13.3 Incorporating Inheritance and Polymorphism into the ATM

System

We now revisit our ATM system design to see how it might benefit from inheritance. To

apply inheritance, we first look for commonality among classes in the system. We create an inheritance

hierarchy to model similar (yet not identical) classes in a more elegant and efficient manner. We then

modify our class diagram to incorporate the new inheritance relationships. Finally, we demonstrate how

our updated design is translated into Java code.

 Fig. 13.3 | Attributes and operations of BalanceInquiry, Withdrawal and Deposit.

Generalization
The UML specifies a relationship called a generalization to model inheritance.

Figure 13.8 is the class diagram that models the generalization of superclass Transaction

Chapter#13: ATM Case Study Part2

97 |

and subclasses BalanceInquiry, Withdrawal and Deposit. The arrows with triangular hollow arrowheads

indicate that classes BalanceInquiry, Withdrawal and Deposit extend class Transaction. Class Transaction

is said to be a generalization of classes BalanceInquiry, Withdrawal and Deposit. Class BalanceInquiry,

Withdrawal and Deposit are said to be specializations of class Transaction.

 Fig. 13.4 | Class diagram modeling generalization of superclass Transaction and subclasses

BalanceInquiry, Withdrawal and Deposit. Abstract class names (e.g., Transaction) and method names (e.g.,

execute in class Transaction) appear in italics.

Processing Transactions Polymorphically
Polymorphism provides the ATM with an elegant way to execute all transactions “in the general.” For

example, suppose a user chooses to perform a balance inquiry. The ATM sets a Transaction reference to a

new BalanceInquiry object. When the ATM uses its Transaction reference to invoke method execute,

BalanceInquiry’s version of execute is called.

Class Diagram with Transaction Hierarchy Incorporated
Figure 13.9 presents an updated class diagram of our model that incorporates inheritance

and introduces class Transaction. We model an association between class ATM and class

Transaction to show that the ATM, at any given moment, either is executing a transaction

or is not (i.e., zero or one objects of type Transaction exist in the system at a time). Because a Withdrawal

is a type of Transaction, we no longer draw an association line directly between class ATM and class

Withdrawal. Subclass Withdrawal inherits superclass

Transaction’s association with class ATM. Subclasses BalanceInquiry and Deposit inherit

this association, too, so the previously omitted associations between ATM and classes BalanceInquiry and

Deposit no longer exist either.

Chapter#13: ATM Case Study Part2

98 |

 Fig. 13.9 | Class diagram of the ATM system (incorporating inheritance). The abstract class

 name Transaction appears in italics.

We also add an association between class Transaction and the BankDatabase

(Fig. 13.9). All Transactions require a reference to the BankDatabase so they can access

and modify account information. Because each Transaction subclass inherits this reference, we no longer

model the association between class Withdrawal and the BankDatabase. Similarly, the previously omitted

associations between the BankDatabase and classes BalanceInquiry and Deposit no longer exist.

We show an association between class Transaction and the Screen. All Transactions

display output to the user via the Screen. Thus, we no longer include the association previously modeled

between Withdrawal and the Screen, although Withdrawal still participates in associations with the

CashDispenser and the Keypad. Our class diagram incorporating inheritance also models Deposit and

BalanceInquiry. We show associations between Deposit and both the DepositSlot and the Keypad. Class

BalanceInquiry takes part in no associations other than those inherited from class Transaction—a

BalanceInquiry needs to interact only with the BankDatabase and with the Screen.

Chapter#13: ATM Case Study Part2

99 |

 Fig. 13.10 | Class diagram with attributes and operations (incorporating inheritance) The

 abstract class name Transaction and the abstract method name execute in class

 Transaction appear in italics.

13.4 ATM Case Study Implementation

This section contains the complete working 673-line implementation of the ATM system.

We consider the classes in the order in which we identified them in Section 12.3—ATM,

Screen, Keypad, CashDispenser, DepositSlot, Account, BankDatabase, Transaction, BalanceInquiry,

Withdrawal and Deposit.

Chapter#13: ATM Case Study Part2

100 |

13.4.1 Class ATM

 // ATM.java

 // Represents an automated teller machine

public class ATM

 {

 private boolean userAuthenticated; // whether user is authenticated

 private int currentAccountNumber; // current user's account number

 private Screen screen; // ATM's screen

 private Keypad keypad; // ATM's keypad

 private CashDispenser cashDispenser; // ATM's cash dispenser

 private DepositSlot depositSlot; // ATM's deposit slot

 private BankDatabase bankDatabase; // account information database

 // constants corresponding to main menu options

 private static final int BALANCE_INQUIRY = 1;

 private static final int WITHDRAWAL = 2;

 private static final int DEPOSIT = 3;

 private static final int EXIT = 4;

 // no-argument ATM constructor initializes instance variables

 public ATM()

 {

 userAuthenticated = false; // user is not authenticated to start

 currentAccountNumber = 0; // no current account number to start

 screen = new Screen(); // create screen

 keypad = new Keypad(); // create keypad

 cashDispenser = new CashDispenser(); // create cash dispenser

 depositSlot = new DepositSlot(); // create deposit slot

 bankDatabase = new BankDatabase(); // create acct info database

 } // end no-argument ATM constructor

 // start ATM

 public void run()

 {

 // welcome and authenticate user; perform transactions

 while (true)

 {

 // loop while user is not yet authenticated

 while (!userAuthenticated)

 {

 screen.displayMessageLine("\nWelcome!");

 authenticateUser(); // authenticate user

 } // end while

 performTransactions(); // user is now authenticated

 userAuthenticated = false; // reset before next ATM session

 currentAccountNumber = 0; // reset before next ATM session

 screen.displayMessageLine("\nThank you! Goodbye!");

 } // end while

 } // end method run

 // attempts to authenticate user against database

 private void authenticateUser()

Chapter#13: ATM Case Study Part2

101 |

 {

 screen.displayMessage("\nPlease enter your account number: ");

 int accountNumber = keypad.getInput(); // input account number

 screen.displayMessage("\nEnter your PIN: "); // prompt for PIN

 int pin = keypad.getInput(); // input PIN

 // set userAuthenticated to boolean value returned by database

 userAuthenticated =

 bankDatabase.authenticateUser(accountNumber, pin);

 // check whether authentication succeeded

 if (userAuthenticated)

 {

 currentAccountNumber = accountNumber; // save user's account #

 } // end if

 else

 screen.displayMessageLine(

 "Invalid account number or PIN. Please try again.");

 } // end method authenticateUser

 // display the main menu and perform transactions

 private void performTransactions()

 {

 // local variable to store transaction currently being processed

 Transaction currentTransaction = null;

 boolean userExited = false; // user has not chosen to exit

 // loop while user has not chosen option to exit system

 while (!userExited)

 {

 // show main menu and get user selection

 int mainMenuSelection = displayMainMenu();

 // decide how to proceed based on user's menu selection

 switch (mainMenuSelection)

 {

 // user chose to perform one of three transaction types

 case BALANCE_INQUIRY:

 case WITHDRAWAL:

 case DEPOSIT:

 // initialize as new object of chosen type

 currentTransaction =

 createTransaction(mainMenuSelection);
 currentTransaction.execute(); // execute transaction

 break;

 case EXIT: // user chose to terminate session

 screen.displayMessageLine("\nExiting the system...");

 userExited = true; // this ATM session should end

 break;

 default: // user did not enter an integer from 1-4

 screen.displayMessageLine(

 "\nYou did not enter a valid selection. Try again.");

 break;

Chapter#13: ATM Case Study Part2

102 |

 } // end switch

 } // end while

 } // end method performTransactions

 // display the main menu and return an input selection

 private int displayMainMenu()

 {

 screen.displayMessageLine("\nMain menu:");

 screen.displayMessageLine("1 - View my balance");

 screen.displayMessageLine("2 - Withdraw cash");

 screen.displayMessageLine("3 - Deposit funds");

 screen.displayMessageLine("4 - Exit\n");

 screen.displayMessage("Enter a choice: ");

 return keypad.getInput(); // return user's selection

 } // end method displayMainMenu

 // return object of specified Transaction subclass

 private Transaction createTransaction(int type)

 {

 Transaction temp = null; // temporary Transaction variable

 // determine which type of Transaction to create

 switch (type)

 {

 case BALANCE_INQUIRY: // create new BalanceInquiry transaction

 temp = new BalanceInquiry(

 currentAccountNumber, screen, bankDatabase);

 break;

 case WITHDRAWAL: // create new Withdrawal transaction

 temp = new Withdrawal(currentAccountNumber, screen,

 bankDatabase, keypad, cashDispenser);

 break;

 case DEPOSIT: // create new Deposit transaction

 temp = new Deposit(currentAccountNumber, screen,

 bankDatabase, keypad, depositSlot);

 break;

 } // end switch

 return temp; // return the newly created object

 } // end method createTransaction

 } // end class ATM

13.4.2 Class Screen
 // Screen.java

 // Represents the screen of the ATM

public class Screen

 {

 // display a message without a carriage return

 public void displayMessage(String message)

 {

 System.out.print(message);

 } // end method displayMessage

Chapter#13: ATM Case Study Part2

Chapter#13: ATM Case Study Part2

103 |

 // display a message with a carriage return

 public void displayMessageLine(String message)

 {

 System.out.println(message);

 } // end method displayMessageLine

 // displays a dollar amount

 public void displayDollarAmount(double amount)

 {

 System.out.printf("$%,.2f", amount);

 } // end method displayDollarAmount

 } // end class Screen

13.4.3 Class Keypad

 // Keypad.java

 // Represents the keypad of the ATM

 import java.util.Scanner; // program uses Scanner to obtain user input

 public class Keypad

 {

 private Scanner input; // reads data from the command line

// no-argument constructor initializes the Scanner

 public Keypad()

 {

 input = new Scanner(System.in);

 } // end no-argument Keypad constructor

 // return an integer value entered by user

 public int getInput()

 {

 return input.nextInt(); // we assume that user enters an integer

 } // end method getInput

 } // end class Keypad

13.4.4 Class CashDispenser
 // CashDispenser.java

 // Represents the cash dispenser of the ATM

 public class CashDispenser

 {

 // the default initial number of bills in the cash dispenser

 private final static int INITIAL_COUNT = 500;

 private int count; // number of $20 bills remaining

 // no-argument CashDispenser constructor initializes count to default

Chapter#13: ATM Case Study Part2

Chapter#13: ATM Case Study Part2

104 |

 public CashDispenser()

 {

 count = INITIAL_COUNT; // set count attribute to default

 } // end CashDispenser constructor

 // simulates dispensing of specified amount of cash

 public void dispenseCash(int amount)

 {

 int billsRequired = amount / 20; // number of $20 bills required

 count -= billsRequired; // update the count of bills

 } // end method dispenseCash

 // indicates whether cash dispenser can dispense desired amount

 public boolean isSufficientCashAvailable(int amount)

 {

 int billsRequired = amount / 20; // number of $20 bills required

 if (count >= billsRequired)

 return true; // enough bills available

 else

 return false; // not enough bills available

 } // end method isSufficientCashAvailable

 } // end class CashDispenser

13.4.5 Class DipositSlot

 // DepositSlot.java

 // Represents the deposit slot of the ATM

public class DepositSlot

 {

 // indicates whether envelope was received (always returns true,

 // because this is only a software simulation of a real deposit slot)

 public boolean isEnvelopeReceived()

 {

 return true; // deposit envelope was received

 } // end method isEnvelopeReceived

 } // end class DepositSlot

13.4.6 Class Account
 // Account.java

 // Represents a bank account

public class Account

 {

 private int accountNumber; // account number

 private int pin; // PIN for authentication

 private double availableBalance; // funds available for withdrawal

 private double totalBalance; // funds available + pending deposits

Chapter#13: ATM Case Study Part2

Chapter#13: ATM Case Study Part2

105 |

 // Account constructor initializes attributes

 public Account(int theAccountNumber, int thePIN,

 double theAvailableBalance, double theTotalBalance)

 {

 accountNumber = theAccountNumber;

 pin = thePIN;

 availableBalance = theAvailableBalance;

 totalBalance = theTotalBalance;

 } // end Account constructor

 // determines whether a user-specified PIN matches PIN in Account

 public boolean validatePIN(int userPIN)

 {

 if (userPIN == pin)

 return true;

 else

 return false;

 } // end method validatePIN

 // returns available balance

 public double getAvailableBalance()

 {

 return availableBalance;

 } // end getAvailableBalance

 // returns the total balance

 public double getTotalBalance()

 {

 return totalBalance;

 } // end method getTotalBalance

 // credits an amount to the account

 public void credit(double amount)

 {

 totalBalance += amount; // add to total balance

 } // end method credit

 // debits an amount from the account

 public void debit(double amount)

 {

 availableBalance -= amount; // subtract from available balance

 totalBalance -= amount; // subtract from total balance

 } // end method debit

 // returns account number

 public int getAccountNumber()

 {

 return accountNumber;

 } // end method getAccountNumber

 } // end class Account

Chapter#13: ATM Case Study Part2

106 |

13.4.7 Class BankDataBase
 // BankDatabase.java

 // Represents the bank account information database

public class BankDatabase

 {

 private Account[] accounts; // array of Accounts

// no-argument BankDatabase constructor initializes accounts

 public BankDatabase()

 {

 accounts = new Account[2]; // just 2 accounts for testing

 accounts[0] = new Account(12345, 54321, 1000.0, 1200.0);

 accounts[1] = new Account(98765, 56789, 200.0, 200.0);

 } // end no-argument BankDatabase constructor

 // retrieve Account object containing specified account number

 private Account getAccount(int accountNumber)

 {

 // loop through accounts searching for matching account number

 for (Account currentAccount : accounts)

 {

 // return current account if match found

 if (currentAccount.getAccountNumber() == accountNumber)

 return currentAccount;

 } // end for

 return null; // if no matching account was found, return null

 } // end method getAccount

 // determine whether user-specified account number and PIN match

 // those of an account in the database

 public boolean authenticateUser(int userAccountNumber, int userPIN)

 {

 // attempt to retrieve the account with the account number

 Account userAccount = getAccount(userAccountNumber);

 // if account exists, return result of Account method validatePIN

 if (userAccount != null)

 return userAccount.validatePIN(userPIN);

 else

 return false; // account number not found, so return false

 } // end method authenticateUser

 // return available balance of Account with specified account number

 public double getAvailableBalance(int userAccountNumber)

 {

 return getAccount(userAccountNumber).getAvailableBalance();

 } // end method getAvailableBalance

 // return total balance of Account with specified account number

 public double getTotalBalance(int userAccountNumber)

 {

 return getAccount(userAccountNumber).getTotalBalance();

Chapter#13: ATM Case Study Part2

107 |

 } // end method getTotalBalance

 // credit an amount to Account with specified account number

 public void credit(int userAccountNumber, double amount)

 {

 getAccount(userAccountNumber).credit(amount);

 } // end method credit

 // debit an amount from Account with specified account number

 public void debit(int userAccountNumber, double amount)

 {

 getAccount(userAccountNumber).debit(amount);

 } // end method debit

 } // end class BankDatabase

13.4.8 Class Transaction

 // Transaction.java

 // Abstract superclass Transaction represents an ATM transaction

public abstract class Transaction

 {

 private int accountNumber; // indicates account involved

 private Screen screen; // ATM's screen

 private BankDatabase bankDatabase; // account info database

 // Transaction constructor invoked by subclasses using super()

 public Transaction(int userAccountNumber, Screen atmScreen,

 BankDatabase atmBankDatabase)

 {

 accountNumber = userAccountNumber;

 screen = atmScreen;

 bankDatabase = atmBankDatabase;

 } // end Transaction constructor

 // return account number

 public int getAccountNumber()

 {

 return accountNumber;

 } // end method getAccountNumber

 // return reference to screen

 public Screen getScreen()

 {

 return screen;

 } // end method getScreen

 // return reference to bank database

 public BankDatabase getBankDatabase()

 {

 return bankDatabase;

 } // end method getBankDatabase

Chapter#13: ATM Case Study Part2

Chapter#13: ATM Case Study Part2

108 |

 // perform the transaction (overridden by each subclass)

 abstract public void execute();

 } // end class Transaction

13.4.9 Class BalanceInquiry

// BalanceInquiry.java

 // Represents a balance inquiry ATM transaction

public class BalanceInquiry extends Transaction

 {

 // BalanceInquiry constructor

 public BalanceInquiry(int userAccountNumber, Screen atmScreen,

 BankDatabase atmBankDatabase)

 {

 super(userAccountNumber, atmScreen, atmBankDatabase);

 } // end BalanceInquiry constructor

 // performs the transaction

 @Override

 public void execute()

 {

 // get references to bank database and screen

 BankDatabase bankDatabase = getBankDatabase();

 Screen screen = getScreen();

 // get the available balance for the account involved

 double availableBalance =

 bankDatabase.getAvailableBalance(getAccountNumber());

 // get the total balance for the account involved

 double totalBalance =

 bankDatabase.getTotalBalance(getAccountNumber());

 // display the balance information on the screen

 screen.displayMessageLine("\nBalance Information:");

 screen.displayMessage(" - Available balance: ");

 screen.displayDollarAmount(availableBalance);

 screen.displayMessage("\n - Total balance: ");

 screen.displayDollarAmount(totalBalance);

 screen.displayMessageLine("");

 } // end method execute

 } // end class BalanceInquiry

13.4.10 Class Withdrawal

 // Withdrawal.java

 // Represents a withdrawal ATM transaction

public class Withdrawal extends Transaction

 {

 private int amount; // amount to withdraw

Chapter#13: ATM Case Study Part2

Chapter#13: ATM Case Study Part2

109 |

 private Keypad keypad; // reference to keypad

 private CashDispenser cashDispenser; // reference to cash dispenser

 // constant corresponding to menu option to cancel

 private final static int CANCELED = 6;

 // Withdrawal constructor

 public Withdrawal(int userAccountNumber, Screen atmScreen,

 BankDatabase atmBankDatabase, Keypad atmKeypad,

 CashDispenser atmCashDispenser)

 {

 // initialize superclass variables

 super(userAccountNumber, atmScreen, atmBankDatabase);

 // initialize references to keypad and cash dispenser

 keypad = atmKeypad;

 cashDispenser = atmCashDispenser;

 } // end Withdrawal constructor

 // perform transaction

 @Override

 public void execute()

 {

 boolean cashDispensed = false; // cash was not dispensed yet

 double availableBalance; // amount available for withdrawal

 // get references to bank database and screen

 BankDatabase bankDatabase = getBankDatabase();

 Screen screen = getScreen();

 // loop until cash is dispensed or the user cancels

 do

 {

 // obtain a chosen withdrawal amount from the user

 amount = displayMenuOfAmounts();

 // check whether user chose a withdrawal amount or canceled

 if (amount != CANCELED)

 {

 // get available balance of account involved

 availableBalance = bankDatabase.getAvailableBalance(getAccountNumber());

 // check whether the user has enough money in the account

 if (amount <= availableBalance)

 {

 // check whether the cash dispenser has enough money

 if (cashDispenser.isSufficientCashAvailable(amount))

 {

 // update the account involved to reflect the withdrawal

 bankDatabase.debit(getAccountNumber(), amount);

 cashDispenser.dispenseCash(amount); // dispense cash

 cashDispensed = true; // cash was dispensed

 // instruct user to take cash

Chapter#13: ATM Case Study Part2

110 |

 screen.displayMessageLine("\nYour cash has been" +

 " dispensed. Please take your cash now.");

 } // end if

 else // cash dispenser does not have enough cash

 screen.displayMessageLine(

 "\nInsufficient cash available in the ATM." +

 "\n\nPlease choose a smaller amount.");

 } // end if

 else // not enough money available in user's account

 {

 screen.displayMessageLine(

 "\nInsufficient funds in your account." +

 "\n\nPlease choose a smaller amount.");

 } // end else

 } // end if

 else // user chose cancel menu option

 {

 screen.displayMessageLine("\nCanceling transaction...");

 return; // return to main menu because user canceled

 } // end else

 } while (!cashDispensed);

 } // end method execute

 // display a menu of withdrawal amounts and the option to cancel;

 // return the chosen amount or 0 if the user chooses to cancel

 private int displayMenuOfAmounts()

 {

 int userChoice = 0; // local variable to store return value

 Screen screen = getScreen(); // get screen reference

 // array of amounts to correspond to menu numbers

 int[] amounts = { 0, 20, 40, 60, 100, 200 };

 // loop while no valid choice has been made

 while (userChoice == 0)

 {

 // display the withdrawal menu

 screen.displayMessageLine("\nWithdrawal Menu:");

 screen.displayMessageLine("1 - $20");

 screen.displayMessageLine("2 - $40");

 screen.displayMessageLine("3 - $60");

 screen.displayMessageLine("4 - $100");

 screen.displayMessageLine("5 - $200");

 screen.displayMessageLine("6 - Cancel transaction");

 screen.displayMessage("\nChoose a withdrawal amount: ");

 int input = keypad.getInput(); // get user input through keypad

 // determine how to proceed based on the input value

 switch (input)

 {

 case 1: // if the user chose a withdrawal amount

 case 2: // (i.e., chose option 1, 2, 3, 4 or 5), return the

Chapter#13: ATM Case Study Part2

111 |

 case 3: // corresponding amount from amounts array

 case 4:

 case 5:

 userChoice = amounts[input]; // save user's choice

 break;

 case CANCELED: // the user chose to cancel

 userChoice = CANCELED; // save user's choice

 break;

 default: // the user did not enter a value from 1-6

 screen.displayMessageLine(

 "\nInvalid selection. Try again.");

 } // end switch

 } // end while

 return userChoice; // return withdrawal amount or CANCELED

 } // end method displayMenuOfAmounts

 } // end class Withdrawal

13.4.11 Class Deposit

 // Deposit.java

 // Represents a deposit ATM transaction

public class Deposit extends Transaction

 {

 private double amount; // amount to deposit

 private Keypad keypad; // reference to keypad

 private DepositSlot depositSlot; // reference to deposit slot

 private final static int CANCELED = 0; // constant for cancel option

 // Deposit constructor

 public Deposit(int userAccountNumber, Screen atmScreen,

 BankDatabase atmBankDatabase, Keypad atmKeypad,

 DepositSlot atmDepositSlot)

 {

 // initialize superclass variables

 super(userAccountNumber, atmScreen, atmBankDatabase);

 // initialize references to keypad and deposit slot

 keypad = atmKeypad;

 depositSlot = atmDepositSlot;

 } // end Deposit constructor

 // perform transaction

 @Override

 public void execute()

 {

 BankDatabase bankDatabase = getBankDatabase(); // get reference

 Screen screen = getScreen(); // get reference

 amount = promptForDepositAmount(); // get deposit amount from user

 // check whether user entered a deposit amount or canceled

Chapter#13: ATM Case Study Part2

112 |

 if (amount != CANCELED)

 {

 // request deposit envelope containing specified amount

 screen.displayMessage(

 "\nPlease insert a deposit envelope containing ");

 screen.displayDollarAmount(amount);

 screen.displayMessageLine(".");

 // receive deposit envelope

 boolean envelopeReceived = depositSlot.isEnvelopeReceived();

 // check whether deposit envelope was received

 if (envelopeReceived)

 {

 screen.displayMessageLine("\nYour envelope has been " +

 "received.\nNOTE: The money just deposited will not " +

 "be available until we verify the amount of any " +

 "enclosed cash and your checks clear.");

 // credit account to reflect the deposit

 bankDatabase.credit(getAccountNumber(), amount);

 } // end if

 else // deposit envelope not received

 {

 screen.displayMessageLine("\nYou did not insert an " +

 "envelope, so the ATM has canceled your transaction.");

 } // end else

 } // end if

 else // user canceled instead of entering amount

 {

 screen.displayMessageLine("\nCanceling transaction...");

 } // end else

 } // end method execute

 // prompt user to enter a deposit amount in cents

 private double promptForDepositAmount()

 {

 Screen screen = getScreen(); // get reference to screen

 // display the prompt

 screen.displayMessage("\nPlease enter a deposit amount in " + "CENTS (or 0 to cancel): ");

 int input = keypad.getInput(); // receive input of deposit amount

 // check whether the user canceled or entered a valid amount

 if (input == CANCELED)

 return CANCELED;

 else

 {

 return (double) input / 100; // return dollar amount

 } // end else

 } // end method promptForDepositAmount

 } // end class Deposit

Chapter#13: ATM Case Study Part2

113 |

13.4.12 Class ATMCaseStudy

 // ATMCaseStudy.java

 // Driver program for the ATM case study

 public class ATMCaseStudy

 {

 // main method creates and runs the ATM

 public static void main(String[] args)

 {

 ATM theATM = new ATM();

 theATM.run();

 } // end main

 } // end class ATMCaseStudy

Chapter#13: ATM Case Study Part2

114 |

GUI Components: Part I

Objectives

In this chapter we’ll

 How to use Java’s elegant,

cross-platform Nimbus look and-feel.
 To build GUIs and handle

events generated by user

interactions with GUIs.
 To understand the packages

containing GUI components,

event-handling classes and

interfaces.
 To create and manipulate

buttons, labels, lists, text

fields and panels.
 To handle mouse events and

keyboard events.

115 |

14.1 Introduction

A graphical user interface (GUI) presents a user-friendly mechanism for interacting with

an application. A GUI (pronounced “GOO-ee”) gives an application a distinctive “look

and feel.” GUIs are built from GUI components. These are sometimes called controls or

widgets—short for window gadgets. A GUI component is an object with which the user

interacts via the mouse, the keyboard or another form of input, such as voice recognition.

Sample GUI:

 Fig. 14.1 | SwingSet3 application demonstrates many of Java’s Swing GUI components.

14.2 Java’s New Nimbus Look-and-Feel

In Java SE 6 update 10, Java’s elegant, cross-platform look-and-feel known as Nimbus

was introduced. For GUI screen captures like Fig. 14.1, we’ve configured our systems to

use Nimbus as the default look-and-feel. There are three ways that you can use Nimbus:

Chapter#14: GUI Components: Part I

116 |

1. Set it as the default for all Java applications that run on your computer.

2. Set it as the look-and-feel at the time that you launch an application by passing a

 command-line argument to the java command.

3. Set it as the look-and-feel programatically in your application (see Section 25.6).

 To set Nimbus as the default for all Java applications, you must create a text file

 named swing.properties in the lib folder of both your JDK installation folder and your

 JRE installation folder. Place the following line of code in the file:

 swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

14.3 Simple GUI_Based Input/Output with JOption Pane

Dialog boxes are windows in which programs display important messages to the user or

obtain information from the user. Java’s JOptionPane class (package javax.swing) provides

prebuilt dialog boxes for both input and output. These are displayed by invoking static

JOptionPane methods. Figure 14.2 presents a simple addition application that uses two input

dialogs to obtain integers from the user and a message dialog to display the sum of the

integers the user enters.

Implementation:

 // Fig. 14.2: Addition.java

 // Addition program that uses JOptionPane for input and output.

 import javax.swing.JOptionPane; // program uses JOptionPane

 public class Addition

 {

 public static void main(String[] args)

 {

// obtain user input from JOptionPane input dialogs

String firstNumber =

JOptionPane.showInputDialog("Enter first integer");

String secondNumber =

JOptionPane.showInputDialog("Enter second integer");

 // convert String inputs to int values for use in a calculation

 int number1 = Integer.parseInt(firstNumber);

 int number2 = Integer.parseInt(secondNumber);

 int sum = number1 + number2; // add numbers

// display result in a JOptionPane message dialog

JOptionPane.showMessageDialog(null, "The sum is " + sum,

"Sum of Two Integers", JOptionPane.PLAIN_MESSAGE);

 } // end method main

 } // end class Addition

Output:

Chapter#14: GUI Components: Part I

117 |

14.4 Overview of Swing Components
Though it’s possible to perform input and output using the JOptionPane dialogs, most

GUI applications require more elaborate user interfaces. The remainder of this chapter

discusses many GUI components that enable application developers to create robust

GUIs. The list of several basic Swing GUI components is as follows.

Superclasses of Swing’s Lightweight GUI Components:

The UML class diagram below shows an inheritance hierarchy of classes from which lightweight Swing

components inherit their common attributes and behaviors.

Chapter#14: GUI Components: Part I

118 |

14.5 Displaying Text and Images in a Window

Our next example introduces a framework for building GUI applications. Several concepts in this

framework will appear in many of our GUI applications. This is our first example in which the application

appears in its own window.

Implementation:

 // Fig. 14.6: LabelFrame.java

 // Demonstrating the JLabel class.

 import java.awt.FlowLayout; // specifies how components are arranged

 import javax.swing.JFrame; // provides basic window features

 import javax.swing.JLabel; // displays text and images

 import javax.swing.SwingConstants; // common constants used with Swing

 import javax.swing.Icon; // interface used to manipulate images

 import javax.swing.ImageIcon; // loads images

 public class LabelFrame extends JFrame

 {

 private JLabel label1; // JLabel with just text

 private JLabel label2; // JLabel constructed with text and icon

 private JLabel label3; // JLabel with added text and icon

 // LabelFrame constructor adds JLabels to JFrame

 public LabelFrame()

 {

 super("Testing JLabel");

 setLayout(new FlowLayout()); // set frame layout

// JLabel constructor with a string argument

label1 = new JLabel("Label with text");

label1.setToolTipText("This is label1");

add(label1); // add label1 to JFrame

// JLabel constructor with string, Icon and alignment arguments

Icon bug = new ImageIcon(getClass().getResource("bug1.png"));

label2 = new JLabel("Label with text and icon", bug,

SwingConstants.LEFT);

label2.setToolTipText("This is label2");

Chapter#14: GUI Components: Part I

119 |

add(label2); // add label2 to JFrame

label3 = new JLabel(); // JLabel constructor no arguments

label3.setText("Label with icon and text at bottom");

label3.setIcon(bug); // add icon to JLabel

label3.setHorizontalTextPosition(SwingConstants.CENTER);

label3.setVerticalTextPosition(SwingConstants.BOTTOM);

label3.setToolTipText("This is label3");

add(label3); // add label3 to JFrame

 } // end LabelFrame constructo

public static void main(String[] args)

{

 LabelFrame labelFrame = new LabelFrame(); // create LabelFrame

 labelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 labelFrame.setSize(260, 180); // set frame size

 labelFrame.setVisible(true); // display frame

 } // end main
} // end class LabelFrame

Output:

14.6 Text Fields and an Introduction to event handling with Nested

Classes

Normally, a user interacts with an application’s GUI to indicate the tasks that the application should

perform. For example, when you write an e-mail in an e-mail application, clicking the Send button tells the

application to send the e-mail to the specified e-mail addresses. GUIs are event driven. When the user

interacts with a GUI component, the interaction—known as an event—drives the program to perform a

task.

Implementation:

Chapter#14: GUI Components: Part I

Chapter#14: GUI Components: Part I

120 |

 // Fig. 14.9: TextFieldFrame.java

 // Demonstrating the JTextField class.

 import java.awt.FlowLayout;

 import java.awt.event.ActionListener;

 import java.awt.event.ActionEvent;

 import javax.swing.Jframe;

 import javax.swing.JtextField;

 import javax.swing.JpasswordField;

 import javax.swing.JoptionPane;

 public class TextFieldFrame extends Jframe

 {

 private JtextField textField1; // text field with set size

 private JtextField textField2; // text field constructed with text

 private JtextField textField3; // text field with text and size

 private JpasswordField passwordField; // password field with text

 // TextFieldFrame constructor adds JtextFields to Jframe

 public TextFieldFrame()

 {

 super(“Testing JtextField and JpasswordField”);

 setLayout(new FlowLayout()); // set frame layout

// construct textfield with 10 columns

textField1 = new JTextField(10);

add(textField1); // add textField1 to JFrame

// construct textfield with default text

textField2 = new JTextField("Enter text here");

add(textField2); // add textField2 to JFrame

// construct textfield with default text and 21 columns

textField3 = new JTextField("Uneditable text field", 21);

textField3.setEditable(false); // disable editing

add(textField3); // add textField3 to JFrame

passwordField = new JPasswordField("Hidden text");

add(passwordField); // add passwordField to JFrame

TextFieldHandler handler = new TextFieldHandler();

textField1.addActionListener(handler);

textField2.addActionListener(handler);

textField3.addActionListener(handler);

passwordField.addActionListener(handler);

} // end TextFieldFrame constructor

private class TextFieldHandler implements ActionListener

{

 String string = ""; // declare string to display

if (string = String.format("textField1: %s",);
 // user pressed Enter in JTextField textField2

 else if (string = String.format("textField2: %s",);

 // user pressed Enter in JTextField textField3

 else if (string = String.format("textField3: %s");

Chapter#14: GUI Components: Part I

121 |

 // user pressed Enter in JTextField passwordField

 else if ()

 string = String.format("passwordField: %s",

);

 // display JTextField content

 JOptionPane.showMessageDialog(null, string);

 } // end method actionPerformed

 } // end private inner class TextFieldHandler

public static void main(String[] args)

 {

 TextFieldFrame textFieldFrame = new TextFieldFrame();

 textFieldFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 textFieldFrame.setSize(350, 100); // set frame size

 textFieldFrame.setVisible(true); // display frame

 } // end main
 } // end class TextFieldFrame

Output:

14.7 Common GUI Event Types and Listener Interfaces

Many different types of events can occur when the user interacts with a GUI. The event information is

stored in an object of a class that extends AWTEvent (from package java.awt). Figure 14.11 illustrates a

hierarchy containing many event classes from the package java.awt.event. Some of these are discussed in

this chapter and Chapter 25. These event types are used with both AWT and Swing components. Additional

event types that are specific to Swing GUI components are declared in package javax.swing.event. Let’s

summarize the three parts to the event-handling mechanism that you saw in

Section 14.6—the event source, the event object and the event listener.

Chapter#14: GUI Components: Part I

Chapter#14: GUI Components: Part I

Chapter#14: GUI Components: Part I

122 |

Each event-listener interface specifies one or more event-handling methods that must

be declared in the class that implements the interface. Recall from Section 10.7 that any

class which implements an interface must declare all the abstract methods of that interface; otherwise, the

class is an abstract class and cannot be used to create objects.

14.8 How Event Handling Works

Registering Events
Every JComponent has an instance variable called listenerList that refers to an object of class

EventListenerList (package javax.swing.event). Each object of a JComponent subclass maintains

references to its registered listeners in the listenerList. For simplicity, we’ve diagramed listenerList as an

Chapter#14: GUI Components: Part I

123 |

array below the JTextField object is:

Event-Handler Invocation

The event-listener type is important in answering the second question: How does the GUI component know

to call actionPerformed rather than another method? Every GUI component supports several event types,

including mouse events, key events and others. When an event occurs, the event is dispatched only to the

event listeners of the appropriate type. Dispatching is simply the process by which the GUI component calls

an event-handling method on each of its listeners that are registered for the event type that occurred.

14.9 JButton
A button is a component the user clicks to trigger a specific action. A Java application can use several types

of buttons, including command buttons, checkboxes, toggle buttons and radio buttons. Figure 14.14 shows

the inheritance hierarchy of the Swing buttons we cover in this chapter. As you can see, all the button types

are subclasses of AbstractButton (package javax.swing), which declares the common features of Swing

buttons. In this section, we concentrate on buttons that are typically used to initiate a command.

Implementation:

 // Creating JButtons.

 import java.awt.FlowLayout;

 import java.awt.event.ActionListener;

 import java.awt.event.ActionEvent;

 import javax.swing.JFrame;

 import javax.swing.JButton;

 import javax.swing.Icon;

 import javax.swing.ImageIcon;

 import javax.swing.JOptionPane;

 public class ButtonFrame extends JFrame

Chapter#14: GUI Components: Part I

124 |

 {

private JButton plainJButton; // button with just text

private JButton fancyJButton; // button with icons
 // ButtonFrame adds JButtons to JFrame

 public ButtonFrame()

 {

 super("Testing Buttons");

 setLayout(new FlowLayout()); // set frame layout

 plainJButton = new JButton("Plain Button"); // button with text
 add(plainJButton); // add plainJButton to JFrame

 Icon bug1 = new ImageIcon(getClass().getResource("bug1.gif"));

Icon bug2 = new ImageIcon(getClass().getResource("bug2.gif"));

fancyJButton = new JButton("Fancy Button", bug1); // set image

fancyJButton.setRolloverIcon(bug2); // set rollover image
 add(fancyJButton); // add fancyJButton to JFrame

// create new ButtonHandler for button event handling

ButtonHandler handler = new ButtonHandler();

fancyJButton.addActionListener(handler);

plainJButton.addActionListener(handler);
 } // end ButtonFrame constructor

 // inner class for button event handling

private class ButtonHandler implements ActionListener
 {

 // handle button event

 public void actionPerformed(ActionEvent event)

 {

 JOptionPane.showMessageDialog(, String.format(

 "You pressed: %s",));

 } // end method actionPerformed

 } // end private inner class ButtonHandler

public static void main(String[] args)

 {

 ButtonFrame buttonFrame = new ButtonFrame(); // create ButtonFrame

 buttonFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 buttonFrame.setSize(275, 110); // set frame size

 buttonFrame.setVisible(true); // display frame

 } // end main
 } // end class ButtonFrame

Output:

Chapter#14: GUI Components: Part I

Chapter#14: GUI Components: Part I

125 |

14.11 Conclusion

In this chapter, you learned many GUI components and how to implement event handling. You also learned

about nested classes, inner classes and anonymous inner classes. You saw the special relationship between

an inner-classobject and an object of its top-level class. You learned how to use JOptionPane dialogs to

obtain text input from the user and how to display messages to the user. You also learned how to create

applications that execute in their own windows. We discussed class JFrame and components that enable a

user to interact with an application.

Chapter#14: GUI Components: Part I

126 |

Graphics and Java 2D

Objectives

In this chapter we’ll

 To understand graphics

contexts and graphics

objects.
 To manipulate colors and

fonts.
 To use methods of class

Graphics to draw various

shapes.
 To use methods of class

Graphics2D from the Java

2D API to draw various

shapes.

127 |

15.1 Introduction
In this chapter, we overview several of Java’s capabilities for drawing two-dimensional

shapes, controlling colors and controlling fonts. Part of Java’s initial appeal was its support for graphics

that enabled programmers to visually enhance their applications. Java now contains many more

sophisticated drawing capabilities as part of the Java 2D A

15.2 Graphics Contexts and Graphics Objects

A graphics context enables drawing on the screen. A Graphics object manages a graphics context and

draws pixels on the screen that represent text and other graphical objects (e.g., lines, ellipses,

rectangles and other polygons). Graphics objects contain methods for drawing, font manipulation,

color manipulation and the like. This contributes to Java’s portability. Because drawing is performed

differently on every platform that supports Java, there cannot be only one implementation of the

drawing capabilities across all systems. For example, the graphics capabilities that enable a PC

running Microsoft Windows to draw a rectangle are different from those that enable a Linux

Chapter#15: Graphics and Java 2D

128 |

workstation to draw a rectangle—and they’re both different from the graphics capabilities that enable

a Macintosh to draw a rectangle. When Java is implemented on each platform, a subclass of Graphics

is created that implements the drawing capabilities. This implementation is hidden by class Graphics,

which supplies the interface that enables us to use graphics in a platform-independent manner.

15.3 Color Control

Class Color declares methods and constants for manipulating colors in a Java program. The predeclared

color constants are summarized here, and several color methods and constructors are summarize

Implementation:
 // ColorJPanel.java

 // Demonstrating Colors.

 import java.awt.Graphics;

import java.awt.Color;

import javax.swing.JPanel;

public class ColorJPanel extends JPanel

 {

Chapter#15: Graphics and Java 2D

129 |

 // draw rectangles and Strings in different colors

 public void paintComponent(Graphics g)
 {

 super.paintComponent(g); // call superclass's paintComponent

 this.setBackground(Color.WHITE);

 // set new drawing color using integers

g.setColor(new Color(255, 0, 0));

g.fillRect(15, 25, 100, 20);

g.drawString("Current RGB: " + , 130, 40);

 // set new drawing color using floats

g.setColor(new Color(0.50f, 0.75f, 0.0f));

g.fillRect(15, 50, 100, 20);

 g.drawString("Current RGB: " + , 130, 65);

g.setColor(Color.BLUE);

g.fillRect(15, 75, 100, 20);

 g.drawString("Current RGB: " + g.getColor(), 130, 90);

Color color = Color.MAGENTA;

g.setColor(color);

g.fillRect(15, 100, 100, 20);
 g.drawString("RGB values: " + + ", " ++ ", " + , 130, 115);

}

public static void main(String[] args)

 {

 // create frame for ColorJPanel

 JFrame frame = new JFrame("Using colors");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 ColorJPanel colorJPanel = new ColorJPanel(); // create ColorJPanel

 frame.add(colorJPanel); // add colorJPanel to frame

 frame.setSize(400, 180); // set frame size

 frame.setVisible(true); // display frame

 } // end main

}

Output:

15.4 Manipulating Fonts

Chapter#15: Graphics and Java 2D

Chapter#15: Graphics and Java 2D

130 |

This section introduces methods and constants for manipulating fonts. Most font methods and font constants

are part of class Font. Some methods of class Font and class Graphics are summarized as

Implementation:

 // FontJPanel.java

 // Display strings in different fonts and colors.

import java.awt.Font;

import java.awt.Color;

 import java.awt.Graphics;

 import javax.swing.JPanel;

public class FontJPanel extends JPanel

 {

 // display Strings in different fonts and colors

 public void paintComponent(Graphics g)

 {

 super.paintComponent(g); // call superclass's paintComponent

g.setFont(new Font("Serif", Font.BOLD, 12));

 g.drawString("Serif 12 point bold.", 20, 30);

g.setFont(new Font("Monospaced", Font.ITALIC, 24));

g.drawString("Monospaced 24 point italic.", 20, 50);

g.setFont(new Font("SansSerif", Font.PLAIN, 14));

g.drawString("SansSerif 14 point plain.", 20, 70);

g.setColor(Color.RED);

g.setFont(new Font("Serif", Font.BOLD + Font.ITALIC, 18));

Chapter#15: Graphics and Java 2D

131 |

g.drawString(+ " " + +

 " point bold italic.", 20, 90);
 } // end method paintComponent

public static void main(String[] args)

 {

 // create frame for FontJPanel

 JFrame frame = new JFrame("Using fonts");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 FontJPanel fontJPanel = new FontJPanel(); // create FontJPanel

 frame.add(fontJPanel); // add fontJPanel to frame

 frame.setSize(420, 150); // set frame size

 frame.setVisible(true); // display frame

 } // end main

 } // end class Fonts

 } // end class FontJPanel

Output:

15.5 Drawing Lines, Rectangles and Ovals

This section presents Graphics methods for drawing lines, rectangles and ovals. The methods and their

parameters are summarized below. For each drawing method that requires a width and height parameter,

the width and height must be nonnegative values. Otherwise, the shape will not display.

Chapter#15: Graphics and Java 2D

Chapter#15: Graphics and Java 2D

132 |

15.5 Drawing Arcs

An arc is drawn as a portion of an oval. Arc angles are measured in degrees. Arcs sweep (i.e., move along

a curve) from a starting angle through the number of degrees specified by their arc angle. The starting angle

indicates in degrees where the arc begins. The arc angle specifies the total number of degrees through which

the arc sweeps. It illustrates two arcs. The left set of axes shows an arc sweeping from zero degrees to

approximately 110 degrees. Arcs that sweep in a counterclockwise direction are measured in positive

degrees. The set of axes on the right shows an arc sweeping from zero degrees to approximately –110

degrees. Arcs that sweep in a clockwise direction are measured in negative degrees.

Chapter#15: Graphics and Java 2D

133 |

15.6 Conclusion

In this chapter, you learned how to use Java’s graphics capabilities to produce colorful drawings. You

learned how to specify the location of an object using Java’s coordinate system, and how to draw on a

window using the paintComponent method. You were introduced to class Color, and you learned how to

use this class to specify different colors using their RGB components.

Chapter#15: Graphics and Java 2D

