
www.allitebooks.com

http://www.allitebooks.org

ONLINE ACCESS

Thank you for purchasing a new copy of Java™ How to Program, Tenth Edition,
Early Objects. Your textbook includes 12 months of prepaid access to the book’s
Companion Website. This prepaid subscription provides you with full access to
the following student support areas:

• 	��VideoNotes (step-by-step video tutorials specifically designed to enhance
the programming concepts presented in this textbook)

• 	��Source code
•	�� Premium web chapters and appendices

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the Java How to Program, Tenth Edition, Early Objects Companion
Website for the first time, you will need to register online using a computer with an
Internet connection and a web browser. The process takes just a couple of minutes
and only needs to be completed once.

1.	Go to http://www.pearsonhighered.com/deitel/

2.	 Click on Companion Website.

3.	 Click on the Register button.

4.	 On the registration page, enter your student access code* found beneath the scratch-
off panel. Do not type the dashes. You can use lower- or uppercase.

5.	 Follow the on-screen instructions. If you need help at any time during the online
registration process, simply click the Need Help? icon.

6.	 Once your personal Login Name and Password are confirmed, you can begin using
the Java How to Program, Tenth Edition, Early Objects Companion Website!

To log in after you have registered:

You only need to register for this Companion Website once. After that, you can log in any
time at http://www.pearsonhighered.com/deitel/ by providing your Login Name and
Password when prompted.

*Important: The access code can only be used once. This subscription is valid for 12
months upon activation and is not transferable. If this access code has already been
revealed, it may no longer be valid. If this is the case, you can purchase a subscription
at http://www.pearsonhighered.com/deitel/, by going to the Java How to Program,
Tenth Edition, Early Objects book and following the on-screen instructions.

Additional Comments from Recent Editions Reviewers

❝Updated to reflect the state of the art in Java technologies; deep and crystal clear explanations. The social-consciousness [Making a Difference]
exercises are something new and refreshing. Nice introduction to Java networking.~—José Antonio González Seco, Parliament of Andalusia

❝An easy-to-read conversational style. Clear code examples propel readers to become proficient in Java.~—Patty Kraft, San Diego State U.

❝The [early] introduction of the class concept is clearly presented. A comprehensive overview of control structures and the pitfalls that befall new
programmers. I applaud the authors for their topical research and illustrative examples. The arrays exercises are sophisticated and interesting. The
clearest explanation of pass-by-value and pass-by-reference that I’ve encountered. A logical progression of inheritance and the rationale for properly
implementing encapsulation in a system involving an inheritance hierarchy. The polymorphism and exception handling discussions are the best I’ve
seen. An excellent strings chapter. I like the [recursion] discussions of the ‘Lo Fractal’ and backtracking (which is useful in computer vision applica-
tions). A good segue into a data structures course.~—Ric Heishman, George Mason University

❝Practical top-down, solution approach to teaching programming basics, covering pseudocode, algorithm development and activity diagrams. Of
immense value to practitioners and students of the object-oriented approach. Demystifies inheritance and polymorphism, and illustrates their use in
getting elegant, simple and maintainable code. The [optional] OO design case study presents the object-oriented approach in a simple manner, from
requirements to Java code.~—Vinod Varma, Astro Infotech Private Limited

❝Easy-to-follow examples provide great teaching opportunities! I like the [optional] graphics track early in the book—the exercises will be fun
for the students. OO design techniques are incorporated throughout. The concept of inheritance is built through examples and is very understandable.
Great examples of polymorphism and interfaces. Great comparison of recursion and iteration. The searching and sorting chapter is just right. A
simplified explanation of Big O—the best I’ve read! I appreciate the coverage of GUI threading issues. Great approach to Java web technologies.~
—Sue McFarland Metzger, Villanova University

❝The Making a Difference exercises are inspired—they have a real contemporary feeling, both in their topics and in the way they encourage the
student to gather data from the Internet and bring it back to the question at hand.~—Vince O’Brien, Pearson Education (our publisher)

❝Most major concepts are illustrated by complete, annotated programs. Abundant exercises hone your understanding of the material. JDBC is
explained well.~—Shyamal Mitra, University of Texas at Austin

❝The best introductory textbook that I’ve encountered. I wish I had this book when I was learning how to program! Good introduction to the software
engineering process.~—Lance Andersen, Oracle Corporation

❝You’ll be well on your way to becoming a great Java programmer with this book.~—Peter Pilgrim, Java Champion, Consultant

❝A good objects-early introduction to Java. Exceptionally well-written recursion chapter. Excellent descriptions of the search and sort algorithms and
a gentle introduction to Big-O notation—the examples give the code for the algorithms, and output that creates a picture of how the algorithms
work.~—Diana Franklin, University of California, Santa Barbara

❝Suitable for new programmers, intermediate-level programmers who want to hone their skills, and expert programmers who need a well-organized
reference. Event handling and layouts are well explained.~—Manjeet Rege, Rochester Institute of Technology

❝Beautiful collections of exercises—a nice illustration of how to use Java to generate impressive graphics.~—Amr Sabry, Indiana University

❝The [optional] OOD ATM case study puts many concepts from previous chapters together in a plan for a large program, showing the object-oriented
design process—the discussion of inheritance and polymorphism is especially good as the authors integrate these into the design.~
—Susan Rodger, Duke University

❝The transition from design to implementation is explained powerfully—the reader can easily understand the design issues and how to implement
them in Java.~—S. Sivakumar, Astro Infotech Private Limited

❝Comprehensive introduction to Java, now in its eighth major iteration. With clear descriptions, useful tips and hints, and well thought out exercises,
this is a great book for studying the world’s most popular programming language.~—Simon Ritter, Oracle Corporation

❝Comprehensive treatment of Java programming, covering both the latest version of the language and Java SE APIs, with its concepts and techniques
reinforced by a plethora of well-thought-through exercises.~—Dr. Danny Coward, Oracle Corporation

❝There are many Java programming books in the world. This textbook is the best one. If you like to introduce object-oriented programming early
and smoothly, then this is the right one for you!~—Dr. Huiwei Guan, North Shore Community College

More Comments on Facing Page

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Deitel® Ser ies Page
How To Program Series
Android How to Program, 2/E
C++ How to Program, 9/E
C How to Program, 7/E
Java™ How to Program, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual C++® 2008 How to Program, 2/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® 2012 How to Program, 5/E

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
Simply C#: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

CourseSmart Web Books
www.deitel.com/books/CourseSmart/
C++ How to Program, 8/E and 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 9/E and 10/E
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

(continued from previous column)
Visual Basic® 2012 How to Program, 6/E
Visual Basic® 2010 How to Program, 5/E
Visual C#® 2012 How to Program, 5/E
Visual C#® 2010 How to Program, 4/E

Deitel® Developer Series
Android for Programmers: An App-Driven

Approach, 2/E, Volume 1
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 2012 for Programmers
Dive Into® iOS 6 for Programmers: An App-Driven

Approach
Java™ for Programmers, 3/E
JavaScript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/
Android App Development Fundamentals
C++ Fundamentals
Java™ Fundamentals
C# 2012 Fundamentals
C# 2010 Fundamentals
iOS® 6 App Development Fundamentals
JavaScript Fundamentals
Visual Basic® Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please join the Deitel communities on

• Facebook®—facebook.com/DeitelFan
• Twitter®—@deitel
• Google+™—google.com/+DeitelFan
• YouTube™—youtube.com/DeitelTV
• LinkedIn®—linkedin.com/company/deitel-&-associates

and register for the free Deitel® Buzz Online e-mail newsletter at:
 www.deitel.com/newsletter/subscribe.html
To communicate with the authors, send e-mail to:
 deitel@deitel.com
For information on Dive-Into® Series on-site seminars offered by Deitel & Associates, Inc. worldwide,
write to us at deitel@deitel.com or visit:
 www.deitel.com/training/
For continuing updates on Pearson/Deitel publications visit:

www.deitel.com
www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android and iOS app development, and Internet- and web-related topics:
 www.deitel.com/ResourceCenters.html

www.allitebooks.com

www.deitel.com/books/CourseSmart/
www.deitel.com/books/LiveLessons/
www.deitel.com/newsletter/subscribe.html
www.deitel.com/training/
www.deitel.com
www.pearsonhighered.com/deitel/
www.deitel.com/ResourceCenters.html
http://www.allitebooks.org

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

www.allitebooks.com

http://www.allitebooks.org

Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson (Dunkelberger)
Director of Marketing: Christy Lesko
Marketing Manager: Yez Alayan
Marketing Assistant: Jon Bryant
Director of Program Management: Erin Gregg
Program Management—Team Lead: Scott Disanno
Program Manager: Carole Snyder
Project Management-Team Lead: Laura Burgess
Project Manager: Robert Engelhardt
Procurement Specialist: Linda Sager
Cover Design: Paul Deitel, Harvey Deitel, Abbey Deitel, Barbara Deitel, Laura Gardner
Permissions Supervisor: Michael Joyce
Permissions Administrator: Jenell Forschler
Director, Image Asset Services: Annie Atherton
Manager, Visual Research: Karen Sanatar
Cover Art: © Nikrub/Shutterstock
Media Project Manager: Renata Butera

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on page vi.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The authors and pub-
lisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation
contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential dam-
ages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2015, 2012 and 2009 Pearson Education, Inc. All rights reserved. Manufactured in the United States of
America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,
New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
On file

10 9 8 7 6 5 4 3 2 1

ISBN-10: 0-13-380780-0
ISBN-13: 978-0-13-380780-6

www.allitebooks.com

http://www.allitebooks.org

To Brian Goetz,
Oracle’s Java Language Architect and
Specification Lead for Java SE 8’s Project Lambda:

Your mentorship helped us make a better book.
Thank you for insisting that we get it right.

Paul and Harvey Deitel

www.allitebooks.com

http://www.allitebooks.org

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.UNIX is a registered
trademark of The Open Group.

Apache is a trademark of The Apache Software Foundation.

CSS and XML are registered trademarks of the World Wide Web Consortium.

Firefox is a registered trademark of the Mozilla Foundation.

Google is a trademark of Google, Inc.

Mac and OS X are trademarks of Apple Inc., registered in the U.S. and other countries.

Linux is a registered trademark of Linus Torvalds. All trademarks are property of their respective owners.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

www.allitebooks.com

http://www.allitebooks.org

Chapters 26–34 and Appendices F–N are PDF documents posted online at the book’s
Companion Website (located at www.pearsonhighered.com/deitel/). See the inside
front cover for information on accessing the Companion Website.

Foreword xxiii

Preface xxv

Before You Begin xxxix

1 Introduction to Computers, the Internet and Java 1
1.1 Introduction 2
1.2 Hardware and Software 4

1.2.1 Moore’s Law 4
1.2.2 Computer Organization 5

1.3 Data Hierarchy 6
1.4 Machine Languages, Assembly Languages and High-Level Languages 9
1.5 Introduction to Object Technology 10

1.5.1 The Automobile as an Object 10
1.5.2 Methods and Classes 11
1.5.3 Instantiation 11
1.5.4 Reuse 11
1.5.5 Messages and Method Calls 11
1.5.6 Attributes and Instance Variables 11
1.5.7 Encapsulation and Information Hiding 12
1.5.8 Inheritance 12
1.5.9 Interfaces 12
1.5.10 Object-Oriented Analysis and Design (OOAD) 12
1.5.11 The UML (Unified Modeling Language) 13

1.6 Operating Systems 13
1.6.1 Windows—A Proprietary Operating System 13
1.6.2 Linux—An Open-Source Operating System 14
1.6.3 Android 14

1.7 Programming Languages 15
1.8 Java 17
1.9 A Typical Java Development Environment 17
1.10 Test-Driving a Java Application 21

Contents

www.allitebooks.com

www.pearsonhighered.com/deitel/
http://www.allitebooks.org

viii Contents

1.11 Internet and World Wide Web 25
1.11.1 The Internet: A Network of Networks 26
1.11.2 The World Wide Web: Making the Internet User-Friendly 26
1.11.3 Web Services and Mashups 26
1.11.4 Ajax 27
1.11.5 The Internet of Things 27

1.12 Software Technologies 28
1.13 Keeping Up-to-Date with Information Technologies 30

2 Introduction to Java Applications;
Input/Output and Operators 34

2.1 Introduction 35
2.2 Your First Program in Java: Printing a Line of Text 35
2.3 Modifying Your First Java Program 41
2.4 Displaying Text with printf 43
2.5 Another Application: Adding Integers 45

2.5.1 import Declarations 45
2.5.2 Declaring Class Addition 46
2.5.3 Declaring and Creating a Scanner to Obtain User Input from

the Keyboard 46
2.5.4 Declaring Variables to Store Integers 47
2.5.5 Prompting the User for Input 48
2.5.6 Obtaining an int as Input from the User 48
2.5.7 Prompting for and Inputting a Second int 49
2.5.8 Using Variables in a Calculation 49
2.5.9 Displaying the Result of the Calculation 49
2.5.10 Java API Documentation 49

2.6 Memory Concepts 50
2.7 Arithmetic 51
2.8 Decision Making: Equality and Relational Operators 54
2.9 Wrap-Up 58

3 Introduction to Classes, Objects, Methods
and Strings 69

3.1 Introduction 70
3.2 Instance Variables, set Methods and get Methods 71

3.2.1 Account Class with an Instance Variable, a set Method and
a get Method 71

3.2.2 AccountTest Class That Creates and Uses an Object of
Class Account 74

3.2.3 Compiling and Executing an App with Multiple Classes 77
3.2.4 Account UML Class Diagram with an Instance Variable and

set and get Methods 77
3.2.5 Additional Notes on Class AccountTest 78

www.allitebooks.com

http://www.allitebooks.org

Contents ix

3.2.6 Software Engineering with private Instance Variables and
public set and get Methods 79

3.3 Primitive Types vs. Reference Types 80
3.4 Account Class: Initializing Objects with Constructors 81

3.4.1 Declaring an Account Constructor for Custom Object Initialization 81
3.4.2 Class AccountTest: Initializing Account Objects When

They’re Created 82
3.5 Account Class with a Balance; Floating-Point Numbers 84

3.5.1 Account Class with a balance Instance Variable of Type double 85
3.5.2 AccountTest Class to Use Class Account 86

3.6 (Optional) GUI and Graphics Case Study: Using Dialog Boxes 90
3.7 Wrap-Up 93

4 Control Statements: Part 1; Assignment,
++ and -- Operators 101

4.1 Introduction 102
4.2 Algorithms 102
4.3 Pseudocode 103
4.4 Control Structures 103
4.5 if Single-Selection Statement 105
4.6 if…else Double-Selection Statement 106
4.7 Student Class: Nested if…else Statements 111
4.8 while Repetition Statement 113
4.9 Formulating Algorithms: Counter-Controlled Repetition 115
4.10 Formulating Algorithms: Sentinel-Controlled Repetition 119
4.11 Formulating Algorithms: Nested Control Statements 126
4.12 Compound Assignment Operators 131
4.13 Increment and Decrement Operators 131
4.14 Primitive Types 134
4.15 (Optional) GUI and Graphics Case Study: Creating Simple Drawings 135
4.16 Wrap-Up 139

5 Control Statements: Part 2; Logical Operators 152
5.1 Introduction 153
5.2 Essentials of Counter-Controlled Repetition 153
5.3 for Repetition Statement 155
5.4 Examples Using the for Statement 159
5.5 do…while Repetition Statement 163
5.6 switch Multiple-Selection Statement 165
5.7 Class AutoPolicy Case Study: Strings in switch Statements 171
5.8 break and continue Statements 174
5.9 Logical Operators 176
5.10 Structured Programming Summary 182
5.11 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals 187
5.12 Wrap-Up 190

x Contents

6 Methods: A Deeper Look 200
6.1 Introduction 201
6.2 Program Modules in Java 201
6.3 static Methods, static Fields and Class Math 203
6.4 Declaring Methods with Multiple Parameters 205
6.5 Notes on Declaring and Using Methods 208
6.6 Method-Call Stack and Stack Frames 209
6.7 Argument Promotion and Casting 210
6.8 Java API Packages 211
6.9 Case Study: Secure Random-Number Generation 213
6.10 Case Study: A Game of Chance; Introducing enum Types 218
6.11 Scope of Declarations 222
6.12 Method Overloading 225
6.13 (Optional) GUI and Graphics Case Study: Colors and Filled Shapes 227
6.14 Wrap-Up 230

7 Arrays and ArrayLists 243
7.1 Introduction 244
7.2 Arrays 245
7.3 Declaring and Creating Arrays 246
7.4 Examples Using Arrays 247

7.4.1 Creating and Initializing an Array 247
7.4.2 Using an Array Initializer 248
7.4.3 Calculating the Values to Store in an Array 249
7.4.4 Summing the Elements of an Array 251
7.4.5 Using Bar Charts to Display Array Data Graphically 251
7.4.6 Using the Elements of an Array as Counters 253
7.4.7 Using Arrays to Analyze Survey Results 254

7.5 Exception Handling: Processing the Incorrect Response 256
7.5.1 The try Statement 256
7.5.2 Executing the catch Block 256
7.5.3 toString Method of the Exception Parameter 257

7.6 Case Study: Card Shuffling and Dealing Simulation 257
7.7 Enhanced for Statement 262
7.8 Passing Arrays to Methods 263
7.9 Pass-By-Value vs. Pass-By-Reference 265
7.10 Case Study: Class GradeBook Using an Array to Store Grades 266
7.11 Multidimensional Arrays 272
7.12 Case Study: Class GradeBook Using a Two-Dimensional Array 275
7.13 Variable-Length Argument Lists 281
7.14 Using Command-Line Arguments 283
7.15 Class Arrays 285
7.16 Introduction to Collections and Class ArrayList 287
7.17 (Optional) GUI and Graphics Case Study: Drawing Arcs 291
7.18 Wrap-Up 294

Contents xi

8 Classes and Objects: A Deeper Look 315
8.1 Introduction 316
8.2 Time Class Case Study 316
8.3 Controlling Access to Members 321
8.4 Referring to the Current Object’s Members with the this Reference 322
8.5 Time Class Case Study: Overloaded Constructors 324
8.6 Default and No-Argument Constructors 330
8.7 Notes on Set and Get Methods 330
8.8 Composition 332
8.9 enum Types 335
8.10 Garbage Collection 337
8.11 static Class Members 338
8.12 static Import 342
8.13 final Instance Variables 343
8.14 Package Access 344
8.15 Using BigDecimal for Precise Monetary Calculations 345
8.16 (Optional) GUI and Graphics Case Study: Using Objects with Graphics 348
8.17 Wrap-Up 352

9 Object-Oriented Programming: Inheritance 360
9.1 Introduction 361
9.2 Superclasses and Subclasses 362
9.3 protected Members 364
9.4 Relationship Between Superclasses and Subclasses 365

9.4.1 Creating and Using a CommissionEmployee Class 365
9.4.2 Creating and Using a BasePlusCommissionEmployee Class 371
9.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 376
9.4.4 CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy Using protected Instance Variables 379
9.4.5 CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy Using private Instance Variables 382
9.5 Constructors in Subclasses 387
9.6 Class Object 387
9.7 (Optional) GUI and Graphics Case Study: Displaying Text and

Images Using Labels 388
9.8 Wrap-Up 391

10 Object-Oriented Programming:
Polymorphism and Interfaces 395

10.1 Introduction 396
10.2 Polymorphism Examples 398
10.3 Demonstrating Polymorphic Behavior 399
10.4 Abstract Classes and Methods 401

xii Contents

10.5 Case Study: Payroll System Using Polymorphism 404
10.5.1 Abstract Superclass Employee 405
10.5.2 Concrete Subclass SalariedEmployee 407
10.5.3 Concrete Subclass HourlyEmployee 409
10.5.4 Concrete Subclass CommissionEmployee 411
10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee 413
10.5.6 Polymorphic Processing, Operator instanceof and Downcasting 414

10.6 Allowed Assignments Between Superclass and Subclass Variables 419
10.7 final Methods and Classes 419
10.8 A Deeper Explanation of Issues with Calling Methods from Constructors 420
10.9 Creating and Using Interfaces 421

10.9.1 Developing a Payable Hierarchy 422
10.9.2 Interface Payable 423
10.9.3 Class Invoice 424
10.9.4 Modifying Class Employee to Implement Interface Payable 426
10.9.5 Modifying Class SalariedEmployee for Use in the Payable

Hierarchy 428
10.9.6 Using Interface Payable to Process Invoices and Employees

Polymorphically 430
10.9.7 Some Common Interfaces of the Java API 431

10.10 Java SE 8 Interface Enhancements 432
10.10.1 default Interface Methods 432
10.10.2 static Interface Methods 433
10.10.3 Functional Interfaces 433

10.11 (Optional) GUI and Graphics Case Study: Drawing with Polymorphism 433
10.12 Wrap-Up 436

11 Exception Handling: A Deeper Look 441
11.1 Introduction 442
11.2 Example: Divide by Zero without Exception Handling 443
11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions 445
11.4 When to Use Exception Handling 451
11.5 Java Exception Hierarchy 451
11.6 finally Block 454
11.7 Stack Unwinding and Obtaining Information from an Exception Object 459
11.8 Chained Exceptions 461
11.9 Declaring New Exception Types 464
11.10 Preconditions and Postconditions 465
11.11 Assertions 465
11.12 try-with-Resources: Automatic Resource Deallocation 467
11.13 Wrap-Up 467

12 GUI Components: Part 1 473
12.1 Introduction 474

Contents xiii

12.2 Java’s Nimbus Look-and-Feel 475
12.3 Simple GUI-Based Input/Output with JOptionPane 476
12.4 Overview of Swing Components 479
12.5 Displaying Text and Images in a Window 481
12.6 Text Fields and an Introduction to Event Handling with Nested Classes 485
12.7 Common GUI Event Types and Listener Interfaces 491
12.8 How Event Handling Works 493
12.9 JButton 495
12.10 Buttons That Maintain State 498

12.10.1 JCheckBox 499
12.10.2 JRadioButton 501

12.11 JComboBox; Using an Anonymous Inner Class for Event Handling 504
12.12 JList 508
12.13 Multiple-Selection Lists 511
12.14 Mouse Event Handling 513
12.15 Adapter Classes 518
12.16 JPanel Subclass for Drawing with the Mouse 522
12.17 Key Event Handling 525
12.18 Introduction to Layout Managers 528

12.18.1 FlowLayout 530
12.18.2 BorderLayout 532
12.18.3 GridLayout 536

12.19 Using Panels to Manage More Complex Layouts 538
12.20 JTextArea 539
12.21 Wrap-Up 542

13 Graphics and Java 2D 555
13.1 Introduction 556
13.2 Graphics Contexts and Graphics Objects 558
13.3 Color Control 559
13.4 Manipulating Fonts 566
13.5 Drawing Lines, Rectangles and Ovals 571
13.6 Drawing Arcs 575
13.7 Drawing Polygons and Polylines 578
13.8 Java 2D API 581
13.9 Wrap-Up 588

14 Strings, Characters and Regular Expressions 596
14.1 Introduction 597
14.2 Fundamentals of Characters and Strings 597
14.3 Class String 598

14.3.1 String Constructors 598
14.3.2 String Methods length, charAt and getChars 599
14.3.3 Comparing Strings 600

xiv Contents

14.3.4 Locating Characters and Substrings in Strings 605
14.3.5 Extracting Substrings from Strings 607
14.3.6 Concatenating Strings 608
14.3.7 Miscellaneous String Methods 608
14.3.8 String Method valueOf 610

14.4 Class StringBuilder 611
14.4.1 StringBuilder Constructors 612
14.4.2 StringBuilder Methods length, capacity, setLength

and ensureCapacity 612
14.4.3 StringBuilder Methods charAt, setCharAt, getChars

and reverse 614
14.4.4 StringBuilder append Methods 615
14.4.5 StringBuilder Insertion and Deletion Methods 617

14.5 Class Character 618
14.6 Tokenizing Strings 623
14.7 Regular Expressions, Class Pattern and Class Matcher 624
14.8 Wrap-Up 633

15 Files, Streams and Object Serialization 644
15.1 Introduction 645
15.2 Files and Streams 645
15.3 Using NIO Classes and Interfaces to Get File and Directory Information 647
15.4 Sequential-Access Text Files 651

15.4.1 Creating a Sequential-Access Text File 651
15.4.2 Reading Data from a Sequential-Access Text File 655
15.4.3 Case Study: A Credit-Inquiry Program 657
15.4.4 Updating Sequential-Access Files 661

15.5 Object Serialization 662
15.5.1 Creating a Sequential-Access File Using Object Serialization 663
15.5.2 Reading and Deserializing Data from a Sequential-Access File 668

15.6 Opening Files with JFileChooser 670
15.7 (Optional) Additional java.io Classes 673

15.7.1 Interfaces and Classes for Byte-Based Input and Output 673
15.7.2 Interfaces and Classes for Character-Based Input and Output 675

15.8 Wrap-Up 676

16 Generic Collections 684
16.1 Introduction 685
16.2 Collections Overview 685
16.3 Type-Wrapper Classes 687
16.4 Autoboxing and Auto-Unboxing 687
16.5 Interface Collection and Class Collections 687
16.6 Lists 688

16.6.1 ArrayList and Iterator 689
16.6.2 LinkedList 691

Contents xv

16.7 Collections Methods 696
16.7.1 Method sort 697
16.7.2 Method shuffle 700
16.7.3 Methods reverse, fill, copy, max and min 702
16.7.4 Method binarySearch 704
16.7.5 Methods addAll, frequency and disjoint 706

16.8 Stack Class of Package java.util 708
16.9 Class PriorityQueue and Interface Queue 710
16.10 Sets 711
16.11 Maps 714
16.12 Properties Class 718
16.13 Synchronized Collections 721
16.14 Unmodifiable Collections 721
16.15 Abstract Implementations 722
16.16 Wrap-Up 722

17 Java SE 8 Lambdas and Streams 729
17.1 Introduction 730
17.2 Functional Programming Technologies Overview 731

17.2.1 Functional Interfaces 732
17.2.2 Lambda Expressions 733
17.2.3 Streams 734

17.3 IntStream Operations 736
17.3.1 Creating an IntStream and Displaying Its Values with the

forEach Terminal Operation 738
17.3.2 Terminal Operations count, min, max, sum and average 739
17.3.3 Terminal Operation reduce 739
17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values 741
17.3.5 Intermediate Operation: Mapping 742
17.3.6 Creating Streams of ints with IntStream Methods range and

rangeClosed 743
17.4 Stream<Integer> Manipulations 743

17.4.1 Creating a Stream<Integer> 744
17.4.2 Sorting a Stream and Collecting the Results 745
17.4.3 Filtering a Stream and Storing the Results for Later Use 745
17.4.4 Filtering and Sorting a Stream and Collecting the Results 745
17.4.5 Sorting Previously Collected Results 745

17.5 Stream<String> Manipulations 746
17.5.1 Mapping Strings to Uppercase Using a Method Reference 747
17.5.2 Filtering Strings Then Sorting Them in Case-Insensitive

Ascending Order 748
17.5.3 Filtering Strings Then Sorting Them in Case-Insensitive

Descending Order 748
17.6 Stream<Employee> Manipulations 748

17.6.1 Creating and Displaying a List<Employee> 750

xvi Contents

17.6.2 Filtering Employees with Salaries in a Specified Range 751
17.6.3 Sorting Employees By Multiple Fields 752
17.6.4 Mapping Employees to Unique Last Name Strings 754
17.6.5 Grouping Employees By Department 755
17.6.6 Counting the Number of Employees in Each Department 756
17.6.7 Summing and Averaging Employee Salaries 756

17.7 Creating a Stream<String> from a File 758
17.8 Generating Streams of Random Values 761
17.9 Lambda Event Handlers 763
17.10 Additional Notes on Java SE 8 Interfaces 763
17.11 Java SE 8 and Functional Programming Resources 764
17.12 Wrap-Up 764

18 Recursion 776
18.1 Introduction 777
18.2 Recursion Concepts 778
18.3 Example Using Recursion: Factorials 779
18.4 Reimplementing Class FactorialCalculator Using Class BigInteger 781
18.5 Example Using Recursion: Fibonacci Series 783
18.6 Recursion and the Method-Call Stack 786
18.7 Recursion vs. Iteration 787
18.8 Towers of Hanoi 789
18.9 Fractals 791

18.9.1 Koch Curve Fractal 791
18.9.2 (Optional) Case Study: Lo Feather Fractal 792

18.10 Recursive Backtracking 801
18.11 Wrap-Up 802

19 Searching, Sorting and Big O 810
19.1 Introduction 811
19.2 Linear Search 812
19.3 Big O Notation 814

19.3.1 O(1) Algorithms 814
19.3.2 O(n) Algorithms 815
19.3.3 O(n2) Algorithms 815
19.3.4 Big O of the Linear Search 816

19.4 Binary Search 816
19.4.1 Binary Search Implementation 817
19.4.2 Efficiency of the Binary Search 820

19.5 Sorting Algorithms 820
19.6 Selection Sort 821

19.6.1 Selection Sort Implementation 821
19.6.2 Efficiency of the Selection Sort 824

19.7 Insertion Sort 824

Contents xvii

19.7.1 Insertion Sort Implementation 825
19.7.2 Efficiency of the Insertion Sort 827

19.8 Merge Sort 827
19.8.1 Merge Sort Implementation 828
19.8.2 Efficiency of the Merge Sort 832

19.9 Big O Summary for This Chapter’s Searching and Sorting Algorithms 833
19.10 Wrap-Up 834

20 Generic Classes and Methods 839
20.1 Introduction 840
20.2 Motivation for Generic Methods 840
20.3 Generic Methods: Implementation and Compile-Time Translation 842
20.4 Additional Compile-Time Translation Issues: Methods That Use a

Type Parameter as the Return Type 845
20.5 Overloading Generic Methods 848
20.6 Generic Classes 849
20.7 Raw Types 856
20.8 Wildcards in Methods That Accept Type Parameters 860
20.9 Wrap-Up 864

21 Custom Generic Data Structures 869
21.1 Introduction 870
21.2 Self-Referential Classes 871
21.3 Dynamic Memory Allocation 871
21.4 Linked Lists 872

21.4.1 Singly Linked Lists 872
21.4.2 Implementing a Generic List Class 873
21.4.3 Generic Classes ListNode and List 878
21.4.4 Class ListTest 878
21.4.5 List Method insertAtFront 878
21.4.6 List Method insertAtBack 879
21.4.7 List Method removeFromFront 880
21.4.8 List Method removeFromBack 881
21.4.9 List Method print 882
21.4.10 Creating Your Own Packages 882

21.5 Stacks 886
21.6 Queues 890
21.7 Trees 893
21.8 Wrap-Up 900

22 GUI Components: Part 2 911
22.1 Introduction 912
22.2 JSlider 912

xviii Contents

22.3 Understanding Windows in Java 916
22.4 Using Menus with Frames 917
22.5 JPopupMenu 925
22.6 Pluggable Look-and-Feel 928
22.7 JDesktopPane and JInternalFrame 933
22.8 JTabbedPane 936
22.9 BoxLayout Layout Manager 938
22.10 GridBagLayout Layout Manager 942
22.11 Wrap-Up 952

23 Concurrency 957
23.1 Introduction 958
23.2 Thread States and Life Cycle 960

23.2.1 New and Runnable States 961
23.2.2 Waiting State 961
23.2.3 Timed Waiting State 961
23.2.4 Blocked State 961
23.2.5 Terminated State 961
23.2.6 Operating-System View of the Runnable State 962
23.2.7 Thread Priorities and Thread Scheduling 962
23.2.8 Indefinite Postponement and Deadlock 963

23.3 Creating and Executing Threads with the Executor Framework 963
23.4 Thread Synchronization 967

23.4.1 Immutable Data 968
23.4.2 Monitors 968
23.4.3 Unsynchronized Mutable Data Sharing 969
23.4.4 Synchronized Mutable Data Sharing—Making Operations Atomic 974

23.5 Producer/Consumer Relationship without Synchronization 976
23.6 Producer/Consumer Relationship: ArrayBlockingQueue 984
23.7 (Advanced) Producer/Consumer Relationship with synchronized,

wait, notify and notifyAll 987
23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers 994
23.9 (Advanced) Producer/Consumer Relationship: The Lock and

Condition Interfaces 1002
23.10 Concurrent Collections 1009
23.11 Multithreading with GUI: SwingWorker 1011

23.11.1 Performing Computations in a Worker Thread:
Fibonacci Numbers 1012

23.11.2 Processing Intermediate Results: Sieve of Eratosthenes 1018
23.12 sort and parallelSort Timings with the Java SE 8 Date/Time API 1025
23.13 Java SE 8: Sequential vs. Parallel Streams 1027
23.14 (Advanced) Interfaces Callable and Future 1030
23.15 (Advanced) Fork/Join Framework 1034
23.16 Wrap-Up 1034

www.allitebooks.com

http://www.allitebooks.org

Contents xix

24 Accessing Databases with JDBC 1045
24.1 Introduction 1046
24.2 Relational Databases 1047
24.3 A books Database 1048
24.4 SQL 1052

24.4.1 Basic SELECT Query 1052
24.4.2 WHERE Clause 1053
24.4.3 ORDER BY Clause 1055
24.4.4 Merging Data from Multiple Tables: INNER JOIN 1056
24.4.5 INSERT Statement 1058
24.4.6 UPDATE Statement 1059
24.4.7 DELETE Statement 1060

24.5 Setting up a Java DB Database 1060
24.5.1 Creating the Chapter’s Databases on Windows 1061
24.5.2 Creating the Chapter’s Databases on Mac OS X 1062
24.5.3 Creating the Chapter’s Databases on Linux 1063

24.6 Manipulating Databases with JDBC 1063
24.6.1 Connecting to and Querying a Database 1063
24.6.2 Querying the books Database 1067

24.7 RowSet Interface 1080
24.8 PreparedStatements 1082
24.9 Stored Procedures 1098
24.10 Transaction Processing 1098
24.11 Wrap-Up 1099

25 JavaFX GUI: Part 1 1107
25.1 Introduction 1108
25.2 JavaFX Scene Builder and the NetBeans IDE 1109
25.3 JavaFX App Window Structure 1110
25.4 Welcome App—Displaying Text and an Image 1111

25.4.1 Creating the App’s Project 1111
25.4.2 NetBeans Projects Window—Viewing the Project Contents 1113
25.4.3 Adding an Image to the Project 1114
25.4.4 Opening JavaFX Scene Builder from NetBeans 1114
25.4.5 Changing to a VBox Layout Container 1115
25.4.6 Configuring the VBox Layout Container 1116
25.4.7 Adding and Configuring a Label 1116
25.4.8 Adding and Configuring an ImageView 1116
25.4.9 Running the Welcome App 1117

25.5 Tip Calculator App—Introduction to Event Handling 1118
25.5.1 Test-Driving the Tip Calculator App 1119
25.5.2 Technologies Overview 1119
25.5.3 Building the App’s GUI 1122
25.5.4 TipCalculator Class 1126
25.5.5 TipCalculatorController Class 1128

xx Contents

25.6 Features Covered in the Online JavaFX Chapters 1133
25.7 Wrap-Up 1134

Chapters on the Web 1141

A Operator Precedence Chart 1143

B ASCII Character Set 1145

C Keywords and Reserved Words 1146

D Primitive Types 1147

E Using the Debugger 1148
E.1 Introduction 1149
E.2 Breakpoints and the run, stop, cont and print Commands 1149
E.3 The print and set Commands 1153
E.4 Controlling Execution Using the step, step up and next Commands 1155
E.5 The watch Command 1158
E.6 The clear Command 1160
E.7 Wrap-Up 1162

Appendices on the Web 1165

Index 1167

Online Chapters and Appendices
Chapters 26–34 and Appendices F–N are PDF documents posted online at the book’s
Companion Website (located at www.pearsonhighered.com/deitel/). See the inside
front cover for information on accessing the Companion Website.

26 JavaFX GUI: Part 2

27 JavaFX Graphics and Multimedia

28 Networking

29 Java Persistence API (JPA)

30 JavaServer™ Faces Web Apps: Part 1

www.pearsonhighered.com/deitel/

Contents xxi

31 JavaServer™ Faces Web Apps: Part 2

32 REST-Based Web Services

33 (Optional) ATM Case Study, Part 1:
Object-Oriented Design with the UML

34 (Optional) ATM Case Study, Part 2:
Implementing an Object-Oriented Design

F Using the Java API Documentation

G Creating Documentation with javadoc

H Unicode®

I Formatted Output

J Number Systems

K Bit Manipulation

L Labeled break and continue Statements

M UML 2: Additional Diagram Types

N Design Patterns

This page intentionally left blank

I’ve been enamored with Java even prior to its 1.0 release in 1995, and have subsequently
been a Java developer, author, speaker, teacher and Oracle Java Technology Ambassador.
In this journey, it has been my privilege to call Paul Deitel a colleague, and to often lever-
age and recommend his Java How To Program book. In its many editions, this book has
proven to be a great text for college and professional courses that I and others have devel-
oped to teach the Java programming language.

One of the qualities that makes this book a great resource is its thorough and insightful
coverage of Java concepts, including those introduced recently in Java SE 8. Another useful
quality is its treatment of concepts and practices essential to effective software development.

As a long-time fan of this book, I’d like to point out some of the features of this tenth
edition about which I’m most excited:

• An ambitious new chapter on Java lambda expressions and streams. This chapter
starts out with a primer on functional programming, introducing Java lambda ex-
pressions and how to use streams to perform functional programming tasks on
collections.

• Although concurrency has been addressed since the first edition of the book, it is
increasingly important because of multi-core architectures. There are timing ex-
amples—using the new Date/Time API classes introduced in Java SE 8—in the
concurrency chapter that show the performance improvements with multi-core
over single-core.

• JavaFX is Java’s GUI/graphics/multimedia technology moving forward, so it is
nice to see a three-chapter treatment of JavaFX in the Deitel live-code pedagogic
style. One of these chapters is in the printed book and the other two are online.

Please join me in congratulating Paul and Harvey Deitel on their latest edition of a won-
derful resource for computer science students and software developers alike!

James L. Weaver
Java Technology Ambassador

Oracle Corporation

Foreword

This page intentionally left blank

“The chief merit of language is clearness…”
—Galen

Welcome to the Java programming language and Java How to Program, Tenth Edition! This
book presents leading-edge computing technologies for students, instructors and software
developers. It’s appropriate for introductory academic and professional course sequences
based on the curriculum recommendations of the ACM and the IEEE, and for AP Com-
puter Science exam preparation. If you haven’t already done so, please read the back cover
and inside back cover—these concisely capture the essence of the book. In this Preface we
provide more detail.

We focus on software engineering best practices. At the heart of the book is the Deitel
signature “live-code approach”—rather than using code snippets, we present concepts in the
context of complete working programs that run on recent versions of Windows®, OS X®

and Linux®. Each complete code example is accompanied by live sample executions.

Keeping in Touch with the Authors
As you read the book, if you have questions, send an e-mail to us at

and we’ll respond promptly. For updates on this book, visit

subscribe to the Deitel® Buzz Online newsletter at

and join the Deitel social networking communities on

• Facebook® (http://www.deitel.com/deitelfan)

• Twitter® (@deitel)

• Google+™ (http://google.com/+DeitelFan)

• YouTube® (http://youtube.com/DeitelTV)

• LinkedIn® (http://linkedin.com/company/deitel-&-associates)

Source Code and VideoNotes
All the source code is available at:

and at the book’s Companion Website (which also contains extensive VideoNotes):

deitel@deitel.com

http://www.deitel.com/books/jhtp10

http://www.deitel.com/newsletter/subscribe.html

http://www.deitel.com/books/jhtp10

http://www.pearsonhighered.com/deitel

Preface

http://www.deitel.com/deitelfan
http://google.com/+DeitelFan
http://youtube.com/DeitelTV
http://linkedin.com/company/deitel-&-associates
http://www.deitel.com/books/jhtp10
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/books/jhtp10
http://www.pearsonhighered.com/deitel

xxvi Preface

Modular Organization1

Java How to Program, 10/e, is appropriate for programming courses at various levels, most
notably CS 1 and CS 2 courses and introductory course sequences in related disciplines.
The book’s modular organization helps instructors plan their syllabi:

Introduction
• Chapter 1, Introduction to Computers, the Internet and Java

• Chapter 2, Introduction to Java Applications; Input/Output and Operators

• Chapter 3, Introduction to Classes, Objects, Methods and Strings

Additional Programming Fundamentals
• Chapter 4, Control Statements: Part 1; Assignment, ++ and -- Operators

• Chapter 5, Control Statements: Part 2; Logical Operators

• Chapter 6, Methods: A Deeper Look

• Chapter 7, Arrays and ArrayLists

• Chapter 14, Strings, Characters and Regular Expressions

• Chapter 15, Files, Streams and Object Serialization

Object-Oriented Programming and Object-Oriented Design
• Chapter 8, Classes and Objects: A Deeper Look

• Chapter 9, Object-Oriented Programming: Inheritance

• Chapter 10, Object-Oriented Programming: Polymorphism and Interfaces

• Chapter 11, Exception Handling: A Deeper Look

• (Online) Chapter 33, ATM Case Study, Part 1: Object-Oriented Design with
the UML

• (Online) Chapter 34, ATM Case Study Part 2: Implementing an Object-Orient-
ed Design

Swing Graphical User Interfaces and Java 2D Graphics
• Chapter 12, GUI Components: Part 1

• Chapter 13, Graphics and Java 2D

• Chapter 22, GUI Components: Part 2

Data Structures, Collections, Lambdas and Streams
• Chapter 16, Generic Collections

• Chapter 17, Java SE 8 Lambdas and Streams

• Chapter 18, Recursion

• Chapter 19, Searching, Sorting and Big O

• Chapter 20, Generic Classes and Methods

• Chapter 21, Custom Generic Data Structures

1. The online chapters will be available on the book’s Companion Website for Fall 2014 classes.

 New and Updated Features xxvii

Concurrency; Networking
• Chapter 23, Concurrency

• (Online) Chapter 28, Networking

JavaFX Graphical User Interfaces, Graphics and Multimedia
• Chapter 25, JavaFX GUI: Part 1

• (Online) Chapter 26, JavaFX GUI: Part 2

• (Online) Chapter 27, JavaFX Graphics and Multimedia

Database-Driven Desktop and Web Development
• Chapter 24, Accessing Databases with JDBC

• (Online) Chapter 29, Java Persistence API (JPA)

• (Online) Chapter 30, JavaServer™ Faces Web Apps: Part 1

• (Online) Chapter 31, JavaServer™ Faces Web Apps: Part 2

• (Online) Chapter 32, REST-Based Web Services

New and Updated Features
Here are the updates we’ve made for Java How to Program, 10/e:

Java Standard Edition: Java SE 7 and the New Java SE 8
• Easy to use with Java SE 7 or Java SE 8. To meet the needs of our audiences, we

designed the book for college and professional courses based on Java SE 7, Java SE
8 or a mixture of both. The Java SE 8 features are covered in optional, easy-to-
include-or-omit sections. The new Java SE 8 capabilities can dramatically improve
the programming process. Figure 1 lists some new Java SE 8 features that we cover.

Java SE 8 features

Lambda expressions

Type-inference improvements

@FunctionalInterface annotation

Parallel array sorting

Bulk data operations for Java Collections—filter, map and reduce

Library enhancements to support lambdas (e.g., java.util.stream, java.util.function)

Date & Time API (java.time)

Java concurrency API improvements

static and default methods in interfaces

Functional interfaces—interfaces that define only one abstract method and can include
static and default methods

JavaFX enhancements

Fig. 1 | Some new Java SE 8 features.

xxviii Preface

• Java SE 8 lambdas, streams, and interfaces with default and static methods. The
most significant new features in JavaSE 8 are lambdas and complementary technol-
ogies, which we cover in detail in the optional Chapter 17 and optional sections
marked “Java SE 8” in later chapters. In Chapter 17, you’ll see that functional
programming with lambdas and streams can help you write programs faster, more
concisely, more simply, with fewer bugs and that are easier to parallelize (to get per-
formance improvements on multi-core systems) than programs written with previ-
ous techniques. You’ll see that functional programming complements object-
oriented programming. After you read Chapter 17, you’ll be able to cleverly reim-
plement many of the Java SE 7 examples throughout the book (Fig. 2).

• Java SE 7’s try-with-resources statement and the AutoClosable Interface. Auto-
Closable objects reduce the likelihood of resource leaks when you use them with
the try-with-resources statement, which automatically closes the AutoClosable
objects. In this edition, we use try-with-resources and AutoClosable objects as
appropriate starting in Chapter 15, Files, Streams and Object Serialization.

• Java security. We audited our book against the CERT Oracle Secure Coding
Standard for Java as appropriate for an introductory textbook.

See the Secure Java Programming section of this Preface for more information
about CERT.

Pre-Java-SE-8 topics Corresponding Java SE 8 discussions and examples

Chapter 7, Arrays and ArrayLists Sections 17.3–17.4 introduce basic lambda and streams
capabilities that process one-dimensional arrays.

Chapter 10, Object-Oriented Pro-
gramming: Polymorphism and
Interfaces

Section 10.10 introduces the new Java SE 8 interface
features (default methods, static methods and the
concept of functional interfaces) that support func-
tional programming with lambdas and streams.

Chapters 12 and 22, GUI Compo-
nents: Part 1 and 2, respectively

Section 17.9 shows how to use a lambda to implement
a Swing event-listener functional interface.

Chapter 14, Strings, Characters
and Regular Expressions

Section 17.5 shows how to use lambdas and streams to
process collections of String objects.

Chapter 15, Files, Streams and
Object Serialization

Section 17.7 shows how to use lambdas and streams to
process lines of text from a file.

Chapter 23, Concurrency Shows that functional programs are easier to parallelize so
that they can take advantage of multi-core architectures
to enhance performance. Demonstrates parallel stream
processing. Shows that Arrays method parallelSort
improves performance on multi-core architectures when
sorting large arrays.

Chapter 25, JavaFX GUI: Part 1 Section 25.5.5 shows how to use a lambda to imple-
ment a JavaFX event-listener functional interface.

Fig. 2 | Java SE 8 lambdas and streams discussions and examples.

 http://bit.ly/CERTOracleSecureJava

www.allitebooks.com

http://bit.ly/CERTOracleSecureJava
http://www.allitebooks.org

 New and Updated Features xxix

• Java NIO API. We updated the file-processing examples in Chapter 15 to use
features from the Java NIO (new IO) API.

• Java Documentation. Throughout the book, we provide links to Java documen-
tation where you can learn more about various topics that we present. For Java
SE 7 documentation, the links begin with

and for Java SE 8 documentation, the links begin with

These links could change when Oracle releases Java SE 8—possibly to links begin-
ning with

For any links that change after publication, we’ll post updates at

Swing and JavaFX GUI, Graphics and Multimedia
• Swing GUI and Java 2D graphics. Java’s Swing GUI is discussed in the optional

GUI and graphics sections in Chapters 3–10 and in Chapters 12 and 22. Swing
is now in maintenance mode—Oracle has stopped development and will provide
only bug fixes going forward, however it will remain part of Java and is still widely
used. Chapter 13 discusses Java 2D graphics.

• JavaFX GUI, graphics and multimedia. Java’s GUI, graphics and multimedia
API going forward is JavaFX. In Chapter 25, we use JavaFX 2.2 (released in
2012) with Java SE 7. Our online Chapters 26 and 27—located on the book’s
companion website (see the inside front cover of this book)—present additional
JavaFX GUI features and introduce JavaFX graphics and multimedia in the con-
text of Java FX 8 and Java SE 8. In Chapters 25–27 we use Scene Builder—a
drag-and-drop tool for creating JavaFX GUIs quickly and conveniently. It’s a
standalone tool that you can use separately or with any of the Java IDEs.

• Scalable GUI and graphics presentation. Instructors teaching introductory courses
have a broad choice of the amount of GUI, graphics and multimedia to cover—
from none at all, to optional introductory sections in the early chapters, to a deep
treatment of Swing GUI and Java 2D graphics in Chapters 12, 13 and 22, and a
deep treatment of JavaFX GUI, graphics and multimedia in Chapter 25 and online
Chapters 26–27.

Concurrency
• Concurrency for optimal multi-core performance. In this edition, we were privi-

leged to have as a reviewer Brian Goetz, co-author of Java Concurrency in Practice
(Addison-Wesley). We updated Chapter 23, with Java SE 8 technology and idiom.
We added a parallelSort vs. sort example that uses the Java SE 8 Date/Time API
to time each operation and demonstrate parallelSort’s better performance on a
multi-core system. We include a Java SE 8 parallel vs. sequential stream processing
example, again using the Date/Time API to show performance improvements. Fi-

 http://docs.oracle.com/javase/7/

 http://download.java.net/jdk8/

 http://docs.oracle.com/javase/8/

 http://www.deitel.com/books/jhtp10

http://download.java.net/jdk8/
http://docs.oracle.com/javase/8/
http://www.deitel.com/books/jhtp10
http://docs.oracle.com/javase/7/

xxx Preface

nally, we added a Java SE 8 CompletableFuture example that demonstrates se-
quential and parallel execution of long-running calculations.

• SwingWorker class. We use class SwingWorker to create multithreaded user inter-
faces. In online Chapter 26, we show how JavaFX handles concurrency.

• Concurrency is challenging. Programming concurrent applications is difficult and
error-prone. There’s a great variety of concurrency features. We point out the ones
that most people should use and mention those that should be left to the experts.

Getting Monetary Amounts Right
• Monetary amounts. In the early chapters, for convenience, we use type double to

represent monetary amounts. Due to the potential for incorrect monetary calcula-
tions with type double, class BigDecimal (which is a bit more complex) should be
used to represent monetary amounts. We demonstrate BigDecimal in Chapters 8
and 25.

Object Technology
• Object-oriented programming and design. We use an early objects approach, in-

troducing the basic concepts and terminology of object technology in Chapter 1.
Students develop their first customized classes and objects in Chapter 3. Present-
ing objects and classes early gets students “thinking about objects” immediately
and mastering these concepts more thoroughly. [For courses that require a late-
objects approach, consider Java How to Program, 10/e, Late Objects Version.]

• Early objects real-world case studies. The early classes and objects presentation
features Account, Student, AutoPolicy, Time, Employee, GradeBook and Card
shuffling-and-dealing case studies, gradually introducing deeper OO concepts.

• Inheritance, Interfaces, Polymorphism and Composition. We use a series of real-
world case studies to illustrate each of these OO concepts and explain situations
in which each is preferred in building industrial-strength applications.

• Exception handling. We integrate basic exception handling early in the book then
present a deeper treatment in Chapter 11. Exception handling is important for
building “mission-critical” and “business-critical” applications. Programmers
need to be concerned with, “What happens when the component I call on to do
a job experiences difficulty? How will that component signal that it had a prob-
lem?” To use a Java component, you need to know not only how that component
behaves when “things go well,” but also what exceptions that component
“throws” when “things go poorly.”

• Class Arrays and ArrayList. Chapter 7 covers class Arrays—which contains
methods for performing common array manipulations—and class ArrayList—
which implements a dynamically resizable array-like data structure. This follows
our philosophy of getting lots of practice using existing classes while learning how
to define your own classes. The chapter’s rich selection of exercises includes a sub-
stantial project on building your own computer through the technique of soft-
ware simulation. Chapter 21 includes a follow-on project on building your own
compiler that can compile high-level language programs into machine language
code that will execute on your computer simulator.

 New and Updated Features xxxi

• Optional Online Case Study: Developing an Object-Oriented Design and Java
Implementation of an ATM. Online Chapters 33–34 include an optional case
study on object-oriented design using the UML (Unified Modeling Lan-
guage™)—the industry-standard graphical language for modeling object-orient-
ed systems. We design and implement the software for a simple automated teller
machine (ATM). We analyze a typical requirements document that specifies the
system to be built. We determine the classes needed to implement that system,
the attributes the classes need to have, the behaviors the classes need to exhibit
and specify how the classes must interact with one another to meet the system re-
quirements. From the design we produce a complete Java implementation. Stu-
dents often report having a “light-bulb moment”—the case study helps them “tie
it all together” and really understand object orientation.

Data Structures and Generic Collections
• Data structures presentation. We begin with generic class ArrayList in Chapter 7.

Our later data structures discussions (Chapters 16–21) provide a deeper treatment
of generic collections—showing how to use the built-in collections of the Java API.
We discuss recursion, which is important for implementing tree-like, data-structure
classes. We discuss popular searching and sorting algorithms for manipulating the
contents of collections, and provide a friendly introduction to Big O—a means of
describing how hard an algorithm might have to work to solve a problem. We then
show how to implement generic methods and classes, and custom generic data struc-
tures (this is intended for computer-science majors—most programmers should use
the pre-built generic collections). Lambdas and streams (introduced in Chapter 17)
are especially useful for working with generic collections.

Database
• JDBC. Chapter 24 covers JDBC and uses the Java DB database management sys-

tem. The chapter introduces Structured Query Language (SQL) and features an
OO case study on developing a database-driven address book that demonstrates
prepared statements.

• Java Persistence API. The new online Chapter 29 covers the Java Persistence API
(JPA)—a standard for object relational mapping (ORM) that uses JDBC “under
the hood.” ORM tools can look at a database’s schema and generate a set of class-
es that enabled you to interact with a database without having to use JDBC and
SQL directly. This speeds database-application development, reduces errors and
produces more portable code.

Web Application Development
• Java Server Faces (JSF). Online Chapters 30–31 have been updated to introduce

the latest JavaServer Faces (JSF) technology, which facilitates building JSF web-
based applications. Chapter 30 includes examples on building web application
GUIs, validating forms and session tracking. Chapter 31 discusses data-driven,
Ajax-enabled JSF applications—the chapter features a database-driven multitier
web address book that allows users to add and search for contacts.

• Web services. Chapter 32 now concentrates on creating and consuming REST-
based web services. The vast majority of today’s web services now use REST.

xxxii Preface

Secure Java Programming
It’s difficult to build industrial-strength systems that stand up to attacks from viruses,
worms, and other forms of “malware.” Today, via the Internet, such attacks can be instan-
taneous and global in scope. Building security into software from the beginning of the de-
velopment cycle can greatly reduce vulnerabilities. We incorporate various secure Java
coding practices (as appropriate for an introductory textbook) into our discussions and
code examples.

The CERT® Coordination Center (www.cert.org) was created to analyze and
respond promptly to attacks. CERT—the Computer Emergency Response Team—is a
government-funded organization within the Carnegie Mellon University Software Engi-
neering Institute™. CERT publishes and promotes secure coding standards for various
popular programming languages to help software developers implement industrial-
strength systems that avoid the programming practices which leave systems open to attack.

We’d like to thank Robert C. Seacord, Secure Coding Manager at CERT and an
adjunct professor in the Carnegie Mellon University School of Computer Science. Mr. Sea-
cord was a technical reviewer for our book, C How to Program, 7/e, where he scrutinized our
C programs from a security standpoint, recommending that we adhere to the CERT C Secure
Coding Standard. This experience influenced our coding practices in C++ How to Program,
9/e and Java How to Program, 10/e as well.

Optional GUI and Graphics Case Study
Students enjoy building GUI and graphics applications. For courses that introduce GUI
and graphics early, we’ve integrated an optional 10-segment introduction to creating
graphics and Swing-based graphical user interfaces (GUIs). The goal of this case study is
to create a simple polymorphic drawing application in which the user can select a shape to
draw, select the characteristics of the shape (such as its color) and use the mouse to draw
the shape. The case study builds gradually toward that goal, with the reader implementing
polymorphic drawing in Chapter 10, adding an event-driven GUI in Chapter 12 and en-
hancing the drawing capabilities in Chapter 13 with Java 2D.

• Section 3.6—Using Dialog Boxes

• Section 4.15—Creating Simple Drawings

• Section 5.11—Drawing Rectangles and Ovals

• Section 6.13—Colors and Filled Shapes

• Section 7.17—Drawing Arcs

• Section 8.16—Using Objects with Graphics

• Section 9.7—Displaying Text and Images Using Labels

• Section 10.11—Drawing with Polymorphism

• Exercise 12.17—Expanding the Interface

• Exercise 13.31—Adding Java2D

Teaching Approach
Java How to Program, 10/e, contains hundreds of complete working examples. We stress
program clarity and concentrate on building well-engineered software.

www.cert.org

 Teaching Approach xxxiii

VideoNotes. The Companion Website includes extensive VideoNotes in which co-author
Paul Deitel explains in detail most of the programs in the book’s core chapters. Students like
viewing the VideoNotes for reinforcement of core concepts and for additional insights.

Syntax Coloring. For readability, we syntax color all the Java code, similar to the way most
Java integrated-development environments and code editors syntax color code. Our syn-
tax-coloring conventions are as follows:

Code Highlighting. We place yellow rectangles around key code segments.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold maroon text for easier reference. We emphasize on-screen
components in the bold Helvetica font (e.g., the File menu) and emphasize Java program
text in the Lucida font (for example, int x = 5;).

Web Access. All of the source-code examples can be downloaded from:

Objectives. The opening quotes are followed by a list of chapter objectives.

Illustrations/Figures. Abundant tables, line drawings, UML diagrams, programs and pro-
gram outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we’ve gleaned from a
combined seven decades of programming and teaching experience.

comments appear in green
keywords appear in dark blue
errors appear in red
constants and literal values appear in light blue
all other code appears in black

http://www.deitel.com/books/jhtp10
http://www.pearsonhighered.com/deitel

Good Programming Practice
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Error
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tip
These tips contain suggestions for exposing bugs and removing them from your programs;
many describe aspects of Java that prevent bugs from getting into programs in the first place.

Performance Tip
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tip
The Portability Tips help you write code that will run on a variety of platforms.

http://www.deitel.com/books/jhtp10
http://www.pearsonhighered.com/deitel

xxxiv Preface

Summary Bullets. We present a section-by-section bullet-list summary of the chapter. For
ease of reference, we include the page number of each key term’s defining occurrence in
the text.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self study. All of the exercises in the optional ATM case study are fully solved.

Exercises. The chapter exercises include:

• simple recall of important terminology and concepts

• What’s wrong with this code?

• What does this code do?

• writing individual statements and small portions of methods and classes

• writing complete methods, classes and programs

• major projects

• in many chapters, Making a Difference exercises that encourage you to use com-
puters and the Internet to research and solve significant social problems.

Exercises that are purely SE 8 are marked as such. Check out our Programming Projects
Resource Center for lots of additional exercise and project possibilities (www.deitel.com/
ProgrammingProjects/).

Index. We’ve included an extensive index. Defining occurrences of key terms are high-
lighted with a bold maroon page number. The print book index mentions only those
terms used in the print book. The online chapters index includes all the print book terms
and the online chapter terms.

Software Used in Java How to Program, 10/e
All the software you’ll need for this book is available free for download from the Internet.
See the Before You Begin section that follows this Preface for links to each download.

We wrote most of the examples in Java How to Program, 10/e, using the free Java Stan-
dard Edition Development Kit (JDK) 7. For the optional Java SE 8 modules, we used the
OpenJDK’s early access version of JDK 8. In Chapter 25 and several online chapters, we
also used the Netbeans IDE. See the Before You Begin section that follows this Preface for
more information. You can find additional resources and software downloads in our Java
Resource Centers at:

Software Engineering Observation
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Look-and-Feel Observation
The Look-and-Feel Observations highlight graphical-user-interface conventions. These
observations help you design attractive, user-friendly graphical user interfaces that con-
form to industry norms.

www.deitel.com/ResourceCenters.html

www.deitel.com/ProgrammingProjects/
www.deitel.com/ProgrammingProjects/
www.deitel.com/ResourceCenters.html

 Instructor Supplements xxxv

Instructor Supplements
The following supplements are available to qualified instructors only through Pearson
Education’s Instructor Resource Center (www.pearsonhighered.com/irc):

• PowerPoint® slides containing all the code and figures in the text, plus bulleted
items that summarize key points.

• Test Item File of multiple-choice questions (approximately two per book sec-
tion).

• Solutions Manual with solutions to the vast majority of the end-of-chapter exer-
cises. Before assigning an exercise for homework, instructors should check the
IRC to be sure it includes the solution.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center
which contains the book’s instructor supplements, including the exercise solutions. Ac-
cess is limited strictly to college instructors teaching from the book. Instructors may ob-
tain access only through their Pearson representatives. Solutions are not provided for
“project” exercises.

If you’re not a registered faculty member, contact your Pearson representative or visit
www.pearsonhighered.com/educator/replocator/.

Acknowledgments
We’d like to thank Abbey Deitel and Barbara Deitel for long hours devoted to this project.
We’re fortunate to have worked on this project with the dedicated team of publishing pro-
fessionals at Pearson. We appreciate the guidance, wisdom and energy of Tracy Johnson,
Executive Editor, Computer Science. Tracy and her team handle all of our academic text-
books. Carole Snyder recruited the book’s academic reviewers and managed the review
process. Bob Engelhardt managed the book’s publication. We selected the cover art and
Laura Gardner designed the cover.

Reviewers
We wish to acknowledge the efforts of our recent editions reviewers—a distinguished
group of academics, Oracle Java team members, Oracle Java Champions and other indus-
try professionals. They scrutinized the text and the programs and provided countless sug-
gestions for improving the presentation.

We appreciate the guidance of Jim Weaver and Johan Vos (co-authors of Pro JavaFX
2), and Simon Ritter on the three JavaFX chapters.

Tenth Edition reviewers: Lance Andersen (Oracle Corporation), Dr. Danny Coward
(Oracle Corporation), Brian Goetz (Oracle Corporation), Evan Golub (University of
Maryland), Dr. Huiwei Guan (Professor, Department of Computer & Information Sci-
ence, North Shore Community College), Manfred Riem (Java Champion), Simon Ritter
(Oracle Corporation), Robert C. Seacord (CERT, Software Engineering Institute, Carn-
egie Mellon University), Khallai Taylor (Assistant Professor, Triton College and Adjunct
Professor, Lonestar College—Kingwood), Jorge Vargas (Yumbling and a Java Champion),
Johan Vos (LodgON and Oracle Java Champion) and James L. Weaver (Oracle Corpora-
tion and author of Pro JavaFX 2).

Previous editions reviewers: Soundararajan Angusamy (Sun Microsystems), Joseph
Bowbeer (Consultant), William E. Duncan (Louisiana State University), Diana Franklin

www.pearsonhighered.com/irc
www.pearsonhighered.com/educator/replocator/

xxxvi Preface

(University of California, Santa Barbara), Edward F. Gehringer (North Carolina State
University), Ric Heishman (George Mason University), Dr. Heinz Kabutz (JavaSpecial-
ists.eu), Patty Kraft (San Diego State University), Lawrence Premkumar (Sun Microsys-
tems), Tim Margush (University of Akron), Sue McFarland Metzger (Villanova
University), Shyamal Mitra (The University of Texas at Austin), Peter Pilgrim (Consul-
tant), Manjeet Rege, Ph.D. (Rochester Institute of Technology), Susan Rodger (Duke
University), Amr Sabry (Indiana University), José Antonio González Seco (Parliament of
Andalusia), Sang Shin (Sun Microsystems), S. Sivakumar (Astra Infotech Private Lim-
ited), Raghavan “Rags” Srinivas (Intuit), Monica Sweat (Georgia Tech), Vinod Varma
(Astra Infotech Private Limited) and Alexander Zuev (Sun Microsystems).

A Special Thank You to Brian Goetz
We were privileged to have Brian Goetz, Oracle’s Java Language Architect and Specifica-
tion Lead for Java SE 8’s Project Lambda, and co-author of Java Concurrency in Practice,
do a detailed full-book review. He thoroughly scrutinized every chapter, providing ex-
tremely helpful insights and constructive comments. Any remaining faults in the book are
our own.

Well, there you have it! As you read the book, we’d appreciate your comments, criti-
cisms, corrections and suggestions for improvement. Please address all correspondence to:

We’ll respond promptly. We hope you enjoy working with Java How to Program, 10/e, as
much as we enjoyed writing it!

Paul and Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical
Officer of Deitel & Associates, Inc., is a
graduate of MIT, where he studied Infor-
mation Technology. He holds the Java
Certified Programmer and Java Certified
Developer designations, and is an Oracle
Java Champion. Through Deitel & Asso-

ciates, Inc., he has delivered hundreds of programming courses worldwide to clients, in-
cluding Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity, NASA at the Kennedy
Space Center, the National Severe Storm Laboratory, White Sands Missile Range, Rogue
Wave Software, Boeing, SunGard Higher Education, Nortel Networks, Puma, iRobot,
Invensys and many more. He and his co-author, Dr. Harvey M. Deitel, are the world’s
best-selling programming-language textbook/professional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has over 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University. He has extensive college teaching experience, including earning tenure and
serving as the Chairman of the Computer Science Department at Boston College before
founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’ publications

deitel@deitel.com

 About Deitel® & Associates, Inc. xxxvii

have earned international recognition, with translations published in Japanese, German,
Russian, Spanish, French, Polish, Italian, Simplified Chinese, Traditional Chinese,
Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of pro-
gramming courses to corporate, academic, government and military clients.

About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include many of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including Java™, Android app development,
Objective-C and iOS app development, C++, C, Visual C#®, Visual Basic®, Visual C++®,
Python®, object technology, Internet and web programming and a growing list of addi-
tional programming and software development courses.

Through its 39-year publishing partnership with Pearson/Prentice Hall, Deitel &
Associates, Inc., publishes leading-edge programming textbooks and professional books in
print and a wide range of e-book formats, and LiveLessons video courses. Deitel & Associ-
ates, Inc. and the authors can be reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

http://www.deitel.com/training

http://www.informit.com/store/sales.aspx

www.deitel.com
http://www.deitel.com/training
http://www.informit.com/store/sales.aspx

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Before You
Begin

This section contains information you should review before using this book. Any updates
to the information presented here will be posted at:

In addition, we provide Dive-Into® videos (which will be available in time for Fall 2014
classes) that demonstrate the instructions in this Before You Begin section.

Font and Naming Conventions
We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Java code or commands. Our convention is to emphasize on-screen com-
ponents in a sans-serif bold Helvetica font (for example, File menu) and to emphasize Java
code and commands in a sans-serif Lucida font (for example, System.out.println()).

Software Used in the Book
All the software you’ll need for this book is available free for download from the web. With
the exception of the examples that are specific to Java SE 8, all of the examples were tested
with the Java SE 7 and Java SE 8 Java Standard Edition Development Kits (JDKs).

Java Standard Edition Development Kit 7 (JDK 7)
JDK 7 for Windows, OS X and Linux platforms is available from:

Java Standard Edition Development Kit (JDK) 8
At the time of this publication, the near-final version of JDK 8 for Windows, OS X and
Linux platforms was available from:

Once JDK 8 is released as final, it will be available from:

JDK Installation Instructions
After downloading the JDK installer, be sure to carefully follow the JDK installation in-
structions for your platform at:

Though these instructions are for JDK 7, they also apply to JDK 8—you’ll need to update
the JDK version number in any version-specific instructions.

http://www.deitel.com/books/jhtp10

http://www.oracle.com/technetwork/java/javase/downloads/index.html

https://jdk8.java.net/download.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

http://www.deitel.com/books/jhtp10
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
https://jdk8.java.net/download.html

xl Before You Begin

Setting the PATH Environment Variable
The PATH environment variable on your computer designates which directories the com-
puter searches when looking for applications, such as the applications that enable you to
compile and run your Java applications (called javac and java, respectively). Carefully fol-
low the installation instructions for Java on your platform to ensure that you set the PATH envi-
ronment variable correctly. The steps for setting environment variables differ by operating
system and sometimes by operating system version (e.g., Windows 7 vs. Windows 8). In-
structions for various platforms are listed at:

If you do not set the PATH variable correctly on Windows and some Linux installations,
when you use the JDK’s tools, you’ll receive a message like:

In this case, go back to the installation instructions for setting the PATH and recheck your
steps. If you’ve downloaded a newer version of the JDK, you may need to change the name
of the JDK’s installation directory in the PATH variable.

JDK Installation Directory and the bin Subdirectory
The JDK’s installation directory varies by platform. The directories listed below are for
Oracle’s JDK 7 update 51:

• 32-bit JDK on Windows:
C:\Program Files (x86)\Java\jdk1.7.0_51

• 64-bit JDK on Windows:
C:\Program Files\Java\jdk1.7.0_51

• Mac OS X:
/Library/Java/JavaVirtualMachines/jdk1.7.0_51.jdk/Contents/Home

• Ubuntu Linux:
/usr/lib/jvm/java-7-oracle

Depending on your platform, the JDK installation folder’s name might differ if you’re us-
ing a different update of JDK 7 or using JDK 8. For Linux, the install location depends
on the installer you use and possibly the version of Linux that you use. We used Ubuntu
Linux. The PATH environment variable must point to the JDK installation directory’s bin
subdirectory.

When setting the PATH, be sure to use the proper JDK-installation-directory name for
the specific version of the JDK you installed—as newer JDK releases become available, the
JDK-installation-directory name changes to include an update version number. For
example, at the time of this writing, the most recent JDK 7 release was update 51. For this
version, the JDK-installation-directory name ends with "_51".

Setting the CLASSPATH Environment Variable
If you attempt to run a Java program and receive a message like

http://www.java.com/en/download/help/path.xml

'java' is not recognized as an internal or external command,
operable program or batch file.

Exception in thread "main" java.lang.NoClassDefFoundError: YourClass

http://www.java.com/en/download/help/path.xml

 Setting the JAVA_HOME Environment Variable xli

then your system has a CLASSPATH environment variable that must be modified. To fix the
preceding error, follow the steps in setting the PATH environment variable, to locate the
CLASSPATH variable, then edit the variable’s value to include the local directory—typically
represented as a dot (.). On Windows add

at the beginning of the CLASSPATH’s value (with no spaces before or after these characters).
On other platforms, replace the semicolon with the appropriate path separator charac-
ters—typically a colon (:).

Setting the JAVA_HOME Environment Variable
The Java DB database software that you’ll use in Chapter 24 and several online chapters
requires you to set the JAVA_HOME environment variable to your JDK’s installation direc-
tory. The same steps you used to set the PATH may also be used to set other environment
variables, such as JAVA_HOME.

Java Integrated Development Environments (IDEs)
There are many Java integrated development environments that you can use for Java pro-
gramming. For this reason, we used only the JDK command-line tools for most of the
book’s examples. We provide Dive-Into® videos (which will be available in time for Fall
2014 classes) that show how to download, install and use three popular IDEs—NetBeans,
Eclipse and IntelliJ IDEA. We use NetBeans in Chapter 25 and several of the book’s on-
line chapters.

NetBeans Downloads
You can download the JDK/NetBeans bundle from:

The NetBeans version that’s bundled with the JDK is for Java SE development. The on-
line JavaServer Faces (JSF) chapters and web services chapter use the Java Enterprise Edi-
tion (Java EE) version of NetBeans, which you can download from:

This version supports both Java SE and Java EE development.

Eclipse Downloads
You can download the Eclipse IDE from:

For Java SE development choose the Eclipse IDE for Java Developers. For Java Enterprise
Edition (Java EE) development (such as JSF and web services), choose the Eclipse IDE for
Java EE Developers—this version supports both Java SE and Java EE development.

IntelliJ IDEA Community Edition Downloads
You can download the free IntelliJ IDEA Community Edition from:

The free version supports only Java SE development.

.;

http://www.oracle.com/technetwork/java/javase/downloads/index.html

https://netbeans.org/downloads/

https://www.eclipse.org/downloads/

http://www.jetbrains.com/idea/download/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://netbeans.org/downloads/
https://www.eclipse.org/downloads/
http://www.jetbrains.com/idea/download/index.html

xlii Before You Begin

Obtaining the Code Examples
The examples for Java How to Program, 10/e are available for download at

under the heading Download Code Examples and Other Premium Content. The examples
are also available from

When you download the ZIP archive file, write down the location where you choose to
save it on your computer.

Extract the contents of examples.zip using a ZIP extraction tool such as 7-Zip
(www.7-zip.org), WinZip (www.winzip.com) or the built-in capabilities of your operating
system. Instructions throughout the book assume that the examples are located at:

• C:\examples on Windows

• your user account home folder’s examples subfolder on Linux

• your Documents folders examples subfolder on Mac OS X

Java’s Nimbus Look-and-Feel
Java comes bundled with a cross-platform look-and-feel known as Nimbus. For programs
with Swing graphical user interfaces (e.g., Chapters 12 and 22), we configured our test
computers to use Nimbus as the default look-and-feel.

To set Nimbus as the default for all Java applications, you must create a text file
named swing.properties in the lib folder of both your JDK installation folder and your
JRE installation folder. Place the following line of code in the file:

For more information on locating these folders visit http://docs.oracle.com/javase/
7/docs/webnotes/install/index.html. [Note: In addition to the standalone JRE, there’s
a JRE nested in your JDK’s installation folder. If you’re using an IDE that depends on the
JDK (e.g., NetBeans), you may also need to place the swing.properties file in the nested
jre folder’s lib folder.]

You’re now ready to begin your Java studies with Java How to Program, 10/e. We hope
you enjoy the book!

http://www.deitel.com/books/jhtp10/

http://www.pearsonhighered.com/deitel

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

www.7-zip.org
www.winzip.com
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
http://www.deitel.com/books/jhtp10/
http://www.pearsonhighered.com/deitel

1Introduction to Computers,
the Internet and Java

Man is still the most
extraordinary computer of all.
—John F. Kennedy

Good design is good business.
—Thomas J. Watson, Founder of IBM

O b j e c t i v e s
In this chapter you’ll:

■ Learn about exciting recent
developments in the
computer field.

■ Learn computer hardware,
software and networking
basics.

■ Understand the data
hierarchy.

■ Understand the different
types of programming
languages.

■ Understand the importance
of Java and other leading
programming languages.

■ Understand object-oriented
programming basics.

■ Learn the importance of the
Internet and the web.

■ Learn a typical Java program-
development environment.

■ Test-drive a Java application.

■ Learn some key recent
software technologies.

■ See how to keep up-to-date
with information
technologies.

2 Chapter 1 Introduction to Computers, the Internet and Java

1.1 Introduction
Welcome to Java—one of the world’s most widely used computer programming languag-
es. You’re already familiar with the powerful tasks computers perform. Using this text-
book, you’ll write instructions commanding computers to perform those tasks. Software
(i.e., the instructions you write) controls hardware (i.e., computers).

You’ll learn object-oriented programming—today’s key programming methodology.
You’ll create and work with many software objects.

For many organizations, the preferred language for meeting their enterprise program-
ming needs is Java. Java is also widely used for implementing Internet-based applications
and software for devices that communicate over a network.

Forrester Research predicts more than two billion PCs will be in use by 2015.1

According to Oracle, 97% of enterprise desktops, 89% of PC desktops, three billion
devices (Fig. 1.1) and 100% of all Blu-ray Disc™ players run Java, and there are over 9
million Java developers.2

According to a study by Gartner, mobile devices will continue to outpace PCs as users’
primary computing devices; an estimated 1.96 billion smartphones and 388 million tablets
will be shipped in 2015—8.7 times the number of PCs.3 By 2018, the mobile applications

1.1 Introduction
1.2 Hardware and Software

1.2.1 Moore’s Law
1.2.2 Computer Organization

1.3 Data Hierarchy
1.4 Machine Languages, Assembly

Languages and High-Level Languages
1.5 Introduction to Object Technology

1.5.1 The Automobile as an Object
1.5.2 Methods and Classes
1.5.3 Instantiation
1.5.4 Reuse
1.5.5 Messages and Method Calls
1.5.6 Attributes and Instance Variables
1.5.7 Encapsulation and Information Hiding
1.5.8 Inheritance
1.5.9 Interfaces

1.5.10 Object-Oriented Analysis and Design
(OOAD)

1.5.11 The UML (Unified Modeling
Language)

1.6 Operating Systems
1.6.1 Windows—A Proprietary Operating

System
1.6.2 Linux—An Open-Source Operating

System
1.6.3 Android

1.7 Programming Languages
1.8 Java
1.9 A Typical Java Development

Environment
1.10 Test-Driving a Java Application
1.11 Internet and World Wide Web

1.11.1 The Internet: A Network of Networks
1.11.2 The World Wide Web: Making the

Internet User-Friendly
1.11.3 Web Services and Mashups
1.11.4 Ajax
1.11.5 The Internet of Things

1.12 Software Technologies
1.13 Keeping Up-to-Date with

Information Technologies

Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1. http://www.worldometers.info/computers.
2. http://www.oracle.com/technetwork/articles/java/javaone12review-1863742.html.
3. http://www.gartner.com/newsroom/id/2645115.

http://www.worldometers.info/computers
http://www.oracle.com/technetwork/articles/java/javaone12review-1863742.html
http://www.gartner.com/newsroom/id/2645115

1.1 Introduction 3

(apps) market is expected to reach $92 billion.4 This is creating significant career opportu-
nities for people who program mobile applications, many of which are programmed in Java
(see Section 1.6.3).

Java Standard Edition
Java has evolved so rapidly that this tenth edition of Java How to Program—based on Java
Standard Edition 7 (Java SE 7) and Java Standard Edition 8 (Java SE 8)—was published
just 17 years after the first edition. Java Standard Edition contains the capabilities needed
to develop desktop and server applications. The book can be used with either Java SE 7 or
Java SE 8 (released just after this book was published). All of the Java SE 8 features are
discussed in modular, easy-to-include-or-omit sections throughout the book.

Prior to Java SE 8, Java supported three programming paradigms—procedural pro-
gramming, object-oriented programming and generic programming. Java SE 8 adds functional
programming. In Chapter 17, we’ll show how to use functional programming to write pro-
grams faster, more concisely, with fewer bugs and that are easier to parallelize (i.e., perform
multiple calculations simultaneously) to take advantage of today’s multi-core hardware
architectures to enhance application performance.

Java Enterprise Edition
Java is used in such a broad spectrum of applications that it has two other editions. The
Java Enterprise Edition (Java EE) is geared toward developing large-scale, distributed net-
working applications and web-based applications. In the past, most computer applications
ran on “standalone” computers (computers that were not networked together). Today’s
applications can be written with the aim of communicating among the world’s computers
via the Internet and the web. Later in this book we discuss how to build such web-based
applications with Java.

Devices

Airplane systems ATMs Automobile infotainment systems

Blu-ray Disc™ players Cable boxes Copiers

Credit cards CT scanners Desktop computers

e-Readers Game consoles GPS navigation systems

Home appliances Home security systems Light switches

Lottery terminals Medical devices Mobile phones

MRIs Parking payment stations Printers

Transportation passes Robots Routers

Smart cards Smart meters Smartpens

Smartphones Tablets Televisions

TV set-top boxes Thermostats Vehicle diagnostic systems

Fig. 1.1 | Some devices that use Java.

4. https://www.abiresearch.com/press/tablets-will-generate-35-of-this-years-25-
billion-.

https://www.abiresearch.com/press/tablets-will-generate-35-of-this-years-25-billion-
https://www.abiresearch.com/press/tablets-will-generate-35-of-this-years-25-billion-

4 Chapter 1 Introduction to Computers, the Internet and Java

Java Micro Edition
The Java Micro Edition (Java ME)—a subset of Java SE—is geared toward developing
applications for resource-constrained embedded devices, such as smartwatches, MP3 play-
ers, television set-top boxes, smart meters (for monitoring electric energy usage) and more.

1.2 Hardware and Software
Computers can perform calculations and make logical decisions phenomenally faster than
human beings can. Many of today’s personal computers can perform billions of calcula-
tions in one second—more than a human can perform in a lifetime. Supercomputers are
already performing thousands of trillions (quadrillions) of instructions per second! China’s
National University of Defense Technology’s Tianhe-2 supercomputer can perform over
33 quadrillion calculations per second (33.86 petaflops)!5 To put that in perspective, the
Tianhe-2 supercomputer can perform in one second about 3 million calculations for every per-
son on the planet! And—these supercomputing “upper limits” are growing quickly.

Computers process data under the control of sequences of instructions called com-
puter programs. These software programs guide the computer through ordered actions
specified by people called computer programmers. In this book, you’ll learn a key pro-
gramming methodology that’s enhancing programmer productivity, thereby reducing
software development costs—object-oriented programming.

A computer consists of various devices referred to as hardware (e.g., the keyboard,
screen, mouse, hard disks, memory, DVD drives and processing units). Computing costs
are dropping dramatically, owing to rapid developments in hardware and software technol-
ogies. Computers that might have filled large rooms and cost millions of dollars decades
ago are now inscribed on silicon chips smaller than a fingernail, costing perhaps a few dol-
lars each. Ironically, silicon is one of the most abundant materials on Earth—it’s an ingre-
dient in common sand. Silicon-chip technology has made computing so economical that
computers have become a commodity.

1.2.1 Moore’s Law
Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the hardware supporting these technologies. For many decades, hardware
costs have fallen rapidly.

Every year or two, the capacities of computers have approximately doubled inexpen-
sively. This remarkable trend often is called Moore’s Law, named for the person who iden-
tified it in the 1960s, Gordon Moore, co-founder of Intel—the leading manufacturer of
the processors in today’s computers and embedded systems. Moore’s Law and related
observations apply especially to the amount of memory that computers have for programs,
the amount of secondary storage (such as disk storage) they have to hold programs and
data over longer periods of time, and their processor speeds—the speeds at which they exe-
cute their programs (i.e., do their work).

5. http://www.top500.org/.

http://www.top500.org/

1.2 Hardware and Software 5

Similar growth has occurred in the communications field—costs have plummeted as
enormous demand for communications bandwidth (i.e., information-carrying capacity)
has attracted intense competition. We know of no other fields in which technology
improves so quickly and costs fall so rapidly. Such phenomenal improvement is truly fos-
tering the Information Revolution.

1.2.2 Computer Organization
Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections (Fig. 1.2).

Logical unit Description

Input unit This “receiving” section obtains information (data and computer programs)
from input devices and places it at the disposal of the other units for pro-
cessing. Most user input is entered into computers through keyboards,
touch screens and mouse devices. Other forms of input include receiving
voice commands, scanning images and barcodes, reading from secondary
storage devices (such as hard drives, DVD drives, Blu-ray Disc™ drives and
USB flash drives—also called “thumb drives” or “memory sticks”), receiving
video from a webcam and having your computer receive information from
the Internet (such as when you stream videos from YouTube® or download
e-books from Amazon). Newer forms of input include position data from a
GPS device, and motion and orientation information from an accelerometer
(a device that responds to up/down, left/right and forward/backward accel-
eration) in a smartphone or game controller (such as Microsoft® Kinect®
and Xbox®, Wii™ Remote and Sony® PlayStation® Move).

Output unit This “shipping” section takes information the computer has processed and
places it on various output devices to make it available for use outside the
computer. Most information that’s output from computers today is dis-
played on screens (including touch screens), printed on paper (“going
green” discourages this), played as audio or video on PCs and media players
(such as Apple’s iPods) and giant screens in sports stadiums, transmitted
over the Internet or used to control other devices, such as robots and “intel-
ligent” appliances. Information is also commonly output to secondary stor-
age devices, such as hard drives, DVD drives and USB flash drives. A
popular recent form of output is smartphone vibration.

Memory unit This rapid-access, relatively low-capacity “warehouse” section retains
information that has been entered through the input unit, making it
immediately available for processing when needed. The memory unit also
retains processed information until it can be placed on output devices by
the output unit. Information in the memory unit is volatile—it’s typically
lost when the computer’s power is turned off. The memory unit is often
called either memory, primary memory or RAM (Random Access Mem-
ory). Main memories on desktop and notebook computers contain as much
as 128 GB of RAM. GB stands for gigabytes; a gigabyte is approximately
one billion bytes. A byte is eight bits. A bit is either a 0 or a 1.

Fig. 1.2 | Logical units of a computer. (Part 1 of 2.)

6 Chapter 1 Introduction to Computers, the Internet and Java

1.3 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from the simplest data items (called “bits”) to richer
ones, such as characters and fields. Figure 1.3 illustrates a portion of the data hierarchy.

Bits
The smallest data item in a computer can assume the value 0 or the value 1. It’s called a
bit (short for “binary digit”—a digit that can assume one of two values). Remarkably, the
impressive functions performed by computers involve only the simplest manipulations of
0s and 1s—examining a bit’s value, setting a bit’s value and reversing a bit’s value (from 1 to
0 or from 0 to 1).

Characters
It’s tedious for people to work with data in the low-level form of bits. Instead, they prefer
to work with decimal digits (0–9), letters (A–Z and a–z), and special symbols (e.g., $, @, %,

Arithmetic
and logic unit
(ALU)

This “manufacturing” section performs calculations, such as addition, sub-
traction, multiplication and division. It also contains the decision mecha-
nisms that allow the computer, for example, to compare two items from the
memory unit to determine whether they’re equal. In today’s systems, the
ALU is implemented as part of the next logical unit, the CPU.

Central
processing
unit (CPU)

This “administrative” section coordinates and supervises the operation of
the other sections. The CPU tells the input unit when information should
be read into the memory unit, tells the ALU when information from the
memory unit should be used in calculations and tells the output unit when
to send information from the memory unit to certain output devices. Many
of today’s computers have multiple CPUs and, hence, can perform many
operations simultaneously. A multi-core processor implements multiple
processors on a single integrated-circuit chip—a dual-core processor has two
CPUs and a quad-core processor has four CPUs. Today’s desktop computers
have processors that can execute billions of instructions per second.

Secondary
storage unit

This is the long-term, high-capacity “warehousing” section. Programs or
data not actively being used by the other units normally are placed on sec-
ondary storage devices (e.g., your hard drive) until they’re again needed,
possibly hours, days, months or even years later. Information on secondary
storage devices is persistent—it’s preserved even when the computer’s power
is turned off. Secondary storage information takes much longer to access
than information in primary memory, but its cost per unit is much less.
Examples of secondary storage devices include hard drives, DVD drives and
USB flash drives, some of which can hold over 2 TB (TB stands for tera-
bytes; a terabyte is approximately one trillion bytes). Typical hard drives on
desktop and notebook computers hold up to 2 TB, and some desktop hard
drives can hold up to 4 TB.

Logical unit Description

Fig. 1.2 | Logical units of a computer. (Part 2 of 2.)

www.allitebooks.com

http://www.allitebooks.org

1.3 Data Hierarchy 7

&, *, (,), –, +, ", :, ? and /). Digits, letters and special symbols are known as characters.
The computer’s character set is the set of all the characters used to write programs and
represent data items. Computers process only 1s and 0s, so a computer’s character set rep-
resents every character as a pattern of 1s and 0s. Java uses Unicode® characters that are
composed of one, two or four bytes (8, 16 or 32 bits). Unicode contains characters for
many of the world’s languages. See Appendix H for more information on Unicode. See
Appendix B for more information on the ASCII (American Standard Code for Informa-
tion Interchange) character set—the popular subset of Unicode that represents uppercase
and lowercase letters, digits and some common special characters.

Fields
Just as characters are composed of bits, fields are composed of characters or bytes. A field
is a group of characters or bytes that conveys meaning. For example, a field consisting of
uppercase and lowercase letters can be used to represent a person’s name, and a field con-
sisting of decimal digits could represent a person’s age.

Records
Several related fields can be used to compose a record (implemented as a class in Java). In
a payroll system, for example, the record for an employee might consist of the following
fields (possible types for these fields are shown in parentheses):

Fig. 1.3 | Data hierarchy.

Tom Blue

Sally Black

Judy Green File

J u d y Field

Unicode character J

Record

Iris Orange

Randy Red

00000000 01001010

1 Bit

Judy Green

8 Chapter 1 Introduction to Computers, the Internet and Java

• Employee identification number (a whole number)

• Name (a string of characters)

• Address (a string of characters)

• Hourly pay rate (a number with a decimal point)

• Year-to-date earnings (a number with a decimal point)

• Amount of taxes withheld (a number with a decimal point)

Thus, a record is a group of related fields. In the preceding example, all the fields belong to
the same employee. A company might have many employees and a payroll record for each.

Files
A file is a group of related records. [Note: More generally, a file contains arbitrary data in
arbitrary formats. In some operating systems, a file is viewed simply as a sequence of bytes—
any organization of the bytes in a file, such as organizing the data into records, is a view
created by the application programmer. You’ll see how to do that in Chapter 15.] It’s not
unusual for an organization to have many files, some containing billions, or even trillions,
of characters of information.

Database
A database is a collection of data organized for easy access and manipulation. The most
popular model is the relational database, in which data is stored in simple tables. A table
includes records and fields. For example, a table of students might include first name, last
name, major, year, student ID number and grade point average fields. The data for each
student is a record, and the individual pieces of information in each record are the fields.
You can search, sort and otherwise manipulate the data based on its relationship to multiple
tables or databases. For example, a university might use data from the student database in
combination with data from databases of courses, on-campus housing, meal plans, etc. We
discuss databases in Chapter 24.

Big Data
The amount of data being produced worldwide is enormous and growing quickly. Accord-
ing to IBM, approximately 2.5 quintillion bytes (2.5 exabytes) of data are created daily and
90% of the world’s data was created in just the past two years!6 According to a Digital Uni-
verse study, the global data supply reached 2.8 zettabytes (equal to 2.8 trillion gigabytes)
in 2012.7 Figure 1.4 shows some common byte measurements. Big data applications deal
with such massive amounts of data and this field is growing quickly, creating lots of op-
portunity for software developers. According to a study by Gartner Group, over 4 million
IT jobs globally will support big data by by 2015.8

6. http://www-01.ibm.com/software/data/bigdata/.
7. http://www.guardian.co.uk/news/datablog/2012/dec/19/big-data-study-digital-

universe-global-volume.
8. http://tech.fortune.cnn.com/2013/09/04/big-data-employment-boom/.

http://www-01.ibm.com/software/data/bigdata/
http://www.guardian.co.uk/news/datablog/2012/dec/19/big-data-study-digital-universe-global-volume
http://www.guardian.co.uk/news/datablog/2012/dec/19/big-data-study-digital-universe-global-volume
http://tech.fortune.cnn.com/2013/09/04/big-data-employment-boom/

1.4 Machine Languages, Assembly Languages and High-Level Languages 9

1.4 Machine Languages, Assembly Languages and High-
Level Languages
Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate translation steps. Hundreds of
such languages are in use today. These may be divided into three general types:

1. Machine languages

2. Assembly languages

3. High-level languages

Machine Languages
Any computer can directly understand only its own machine language, defined by its
hardware design. Machine languages generally consist of strings of numbers (ultimately re-
duced to 1s and 0s) that instruct computers to perform their most elementary operations
one at a time. Machine languages are machine dependent (a particular machine language
can be used on only one type of computer). Such languages are cumbersome for humans.
For example, here’s a section of an early machine-language payroll program that adds over-
time pay to base pay and stores the result in gross pay:

Assembly Languages and Assemblers
Programming in machine language was simply too slow and tedious for most program-
mers. Instead of using the strings of numbers that computers could directly understand,
programmers began using English-like abbreviations to represent elementary operations.
These abbreviations formed the basis of assembly languages. Translator programs called as-
semblers were developed to convert early assembly-language programs to machine lan-
guage at computer speeds. The following section of an assembly-language payroll program
also adds overtime pay to base pay and stores the result in gross pay:

Unit Bytes Which is approximately

 1 kilobyte (KB) 1024 bytes 103 (1024 bytes exactly)
 1 megabyte (MB) 1024 kilobytes 106 (1,000,000 bytes)
 1 gigabyte (GB) 1024 megabytes 109 (1,000,000,000 bytes)
 1 terabyte (TB) 1024 gigabytes 1012 (1,000,000,000,000 bytes)
 1 petabyte (PB) 1024 terabytes 1015 (1,000,000,000,000,000 bytes)
 1 exabyte (EB) 1024 petabytes 1018 (1,000,000,000,000,000,000 bytes)
 1 zettabyte (ZB) 1024 exabytes 1021 (1,000,000,000,000,000,000,000 bytes)

Fig. 1.4 | Byte measurements.

+1300042774
+1400593419
+1200274027

load basepay
add overpay
store grosspay

10 Chapter 1 Introduction to Computers, the Internet and Java

Although such code is clearer to humans, it’s incomprehensible to computers until trans-
lated to machine language.

High-Level Languages and Compilers
With the advent of assembly languages, computer usage increased rapidly, but program-
mers still had to use numerous instructions to accomplish even the simplest tasks. To
speed the programming process, high-level languages were developed in which single
statements could be written to accomplish substantial tasks. Translator programs called
compilers convert high-level language programs into machine language. High-level lan-
guages allow you to write instructions that look almost like everyday English and contain
commonly used mathematical notations. A payroll program written in a high-level lan-
guage might contain a single statement such as

From the programmer’s standpoint, high-level languages are preferable to machine and
assembly languages. Java is one of the most widely used high-level programming languages.

Interpreters
Compiling a large high-level language program into machine language can take consider-
able computer time. Interpreter programs, developed to execute high-level language pro-
grams directly, avoid the delay of compilation, although they run slower than compiled
programs. We’ll say more about interpreters in Section 1.9, where you’ll learn that Java uses
a clever performance-tuned mixture of compilation and interpretation to run programs.

1.5 Introduction to Object Technology
Today, as demands for new and more powerful software are soaring, building software
quickly, correctly and economically remains an elusive goal. Objects, or more precisely, the
classes objects come from, are essentially reusable software components. There are date ob-
jects, time objects, audio objects, video objects, automobile objects, people objects, etc. Al-
most any noun can be reasonably represented as a software object in terms of attributes
(e.g., name, color and size) and behaviors (e.g., calculating, moving and communicating).
Software-development groups can use a modular, object-oriented design-and-implemen-
tation approach to be much more productive than with earlier popular techniques like
“structured programming”—object-oriented programs are often easier to understand, cor-
rect and modify.

1.5.1 The Automobile as an Object
To help you understand objects and their contents, let’s begin with a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it.
A car typically begins as engineering drawings, similar to the blueprints that describe the
design of a house. These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that actually make the car go faster, just as
the brake pedal “hides” the mechanisms that slow the car, and the steering wheel “hides”
the mechanisms that turn the car. This enables people with little or no knowledge of how
engines, braking and steering mechanisms work to drive a car easily.

grossPay = basePay + overTimePay

1.5 Introduction to Object Technology 11

Just as you cannot cook meals in the kitchen of a blueprint, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator pedal to make it go
faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so the
driver must press the pedal to accelerate the car.

1.5.2 Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts. Per-
forming a task in a program requires a method. The method houses the program statements
that actually perform its tasks. The method hides these statements from its user, just as the
accelerator pedal of a car hides from the driver the mechanisms of making the car go faster.
In Java, we create a program unit called a class to house the set of methods that perform the
class’s tasks. For example, a class that represents a bank account might contain one method
to deposit money to an account, another to withdraw money from an account and a third to
inquire what the account’s current balance is. A class is similar in concept to a car’s engineer-
ing drawings, which house the design of an accelerator pedal, steering wheel, and so on.

1.5.3 Instantiation
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object of a class before a program can perform the tasks that
the class’s methods define. The process of doing this is called instantiation. An object is
then referred to as an instance of its class.

1.5.4 Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have undergone extensive
testing, debugging and performance tuning. Just as the notion of interchangeable parts was
crucial to the Industrial Revolution, reusable classes are crucial to the software revolution
that has been spurred by object technology.

1.5.5 Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a bank-account object’s deposit method to increase the account’s balance.

1.5.6 Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total

Software Engineering Observation 1.1
Use a building-block approach to creating your programs. Avoid reinventing the wheel—
use existing high-quality pieces wherever possible. This software reuse is a key benefit of
object-oriented programming.

12 Chapter 1 Introduction to Computers, the Internet and Java

miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

1.5.7 Encapsulation and Information Hiding
Classes (and their objects) encapsulate, i.e., encase, their attributes and methods. A class’s
(and its object’s) attributes and methods are intimately related. Objects may communicate
with one another, but they’re normally not allowed to know how other objects are imple-
mented—implementation details are hidden within the objects themselves. This informa-
tion hiding, as we’ll see, is crucial to good software engineering.

1.5.8 Inheritance
A new class of objects can be created conveniently by inheritance—the new class (called
the subclass) starts with the characteristics of an existing class (called the superclass), pos-
sibly customizing them and adding unique characteristics of its own. In our car analogy,
an object of class “convertible” certainly is an object of the more general class “automo-
bile,” but more specifically, the roof can be raised or lowered.

1.5.9 Interfaces
Java also supports interfaces—collections of related methods that typically enable you to
tell objects what to do, but not how to do it (we’ll see an exception to this in Java SE 8).
In the car analogy, a “basic-driving-capabilities” interface consisting of a steering wheel, an
accelerator pedal and a brake pedal would enable a driver to tell the car what to do. Once
you know how to use this interface for turning, accelerating and braking, you can drive
many types of cars, even though manufacturers may implement these systems differently.

A class implements zero or more interfaces, each of which can have one or more
methods, just as a car implements separate interfaces for basic driving functions, control-
ling the radio, controlling the heating and air conditioning systems, and the like. Just as
car manufacturers implement capabilities differently, classes may implement an interface’s
methods differently. For example a software system may include a “backup” interface that
offers the methods save and restore. Classes may implement those methods differently,
depending on the types of things being backed up, such as programs, text, audios, videos,
etc., and the types of devices where these items will be stored.

1.5.10 Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in Java. How will you create the code (i.e., the program
instructions) for your programs? Perhaps, like many programmers, you’ll simply turn on

1.6 Operating Systems 13

your computer and start typing. This approach may work for small programs (like the ones
we present in the early chapters of the book), but what if you were asked to create a soft-
ware system to control thousands of automated teller machines for a major bank? Or sup-
pose you were asked to work on a team of 1,000 software developers building the next
generation of the U.S. air traffic control system? For projects so large and complex, you
should not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., specifying how the system should do it). Ide-
ally, you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis-and-design (OOAD) process. Languages like Java are object ori-
ented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

1.5.11 The UML (Unified Modeling Language)
Although many different OOAD processes exist, a single graphical language for commu-
nicating the results of any OOAD process has come into wide use. The Unified Modeling
Language (UML) is now the most widely used graphical scheme for modeling object-ori-
ented systems. We present our first UML diagrams in Chapters 3 and 4, then use them in
our deeper treatment of object-oriented programming through Chapter 11. In our option-
al online ATM Software Engineering Case Study in Chapters 33–34 we present a simple
subset of the UML’s features as we guide you through an object-oriented design experience.

1.6 Operating Systems
Operating systems are software systems that make using computers more convenient for us-
ers, application developers and system administrators. They provide services that allow each
application to execute safely, efficiently and concurrently (i.e., in parallel) with other applica-
tions. The software that contains the core components of the operating system is the kernel.
Popular desktop operating systems include Linux, Windows and Mac OS X. Popular mobile
operating systems used in smartphones and tablets include Google’s Android, Apple’s iOS
(for its iPhone, iPad and iPod Touch devices), Windows Phone 8 and BlackBerry OS.

1.6.1 Windows—A Proprietary Operating System
In the mid-1980s, Microsoft developed the Windows operating system, consisting of a
graphical user interface built on top of DOS—an enormously popular personal-computer
operating system that users interacted with by typing commands. Windows borrowed
many concepts (such as icons, menus and windows) popularized by early Apple Macintosh
operating systems and originally developed by Xerox PARC. Windows 8 is Microsoft’s lat-
est operating system—its features include PC and tablet support, a tiles-based user inter-
face, security enhancements, touch-screen and multi-touch support, and more. Windows
is a proprietary operating system—it’s controlled by Microsoft exclusively. It’s by far the
world’s most widely used operating system.

14 Chapter 1 Introduction to Computers, the Internet and Java

1.6.2 Linux—An Open-Source Operating System
The Linux operating system—which is popular in servers, personal computers and embed-
ded systems—is perhaps the greatest success of the open-source movement. The open-
source software development style departs from the proprietary development style (used,
for example, with Microsoft’s Windows and Apple’s Mac OS X). With open-source de-
velopment, individuals and companies—often worldwide—contribute their efforts in de-
veloping, maintaining and evolving software. Anyone can use and customize it for their
own purposes, typically at no charge. The Java Development Kit and many related Java
technologies are now open source.

Some organizations in the open-source community are the Eclipse Foundation (the
Eclipse Integrated Development Environment helps Java programmers conveniently develop
software), the Mozilla Foundation (creators of the Firefox web browser), the Apache Software
Foundation (creators of the Apache web server that delivers web pages over the Internet in
response to web-browser requests) and GitHub and SourceForge (which provide the tools
for managing open-source projects).

Rapid improvements to computing and communications, decreasing costs and open-
source software have made it easier and more economical to create software-based busi-
nesses now than just a few decades ago. Facebook, which was launched from a college
dorm room, was built with open-source software.9

A variety of issues—such as Microsoft’s market power, the relatively small number of
user-friendly Linux applications and the diversity of Linux distributions (Red Hat Linux,
Ubuntu Linux and many others)—have prevented widespread Linux use on desktop com-
puters. But Linux has become extremely popular on servers and in embedded systems,
such as Google’s Android-based smartphones.

1.6.3 Android
Android—the fastest-growing mobile and smartphone operating system—is based on the
Linux kernel and uses Java. Experienced Java programmers can quickly dive into Android
development. One benefit of developing Android apps is the openness of the platform.
The operating system is open source and free.

The Android operating system was developed by Android, Inc., which was acquired
by Google in 2005. In 2007, the Open Handset Alliance™—which now has 87 company
members worldwide (http://www.openhandsetalliance.com/oha_members.html)—
was formed to develop, maintain and evolve Android, driving innovation in mobile tech-
nology and improving the user experience while reducing costs. As of April 2013, more
than 1.5 million Android devices (smartphones, tablets, etc.) were being activated daily.10

By October 2013, a Strategy Analytics report showed that Android had 81.3% of the
global smartphone market share, compared to 13.4% for Apple, 4.1% for Microsoft and
1% for Blackberry.11 Android devices now include smartphones, tablets, e-readers, robots,
jet engines, NASA satellites, game consoles, refrigerators, televisions, cameras, health-care

9. http://developers.facebook.com/opensource.
10. http://www.technobuffalo.com/2013/04/16/google-daily-android-activations-1-5-

million/.
11. http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-

81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx.

http://www.openhandsetalliance.com/oha_members.html
http://developers.facebook.com/opensource
http://www.technobuffalo.com/2013/04/16/google-daily-android-activations-1-5-million/
http://www.technobuffalo.com/2013/04/16/google-daily-android-activations-1-5-million/
http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx
http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx

1.7 Programming Languages 15

devices, smartwatches, automobile in-vehicle infotainment systems (for controlling the
radio, GPS, phone calls, thermostat, etc.) and more.12

Android smartphones include the functionality of a mobile phone, Internet client (for
web browsing and Internet communication), MP3 player, gaming console, digital camera
and more. These handheld devices feature full-color multitouch screens which allow you to
control the device with gestures involving one touch or multiple simultaneous touches. You
can download apps directly onto your Android device through Google Play and other app
marketplaces. At the time of this writing, there were over one million apps in Google Play,
and the number is growing quickly.13

We present an introduction to Android app development in our textbook, Android How
to Program, Second Edition, and in our professional book, Android for Programmers: An App-
Driven Approach, Second Edition. After you learn Java, you’ll find it straightforward to begin
developing and running Android apps. You can place your apps on Google Play
(play.google.com), and if they’re successful, you may even be able to launch a business. Just
remember—Facebook, Microsoft and Dell were all launched from college dorm rooms.

1.7 Programming Languages
In this section, we comment briefly on several popular programming languages (Fig. 1.5).
In the next section, we introduce Java.

12. http://www.businessweek.com/articles/2013-05-29/behind-the-internet-of-things-
is-android-and-its-everywhere.

13. http://en.wikipedia.org/wiki/Google_Play.

Programming
language Description

Fortran Fortran (FORmula TRANslator) was developed by IBM Corporation in the mid-
1950s for scientific and engineering applications that require complex mathematical
computations. It’s still widely used, and its latest versions support object-oriented
programming.

COBOL COBOL (COmmon Business Oriented Language) was developed in the late 1950s
by computer manufacturers, the U.S. government and industrial computer users
based on a language developed by Grace Hopper, a U.S. Navy Rear Admiral and
computer scientist who also advocated for the international standardization of pro-
gramming languages. COBOL is still widely used for commercial applications that
require precise and efficient manipulation of large amounts of data. Its latest version
supports object-oriented programming.

Pascal Research in the 1960s resulted in structured programming—a disciplined approach to
writing programs that are clearer, easier to test and debug and easier to modify than
large programs produced with previous techniques. One result of this research was
the development in 1971 of the Pascal programming language, which was designed
for teaching structured programming and was popular in college courses for several
decades.

Fig. 1.5 | Some other programming languages. (Part 1 of 3.)

http://www.businessweek.com/articles/2013-05-29/behind-the-internet-of-things-is-android-and-its-everywhere
http://www.businessweek.com/articles/2013-05-29/behind-the-internet-of-things-is-android-and-its-everywhere
http://en.wikipedia.org/wiki/Google_Play

16 Chapter 1 Introduction to Computers, the Internet and Java

Ada Ada, based on Pascal, was developed under the sponsorship of the U.S. Department
of Defense (DOD) during the 1970s and early 1980s. The DOD wanted a single
language that would fill most of its needs. The Ada language was named after Lady
Ada Lovelace, daughter of the poet Lord Byron. She’s credited with writing the
world’s first computer program in the early 1800s (for the Analytical Engine
mechanical computing device designed by Charles Babbage). Ada also supports
object-oriented programming.

Basic Basic was developed in the 1960s at Dartmouth College to familiarize novices with
programming techniques. Many of its latest versions are object oriented.

C C was developed in the early 1970s by Dennis Ritchie at Bell Laboratories. It initially
became widely known as the UNIX operating system’s development language. Today,
most of the code for general-purpose operating systems is written in C or C++.

C++ C++, which is based on C, was developed by Bjarne Stroustrup in the early 1980s at
Bell Laboratories. C++ provides several features that “spruce up” the C language, but
more important, it provides capabilities for object-oriented programming.

Objective-C Objective-C is another object-oriented language based on C. It was developed in the
early 1980s and later acquired by NeXT, which in turn was acquired by Apple. It has
become the key programming language for the OS X operating system and all iOS-
powered devices (such as iPods, iPhones and iPads).

Visual Basic Microsoft’s Visual Basic language was introduced in the early 1990s to simplify the
development of Microsoft Windows applications. Its latest versions support object-
oriented programming.

Visual C# Microsoft’s three object-oriented primary programming languages are Visual Basic
(based on the original Basic), Visual C++ (based on C++) and Visual C# (based on
C++ and Java, and developed for integrating the Internet and the web into computer
applications).

PHP PHP, an object-oriented, open-source scripting language supported by a community
of users and developers, is used by millions of websites. PHP is platform indepen-
dent—implementations exist for all major UNIX, Linux, Mac and Windows operat-
ing systems. PHP also supports many databases, including the popular open-source
MySQL.

Perl Perl (Practical Extraction and Report Language), one of the most widely used object-
oriented scripting languages for web programming, was developed in 1987 by Larry
Wall. It features rich text-processing capabilities.

Python Python, another object-oriented scripting language, was released publicly in 1991.
Developed by Guido van Rossum of the National Research Institute for Mathemat-
ics and Computer Science in Amsterdam (CWI), Python draws heavily from Mod-
ula-3—a systems programming language. Python is “extensible”—it can be extended
through classes and programming interfaces.

JavaScript JavaScript is the most widely used scripting language. It’s primarily used to add
dynamic behavior to web pages—for example, animations and improved interactiv-
ity with the user. It’s provided with all major web browsers.

Programming
language Description

Fig. 1.5 | Some other programming languages. (Part 2 of 3.)

www.allitebooks.com

http://www.allitebooks.org

1.8 Java 17

1.8 Java
The microprocessor revolution’s most important contribution to date is that it enabled the
development of personal computers. Microprocessors have had a profound impact in in-
telligent consumer-electronic devices. Recognizing this, Sun Microsystems in 1991 fund-
ed an internal corporate research project led by James Gosling, which resulted in a C++-
based object-oriented programming language that Sun called Java.

A key goal of Java is to be able to write programs that will run on a great variety of
computer systems and computer-controlled devices. This is sometimes called “write once,
run anywhere.”

The web exploded in popularity in 1993, and Sun saw the potential of using Java to
add dynamic content, such as interactivity and animations, to web pages. Java drew the
attention of the business community because of the phenomenal interest in the web. Java
is now used to develop large-scale enterprise applications, to enhance the functionality of
web servers (the computers that provide the content we see in our web browsers), to pro-
vide applications for consumer devices (cell phones, smartphones, television set-top boxes
and more) and for many other purposes. Java is also the key language for developing
Android smartphone and tablet apps. Sun Microsystems was acquired by Oracle in 2010.

Java Class Libraries
You can create each class and method you need to form your Java programs. However,
most Java programmers take advantage of the rich collections of existing classes and meth-
ods in the Java class libraries, also known as the Java APIs (Application Programming
Interfaces).

1.9 A Typical Java Development Environment
We now explain the steps to create and execute a Java application. Normally there are five
phases—edit, compile, load, verify and execute. We discuss them in the context of the Java

Ruby on Rails Ruby, created in the mid-1990s, is an open-source, object-oriented programming
language with a simple syntax that’s similar to Python. Ruby on Rails combines the
scripting language Ruby with the Rails web application framework developed by
37Signals. Their book, Getting Real (gettingreal.37signals.com/toc.php), is a
must read for web developers. Many Ruby on Rails developers have reported pro-
ductivity gains over other languages when developing database-intensive web appli-
cations.

Performance Tip 1.1
Using Java API classes and methods instead of writing your own versions can improve pro-
gram performance, because they’re carefully written to perform efficiently. This also short-
ens program development time.

Programming
language Description

Fig. 1.5 | Some other programming languages. (Part 3 of 3.)

18 Chapter 1 Introduction to Computers, the Internet and Java

SE 8 Development Kit (JDK). See the Before You Begin section for information on down-
loading and installing the JDK on Windows, Linux and OS X.

Phase 1: Creating a Program
Phase 1 consists of editing a file with an editor program, normally known simply as an editor
(Fig. 1.6). Using the editor, you type a Java program (typically referred to as source code),
make any necessary corrections and save it on a secondary storage device, such as your hard
drive. Java source code files are given a name ending with the .java extension, indicating
that the file contains Java source code.

Two editors widely used on Linux systems are vi and emacs. Windows provides
Notepad. OS X provides TextEdit. Many freeware and shareware editors are also available
online, including Notepad++ (notepad-plus-plus.org), EditPlus (www.editplus.com),
TextPad (www.textpad.com) and jEdit (www.jedit.org).

Integrated development environments (IDEs) provide tools that support the soft-
ware development process, such as editors, debuggers for locating logic errors (errors that
cause programs to execute incorrectly) and more. There are many popular Java IDEs,
including:

• Eclipse (www.eclipse.org)

• NetBeans (www.netbeans.org)

• IntelliJ IDEA (www.jetbrains.com)

On the book’s website at

we provide Dive-Into® videos that show you how to executes this book’s Java applications
and how to develop new Java applications with Eclipse, NetBeans and IntelliJ IDEA.

Phase 2: Compiling a Java Program into Bytecodes
In Phase 2, you use the command javac (the Java compiler) to compile a program
(Fig. 1.7). For example, to compile a program called Welcome.java, you’d type

in your system’s command window (i.e., the Command Prompt in Windows, the Terminal
application in OS X) or a Linux shell (also called Terminal in some versions of Linux). If
the program compiles, the compiler produces a .class file called Welcome.class that
contains the compiled version. IDEs typically provide a menu item, such as Build or Make,
that invokes the javac command for you. If the compiler detects errors, you’ll need to go
back to Phase 1 and correct them. In Chapter 2, we’ll say more about the kinds of errors
the compiler can detect.

Fig. 1.6 | Typical Java development environment—editing phase.

www.deitel.com/books/jhtp10

javac Welcome.java

Disk
Editor

Program is created in an
editor and stored on disk in
a file whose name ends
with .java

Phase 1: Edit

www.editplus.com
www.textpad.com
www.jedit.org
www.eclipse.org
www.netbeans.org
www.jetbrains.com
www.deitel.com/books/jhtp10

1.9 A Typical Java Development Environment 19

The Java compiler translates Java source code into bytecodes that represent the tasks
to execute in the execution phase (Phase 5). The Java Virtual Machine (JVM)—a part of
the JDK and the foundation of the Java platform—executes bytecodes. A virtual machine
(VM) is a software application that simulates a computer but hides the underlying oper-
ating system and hardware from the programs that interact with it. If the same VM is
implemented on many computer platforms, applications written for that type of VM can
be used on all those platforms. The JVM is one of the most widely used virtual machines.
Microsoft’s .NET uses a similar virtual-machine architecture.

Unlike machine-language instructions, which are platform dependent (that is, depen-
dent on specific computer hardware), bytecode instructions are platform independent. So,
Java’s bytecodes are portable—without recompiling the source code, the same bytecode
instructions can execute on any platform containing a JVM that understands the version
of Java in which the bytecodes were compiled. The JVM is invoked by the java command.
For example, to execute a Java application called Welcome, you’d type the command

in a command window to invoke the JVM, which would then initiate the steps necessary
to execute the application. This begins Phase 3. IDEs typically provide a menu item, such
as Run, that invokes the java command for you.

Phase 3: Loading a Program into Memory
In Phase 3, the JVM places the program in memory to execute it—this is known as loading
(Fig. 1.8).The JVM’s class loader takes the .class files containing the program’s byte-
codes and transfers them to primary memory. It also loads any of the .class files provided
by Java that your program uses. The .class files can be loaded from a disk on your system
or over a network (e.g., your local college or company network, or the Internet).

Fig. 1.7 | Typical Java development environment—compilation phase.

java Welcome

Fig. 1.8 | Typical Java development environment—loading phase.

Disk
Compiler

Compiler creates bytecodes
and stores them on disk in a
file whose name ends
with .class

Phase 2: Compile

Disk

Class Loader Class loader reads
.class files
containing bytecodes
from disk and puts
those bytecodes in
memory

Phase 3: Load

Primary
Memory

.
.
.

20 Chapter 1 Introduction to Computers, the Internet and Java

Phase 4: Bytecode Verification
In Phase 4, as the classes are loaded, the bytecode verifier examines their bytecodes to en-
sure that they’re valid and do not violate Java’s security restrictions (Fig. 1.9). Java enforces
strong security to make sure that Java programs arriving over the network do not damage
your files or your system (as computer viruses and worms might).

Phase 5: Execution
In Phase 5, the JVM executes the program’s bytecodes, thus performing the actions specified
by the program (Fig. 1.10). In early Java versions, the JVM was simply an interpreter for Java
bytecodes. Most Java programs would execute slowly, because the JVM would interpret and
execute one bytecode at a time. Some modern computer architectures can execute several in-
structions in parallel. Today’s JVMs typically execute bytecodes using a combination of in-
terpretation and so-called just-in-time (JIT) compilation. In this process, the JVM analyzes
the bytecodes as they’re interpreted, searching for hot spots—parts of the bytecodes that exe-
cute frequently. For these parts, a just-in-time (JIT) compiler, such as Oracle’s Java
HotSpot™ compiler, translates the bytecodes into the underlying computer’s machine lan-
guage. When the JVM encounters these compiled parts again, the faster machine-language
code executes. Thus Java programs actually go through two compilation phases—one in
which source code is translated into bytecodes (for portability across JVMs on different com-
puter platforms) and a second in which, during execution, the bytecodes are translated into
machine language for the actual computer on which the program executes.

Problems That May Occur at Execution Time
Programs might not work on the first try. Each of the preceding phases can fail because of
various errors that we’ll discuss throughout this book. For example, an executing program

Fig. 1.9 | Typical Java development environment—verification phase.

Fig. 1.10 | Typical Java development environment—execution phase.

Bytecode Verifier
Bytecode verifier
confirms that all
bytecodes are valid and
do not violate Java’s
security restrictions

Phase 4: Verify

.
.
.

Primary
Memory

Java Virtual Machine (JVM)

Primary
Memory

Phase 5: Execute

To execute the program, the
JVM reads bytecodes and
just-in-time (JIT) compiles
(i.e., translates) them into a
language that the computer
can understand. As the
program executes, it may store
data values in primary
memory.

.
.
.

1.10 Test-Driving a Java Application 21

might try to divide by zero (an illegal operation for whole-number arithmetic in Java).
This would cause the Java program to display an error message. If this occurred, you’d
have to return to the edit phase, make the necessary corrections and proceed through the
remaining phases again to determine that the corrections fixed the problem(s). [Note:
Most programs in Java input or output data. When we say that a program displays a mes-
sage, we normally mean that it displays that message on your computer’s screen. Messages
and other data may be output to other devices, such as disks and hardcopy printers, or even
to a network for transmission to other computers.]

1.10 Test-Driving a Java Application
In this section, you’ll run and interact with your first Java application. The Painter appli-
cation, which you’ll build over the course of several exercises, allows you to drag the mouse
to “paint.” The elements and functionality you see here are typical of what you’ll learn to
program in this book. Using the Painter’s graphical user interface (GUI), you can control
the drawing color, the shape to draw (line, rectangle or oval) and whether the shape is filled
with the drawing color. You can also undo the last shape you added to the drawing or clear
the entire drawing. [Note: We use fonts to distinguish between features. Our convention
is to emphasize screen features like titles and menus (e.g., the File menu) in a semibold
sans-serif Helvetica font and to emphasize nonscreen elements, such as file names, pro-
gram code or input (e.g., ProgramName.java), in a sans-serif Lucida font.]

The steps in this section show you how to execute the Painter app from a Command
Prompt (Windows), Terminal (OS X) or shell (Linux) window on your system.
Throughout the book, we’ll refer to these windows simply as command windows. Perform
the following steps to use the Painter application to draw a smiley face:

1. Checking your setup. Read the Before You Begin section to confirm that you’ve
set up Java properly on your computer, that you’ve copied the book’s examples
to your hard drive and that you know how to open a command window on your
system.

2. Changing to the completed application’s directory. Open a command window and
use the cd command to change to the directory (also called a folder) for the Painter
application. We assume that the book’s examples are located in C:\examples on
Windows or in your user account’s Documents/examples folder on Linux/OS X.
On Windows type cd C:\examples\ch01\painter, then press Enter. On Linux/
OS X, type cd ~/Documents/examples/ch01/painter, then press Enter.

3. Running the Painter application. Recall that the java command, followed by the
name of the application’s .class file (in this case, Painter), executes the appli-
cation. Type the command java Painter and press Enter to execute the app.
Figure 1.11 shows the app running on Windows, Linux and OS X, respective-
ly—we shortened the windows to save space.

Common Programming Error 1.1
Errors such as division by zero occur as a program runs, so they’re called runtime errors
or execution-time errors. Fatal runtime errors cause programs to terminate immediately
without having successfully performed their jobs. Nonfatal runtime errors allow pro-
grams to run to completion, often producing incorrect results.

22 Chapter 1 Introduction to Computers, the Internet and Java

 [Note: Java commands are case sensitive—that is, uppercase letters are different
from lowercase letters. It’s important to type the name of this application as
Painter with a capital P. Otherwise, the application will not execute. Specifying
the .class extension when using the java command results in an error. Also, if
you receive the error message, “Exception in thread "main" java.lang.No-
ClassDefFoundError: Painter," your system has a CLASSPATH problem. Please
refer to the Before You Begin section for instructions to help you fix this problem.]

4. Drawing a filled yellow oval for the face. Select Yellow as the drawing color, Oval
as the shape and check the Filled checkbox, then drag the mouse to draw a large
oval (Fig. 1.12).

Fig. 1.11 | Painter app executing in Windows 7, Linux and OS X.

a) Painter app running on Windows

Close button

Select a color

Select a shape

Specify
whether a

rectangle or
oval is filled

with color

Clear the
entire drawing

Undo the last
shape that was
added to the
drawing

b) Painter app running on Linux.

Close
button

c) Painter app running on OS X.

Close
button

1.10 Test-Driving a Java Application 23

5. Drawing blue eyes. Select Blue as the drawing color, then draw two small ovals as
the eyes (Fig. 1.13).

6. Drawing black eyebrows and a nose. Select Black as the drawing color and Line
as the shape, then draw eyebrows and a nose (Fig. 1.14). Lines do not have fill,
so leaving the Filled checkbox checked has no effect when drawing lines.

Fig. 1.12 | Drawing a filled yellow oval for the face.

Fig. 1.13 | Drawing blue eyes.

24 Chapter 1 Introduction to Computers, the Internet and Java

7. Drawing a magenta mouth. Select Magenta as the drawing color and Oval as the
shape, then draw a mouth (Fig. 1.15).

8. Drawing a yellow oval on the mouth to make a smile. Select Yellow as the drawing
color, then draw an oval to change the magenta oval into a smile (Fig. 1.16).

Fig. 1.14 | Drawing black eyebrows and a nose.

Fig. 1.15 | Drawing a magenta mouth.

1.11 Internet and World Wide Web 25

9. Exiting the Painter application. To exit the Painter application, click the Close
button (in the window’s upper-right corner on Windows and the upper-left cor-
ner on Linux and OS X). Closing the window causes the Painter application to
terminate.

1.11 Internet and World Wide Web
In the late 1960s, ARPA—the Advanced Research Projects Agency of the United States De-
partment of Defense—rolled out plans for networking the main computer systems of ap-
proximately a dozen ARPA-funded universities and research institutions. The computers
were to be connected with communications lines operating at speeds on the order of 50,000
bits per second, a stunning rate at a time when most people (of the few who even had net-
working access) were connecting over telephone lines to computers at a rate of 110 bits per
second. Academic research was about to take a giant leap forward. ARPA proceeded to im-
plement what quickly became known as the ARPANET, the precursor to today’s Internet.
Today’s fastest Internet speeds are on the order of billions of bits per second with trillion-
bit-per-second speeds on the horizon!

Things worked out differently from the original plan. Although the ARPANET
enabled researchers to network their computers, its main benefit proved to be the capa-
bility for quick and easy communication via what came to be known as electronic mail (e-
mail). This is true even on today’s Internet, with e-mail, instant messaging, file transfer
and social media such as Facebook and Twitter enabling billions of people worldwide to
communicate quickly and easily.

The protocol (set of rules) for communicating over the ARPANET became known as
the Transmission Control Protocol (TCP). TCP ensured that messages, consisting of
sequentially numbered pieces called packets, were properly routed from sender to receiver,
arrived intact and were assembled in the correct order.

Fig. 1.16 | Drawing a yellow oval on the mouth to make a smile.

26 Chapter 1 Introduction to Computers, the Internet and Java

1.11.1 The Internet: A Network of Networks
In parallel with the early evolution of the Internet, organizations worldwide were imple-
menting their own networks for both intraorganization (that is, within an organization)
and interorganization (that is, between organizations) communication. A huge variety of
networking hardware and software appeared. One challenge was to enable these different
networks to communicate with each other. ARPA accomplished this by developing the In-
ternet Protocol (IP), which created a true “network of networks,” the current architecture
of the Internet. The combined set of protocols is now called TCP/IP.

Businesses rapidly realized that by using the Internet, they could improve their oper-
ations and offer new and better services to their clients. Companies started spending large
amounts of money to develop and enhance their Internet presence. This generated fierce
competition among communications carriers and hardware and software suppliers to meet
the increased infrastructure demand. As a result, bandwidth—the information-carrying
capacity of communications lines—on the Internet has increased tremendously, while
hardware costs have plummeted.

1.11.2 The World Wide Web: Making the Internet User-Friendly
The World Wide Web (simply called “the web”) is a collection of hardware and software
associated with the Internet that allows computer users to locate and view multimedia-based
documents (documents with various combinations of text, graphics, animations, audios and
videos) on almost any subject. The introduction of the web was a relatively recent event. In
1989, Tim Berners-Lee of CERN (the European Organization for Nuclear Research) began
to develop a technology for sharing information via “hyperlinked” text documents. Berners-
Lee called his invention the HyperText Markup Language (HTML). He also wrote com-
munication protocols such as HyperText Transfer Protocol (HTTP) to form the backbone
of his new hypertext information system, which he referred to as the World Wide Web.

In 1994, Berners-Lee founded an organization, called the World Wide Web Consor-
tium (W3C, www.w3.org), devoted to developing web technologies. One of the W3C’s
primary goals is to make the web universally accessible to everyone regardless of disabili-
ties, language or culture. In this book, you’ll use Java to build web-based applications.

1.11.3 Web Services and Mashups
In online Chapter 32, we include a substantial treatment of web services (Fig. 1.17). The
applications-development methodology of mashups enables you to rapidly develop power-
ful software applications by combining (often free) complementary web services and other
forms of information feeds. One of the first mashups combined the real-estate listings pro-
vided by www.craigslist.org with the mapping capabilities of Google Maps to offer maps
that showed the locations of homes for sale or rent in a given area.

Web services source How it’s used

Google Maps Mapping services
Twitter Microblogging

Fig. 1.17 | Some popular web services (www.programmableweb.com/apis/
directory/1?sort=mashups). (Part 1 of 2.)

www.allitebooks.com

www.w3.org
www.craigslist.org
www.programmableweb.com/apis/directory/1?sort=mashups
www.programmableweb.com/apis/directory/1?sort=mashups
http://www.allitebooks.org

1.11 Internet and World Wide Web 27

1.11.4 Ajax
Ajax helps Internet-based applications perform like desktop applications—a difficult task,
given that such applications suffer transmission delays as data is shuttled back and forth
between your computer and server computers on the Internet. Using Ajax, applications
like Google Maps have achieved excellent performance and approach the look-and-feel of
desktop applications. Although we don’t discuss “raw” Ajax programming (which is quite
complex) in this text, we do show in online Chapter 31 how to build Ajax-enabled appli-
cations using JavaServer Faces (JSF) Ajax-enabled components.

1.11.5 The Internet of Things
The Internet is no longer just a network of computers—it’s an Internet of Things. A thing
is any object with an IP address and the ability to send data automatically over a net-
work—e.g., a car with a transponder for paying tolls, a heart monitor implanted in a hu-
man, a smart meter that reports energy usage, mobile apps that can track your movement
and location, and smart thermostats that adjust room temperatures based on weather fore-
casts and activity in the home. You’ll use IP addresses to build networked applications in
online Chapter 28.

YouTube Video search
Facebook Social networking
Instagram Photo sharing
Foursquare Mobile check-in
LinkedIn Social networking for business
Groupon Social commerce
Netflix Movie rentals
eBay Internet auctions
Wikipedia Collaborative encyclopedia
PayPal Payments
Last.fm Internet radio
Amazon eCommerce Shopping for books and many other products
Salesforce.com Customer Relationship Management (CRM)
Skype Internet telephony
Microsoft Bing Search
Flickr Photo sharing
Zillow Real-estate pricing
Yahoo Search Search
WeatherBug Weather

Web services source How it’s used

Fig. 1.17 | Some popular web services (www.programmableweb.com/apis/
directory/1?sort=mashups). (Part 2 of 2.)

www.programmableweb.com/apis/directory/1?sort=mashups
www.programmableweb.com/apis/directory/1?sort=mashups

28 Chapter 1 Introduction to Computers, the Internet and Java

1.12 Software Technologies
Figure 1.18 lists a number of buzzwords that you’ll hear in the software development com-
munity. We’ve created Resource Centers on most of these topics, with more on the way.

Technology Description

Agile software
development

Agile software development is a set of methodologies that try to get soft-
ware implemented faster and using fewer resources. Check out the Agile
Alliance (www.agilealliance.org) and the Agile Manifesto
(www.agilemanifesto.org).

Refactoring Refactoring involves reworking programs to make them clearer and easier to
maintain while preserving their correctness and functionality. It’s widely
employed with agile development methodologies. Many IDEs contain
built-in refactoring tools to do major portions of the reworking automatically.

Design patterns Design patterns are proven architectures for constructing flexible and
maintainable object-oriented software. The field of design patterns tries to
enumerate those recurring patterns, encouraging software designers to reuse
them to develop better-quality software using less time, money and effort.
We discuss Java design patterns in the online Appendix N.

LAMP LAMP is an acronym for the open-source technologies that many develop-
ers use to build web applications—it stands for Linux, Apache, MySQL and
PHP (or Perl or Python—two other scripting languages). MySQL is an
open-source database management system. PHP is the most popular open-
source server-side “scripting” language for developing web applications.
Apache is the most popular web server software. The equivalent for Win-
dows development is WAMP—Windows, Apache, MySQL and PHP.

Software as a
Service (SaaS)

Software has generally been viewed as a product; most software still is
offered this way. If you want to run an application, you buy a software
package from a software vendor—often a CD, DVD or web download.
You then install that software on your computer and run it as needed. As
new versions appear, you upgrade your software, often at considerable cost
in time and money. This process can become cumbersome for organiza-
tions that must maintain tens of thousands of systems on a diverse array of
computer equipment. With Software as a Service (SaaS), the software runs
on servers elsewhere on the Internet. When that server is updated, all cli-
ents worldwide see the new capabilities—no local installation is needed.
You access the service through a browser. Browsers are quite portable, so
you can run the same applications on a wide variety of computers from
anywhere in the world. Salesforce.com, Google, and Microsoft’s Office Live
and Windows Live all offer SaaS.

Platform as a
Service (PaaS)

Platform as a Service (PaaS) provides a computing platform for developing
and running applications as a service over the web, rather than installing
the tools on your computer. Some PaaS providers are Google App Engine,
Amazon EC2 and Windows Azure™.

Fig. 1.18 | Software technologies. (Part 1 of 2.)

www.agilealliance.org
www.agilemanifesto.org

1.12 Software Technologies 29

Software is complex. Large, real-world software applications can take many months
or even years to design and implement. When large software products are under develop-
ment, they typically are made available to the user communities as a series of releases, each
more complete and polished than the last (Fig. 1.19).

Cloud
computing

SaaS and PaaS are examples of cloud computing. You can use software and
data stored in the “cloud”—i.e., accessed on remote computers (or servers)
via the Internet and available on demand—rather than having it stored on
your desktop, notebook computer or mobile device. This allows you to
increase or decrease computing resources to meet your needs at any given
time, which is more cost effective than purchasing hardware to provide
enough storage and processing power to meet occasional peak demands.
Cloud computing also saves money by shifting the burden of managing these
apps to the service provider.

Software
Development
Kit (SDK)

Software Development Kits (SDKs) include the tools and documentation
developers use to program applications. For example, you’ll use the Java
Development Kit (JDK) to build and run Java applications.

Version Description

Alpha Alpha software is the earliest release of a software product that’s still under
active development. Alpha versions are often buggy, incomplete and unstable
and are released to a relatively small number of developers for testing new
features, getting early feedback, etc.

Beta Beta versions are released to a larger number of developers later in the devel-
opment process after most major bugs have been fixed and new features are
nearly complete. Beta software is more stable, but still subject to change.

Release
candidates

Release candidates are generally feature complete, (mostly) bug free and ready
for use by the community, which provides a diverse testing environment—
the software is used on different systems, with varying constraints and for a
variety of purposes.

Final release Any bugs that appear in the release candidate are corrected, and eventually
the final product is released to the general public. Software companies often
distribute incremental updates over the Internet.

Continuous
beta

Software that’s developed using this approach (for example, Google search or
Gmail) generally does not have version numbers. It’s hosted in the cloud (not
installed on your computer) and is constantly evolving so that users always
have the latest version.

Fig. 1.19 | Software product-release terminology.

Technology Description

Fig. 1.18 | Software technologies. (Part 2 of 2.)

30 Chapter 1 Introduction to Computers, the Internet and Java

1.13 Keeping Up-to-Date with Information Technologies
Figure 1.20 lists key technical and business publications that will help you stay up-to-date
with the latest news and trends and technology. You can also find a growing list of Inter-
net- and web-related Resource Centers at www.deitel.com/ResourceCenters.html.

Publication URL

AllThingsD allthingsd.com

Bloomberg BusinessWeek www.businessweek.com

CNET news.cnet.com

Communications of the ACM cacm.acm.org

Computerworld www.computerworld.com

Engadget www.engadget.com

eWeek www.eweek.com

Fast Company www.fastcompany.com/

Fortune money.cnn.com/magazines/fortune

GigaOM gigaom.com

Hacker News news.ycombinator.com

IEEE Computer Magazine www.computer.org/portal/web/computingnow/computer

InfoWorld www.infoworld.com

Mashable mashable.com

PCWorld www.pcworld.com

SD Times www.sdtimes.com

Slashdot slashdot.org/

Technology Review technologyreview.com

Techcrunch techcrunch.com

The Next Web thenextweb.com

The Verge www.theverge.com

Wired www.wired.com

Fig. 1.20 | Technical and business publications.

Self-Review Exercises
1.1 Fill in the blanks in each of the following statements:

a) Computers process data under the control of sets of instructions called .
b) The key logical units of the computer are the , , , ,

 and .
c) The three types of languages discussed in the chapter are , and

.
d) The programs that translate high-level language programs into machine language are

called .

www.deitel.com/ResourceCenters.html
www.businessweek.com
www.computerworld.com
www.engadget.com
www.eweek.com
www.fastcompany.com/
www.computer.org/portal/web/computingnow/computer
www.infoworld.com
www.pcworld.com
www.sdtimes.com
www.theverge.com
www.wired.com

 Answers to Self-Review Exercises 31

e) is an operating system for mobile devices based on the Linux kernel and Java.
f) software is generally feature complete, (supposedly) bug free and ready for use

by the community.
g) The Wii Remote, as well as many smartphones, use a(n) which allows the de-

vice to respond to motion.

1.2 Fill in the blanks in each of the following sentences about the Java environment:
a) The command from the JDK executes a Java application.
b) The command from the JDK compiles a Java program.
c) A Java source code file must end with the file extension.
d) When a Java program is compiled, the file produced by the compiler ends with the

 file extension.
e) The file produced by the Java compiler contains that are executed by the Java

Virtual Machine.

1.3 Fill in the blanks in each of the following statements (based on Section 1.5):
a) Objects enable the design practice of —although they may know how to com-

municate with one another across well-defined interfaces, they normally are not allowed
to know how other objects are implemented.

b) Java programmers concentrate on creating , which contain fields and the set of
methods that manipulate those fields and provide services to clients.

c) The process of analyzing and designing a system from an object-oriented point of view
is called .

d) A new class of objects can be created conveniently by —the new class (called
the subclass) starts with the characteristics of an existing class (called the superclass),
possibly customizing them and adding unique characteristics of its own.

e) is a graphical language that allows people who design software systems to use
an industry-standard notation to represent them.

f) The size, shape, color and weight of an object are considered of the object’s class.

Answers to Self-Review Exercises
1.1 a) programs. b) input unit, output unit, memory unit, central processing unit, arithmetic
and logic unit, secondary storage unit. c) machine languages, assembly languages, high-level lan-
guages. d) compilers. e) Android. f) Release candidate. g) accelerometer.

1.2 a) java. b) javac. c) .java. d) .class. e) bytecodes.

1.3 a) information hiding. b) classes. c) object-oriented analysis and design (OOAD).
d) inheritance. e) The Unified Modeling Language (UML). f) attributes.

Exercises
1.4 Fill in the blanks in each of the following statements:

a) The logical unit that receives information from outside the computer for use by the
computer is the .

b) The process of instructing the computer to solve a problem is called .
c) is a type of computer language that uses Englishlike abbreviations for ma-

chine-language instructions.
d) is a logical unit that sends information which has already been processed by

the computer to various devices so that it may be used outside the computer.
e) and are logical units of the computer that retain information.
f) is a logical unit of the computer that performs calculations.
g) is a logical unit of the computer that makes logical decisions.

32 Chapter 1 Introduction to Computers, the Internet and Java

h) languages are most convenient to the programmer for writing programs
quickly and easily.

i) The only language a computer can directly understand is that computer’s .
j) is a logical unit of the computer that coordinates the activities of all the other

logical units.

1.5 Fill in the blanks in each of the following statements:
a) The programming language is now used to develop large-scale enterprise ap-

plications, to enhance the functionality of web servers, to provide applications for con-
sumer devices and for many other purposes.

b) initially became widely known as the development language of the UNIX op-
erating system.

c) The ensures that messages, consisting of sequentially numbered pieces called
bytes, were properly routed from sender to receiver, arrived intact and were assembled
in the correct order.

d) The programming language was developed by Bjarne Stroustrup in the early
1980s at Bell Laboratories.

1.6 Fill in the blanks in each of the following statements:
a) Java programs normally go through five phases— , , ,

 and .
b) A(n) provides many tools that support the software development process,

such as editors for writing and editing programs, debuggers for locating logic errors in
programs, and many other features.

c) The command java invokes the , which executes Java programs.
d) A(n) is a software application that simulates a computer, but hides the under-

lying operating system and hardware from the programs that interact with it.
e) The takes the .class files containing the program’s bytecodes and transfers

them to primary memory.
f) The examines bytecodes to ensure that they’re valid.

1.7 Explain the two compilation phases of Java programs.

1.8 One of the world’s most common objects is a wrist watch. Discuss how each of the follow-
ing terms and concepts applies to the notion of a watch: object, attributes, behaviors, class, inheri-
tance (consider, for example, an alarm clock), modeling, messages, encapsulation, interface and
information hiding.

Making a Difference
Throughout the book we’ve included Making a Difference exercises in which you’ll be asked to
work on problems that really matter to individuals, communities, countries and the world. For
more information about worldwide organizations working to make a difference, and for related
programming project ideas, visit our Making a Difference Resource Center at www.deitel.com/
makingadifference.

1.9 (Test-Drive: Carbon Footprint Calculator) Some scientists believe that carbon emissions,
especially from the burning of fossil fuels, contribute significantly to global warming and that this
can be combatted if individuals take steps to limit their use of carbon-based fuels. Organizations and
individuals are increasingly concerned about their “carbon footprints.” Websites such as TerraPass

http://www.terrapass.com/carbon-footprint-calculator/

and Carbon Footprint

http://www.carbonfootprint.com/calculator.aspx

www.deitel.com/makingadifference
www.deitel.com/makingadifference
http://www.terrapass.com/carbon-footprint-calculator/
http://www.carbonfootprint.com/calculator.aspx

 Making a Difference 33

provide carbon-footprint calculators. Test-drive these calculators to determine your carbon foot-
print. Exercises in later chapters will ask you to program your own carbon-footprint calculator. To
prepare for this, use the web to research the formulas for calculating carbon footprints.

1.10 (Test-Drive: Body Mass Index Calculator) Obesity causes significant increases in illnesses
such as diabetes and heart disease. To determine whether a person is overweight or obese, you can
use a measure called the body mass index (BMI). The United States Department of Health and Hu-
man Services provides a BMI calculator at http://www.nhlbi.nih.gov/guidelines/obesity/BMI/
bmicalc.htm. Use it to calculate your own BMI. A forthcoming exercise will ask you to program
your own BMI calculator. To prepare for this, use the web to research the formulas for calculating
BMI.

1.11 (Attributes of Hybrid Vehicles) In this chapter you learned some basics of classes. Now you’ll
“flesh out” aspects of a class called “Hybrid Vehicle.” Hybrid vehicles are becoming increasingly
popular, because they often get much better mileage than purely gasoline-powered vehicles. Browse
the web and study the features of four or five of today’s popular hybrid cars, then list as many of
their hybrid-related attributes as you can. Some common attributes include city-miles-per-gallon
and highway-miles-per-gallon. Also list the attributes of the batteries (type, weight, etc.).

1.12 (Gender Neutrality) Many people want to eliminate sexism in all forms of communication.
You’ve been asked to create a program that can process a paragraph of text and replace gender-spe-
cific words with gender-neutral ones. Assuming that you’ve been given a list of gender-specific
words and their gender-neutral replacements (e.g., replace both “wife” and “husband” with
“spouse,” “man” and “woman” with “person,” “daughter” and “son” with “child”), explain the pro-
cedure you’d use to read through a paragraph of text and manually perform these replacements.
How might your procedure generate a strange term like “woperchild?” You’ll soon learn that a more
formal term for “procedure” is “algorithm,” and that an algorithm specifies the steps to be per-
formed and the order in which to perform them. We’ll show how to develop algorithms then con-
vert them to Java programs which can be run on computers.

http://www.nhlbi.nih.gov/guidelines/obesity/BMI/bmicalc.htm
http://www.nhlbi.nih.gov/guidelines/obesity/BMI/bmicalc.htm

2 Introduction to Java
Applications; Input/Output
and Operators

What’s in a name?
That which we call a rose
By any other name would
smell as sweet.
—William Shakespeare

The chief merit of language
is clearness.
—Galen

One person can make a
difference and every person
should try.
—John F. Kennedy

O b j e c t i v e s
In this chapter you’ll:

■ Write simple Java
applications.

■ Use input and output
statements.

■ Learn about Java’s primitive
types.

■ Understand basic memory
concepts.

■ Use arithmetic operators.

■ Learn the precedence of
arithmetic operators.

■ Write decision-making
statements.

■ Use relational and equality
operators.

2.1 Introduction 35

2.1 Introduction
This chapter introduces Java application programming. We begin with examples of pro-
grams that display (output) messages on the screen. We then present a program that ob-
tains (inputs) two numbers from a user, calculates their sum and displays the result. You’ll
learn how to instruct the computer to perform arithmetic calculations and save their re-
sults for later use. The last example demonstrates how to make decisions. The application
compares two numbers, then displays messages that show the comparison results. You’ll
use the JDK command-line tools to compile and run this chapter’s programs. If you prefer
to use an integrated development environment (IDE), we’ve also posted Dive Into® videos
at http://www.deitel.com/books/jhtp10/ for Eclipse, NetBeans and IntelliJ IDEA.

2.2 Your First Program in Java: Printing a Line of Text
A Java application is a computer program that executes when you use the java command
to launch the Java Virtual Machine (JVM). Later in this section we’ll discuss how to com-
pile and run a Java application. First we consider a simple application that displays a line
of text. Figure 2.1 shows the program followed by a box that displays its output.

2.1 Introduction
2.2 Your First Program in Java: Printing a

Line of Text
2.3 Modifying Your First Java Program
2.4 Displaying Text with printf
2.5 Another Application: Adding

Integers
2.5.1 import Declarations
2.5.2 Declaring Class Addition
2.5.3 Declaring and Creating a Scanner to

Obtain User Input from the Keyboard
2.5.4 Declaring Variables to Store Integers
2.5.5 Prompting the User for Input

2.5.6 Obtaining an int as Input from the
User

2.5.7 Prompting for and Inputting a Second
int

2.5.8 Using Variables in a Calculation
2.5.9 Displaying the Result of the

Calculation
2.5.10 Java API Documentation

2.6 Memory Concepts
2.7 Arithmetic
2.8 Decision Making: Equality and

Relational Operators
2.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1 // Fig. 2.1: Welcome1.java
2 // Text-printing program.
3
4 public class Welcome1
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9 System.out.println("Welcome to Java Programming!");

10 } // end method main
11 } // end class Welcome1

Fig. 2.1 | Text-printing program. (Part 1 of 2.)

http://www.deitel.com/books/jhtp10/

36 Chapter 2 Introduction to Java Applications; Input/Output and Operators

The program includes line numbers. We’ve added these for instructional purposes—
they’re not part of a Java program. This example illustrates several important Java features.
We’ll see that line 9 does the work—displaying the phrase Welcome to Java Programming!
on the screen.

Commenting Your Programs
We insert comments to document programs and improve their readability. The Java com-
piler ignores comments, so they do not cause the computer to perform any action when the
program is run.

By convention, we begin every program with a comment indicating the figure number
and filename. The comment in line 1

begins with //, indicating that it’s an end-of-line comment—it terminates at the end of
the line on which the // appears. An end-of-line comment need not begin a line; it also
can begin in the middle of a line and continue until the end (as in lines 6, 10 and 11). Line
2

by our convention, is a comment that describes the purpose of the program.
Java also has traditional comments, which can be spread over several lines as in

These begin and end with delimiters, /* and */. The compiler ignores all text between the
delimiters. Java incorporated traditional comments and end-of-line comments from the C
and C++ programming languages, respectively. We prefer using // comments.

Java provides comments of a third type—Javadoc comments. These are delimited by
/** and */. The compiler ignores all text between the delimiters. Javadoc comments
enable you to embed program documentation directly in your programs. Such comments
are the preferred Java documenting format in industry. The javadoc utility program (part
of the JDK) reads Javadoc comments and uses them to prepare program documentation
in HTML format. We demonstrate Javadoc comments and the javadoc utility in online
Appendix G, Creating Documentation with javadoc.

Welcome to Java Programming!

// Fig. 2.1: Welcome1.java

// Text-printing program.

/* This is a traditional comment. It
 can be split over multiple lines */

Common Programming Error 2.1
Forgetting one of the delimiters of a traditional or Javadoc comment is a syntax error. A
syntax error occurs when the compiler encounters code that violates Java’s language rules
(i.e., its syntax). These rules are similar to a natural language’s grammar rules specifying
sentence structure. Syntax errors are also called compiler errors, compile-time errors or
compilation errors, because the compiler detects them when compiling the program.
When a syntax error is encountered, the compiler issues an error message. You must elim-
inate all compilation errors before your program will compile properly.

Fig. 2.1 | Text-printing program. (Part 2 of 2.)

2.2 Your First Program in Java: Printing a Line of Text 37

Using Blank Lines
Line 3 is a blank line. Blank lines, space characters and tabs make programs easier to read.
Together, they’re known as white space (or whitespace). The compiler ignores white space.

Declaring a Class
Line 4

begins a class declaration for class Welcome1. Every Java program consists of at least one
class that you (the programmer) define. The class keyword introduces a class declaration
and is immediately followed by the class name (Welcome1). Keywords (sometimes called
reserved words) are reserved for use by Java and are always spelled with all lowercase let-
ters. The complete list of keywords is shown in Appendix C.

In Chapters 2–7, every class we define begins with the public keyword. For now, we
simply require public. You’ll learn more about public and non-public classes in Chapter 8.

Filename for a public Class
A public class must be placed in a file that has a filename of the form ClassName.java, so
class Welcome1 is stored in the file Welcome1.java.

Class Names and Identifiers
By convention, class names begin with a capital letter and capitalize the first letter of each
word they include (e.g., SampleClassName). A class name is an identifier—a series of char-
acters consisting of letters, digits, underscores (_) and dollar signs ($) that does not begin
with a digit and does not contain spaces. Some valid identifiers are Welcome1, $value,
_value, m_inputField1 and button7. The name 7button is not a valid identifier because
it begins with a digit, and the name input field is not a valid identifier because it contains
a space. Normally, an identifier that does not begin with a capital letter is not a class name.

Good Programming Practice 2.1
Some organizations require that every program begin with a comment that states the pur-
pose of the program and the author, date and time when the program was last modified.

Error-Prevention Tip 2.1
As you write new programs or modify existing ones, keep your comments up-to-date with
the code. Programmers will often need to make changes to existing code to fix errors or to
enhance capabilities. Updating your comments helps ensure that they accurately reflect
what the code does. This will make your programs easier to understand and modify in the
future. Programmers using or updating code with out-of-date comments might make in-
correct assumptions about the code that could lead to errors or even security breaches.

Good Programming Practice 2.2
Use blank lines and spaces to enhance program readability.

public class Welcome1

Common Programming Error 2.2
A compilation error occurs if a public class’s filename is not exactly same name as the class
(in terms of both spelling and capitalization) followed by the .java extension.

38 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Java is case sensitive—uppercase and lowercase letters are distinct—so value and Value
are different (but both valid) identifiers.

Class Body
A left brace (as in line 5), {, begins the body of every class declaration. A corresponding
right brace (at line 11), }, must end each class declaration. Lines 6–10 are indented.

Declaring a Method
Line 6

is an end-of-line comment indicating the purpose of lines 7–10 of the program. Line 7

is the starting point of every Java application. The parentheses after the identifier main in-
dicate that it’s a program building block called a method. Java class declarations normally
contain one or more methods. For a Java application, one of the methods must be called
main and must be defined as shown in line 7; otherwise, the Java Virtual Machine (JVM)
will not execute the application. Methods perform tasks and can return information when
they complete their tasks. We’ll explain the purpose of keyword static in Section 3.2.5.
Keyword void indicates that this method will not return any information. Later, we’ll see
how a method can return information. For now, simply mimic main’s first line in your
Java applications. In line 7, the String[] args in parentheses is a required part of the
method main’s declaration—we discuss this in Chapter 7.

The left brace in line 8 begins the body of the method declaration. A corresponding
right brace must end it (line 10). Line 9 in the method body is indented between the
braces.

Good Programming Practice 2.3
Indent the entire body of each class declaration one “level” between the left brace and the
right brace that delimit the body of the class. This format emphasizes the class declaration’s
structure and makes it easier to read. We use three spaces to form a level of indent—many
programmers prefer two or four spaces. Whatever you choose, use it consistently.

Error-Prevention Tip 2.2
When you type an opening left brace, {, immediately type the closing right brace, }, then
reposition the cursor between the braces and indent to begin typing the body. This practice
helps prevent errors due to missing braces. Many IDEs insert the closing right brace for
you when you type the opening left brace.

Common Programming Error 2.3
It’s a syntax error if braces do not occur in matching pairs.

Good Programming Practice 2.4
IDEs typically indent code for you. The Tab key may also be used to indent code. You can
configure each IDE to specify the number of spaces inserted when you press Tab.

// main method begins execution of Java application

public static void main(String[] args)

2.2 Your First Program in Java: Printing a Line of Text 39

Performing Output with System.out.println
Line 9

instructs the computer to perform an action—namely, to display the characters contained
between the double quotation marks (the quotation marks themselves are not displayed).
Together, the quotation marks and the characters between them are a string—also known
as a character string or a string literal. White-space characters in strings are not ignored
by the compiler. Strings cannot span multiple lines of code.

The System.out object—which is predefined for you—is known as the standard
output object. It allows a Java application to display information in the command
window from which it executes. In recent versions of Microsoft Windows, the command
window is the Command Prompt. In UNIX/Linux/Mac OS X, the command window is
called a terminal window or a shell. Many programmers call it simply the command line.

Method System.out.println displays (or prints) a line of text in the command
window. The string in the parentheses in line 9 is the argument to the method. When
System.out.println completes its task, it positions the output cursor (the location where
the next character will be displayed) at the beginning of the next line in the command
window. This is similar to what happens when you press the Enter key while typing in a
text editor—the cursor appears at the beginning of the next line in the document.

The entire line 9, including System.out.println, the argument "Welcome to Java
Programming!" in the parentheses and the semicolon (;), is called a statement. A method
typically contains one or more statements that perform its task. Most statements end with
a semicolon. When the statement in line 9 executes, it displays Welcome to Java Program-
ming! in the command window.

When learning how to program, sometimes it’s helpful to “break” a working program
so you can familiarize yourself with the compiler’s syntax-error messages. These messages do
not always state the exact problem in the code. When you encounter an error, it will give you
an idea of what caused it. [Try removing a semicolon or brace from the program of Fig. 2.1,
then recompile the program to see the error messages generated by the omission.]

Using End-of-Line Comments on Right Braces for Readability
As an aid to programming novices, we include an end-of-line comment after a closing
brace that ends a method declaration and after a closing brace that ends a class declaration.
For example, line 10

Good Programming Practice 2.5
Indent the entire body of each method declaration one “level” between the braces that de-
fine the body of the method. This makes the structure of the method stand out and makes
the method declaration easier to read.

System.out.println("Welcome to Java Programming!");

Error-Prevention Tip 2.3
When the compiler reports a syntax error, it may not be on the line that the error message
indicates. First, check the line for which the error was reported. If you don’t find an error
on that line, check several preceding lines.

 } // end method main

40 Chapter 2 Introduction to Java Applications; Input/Output and Operators

indicates the closing brace of method main, and line 11

indicates the closing brace of class Welcome1. Each comment indicates the method or class
that the right brace terminates. We’ll omit such ending comments after this chapter.

Compiling Your First Java Application
We’re now ready to compile and execute our program. We assume you’re using the Java
Development Kit’s command-line tools, not an IDE. To help you compile and run your
programs in an IDE, we provide online Dive Into® videos for the popular IDEs Eclipse,
NetBeans and IntelliJ IDEA. These are located on the book’s website:

To prepare to compile the program, open a command window and change to the
directory where the program is stored. Many operating systems use the command cd to
change directories. On Windows, for example,

changes to the fig02_01 directory. On UNIX/Linux/Max OS X, the command

changes to the fig02_01 directory. To compile the program, type

If the program contains no compilation errors, this command creates a new file called
Welcome1.class (known as the class file for Welcome1) containing the platform-indepen-
dent Java bytecodes that represent our application. When we use the java command to
execute the application on a given platform, the JVM will translate these bytecodes into
instructions that are understood by the underlying operating system and hardware.

Each syntax-error message contains the filename and line number where the error
occurred. For example, Welcome1.java:6 indicates that an error occurred at line 6 in
Welcome1.java. The rest of the message provides information about the syntax error.

} // end class Welcome1

http://www.deitel.com/books/jhtp10

cd c:\examples\ch02\fig02_01

cd ~/examples/ch02/fig02_01

javac Welcome1.java

Common Programming Error 2.4
When using javac, if you receive a message such as “bad command or filename,” “javac:
command not found” or “'javac' is not recognized as an internal or external com-
mand, operable program or batch file,” then your Java software installation was not
completed properly. This indicates that the system’s PATH environment variable was not
set properly. Carefully review the installation instructions in the Before You Begin section
of this book. On some systems, after correcting the PATH, you may need to reboot your com-
puter or open a new command window for these settings to take effect.

Common Programming Error 2.5
The compiler error message “class Welcome1 is public, should be declared in a file
named Welcome1.java” indicates that the filename does not match the name of the pub-
lic class in the file or that you typed the class name incorrectly when compiling the class.

http://www.deitel.com/books/jhtp10

2.3 Modifying Your First Java Program 41

Executing the Welcome1 Application
The following instructions assume that the book’s examples are located in C:\examples
on Windows or in your user account’s Documents/examples folder on Linux/OS X. To
execute this program in a command window, change to the directory containing
Welcome1.java—C:\examples\ch02\fig02_01 on Microsoft Windows or ~/Documents/
examples/ch02/fig02_01 on Linux/OS X. Next, type

and press Enter. This command launches the JVM, which loads the Welcome1.class file.
The command omits the .class file-name extension; otherwise, the JVM will not execute
the program. The JVM calls class Welcome1’s main method. Next, the statement at line 9
of main displays "Welcome to Java Programming!". Figure 2.2 shows the program execut-
ing in a Microsoft Windows Command Prompt window. [Note: Many environments show
command windows with black backgrounds and white text. We adjusted these settings to
make our screen captures more readable.]

2.3 Modifying Your First Java Program
In this section, we modify the example in Fig. 2.1 to print text on one line by using mul-
tiple statements and to print text on several lines by using a single statement.

Displaying a Single Line of Text with Multiple Statements
Welcome to Java Programming! can be displayed several ways. Class Welcome2, shown in
Fig. 2.3, uses two statements (lines 9–10) to produce the output shown in Fig. 2.1. [Note:
From this point forward, we highlight with a yellow background the new and key features
in each code listing, as we’ve done for lines 9–10.]

The program is similar to Fig. 2.1, so we discuss only the changes here. Line 2

java Welcome1

Error-Prevention Tip 2.4
When attempting to run a Java program, if you receive a message such as “Exception in
thread "main" java.lang.NoClassDefFoundError: Welcome1,” your CLASSPATH envi-
ronment variable has not been set properly. Please carefully review the installation in-
structions in the Before You Begin section of this book. On some systems, you may need to
reboot your computer or open a new command window after configuring the CLASSPATH.

Fig. 2.2 | Executing Welcome1 from the Command Prompt.

// Printing a line of text with multiple statements.

You type this
command to execute
the application

The program outputs to the screen
Welcome to Java Programming!

42 Chapter 2 Introduction to Java Applications; Input/Output and Operators

is an end-of-line comment stating the purpose of the program. Line 4 begins the Welcome2
class declaration. Lines 9–10 of method main

display one line of text. The first statement uses System.out’s method print to display a
string. Each print or println statement resumes displaying characters from where the last
print or println statement stopped displaying characters. Unlike println, after display-
ing its argument, print does not position the output cursor at the beginning of the next
line in the command window—the next character the program displays will appear imme-
diately after the last character that print displays. So, line 10 positions the first character
in its argument (the letter “J”) immediately after the last character that line 9 displays (the
space character before the string’s closing double-quote character).

Displaying Multiple Lines of Text with a Single Statement
A single statement can display multiple lines by using newline characters, which indicate
to System.out’s print and println methods when to position the output cursor at the
beginning of the next line in the command window. Like blank lines, space characters and
tab characters, newline characters are whitespace characters. The program in Fig. 2.4 out-
puts four lines of text, using newline characters to determine when to begin each new line.
Most of the program is identical to those in Figs. 2.1 and 2.3.

1 // Fig. 2.3: Welcome2.java
2 // Printing a line of text with multiple statements.
3
4 public class Welcome2
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9

10
11 } // end method main
12 } // end class Welcome2

Welcome to Java Programming!

Fig. 2.3 | Printing a line of text with multiple statements.

System.out.print("Welcome to ");
System.out.println("Java Programming!");

1 // Fig. 2.4: Welcome3.java
2 // Printing multiple lines of text with a single statement.
3
4 public class Welcome3
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {

Fig. 2.4 | Printing multiple lines of text with a single statement. (Part 1 of 2.)

System.out.print("Welcome to ");
System.out.println("Java Programming!");

2.4 Displaying Text with printf 43

Line 9

displays four lines of text in the command window. Normally, the characters in a string are
displayed exactly as they appear in the double quotes. However, the paired characters \ and
n (repeated three times in the statement) do not appear on the screen. The backslash (\) is
an escape character, which has special meaning to System.out’s print and println meth-
ods. When a backslash appears in a string, Java combines it with the next character to form
an escape sequence—\n represents the newline character. When a newline character appears
in a string being output with System.out, the newline character causes the screen’s output
cursor to move to the beginning of the next line in the command window.

Figure 2.5 lists several common escape sequences and describes how they affect the dis-
play of characters in the command window. For the complete list of escape sequences, visit

2.4 Displaying Text with printf
The System.out.printf method (f means “formatted”) displays formatted data.
Figure 2.6 uses this method to output on two lines the strings "Welcome to" and "Java
Programming!".

9 System.out.println("Welcome to Java Programming!");
10 } // end method main
11 } // end class Welcome3

Welcome
to
Java
Programming!

System.out.println("Welcome\nto\nJava\nProgramming!");

http://docs.oracle.com/javase/specs/jls/se7/html/
 jls-3.html#jls-3.10.6

Escape
sequence Description

\n Newline. Position the screen cursor at the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor at the beginning of the current
line—do not advance to the next line. Any characters output after the car-
riage return overwrite the characters previously output on that line.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double-quote character. For example,
 System.out.println("\"in quotes\"");
displays "in quotes".

Fig. 2.5 | Some common escape sequences.

Fig. 2.4 | Printing multiple lines of text with a single statement. (Part 2 of 2.)

\n \n \n

http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.6
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.6

44 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Lines 9–10

call method System.out.printf to display the program’s output. The method call speci-
fies three arguments. When a method requires multiple arguments, they’re placed in a
comma-separated list. Calling a method is also referred to as invoking a method.

Lines 9–10 represent only one statement. Java allows large statements to be split over
many lines. We indent line 10 to indicate that it’s a continuation of line 9.

Method printf’s first argument is a format string that may consist of fixed text and
format specifiers. Fixed text is output by printf just as it would be by print or println.
Each format specifier is a placeholder for a value and specifies the type of data to output.
Format specifiers also may include optional formatting information.

Format specifiers begin with a percent sign (%) followed by a character that represents
the data type. For example, the format specifier %s is a placeholder for a string. The format
string in line 9 specifies that printf should output two strings, each followed by a newline
character. At the first format specifier’s position, printf substitutes the value of the first
argument after the format string. At each subsequent format specifier’s position, printf
substitutes the value of the next argument. So this example substitutes "Welcome to" for
the first %s and "Java Programming!" for the second %s. The output shows that two lines
of text are displayed on two lines.

Notice that instead of using the escape sequence \n, we used the %n format specifier,
which is a line separator that’s portable across operating systems. You cannot use %n in the

1 // Fig. 2.6: Welcome4.java
2 // Displaying multiple lines with method System.out.printf.
3
4 public class Welcome4
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9

10
11 } // end method main
12 } // end class Welcome4

Welcome to
Java Programming!

Fig. 2.6 | Displaying multiple lines with method System.out.printf.

System.out.printf("%s%n%s%n",
 "Welcome to", "Java Programming!");

Good Programming Practice 2.6
Place a space after each comma (,) in an argument list to make programs more readable.

Common Programming Error 2.6
Splitting a statement in the middle of an identifier or a string is a syntax error.

System.out.printf("%s%n%s%n",
 "Welcome to", "Java Programming!");

2.5 Another Application: Adding Integers 45

argument to System.out.print or System.out.println; however, the line separator
output by System.out.println after it displays its argument is portable across operating
systems. Online Appendix I presents more details of formatting output with printf.

2.5 Another Application: Adding Integers
Our next application reads (or inputs) two integers (whole numbers, such as –22, 7, 0 and
1024) typed by a user at the keyboard, computes their sum and displays it. This program
must keep track of the numbers supplied by the user for the calculation later in the program.
Programs remember numbers and other data in the computer’s memory and access that data
through program elements called variables. The program of Fig. 2.7 demonstrates these con-
cepts. In the sample output, we use bold text to identify the user’s input (i.e., 45 and 72). As
in prior programs, Lines 1–2 state the figure number, filename and purpose of the program.

2.5.1 import Declarations
A great strength of Java is its rich set of predefined classes that you can reuse rather than
“reinventing the wheel.” These classes are grouped into packages—named groups of related

1 // Fig. 2.7: Addition.java
2 // Addition program that inputs two numbers then displays their sum.
3
4
5 public class Addition
6 {
7 // main method begins execution of Java application
8 public static void main(String[] args)
9 {

10
11
12
13
14
15
16
17 System.out.print("Enter first integer: "); // prompt
18
19
20 System.out.print("Enter second integer: "); // prompt
21
22
23
24
25
26 } // end method main
27 } // end class Addition

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. 2.7 | Addition program that inputs two numbers then displays their sum.

import java.util.Scanner; // program uses class Scanner

// create a Scanner to obtain input from the command window
Scanner input = new Scanner(System.in);

int number1; // first number to add
int number2; // second number to add
int sum; // sum of number1 and number2

number1 = input.nextInt(); // read first number from user

number2 = input.nextInt(); // read second number from user

sum = number1 + number2; // add numbers, then store total in sum

System.out.printf("Sum is %d%n", sum); // display sum

46 Chapter 2 Introduction to Java Applications; Input/Output and Operators

classes—and are collectively referred to as the Java class library, or the Java Application
Programming Interface (Java API). Line 3

is an import declaration that helps the compiler locate a class that’s used in this program.
It indicates that the program uses the predefined Scanner class (discussed shortly) from
the package named java.util. The compiler then ensures that you use the class correctly.

2.5.2 Declaring Class Addition
Line 5

begins the declaration of class Addition. The filename for this public class must be
Addition.java. Remember that the body of each class declaration starts with an opening
left brace (line 6) and ends with a closing right brace (line 27).

The application begins execution with the main method (lines 8–26). The left brace
(line 9) marks the beginning of method main’s body, and the corresponding right brace
(line 26) marks its end. Method main is indented one level in the body of class Addition,
and the code in the body of main is indented another level for readability.

2.5.3 Declaring and Creating a Scanner to Obtain User Input from the
Keyboard
A variable is a location in the computer’s memory where a value can be stored for use later
in a program. All Java variables must be declared with a name and a type before they can be
used. A variable’s name enables the program to access the value of the variable in memory. A

import java.util.Scanner; // program uses class Scanner

Common Programming Error 2.7
All import declarations must appear before the first class declaration in the file. Placing
an import declaration inside or after a class declaration is a syntax error.

Common Programming Error 2.8
Forgetting to include an import declaration for a class that must be imported results in a
compilation error containing a message such as “cannot find symbol.” When this occurs,
check that you provided the proper import declarations and that the names in them are
correct, including proper capitalization.

Software Engineering Observation 2.1
In each new Java version, the APIs typically contain new capabilities that fix bugs, improve
performance or offer better means for accomplishing tasks. The corresponding older versions
are no longer needed and should not be used. Such APIs are said to be deprecated and might
be removed from later Java versions.
 You’ll often encounter deprecated APIs when browsing the online API documentation.
The compiler will warn you when you compile code that uses deprecated APIs. If you compile
your code with javac using the command-line argument -deprecation, the compiler will
tell you which deprecated features you’re using. For each one, the online documentation
(http://docs.oracle.com/javase/7/docs/api/) indicates and typically links to the new
feature that replaces the deprecated one.

public class Addition

http://docs.oracle.com/javase/7/docs/api/

2.5 Another Application: Adding Integers 47

variable’s name can be any valid identifier—again, a series of characters consisting of letters,
digits, underscores (_) and dollar signs ($) that does not begin with a digit and does not con-
tain spaces. A variable’s type specifies what kind of information is stored at that location in
memory. Like other statements, declaration statements end with a semicolon (;).

Line 11

is a variable declaration statement that specifies the name (input) and type (Scanner) of a
variable that’s used in this program. A Scanner enables a program to read data (e.g., num-
bers and strings) for use in a program. The data can come from many sources, such as the
user at the keyboard or a file on disk. Before using a Scanner, you must create it and spec-
ify the source of the data.

The = in line 11 indicates that Scanner variable input should be initialized (i.e., pre-
pared for use in the program) in its declaration with the result of the expression to the right
of the equals sign—new Scanner(System.in). This expression uses the new keyword to
create a Scanner object that reads characters typed by the user at the keyboard. The stan-
dard input object, System.in, enables applications to read bytes of data typed by the user.
The Scanner translates these bytes into types (like ints) that can be used in a program.

2.5.4 Declaring Variables to Store Integers
The variable declaration statements in lines 13–15

declare that variables number1, number2 and sum hold data of type int—they can hold in-
teger values (whole numbers such as 72, –1127 and 0). These variables are not yet initial-
ized. The range of values for an int is –2,147,483,648 to +2,147,483,647. [Note: The int
values you use in a program may not contain commas.]

Some other types of data are float and double, for holding real numbers, and char,
for holding character data. Real numbers contain decimal points, such as in 3.4, 0.0 and
–11.19. Variables of type char represent individual characters, such as an uppercase letter
(e.g., A), a digit (e.g., 7), a special character (e.g., * or %) or an escape sequence (e.g., the
tab character, \t). The types int, float, double and char are called primitive types.
Primitive-type names are keywords and must appear in all lowercase letters. Appendix D
summarizes the characteristics of the eight primitive types (boolean, byte, char, short,
int, long, float and double).

Several variables of the same type may be declared in a single declaration with the vari-
able names separated by commas (i.e., a comma-separated list of variable names). For
example, lines 13–15 can also be written as:

Scanner input = new Scanner(System.in);

int number1; // first number to add
int number2; // second number to add
int sum; // sum of number1 and number2

int number1, // first number to add
 number2, // second number to add
 sum; // sum of number1 and number2

Good Programming Practice 2.7
Declare each variable in its own declaration. This format allows a descriptive comment
to be inserted next to each variable being declared.

48 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.5.5 Prompting the User for Input
Line 17

uses System.out.print to display the message "Enter first integer: ". This message is
called a prompt because it directs the user to take a specific action. We use method print
here rather than println so that the user’s input appears on the same line as the prompt.
Recall from Section 2.2 that identifiers starting with capital letters typically represent class
names. Class System is part of package java.lang. Notice that class System is not import-
ed with an import declaration at the beginning of the program.

2.5.6 Obtaining an int as Input from the User
Line 18

uses Scanner object input’s nextInt method to obtain an integer from the user at the key-
board. At this point the program waits for the user to type the number and press the Enter
key to submit the number to the program.

Our program assumes that the user enters a valid integer value. If not, a runtime logic
error will occur and the program will terminate. Chapter 11, Exception Handling: A
Deeper Look, discusses how to make your programs more robust by enabling them to
handle such errors. This is also known as making your program fault tolerant.

In line 18, we place the result of the call to method nextInt (an int value) in variable
number1 by using the assignment operator, =. The statement is read as “number1 gets the
value of input.nextInt().” Operator = is called a binary operator, because it has two
operands—number1 and the result of the method call input.nextInt(). This statement
is called an assignment statement, because it assigns a value to a variable. Everything to the
right of the assignment operator, =, is always evaluated before the assignment is performed.

Good Programming Practice 2.8
Choosing meaningful variable names helps a program to be self-documenting (i.e., one
can understand the program simply by reading it rather than by reading associated docu-
mentation or creating and viewing an excessive number of comments).

Good Programming Practice 2.9
By convention, variable-name identifiers begin with a lowercase letter, and every word in
the name after the first word begins with a capital letter. For example, variable-name iden-
tifier firstNumber starts its second word, Number, with a capital N. This naming conven-
tion is known as camel case, because the uppercase letters stand out like a camel’s humps.

System.out.print("Enter first integer: "); // prompt

Software Engineering Observation 2.2
By default, package java.lang is imported in every Java program; thus, classes in
java.lang are the only ones in the Java API that do not require an import declaration.

number1 = input.nextInt(); // read first number from user

Good Programming Practice 2.10
Place spaces on either side of a binary operator for readability.

2.5 Another Application: Adding Integers 49

2.5.7 Prompting for and Inputting a Second int
Line 20

prompts the user to enter the second integer. Line 21

reads the second integer and assigns it to variable number2.

2.5.8 Using Variables in a Calculation
Line 23

is an assignment statement that calculates the sum of the variables number1 and number2
then assigns the result to variable sum by using the assignment operator, =. The statement
is read as “sum gets the value of number1 + number2.” When the program encounters the
addition operation, it performs the calculation using the values stored in the variables
number1 and number2. In the preceding statement, the addition operator is a binary oper-
ator—its two operands are the variables number1 and number2. Portions of statements that
contain calculations are called expressions. In fact, an expression is any portion of a state-
ment that has a value associated with it. For example, the value of the expression number1
+ number2 is the sum of the numbers. Similarly, the value of the expression input.next-
Int() is the integer typed by the user.

2.5.9 Displaying the Result of the Calculation
After the calculation has been performed, line 25

uses method System.out.printf to display the sum. The format specifier %d is a placehold-
er for an int value (in this case the value of sum)—the letter d stands for “decimal integer.”
The remaining characters in the format string are all fixed text. So, method printf dis-
plays "Sum is ", followed by the value of sum (in the position of the %d format specifier)
and a newline.

Calculations can also be performed inside printf statements. We could have com-
bined the statements at lines 23 and 25 into the statement

The parentheses around the expression number1 + number2 are optional—they’re included
to emphasize that the value of the entire expression is output in the position of the %d for-
mat specifier. Such parentheses are said to be redundant.

2.5.10 Java API Documentation
For each new Java API class we use, we indicate the package in which it’s located. This
information helps you locate descriptions of each package and class in the Java API docu-
mentation. A web-based version of this documentation can be found at

System.out.print("Enter second integer: "); // prompt

number2 = input.nextInt(); // read second number from user

sum = number1 + number2; // add numbers then store total in sum

System.out.printf("Sum is %d%n", sum); // display sum

System.out.printf("Sum is %d%n", (number1 + number2));

http://docs.oracle.com/javase/7/docs/api/index.html

http://docs.oracle.com/javase/7/docs/api/index.html

50 Chapter 2 Introduction to Java Applications; Input/Output and Operators

You can download it from the Additional Resources section at

Appendix F shows how to use this documentation.

2.6 Memory Concepts
Variable names such as number1, number2 and sum actually correspond to locations in the
computer’s memory. Every variable has a name, a type, a size (in bytes) and a value.

In the addition program of Fig. 2.7, when the following statement (line 18) executes:

the number typed by the user is placed into a memory location corresponding to the name
number1. Suppose that the user enters 45. The computer places that integer value into lo-
cation number1 (Fig. 2.8), replacing the previous value (if any) in that location. The pre-
vious value is lost, so this process is said to be destructive.

When the statement (line 21)

executes, suppose that the user enters 72. The computer places that integer value into lo-
cation number2. The memory now appears as shown in Fig. 2.9.

After the program of Fig. 2.7 obtains values for number1 and number2, it adds the
values and places the total into variable sum. The statement (line 23)

performs the addition, then replaces any previous value in sum. After sum has been calcu-
lated, memory appears as shown in Fig. 2.10. The values of number1 and number2 appear
exactly as they did before they were used in the calculation of sum. These values were used,
but not destroyed, as the computer performed the calculation. When a value is read from
a memory location, the process is nondestructive.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

number1 = input.nextInt(); // read first number from user

Fig. 2.8 | Memory location showing the name and value of variable number1.

number2 = input.nextInt(); // read second number from user

Fig. 2.9 | Memory locations after storing values for number1 and number2.

sum = number1 + number2; // add numbers, then store total in sum

45number1

45

72

number1

number2

http://www.oracle.com/technetwork/java/javase/downloads/index.html

2.7 Arithmetic 51

2.7 Arithmetic
Most programs perform arithmetic calculations. The arithmetic operators are summa-
rized in Fig. 2.11. Note the use of various special symbols not used in algebra. The asterisk
(*) indicates multiplication, and the percent sign (%) is the remainder operator, which
we’ll discuss shortly. The arithmetic operators in Fig. 2.11 are binary operators, because
each operates on two operands. For example, the expression f + 7 contains the binary op-
erator + and the two operands f and 7.

Integer division yields an integer quotient. For example, the expression 7 / 4 evaluates
to 1, and the expression 17 / 5 evaluates to 3. Any fractional part in integer division is
simply truncated (i.e., discarded)—no rounding occurs. Java provides the remainder oper-
ator, %, which yields the remainder after division. The expression x % y yields the remainder
after x is divided by y. Thus, 7 % 4 yields 3, and 17 % 5 yields 2. This operator is most com-
monly used with integer operands but it can also be used with other arithmetic types. In
this chapter’s exercises and in later chapters, we consider several interesting applications of
the remainder operator, such as determining whether one number is a multiple of another.

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions in Java must be written in straight-line form to facilitate entering
programs into the computer. Thus, expressions such as “a divided by b” must be written
as a / b, so that all constants, variables and operators appear in a straight line. The follow-
ing algebraic notation is generally not acceptable to compilers:

Fig. 2.10 | Memory locations after storing the sum of number1 and number2.

Java operation Operator Algebraic expression Java expression

Addition + f + 7 f + 7
Subtraction – p – c p - c
Multiplication * bm b * m
Division / x / y or or x ÷ y x / y
Remainder % r mod s r % s

Fig. 2.11 | Arithmetic operators.

45

72

117

number1

number2

sum

x
y--

a
b
--

52 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Parentheses for Grouping Subexpressions
Parentheses are used to group terms in Java expressions in the same manner as in algebraic
expressions. For example, to multiply a times the quantity b + c, we write

If an expression contains nested parentheses, such as

the expression in the innermost set of parentheses (a + b in this case) is evaluated first.

Rules of Operator Precedence
Java applies the operators in arithmetic expressions in a precise sequence determined by the
rules of operator precedence, which are generally the same as those followed in algebra:

1. Multiplication, division and remainder operations are applied first. If an expres-
sion contains several such operations, they’re applied from left to right. Multipli-
cation, division and remainder operators have the same level of precedence.

2. Addition and subtraction operations are applied next. If an expression contains
several such operations, the operators are applied from left to right. Addition and
subtraction operators have the same level of precedence.

These rules enable Java to apply operators in the correct order.1 When we say that
operators are applied from left to right, we’re referring to their associativity. Some opera-
tors associate from right to left. Figure 2.12 summarizes these rules of operator precedence.
A complete precedence chart is included in Appendix A.

Sample Algebraic and Java Expressions
Now let’s consider several expressions in light of the rules of operator precedence. Each
example lists an algebraic expression and its Java equivalent. The following is an example
of an arithmetic mean (average) of five terms:

a * (b + c)

((a + b) * c)

1. We use simple examples to explain the order of evaluation of expressions. Subtle issues occur in the
more complex expressions you’ll encounter later in the book. For more information on order of eval-
uation, see Chapter 15 of The Java™ Language Specification (http://docs.oracle.com/javase/
specs/jls/se7/html/index.html).

Operator(s) Operation(s) Order of evaluation (precedence)

*
/
%

Multiplication
Division
Remainder

Evaluated first. If there are several operators of this
type, they’re evaluated from left to right.

+
-

Addition
Subtraction

Evaluated next. If there are several operators of this
type, they’re evaluated from left to right.

= Assignment Evaluated last.

Fig. 2.12 | Precedence of arithmetic operators.

http://docs.oracle.com/javase/specs/jls/se7/html/index.html
http://docs.oracle.com/javase/specs/jls/se7/html/index.html

2.7 Arithmetic 53

The parentheses are required because division has higher precedence than addition. The
entire quantity (a + b + c + d + e) is to be divided by 5. If the parentheses are erroneously
omitted, we obtain a + b + c + d + e / 5, which evaluates as

Here’s an example of the equation of a straight line:

No parentheses are required. The multiplication operator is applied first because multipli-
cation has a higher precedence than addition. The assignment occurs last because it has a
lower precedence than multiplication or addition.

The following example contains remainder (%), multiplication, division, addition and
subtraction operations:

The circled numbers under the statement indicate the order in which Java applies the op-
erators. The *, % and / operations are evaluated first in left-to-right order (i.e., they associ-
ate from left to right), because they have higher precedence than + and -. The + and -
operations are evaluated next. These operations are also applied from left to right. The as-
signment (=) operation is evaluated last.

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, consider the eval-
uation of an assignment expression that includes a second-degree polynomial ax2 + bx + c:

The multiplication operations are evaluated first in left-to-right order (i.e., they associate
from left to right), because they have higher precedence than addition. (Java has no arith-
metic operator for exponentiation, so x2 is represented as x * x. Section 5.4 shows an al-
ternative for performing exponentiation.) The addition operations are evaluated next from
left to right. Suppose that a, b, c and x are initialized (given values) as follows: a = 2, b = 3,
c = 7 and x = 5. Figure 2.13 illustrates the order in which the operators are applied.

You can use redundant parentheses (unnecessary parentheses) to make an expression
clearer. For example, the preceding statement might be parenthesized as follows:

Algebra:

Java: m = (a + b + c + d + e) / 5;

Algebra:
Java: y = m * x + b;

 y = (a * x * x) + (b * x) + c;

m
a b c d e+ + + +

5
-------------------------------------=

a b c d
e
5
---+ + + +

y mx b+=

z

6 1 2 4 3 5

= p * r % q + w / x - y;

z = pr%q + w/x – yAlgebra:
Java:

6 1 2 4 3 5

y = a * x * x + b * x + c;

54 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.8 Decision Making: Equality and Relational Operators
A condition is an expression that can be true or false. This section introduces Java’s if
selection statement, which allows a program to make a decision based on a condition’s
value. For example, the condition “grade is greater than or equal to 60” determines wheth-
er a student passed a test. If the condition in an if statement is true, the body of the if
statement executes. If the condition is false, the body does not execute. We’ll see an exam-
ple shortly.

Conditions in if statements can be formed by using the equality operators (== and
!=) and relational operators (>, <, >= and <=) summarized in Fig. 2.14. Both equality oper-
ators have the same level of precedence, which is lower than that of the relational operators.
The equality operators associate from left to right. The relational operators all have the
same level of precedence and also associate from left to right.

Fig. 2.13 | Order in which a second-degree polynomial is evaluated.

Algebraic
operator

Java equality or
relational operator

Sample Java
condition Meaning of Java condition

Equality operators

= == x == y x is equal to y
¹ != x != y x is not equal to y

Fig. 2.14 | Equality and relational operators. (Part 1 of 2.)

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in y)

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

 2 * 5 is 10

Step 2. y = 10 * 5 + 3 * 5 + 7;

 10 * 5 is 50

Step 3. y = 50 + 3 * 5 + 7;

 3 * 5 is 15

Step 4. y = 50 + 15 + 7;

 50 + 15 is 65

Step 5. y = 65 + 7;

 65 + 7 is 72

Step 6. y = 72

2.8 Decision Making: Equality and Relational Operators 55

Figure 2.15 uses six if statements to compare two integers input by the user. If the
condition in any of these if statements is true, the statement associated with that if state-
ment executes; otherwise, the statement is skipped. We use a Scanner to input the integers
from the user and store them in variables number1 and number2. The program compares
the numbers and displays the results of the comparisons that are true.

Relational operators

> > x > y x is greater than y
< < x < y x is less than y
≥ >= x >= y x is greater than or equal to y
≤ <= x <= y x is less than or equal to y

1 // Fig. 2.15: Comparison.java
2 // Compare integers using if statements, relational operators
3 // and equality operators.
4 import java.util.Scanner; // program uses class Scanner
5
6 public class Comparison
7 {
8 // main method begins execution of Java application
9 public static void main(String[] args)

10 {
11 // create Scanner to obtain input from command line
12 Scanner input = new Scanner(System.in);
13
14 int number1; // first number to compare
15 int number2; // second number to compare
16
17 System.out.print("Enter first integer: "); // prompt
18 number1 = input.nextInt(); // read first number from user
19
20 System.out.print("Enter second integer: "); // prompt
21 number2 = input.nextInt(); // read second number from user
22
23
24
25
26
27
28
29
30

Fig. 2.15 | Compare integers using if statements, relational operators and equality operators.
(Part 1 of 2.)

Algebraic
operator

Java equality or
relational operator

Sample Java
condition Meaning of Java condition

Fig. 2.14 | Equality and relational operators. (Part 2 of 2.)

if (number1 == number2)
 System.out.printf("%d == %d%n", number1, number2);

if (number1 != number2)
 System.out.printf("%d != %d%n", number1, number2);

if (number1 < number2)
 System.out.printf("%d < %d%n", number1, number2);

56 Chapter 2 Introduction to Java Applications; Input/Output and Operators

The declaration of class Comparison begins at line 6

The class’s main method (lines 9–40) begins the execution of the program. Line 12

declares Scanner variable input and assigns it a Scanner that inputs data from the stan-
dard input (i.e., the keyboard).

Lines 14–15

declare the int variables used to store the values input from the user.
Lines 17–18

31
32
33
34
35
36
37
38
39
40 } // end method main
41 } // end class Comparison

Enter first integer: 777
Enter second integer: 777
777 == 777
777 <= 777
777 >= 777

Enter first integer: 1000
Enter second integer: 2000
1000 != 2000
1000 < 2000
1000 <= 2000

Enter first integer: 2000
Enter second integer: 1000
2000 != 1000
2000 > 1000
2000 >= 1000

public class Comparison

Scanner input = new Scanner(System.in);

int number1; // first number to compare
int number2; // second number to compare

System.out.print("Enter first integer: "); // prompt
number1 = input.nextInt(); // read first number from user

Fig. 2.15 | Compare integers using if statements, relational operators and equality operators.
(Part 2 of 2.)

if (number1 > number2)
 System.out.printf("%d > %d%n", number1, number2);

if (number1 <= number2)
 System.out.printf("%d <= %d%n", number1, number2);

if (number1 >= number2)
 System.out.printf("%d >= %d%n", number1, number2);

2.8 Decision Making: Equality and Relational Operators 57

prompt the user to enter the first integer and input the value, respectively. The value is
stored in variable number1.

Lines 20–21

prompt the user to enter the second integer and input the value, respectively. The value is
stored in variable number2.

Lines 23–24

compare the values of number1 and number2 to determine whether they’re equal. An if
statement always begins with keyword if, followed by a condition in parentheses. An if
statement expects one statement in its body, but may contain multiple statements if
they’re enclosed in a set of braces ({}). The indentation of the body statement shown here
is not required, but it improves the program’s readability by emphasizing that the state-
ment in line 24 is part of the if statement that begins at line 23. Line 24 executes only if
the numbers stored in variables number1 and number2 are equal (i.e., the condition is true).
The if statements in lines 26–27, 29–30, 32–33, 35–36 and 38–39 compare number1 and
number2 using the operators !=, <, >, <= and >=, respectively. If the condition in one or
more of the if statements is true, the corresponding body statement executes.

There’s no semicolon (;) at the end of the first line of each if statement. Such a semi-
colon would result in a logic error at execution time. For example,

would actually be interpreted by Java as

where the semicolon on the line by itself—called the empty statement—is the statement
to execute if the condition in the if statement is true. When the empty statement executes,
no task is performed. The program then continues with the output statement, which al-
ways executes, regardless of whether the condition is true or false, because the output state-
ment is not part of the if statement.

System.out.print("Enter second integer: "); // prompt
number2 = input.nextInt(); // read second number from user

if (number1 == number2)
 System.out.printf("%d == %d%n", number1, number2);

Common Programming Error 2.9
Confusing the equality operator, ==, with the assignment operator, =, can cause a logic er-
ror or a compilation error. The equality operator should be read as “is equal to” and the
assignment operator as “gets” or “gets the value of.” To avoid confusion, some people read
the equality operator as “double equals” or “equals equals.”

Good Programming Practice 2.11
Place only one statement per line in a program for readability.

if (number1 == number2); // logic error
 System.out.printf("%d == %d%n", number1, number2);

if (number1 == number2)
 ; // empty statement
System.out.printf("%d == %d%n", number1, number2);

58 Chapter 2 Introduction to Java Applications; Input/Output and Operators

White space
Note the use of white space in Fig. 2.15. Recall that the compiler normally ignores white
space. So, statements may be split over several lines and may be spaced according to your
preferences without affecting a program’s meaning. It’s incorrect to split identifiers and
strings. Ideally, statements should be kept small, but this is not always possible.

Operators Discussed So Far
Figure 2.16 shows the operators discussed so far in decreasing order of precedence. All but
the assignment operator, =, associate from left to right. The assignment operator, =, associ-
ates from right to left. An assignment expression’s value is whatever was assigned to the vari-
able on the = operator’s left side—for example, the value of the expression x = 7 is 7. So an
expression like x = y = 0 is evaluated as if it had been written as x = (y = 0), which first
assigns the value 0 to variable y, then assigns the result of that assignment, 0, to x.

2.9 Wrap-Up
In this chapter, you learned many important features of Java, including displaying data on
the screen in a Command Prompt, inputting data from the keyboard, performing calcula-
tions and making decisions. The applications presented here introduced you to many basic
programming concepts. As you’ll see in Chapter 3, Java applications typically contain just
a few lines of code in method main—these statements normally create the objects that per-
form the work of the application. In Chapter 3, you’ll learn how to implement your own
classes and use objects of those classes in applications.

Error-Prevention Tip 2.5
A lengthy statement can be spread over several lines. If a single statement must be split
across lines, choose natural breaking points, such as after a comma in a comma-separated
list, or after an operator in a lengthy expression. If a statement is split across two or more
lines, indent all subsequent lines until the end of the statement.

Operators Associativity Type

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

= right to left assignment

Fig. 2.16 | Precedence and associativity of operators discussed.

Good Programming Practice 2.12
When writing expressions containing many operators, refer to the operator precedence
chart (Appendix A). Confirm that the operations in the expression are performed in the
order you expect. If, in a complex expression, you’re uncertain about the order of evalua-
tion, use parentheses to force the order, exactly as you’d do in algebraic expressions.

 Summary 59

Summary
Section 2.2 Your First Program in Java: Printing a Line of Text
• A Java application (p. 35) executes when you use the java command to launch the JVM.

• Comments (p. 36) document programs and improve their readability. The compiler ignores them.

• A comment that begins with // is an end-of-line comment—it terminates at the end of the line
on which it appears.

• Traditional comments (p. 36) can be spread over several lines and are delimited by /* and */.

• Javadoc comments (p. 36), delimited by /** and */, enable you to embed program documentation
in your code. The javadoc utility program generates HTML pages based on these comments.

• A syntax error (p. 36; also called a compiler error, compile-time error or compilation error) oc-
curs when the compiler encounters code that violates Java’s language rules. It’s similar to a gram-
mar error in a natural language.

• Blank lines, space characters and tab characters are known as white space (p. 37). White space
makes programs easier to read and is ignored by the compiler.

• Keywords (p. 37) are reserved for use by Java and are always spelled with all lowercase letters.

• Keyword class (p. 37) introduces a class declaration.

• By convention, all class names in Java begin with a capital letter and capitalize the first letter of
each word they include (e.g., SampleClassName).

• A Java class name is an identifier—a series of characters consisting of letters, digits, underscores
(_) and dollar signs ($) that does not begin with a digit and does not contain spaces.

• Java is case sensitive (p. 38)—that is, uppercase and lowercase letters are distinct.

• The body of every class declaration (p. 38) is delimited by braces, { and }.

• A public (p. 37) class declaration must be saved in a file with the same name as the class followed
by the “.java” file-name extension.

• Method main (p. 38) is the starting point of every Java application and must begin with

public static void main(String[] args)

otherwise, the JVM will not execute the application.

• Methods perform tasks and return information when they complete them. Keyword void (p. 38)
indicates that a method will perform a task but return no information.

• Statements instruct the computer to perform actions.

• A string (p. 39) in double quotes is sometimes called a character string or a string literal.

• The standard output object (System.out; p. 39) displays characters in the command window.

• Method System.out.println (p. 39) displays its argument (p. 39) in the command window fol-
lowed by a newline character to position the output cursor to the beginning of the next line.

• You compile a program with the command javac. If the program contains no syntax errors, a
class file (p. 40) containing the Java bytecodes that represent the application is created. These
bytecodes are interpreted by the JVM when you execute the program.

• To run an application, type java followed by the name of the class that contains the main method.

Section 2.3 Modifying Your First Java Program
• System.out.print (p. 42) displays its argument and positions the output cursor immediately af-

ter the last character displayed.

• A backslash (\) in a string is an escape character (p. 43). Java combines it with the next character to
form an escape sequence (p. 43). The escape sequence \n (p. 43) represents the newline character.

60 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Section 2.4 Displaying Text with printf
• System.out.printf method (p. 43; f means “formatted”) displays formatted data.

• Method printf’s first argument is a format string (p. 44) containing fixed text and/or format
specifiers. Each format specifier (p. 44) indicates the type of data to output and is a placeholder
for a corresponding argument that appears after the format string.

• Format specifiers begin with a percent sign (%) and are followed by a character that represents the
data type. The format specifier %s (p. 44) is a placeholder for a string.

• The %n format specifier (p. 44) is a portable line separator. You cannot use %n in the argument to
System.out.print or System.out.println; however, the line separator output by Sys-
tem.out.println after it displays its argument is portable across operating systems.

Section 2.5 Another Application: Adding Integers
• An import declaration (p. 46) helps the compiler locate a class that’s used in a program.

• Java’s rich set of predefined classes are grouped into packages (p. 45)—named groups of classes.
These are referred to as the Java class library (p. 46), or the Java Application Programming Inter-
face (Java API).

• A variable (p. 46) is a location in the computer’s memory where a value can be stored for use later
in a program. All variables must be declared with a name and a type before they can be used.

• A variable’s name enables the program to access the variable’s value in memory.

• A Scanner (package java.util; p. 47) enables a program to read data that the program will use.
Before a Scanner can be used, the program must create it and specify the source of the data.

• Variables should be initialized (p. 47) to prepare them for use in a program.

• The expression new Scanner(System.in) creates a Scanner that reads from the standard input
object (System.in; p. 47)—normally the keyboard.

• Data type int (p. 47) is used to declare variables that will hold integer values. The range of values
for an int is –2,147,483,648 to +2,147,483,647.

• Types float and double (p. 47) specify real numbers with decimal points, such as 3.4 and –11.19.

• Variables of type char (p. 47) represent individual characters, such as an uppercase letter (e.g.,
A), a digit (e.g., 7), a special character (e.g., * or %) or an escape sequence (e.g., tab, \t).

• Types such as int, float, double and char are primitive types (p. 47). Primitive-type names are
keywords; thus, they must appear in all lowercase letters.

• A prompt (p. 48) directs the user to take a specific action.

• Scanner method nextInt obtains an integer for use in a program.

• The assignment operator, = (p. 48), enables the program to give a value to a variable. It’s called
a binary operator (p. 48) because it has two operands.

• Portions of statements that have values are called expressions (p. 49).

• The format specifier %d (p. 49) is a placeholder for an int value.

Section 2.6 Memory Concepts
• Variable names (p. 50) correspond to locations in the computer’s memory. Every variable has a

name, a type, a size and a value.

• A value that’s placed in a memory location replaces the location’s previous value, which is lost.

Section 2.7 Arithmetic
• The arithmetic operators (p. 51) are + (addition), - (subtraction), * (multiplication), / (division)

and % (remainder).

 Self-Review Exercises 61

• Integer division (p. 51) yields an integer quotient.

• The remainder operator, % (p. 51), yields the remainder after division.

• Arithmetic expressions must be written in straight-line form (p. 51).

• If an expression contains nested parentheses (p. 52), the innermost set is evaluated first.

• Java applies the operators in arithmetic expressions in a precise sequence determined by the rules
of operator precedence (p. 52).

• When we say that operators are applied from left to right, we’re referring to their associativity
(p. 52). Some operators associate from right to left.

• Redundant parentheses (p. 53) can make an expression clearer.

Section 2.8 Decision Making: Equality and Relational Operators
• The if statement (p. 54) makes a decision based on a condition’s value (true or false).

• Conditions in if statements can be formed by using the equality (== and !=) and relational (>,
<, >= and <=) operators (p. 54).

• An if statement begins with keyword if followed by a condition in parentheses and expects one
statement in its body.

• The empty statement (p. 57) is a statement that does not perform a task.

Self-Review Exercises
2.1 Fill in the blanks in each of the following statements:

a) A(n) begins the body of every method, and a(n) ends the body of
every method.

b) You can use the statement to make decisions.
c) begins an end-of-line comment.
d) , and are called white space.
e) are reserved for use by Java.
f) Java applications begin execution at method .
g) Methods , and display information in a command win-

dow.

2.2 State whether each of the following is true or false. If false, explain why.
a) Comments cause the computer to print the text after the // on the screen when the pro-

gram executes.
b) All variables must be given a type when they’re declared.
c) Java considers the variables number and NuMbEr to be identical.
d) The remainder operator (%) can be used only with integer operands.
e) The arithmetic operators *, /, %, + and - all have the same level of precedence.

2.3 Write statements to accomplish each of the following tasks:
a) Declare variables c, thisIsAVariable, q76354 and number to be of type int.
b) Prompt the user to enter an integer.
c) Input an integer and assign the result to int variable value. Assume Scanner variable

input can be used to read a value from the keyboard.
d) Print "This is a Java program" on one line in the command window. Use method

System.out.println.
e) Print "This is a Java program" on two lines in the command window. The first line

should end with Java. Use method System.out.printf and two %s format specifiers.
f) If the variable number is not equal to 7, display "The variable number is not equal to 7".

62 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.4 Identify and correct the errors in each of the following statements:
a) if (c < 7);

 System.out.println("c is less than 7");
b) if (c => 7)

 System.out.println("c is equal to or greater than 7");

2.5 Write declarations, statements or comments that accomplish each of the following tasks:
a) State that a program will calculate the product of three integers.
b) Create a Scanner called input that reads values from the standard input.
c) Declare the variables x, y, z and result to be of type int.
d) Prompt the user to enter the first integer.
e) Read the first integer from the user and store it in the variable x.
f) Prompt the user to enter the second integer.
g) Read the second integer from the user and store it in the variable y.
h) Prompt the user to enter the third integer.
i) Read the third integer from the user and store it in the variable z.
j) Compute the product of the three integers contained in variables x, y and z, and assign

the result to the variable result.
k) Use System.out.printf to display the message "Product is" followed by the value of

the variable result.

2.6 Using the statements you wrote in Exercise 2.5, write a complete program that calculates
and prints the product of three integers.

Answers to Self-Review Exercises
2.1 a) left brace ({), right brace (}). b) if. c) //. d) Space characters, newlines and tabs.
e) Keywords. f) main. g) System.out.print, System.out.println and System.out.printf.

2.2 a) False. Comments do not cause any action to be performed when the program executes.
They’re used to document programs and improve their readability.

b) True.
c) False. Java is case sensitive, so these variables are distinct.
d) False. The remainder operator can also be used with noninteger operands in Java.
e) False. The operators *, / and % are higher precedence than operators + and -.

2.3 a) int c, thisIsAVariable, q76354, number;
or
int c;
int thisIsAVariable;
int q76354;
int number;

b) System.out.print("Enter an integer: ");
c) value = input.nextInt();
d) System.out.println("This is a Java program");
e) System.out.printf("%s%n%s%n", "This is a Java", "program");
f) if (number != 7)

 System.out.println("The variable number is not equal to 7");

2.4 a) Error: Semicolon after the right parenthesis of the condition (c < 7) in the if.
Correction: Remove the semicolon after the right parenthesis. [Note: As a result, the
output statement will execute regardless of whether the condition in the if is true.]

b) Error: The relational operator => is incorrect. Correction: Change => to >=.

 Answers to Self-Review Exercises 63

2.5 a) // Calculate the product of three integers
b) Scanner input = new Scanner(System.in);
c) int x, y, z, result;

or
int x;
int y;
int z;
int result;

d) System.out.print("Enter first integer: ");
e) x = input.nextInt();
f) System.out.print("Enter second integer: ");
g) y = input.nextInt();
h) System.out.print("Enter third integer: ");
i) z = input.nextInt();
j) result = x * y * z;
k) System.out.printf("Product is %d%n", result);

2.6 The solution to Self-Review Exercise 2.6 is as follows:

1 // Ex. 2.6: Product.java
2 // Calculate the product of three integers.
3 import java.util.Scanner; // program uses Scanner
4
5 public class Product
6 {
7 public static void main(String[] args)
8 {
9 // create Scanner to obtain input from command window

10 Scanner input = new Scanner(System.in);
11
12 int x; // first number input by user
13 int y; // second number input by user
14 int z; // third number input by user
15 int result; // product of numbers
16
17 System.out.print("Enter first integer: "); // prompt for input
18 x = input.nextInt(); // read first integer
19
20 System.out.print("Enter second integer: "); // prompt for input
21 y = input.nextInt(); // read second integer
22
23 System.out.print("Enter third integer: "); // prompt for input
24 z = input.nextInt(); // read third integer
25
26 result = x * y * z; // calculate product of numbers
27
28 System.out.printf("Product is %d%n", result);
29 } // end method main
30 } // end class Product

Enter first integer: 10
Enter second integer: 20
Enter third integer: 30
Product is 6000

64 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Exercises
2.7 Fill in the blanks in each of the following statements:

a) are used to document a program and improve its readability.
b) A decision can be made in a Java program with a(n) .
c) Calculations are normally performed by statements.
d) The arithmetic operators with the same precedence as multiplication are and

.
e) When parentheses in an arithmetic expression are nested, the set of paren-

theses is evaluated first.
f) A location in the computer’s memory that may contain different values at various times

throughout the execution of a program is called a(n) .

2.8 Write Java statements that accomplish each of the following tasks:
a) Display the message "Enter an integer: ", leaving the cursor on the same line.
b) Assign the product of variables b and c to variable a.
c) Use a comment to state that a program performs a sample payroll calculation.

2.9 State whether each of the following is true or false. If false, explain why.
a) Java operators are evaluated from left to right.
b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales$,

his_$account_total, a, b$, c, z and z2.
c) A valid Java arithmetic expression with no parentheses is evaluated from left to right.
d) The following are all invalid variable names: 3g, 87, 67h2, h22 and 2h.

2.10 Assuming that x = 2 and y = 3, what does each of the following statements display?
a) System.out.printf("x = %d%n", x);
b) System.out.printf("Value of %d + %d is %d%n", x, x, (x + x));
c) System.out.printf("x =");
d) System.out.printf("%d = %d%n", (x + y), (y + x));

2.11 Which of the following Java statements contain variables whose values are modified?
a) p = i + j + k + 7;
b) System.out.println("variables whose values are modified");
c) System.out.println("a = 5");
d) value = input.nextInt();

2.12 Given that y = ax3 + 7, which of the following are correct Java statements for this equation?
a) y = a * x * x * x + 7;
b) y = a * x * x * (x + 7);
c) y = (a * x) * x * (x + 7);
d) y = (a * x) * x * x + 7;
e) y = a * (x * x * x) + 7;
f) y = a * x * (x * x + 7);

2.13 State the order of evaluation of the operators in each of the following Java statements, and
show the value of x after each statement is performed:

a) x = 7 + 3 * 6 / 2 - 1;
b) x = 2 % 2 + 2 * 2 - 2 / 2;
c) x = (3 * 9 * (3 + (9 * 3 / (3))));

2.14 Write an application that displays the numbers 1 to 4 on the same line, with each pair of
adjacent numbers separated by one space. Use the following techniques:

a) Use one System.out.println statement.
b) Use four System.out.print statements.
c) Use one System.out.printf statement.

 Exercises 65

2.15 (Arithmetic) Write an application that asks the user to enter two integers, obtains them
from the user and prints their sum, product, difference and quotient (division). Use the techniques
shown in Fig. 2.7.

2.16 (Comparing Integers) Write an application that asks the user to enter two integers, obtains
them from the user and displays the larger number followed by the words "is larger". If the num-
bers are equal, print the message "These numbers are equal". Use the techniques shown in Fig. 2.15.

2.17 (Arithmetic, Smallest and Largest) Write an application that inputs three integers from the
user and displays the sum, average, product, smallest and largest of the numbers. Use the techniques
shown in Fig. 2.15. [Note: The calculation of the average in this exercise should result in an integer
representation of the average. So, if the sum of the values is 7, the average should be 2, not
2.3333….]

2.18 (Displaying Shapes with Asterisks) Write an application that displays a box, an oval, an ar-
row and a diamond using asterisks (*), as follows:

2.19 What does the following code print?

System.out.printf("*%n**%n***%n****%n*****%n");

2.20 What does the following code print?

System.out.println("*");
System.out.println("***");
System.out.println("*****");
System.out.println("****");
System.out.println("**");

2.21 What does the following code print?

System.out.print("*");
System.out.print("***");
System.out.print("*****");
System.out.print("****");
System.out.println("**");

2.22 What does the following code print?

System.out.print("*");
System.out.println("***");
System.out.println("*****");
System.out.print("****");
System.out.println("**");

2.23 What does the following code print?

System.out.printf("%s%n%s%n%s%n", "*", "***", "*****");

2.24 (Largest and Smallest Integers) Write an application that reads five integers and determines
and prints the largest and smallest integers in the group. Use only the programming techniques you
learned in this chapter.

********* *** * *
* * * * *** * *
* * * * ***** * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
********* *** * *

66 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.25 (Odd or Even) Write an application that reads an integer and determines and prints wheth-
er it’s odd or even. [Hint: Use the remainder operator. An even number is a multiple of 2. Any mul-
tiple of 2 leaves a remainder of 0 when divided by 2.]

2.26 (Multiples) Write an application that reads two integers, determines whether the first is a
multiple of the second and prints the result. [Hint: Use the remainder operator.]

2.27 (Checkerboard Pattern of Asterisks) Write an application that displays a checkerboard pat-
tern, as follows:

2.28 (Diameter, Circumference and Area of a Circle) Here’s a peek ahead. In this chapter, you
learned about integers and the type int. Java can also represent floating-point numbers that contain
decimal points, such as 3.14159. Write an application that inputs from the user the radius of a circle
as an integer and prints the circle’s diameter, circumference and area using the floating-point value
3.14159 for π. Use the techniques shown in Fig. 2.7. [Note: You may also use the predefined con-
stant Math.PI for the value of π. This constant is more precise than the value 3.14159. Class Math
is defined in package java.lang. Classes in that package are imported automatically, so you do not
need to import class Math to use it.] Use the following formulas (r is the radius):

diameter = 2r
circumference = 2πr
area = πr2

Do not store the results of each calculation in a variable. Rather, specify each calculation as the
value that will be output in a System.out.printf statement. The values produced by the circum-
ference and area calculations are floating-point numbers. Such values can be output with the for-
mat specifier %f in a System.out.printf statement. You’ll learn more about floating-point
numbers in Chapter 3.

2.29 (Integer Value of a Character) Here’s another peek ahead. In this chapter, you learned about
integers and the type int. Java can also represent uppercase letters, lowercase letters and a consider-
able variety of special symbols. Every character has a corresponding integer representation. The set
of characters a computer uses together with the corresponding integer representations for those
characters is called that computer’s character set. You can indicate a character value in a program
simply by enclosing that character in single quotes, as in 'A'.

You can determine a character’s integer equivalent by preceding that character with (int), as in

(int) 'A'

An operator of this form is called a cast operator. (You’ll learn about cast operators in Chapter 4.)
The following statement outputs a character and its integer equivalent:

System.out.printf("The character %c has the value %d%n", 'A', ((int) 'A'));

When the preceding statement executes, it displays the character A and the value 65 (from the Uni-
code® character set) as part of the string. The format specifier %c is a placeholder for a character (in
this case, the character 'A').

Using statements similar to the one shown earlier in this exercise, write an application that dis-
plays the integer equivalents of some uppercase letters, lowercase letters, digits and special symbols.
Display the integer equivalents of the following: A B C a b c 0 1 2 $ * + / and the blank character.

* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *

 Making a Difference 67

2.30 (Separating the Digits in an Integer) Write an application that inputs one number consist-
ing of five digits from the user, separates the number into its individual digits and prints the digits
separated from one another by three spaces each. For example, if the user types in the number 42339,
the program should print

Assume that the user enters the correct number of digits. What happens when you enter a
number with more than five digits? What happens when you enter a number with fewer than five
digits? [Hint: It’s possible to do this exercise with the techniques you learned in this chapter. You’ll
need to use both division and remainder operations to “pick off ” each digit.]

2.31 (Table of Squares and Cubes) Using only the programming techniques you learned in this
chapter, write an application that calculates the squares and cubes of the numbers from 0 to 10 and
prints the resulting values in table format, as shown below.

2.32 (Negative, Positive and Zero Values) Write a program that inputs five numbers and deter-
mines and prints the number of negative numbers input, the number of positive numbers input and
the number of zeros input.

Making a Difference
2.33 (Body Mass Index Calculator) We introduced the body mass index (BMI) calculator in
Exercise 1.10. The formulas for calculating BMI are

or

Create a BMI calculator that reads the user’s weight in pounds and height in inches (or, if you pre-
fer, the user’s weight in kilograms and height in meters), then calculates and displays the user’s
body mass index. Also, display the following information from the Department of Health and
Human Services/National Institutes of Health so the user can evaluate his/her BMI:

4 2 3 3 9

number square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

BMI VALUES
Underweight: less than 18.5
Normal: between 18.5 and 24.9
Overweight: between 25 and 29.9
Obese: 30 or greater

BMI weightInPounds 703×
heightInInches heightInInches×
--=

BMI weightInKi ramslog
heightInMeters heightInMeters×
---=

68 Chapter 2 Introduction to Java Applications; Input/Output and Operators

[Note: In this chapter, you learned to use the int type to represent whole numbers. The BMI calcu-
lations when done with int values will both produce whole-number results. In Chapter 3 you’ll
learn to use the double type to represent numbers with decimal points. When the BMI calculations
are performed with doubles, they’ll both produce numbers with decimal points—these are called
“floating-point” numbers.]

2.34 (World Population Growth Calculator) Use the web to determine the current world pop-
ulation and the annual world population growth rate. Write an application that inputs these values,
then displays the estimated world population after one, two, three, four and five years.

2.35 (Car-Pool Savings Calculator) Research several car-pooling websites. Create an application
that calculates your daily driving cost, so that you can estimate how much money could be saved by
car pooling, which also has other advantages such as reducing carbon emissions and reducing traffic
congestion. The application should input the following information and display the user’s cost per
day of driving to work:

a) Total miles driven per day.
b) Cost per gallon of gasoline.
c) Average miles per gallon.
d) Parking fees per day.
e) Tolls per day.

3Introduction to Classes,
Objects, Methods and
Strings

Your public servants serve you
right.
—Adlai E. Stevenson

Nothing can have value without
being an object of utility.
—Karl Marx

O b j e c t i v e s
In this chapter you’ll learn:

■ How to declare a class and
use it to create an object.

■ How to implement a class’s
behaviors as methods.

■ How to implement a class’s
attributes as instance
variables.

■ How to call an object’s
methods to make them
perform their tasks.

■ What local variables of a
method are and how they
differ from instance variables.

■ What primitive types and
reference types are.

■ How to use a constructor to
initialize an object’s data.

■ How to represent and use
numbers containing decimal
points.

70 Chapter 3 Introduction to Classes, Objects, Methods and Strings

3.1 Introduction
[Note: This chapter depends on the terminology and concepts of object-oriented program-
ming introduced in Section 1.5, Introduction to Object Technology.]

In Chapter 2, you worked with existing classes, objects and methods. You used the pre-
defined standard output object System.out, invoking its methods print, println and
printf to display information on the screen. You used the existing Scanner class to create
an object that reads into memory integer data typed by the user at the keyboard. Through-
out the book, you’ll use many more preexisting classes and objects—this is one of the great
strengths of Java as an object-oriented programming language.

In this chapter, you’ll learn how to create your own classes and methods. Each new
class you create becomes a new type that can be used to declare variables and create objects.
You can declare new classes as needed; this is one reason why Java is known as an extensible
language.

We present a case study on creating and using a simple, real-world bank account
class—Account. Such a class should maintain as instance variables attributes such as its name
and balance, and provide methods for tasks such as querying the balance (getBalance),
making deposits that increase the balance (deposit) and making withdrawals that decrease
the balance (withdraw). We’ll build the getBalance and deposit methods into the class in
the chapter’s examples and you’ll add the withdraw method in the exercises.

In Chapter 2 we used the data type int to represent integers. In this chapter, we intro-
duce data type double to represent an account balance as a number that can contain a dec-
imal point—such numbers are called floating-point numbers. [In Chapter 8, when we get a
bit deeper into object technology, we’ll begin representing monetary amounts precisely with
class BigDecimal (package java.math) as you should do when writing industrial-strength
monetary applications.]

3.1 Introduction
3.2 Instance Variables, set Methods and

get Methods
3.2.1 Account Class with an Instance

Variable, a set Method and a get
Method

3.2.2 AccountTest Class That Creates
and Uses an Object of Class Account

3.2.3 Compiling and Executing an App with
Multiple Classes

3.2.4 Account UML Class Diagram with an
Instance Variable and set and get
Methods

3.2.5 Additional Notes on Class
AccountTest

3.2.6 Software Engineering with private
Instance Variables and public set
and get Methods

3.3 Primitive Types vs. Reference Types
3.4 Account Class: Initializing Objects

with Constructors
3.4.1 Declaring an Account Constructor

for Custom Object Initialization
3.4.2 Class AccountTest: Initializing

Account Objects When They’re
Created

3.5 Account Class with a Balance;
Floating-Point Numbers

3.5.1 Account Class with a balance
Instance Variable of Type double

3.5.2 AccountTest Class to Use Class
Account

3.6 (Optional) GUI and Graphics Case
Study: Using Dialog Boxes

3.7 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

3.2 Instance Variables, set Methods and get Methods 71

Typically, the apps you develop in this book will consist of two or more classes. If you
become part of a development team in industry, you might work on apps that contain
hundreds, or even thousands, of classes.

3.2 Instance Variables, set Methods and get Methods
In this section, you’ll create two classes—Account (Fig. 3.1) and AccountTest (Fig. 3.2).
Class AccountTest is an application class in which the main method will create and use an
Account object to demonstrate class Account’s capabilities.

3.2.1 Account Class with an Instance Variable, a set Method and a get
Method
Different accounts typically have different names. For this reason, class Account (Fig. 3.1)
contains a name instance variable. A class’s instance variables maintain data for each object
(that is, each instance) of the class. Later in the chapter we’ll add an instance variable named
balance so we can keep track of how much money is in the account. Class Account con-
tains two methods—method setName stores a name in an Account object and method
getName obtains a name from an Account object.

Class Declaration
The class declaration begins in line 5:

The keyword public (which Chapter 8 explains in detail) is an access modifier. For now,
we’ll simply declare every class public. Each public class declaration must be stored in a file
having the same name as the class and ending with the .java filename extension; otherwise,

1 // Fig. 3.1: Account.java
2 // Account class that contains a name instance variable
3 // and methods to set and get its value.
4
5 public class Account
6 {
7
8
9

10
11
12
13
14
15
16
17
18
19
20 } // end class Account

Fig. 3.1 | Account class that contains a name instance variable and methods to set and get its
value.

public class Account

private String name; // instance variable

// method to set the name in the object
public void setName(String name)
{
 this.name = name; // store the name
}

// method to retrieve the name from the object
public String getName()
{
 return name; // return value of name to caller
}

72 Chapter 3 Introduction to Classes, Objects, Methods and Strings

a compilation error will occur. Thus, public classes Account and AccountTest (Fig. 3.2)
must be declared in the separate files Account.java and AccountTest.java, respectively.

Every class declaration contains the keyword class followed immediately by the
class’s name—in this case, Account. Every class’s body is enclosed in a pair of left and right
braces as in lines 6 and 20 of Fig. 3.1.

Identifiers and Camel Case Naming
Class names, method names and variable names are all identifiers and by convention all use
the same camel case naming scheme we discussed in Chapter 2. Also by convention, class
names begin with an initial uppercase letter, and method names and variable names begin
with an initial lowercase letter.

Instance Variable name
Recall from Section 1.5 that an object has attributes, implemented as instance variables
and carried with it throughout its lifetime. Instance variables exist before methods are
called on an object, while the methods are executing and after the methods complete exe-
cution. Each object (instance) of the class has its own copy of the class’s instance variables.
A class normally contains one or more methods that manipulate the instance variables be-
longing to particular objects of the class.

Instance variables are declared inside a class declaration but outside the bodies of the
class’s methods. Line 7

declares instance variable name of type String outside the bodies of methods setName (lines
10–13) and getName (lines 16–19). String variables can hold character string values such
as "Jane Green". If there are many Account objects, each has its own name. Because name
is an instance variable, it can be manipulated by each of the class’s methods.

Access Modifiers public and private
Most instance-variable declarations are preceded with the keyword private (as in line 7).
Like public, private is an access modifier. Variables or methods declared with access mod-
ifier private are accessible only to methods of the class in which they’re declared. So, the
variable name can be used only in each Account object’s methods (setName and getName in
this case). You’ll soon see that this presents powerful software engineering opportunities.

setName Method of Class Account
Let’s walk through the code of setName’s method declaration (lines 10–13):

private String name; // instance variable

Good Programming Practice 3.1
We prefer to list a class’s instance variables first in the class’s body, so that you see the names
and types of the variables before they’re used in the class’s methods. You can list the class’s
instance variables anywhere in the class outside its method declarations, but scattering the
instance variables can lead to hard-to-read code.

public void setName(String name)
{
 this.name = name; // store the name
}

This line is the method header

3.2 Instance Variables, set Methods and get Methods 73

We refer to the first line of each method declaration (line 10 in this case) as the method
header. The method’s return type (which appears before the method name) specifies the
type of data the method returns to its caller after performing its task. The return type void
(line 10) indicates that setName will perform a task but will not return (i.e., give back) any
information to its caller. In Chapter 2, you used methods that return information—for ex-
ample, you used Scanner method nextInt to input an integer typed by the user at the key-
board. When nextInt reads a value from the user, it returns that value for use in the
program. As you’ll soon see, Account method getName returns a value.

Method setName receives parameter name of type String—which represents the name
that will be passed to the method as an argument. You’ll see how parameters and arguments
work together when we discuss the method call in line 21 of Fig. 3.2.

Parameters are declared in a parameter list, which is located inside the parentheses
that follow the method name in the method header. When there are multiple parameters,
each is separated from the next by a comma. Each parameter must specify a type (in this
case, String) followed by a variable name (in this case, name).

Parameters Are Local Variables
In Chapter 2, we declared all of an app’s variables in the main method. Variables declared
in a particular method’s body (such as main) are local variables which can be used only in
that method. Each method can access only its own local variables, not those of other meth-
ods. When a method terminates, the values of its local variables are lost. A method’s pa-
rameters also are local variables of the method.

setName Method Body
Every method body is delimited by a pair of braces (as in lines 11 and 13 of Fig. 3.1) con-
taining one or more statements that perform the method’s task(s). In this case, the method
body contains a single statement (line 12) that assigns the value of the name parameter (a
String) to the class’s name instance variable, thus storing the account name in the object.

If a method contains a local variable with the same name as an instance variable (as in
lines 10 and 7, respectively), that method’s body will refer to the local variable rather than
the instance variable. In this case, the local variable is said to shadow the instance variable
in the method’s body. The method’s body can use the keyword this to refer to the shad-
owed instance variable explicitly, as shown on the left side of the assignment in line 12.

After line 12 executes, the method has completed its task, so it returns to its caller. As
you’ll soon see, the statement in line 21 of main (Fig. 3.2) calls method setName.

getName Method of Class Account
Method getName (lines 16–19)

Good Programming Practice 3.2
We could have avoided the need for keyword this here by choosing a different name for
the parameter in line 10, but using the this keyword as shown in line 12 is a widely ac-
cepted practice to minimize the proliferation of identifier names.

public String getName()
{
 return name; // return value of name to caller
}

Keyword return passes the String name back to
the method’s caller

74 Chapter 3 Introduction to Classes, Objects, Methods and Strings

returns a particular Account object’s name to the caller. The method has an empty parame-
ter list, so it does not require additional information to perform its task. The method re-
turns a String. When a method that specifies a return type other than void is called and
completes its task, it must return a result to its caller. A statement that calls method get-
Name on an Account object (such as the ones in lines 16 and 26 of Fig. 3.2) expects to re-
ceive the Account’s name—a String, as specified in the method declaration’s return type.

The return statement in line 18 of Fig. 3.1 passes the String value of instance vari-
able name back to the caller. For example, when the value is returned to the statement in
lines 25–26 of Fig. 3.2, the statement uses that value to output the name.

3.2.2 AccountTest Class That Creates and Uses an Object of Class
Account
Next, we’d like to use class Account in an app and call each of its methods. A class that
contains a main method begins the execution of a Java app. Class Account cannot execute
by itself because it does not contain a main method—if you type java Account in the com-
mand window, you’ll get an error indicating “Main method not found in class Account.”
To fix this problem, you must either declare a separate class that contains a main method
or place a main method in class Account.

Driver Class AccountTest
To help you prepare for the larger programs you’ll encounter later in this book and in in-
dustry, we use a separate class AccountTest (Fig. 3.2) containing method main to test class
Account. Once main begins executing, it may call other methods in this and other classes;
those may, in turn, call other methods, and so on. Class AccountTest’s main method cre-
ates one Account object and calls its getName and setName methods. Such a class is some-
times called a driver class—just as a Person object drives a Car object by telling it what to
do (go faster, go slower, turn left, turn right, etc.), class AccountTest drives an Account
object, telling it what to do by calling its methods.

1 // Fig. 3.2: AccountTest.java
2 // Creating and manipulating an Account object.
3 import java.util.Scanner;
4
5 public class AccountTest
6 {
7 public static void main(String[] args)
8 {
9 // create a Scanner object to obtain input from the command window

10 Scanner input = new Scanner(System.in);
11
12
13
14
15 // display initial value of name (null)
16 System.out.printf("Initial name is: %s%n%n",);
17

Fig. 3.2 | Creating and manipulating an Account object. (Part 1 of 2.)

// create an Account object and assign it to myAccount
Account myAccount = new Account();

myAccount.getName()

3.2 Instance Variables, set Methods and get Methods 75

Scanner Object for Receiving Input from the User
Line 10 creates a Scanner object named input for inputting the name from the user. Line
19 prompts the user to enter a name. Line 20 uses the Scanner object’s nextLine method to
read the name from the user and assign it to the local variable theName. You type the name
and press Enter to submit it to the program. Pressing Enter inserts a newline character after
the characters you typed. Method nextLine reads characters (including white-space charac-
ters, such as the blank in "Jane Green") until it encounters the newline, then returns a
String containing the characters up to, but not including, the newline, which is discarded.

Class Scanner provides various other input methods, as you’ll see throughout the
book. A method similar to nextLine—named next—reads the next word. When you press
Enter after typing some text, method next reads characters until it encounters a white-space
character (such as a space, tab or newline), then returns a String containing the characters
up to, but not including, the white-space character, which is discarded. All information
after the first white-space character is not lost—it can be read by subsequent statements that
call the Scanner’s methods later in the program.

Instantiating an Object—Keyword new and Constructors
Line 13 creates an Account object and assigns it to variable myAccount of type Account.
Variable myAccount is initialized with the result of the class instance creation expression
new Account(). Keyword new creates a new object of the specified class—in this case, Ac-
count. The parentheses to the right of Account are required. As you’ll learn in Section 3.4,
those parentheses in combination with a class name represent a call to a constructor, which
is similar to a method but is called implicitly by the new operator to initialize an object’s
instance variables when the object is created. In Section 3.4, you’ll see how to place an ar-
gument in the parentheses to specify an initial value for an Account object’s name instance
variable—you’ll enhance class Account to enable this. For now, we simply leave the paren-
theses empty. Line 10 contains a class instance creation expression for a Scanner object—

18 // prompt for and read name
19 System.out.println("Please enter the name:");
20
21
22 System.out.println(); // outputs a blank line
23
24 // display the name stored in object myAccount
25 System.out.printf("Name in object myAccount is:%n%s%n",
26);
27 }
28 } // end class AccountTest

Initial name is: null

Please enter the name:
Jane Green

Name in object myAccount is:
Jane Green

Fig. 3.2 | Creating and manipulating an Account object. (Part 2 of 2.)

String theName = input.nextLine(); // read a line of text
myAccount.setName(theName); // put theName in myAccount

myAccount.getName()

76 Chapter 3 Introduction to Classes, Objects, Methods and Strings

the expression initializes the Scanner with System.in, which tells the Scanner where to
read the input from (i.e., the keyboard).

Calling Class Account’s getName Method
Line 16 displays the initial name, which is obtained by calling the object’s getName meth-
od. Just as we can use object System.out to call its methods print, printf and println,
we can use object myAccount to call its methods getName and setName. Line 16 calls
getName using the myAccount object created in line 13, followed by a dot separator (.),
then the method name getName and an empty set of parentheses because no arguments are
being passed. When getName is called:

1. The app transfers program execution from the call (line 16 in main) to method get-
Name’s declaration (lines 16–19 of Fig. 3.1). Because getName was called via the my-
Account object, getName “knows” which object’s instance variable to manipulate.

2. Next, method getName performs its task—that is, it returns the name (line 18 of
Fig. 3.1). When the return statement executes, program execution continues
where getName was called (line 16 in Fig. 3.2).

3. System.out.printf displays the String returned by method getName, then the
program continues executing at line 19 in main.

null—the Default Initial Value for String Variables
The first line of the output shows the name “null.” Unlike local variables, which are not
automatically initialized, every instance variable has a default initial value—a value provid-
ed by Java when you do not specify the instance variable’s initial value. Thus, instance vari-
ables are not required to be explicitly initialized before they’re used in a program—unless they
must be initialized to values other than their default values. The default value for an instance
variable of type String (like name in this example) is null, which we discuss further in
Section 3.3 when we consider reference types.

Calling Class Account’s setName Method
Line 21 calls myAccounts’s setName method. A method call can supply arguments whose
values are assigned to the corresponding method parameters. In this case, the value of
main’s local variable theName in parentheses is the argument that’s passed to setName so
that the method can perform its task. When setName is called:

1. The app transfers program execution from line 21 in main to setName method’s
declaration (lines 10–13 of Fig. 3.1), and the argument value in the call’s paren-
theses (theName) is assigned to the corresponding parameter (name) in the method
header (line 10 of Fig. 3.1). Because setName was called via the myAccount object,
setName “knows” which object’s instance variable to manipulate.

Error-Prevention Tip 3.1
Never use as a format-control a string that was input from the user. When method
System.out.printf evaluates the format-control string in its first argument, the method
performs tasks based on the conversion specifier(s) in that string. If the format-control string
were obtained from the user, a malicious user could supply conversion specifiers that would
be executed by System.out.printf, possibly causing a security breach.

3.2 Instance Variables, set Methods and get Methods 77

2. Next, method setName performs its task—that is, it assigns the name parameter’s
value to instance variable name (line 12 of Fig. 3.1).

3. When program execution reaches setName’s closing right brace, it returns to where
setName was called (line 21 of Fig. 3.2), then continues at line 22 of Fig. 3.2.

The number of arguments in a method call must match the number of parameters in
the method declaration’s parameter list. Also, the argument types in the method call must
be consistent with the types of the corresponding parameters in the method’s declaration.
(As you’ll learn in Chapter 6, an argument’s type and its corresponding parameter’s type
are not required to be identical.) In our example, the method call passes one argument of
type String (theName)—and the method declaration specifies one parameter of type
String (name, declared in line 10 of Fig. 3.1). So in this example, the type of the argument
in the method call exactly matches the type of the parameter in the method header.

Displaying the Name That Was Entered by the User
Line 22 of Fig. 3.2 outputs a blank line. When the second call to method getName (line 26)
executes, the name entered by the user in line 20 is displayed. When the statement at lines
25–26 completes execution, the end of method main is reached, so the program terminates.

3.2.3 Compiling and Executing an App with Multiple Classes
You must compile the classes in Figs. 3.1 and 3.2 before you can execute the app. This is
the first time you’ve created an app with multiple classes. Class AccountTest has a main
method; class Account does not. To compile this app, first change to the directory that
contains the app’s source-code files. Next, type the command

to compile both classes at once. If the directory containing the app includes only this app’s
files, you can compile both classes with the command

The asterisk (*) in *.java indicates that all files in the current directory ending with the
filename extension “.java” should be compiled. If both classes compile correctly—that is,
no compilation errors are displayed—you can then run the app with the command

3.2.4 Account UML Class Diagram with an Instance Variable and set
and get Methods
We’ll often use UML class diagrams to summarize a class’s attributes and operations. In in-
dustry, UML diagrams help systems designers specify a system in a concise, graphical, pro-
gramming-language-independent manner, before programmers implement the system in
a specific programming language. Figure 3.3 presents a UML class diagram for class Ac-
count of Fig. 3.1.

Top Compartment
In the UML, each class is modeled in a class diagram as a rectangle with three compart-
ments. In this diagram the top compartment contains the class name Account centered hor-
izontally in boldface type.

javac Account.java AccountTest.java

javac *.java

java AccountTest

78 Chapter 3 Introduction to Classes, Objects, Methods and Strings

Middle Compartment
The middle compartment contains the class’s attribute name, which corresponds to the in-
stance variable of the same name in Java. Instance variable name is private in Java, so the
UML class diagram lists a minus sign (–) access modifier before the attribute name. Follow-
ing the attribute name are a colon and the attribute type, in this case String.

Bottom Compartment
The bottom compartment contains the class’s operations, setName and getName, which
correspond to the methods of the same names in Java. The UML models operations by
listing the operation name preceded by an access modifier, in this case + getName. This plus
sign (+) indicates that getName is a public operation in the UML (because it’s a public
method in Java). Operation getName does not have any parameters, so the parentheses fol-
lowing the operation name in the class diagram are empty, just as they are in the method’s
declaration in line 16 of Fig. 3.1. Operation setName, also a public operation, has a String
parameter called name.

Return Types
The UML indicates the return type of an operation by placing a colon and the return type
after the parentheses following the operation name. Account method getName (Fig. 3.1)
has a String return type. Method setName does not return a value (because it returns void
in Java), so the UML class diagram does not specify a return type after the parentheses of
this operation.

Parameters
The UML models a parameter a bit differently from Java by listing the parameter name,
followed by a colon and the parameter type in the parentheses after the operation name.
The UML has its own data types similar to those of Java, but for simplicity, we’ll use the
Java data types. Account method setName (Fig. 3.1) has a String parameter named name,
so Fig. 3.3 lists name : String between the parentheses following the method name.

3.2.5 Additional Notes on Class AccountTest
static Method main
In Chapter 2, each class we declared had one method named main. Recall that main is a
special method that’s always called automatically by the Java Virtual Machine (JVM) when
you execute an app. You must call most other methods explicitly to tell them to perform
their tasks.

Lines 7–27 of Fig. 3.2 declare method main. A key part of enabling the JVM to locate
and call method main to begin the app’s execution is the static keyword (line 7), which

Fig. 3.3 | UML class diagram for class Account of Fig. 3.1.

Account

– name : String

+ setName(name : String)
+ getName() : String

Top compartment

Middle compartment

Bottom compartment

3.2 Instance Variables, set Methods and get Methods 79

indicates that main is a static method. A static method is special, because you can call it
without first creating an object of the class in which the method is declared—in this case class
AccountTest. We discuss static methods in detail in Chapter 6.

Notes on import Declarations
Notice the import declaration in Fig. 3.2 (line 3), which indicates to the compiler that the
program uses class Scanner. As you learned in Chapter 2, classes System and String are
in package java.lang, which is implicitly imported into every Java program, so all pro-
grams can use that package’s classes without explicitly importing them. Most other classes
you’ll use in Java programs must be imported explicitly.

There’s a special relationship between classes that are compiled in the same directory,
like classes Account and AccountTest. By default, such classes are considered to be in the
same package—known as the default package. Classes in the same package are implicitly
imported into the source-code files of other classes in that package. Thus, an import dec-
laration is not required when one class in a package uses another in the same package—
such as when class AccountTest uses class Account.

The import declaration in line 3 is not required if we refer to class Scanner
throughout this file as java.util.Scanner, which includes the full package name and class
name. This is known as the class’s fully qualified class name. For example, line 10 of
Fig. 3.2 also could be written as

3.2.6 Software Engineering with private Instance Variables and
public set and get Methods
As you’ll see, through the use of set and get methods, you can validate attempted modifi-
cations to private data and control how that data is presented to the caller—these are
compelling software engineering benefits. We’ll discuss this in more detail in Section 3.5.

If the instance variable were public, any client of the class—that is, any other class
that calls the class’s methods—could see the data and do whatever it wanted with it,
including setting it to an invalid value.

You might think that even though a client of the class cannot directly access a private
instance variable, the client can do whatever it wants with the variable through public set
and get methods. You would think that you could peek at the private data any time with
the public get method and that you could modify the private data at will through the
public set method. But set methods can be programmed to validate their arguments and
reject any attempts to set the data to bad values, such as a negative body temperature, a day
in March out of the range 1 through 31, a product code not in the company’s product
catalog, etc. And a get method can present the data in a different form. For example, a
Grade class might store a grade as an int between 0 and 100, but a getGrade method
might return a letter grade as a String, such as "A" for grades between 90 and 100, "B"
for grades between 80 and 89, etc. Tightly controlling the access to and presentation of

java.util.Scanner input = new java.util.Scanner(System.in);

Software Engineering Observation 3.1
The Java compiler does not require import declarations in a Java source-code file if the
fully qualified class name is specified every time a class name is used. Most Java
programmers prefer the more concise programming style enabled by import declarations.

80 Chapter 3 Introduction to Classes, Objects, Methods and Strings

private data can greatly reduce errors, while increasing the robustness and security of
your programs.

Declaring instance variables with access modifier private is known as data hiding or
information hiding. When a program creates (instantiates) an object of class Account, vari-
able name is encapsulated (hidden) in the object and can be accessed only by methods of
the object’s class.

Conceptual View of an Account Object with Encapsulated Data
You can think of an Account object as shown in Fig. 3.4. The private instance variable
name is hidden inside the object (represented by the inner circle containing name) and pro-
tected by an outer layer of public methods (represented by the outer circle containing get-
Name and setName). Any client code that needs to interact with the Account object can do
so only by calling the public methods of the protective outer layer.

3.3 Primitive Types vs. Reference Types
Java’s types are divided into primitive types and reference types. In Chapter 2, you worked
with variables of type int—one of the primitive types. The other primitive types are
boolean, byte, char, short, long, float and double, each of which we discuss in this
book—these are summarized in Appendix D. All nonprimitive types are reference types, so
classes, which specify the types of objects, are reference types.

A primitive-type variable can hold exactly one value of its declared type at a time. For
example, an int variable can store one integer at a time. When another value is assigned
to that variable, the new value replaces the previous one—which is lost.

Recall that local variables are not initialized by default. Primitive-type instance vari-
ables are initialized by default—instance variables of types byte, char, short, int, long,
float and double are initialized to 0, and variables of type boolean are initialized to

Software Engineering Observation 3.2
Precede each instance variable and method declaration with an access modifier.
Generally, instance variables should be declared private and methods public. Later in
the book, we’ll discuss why you might want to declare a method private.

Fig. 3.4 | Conceptual view of an Account object with its encapsulated private instance
variable name and protective layer of public methods.

ge
tN

am
e

se
tN

am
e

name

3.4 Account Class: Initializing Objects with Constructors 81

false. You can specify your own initial value for a primitive-type variable by assigning the
variable a value in its declaration, as in

Programs use variables of reference types (normally called references) to store the
addresses of objects in the computer’s memory. Such a variable is said to refer to an object
in the program. Objects that are referenced may each contain many instance variables. Line
10 of Fig. 3.2:

creates an object of class Scanner, then assigns to the variable input a reference to that
Scanner object. Line 13 of Fig. 3.2:

creates an object of class Account, then assigns to the variable myAccount a reference to that
Account object. Reference-type instance variables, if not explicitly initialized, are initialized
by default to the value null—which represents a “reference to nothing.” That’s why the
first call to getName in line 16 of Fig. 3.2 returns null—the value of name has not yet been
set, so the default initial value null is returned.

To call methods on an object, you need a reference to the object. In Fig. 3.2, the state-
ments in method main use the variable myAccount to call methods getName (lines 16 and
26) and setName (line 21) to interact with the Account object. Primitive-type variables do
not refer to objects, so such variables cannot be used to call methods.

3.4 Account Class: Initializing Objects with Constructors
As mentioned in Section 3.2, when an object of class Account (Fig. 3.1) is created, its
String instance variable name is initialized to null by default. But what if you want to pro-
vide a name when you create an Account object?

Each class you declare can optionally provide a constructor with parameters that can
be used to initialize an object of a class when the object is created. Java requires a con-
structor call for every object that’s created, so this is the ideal point to initialize an object’s
instance variables. The next example enhances class Account (Fig. 3.5) with a constructor
that can receive a name and use it to initialize instance variable name when an Account
object is created (Fig. 3.6).

3.4.1 Declaring an Account Constructor for Custom Object
Initialization
When you declare a class, you can provide your own constructor to specify custom initial-
ization for objects of your class. For example, you might want to specify a name for an Ac-
count object when the object is created, as in line 10 of Fig. 3.6:

In this case, the String argument "Jane Green" is passed to the Account object’s construc-
tor and used to initialize the name instance variable. The preceding statement requires that
the class provide a constructor that takes only a String parameter. Figure 3.5 contains a
modified Account class with such a constructor.

private int numberOfStudents = 10;

Scanner input = new Scanner(System.in);

Account myAccount = new Account();

Account account1 = new Account("Jane Green");

82 Chapter 3 Introduction to Classes, Objects, Methods and Strings

Account Constructor Declaration
Lines 9–12 of Fig. 3.5 declare Account’s constructor. A constructor must have the same name
as the class. A constructor’s parameter list specifies that the constructor requires one or more
pieces of data to perform its task. Line 9 indicates that the constructor has a String param-
eter called name. When you create a new Account object (as you’ll see in Fig. 3.6), you’ll pass
a person’s name to the constructor, which will receive that name in the parameter name. The
constructor will then assign name to instance variable name in line 11.

Parameter name of Class Account’s Constructor and Method setName
Recall from Section 3.2.1 that method parameters are local variables. In Fig. 3.5, the con-
structor and method setName both have a parameter called name. Although these param-
eters have the same identifier (name), the parameter in line 9 is a local variable of the
constructor that’s not visible to method setName, and the one in line 15 is a local variable
of setName that’s not visible to the constructor.

3.4.2 Class AccountTest: Initializing Account Objects When They’re
Created
The AccountTest program (Fig. 3.6) initializes two Account objects using the construc-
tor. Line 10 creates and initializes the Account object account1. Keyword new requests

1 // Fig. 3.5: Account.java
2 // Account class with a constructor that initializes the name.
3
4 public class Account
5 {
6 private String name; // instance variable
7
8
9

10
11
12
13
14 // method to set the name
15 public void setName(String name)
16 {
17 this.name = name;
18 }
19
20 // method to retrieve the name
21 public String getName()
22 {
23 return name;
24 }
25 } // end class Account

Fig. 3.5 | Account class with a constructor that initializes the name.

Error-Prevention Tip 3.2
Even though it’s possible to do so, do not call methods from constructors. We’ll explain this
in Chapter 10, Object-Oriented Programming: Polymorphism and Interfaces.

// constructor initializes name with parameter name
public Account(String name) // constructor name is class name
{
 this.name = name;
}

3.4 Account Class: Initializing Objects with Constructors 83

memory from the system to store the Account object, then implicitly calls the class’s con-
structor to initialize the object. The call is indicated by the parentheses after the class
name, which contain the argument "Jane Green" that’s used to initialize the new object’s
name. The class instance creation expression in line 10 returns a reference to the new ob-
ject, which is assigned to the variable account1. Line 11 repeats this process, passing the
argument "John Blue" to initialize the name for account2. Lines 14–15 use each object’s
getName method to obtain the names and show that they were indeed initialized when the
objects were created. The output shows different names, confirming that each Account
maintains its own copy of instance variable name.

Constructors Cannot Return Values
An important difference between constructors and methods is that constructors cannot re-
turn values, so they cannot specify a return type (not even void). Normally, constructors
are declared public—later in the book we’ll explain when to use private constructors.

Default Constructor
Recall that line 13 of Fig. 3.2

used new to create an Account object. The empty parentheses after “new Account” indicate a
call to the class’s default constructor—in any class that does not explicitly declare a construc-
tor, the compiler provides a default constructor (which always has no parameters). When a
class has only the default constructor, the class’s instance variables are initialized to their de-
fault values. In Section 8.5, you’ll learn that classes can have multiple constructors.

1 // Fig. 3.6: AccountTest.java
2 // Using the Account constructor to initialize the name instance
3 // variable at the time each Account object is created.
4
5 public class AccountTest
6 {
7 public static void main(String[] args)
8 {
9

10
11
12
13 // display initial value of name for each Account
14 System.out.printf("account1 name is: %s%n", account1.getName());
15 System.out.printf("account2 name is: %s%n", account2.getName());
16 }
17 } // end class AccountTest

account1 name is: Jane Green
account2 name is: John Blue

Fig. 3.6 | Using the Account constructor to initialize the name instance variable at the time each
Account object is created.

Account myAccount = new Account();

// create two Account objects
Account account1 = new Account("Jane Green");
Account account2 = new Account("John Blue");

84 Chapter 3 Introduction to Classes, Objects, Methods and Strings

There’s No Default Constructor in a Class That Declares a Constructor
If you declare a constructor for a class, the compiler will not create a default constructor for
that class. In that case, you will not be able to create an Account object with the class in-
stance creation expression new Account() as we did in Fig. 3.2—unless the custom con-
structor you declare takes no parameters.

Adding the Constructor to Class Account’s UML Class Diagram
The UML class diagram of Fig. 3.7 models class Account of Fig. 3.5, which has a construc-
tor with a String name parameter. Like operations, the UML models constructors in the
third compartment of a class diagram. To distinguish a constructor from the class’s oper-
ations, the UML requires that the word “constructor” be enclosed in guillemets (« and »)
and placed before the constructor’s name. It’s customary to list constructors before other
operations in the third compartment.

3.5 Account Class with a Balance; Floating-Point
Numbers
We now declare an Account class that maintains the balance of a bank account in addition
to the name. Most account balances are not integers. So, class Account represents the ac-
count balance as a floating-point number—a number with a decimal point, such as 43.95,
0.0, –129.8873. [In Chapter 8, we’ll begin representing monetary amounts precisely with
class BigDecimal as you should do when writing industrial-strength monetary applications.]

Java provides two primitive types for storing floating-point numbers in memory—
float and double. Variables of type float represent single-precision floating-point num-
bers and can hold up to seven significant digits. Variables of type double represent double-
precision floating-point numbers. These require twice as much memory as float variables
and can hold up to 15 significant digits—about double the precision of float variables.

Most programmers represent floating-point numbers with type double. In fact, Java
treats all floating-point numbers you type in a program’s source code (such as 7.33 and
0.0975) as double values by default. Such values in the source code are known as floating-
point literals. See Appendix D, Primitive Types, for the precise ranges of values for floats
and doubles.

Software Engineering Observation 3.3
Unless default initialization of your class’s instance variables is acceptable, provide a
custom constructor to ensure that your instance variables are properly initialized with
meaningful values when each new object of your class is created.

Fig. 3.7 | UML class diagram for Account class of Fig. 3.5.

Account

– name : String

«constructor» Account(name: String)
+ setName(name: String)
+ getName() : String

3.5 Account Class with a Balance; Floating-Point Numbers 85

3.5.1 Account Class with a balance Instance Variable of Type double
Our next app contains a version of class Account (Fig. 3.8) that maintains as instance vari-
ables the name and the balance of a bank account. A typical bank services many accounts,
each with its own balance, so line 8 declares an instance variable balance of type double.
Every instance (i.e., object) of class Account contains its own copies of both the name and
the balance.

1 // Fig. 3.8: Account.java
2 // Account class with a double instance variable balance and a constructor
3 // and deposit method that perform validation.
4
5 public class Account
6 {
7 private String name; // instance variable
8
9

10 // Account constructor that receives two parameters
11
12 {
13 this.name = name; // assign name to instance variable name
14
15 // validate that the balance is greater than 0.0; if it's not,
16 // instance variable balance keeps its default initial value of 0.0
17
18
19 }
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 // method that sets the name
35 public void setName(String name)
36 {
37 this.name = name;
38 }
39
40 // method that returns the name
41 public String getName()
42 {

Fig. 3.8 | Account class with a double instance variable balance and a constructor and
deposit method that perform validation. (Part 1 of 2.)

private double balance; // instance variable

public Account(String name, double balance)

if (balance > 0.0) // if the balance is valid
 this.balance = balance; // assign it to instance variable balance

// method that deposits (adds) only a valid amount to the balance
public void deposit(double depositAmount)
{
 if (depositAmount > 0.0) // if the depositAmount is valid
 balance = balance + depositAmount; // add it to the balance
}

// method returns the account balance
public double getBalance()
{
 return balance;
}

86 Chapter 3 Introduction to Classes, Objects, Methods and Strings

Account Class Two-Parameter Constructor
The class has a constructor and four methods. It’s common for someone opening an account
to deposit money immediately, so the constructor (lines 11–19) now receives a second pa-
rameter—initialBalance of type double that represents the starting balance. Lines 17–18
ensure that initialBalance is greater than 0.0. If so, initialBalance’s value is assigned to
instance variable balance. Otherwise, balance remains at 0.0—its default initial value.

Account Class deposit Method
Method deposit (lines 22–26) does not return any data when it completes its task, so its
return type is void. The method receives one parameter named depositAmount—a dou-
ble value that’s added to the balance only if the parameter value is valid (i.e., greater than
zero). Line 25 first adds the current balance and depositAmount, forming a temporary
sum which is then assigned to balance, replacing its prior value (recall that addition has a
higher precedence than assignment). It’s important to understand that the calculation on
the right side of the assignment operator in line 25 does not modify the balance—that’s
why the assignment is necessary.

Account Class getBalance Method
Method getBalance (lines 29–32) allows clients of the class (i.e., other classes whose meth-
ods call the methods of this class) to obtain the value of a particular Account object’s bal-
ance. The method specifies return type double and an empty parameter list.

Account’s Methods Can All Use balance
Once again, the statements in lines 18, 25 and 31 use the variable balance even though it
was not declared in any of the methods. We can use balance in these methods because it’s
an instance variable of the class.

3.5.2 AccountTest Class to Use Class Account
Class AccountTest (Fig. 3.9) creates two Account objects (lines 9–10) and initializes them
with a valid balance of 50.00 and an invalid balance of -7.53, respectively—for the pur-
pose of our examples, we assume that balances must be greater than or equal to zero. The
calls to method System.out.printf in lines 13–16 output the account names and bal-
ances, which are obtained by calling each Account’s getName and getBalance methods.

43 return name; // give value of name back to caller
44 } // end method getName
45 } // end class Account

1 // Fig. 3.9: AccountTest.java
2 // Inputting and outputting floating-point numbers with Account objects.
3 import java.util.Scanner;

Fig. 3.9 | Inputting and outputting floating-point numbers with Account objects. (Part 1 of 3.)

Fig. 3.8 | Account class with a double instance variable balance and a constructor and
deposit method that perform validation. (Part 2 of 2.)

3.5 Account Class with a Balance; Floating-Point Numbers 87

4
5 public class AccountTest
6 {
7 public static void main(String[] args)
8 {
9

10
11
12 // display initial balance of each object
13 System.out.printf("%s balance: $ %n",
14 account1.getName(),);
15 System.out.printf("%s balance: $ %n%n",
16 account2.getName(),);
17
18 // create a Scanner to obtain input from the command window
19 Scanner input = new Scanner(System.in);
20
21 System.out.print("Enter deposit amount for account1: "); // prompt
22
23 System.out.printf("%nadding to account1 balance%n%n",
24 depositAmount);
25
26
27 // display balances
28 System.out.printf("%s balance: $ %n",
29 account1.getName(),);
30 System.out.printf("%s balance: $ %n%n",
31 account2.getName(),);
32
33 System.out.print("Enter deposit amount for account2: "); // prompt
34
35 System.out.printf("%nadding to account2 balance%n%n",
36 depositAmount);
37
38
39 // display balances
40 System.out.printf("%s balance: $ %n",
41 account1.getName(),);
42 System.out.printf("%s balance: $ %n%n",
43 account2.getName(),);
44 } // end main
45 } // end class AccountTest

Jane Green balance: $50.00
John Blue balance: $0.00

Enter deposit amount for account1: 25.53

adding 25.53 to account1 balance

Jane Green balance: $75.53
John Blue balance: $0.00

Fig. 3.9 | Inputting and outputting floating-point numbers with Account objects. (Part 2 of 3.)

Account account1 = new Account("Jane Green", 50.00);
Account account2 = new Account("John Blue", -7.53);

%.2f
account1.getBalance()

%.2f
account2.getBalance()

double depositAmount = input.nextDouble(); // obtain user input
%.2f

account1.deposit(depositAmount); // add to account1’s balance

%.2f
account1.getBalance()

%.2f
account2.getBalance()

depositAmount = input.nextDouble(); // obtain user input
%.2f

account2.deposit(depositAmount); // add to account2 balance

%.2f
account1.getBalance()

%.2f
account2.getBalance()

88 Chapter 3 Introduction to Classes, Objects, Methods and Strings

Displaying the Account Objects’ Initial Balances
When method getBalance is called for account1 from line 14, the value of account1’s
balance is returned from line 31 of Fig. 3.8 and displayed by the System.out.printf
statement (Fig. 3.9, lines 13–14). Similarly, when method getBalance is called for
account2 from line 16, the value of the account2’s balance is returned from line 31 of
Fig. 3.8 and displayed by the System.out.printf statement (Fig. 3.9, lines 15–16). The
balance of account2 is initially 0.00, because the constructor rejected the attempt to start
account2 with a negative balance, so the balance retains its default initial value.

Formatting Floating-Point Numbers for Display
Each of the balances is output by printf with the format specifier %.2f. The %f format
specifier is used to output values of type float or double. The .2 between % and f repre-
sents the number of decimal places (2) that should be output to the right of the decimal
point in the floating-point number—also known as the number’s precision. Any floating-
point value output with %.2f will be rounded to the hundredths position—for example,
123.457 would be rounded to 123.46 and 27.33379 would be rounded to 27.33.

Reading a Floating-Point Value from the User and Making a Deposit
Line 21 (Fig. 3.9) prompts the user to enter a deposit amount for account1. Line 22 de-
clares local variable depositAmount to store each deposit amount entered by the user. Un-
like instance variables (such as name and balance in class Account), local variables (like
depositAmount in main) are not initialized by default, so they normally must be initialized
explicitly. As you’ll learn momentarily, variable depositAmount’s initial value will be de-
termined by the user’s input.

Line 22 obtains the input from the user by calling Scanner object input’s nextDouble
method, which returns a double value entered by the user. Lines 23–24 display the
depositAmount. Line 25 calls object account1’s deposit method with the depositAmount
as the method’s argument. When the method is called, the argument’s value is assigned to
the parameter depositAmount of method deposit (line 22 of Fig. 3.8); then method
deposit adds that value to the balance. Lines 28–31 (Fig. 3.9) output the names and bal-
ances of both Accounts again to show that only account1’s balance has changed.

Enter deposit amount for account2: 123.45

adding 123.45 to account2 balance

Jane Green balance: $75.53
John Blue balance: $123.45

Common Programming Error 3.1
The Java compiler will issue a compilation error if you attempt to use the value of an un-
initialized local variable. This helps you avoid dangerous execution-time logic errors. It’s
always better to get the errors out of your programs at compilation time rather than exe-
cution time.

Fig. 3.9 | Inputting and outputting floating-point numbers with Account objects. (Part 3 of 3.)

3.5 Account Class with a Balance; Floating-Point Numbers 89

Line 33 prompts the user to enter a deposit amount for account2. Line 34 obtains the
input from the user by calling Scanner object input’s nextDouble method. Lines 35–36
display the depositAmount. Line 37 calls object account2’s deposit method with
depositAmount as the method’s argument; then method deposit adds that value to the
balance. Finally, lines 40–43 output the names and balances of both Accounts again to
show that only account2’s balance has changed.

Duplicated Code in Method main
The six statements at lines 13–14, 15–16, 28–29, 30–31, 40–41 and 42–43 are almost
identical—they each output an Account’s name and balance. They differ only in the name
of the Account object—account1 or account2. Duplicate code like this can create code
maintenance problems when that code needs to be updated—if six copies of the same code
all have the same error or update to be made, you must make that change six times, without
making errors. Exercise 3.15 asks you to modify Fig. 3.9 to include a displayAccount
method that takes as a parameter an Account object and outputs the object’s name and
balance. You’ll then replace main’s duplicated statements with six calls to displayAc-
count, thus reducing the size of your program and improving its maintainability by having
one copy of the code that displays an Account’s name and balance.

UML Class Diagram for Class Account
The UML class diagram in Fig. 3.10 concisely models class Account of Fig. 3.8. The dia-
gram models in its second compartment the private attributes name of type String and
balance of type double.

Class Account’s constructor is modeled in the third compartment with parameters name
of type String and initialBalance of type double. The class’s four public methods also
are modeled in the third compartment—operation deposit with a depositAmount param-
eter of type double, operation getBalance with a return type of double, operation set-
Name with a name parameter of type String and operation getName with a return type of
String.

Software Engineering Observation 3.4
Replacing duplicated code with calls to a method that contains one copy of that code can
reduce the size of your program and improve its maintainability.

Fig. 3.10 | UML class diagram for Account class of Fig. 3.8.

Account

– name : String
– balance : double

«constructor» Account(name : String, balance: double)
+ deposit(depositAmount : double)
+ getBalance() : double
+ setName(name : String)
+ getName() : String

90 Chapter 3 Introduction to Classes, Objects, Methods and Strings

3.6 (Optional) GUI and Graphics Case Study: Using
Dialog Boxes
This optional case study is designed for those who want to begin learning Java’s powerful
capabilities for creating graphical user interfaces (GUIs) and graphics early in the book,
before the deeper discussions of these topics later in the book. This case study features
Java’s mature Swing technology, which as of this writing is still a bit more popular than
the newer JavaFX technology presented in later chapters.

This GUI and Graphics Case Study appears in 10 brief sections (see Fig. 3.11). Each
section introduces new concepts and provides examples with screen captures that show
sample interactions and results. In the first few sections, you’ll create your first graphical
apps. In subsequent sections, you’ll use object-oriented programming concepts to create
an app that draws a variety of shapes. When we formally introduce GUIs in Chapter 12,
we use the mouse to choose exactly which shapes to draw and where to draw them. In
Chapter 13, we add capabilities of the Java 2D graphics API to draw the shapes with dif-
ferent line thicknesses and fills. We hope you find this case study informative and enter-
taining.

Displaying Text in a Dialog Box
The programs presented thus far display output in the command window. Many apps use
windows or dialog boxes (also called dialogs) to display output. Web browsers such as
Chrome, Firefox, Internet Explorer, Safari and Opera display web pages in their own win-
dows. E-mail programs allow you to type and read messages in a window. Typically, dialog
boxes are windows in which programs display important messages to users. Class JOption-
Pane provides prebuilt dialog boxes that enable programs to display windows containing
messages—such windows are called message dialogs. Figure 3.12 displays the String
"Welcome to Java" in a message dialog.

Location Title—Exercise(s)

Section 3.6 Using Dialog Boxes—Basic input and output with dialog boxes

Section 4.15 Creating Simple Drawings—Displaying and drawing lines on the
screen

Section 5.11 Drawing Rectangles and Ovals—Using shapes to represent data

Section 6.13 Colors and Filled Shapes—Drawing a bull’s-eye and random graphics

Section 7.17 Drawing Arcs—Drawing spirals with arcs

Section 8.16 Using Objects with Graphics—Storing shapes as objects

Section 9.7 Displaying Text and Images Using Labels—Providing status
information

Section 10.10 Drawing with Polymorphism—Identifying the similarities between
shapes

Exercise 12.17 Expanding the Interface—Using GUI components and event handling

Exercise 13.31 Adding Java 2D—Using the Java 2D API to enhance drawings

Fig. 3.11 | Summary of the GUI and Graphics Case Study in each chapter.

3.6 (Optional) GUI and Graphics Case Study: Using Dialog Boxes 91

JOptionPane Class static Method showMessagDialog
Line 3 indicates that the program uses class JOptionPane from package javax.swing. This
package contains many classes that help you create graphical user interfaces (GUIs). GUI
components facilitate data entry by a program’s user and presentation of outputs to the
user. Line 10 calls JOptionPane method showMessageDialog to display a dialog box con-
taining a message. The method requires two arguments. The first helps the Java app de-
termine where to position the dialog box. A dialog is typically displayed from a GUI app
with its own window. The first argument refers to that window (known as the parent win-
dow) and causes the dialog to appear centered over the app’s window. If the first argument
is null, the dialog box is displayed at the center of your screen. The second argument is
the String to display in the dialog box.

Introducing static Methods
JOptionPane method showMessageDialog is a so-called static method. Such methods
often define frequently used tasks. For example, many programs display dialog boxes, and
the code to do this is the same each time. Rather than requiring you to “reinvent the
wheel” and create code to display a dialog, the designers of class JOptionPane declared a
static method that performs this task for you. A static method is called by using its class
name followed by a dot (.) and the method name, as in

Notice that you do not create an object of class JOptionPane to use its static method
showMessageDialog.We discuss static methods in more detail in Chapter 6.

Entering Text in a Dialog
Figure 3.13 uses another predefined JOptionPane dialog called an input dialog that allows
the user to enter data into a program. The program asks for the user’s name and responds
with a message dialog containing a greeting and the name that the user entered.

1 // Fig. 3.12: Dialog1.java
2 // Using JOptionPane to display multiple lines in a dialog box.
3 import javax.swing.JOptionPane;
4
5 public class Dialog1
6 {
7 public static void main(String[] args)
8 {
9

10
11 }
12 } // end class Dialog1

Fig. 3.12 | Using JOptionPane to display multiple lines in a dialog box.

ClassName.methodName(arguments)

// display a dialog with a message
JOptionPane.showMessageDialog(null, "Welcome to Java");

92 Chapter 3 Introduction to Classes, Objects, Methods and Strings

JOptionPane Class static Method showInputDialog
Line 10 uses JOptionPane method showInputDialog to display an input dialog containing
a prompt and a field (known as a text field) in which the user can enter text. Method show-
InputDialog’s argument is the prompt that indicates what the user should enter. The user
types characters in the text field, then clicks the OK button or presses the Enter key to re-
turn the String to the program. Method showInputDialog returns a String containing
the characters typed by the user. We store the String in variable name. If you press the
dialog’s Cancel button or press the Esc key, the method returns null and the program dis-
plays the word “null” as the name.

String Class static Method format
Lines 13–14 use static String method format to return a String containing a greeting
with the user’s name. Method format works like method System.out.printf, except that
format returns the formatted String rather than displaying it in a command window.
Line 17 displays the greeting in a message dialog, just as we did in Fig. 3.12.

GUI and Graphics Case Study Exercise
3.1 Modify the addition program in Fig. 2.7 to use dialog-based input and output with the
methods of class JOptionPane. Since method showInputDialog returns a String, you must convert
the String the user enters to an int for use in calculations. The static method parseInt of class
Integer (package java.lang) takes a String argument representing an integer and returns the value
as an int. If the String does not contain a valid integer, the program will terminate with an error.

1 // Fig. 3.13: NameDialog.java
2 // Obtaining user input from a dialog.
3
4
5 public class NameDialog
6 {
7 public static void main(String[] args)
8 {
9

10
11
12
13
14
15
16
17
18 } // end main
19 } // end class NameDialog

Fig. 3.13 | Obtaining user input from a dialog.

import javax.swing.JOptionPane;

// prompt user to enter name
String name = JOptionPane.showInputDialog("What is your name?");

// create the message
String message =
 String.format("Welcome, %s, to Java Programming!", name);

// display the message to welcome the user by name
JOptionPane.showMessageDialog(null, message);

3.7 Wrap-Up 93

3.7 Wrap-Up
In this chapter, you learned how to create your own classes and methods, create objects of
those classes and call methods of those objects to perform useful actions. You declared in-
stance variables of a class to maintain data for each object of the class, and you declared
your own methods to operate on that data. You learned how to call a method to tell it to
perform its task and how to pass information to a method as arguments whose values are
assigned to the method’s parameters. You learned the difference between a local variable
of a method and an instance variable of a class, and that only instance variables are initial-
ized automatically. You also learned how to use a class’s constructor to specify the initial
values for an object’s instance variables. You saw how to create UML class diagrams that
model the methods, attributes and constructors of classes. Finally, you learned about float-
ing-point numbers (numbers with decimal points)—how to store them with variables of
primitive type double, how to input them with a Scanner object and how to format them
with printf and format specifier %f for display purposes. [In Chapter 8, we’ll begin rep-
resenting monetary amounts precisely with class BigDecimal.] You may have also begun
the optional GUI and Graphics case study, learning how to write your first GUI applica-
tions. In the next chapter we begin our introduction to control statements, which specify
the order in which a program’s actions are performed. You’ll use these in your methods to
specify how they should order their tasks.

Summary
Section 3.2 Instance Variables, set Methods and get Methods
• Each class you create becomes a new type that can be used to declare variables and create objects.

• You can declare new classes as needed; this is one reason Java is known as an extensible language.

Section 3.2.1 Account Class with an Instance Variable, a set Method and a get Method
• Each class declaration that begins with the access modifier (p. 71) public must be stored in a file

that has the same name as the class and ends with the .java filename extension.

• Every class declaration contains keyword class followed immediately by the class’s name.

• Class, method and variable names are identifiers. By convention all use camel case names. Class
names begin with an uppercase letter, and method and variable names begin with a lowercase
letter.

• An object has attributes that are implemented as instance variables (p. 72) and carried with it
throughout its lifetime.

• Instance variables exist before methods are called on an object, while the methods are executing
and after the methods complete execution.

• A class normally contains one or more methods that manipulate the instance variables that be-
long to particular objects of the class.

• Instance variables are declared inside a class declaration but outside the bodies of the class’s meth-
od declarations.

• Each object (instance) of the class has its own copy of each of the class’s instance variables.

• Most instance-variable declarations are preceded with the keyword private (p. 72), which is an
access modifier. Variables or methods declared with access modifier private are accessible only
to methods of the class in which they’re declared.

94 Chapter 3 Introduction to Classes, Objects, Methods and Strings

• Parameters are declared in a comma-separated parameter list (p. 73), which is located inside the
parentheses that follow the method name in the method declaration. Multiple parameters are
separated by commas. Each parameter must specify a type followed by a variable name.

• Variables declared in the body of a particular method are local variables and can be used only in
that method. When a method terminates, the values of its local variables are lost. A method’s pa-
rameters are local variables of the method.

• Every method’s body is delimited by left and right braces ({ and }).

• Each method’s body contains one or more statements that perform the method’s task(s).

• The method’s return type specifies the type of data returned to a method’s caller. Keyword void
indicates that a method will perform a task but will not return any information.

• Empty parentheses following a method name indicate that the method does not require any pa-
rameters to perform its task.

• When a method that specifies a return type (p. 73) other than void is called and completes its
task, the method must return a result to its calling method.

• The return statement (p. 74) passes a value from a called method back to its caller.

• Classes often provide public methods to allow the class’s clients to set or get private instance
variables. The names of these methods need not begin with set or get, but this naming convention
is recommended.

Section 3.2.2 AccountTest Class That Creates and Uses an Object of Class Account
• A class that creates an object of another class, then calls the object’s methods, is a driver class.

• Scanner method nextLine (p. 75) reads characters until a newline character is encountered, then
returns the characters as a String.

• Scanner method next (p. 75) reads characters until any white-space character is encountered,
then returns the characters as a String.

• A class instance creation expression (p. 75) begins with keyword new and creates a new object.

• A constructor is similar to a method but is called implicitly by the new operator to initialize an
object’s instance variables at the time the object is created.

• To call a method of an object, follow the object name with a dot separator (p. 76), the method
name and a set of parentheses containing the method’s arguments.

• Local variables are not automatically initialized. Every instance variable has a default initial val-
ue—a value provided by Java when you do not specify the instance variable’s initial value.

• The default value for an instance variable of type String is null.

• A method call supplies values—known as arguments—for each of the method’s parameters. Each
argument’s value is assigned to the corresponding parameter in the method header.

• The number of arguments in a method call must match the number of parameters in the method
declaration’s parameter list.

• The argument types in the method call must be consistent with the types of the corresponding
parameters in the method’s declaration.

Section 3.2.3 Compiling and Executing an App with Multiple Classes
• The javac command can compile multiple classes at once. Simply list the source-code filenames

after the command with each filename separated by a space from the next. If the directory con-
taining the app includes only one app’s files, you can compile all of its classes with the command
javac *.java. The asterisk (*) in *.java indicates that all files in the current directory ending
with the filename extension “.java” should be compiled.

 Summary 95

Section 3.2.4 Account UML Class Diagram with an Instance Variable and set and
get Methods
• In the UML, each class is modeled in a class diagram (p. 77) as a rectangle with three compart-

ments. The top one contains the class’s name centered horizontally in boldface. The middle one
contains the class’s attributes, which correspond to instance variables in Java. The bottom one
contains the class’s operations (p. 78), which correspond to methods and constructors in Java.

• The UML represents instance variables as an attribute name, followed by a colon and the type.

• Private attributes are preceded by a minus sign (–) in the UML.

• The UML models operations by listing the operation name followed by a set of parentheses. A
plus sign (+) in front of the operation name indicates that the operation is a public one in the
UML (i.e., a public method in Java).

• The UML models a parameter of an operation by listing the parameter name, followed by a colon
and the parameter type between the parentheses after the operation name.

• The UML indicates an operation’s return type by placing a colon and the return type after the
parentheses following the operation name.

• UML class diagrams do not specify return types for operations that do not return values.

• Declaring instance variables private is known as data hiding or information hiding.

Section 3.2.5 Additional Notes on Class AccountTest
• You must call most methods other than main explicitly to tell them to perform their tasks.

• A key part of enabling the JVM to locate and call method main to begin the app’s execution is
the static keyword, which indicates that main is a static method that can be called without first
creating an object of the class in which the method is declared.

• Most classes you’ll use in Java programs must be imported explicitly. There’s a special relation-
ship between classes that are compiled in the same directory. By default, such classes are consid-
ered to be in the same package—known as the default package. Classes in the same package are
implicitly imported into the source-code files of other classes in that package. An import decla-
ration is not required when one class in a package uses another in the same package.

• An import declaration is not required if you always refer to a class with its fully qualified class
name, which includes its package name and class name.

Section 3.2.6 Software Engineering with private Instance Variables and public set
and get Methods
• Declaring instance variables private is known as data hiding or information hiding.

Section 3.3 Primitive Types vs. Reference Types
• Types in Java are divided into two categories—primitive types and reference types. The primitive

types are boolean, byte, char, short, int, long, float and double. All other types are reference
types, so classes, which specify the types of objects, are reference types.

• A primitive-type variable can store exactly one value of its declared type at a time.

• Primitive-type instance variables are initialized by default. Variables of types byte, char, short,
int, long, float and double are initialized to 0. Variables of type boolean are initialized to false.

• Reference-type variables (called references; p. 81) store the location of an object in the comput-
er’s memory. Such variables refer to objects in the program. The object that’s referenced may
contain many instance variables and methods.

• Reference-type instance variables are initialized by default to the value null.

96 Chapter 3 Introduction to Classes, Objects, Methods and Strings

• A reference to an object (p. 81) is required to invoke an object’s methods. A primitive-type vari-
able does not refer to an object and therefore cannot be used to invoke a method.

Section 3.4 Account Class: Initializing Objects with Constructors
• Each class you declare can optionally provide a constructor with parameters that can be used to

initialize an object of a class when the object is created.

• Java requires a constructor call for every object that’s created.

• Constructors can specify parameters but not return types.

• If a class does not define constructors, the compiler provides a default constructor (p. 83) with
no parameters, and the class’s instance variables are initialized to their default values.

• If you declare a constructor for a class, the compiler will not create a default constructor for that
class.

• The UML models constructors in the third compartment of a class diagram. To distinguish a
constructor from a class’s operations, the UML places the word “constructor” between guillemets
(« and »; p. 84) before the constructor’s name.

Section 3.5 Account Class with a Balance; Floating-Point Numbers and Type dou-
ble

• A floating-point number (p. 84) is a number with a decimal point. Java provides two primitive
types for storing floating-point numbers in memory—float and double (p. 84).

• Variables of type float represent single-precision floating-point numbers and have seven signif-
icant digits. Variables of type double represent double-precision floating-point numbers. These
require twice as much memory as float variables and provide 15 significant digits—approxi-
mately double the precision of float variables.

• Floating-point literals (p. 84) are of type double by default.

• Scanner method nextDouble (p. 88) returns a double value.

• The format specifier %f (p. 88) is used to output values of type float or double. The format spec-
ifier %.2f specifies that two digits of precision (p. 88) should be output to the right of the decimal
point in the floating-point number.

• The default value for an instance variable of type double is 0.0, and the default value for an in-
stance variable of type int is 0.

Self-Review Exercises
3.1 Fill in the blanks in each of the following:

a) Each class declaration that begins with keyword must be stored in a file that
has exactly the same name as the class and ends with the .java filename extension.

b) Keyword in a class declaration is followed immediately by the class’s name.
c) Keyword requests memory from the system to store an object, then calls the

corresponding class’s constructor to initialize the object.
d) Each parameter must specify both a(n) and a(n) .
e) By default, classes that are compiled in the same directory are considered to be in the

same package, known as the .
f) Java provides two primitive types for storing floating-point numbers in memory:

 and .
g) Variables of type double represent floating-point numbers.
h) Scanner method returns a double value.
i) Keyword public is an access .

 Answers to Self-Review Exercises 97

j) Return type indicates that a method will not return a value.
k) Scanner method reads characters until it encounters a newline character,

then returns those characters as a String.
l) Class String is in package .
m) A(n) is not required if you always refer to a class with its fully qualified class

name.
n) A(n) is a number with a decimal point, such as 7.33, 0.0975 or 1000.12345.
o) Variables of type float represent _ -precision floating-point numbers.
p) The format specifier is used to output values of type float or double.
q) Types in Java are divided into two categories— types and types.

3.2 State whether each of the following is true or false. If false, explain why.
a) By convention, method names begin with an uppercase first letter, and all subsequent

words in the name begin with a capital first letter.
b) An import declaration is not required when one class in a package uses another in the

same package.
c) Empty parentheses following a method name in a method declaration indicate that the

method does not require any parameters to perform its task.
d) A primitive-type variable can be used to invoke a method.
e) Variables declared in the body of a particular method are known as instance variables

and can be used in all methods of the class.
f) Every method’s body is delimited by left and right braces ({ and }).
g) Primitive-type local variables are initialized by default.
h) Reference-type instance variables are initialized by default to the value null.
i) Any class that contains public static void main(String[] args) can be used to exe-

cute an app.
j) The number of arguments in the method call must match the number of parameters in

the method declaration’s parameter list.
k) Floating-point values that appear in source code are known as floating-point literals and

are type float by default.

3.3 What is the difference between a local variable and an instance variable?

3.4 Explain the purpose of a method parameter. What is the difference between a parameter
and an argument?

Answers to Self-Review Exercises
3.1 a) public. b) class. c) new. d) type, name. e) default package. f) float, double. g) double-
precision. h) nextDouble. i) modifier. j) void. k) nextLine. l) java.lang. m) import declaration. n)
floating-point number. o) single. p) %f. q) primitive, reference.

3.2 a) False. By convention, method names begin with a lowercase first letter and all subse-
quent words in the name begin with a capital first letter. b) True. c) True. d) False. A primitive-type
variable cannot be used to invoke a method—a reference to an object is required to invoke the ob-
ject’s methods. e) False. Such variables are called local variables and can be used only in the method
in which they’re declared. f) True. g) False. Primitive-type instance variables are initialized by de-
fault. Each local variable must explicitly be assigned a value. h) True. i) True. j) True. k) False. Such
literals are of type double by default.

3.3 A local variable is declared in the body of a method and can be used only from the point at
which it’s declared through the end of the method declaration. An instance variable is declared in a
class, but not in the body of any of the class’s methods. Also, instance variables are accessible to all
methods of the class. (We’ll see an exception to this in Chapter 8.)

98 Chapter 3 Introduction to Classes, Objects, Methods and Strings

3.4 A parameter represents additional information that a method requires to perform its task.
Each parameter required by a method is specified in the method’s declaration. An argument is the
actual value for a method parameter. When a method is called, the argument values are passed to
the corresponding parameters of the method so that it can perform its task.

Exercises
3.5 (Keyword new) What’s the purpose of keyword new? Explain what happens when you use it.

3.6 (Default Constructors) What is a default constructor? How are an object’s instance variables
initialized if a class has only a default constructor?

3.7 (Instance Variables) Explain the purpose of an instance variable.

3.8 (Using Classes without Importing Them) Most classes need to be imported before they can
be used in an app. Why is every app allowed to use classes System and String without first importing
them?

3.9 (Using a Class without Importing It) Explain how a program could use class Scanner with-
out importing it.

3.10 (set and get Methods) Explain why a class might provide a set method and a get method for
an instance variable.

3.11 (Modified Account Class) Modify class Account (Fig. 3.8) to provide a method called with-
draw that withdraws money from an Account. Ensure that the withdrawal amount does not exceed
the Account’s balance. If it does, the balance should be left unchanged and the method should print
a message indicating "Withdrawal amount exceeded account balance." Modify class AccountTest
(Fig. 3.9) to test method withdraw.

3.12 (Invoice Class) Create a class called Invoice that a hardware store might use to represent
an invoice for an item sold at the store. An Invoice should include four pieces of information as
instance variables—a part number (type String), a part description (type String), a quantity of the
item being purchased (type int) and a price per item (double). Your class should have a constructor
that initializes the four instance variables. Provide a set and a get method for each instance variable.
In addition, provide a method named getInvoiceAmount that calculates the invoice amount (i.e.,
multiplies the quantity by the price per item), then returns the amount as a double value. If the
quantity is not positive, it should be set to 0. If the price per item is not positive, it should be set to
0.0. Write a test app named InvoiceTest that demonstrates class Invoice’s capabilities.

3.13 (Employee Class) Create a class called Employee that includes three instance variables—a
first name (type String), a last name (type String) and a monthly salary (double). Provide a con-
structor that initializes the three instance variables. Provide a set and a get method for each instance
variable. If the monthly salary is not positive, do not set its value. Write a test app named Employ-
eeTest that demonstrates class Employee’s capabilities. Create two Employee objects and display each
object’s yearly salary. Then give each Employee a 10% raise and display each Employee’s yearly salary
again.

3.14 (Date Class) Create a class called Date that includes three instance variables—a month (type
int), a day (type int) and a year (type int). Provide a constructor that initializes the three instance
variables and assumes that the values provided are correct. Provide a set and a get method for each
instance variable. Provide a method displayDate that displays the month, day and year separated
by forward slashes (/). Write a test app named DateTest that demonstrates class Date’s capabilities.

3.15 (Removing Duplicated Code in Method main) In the AccountTest class of Fig. 3.9, method
main contains six statements (lines 13–14, 15–16, 28–29, 30–31, 40–41 and 42–43) that each dis-
play an Account object’s name and balance. Study these statements and you’ll notice that they differ

 Making a Difference 99

only in the Account object being manipulated—account1 or account2. In this exercise, you’ll define
a new displayAccount method that contains one copy of that output statement. The method’s pa-
rameter will be an Account object and the method will output the object’s name and balance. You’ll
then replace the six duplicated statements in main with calls to displayAccount, passing as an argu-
ment the specific Account object to output.

Modify class AccountTest class of Fig. 3.9 to declare the following displayAccount method
after the closing right brace of main and before the closing right brace of class AccountTest:

public static void displayAccount(Account accountToDisplay)
{
 // place the statement that displays
 // accountToDisplay's name and balance here
}

Replace the comment in the method’s body with a statement that displays accountToDisplay’s
name and balance.

Recall that main is a static method, so it can be called without first creating an object of the
class in which main is declared. We also declared method displayAccount as a static method.
When main needs to call another method in the same class without first creating an object of that
class, the other method also must be declared static.

Once you’ve completed displayAccount’s declaration, modify main to replace the statements
that display each Account’s name and balance with calls to displayAccount—each receiving as its
argument the account1 or account2 object, as appropriate. Then, test the updated AccountTest
class to ensure that it produces the same output as shown in Fig. 3.9.

Making a Difference
3.16 (Target-Heart-Rate Calculator) While exercising, you can use a heart-rate monitor to see that
your heart rate stays within a safe range suggested by your trainers and doctors. According to the Amer-
ican Heart Association (AHA) (www.americanheart.org/presenter.jhtml?identifier=4736), the
formula for calculating your maximum heart rate in beats per minute is 220 minus your age in years.
Your target heart rate is a range that’s 50–85% of your maximum heart rate. [Note: These formulas are
estimates provided by the AHA. Maximum and target heart rates may vary based on the health, fitness
and gender of the individual. Always consult a physician or qualified health-care professional before
beginning or modifying an exercise program.] Create a class called HeartRates. The class attributes
should include the person’s first name, last name and date of birth (consisting of separate attributes for
the month, day and year of birth). Your class should have a constructor that receives this data as pa-
rameters. For each attribute provide set and get methods. The class also should include a method that
calculates and returns the person’s age (in years), a method that calculates and returns the person’s
maximum heart rate and a method that calculates and returns the person’s target heart rate. Write a
Java app that prompts for the person’s information, instantiates an object of class HeartRates and
prints the information from that object—including the person’s first name, last name and date of
birth—then calculates and prints the person’s age in (years), maximum heart rate and target-heart-rate
range.

3.17 (Computerization of Health Records) A health-care issue that has been in the news lately is
the computerization of health records. This possibility is being approached cautiously because of
sensitive privacy and security concerns, among others. [We address such concerns in later exercises.]
Computerizing health records could make it easier for patients to share their health profiles and his-
tories among their various health-care professionals. This could improve the quality of health care,
help avoid drug conflicts and erroneous drug prescriptions, reduce costs and, in emergencies, could
save lives. In this exercise, you’ll design a “starter” HealthProfile class for a person. The class attri-
butes should include the person’s first name, last name, gender, date of birth (consisting of separate

www.americanheart.org/presenter.jhtml?identifier=4736

100 Chapter 3 Introduction to Classes, Objects, Methods and Strings

attributes for the month, day and year of birth), height (in inches) and weight (in pounds). Your class
should have a constructor that receives this data. For each attribute, provide set and get methods.
The class also should include methods that calculate and return the user’s age in years, maximum
heart rate and target-heart-rate range (see Exercise 3.16), and body mass index (BMI; see
Exercise 2.33). Write a Java app that prompts for the person’s information, instantiates an object of
class HealthProfile for that person and prints the information from that object—including the per-
son’s first name, last name, gender, date of birth, height and weight—then calculates and prints the
person’s age in years, BMI, maximum heart rate and target-heart-rate range. It should also display
the BMI values chart from Exercise 2.33.

4Control Statements: Part 1;
Assignment, ++ and --
Operators

Let’s all move one place on.
—Lewis Carroll

How many apples fell on
Newton’s head before he took the
hint!
—Robert Frost

O b j e c t i v e s
In this chapter you’ll:

■ Learn basic problem-solving
techniques.

■ Develop algorithms through
the process of top-down,
stepwise refinement.

■ Use the if and if…else
selection statements to
choose between alternative
actions.

■ Use the while repetition
statement to execute
statements in a program
repeatedly.

■ Use counter-controlled
repetition and sentinel-
controlled repetition.

■ Use the compound
assignment operator, and the
increment and decrement
operators.

■ Learn about the portability of
primitive data types.

102 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

4.1 Introduction
Before writing a program to solve a problem, you should have a thorough understanding
of the problem and a carefully planned approach to solving it. When writing a program,
you also should understand the available building blocks and employ proven program-
construction techniques. In this chapter and the next, we discuss these issues in presenting
the theory and principles of structured programming. The concepts presented here are
crucial in building classes and manipulating objects. We discuss Java’s if statement in ad-
ditional detail, and introduce the if…else and while statements—all of these building
blocks allow you to specify the logic required for methods to perform their tasks. We also
introduce the compound assignment operator and the increment and decrement opera-
tors. Finally, we consider the portability of Java’s primitive types.

4.2 Algorithms
Any computing problem can be solved by executing a series of actions in a specific order.
A procedure for solving a problem in terms of

1. the actions to execute and

2. the order in which these actions execute

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions execute is important.

Consider the “rise-and-shine algorithm” followed by one executive for getting out of
bed and going to work: (1) Get out of bed; (2) take off pajamas; (3) take a shower; (4) get
dressed; (5) eat breakfast; (6) carpool to work. This routine gets the executive to work well
prepared to make critical decisions. Suppose that the same steps are performed in a slightly
different order: (1) Get out of bed; (2) take off pajamas; (3) get dressed; (4) take a shower;
(5) eat breakfast; (6) carpool to work. In this case, our executive shows up for work soaking
wet. Specifying the order in which statements (actions) execute in a program is called pro-
gram control. This chapter investigates program control using Java’s control statements.

4.1 Introduction
4.2 Algorithms
4.3 Pseudocode
4.4 Control Structures
4.5 if Single-Selection Statement
4.6 if…else Double-Selection

Statement
4.7 Student Class: Nested if…else

Statements
4.8 while Repetition Statement
4.9 Formulating Algorithms: Counter-

Controlled Repetition

4.10 Formulating Algorithms: Sentinel-
Controlled Repetition

4.11 Formulating Algorithms: Nested
Control Statements

4.12 Compound Assignment Operators
4.13 Increment and Decrement Operators
4.14 Primitive Types
4.15 (Optional) GUI and Graphics Case

Study: Creating Simple Drawings
4.16 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

4.3 Pseudocode 103

4.3 Pseudocode
Pseudocode is an informal language that helps you develop algorithms without having to
worry about the strict details of Java language syntax. The pseudocode we present is par-
ticularly useful for developing algorithms that will be converted to structured portions of
Java programs. The pseudocode we use in this book is similar to everyday English—it’s
convenient and user friendly, but it’s not an actual computer programming language.
You’ll see an algorithm written in pseudocode in Fig. 4.7. You may, of course, use your
own native language(s) to develop your own pseudocode.

Pseudocode does not execute on computers. Rather, it helps you “think out” a pro-
gram before attempting to write it in a programming language, such as Java. This chapter
provides several examples of using pseudocode to develop Java programs.

The style of pseudocode we present consists purely of characters, so you can type
pseudocode conveniently, using any text-editor program. A carefully prepared pseudocode
program can easily be converted to a corresponding Java program.

Pseudocode normally describes only statements representing the actions that occur
after you convert a program from pseudocode to Java and the program is run on a com-
puter. Such actions might include input, output or calculations. In our pseudocode, we typ-
ically do not include variable declarations, but some programmers choose to list variables
and mention their purposes.

4.4 Control Structures
Normally, statements in a program are executed one after the other in the order in which
they’re written. This process is called sequential execution. Various Java statements,
which we’ll soon discuss, enable you to specify that the next statement to execute is not
necessarily the next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of much difficulty experienced by software development groups. The blame
was pointed at the goto statement (used in most programming languages of the time),
which allows you to specify a transfer of control to one of a wide range of destinations in
a program. [Note: Java does not have a goto statement; however, the word goto is reserved
by Java and should not be used as an identifier in programs.]

The research of Bohm and Jacopini1 had demonstrated that programs could be
written without any goto statements. The challenge of the era for programmers was to shift
their styles to “goto-less programming.” The term structured programming became
almost synonymous with “goto elimination.” Not until the 1970s did most programmers
start taking structured programming seriously. The results were impressive. Software
development groups reported shorter development times, more frequent on-time delivery
of systems and more frequent within-budget completion of software projects. The key to
these successes was that structured programs were clearer, easier to debug and modify, and
more likely to be bug free in the first place.

Bohm and Jacopini’s work demonstrated that all programs could be written in terms
of only three control structures—the sequence structure, the selection structure and the

1. C. Bohm, and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371.

104 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

repetition structure. When we introduce Java’s control-structure implementations, we’ll
refer to them in the terminology of the Java Language Specification as “control statements.”

Sequence Structure in Java
The sequence structure is built into Java. Unless directed otherwise, the computer executes
Java statements one after the other in the order in which they’re written—that is, in se-
quence. The activity diagram in Fig. 4.1 illustrates a typical sequence structure in which
two calculations are performed in order. Java lets you have as many actions as you want in
a sequence structure. As we’ll soon see, anywhere a single action may be placed, we may
place several actions in sequence.

A UML activity diagram models the workflow (also called the activity) of a portion
of a software system. Such workflows may include a portion of an algorithm, like the
sequence structure in Fig. 4.1. Activity diagrams are composed of symbols, such as action-
state symbols (rectangles with their left and right sides replaced with outward arcs), dia-
monds and small circles. These symbols are connected by transition arrows, which rep-
resent the flow of the activity—that is, the order in which the actions should occur.

Like pseudocode, activity diagrams help you develop and represent algorithms.
Activity diagrams clearly show how control structures operate. We use the UML in this
chapter and Chapter 5 to show control flow in control statements. Online Chapters 33–
34 use the UML in a real-world automated-teller-machine case study.

Consider the sequence-structure activity diagram in Fig. 4.1. It contains two action
states, each containing an action expression—for example, “add grade to total” or “add 1
to counter”—that specifies a particular action to perform. Other actions might include
calculations or input/output operations. The arrows in the activity diagram represent
transitions, which indicate the order in which the actions represented by the action states
occur. The program that implements the activities illustrated by the diagram in Fig. 4.1
first adds grade to total, then adds 1 to counter.

The solid circle at the top of the activity diagram represents the initial state—the
beginning of the workflow before the program performs the modeled actions. The solid
circle surrounded by a hollow circle at the bottom of the diagram represents the final
state—the end of the workflow after the program performs its actions.

Figure 4.1 also includes rectangles with the upper-right corners folded over. These are
UML notes (like comments in Java)—explanatory remarks that describe the purpose of sym-

Fig. 4.1 | Sequence-structure activity diagram.

add 1 to counter

add grade to total Corresponding Java statement:
total = total + grade;

Corresponding Java statement:
counter = counter + 1;

4.5 if Single-Selection Statement 105

bols in the diagram. Figure 4.1 uses UML notes to show the Java code associated with each
action state. A dotted line connects each note with the element it describes. Activity diagrams
normally do not show the Java code that implements the activity. We do this here to illustrate
how the diagram relates to Java code. For more information on the UML, see our optiona
online object-oriented design case study (Chapters 33–34) or visit www.uml.org.

Selection Statements in Java
Java has three types of selection statements (discussed in this chapter and Chapter 5). The
if statement either performs (selects) an action, if a condition is true, or skips it, if the con-
dition is false. The if…else statement performs an action if a condition is true and per-
forms a different action if the condition is false. The switch statement (Chapter 5)
performs one of many different actions, depending on the value of an expression.

The if statement is a single-selection statement because it selects or ignores a single
action (or, as we’ll soon see, a single group of actions). The if…else statement is called a
double-selection statement because it selects between two different actions (or groups of
actions). The switch statement is called a multiple-selection statement because it selects
among many different actions (or groups of actions).

Repetition Statements in Java
Java provides three repetition statements (also called iteration statements or looping
statements) that enable programs to perform statements repeatedly as long as a condition
(called the loop-continuation condition) remains true. The repetition statements are the
while, do…while, for and enhanced for statements. (Chapter 5 presents the do…while
and for statements and Chapter 7 presents the enhanced for statement.) The while and
for statements perform the action (or group of actions) in their bodies zero or more
times—if the loop-continuation condition is initially false, the action (or group of actions)
will not execute. The do…while statement performs the action (or group of actions) in its
body one or more times. The words if, else, switch, while, do and for are Java keywords.
A complete list of Java keywords appears in Appendix C.

Summary of Control Statements in Java
Java has only three kinds of control structures, which from this point forward we refer to
as control statements: the sequence statement, selection statements (three types) and repetition
statements (three types). Every program is formed by combining as many of these state-
ments as is appropriate for the algorithm the program implements. We can model each
control statement as an activity diagram. Like Fig. 4.1, each diagram contains an initial
state and a final state that represent a control statement’s entry point and exit point, re-
spectively. Single-entry/single-exit control statements make it easy to build programs—
we simply connect the exit point of one to the entry point of the next. We call this control-
statement stacking. We’ll learn that there’s only one other way in which control state-
ments may be connected—control-statement nesting—in which one control statement
appears inside another. Thus, algorithms in Java programs are constructed from only three
kinds of control statements, combined in only two ways. This is the essence of simplicity.

4.5 if Single-Selection Statement
Programs use selection statements to choose among alternative courses of action. For ex-
ample, suppose that the passing grade on an exam is 60. The pseudocode statement

www.uml.org

106 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

determines whether the condition “student’s grade is greater than or equal to 60” is true. If
so, “Passed” is printed, and the next pseudocode statement in order is “performed.” (Re-
member, pseudocode is not a real programming language.) If the condition is false, the
Print statement is ignored, and the next pseudocode statement in order is performed. The
indentation of the second line of this selection statement is optional, but recommended,
because it emphasizes the inherent structure of structured programs.

The preceding pseudocode If statement may be written in Java as

The Java code corresponds closely to the pseudocode. This is one of the properties of
pseudocode that makes it such a useful program development tool.

UML Activity Diagram for an if Statement
Figure 4.2 illustrates the single-selection if statement. This figure contains the most im-
portant symbol in an activity diagram—the diamond, or decision symbol, which indicates
that a decision is to be made. The workflow continues along a path determined by the sym-
bol’s associated guard conditions, which can be true or false. Each transition arrow emerg-
ing from a decision symbol has a guard condition (specified in square brackets next to the
arrow). If a guard condition is true, the workflow enters the action state to which the tran-
sition arrow points. In Fig. 4.2, if the grade is greater than or equal to 60, the program
prints “Passed,” then transitions to the activity’s final state. If the grade is less than 60, the
program immediately transitions to the final state without displaying a message.

The if statement is a single-entry/single-exit control statement. We’ll see that the
activity diagrams for the remaining control statements also contain initial states, transition
arrows, action states that indicate actions to perform, decision symbols (with associated
guard conditions) that indicate decisions to be made, and final states.

4.6 if…else Double-Selection Statement
The if single-selection statement performs an indicated action only when the condition
is true; otherwise, the action is skipped. The if…else double-selection statement allows
you to specify an action to perform when the condition is true and another action when
the condition is false. For example, the pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

if (studentGrade >= 60)
 System.out.println("Passed");

Fig. 4.2 | if single-selection statement UML activity diagram.

print “Passed”
[grade >= 60]

[grade < 60]

4.6 if…else Double-Selection Statement 107

prints “Passed” if the student’s grade is greater than or equal to 60, but prints “Failed” if
it’s less than 60. In either case, after printing occurs, the next pseudocode statement in se-
quence is “performed.”

The preceding If…Else pseudocode statement can be written in Java as

The body of the else is also indented. Whatever indentation convention you choose
should be applied consistently throughout your programs.

UML Activity Diagram for an if…else Statement
Figure 4.3 illustrates the flow of control in the if…else statement. Once again, the sym-
bols in the UML activity diagram (besides the initial state, transition arrows and final
state) represent action states and decisions.

Nested if…else Statements
A program can test multiple cases by placing if…else statements inside other if…else
statements to create nested if…else statements. For example, the following pseudo-
code represents a nested if…else that prints A for exam grades greater than or equal to
90, B for grades 80 to 89, C for grades 70 to 79, D for grades 60 to 69 and F for all other
grades:

If student’s grade is greater than or equal to 60
Print “Passed”

Else
Print “Failed”

if (grade >= 60)
 System.out.println("Passed");
else
 System.out.println("Failed");

Good Programming Practice 4.1
Indent both body statements of an if…else statement. Many IDEs do this for you.

Good Programming Practice 4.2
If there are several levels of indentation, each level should be indented the same additional
amount of space.

Fig. 4.3 | if…else double-selection statement UML activity diagram.

print “Passed”print “Failed”
[grade >= 60][grade < 60]

108 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

This pseudocode may be written in Java as

If variable studentGrade is greater than or equal to 90, the first four conditions in the
nested if…else statement will be true, but only the statement in the if part of the first
if…else statement will execute. After that statement executes, the else part of the
“outermost” if…else statement is skipped. Many programmers prefer to write the pre-
ceding nested if…else statement as

If student’s grade is greater than or equal to 90
Print “A”

else
If student’s grade is greater than or equal to 80

Print “B”
else

If student’s grade is greater than or equal to 70
Print “C”

else
If student’s grade is greater than or equal to 60

Print “D”
else

Print “F”

if (studentGrade >= 90)
 System.out.println("A");
else
 if (studentGrade >= 80)
 System.out.println("B");
 else
 if (studentGrade >= 70)
 System.out.println("C");
 else
 if (studentGrade >= 60)
 System.out.println("D");
 else
 System.out.println("F");

Error-Prevention Tip 4.1
In a nested if…else statement, ensure that you test for all possible cases.

if (studentGrade >= 90)
 System.out.println("A");
else if (studentGrade >= 80)
 System.out.println("B");
else if (studentGrade >= 70)
 System.out.println("C");
else if (studentGrade >= 60)
 System.out.println("D");
else
 System.out.println("F");

4.6 if…else Double-Selection Statement 109

The two forms are identical except for the spacing and indentation, which the compiler
ignores. The latter form avoids deep indentation of the code to the right. Such indentation
often leaves little room on a line of source code, forcing lines to be split.

Dangling-else Problem
The Java compiler always associates an else with the immediately preceding if unless told
to do otherwise by the placement of braces ({ and }). This behavior can lead to what is
referred to as the dangling-else problem. For example,

appears to indicate that if x is greater than 5, the nested if statement determines whether
y is also greater than 5. If so, the string "x and y are > 5" is output. Otherwise, it appears
that if x is not greater than 5, the else part of the if…else outputs the string "x is <= 5".
Beware! This nested if…else statement does not execute as it appears. The compiler ac-
tually interprets the statement as

in which the body of the first if is a nested if…else. The outer if statement tests whether
x is greater than 5. If so, execution continues by testing whether y is also greater than 5. If
the second condition is true, the proper string—"x and y are > 5"—is displayed. However,
if the second condition is false, the string "x is <= 5" is displayed, even though we know
that x is greater than 5. Equally bad, if the outer if statement’s condition is false, the inner
if…else is skipped and nothing is displayed.

To force the nested if…else statement to execute as it was originally intended, we
must write it as follows:

The braces indicate that the second if is in the body of the first and that the else is
associated with the first if. Exercises 4.27–4.28 investigate the dangling-else problem
further.

Blocks
The if statement normally expects only one statement in its body. To include several state-
ments in the body of an if (or the body of an else for an if…else statement), enclose
the statements in braces. Statements contained in a pair of braces (such as the body of a

if (x > 5)
 if (y > 5)
 System.out.println("x and y are > 5");
else
 System.out.println("x is <= 5");

if (x > 5)
 if (y > 5)
 System.out.println("x and y are > 5");
 else
 System.out.println("x is <= 5");

if (x > 5)
{
 if (y > 5)
 System.out.println("x and y are > 5");
}
else
 System.out.println("x is <= 5");

110 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

method) form a block. A block can be placed anywhere in a method that a single statement
can be placed.

The following example includes a block in the else part of an if…else statement:

In this case, if grade is less than 60, the program executes both statements in the body of
the else and prints

Note the braces surrounding the two statements in the else clause. These braces are im-
portant. Without the braces, the statement

would be outside the body of the else part of the if…else statement and would execute
regardless of whether the grade was less than 60.

Syntax errors (e.g., when one brace in a block is left out of the program) are caught by
the compiler. A logic error (e.g., when both braces in a block are left out of the program)
has its effect at execution time. A fatal logic error causes a program to fail and terminate
prematurely. A nonfatal logic error allows a program to continue executing but causes it
to produce incorrect results.

Just as a block can be placed anywhere a single statement can be placed, it’s also pos-
sible to have an empty statement. Recall from Section 2.8 that the empty statement is rep-
resented by placing a semicolon (;) where a statement would normally be.

Conditional Operator (?:)
Java provides the conditional operator (?:) that can be used in place of an if…else
statement. This can make your code shorter and clearer. The conditional operator is Java’s
only ternary operator (i.e., an operator that takes three operands). Together, the operands
and the ?: symbol form a conditional expression. The first operand (to the left of the ?)
is a boolean expression (i.e., a condition that evaluates to a boolean value—true or
false), the second operand (between the ? and :) is the value of the conditional expres-
sion if the boolean expression is true and the third operand (to the right of the :) is the
value of the conditional expression if the boolean expression evaluates to false. For ex-
ample, the statement

if (grade >= 60)
 System.out.println("Passed");
else
{
 System.out.println("Failed");
 System.out.println("You must take this course again.");
}

Failed
You must take this course again.

System.out.println("You must take this course again.");

Common Programming Error 4.1
Placing a semicolon after the condition in an if or if…else statement leads to a logic
error in single-selection if statements and a syntax error in double-selection if…else

statements (when the if-part contains an actual body statement).

System.out.println(studentGrade >= 60 ? "Passed" : "Failed");

4.7 Student Class: Nested if…else Statements 111

prints the value of println’s conditional-expression argument. The conditional expres-
sion in this statement evaluates to the string "Passed" if the boolean expression student-
Grade >= 60 is true and to the string "Failed" if it’s false. Thus, this statement with the
conditional operator performs essentially the same function as the if…else statement
shown earlier in this section. The precedence of the conditional operator is low, so the en-
tire conditional expression is normally placed in parentheses. We’ll see that conditional ex-
pressions can be used in some situations where if…else statements cannot.

4.7 Student Class: Nested if…else Statements
The example of Figs. 4.4–4.5 demonstrates a nested if…else statement that determines
a student’s letter grade based on the student’s average in a course.

Class Student
Class Student (Fig. 4.4) has features similar to those of class Account (discussed in
Chapter 3). Class Student stores a student’s name and average and provides methods for
manipulating these values. The class contains:

• instance variable name of type String (line 5) to store a Student’s name

• instance variable average of type double (line 6) to store a Student’s average in
a course

• a constructor (lines 9–18) that initializes the name and average—in Section 5.9,
you’ll learn how to express lines 15–16 and 37–38 more concisely with logical
operators that can test multiple conditions

• methods setName and getName (lines 21–30) to set and get the Student’s name

• methods setAverage and getAverage (lines 33–46) to set and get the Student’s
average

• method getLetterGrade (lines 49–65), which uses nested if…else statements to
determine the Student’s letter grade based on the Student’s average

The constructor and method setAverage each use nested if statements (lines 15–17
and 37–39) to validate the value used to set the average—these statements ensure that the
value is greater than 0.0 and less than or equal to 100.0; otherwise, average’s value is left
unchanged. Each if statement contains a simple condition. If the condition in line 15 is true,
only then will the condition in line 16 be tested, and only if the conditions in both line 15
and line 16 are true will the statement in line 17 execute.

Error-Prevention Tip 4.2
Use expressions of the same type for the second and third operands of the ?: operator to
avoid subtle errors.

Software Engineering Observation 4.1
Recall from Chapter 3 that you should not call methods from constructors (we’ll explain why
in Chapter 10, Object-Oriented Programming: Polymorphism and Interfaces). For this
reason, there is duplicated validation code in lines 15–17 and 37–39 of Fig. 4.4 and in
subsequent examples.

112 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

1 // Fig. 4.4: Student.java
2 // Student class that stores a student name and average.
3 public class Student
4 {
5 private String name;
6 private double average;
7
8 // constructor initializes instance variables
9 public Student(String name, double average)

10 {
11 this.name = name;
12
13 // validate that average is > 0.0 and <= 100.0; otherwise,
14 // keep instance variable average's default value (0.0)
15
16
17
18 }
19
20 // sets the Student's name
21 public void setName(String name)
22 {
23 this.name = name;
24 }
25
26 // retrieves the Student's name
27 public String getName()
28 {
29 return name;
30 }
31
32 // sets the Student's average
33 public void setAverage(double studentAverage)
34 {
35 // validate that average is > 0.0 and <= 100.0; otherwise,
36 // keep instance variable average's current value
37
38
39
40 }
41
42 // retrieves the Student's average
43 public double getAverage()
44 {
45 return average;
46 }
47
48 // determines and returns the Student's letter grade
49 public String getLetterGrade()
50 {
51 String letterGrade = ""; // initialized to empty String
52

Fig. 4.4 | Student class that stores a student name and average. (Part 1 of 2.)

if (average > 0.0)
 if (average <= 100.0)
 this.average = average; // assign to instance variable

if (average > 0.0)
 if (average <= 100.0)
 this.average = average; // assign to instance variable

4.8 while Repetition Statement 113

Class StudentTest
To demonstrate the nested if…else statements in class Student’s getLetterGrade
method, class StudentTest’s main method (Fig. 4.5) creates two Student objects (lines 7–
8). Next, lines 10–13 display each Student’s name and letter grade by calling the objects’
getName and getLetterGrade methods, respectively.

4.8 while Repetition Statement
A repetition statement allows you to specify that a program should repeat an action while
some condition remains true. The pseudocode statement

53
54
55
56
57
58
59
60
61
62
63
64 return letterGrade;
65 }
66 } // end class Student

1 // Fig. 4.5: StudentTest.java
2 // Create and test Student objects.
3 public class StudentTest
4 {
5 public static void main(String[] args)
6 {
7 Student account1 = new Student("Jane Green", 93.5);
8 Student account2 = new Student("John Blue", 72.75);
9

10 System.out.printf("%s's letter grade is: %s%n",
11 account1.getName(),);
12 System.out.printf("%s's letter grade is: %s%n",
13 account2.getName(),);
14 }
15 } // end class StudentTest

Jane Green's letter grade is: A
John Blue's letter grade is: C

Fig. 4.5 | Create and test Student objects.

While there are more items on my shopping list
Purchase next item and cross it off my list

Fig. 4.4 | Student class that stores a student name and average. (Part 2 of 2.)

if (average >= 90.0)
 letterGrade = "A";
else if (average >= 80.0)
 letterGrade = "B";
else if (average >= 70.0)
 letterGrade = "C";
else if (average >= 60.0)
 letterGrade = "D";
else
 letterGrade = "F";

account1.getLetterGrade()

account2.getLetterGrade()

114 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

describes the repetition during a shopping trip. The condition “there are more items on my
shopping list” may be true or false. If it’s true, then the action “Purchase next item and cross
it off my list” is performed. This action will be performed repeatedly while the condition re-
mains true. The statement(s) contained in the While repetition statement constitute its body,
which may be a single statement or a block. Eventually, the condition will become false
(when the shopping list’s last item has been purchased and crossed off). At this point, the
repetition terminates, and the first statement after the repetition statement executes.

As an example of Java’s while repetition statement, consider a program segment that
finds the first power of 3 larger than 100. Suppose that the int variable product is initial-
ized to 3. After the following while statement executes, product contains the result:

Each iteration of the while statement multiplies product by 3, so product takes on the
values 9, 27, 81 and 243 successively. When product becomes 243, product <= 100 be-
comes false. This terminates the repetition, so the final value of product is 243. At this
point, program execution continues with the next statement after the while statement.

UML Activity Diagram for a while Statement
The UML activity diagram in Fig. 4.6 illustrates the flow of control in the preceding
while statement. Once again, the symbols in the diagram (besides the initial state, transi-
tion arrows, a final state and three notes) represent an action state and a decision. This di-
agram introduces the UML’s merge symbol. The UML represents both the merge symbol
and the decision symbol as diamonds. The merge symbol joins two flows of activity into
one. In this diagram, the merge symbol joins the transitions from the initial state and from
the action state, so they both flow into the decision that determines whether the loop
should begin (or continue) executing.

while (product <= 100)
 product = 3 * product;

Common Programming Error 4.2
Not providing in the body of a while statement an action that eventually causes the con-
dition in the while to become false normally results in a logic error called an infinite loop
(the loop never terminates).

Fig. 4.6 | while repetition statement UML activity diagram.

triple product value

Corresponding Java statement:
product = 3 * product;

decision
[product <= 100]

[product > 100]

merge

4.9 Formulating Algorithms: Counter-Controlled Repetition 115

The decision and merge symbols can be distinguished by the number of “incoming”
and “outgoing” transition arrows. A decision symbol has one transition arrow pointing to
the diamond and two or more pointing out from it to indicate possible transitions from
that point. In addition, each transition arrow pointing out of a decision symbol has a guard
condition next to it. A merge symbol has two or more transition arrows pointing to the
diamond and only one pointing from the diamond, to indicate multiple activity flows
merging to continue the activity. None of the transition arrows associated with a merge
symbol has a guard condition.

Figure 4.6 clearly shows the repetition of the while statement discussed earlier in this
section. The transition arrow emerging from the action state points back to the merge,
from which program flow transitions back to the decision that’s tested at the beginning of
each iteration of the loop. The loop continues to execute until the guard condition
product > 100 becomes true. Then the while statement exits (reaches its final state), and
control passes to the next statement in sequence in the program.

4.9 Formulating Algorithms: Counter-Controlled
Repetition
To illustrate how algorithms are developed, we solve two variations of a problem that av-
erages student grades. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0–100) for this
quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each grade, keep track of the
total of all grades input, perform the averaging calculation and print the result.

Pseudocode Algorithm with Counter-Controlled Repetition
Let’s use pseudocode to list the actions to execute and specify the order in which they
should execute. We use counter-controlled repetition to input the grades one at a time.
This technique uses a variable called a counter (or control variable) to control the number
of times a set of statements will execute. Counter-controlled repetition is often called defi-
nite repetition, because the number of repetitions is known before the loop begins execut-
ing. In this example, repetition terminates when the counter exceeds 10. This section
presents a fully developed pseudocode algorithm (Fig. 4.7) and a corresponding Java pro-
gram (Fig. 4.8) that implements the algorithm. In Section 4.10, we demonstrate how to
use pseudocode to develop such an algorithm from scratch.

Note the references in the algorithm of Fig. 4.7 to a total and a counter. A total is a
variable used to accumulate the sum of several values. A counter is a variable used to
count—in this case, the grade counter indicates which of the 10 grades is about to be
entered by the user. Variables used to store totals are normally initialized to zero before
being used in a program.

Software Engineering Observation 4.2
Experience has shown that the most difficult part of solving a problem on a computer is
developing the algorithm for the solution. Once a correct algorithm has been specified,
producing a working Java program from it is usually straightforward.

116 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

Implementing Counter-Controlled Repetition
In Fig. 4.8, class ClassAverage’s main method (lines 7–31) implements the class-averaging
algorithm described by the pseudocode in Fig. 4.7—it allows the user to enter 10 grades,
then calculates and displays the average.

1 Set total to zero
2 Set grade counter to one
3
4 While grade counter is less than or equal to ten
5 Prompt the user to enter the next grade
6 Input the next grade
7 Add the grade into the total
8 Add one to the grade counter
9

10 Set the class average to the total divided by ten
11 Print the class average

Fig. 4.7 | Pseudocode algorithm that uses counter-controlled repetition to solve the class-
average problem.

1 // Fig. 4.8: ClassAverage.java
2 // Solving the class-average problem using counter-controlled repetition.
3 import java.util.Scanner; // program uses class Scanner
4
5 public class ClassAverage
6 {
7 public static void main(String[] args)
8 {
9 // create Scanner to obtain input from command window

10 Scanner input = new Scanner(System.in);
11
12 // initialization phase
13 int total = 0; // initialize sum of grades entered by the user
14
15
16 // processing phase uses counter-controlled repetition
17 while () // loop 10 times
18 {
19 System.out.print("Enter grade: "); // prompt
20 int grade = input.nextInt(); // input next grade
21 total = total + grade; // add grade to total
22
23 }
24
25 // termination phase
26 int average = total / 10; // integer division yields integer result
27
28 // display total and average of grades
29 System.out.printf("%nTotal of all 10 grades is %d%n", total);

Fig. 4.8 | Solving the class-average problem using counter-controlled repetition. (Part 1 of 2.)

int gradeCounter = 1; // initialize # of grade to be entered next

gradeCounter <= 10

gradeCounter = gradeCounter + 1; // increment counter by 1

4.9 Formulating Algorithms: Counter-Controlled Repetition 117

Local Variables in Method main
Line 10 declares and initializes Scanner variable input, which is used to read values
entered by the user. Lines 13, 14, 20 and 26 declare local variables total, gradeCounter,
grade and average, respectively, to be of type int. Variable grade stores the user input.

These declarations appear in the body of method main. Recall that variables declared
in a method body are local variables and can be used only from the line of their declaration
to the closing right brace of the method declaration. A local variable’s declaration must
appear before the variable is used in that method. A local variable cannot be accessed out-
side the method in which it’s declared. Variable grade, declared in the body of the while
loop, can be used only in that block.

Initialization Phase: Initializing Variables total and gradeCounter
The assignments (in lines 13–14) initialize total to 0 and gradeCounter to 1. These ini-
tializations occur before the variables are used in calculations.

Processing Phase: Reading 10 Grades from the User
Line 17 indicates that the while statement should continue looping (also called iterating)
as long as gradeCounter’s value is less than or equal to 10. While this condition remains
true, the while statement repeatedly executes the statements between the braces that de-
limit its body (lines 18–23).

30 System.out.printf("Class average is %d%n", average);
31 }
32 } // end class ClassAverage

Enter grade: 67
Enter grade: 78
Enter grade: 89
Enter grade: 67
Enter grade: 87
Enter grade: 98
Enter grade: 93
Enter grade: 85
Enter grade: 82
Enter grade: 100

Total of all 10 grades is 846
Class average is 84

Common Programming Error 4.3
Using the value of a local variable before it’s initialized results in a compilation error. All
local variables must be initialized before their values are used in expressions.

Error-Prevention Tip 4.3
Initialize each total and counter, either in its declaration or in an assignment statement.
Totals are normally initialized to 0. Counters are normally initialized to 0 or 1, depend-
ing on how they’re used (we’ll show examples of when to use 0 and when to use 1).

Fig. 4.8 | Solving the class-average problem using counter-controlled repetition. (Part 2 of 2.)

118 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

Line 19 displays the prompt "Enter grade: ". Line 20 reads the grade entered by the
user and assigns it to variable grade. Then line 21 adds the new grade entered by the user
to the total and assigns the result to total, which replaces its previous value.

Line 22 adds 1 to gradeCounter to indicate that the program has processed a grade and
is ready to input the next grade from the user. Incrementing gradeCounter eventually causes
it to exceed 10. Then the loop terminates, because its condition (line 17) becomes false.

Termination Phase: Calculating and Displaying the Class Average
When the loop terminates, line 26 performs the averaging calculation and assigns its result
to the variable average. Line 29 uses System.out’s printf method to display the text "To-
tal of all 10 grades is " followed by variable total’s value. Line 30 then uses printf
to display the text "Class average is " followed by variable average’s value. When exe-
cution reaches line 31, the program terminates.

Notice that this example contains only one class, with method main performing all the
work. In this chapter and in Chapter 3, you’ve seen examples consisting of two classes—one
containing instance variables and methods that perform tasks using those variables and one
containing method main, which creates an object of the other class and calls its methods.
Occasionally, when it does not make sense to try to create a reusable class to demonstrate a
concept, we’ll place the program’s statements entirely within a single class’s main method.

Notes on Integer Division and Truncation
The averaging calculation performed by method main produces an integer result. The pro-
gram’s output indicates that the sum of the grade values in the sample execution is 846,
which, when divided by 10, should yield the floating-point number 84.6. However, the
result of the calculation total / 10 (line 26 of Fig. 4.8) is the integer 84, because total
and 10 are both integers. Dividing two integers results in integer division—any fractional
part of the calculation is truncated (i.e., lost). In the next section we’ll see how to obtain a
floating-point result from the averaging calculation.

A Note About Arithmetic Overflow
In Fig. 4.8, line 21

added each grade entered by the user to the total. Even this simple statement has a potential
problem—adding the integers could result in a value that’s too large to store in an int vari-
able. This is known as arithmetic overflow and causes undefined behavior, which can lead to
unintended results (http://en.wikipedia.org/wiki/Integer_overflow#Security_
ramifications). Figure 2.7’s Addition program had the same issue in line 23, which calcu-
lated the sum of two int values entered by the user:

The maximum and minimum values that can be stored in an int variable are repre-
sented by the constants MIN_VALUE and MAX_VALUE, respectively, which are defined in class

Common Programming Error 4.4
Assuming that integer division rounds (rather than truncates) can lead to incorrect results.
For example, 7 ÷ 4, which yields 1.75 in conventional arithmetic, truncates to 1 in inte-
ger arithmetic, rather than rounding to 2.

total = total + grade; // add grade to total

sum = number1 + number2; // add numbers, then store total in sum

http://en.wikipedia.org/wiki/Integer_overflow#Security_ramifications
http://en.wikipedia.org/wiki/Integer_overflow#Security_ramifications

4.10 Formulating Algorithms: Sentinel-Controlled Repetition 119

Integer. There are similar constants for the other integral types and for floating-point types.
Each primitive type has a corresponding class type in package java.lang. You can see the
values of these constants in each class’s online documentation. The online documentation
for class Integer is located at:

It’s considered a good practice to ensure, before you perform arithmetic calculations
like those in line 21 of Fig. 4.8 and line 23 of Fig. 2.7, that they will not overflow. The
code for doing this is shown on the CERT website www.securecoding.cert.org—just
search for guideline “NUM00-J.” The code uses the && (logical AND) and || (logical OR)
operators, which are introduced in Chapter 5. In industrial-strength code, you should per-
form checks like these for all calculations.

A Deeper Look at Receiving User Input
Any time a program receives input from the user, various problems might occur. For ex-
ample, in line 20 of Fig. 4.8

we assume that the user will enter an integer grade in the range 0 to 100. However, the
person entering a grade could enter an integer less than 0, an integer greater than 100, an
integer outside the range of values that can be stored in an int variable, a number contain-
ing a decimal point or a value containing letters or special symbols that’s not even an in-
teger.

To ensure that inputs are valid, industrial-strength programs must test for all possible
erroneous cases. A program that inputs grades should validate the grades by using range
checking to ensure that hey are values from 0 to 100. You can then ask the user to reenter
any value that’s out of range. If a program requires inputs from a specific set of values (e.g.,
nonsequential product codes), you can ensure that each input matches a value in the set.

4.10 Formulating Algorithms: Sentinel-Controlled
Repetition
Let’s generalize Section 4.9’s class-average problem. Consider the following problem:

Develop a class-averaging program that processes grades for an arbitrary number of
students each time it’s run.

In the previous class-average example, the problem statement specified the number of stu-
dents, so the number of grades (10) was known in advance. In this example, no indication
is given of how many grades the user will enter during the program’s execution. The pro-
gram must process an arbitrary number of grades. How can it determine when to stop the
input of grades? How will it know when to calculate and print the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value or a flag value) to indicate “end of data entry.” The
user enters grades until all legitimate grades have been entered. The user then types the
sentinel value to indicate that no more grades will be entered. Sentinel-controlled repeti-
tion is often called indefinite repetition because the number of repetitions is not known
before the loop begins executing.

http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html

int grade = input.nextInt(); // input next grade

www.securecoding.cert.org
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html

120 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

Clearly, a sentinel value must be chosen that cannot be confused with an acceptable
input value. Grades on a quiz are nonnegative integers, so –1 is an acceptable sentinel value
for this problem. Thus, a run of the class-average program might process a stream of inputs
such as 95, 96, 75, 74, 89 and –1. The program would then compute and print the class
average for the grades 95, 96, 75, 74 and 89; since –1 is the sentinel value, it should not
enter into the averaging calculation.

Developing the Pseudocode Algorithm with Top-Down, Stepwise Refinement:
The Top and First Refinement
We approach this class-average program with a technique called top-down, stepwise re-
finement, which is essential to the development of well-structured programs. We begin
with a pseudocode representation of the top—a single statement that conveys the overall
function of the program:

The top is, in effect, a complete representation of a program. Unfortunately, the top rarely
conveys sufficient detail from which to write a Java program. So we now begin the refine-
ment process. We divide the top into a series of smaller tasks and list these in the order in
which they’ll be performed. This results in the following first refinement:

This refinement uses only the sequence structure—the steps listed should execute in order,
one after the other.

Proceeding to the Second Refinement
The preceding Software Engineering Observation is often all you need for the first refine-
ment in the top-down process. To proceed to the next level of refinement—that is, the
second refinement—we commit to specific variables. In this example, we need a running
total of the numbers, a count of how many numbers have been processed, a variable to
receive the value of each grade as it’s input by the user and a variable to hold the calculated
average. The pseudocode statement

can be refined as follows:

Determine the class average for the quiz

Initialize variables
Input, sum and count the quiz grades
Calculate and print the class average

Software Engineering Observation 4.3
Each refinement, as well as the top itself, is a complete specification of the algorithm—
only the level of detail varies.

Software Engineering Observation 4.4
Many programs can be divided logically into three phases: an initialization phase that
initializes the variables; a processing phase that inputs data values and adjusts program
variables accordingly; and a termination phase that calculates and outputs the final results.

Initialize variables

Initialize total to zero
Initialize counter to zero

4.10 Formulating Algorithms: Sentinel-Controlled Repetition 121

Only the variables total and counter need to be initialized before they’re used. The variables
average and grade (for the calculated average and the user input, respectively) need not be
initialized, because their values will be replaced as they’re calculated or input.

The pseudocode statement

requires repetition to successively input each grade. We do not know in advance how many
grades will be entered, so we’ll use sentinel-controlled repetition. The user enters grades one
at a time. After entering the last grade, the user enters the sentinel value. The program tests
for the sentinel value after each grade is input and terminates the loop when the user enters
the sentinel value. The second refinement of the preceding pseudocode statement is then

In pseudocode, we do not use braces around the statements that form the body of the
While structure. We simply indent the statements under the While to show that they be-
long to the While. Again, pseudocode is only an informal program development aid.

The pseudocode statement

can be refined as follows:

We’re careful here to test for the possibility of division by zero—a logic error that, if unde-
tected, would cause the program to fail or produce invalid output. The complete second
refinement of the pseudocode for the class-average problem is shown in Fig. 4.9.

Input, sum and count the quiz grades

Prompt the user to enter the first grade
Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Prompt the user to enter the next grade
Input the next grade (possibly the sentinel)

Calculate and print the class average

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

Error-Prevention Tip 4.4
When performing division (/) or remainder (%) calculations in which the right operand
could be zero, test for this and handle it (e.g., display an error message) rather than al-
lowing the error to occur.

1 Initialize total to zero
2 Initialize counter to zero
3

Fig. 4.9 | Class-average pseudocode algorithm with sentinel-controlled repetition. (Part 1 of 2.)

122 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

In Fig. 4.7 and Fig. 4.9, we included blank lines and indentation in the pseudocode
to make it more readable. The blank lines separate the algorithms into their phases and set
off control statements; the indentation emphasizes the bodies of the control statements.

The pseudocode algorithm in Fig. 4.9 solves the more general class-average problem.
This algorithm was developed after two refinements. Sometimes more are needed.

Implementing Sentinel-Controlled Repetition
In Fig. 4.10, method main (lines 7–46) implements the pseudocode algorithm of Fig. 4.9.
Although each grade is an integer, the averaging calculation is likely to produce a number
with a decimal point—in other words, a real (floating-point) number. The type int cannot
represent such a number, so this class uses type double to do so. You’ll also see that control
statements may be stacked on top of one another (in sequence). The while statement (lines
22–30) is followed in sequence by an if…else statement (lines 34–45). Much of the code
in this program is identical to that in Fig. 4.8, so we concentrate on the new concepts.

4 Prompt the user to enter the first grade
5 Input the first grade (possibly the sentinel)
6
7 While the user has not yet entered the sentinel
8 Add this grade into the running total
9 Add one to the grade counter

10 Prompt the user to enter the next grade
11 Input the next grade (possibly the sentinel)
12
13 If the counter is not equal to zero
14 Set the average to the total divided by the counter
15 Print the average
16 else
17 Print “No grades were entered”

Software Engineering Observation 4.5
Terminate the top-down, stepwise refinement process when you’ve specified the pseudocode
algorithm in sufficient detail for you to convert the pseudocode to Java. Normally,
implementing the Java program is then straightforward.

Software Engineering Observation 4.6
Some programmers do not use program development tools like pseudocode. They feel that
their ultimate goal is to solve the problem on a computer and that writing pseudocode
merely delays the production of final outputs. Although this may work for simple and
familiar problems, it can lead to serious errors and delays in large, complex projects.

1 // Fig. 4.10: ClassAverage.java
2 // Solving the class-average problem using sentinel-controlled repetition.
3 import java.util.Scanner; // program uses class Scanner

Fig. 4.10 | Solving the class-average problem using sentinel-controlled repetition. (Part 1 of 2.)

Fig. 4.9 | Class-average pseudocode algorithm with sentinel-controlled repetition. (Part 2 of 2.)

4.10 Formulating Algorithms: Sentinel-Controlled Repetition 123

4
5 public class ClassAverage
6 {
7 public static void main(String[] args)
8 {
9 // create Scanner to obtain input from command window

10 Scanner input = new Scanner(System.in);
11
12 // initialization phase
13 int total = 0; // initialize sum of grades
14
15
16 // processing phase
17
18
19
20
21
22 while (grade != -1)
23 {
24 total = total + grade; // add grade to total
25 gradeCounter = gradeCounter + 1; // increment counter
26
27
28
29
30 }
31
32 // termination phase
33 // if user entered at least one grade...
34 if ()
35 {
36
37
38
39 // display total and average (with two digits of precision)
40 System.out.printf("%nTotal of the %d grades entered is %d%n",
41 gradeCounter, total);
42 System.out.printf("Class average is %.2f%n", average);
43 }
44 else // no grades were entered, so output appropriate message
45 System.out.println("No grades were entered");
46 }
47 } // end class ClassAverage

Enter grade or -1 to quit: 97
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 72
Enter grade or -1 to quit: -1

Total of the 3 grades entered is 257
Class average is 85.67

Fig. 4.10 | Solving the class-average problem using sentinel-controlled repetition. (Part 2 of 2.)

int gradeCounter = 0; // initialize # of grades entered so far

// prompt for input and read grade from user
System.out.print("Enter grade or -1 to quit: ");
int grade = input.nextInt();

// loop until sentinel value read from user

// prompt for input and read next grade from user
System.out.print("Enter grade or -1 to quit: ");
grade = input.nextInt();

gradeCounter != 0

// use number with decimal point to calculate average of grades
double average = (double) total / gradeCounter;

124 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

Program Logic for Sentinel-Controlled Repetition vs. Counter-Controlled Repetition
Line 37 declares double variable average, which allows us to store the class average as a
floating-point number. Line 14 initializes gradeCounter to 0, because no grades have been
entered yet. Remember that this program uses sentinel-controlled repetition to input the
grades. To keep an accurate record of the number of grades entered, the program incre-
ments gradeCounter only when the user enters a valid grade.

Compare the program logic for sentinel-controlled repetition in this application with
that for counter-controlled repetition in Fig. 4.8. In counter-controlled repetition, each
iteration of the while statement (lines 17–23 of Fig. 4.8) reads a value from the user, for
the specified number of iterations. In sentinel-controlled repetition, the program reads the
first value (lines 18–19 of Fig. 4.10) before reaching the while. This value determines
whether the program’s flow of control should enter the body of the while. If the condition
of the while is false, the user entered the sentinel value, so the body of the while does not
execute (i.e., no grades were entered). If, on the other hand, the condition is true, the body
begins execution, and the loop adds the grade value to the total and increments the
gradeCounter (lines 24–25). Then lines 28–29 in the loop body input the next value from
the user. Next, program control reaches the closing right brace of the loop body at line 30,
so execution continues with the test of the while’s condition (line 22). The condition uses
the most recent grade input by the user to determine whether the loop body should exe-
cute again. The value of variable grade is always input from the user immediately before
the program tests the while condition. This allows the program to determine whether the
value just input is the sentinel value before the program processes that value (i.e., adds it to
the total). If the sentinel value is input, the loop terminates, and the program does not
add –1 to the total.

After the loop terminates, the if…else statement at lines 34–45 executes. The con-
dition at line 34 determines whether any grades were input. If none were input, the else
part (lines 44–45) of the if…else statement executes and displays the message "No
grades were entered" and the method returns control to the calling method.

Braces in a while statement
Notice the while statement’s block in Fig. 4.10 (lines 23–30). Without the braces, the
loop would consider its body to be only the first statement, which adds the grade to the
total. The last three statements in the block would fall outside the loop body, causing the
computer to interpret the code incorrectly as follows:

The preceding code would cause an infinite loop in the program if the user did not input
the sentinel -1 at line 19 (before the while statement).

Good Programming Practice 4.3
In a sentinel-controlled loop, prompts should remind the user of the sentinel.

while (grade != -1)
 total = total + grade; // add grade to total
gradeCounter = gradeCounter + 1; // increment counter
// prompt for input and read next grade from user
System.out.print("Enter grade or -1 to quit: ");
grade = input.nextInt();

4.10 Formulating Algorithms: Sentinel-Controlled Repetition 125

Explicitly and Implicitly Converting Between Primitive Types
If at least one grade was entered, line 37 of Fig. 4.10 calculates the average of the grades.
Recall from Fig. 4.8 that integer division yields an integer result. Even though variable
average is declared as a double, if we had written the averaging calculation as

it would lose the fractional part of the quotient before the result of the division is assigned
to average. This occurs because total and gradeCounter are both integers, and integer
division yields an integer result.

Most averages are not whole numbers (e.g., 0, –22 and 1024). For this reason, we cal-
culate the class average in this example as a floating-point number. To perform a floating-
point calculation with integer values, we must temporarily treat these values as floating-
point numbers for use in the calculation. Java provides the unary cast operator to accom-
plish this task. Line 37 of Fig. 4.10 uses the (double) cast operator—a unary operator—
to create a temporary floating-point copy of its operand total (which appears to the right
of the operator). Using a cast operator in this manner is called explicit conversion or type
casting. The value stored in total is still an integer.

The calculation now consists of a floating-point value (the temporary double copy of
total) divided by the integer gradeCounter. Java can evaluate only arithmetic expressions
in which the operands’ types are identical. To ensure this, Java performs an operation
called promotion (or implicit conversion) on selected operands. For example, in an
expression containing int and double values, the int values are promoted to double
values for use in the expression. In this example, the value of gradeCounter is promoted
to type double, then floating-point division is performed and the result of the calculation
is assigned to average. As long as the (double) cast operator is applied to any variable in
the calculation, the calculation will yield a double result. Later in this chapter, we discuss
all the primitive types. You’ll learn more about the promotion rules in Section 6.7.

A cast operator is formed by placing parentheses around any type’s name. The oper-
ator is a unary operator (i.e., an operator that takes only one operand). Java also supports
unary versions of the plus (+) and minus (–) operators, so you can write expressions like -
7 or +5. Cast operators associate from right to left and have the same precedence as other
unary operators, such as unary + and unary -. This precedence is one level higher than that
of the multiplicative operators *, / and %. (See the operator precedence chart in
Appendix A.) We indicate the cast operator with the notation (type) in our precedence
charts, to indicate that any type name can be used to form a cast operator.

Common Programming Error 4.5
Omitting the braces that delimit a block can lead to logic errors, such as infinite loops. To
prevent this problem, some programmers enclose the body of every control statement in
braces, even if the body contains only a single statement.

double average = total / gradeCounter;

Common Programming Error 4.6
A cast operator can be used to convert between primitive numeric types, such as int and
double, and between related reference types (as we discuss in Chapter 10, Object-Orient-
ed Programming: Polymorphism and Interfaces). Casting to the wrong type may cause
compilation errors or runtime errors.

126 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

Line 42 displays the class average. In this example, we display the class average rounded
to the nearest hundredth. The format specifier %.2f in printf’s format control string indi-
cates that variable average’s value should be displayed with two digits of precision to the
right of the decimal point—indicated by.2 in the format specifier. The three grades
entered during the sample execution (Fig. 4.10) total 257, which yields the average
85.666666…. Method printf uses the precision in the format specifier to round the value
to the specified number of digits. In this program, the average is rounded to the hun-
dredths position and is displayed as 85.67.

Floating-Point Number Precision
Floating-point numbers are not always 100% precise, but they have numerous applica-
tions. For example, when we speak of a “normal” body temperature of 98.6, we do not
need to be precise to a large number of digits. When we read the temperature on a ther-
mometer as 98.6, it may actually be 98.5999473210643. Calling this number simply 98.6
is fine for most applications involving body temperatures.

Floating-point numbers often arise as a result of division, such as in this example’s
class-average calculation. In conventional arithmetic, when we divide 10 by 3, the result is
3.3333333…, with the sequence of 3s repeating infinitely. The computer allocates only a
fixed amount of space to hold such a value, so clearly the stored floating-point value can
be only an approximation.

Owing to the imprecise nature of floating-point numbers, type double is preferred
over type float, because double variables can represent floating-point numbers more
accurately. For this reason, we primarily use type double throughout the book. In some
applications, the precision of float and double variables will be inadequate. For precise
floating-point numbers (such as those required by monetary calculations), Java provides
class BigDecimal (package java.math), which we’ll discuss in Chapter 8.

4.11 Formulating Algorithms: Nested Control Statements
For the next example, we once again formulate an algorithm by using pseudocode and top-
down, stepwise refinement, and write a corresponding Java program. We’ve seen that con-
trol statements can be stacked on top of one another (in sequence). In this case study, we
examine the only other structured way control statements can be connected—namely, by
nesting one control statement within another.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real-estate
brokers. Last year, ten of the students who completed this course took the exam. The col-
lege wants to know how well its students did on the exam. You’ve been asked to write a
program to summarize the results. You’ve been given a list of these 10 students. Next to
each name is written a 1 if the student passed the exam or a 2 if the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message “Enter result” on the screen
each time the program requests another test result.

Common Programming Error 4.7
Using floating-point numbers in a manner that assumes they’re represented precisely can
lead to incorrect results.

4.11 Formulating Algorithms: Nested Control Statements 127

2. Count the number of test results of each type.

3. Display a summary of the test results, indicating the number of students who passed and
the number who failed.

4. If more than eight students passed the exam, print “Bonus to instructor!”

After reading the problem statement carefully, we make the following observations:

1. The program must process test results for 10 students. A counter-controlled loop
can be used, because the number of test results is known in advance.

2. Each test result has a numeric value—either a 1 or a 2. Each time it reads a test
result, the program must determine whether it’s a 1 or a 2. We test for a 1 in our
algorithm. If the number is not a 1, we assume that it’s a 2. (Exercise 4.24 con-
siders the consequences of this assumption.)

3. Two counters are used to keep track of the exam results—one to count the num-
ber of students who passed the exam and one to count the number who failed.

4. After the program has processed all the results, it must decide whether more than
eight students passed the exam.

Let’s proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Once again, the top is a complete representation of the program, but several refinements
are likely to be needed before the pseudocode can evolve naturally into a Java program.

Our first refinement is

Here, too, even though we have a complete representation of the entire program, further
refinement is necessary. We now commit to specific variables. Counters are needed to re-
cord the passes and failures, a counter will be used to control the looping process and a
variable is needed to store the user input. The variable in which the user input will be
stored is not initialized at the start of the algorithm, because its value is read from the user
during each iteration of the loop.

The pseudocode statement

can be refined as follows:

Notice that only the counters are initialized at the start of the algorithm.
The pseudocode statement

Analyze exam results and decide whether a bonus should be paid

Initialize variables
Input the 10 exam results, and count passes and failures
Print a summary of the exam results and decide whether a bonus should be paid

Initialize variables

Initialize passes to zero
Initialize failures to zero
Initialize student counter to one

Input the 10 exam results, and count passes and failures

128 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

requires a loop that successively inputs the result of each exam. We know in advance that
there are precisely 10 exam results, so counter-controlled looping is appropriate. Inside the
loop (i.e., nested within the loop), a double-selection structure will determine whether each
exam result is a pass or a failure and will increment the appropriate counter. The refine-
ment of the preceding pseudocode statement is then

We use blank lines to isolate the If…Else control structure, which improves readability.
 The pseudocode statement

can be refined as follows:

Complete Second Refinement of Pseudocode and Conversion to Class Analysis
The complete second refinement appears in Fig. 4.11. Notice that blank lines are also used
to set off the While structure for program readability. This pseudocode is now sufficiently
refined for conversion to Java.

While student counter is less than or equal to 10
Prompt the user to enter the next exam result
Input the next exam result

If the student passed
Add one to passes

Else
Add one to failures

Add one to student counter

Print a summary of the exam results and decide whether a bonus should be paid

Print the number of passes
Print the number of failures

If more than eight students passed
Print “Bonus to instructor!”

1 Initialize passes to zero
2 Initialize failures to zero
3 Initialize student counter to one
4
5 While student counter is less than or equal to 10
6 Prompt the user to enter the next exam result
7 Input the next exam result
8
9 If the student passed

10 Add one to passes
11 Else
12 Add one to failures
13
14 Add one to student counter

Fig. 4.11 | Pseudocode for examination-results problem. (Part 1 of 2.)

4.11 Formulating Algorithms: Nested Control Statements 129

The Java class that implements the pseudocode algorithm and two sample executions
are shown in Fig. 4.12. Lines 13, 14, 15 and 22 of main declare the variables that are used
to process the examination results.

15
16 Print the number of passes
17 Print the number of failures
18
19 If more than eight students passed
20 Print “Bonus to instructor!”

Error-Prevention Tip 4.5
Initializing local variables when they’re declared helps you avoid any compilation errors
that might arise from attempts to use uninitialized variables. While Java does not require
that local-variable initializations be incorporated into declarations, it does require that
local variables be initialized before their values are used in an expression.

1 // Fig. 4.12: Analysis.java
2 // Analysis of examination results using nested control statements.
3 import java.util.Scanner; // class uses class Scanner
4
5 public class Analysis
6 {
7 public static void main(String[] args)
8 {
9 // create Scanner to obtain input from command window

10 Scanner input = new Scanner(System.in);
11
12
13
14
15
16
17 // process 10 students using counter-controlled loop
18 while (studentCounter <= 10)
19 {
20 // prompt user for input and obtain value from user
21 System.out.print("Enter result (1 = pass, 2 = fail): ");
22 int result = input.nextInt();
23
24
25
26
27
28
29

Fig. 4.12 | Analysis of examination results using nested control statements. (Part 1 of 2.)

Fig. 4.11 | Pseudocode for examination-results problem. (Part 2 of 2.)

// initializing variables in declarations
int passes = 0;
int failures = 0;
int studentCounter = 1;

// if...else is nested in the while statement
if (result == 1)
 passes = passes + 1;
else
 failures = failures + 1;

130 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

The while statement (lines 18–32) loops 10 times. During each iteration, the loop
inputs and processes one exam result. Notice that the if…else statement (lines 25–28)
for processing each result is nested in the while statement. If the result is 1, the if…else
statement increments passes; otherwise, it assumes the result is 2 and increments fail-
ures. Line 31 increments studentCounter before the loop condition is tested again at line
18. After 10 values have been input, the loop terminates and line 35 displays the number
of passes and failures. The if statement at lines 38–39 determines whether more than
eight students passed the exam and, if so, outputs the message "Bonus to instructor!".

30 // increment studentCounter so loop eventually terminates
31 studentCounter = studentCounter + 1;
32 }
33
34 // termination phase; prepare and display results
35
36
37
38
39
40 }
41 } // end class Analysis

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed: 9
Failed: 1
Bonus to instructor!

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed: 6
Failed: 4

Fig. 4.12 | Analysis of examination results using nested control statements. (Part 2 of 2.)

System.out.printf("Passed: %d%nFailed: %d%n", passes, failures);

// determine whether more than 8 students passed
if (passes > 8)
 System.out.println("Bonus to instructor!");

4.12 Compound Assignment Operators 131

Figure 4.12 shows the input and output from two sample excutions of the program.
During the first, the condition at line 38 of method main is true—more than eight stu-
dents passed the exam, so the program outputs a message to bonus the instructor.

4.12 Compound Assignment Operators
The compound assignment operators abbreviate assignment expressions. Statements like

where operator is one of the binary operators +, -, *, / or % (or others we discuss later in
the text) can be written in the form

For example, you can abbreviate the statement

with the addition compound assignment operator, +=, as

The += operator adds the value of the expression on its right to the value of the variable on
its left and stores the result in the variable on the left of the operator. Thus, the assignment
expression c += 3 adds 3 to c. Figure 4.13 shows the arithmetic compound assignment op-
erators, sample expressions using the operators and explanations of what the operators do.

4.13 Increment and Decrement Operators
Java provides two unary operators (summarized in Fig. 4.14) for adding 1 to or subtracting
1 from the value of a numeric variable. These are the unary increment operator, ++, and
the unary decrement operator, --. A program can increment by 1 the value of a variable
called c using the increment operator, ++, rather than the expression c = c + 1 or c += 1.
An increment or decrement operator that’s prefixed to (placed before) a variable is referred
to as the prefix increment or prefix decrement operator, respectively. An increment or
decrement operator that’s postfixed to (placed after) a variable is referred to as the postfix
increment or postfix decrement operator, respectively.

variable = variable operator expression;

variable operator= expression;

c = c + 3;

c += 3;

Assignment operator Sample expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;
+= c += 7 c = c + 7 10 to c
-= d -= 4 d = d - 4 1 to d
*= e *= 5 e = e * 5 20 to e
/= f /= 3 f = f / 3 2 to f
%= g %= 9 g = g % 9 3 to g

Fig. 4.13 | Arithmetic compound assignment operators.

132 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

Using the prefix increment (or decrement) operator to add 1 to (or subtract 1 from)
a variable is known as preincrementing (or predecrementing). This causes the variable to
be incremented (decremented) by 1; then the new value of the variable is used in the
expression in which it appears. Using the postfix increment (or decrement) operator to add
1 to (or subtract 1 from) a variable is known as postincrementing (or postdecrementing).
This causes the current value of the variable to be used in the expression in which it
appears; then the variable’s value is incremented (decremented) by 1.

Difference Between Prefix Increment and Postfix Increment Operators
Figure 4.15 demonstrates the difference between the prefix increment and postfix incre-
ment versions of the ++ increment operator. The decrement operator (--) works similarly.

Line 9 initializes the variable c to 5, and line 10 outputs c’s initial value. Line 11 out-
puts the value of the expression c++. This expression postincrements the variable c, so c’s
original value (5) is output, then c’s value is incremented (to 6). Thus, line 11 outputs c’s
initial value (5) again. Line 12 outputs c’s new value (6) to prove that the variable’s value
was indeed incremented in line 11.

Line 17 resets c’s value to 5, and line 18 outputs c’s value. Line 19 outputs the value
of the expression ++c. This expression preincrements c, so its value is incremented; then
the new value (6) is output. Line 20 outputs c’s value again to show that the value of c is
still 6 after line 19 executes.

Operator
Operator
name

Sample
expression Explanation

++ prefix
increment

++a Increment a by 1, then use the new value
of a in the expression in which a resides.

++ postfix
increment

a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

-- prefix
decrement

--b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- postfix
decrement

b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 4.14 | Increment and decrement operators.

Good Programming Practice 4.4
Unlike binary operators, the unary increment and decrement operators should be placed
next to their operands, with no intervening spaces.

1 // Fig. 4.15: Increment.java
2 // Prefix increment and postfix increment operators.
3
4 public class Increment
5 {

Fig. 4.15 | Prefix increment and postfix increment operators. (Part 1 of 2.)

4.13 Increment and Decrement Operators 133

Simplifying Statements with the Arithmetic Compound Assignment, Increment and
Decrement Operators
The arithmetic compound assignment operators and the increment and decrement oper-
ators can be used to simplify program statements. For example, the three assignment state-
ments in Fig. 4.12 (lines 26, 28 and 31)

can be written more concisely with compound assignment operators as

with prefix increment operators as

or with postfix increment operators as

6 public static void main(String[] args)
7 {
8 // demonstrate postfix increment operator
9 int c = 5;

10 System.out.printf("c before postincrement: %d%n", c); // prints 5
11
12
13
14 System.out.println(); // skip a line
15
16 // demonstrate prefix increment operator
17 c = 5;
18 System.out.printf(" c before preincrement: %d%n", c); // prints 5
19
20
21 }
22 } // end class Increment

c before postincrement: 5
 postincrementing c: 5
 c after postincrement: 6

 c before preincrement: 5
 preincrementing c: 6
 c after preincrement: 6

passes = passes + 1;
failures = failures + 1;
studentCounter = studentCounter + 1;

passes += 1;
failures += 1;
studentCounter += 1;

++passes;
++failures;
++studentCounter;

passes++;
failures++;
studentCounter++;

Fig. 4.15 | Prefix increment and postfix increment operators. (Part 2 of 2.)

System.out.printf(" postincrementing c: %d%n", c++); // prints 5
System.out.printf(" c after postincrement: %d%n", c); // prints 6

System.out.printf(" preincrementing c: %d%n", ++c); // prints 6
System.out.printf(" c after preincrement: %d%n", c); // prints 6

134 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

When incrementing or decrementing a variable in a statement by itself, the prefix
increment and postfix increment forms have the same effect, and the prefix decrement and
postfix decrement forms have the same effect. It’s only when a variable appears in the con-
text of a larger expression that preincrementing and postincrementing the variable have
different effects (and similarly for predecrementing and postdecrementing).

Operator Precedence and Associativity
Figure 4.16 shows the precedence and associativity of the operators we’ve introduced.
They’re shown from top to bottom in decreasing order of precedence. The second column
describes the associativity of the operators at each level of precedence. The conditional op-
erator (?:); the unary operators increment (++), decrement (--), plus (+) and minus (-);
the cast operators and the assignment operators =, +=, -=, *=, /= and %= associate from right
to left. All the other operators in the operator precedence chart in Fig. 4.16 associate from
left to right. The third column lists the type of each group of operators.

4.14 Primitive Types
The table in Appendix D lists the eight primitive types in Java. Like its predecessor lan-
guages C and C++, Java requires all variables to have a type. For this reason, Java is referred
to as a strongly typed language.

Common Programming Error 4.8
Attempting to use the increment or decrement operator on an expression other than one to
which a value can be assigned is a syntax error. For example, writing ++(x + 1) is a syntax
error, because (x + 1) is not a variable.

Good Programming Practice 4.5
Refer to the operator precedence and associativity chart (Appendix A) when writing ex-
pressions containing many operators. Confirm that the operators in the expression are per-
formed in the order you expect. If you’re uncertain about the order of evaluation in a
complex expression, break the expression into smaller statements or use parentheses to force
the order of evaluation, exactly as you’d do in an algebraic expression. Be sure to observe
that some operators such as assignment (=) associate right to left rather than left to right.

Operators Associativity Type

++ -- right to left unary postfix

++ -- + - (type) right to left unary prefix

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 4.16 | Precedence and associativity of the operators discussed so far.

4.15 (Optional) GUI and Graphics Case Study: Creating Simple Drawings 135

In C and C++, programmers frequently have to write separate versions of programs to
support different computer platforms, because the primitive types are not guaranteed to
be identical from computer to computer. For example, an int on one machine might be
represented by 16 bits (2 bytes) of memory, on a second machine by 32 bits (4 bytes), and
on another machine by 64 bits (8 bytes). In Java, int values are always 32 bits (4 bytes).

Each type in Appendix D is listed with its size in bits (there are eight bits to a byte)
and its range of values. Because the designers of Java want to ensure portability, they use
internationally recognized standards for character formats (Unicode; for more informa-
tion, visit www.unicode.org) and floating-point numbers (IEEE 754; for more informa-
tion, visit grouper.ieee.org/groups/754/).

Recall from Section 3.2 that variables of primitive types declared outside of a method
as instance variables of a class are automatically assigned default values unless explicitly ini-
tialized. Instance variables of types char, byte, short, int, long, float and double are all
given the value 0 by default. Instance variables of type boolean are given the value false
by default. Reference-type instance variables are initialized by default to the value null.

4.15 (Optional) GUI and Graphics Case Study: Creating
Simple Drawings
An appealing feature of Java is its graphics support, which enables you to visually enhance
your applications. We now introduce one of Java’s graphical capabilities—drawing lines.
It also covers the basics of creating a window to display a drawing on the computer screen.

Java’s Coordinate System
To draw in Java, you must understand Java’s coordinate system (Fig. 4.17), a scheme for
identifying points on the screen. By default, the upper-left corner of a GUI component
has the coordinates (0, 0). A coordinate pair is composed of an x-coordinate (the horizon-
tal coordinate) and a y-coordinate (the vertical coordinate). The x-coordinate is the hor-
izontal location moving from left to right. The y-coordinate is the vertical location moving
from top to bottom. The x-axis describes every horizontal coordinate, and the y-axis every
vertical coordinate. Coordinates indicate where graphics should be displayed on a screen.
Coordinate units are measured in pixels. The term pixel stands for “picture element.” A
pixel is a display monitor’s smallest unit of resolution.

Portability Tip 4.1
The primitive types in Java are portable across all computer platforms that support Java.

Fig. 4.17 | Java coordinate system. Units are measured in pixels.

(0, 0)

(x, y)+y

+x

y-axis

x-axis

www.unicode.org

136 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

First Drawing Application
Our first drawing application simply draws two lines. Class DrawPanel (Fig. 4.18) per-
forms the actual drawing, while class DrawPanelTest (Fig. 4.19) creates a window to dis-
play the drawing. In class DrawPanel, the import statements in lines 3–4 allow us to use
class Graphics (from package java.awt), which provides various methods for drawing
text and shapes onto the screen, and class JPanel (from package javax.swing), which pro-
vides an area on which we can draw.

1 // Fig. 4.18: DrawPanel.java
2 // Using drawLine to connect the corners of a panel.
3
4
5
6
7 {
8 // draws an X from the corners of the panel
9

10 {
11 // call paintComponent to ensure the panel displays correctly
12
13
14
15
16
17 // draw a line from the upper-left to the lower-right
18
19
20 // draw a line from the lower-left to the upper-right
21
22 }
23 } // end class DrawPanel

Fig. 4.18 | Using drawLine to connect the corners of a panel.

1 // Fig. 4.19: DrawPanelTest.java
2 // Creating JFrame to display DrawPanel.
3
4
5 public class DrawPanelTest
6 {
7 public static void main(String[] args)
8 {
9 // create a panel that contains our drawing

10 DrawPanel panel = new DrawPanel();
11
12 // create a new frame to hold the panel
13
14
15 // set the frame to exit when it is closed
16

Fig. 4.19 | Creating JFrame to display DrawPanel. (Part 1 of 2.)

import java.awt.Graphics;
import javax.swing.JPanel;

public class DrawPanel extends JPanel

public void paintComponent(Graphics g)

super.paintComponent(g);

int width = getWidth(); // total width
int height = getHeight(); // total height

g.drawLine(0, 0, width, height);

g.drawLine(0, height, width, 0);

import javax.swing.JFrame;

JFrame application = new JFrame();

application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

4.15 (Optional) GUI and Graphics Case Study: Creating Simple Drawings 137

Line 6 uses the keyword extends to indicate that class DrawPanel is an enhanced type
of JPanel. The keyword extends represents a so-called inheritance relationship in which
our new class DrawPanel begins with the existing members (data and methods) from class
JPanel. The class from which DrawPanel inherits, JPanel, appears to the right of keyword
extends. In this inheritance relationship, JPanel is called the superclass and DrawPanel is
called the subclass. This results in a DrawPanel class that has the attributes (data) and
behaviors (methods) of class JPanel as well as the new features we’re adding in our Draw-
Panel class declaration—specifically, the ability to draw two lines along the diagonals of
the panel. Inheritance is explained in detail in Chapter 9. For now, you should mimic our
DrawPanel class when creating your own graphics programs.

Method paintComponent
Every JPanel, including our DrawPanel, has a paintComponent method (lines 9–22),
which the system automatically calls every time it needs to display the DrawPanel. Method
paintComponent must be declared as shown in line 9—otherwise, the system will not call
it. This method is called when a JPanel is first displayed on the screen, when it’s covered
then uncovered by a window on the screen, and when the window in which it appears is
resized. Method paintComponent requires one argument, a Graphics object, that’s provid-
ed by the system when it calls paintComponent. This Graphics object is used to draw lines,
rectangles, ovals and other graphics.

The first statement in every paintComponent method you create should always be

which ensures that the panel is properly rendered before we begin drawing on it. Next,
lines 14–15 call methods that class DrawPanel inherits from JPanel. Because DrawPanel
extends JPanel, DrawPanel can use any public methods of JPanel. Methods getWidth
and getHeight return the JPanel’s width and height, respectively. Lines 14–15 store these
values in the local variables width and height. Finally, lines 18 and 21 use the Graphics
variable g to call method drawLine to draw the two lines. Method drawLine draws a line

17
18
19
20
21 }
22 } // end class DrawPanelTest

super.paintComponent(g);

Fig. 4.19 | Creating JFrame to display DrawPanel. (Part 2 of 2.)

application.add(panel); // add the panel to the frame
application.setSize(250, 250); // set the size of the frame
application.setVisible(true); // make the frame visible

138 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

between two points represented by its four arguments. The first two arguments are the x-
and y-coordinates for one endpoint, and the last two arguments are the coordinates for the
other endpoint. If you resize the window, the lines will scale accordingly, because the argu-
ments are based on the width and height of the panel. Resizing the window in this appli-
cation causes the system to call paintComponent to redraw the DrawPanel’s contents.

Class DrawPanelTest
To display the DrawPanel on the screen, you must place it in a window. You create a win-
dow with an object of class JFrame. In DrawPanelTest.java (Fig. 4.19), line 3 imports
class JFrame from package javax.swing. Line 10 in main creates a DrawPanel object,
which contains our drawing, and line 13 creates a new JFrame that can hold and display
our panel. Line 16 calls JFrame method setDefaultCloseOperation with the argument
JFrame.EXIT_ON_CLOSE to indicate that the application should terminate when the user
closes the window. Line 18 uses class JFrame’s add method to attach the DrawPanel to the
JFrame. Line 19 sets the size of the JFrame. Method setSize takes two parameters that
represent the width and height of the JFrame, respectively. Finally, line 20 displays the
JFrame by calling its setVisible method with the argument true. When the JFrame is
displayed, the DrawPanel’s paintComponent method (lines 9–22 of Fig. 4.18) is implicitly
called, and the two lines are drawn (see the sample outputs in Fig. 4.19). Try resizing the
window to see that the lines always draw based on the window’s current width and height.

GUI and Graphics Case Study Exercises
4.1 Using loops and control statements to draw lines can lead to many interesting designs.

a) Create the design in the left screen capture of Fig. 4.20. This design draws lines from
the top-left corner, fanning them out until they cover the upper-left half of the panel.
One approach is to divide the width and height into an equal number of steps (we found
15 steps worked well). The first endpoint of a line will always be in the top-left corner
(0, 0). The second endpoint can be found by starting at the bottom-left corner and
moving up one vertical step and right one horizontal step. Draw a line between the two
endpoints. Continue moving up and to the right one step to find each successive end-
point. The figure should scale accordingly as you resize the window.

Fig. 4.20 | Lines fanning from a corner.

4.16 Wrap-Up 139

b) Modify part (a) to have lines fan out from all four corners, as shown in the right screen
capture of Fig. 4.20. Lines from opposite corners should intersect along the middle.

4.2 Figure 4.21 displays two additional designs created using while loops and drawLine.
a) Create the design in the left screen capture of Fig. 4.21. Begin by dividing each edge

into an equal number of increments (we chose 15 again). The first line starts in the top-
left corner and ends one step right on the bottom edge. For each successive line, move
down one increment on the left edge and right one increment on the bottom edge. Con-
tinue drawing lines until you reach the bottom-right corner. The figure should scale as
you resize the window so that the endpoints always touch the edges.

b) Modify your answer in part (a) to mirror the design in all four corners, as shown in the
right screen capture of Fig. 4.21.

4.16 Wrap-Up
This chapter presented basic problem solving for building classes and developing methods
for these classes. We demonstrated how to construct an algorithm (i.e., an approach to
solving a problem), then how to refine the algorithm through several phases of pseudocode
development, resulting in Java code that can be executed as part of a method. The chapter
showed how to use top-down, stepwise refinement to plan out the specific actions that a
method must perform and the order in which the method must perform these actions.

Only three types of control structures—sequence, selection and repetition—are
needed to develop any problem-solving algorithm. Specifically, this chapter demonstrated
the if single-selection statement, the if…else double-selection statement and the while
repetition statement. These are some of the building blocks used to construct solutions to
many problems. We used control-statement stacking to total and compute the average of
a set of student grades with counter- and sentinel-controlled repetition, and we used con-
trol-statement nesting to analyze and make decisions based on a set of exam results. We
introduced Java’s compound assignment operators and its increment and decrement oper-
ators. Finally, we discussed Java’s primitive types. In Chapter 5, we continue our discus-
sion of control statements, introducing the for, do…while and switch statements.

Fig. 4.21 | Line art with loops and drawLine.

140 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

Summary
Section 4.1 Introduction
• Before writing a program to solve a problem, you must have a thorough understanding of the

problem and a carefully planned approach to solving it. You must also understand the building
blocks that are available and employ proven program-construction techniques.

Section 4.2 Algorithms
• Any computing problem can be solved by executing a series of actions (p. 102) in a specific order.

• A procedure for solving a problem in terms of the actions to execute and the order in which they
execute is called an algorithm (p. 102).

• Specifying the order in which statements execute in a program is called program control (p. 102).

Section 4.3 Pseudocode
• Pseudocode (p. 103) is an informal language that helps you develop algorithms without having

to worry about the strict details of Java language syntax.

• The pseudocode we use in this book is similar to everyday English—it’s convenient and user
friendly, but it’s not an actual computer programming language. You may, of course, use your
own native language(s) to develop your own pseudocode.

• Pseudocode helps you “think out” a program before attempting to write it in a programming lan-
guage, such as Java.

• Carefully prepared pseudocode can easily be converted to a corresponding Java program.

Section 4.4 Control Structures
• Normally, statements in a program are executed one after the other in the order in which they’re

written. This process is called sequential execution (p. 103).

• Various Java statements enable you to specify that the next statement to execute is not necessarily
the next one in sequence. This is called transfer of control (p. 103).

• Bohm and Jacopini demonstrated that all programs could be written in terms of only three control
structures (p. 103)—the sequence structure, the selection structure and the repetition structure.

• The term “control structures” comes from the field of computer science. The Java Language Spec-
ification refers to “control structures” as “control statements” (p. 104).

• The sequence structure is built into Java. Unless directed otherwise, the computer executes Java
statements one after the other in the order in which they’re written—that is, in sequence.

• Anywhere a single action may be placed, several actions may be placed in sequence.

• Activity diagrams (p. 104) are part of the UML. An activity diagram models the workflow
(p. 104; also called the activity) of a portion of a software system.

• Activity diagrams are composed of symbols (p. 104)—such as action-state symbols, diamonds and
small circles—that are connected by transition arrows, which represent the flow of the activity.

• Action states (p. 104) contain action expressions that specify particular actions to perform.

• The arrows in an activity diagram represent transitions, which indicate the order in which the
actions represented by the action states occur.

• The solid circle located at the top of an activity diagram represents the activity’s initial state
(p. 104)—the beginning of the workflow before the program performs the modeled actions.

• The solid circle surrounded by a hollow circle that appears at the bottom of the diagram repre-
sents the final state (p. 104)—the end of the workflow after the program performs its actions.

 Summary 141

• Rectangles with their upper-right corners folded over are UML notes (p. 104)—explanatory re-
marks that describe the purpose of symbols in the diagram.

• Java has three types of selection statements (p. 105).

• The if single-selection statement (p. 105) selects or ignores one or more actions.

• The if…else double-selection statement selects between two actions or groups of actions.

• The switch statement is called a multiple-selection statement (p. 105) because it selects among
many different actions or groups of actions.

• Java provides the while, do…while and for repetition (also called iteration or looping) state-
ments that enable programs to perform statements repeatedly as long as a loop-continuation con-
dition remains true.

• The while and for statements perform the action(s) in their bodies zero or more times—if the
loop-continuation condition (p. 105) is initially false, the action(s) will not execute. The
do…while statement performs the action(s) in its body one or more times.

• The words if, else, switch, while, do and for are Java keywords. Keywords cannot be used as
identifiers, such as variable names.

• Every program is formed by combining as many sequence, selection and repetition statements
(p. 105) as is appropriate for the algorithm the program implements.

• Single-entry/single-exit control statements (p. 105) are attached to one another by connecting
the exit point of one to the entry point of the next. This is known as control-statement stacking.

• A control statement may also be nested (p. 105) inside another control statement.

Section 4.5 if Single-Selection Statement
• Programs use selection statements to choose among alternative courses of action.

• The single-selection if statement’s activity diagram contains the diamond symbol, which indi-
cates that a decision is to be made. The workflow follows a path determined by the symbol’s as-
sociated guard conditions (p. 106). If a guard condition is true, the workflow enters the action
state to which the corresponding transition arrow points.

• The if statement is a single-entry/single-exit control statement.

Section 4.6 if…else Double-Selection Statement
• The if single-selection statement performs an indicated action only when the condition is true.

• The if…else double-selection (p. 105) statement performs one action when the condition is
true and another action when the condition is false.

• A program can test multiple cases with nested if…else statements (p. 107).

• The conditional operator (p. 110; ?:) is Java’s only ternary operator—it takes three operands.
Together, the operands and the ?: symbol form a conditional expression (p. 110).

• The Java compiler associates an else with the immediately preceding if unless told to do other-
wise by the placement of braces.

• The if statement expects one statement in its body. To include several statements in the body
of an if (or the body of an else for an if…else statement), enclose the statements in braces.

• A block (p. 110) of statements can be placed anywhere that a single statement can be placed.

• A logic error (p. 110) has its effect at execution time. A fatal logic error (p. 110) causes a program
to fail and terminate prematurely. A nonfatal logic error (p. 110) allows a program to continue
executing, but causes it to produce incorrect results.

142 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

• Just as a block can be placed anywhere a single statement can be placed, you can also use an empty
statement, represented by placing a semicolon (;) where a statement would normally be.

Section 4.8 while Repetition Statement
• The while repetition statement (p. 114) allows you to specify that a program should repeat an

action while some condition remains true.

• The UML’s merge (p. 114) symbol joins two flows of activity into one.

• The decision and merge symbols can be distinguished by the number of incoming and outgoing
transition arrows. A decision symbol has one transition arrow pointing to the diamond and two
or more transition arrows pointing out from the diamond to indicate possible transitions from
that point. Each transition arrow pointing out of a decision symbol has a guard condition. A
merge symbol has two or more transition arrows pointing to the diamond and only one transi-
tion arrow pointing from the diamond, to indicate multiple activity flows merging to continue
the activity. None of the transition arrows associated with a merge symbol has a guard condition.

Section 4.9 Formulating Algorithms: Counter-Controlled Repetition
• Counter-controlled repetition (p. 115) uses a variable called a counter (or control variable) to

control the number of times a set of statements execute.

• Counter-controlled repetition is often called definite repetition (p. 115), because the number of
repetitions is known before the loop begins executing.

• A total (p. 115) is a variable used to accumulate the sum of several values. Variables used to store
totals are normally initialized to zero before being used in a program.

• A local variable’s declaration must appear before the variable is used in that method. A local vari-
able cannot be accessed outside the method in which it’s declared.

• Dividing two integers results in integer division—the calculation’s fractional part is truncated.

Section 4.10 Formulating Algorithms: Sentinel-Controlled Repetition
• In sentinel-controlled repetition (p. 119), a special value called a sentinel value (also called a sig-

nal value, a dummy value or a flag value) is used to indicate “end of data entry.”

• A sentinel value must be chosen that cannot be confused with an acceptable input value.

• Top-down, stepwise refinement (p. 120) is essential to the development of well-structured pro-
grams.

• Division by zero is a logic error.

• To perform a floating-point calculation with integer values, cast one of the integers to type double.

• Java knows how to evaluate only arithmetic expressions in which the operands’ types are identi-
cal. To ensure this, Java performs an operation called promotion on selected operands.

• The unary cast operator is formed by placing parentheses around the name of a type.

Section 4.12 Compound Assignment Operators
• The compound assignment operators (p. 131) abbreviate assignment expressions. Statements of

the form

variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or %, can be written in the form

variable operator= expression;

• The += operator adds the value of the expression on the right of the operator to the value of the
variable on the left of the operator and stores the result in the variable on the left of the operator.

 Self-Review Exercises 143

Section 4.13 Increment and Decrement Operators
• The unary increment operator, ++, and the unary decrement operator, --, add 1 to or subtract 1

from the value of a numeric variable (p. 131).

• An increment or decrement operator that’s prefixed (p. 131) to a variable is the prefix increment
or prefix decrement operator, respectively. An increment or decrement operator that’s postfixed
(p. 131) to a variable is the postfix increment or postfix decrement operator, respectively.

• Using the prefix increment or decrement operator to add or subtract 1 is known as preincrement-
ing or predecrementing, respectively.

• Preincrementing or predecrementing a variable causes the variable to be incremented or decre-
mented by 1; then the new value of the variable is used in the expression in which it appears.

• Using the postfix increment or decrement operator to add or subtract 1 is known as postincre-
menting or postdecrementing, respectively.

• Postincrementing or postdecrementing the variable causes its value to be used in the expression
in which it appears; then the variable’s value is incremented or decremented by 1.

• When incrementing or decrementing a variable in a statement by itself, the prefix and postfix
increment have the same effect, and the prefix and postfix decrement have the same effect.

Section 4.14 Primitive Types
• Java requires all variables to have a type. Thus, Java is referred to as a strongly typed language

(p. 134).

• Java uses Unicode characters and IEEE 754 floating-point numbers.

Self-Review Exercises
4.1 Fill in the blanks in each of the following statements:

a) All programs can be written in terms of three types of control structures: ,
 and .

b) The statement is used to execute one action when a condition is true and
another when that condition is false.

c) Repeating a set of instructions a specific number of times is called repetition.
d) When it’s not known in advance how many times a set of statements will be repeated,

a(n) value can be used to terminate the repetition.
e) The structure is built into Java; by default, statements execute in the order

they appear.
f) Instance variables of types char, byte, short, int, long, float and double are all given

the value by default.
g) Java is a(n) language; it requires all variables to have a type.
h) If the increment operator is to a variable, first the variable is incremented by

1, then its new value is used in the expression.

4.2 State whether each of the following is true or false. If false, explain why.
a) An algorithm is a procedure for solving a problem in terms of the actions to execute and

the order in which they execute.
b) A set of statements contained within a pair of parentheses is called a block.
c) A selection statement specifies that an action is to be repeated while some condition re-

mains true.
d) A nested control statement appears in the body of another control statement.
e) Java provides the arithmetic compound assignment operators +=, -=, *=, /= and %= for

abbreviating assignment expressions.

144 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

f) The primitive types (boolean, char, byte, short, int, long, float and double) are por-
table across only Windows platforms.

g) Specifying the order in which statements execute in a program is called program control.
h) The unary cast operator (double) creates a temporary integer copy of its operand.
i) Instance variables of type boolean are given the value true by default.
j) Pseudocode helps you think out a program before attempting to write it in a program-

ming language.

4.3 Write four different Java statements that each add 1 to integer variable x.

4.4 Write Java statements to accomplish each of the following tasks:
a) Use one statement to assign the sum of x and y to z, then increment x by 1.
b) Test whether variable count is greater than 10. If it is, print "Count is greater than 10".
c) Use one statement to decrement the variable x by 1, then subtract it from variable total

and store the result in variable total.
d) Calculate the remainder after q is divided by divisor, and assign the result to q. Write

this statement in two different ways.

4.5 Write a Java statement to accomplish each of the following tasks:
a) Declare variables sum of type int and initialize it to 0.
b) Declare variables x of type int and initialize it to 1.
c) Add variable x to variable sum, and assign the result to variable sum.
d) Print "The sum is: ", followed by the value of variable sum.

4.6 Combine the statements that you wrote in Exercise 4.5 into a Java application that calcu-
lates and prints the sum of the integers from 1 to 10. Use a while statement to loop through the
calculation and increment statements. The loop should terminate when the value of x becomes 11.

4.7 Determine the value of the variables in the statement product *= x++; after the calculation
is performed. Assume that all variables are type int and initially have the value 5.

4.8 Identify and correct the errors in each of the following sets of code:
a) while (c <= 5)

{
 product *= c;
 ++c;

b) if (gender == 1)
 System.out.println("Woman");
else;
 System.out.println("Man");

4.9 What is wrong with the following while statement?

while (z >= 0)
 sum += z;

Answers to Self-Review Exercises
4.1 a) sequence, selection, repetition. b) if…else. c) counter-controlled (or definite). d) sen-
tinel, signal, flag or dummy. e) sequence. f) 0 (zero). g) strongly typed. h) prefixed.

4.2 a) True. b) False. A set of statements contained within a pair of braces ({ and }) is called a
block. c) False. A repetition statement specifies that an action is to be repeated while some condi-
tion remains true. d) True. e) True. f) False. The primitive types (boolean, char, byte, short, int,
long, float and double) are portable across all computer platforms that support Java. g) True.
h) False. The unary cast operator (double) creates a temporary floating-point copy of its operand.
i) False. Instance variables of type boolean are given the value false by default. j) True.

 Exercises 145

4.3 x = x + 1;
x += 1;
++x;
x++;

4.4 a) z = x++ + y;
b) if (count > 10)

 System.out.println("Count is greater than 10");
c) total -= --x;
d) q %= divisor;

q = q % divisor;

4.5 a) int sum = 0;
b) int x = 1;
c) sum += x; or sum = sum + x;
d) System.out.printf("The sum is: %d%n", sum);

4.6 The program is as follows:

4.7 product = 25, x = 6

4.8 a) Error: The closing right brace of the while statement’s body is missing.
Correction: Add a closing right brace after the statement ++c;.

b) Error: The semicolon after else results in a logic error. The second output statement
will always be executed.
Correction: Remove the semicolon after else.

4.9 The value of the variable z is never changed in the while statement. Therefore, if the loop-
continuation condition (z >= 0) is true, an infinite loop is created. To prevent an infinite loop from
occurring, z must be decremented so that it eventually becomes less than 0.

Exercises
4.10 Compare and contrast the if single-selection statement and the while repetition statement.
How are these two statements similar? How are they different?

1 // Exercise 4.6: Calculate.java
2 // Calculate the sum of the integers from 1 to 10
3 public class Calculate
4 {
5 public static void main(String[] args)
6 {
7 int sum = 0;
8 int x = 1;
9

10 while (x <= 10) // while x is less than or equal to 10
11 {
12 sum += x; // add x to sum
13 ++x; // increment x
14 }
15
16 System.out.printf("The sum is: %d%n", sum);
17 }
18 } // end class Calculate

The sum is: 55

146 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

4.11 Explain what happens when a Java program attempts to divide one integer by another.
What happens to the fractional part of the calculation? How can you avoid that outcome?

4.12 Describe the two ways in which control statements can be combined.

4.13 What type of repetition would be appropriate for calculating the sum of the first 100 posi-
tive integers? What type would be appropriate for calculating the sum of an arbitrary number of pos-
itive integers? Briefly describe how each of these tasks could be performed.

4.14 What is the difference between preincrementing and postincrementing a variable?

4.15 Identify and correct the errors in each of the following pieces of code. [Note: There may be
more than one error in each piece of code.]

a) if (age >= 65);
 System.out.println("Age is greater than or equal to 65");
else
 System.out.println("Age is less than 65)";

b) int x = 1, total;
while (x <= 10)
{
 total += x;
 ++x;
}

c) while (x <= 100)
 total += x;
 ++x;

d) while (y > 0)
{
 System.out.println(y);
 ++y;

4.16 What does the following program print?

For Exercise 4.17 through Exercise 4.20, perform each of the following steps:
a) Read the problem statement.
b) Formulate the algorithm using pseudocode and top-down, stepwise refinement.
c) Write a Java program.

1 // Exercise 4.16: Mystery.java
2 public class Mystery
3 {
4 public static void main(String[] args)
5 {
6 int x = 1;
7 int total = 0;
8
9 while (x <= 10)

10 {
11 int y = x * x;
12 System.out.println(y);
13 total += y;
14 ++x;
15 }
16
17 System.out.printf("Total is %d%n", total);
18 }
19 } // end class Mystery

 Exercises 147

d) Test, debug and execute the Java program.
e) Process three complete sets of data.

4.17 (Gas Mileage) Drivers are concerned with the mileage their automobiles get. One driver has
kept track of several trips by recording the miles driven and gallons used for each tankful. Develop
a Java application that will input the miles driven and gallons used (both as integers) for each trip.
The program should calculate and display the miles per gallon obtained for each trip and print the
combined miles per gallon obtained for all trips up to this point. All averaging calculations should
produce floating-point results. Use class Scanner and sentinel-controlled repetition to obtain the
data from the user.

4.18 (Credit Limit Calculator) Develop a Java application that determines whether any of several
department-store customers has exceeded the credit limit on a charge account. For each customer,
the following facts are available:

a) account number
b) balance at the beginning of the month
c) total of all items charged by the customer this month
d) total of all credits applied to the customer’s account this month
e) allowed credit limit.

The program should input all these facts as integers, calculate the new balance (= beginning balance
+ charges – credits), display the new balance and determine whether the new balance exceeds the
customer’s credit limit. For those customers whose credit limit is exceeded, the program should dis-
play the message "Credit limit exceeded".

4.19 (Sales Commission Calculator) A large company pays its salespeople on a commission basis.
The salespeople receive $200 per week plus 9% of their gross sales for that week. For example, a
salesperson who sells $5,000 worth of merchandise in a week receives $200 plus 9% of $5000, or a
total of $650. You’ve been supplied with a list of the items sold by each salesperson. The values of
these items are as follows:

Item Value
1 239.99
2 129.75
3 99.95
4 350.89

Develop a Java application that inputs one salesperson’s items sold for last week and calculates and
displays that salesperson’s earnings. There’s no limit to the number of items that can be sold.

4.20 (Salary Calculator) Develop a Java application that determines the gross pay for each of
three employees. The company pays straight time for the first 40 hours worked by each employee
and time and a half for all hours worked in excess of 40. You’re given a list of the employees, their
number of hours worked last week and their hourly rates. Your program should input this informa-
tion for each employee, then determine and display the employee’s gross pay. Use class Scanner to
input the data.

4.21 (Find the Largest Number) The process of finding the largest value is used frequently in com-
puter applications. For example, a program that determines the winner of a sales contest would input
the number of units sold by each salesperson. The salesperson who sells the most units wins the con-
test. Write a pseudocode program, then a Java application that inputs a series of 10 integers and deter-
mines and prints the largest integer. Your program should use at least the following three variables:

a) counter: A counter to count to 10 (i.e., to keep track of how many numbers have been
input and to determine when all 10 numbers have been processed).

b) number: The integer most recently input by the user.
c) largest: The largest number found so far.

148 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

4.22 (Tabular Output) Write a Java application that uses looping to print the following table of
values:

4.23 (Find the Two Largest Numbers) Using an approach similar to that for Exercise 4.21, find
the two largest values of the 10 values entered. [Note: You may input each number only once.]

4.24 (Validating User Input) Modify the program in Fig. 4.12 to validate its inputs. For any in-
put, if the value entered is other than 1 or 2, keep looping until the user enters a correct value.

4.25 What does the following program print?

4.26 What does the following program print?

N 10*N 100*N 1000*N

1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000

1 // Exercise 4.25: Mystery2.java
2 public class Mystery2
3 {
4 public static void main(String[] args)
5 {
6 int count = 1;
7
8 while (count <= 10)
9 {

10 System.out.println(count % 2 == 1 ? "****" : "++++++++");
11 ++count;
12 }
13 }
14 } // end class Mystery2

1 // Exercise 4.26: Mystery3.java
2 public class Mystery3
3 {
4 public static void main(String[] args)
5 {
6 int row = 10;
7
8 while (row >= 1)
9 {

10 int column = 1;
11
12 while (column <= 10)
13 {
14 System.out.print(row % 2 == 1 ? "<" : ">");
15 ++column;
16 }
17
18 --row;
19 System.out.println();
20 }
21 }
22 } // end class Mystery3

 Exercises 149

4.27 (Dangling-else Problem) Determine the output for each of the given sets of code when x
is 9 and y is 11 and when x is 11 and y is 9. The compiler ignores the indentation in a Java program.
Also, the Java compiler always associates an else with the immediately preceding if unless told to
do otherwise by the placement of braces ({}). On first glance, you may not be sure which if a par-
ticular else matches—this situation is referred to as the “dangling-else problem.” We’ve eliminat-
ed the indentation from the following code to make the problem more challenging. [Hint: Apply
the indentation conventions you’ve learned.]

a) if (x < 10)
if (y > 10)
System.out.println("*****");
else
System.out.println("#####");
System.out.println("$$$$$");

b) if (x < 10)
{
if (y > 10)
System.out.println("*****");
}
else
{
System.out.println("#####");
System.out.println("$$$$$");
}

4.28 (Another Dangling-else Problem) Modify the given code to produce the output shown in
each part of the problem. Use proper indentation techniques. Make no changes other than inserting
braces and changing the indentation of the code. The compiler ignores indentation in a Java pro-
gram. We’ve eliminated the indentation from the given code to make the problem more challeng-
ing. [Note: It’s possible that no modification is necessary for some of the parts.]

if (y == 8)
if (x == 5)
System.out.println("@@@@@");
else
System.out.println("#####");
System.out.println("$$$$$");
System.out.println("&&&&&");

a) Assuming that x = 5 and y = 8, the following output is produced:

@@@@@
$$$$$
&&&&&

b) Assuming that x = 5 and y = 8, the following output is produced:

@@@@@

c) Assuming that x = 5 and y = 8, the following output is produced:

@@@@@

d) Assuming that x = 5 and y = 7, the following output is produced. [Note: The last three
output statements after the else are all part of a block.]

#####
$$$$$
&&&&&

150 Chapter 4 Control Statements: Part 1; Assignment, ++ and -- Operators

4.29 (Square of Asterisks) Write an application that prompts the user to enter the size of the side
of a square, then displays a hollow square of that size made of asterisks. Your program should work
for squares of all side lengths between 1 and 20.

4.30 (Palindromes) A palindrome is a sequence of characters that reads the same backward as for-
ward. For example, each of the following five-digit integers is a palindrome: 12321, 55555, 45554
and 11611. Write an application that reads in a five-digit integer and determines whether it’s a pal-
indrome. If the number is not five digits long, display an error message and allow the user to enter
a new value.

4.31 (Printing the Decimal Equivalent of a Binary Number) Write an application that inputs an
integer containing only 0s and 1s (i.e., a binary integer) and prints its decimal equivalent. [Hint: Use
the remainder and division operators to pick off the binary number’s digits one at a time, from right
to left. In the decimal number system, the rightmost digit has a positional value of 1 and the next
digit to the left a positional value of 10, then 100, then 1000, and so on. The decimal number 234
can be interpreted as 4 * 1 + 3 * 10 + 2 * 100. In the binary number system, the rightmost digit has
a positional value of 1, the next digit to the left a positional value of 2, then 4, then 8, and so on.
The decimal equivalent of binary 1101 is 1 * 1 + 0 * 2 + 1 * 4 + 1 * 8, or 1 + 0 + 4 + 8 or, 13.]

4.32 (Checkerboard Pattern of Asterisks) Write an application that uses only the output state-
ments

System.out.print("* ");
System.out.print(" ");
System.out.println();

to display the checkerboard pattern that follows. A System.out.println method call with no argu-
ments causes the program to output a single newline character. [Hint: Repetition statements are
required.]

4.33 (Multiples of 2 with an Infinite Loop) Write an application that keeps displaying in the
command window the multiples of the integer 2—namely, 2, 4, 8, 16, 32, 64, and so on. Your loop
should not terminate (i.e., it should create an infinite loop). What happens when you run this pro-
gram?

4.34 (What’s Wrong with This Code?) What is wrong with the following statement? Provide the
correct statement to add one to the sum of x and y.

System.out.println(++(x + y));

4.35 (Sides of a Triangle) Write an application that reads three nonzero values entered by the
user and determines and prints whether they could represent the sides of a triangle.

4.36 (Sides of a Right Triangle) Write an application that reads three nonzero integers and de-
termines and prints whether they could represent the sides of a right triangle.

4.37 (Factorial) The factorial of a nonnegative integer n is written as n! (pronounced “n factori-
al”) and is defined as follows:

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

 Making a Difference 151

n! = n · (n – 1) · (n – 2) · … · 1 (for values of n greater than or equal to 1)

and

n! = 1 (for n = 0)

For example, 5! = 5 · 4 · 3 · 2 · 1, which is 120.
a) Write an application that reads a nonnegative integer and computes and prints its fac-

torial.
b) Write an application that estimates the value of the mathematical constant e by using

the following formula. Allow the user to enter the number of terms to calculate.

c) Write an application that computes the value of ex by using the following formula. Al-
low the user to enter the number of terms to calculate.

Making a Difference
4.38 (Enforcing Privacy with Cryptography) The explosive growth of Internet communications
and data storage on Internet-connected computers has greatly increased privacy concerns. The field
of cryptography is concerned with coding data to make it difficult (and hopefully—with the most
advanced schemes—impossible) for unauthorized users to read. In this exercise you’ll investigate a
simple scheme for encrypting and decrypting data. A company that wants to send data over the In-
ternet has asked you to write a program that will encrypt it so that it may be transmitted more se-
curely. All the data is transmitted as four-digit integers. Your application should read a four-digit
integer entered by the user and encrypt it as follows: Replace each digit with the result of adding 7
to the digit and getting the remainder after dividing the new value by 10. Then swap the first digit
with the third, and swap the second digit with the fourth. Then print the encrypted integer. Write
a separate application that inputs an encrypted four-digit integer and decrypts it (by reversing the
encryption scheme) to form the original number. [Optional reading project: Research “public key
cryptography” in general and the PGP (Pretty Good Privacy) specific public key scheme. You may
also want to investigate the RSA scheme, which is widely used in industrial-strength applications.]

4.39 (World Population Growth) World population has grown considerably over the centuries.
Continued growth could eventually challenge the limits of breathable air, drinkable water, arable
cropland and other limited resources. There’s evidence that growth has been slowing in recent years
and that world population could peak some time this century, then start to decline.

For this exercise, research world population growth issues online. Be sure to investigate various
viewpoints. Get estimates for the current world population and its growth rate (the percentage by
which it’s likely to increase this year). Write a program that calculates world population growth
each year for the next 75 years, using the simplifying assumption that the current growth rate will stay
constant. Print the results in a table. The first column should display the year from year 1 to year
75. The second column should display the anticipated world population at the end of that year.
The third column should display the numerical increase in the world population that would occur
that year. Using your results, determine the year in which the population would be double what it
is today, if this year’s growth rate were to persist.

e 1
1
1!

1
2!

1
3!
----- …+ + + +=

ex 1
x
1!

x2

2!

x3

3!
----- …+ + + +=

5 Control Statements: Part 2;
Logical Operators

The wheel is come full circle.
—William Shakespeare

All the evolution we know of
proceeds from the vague to the
definite.
—Charles Sanders Peirce

O b j e c t i v e s
In this chapter you’ll:

■ Learn the essentials of
counter-controlled repetition.

■ Use the for and do…while
repetition statements to
execute statements in a
program repeatedly.

■ Understand multiple
selection using the switch
selection statement.

■ Use the break and
continue program control
statements to alter the flow
of control.

■ Use the logical operators to
form complex conditional
expressions in control
statements.

5.1 Introduction 153

5.1 Introduction
This chapter continues our presentation of structured programming theory and principles
by introducing all but one of Java’s remaining control statements. We demonstrate Java’s
for, do…while and switch statements. Through a series of short examples using while
and for, we explore the essentials of counter-controlled repetition. We use a switch state-
ment to count the number of A, B, C, D and F grade equivalents in a set of numeric grades
entered by the user. We introduce the break and continue program-control statements.
We discuss Java’s logical operators, which enable you to use more complex conditional ex-
pressions in control statements. Finally, we summarize Java’s control statements and the
proven problem-solving techniques presented in this chapter and Chapter 4.

5.2 Essentials of Counter-Controlled Repetition
This section uses the while repetition statement introduced in Chapter 4 to formalize the
elements required to perform counter-controlled repetition, which requires

1. a control variable (or loop counter)

2. the initial value of the control variable

3. the increment by which the control variable is modified each time through the
loop (also known as each iteration of the loop)

4. the loop-continuation condition that determines if looping should continue.

To see these elements of counter-controlled repetition, consider the application of
Fig. 5.1, which uses a loop to display the numbers from 1 through 10.

5.1 Introduction
5.2 Essentials of Counter-Controlled

Repetition
5.3 for Repetition Statement
5.4 Examples Using the for Statement
5.5 do…while Repetition Statement
5.6 switch Multiple-Selection Statement

5.7 Class AutoPolicy Case Study:
Strings in switch Statements

5.8 break and continue Statements
5.9 Logical Operators

5.10 Structured Programming Summary
5.11 (Optional) GUI and Graphics Case

Study: Drawing Rectangles and Ovals
5.12 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1 // Fig. 5.1: WhileCounter.java
2 // Counter-controlled repetition with the while repetition statement.
3
4 public class WhileCounter
5 {
6 public static void main(String[] args)
7 {

Fig. 5.1 | Counter-controlled repetition with the while repetition statement. (Part 1 of 2.)

154 Chapter 5 Control Statements: Part 2; Logical Operators

In Fig. 5.1, the elements of counter-controlled repetition are defined in lines 8, 10
and 13. Line 8 declares the control variable (counter) as an int, reserves space for it in
memory and sets its initial value to 1. Variable counter also could have been declared and
initialized with the following local-variable declaration and assignment statements:

Line 12 displays control variable counter’s value during each iteration of the loop. Line
13 increments the control variable by 1 for each iteration of the loop. The loop-continua-
tion condition in the while (line 10) tests whether the value of the control variable is less
than or equal to 10 (the final value for which the condition is true). The program per-
forms the body of this while even when the control variable is 10. The loop terminates
when the control variable exceeds 10 (i.e., counter becomes 11).

The program in Fig. 5.1 can be made more concise by initializing counter to 0 in line
8 and preincrementing counter in the while condition as follows:

This code saves a statement, because the while condition performs the increment before
testing the condition. (Recall from Section 4.13 that the precedence of ++ is higher than
that of <=.) Coding in such a condensed fashion takes practice, might make code more dif-
ficult to read, debug, modify and maintain, and typically should be avoided.

8
9

10 while () // loop-continuation condition
11 {
12 System.out.printf("%d ", counter);
13
14 }
15
16 System.out.println();
17 }
18 } // end class WhileCounter

1 2 3 4 5 6 7 8 9 10

int counter; // declare counter
counter = 1; // initialize counter to 1

Common Programming Error 5.1
Because floating-point values may be approximate, controlling loops with floating-point
variables may result in imprecise counter values and inaccurate termination tests.

Error-Prevention Tip 5.1
Use integers to control counting loops.

while (++counter <= 10) // loop-continuation condition
 System.out.printf("%d ", counter);

Software Engineering Observation 5.1
“Keep it simple” is good advice for most of the code you’ll write.

Fig. 5.1 | Counter-controlled repetition with the while repetition statement. (Part 2 of 2.)

int counter = 1; // declare and initialize control variable

counter <= 10

++counter; // increment control variable

5.3 for Repetition Statement 155

5.3 for Repetition Statement
Section 5.2 presented the essentials of counter-controlled repetition. The while statement
can be used to implement any counter-controlled loop. Java also provides the for repeti-
tion statement, which specifies the counter-controlled-repetition details in a single line of
code. Figure 5.2 reimplements the application of Fig. 5.1 using for.

When the for statement (lines 10–11) begins executing, the control variable counter
is declared and initialized to 1. (Recall from Section 5.2 that the first two elements of
counter-controlled repetition are the control variable and its initial value.) Next, the pro-
gram checks the loop-continuation condition, counter <= 10, which is between the two
required semicolons. Because the initial value of counter is 1, the condition initially is
true. Therefore, the body statement (line 11) displays control variable counter’s value,
namely 1. After executing the loop’s body, the program increments counter in the expres-
sion counter++, which appears to the right of the second semicolon. Then the loop-con-
tinuation test is performed again to determine whether the program should continue with
the next iteration of the loop. At this point, the control variable’s value is 2, so the condi-
tion is still true (the final value is not exceeded)—thus, the program performs the body
statement again (i.e., the next iteration of the loop). This process continues until the num-
bers 1 through 10 have been displayed and the counter’s value becomes 11, causing the
loop-continuation test to fail and repetition to terminate (after 10 repetitions of the loop
body). Then the program performs the first statement after the for—in this case, line 13.

Figure 5.2 uses (in line 10) the loop-continuation condition counter <= 10. If you
incorrectly specified counter < 10 as the condition, the loop would iterate only nine times.
This is a common logic error called an off-by-one error.

1 // Fig. 5.2: ForCounter.java
2 // Counter-controlled repetition with the for repetition statement.
3
4 public class ForCounter
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12
13 System.out.println();
14 }
15 } // end class ForCounter

1 2 3 4 5 6 7 8 9 10

Fig. 5.2 | Counter-controlled repetition with the for repetition statement.

Common Programming Error 5.2
Using an incorrect relational operator or an incorrect final value of a loop counter in the
loop-continuation condition of a repetition statement can cause an off-by-one error.

// for statement header includes initialization,
// loop-continuation condition and increment
for (int counter = 1; counter <= 10; counter++)
 System.out.printf("%d ", counter);

156 Chapter 5 Control Statements: Part 2; Logical Operators

A Closer Look at the for Statement’s Header
Figure 5.3 takes a closer look at the for statement in Fig. 5.2. The first line—including
the keyword for and everything in parentheses after for (line 10 in Fig. 5.2)—is some-
times called the for statement header. The for header “does it all”—it specifies each item
needed for counter-controlled repetition with a control variable. If there’s more than one
statement in the body of the for, braces are required to define the body of the loop.

General Format of a for Statement
The general format of the for statement is

where the initialization expression names the loop’s control variable and optionally provides
its initial value, loopContinuationCondition determines whether the loop should continue ex-
ecuting and increment modifies the control variable’s value, so that the loop-continuation
condition eventually becomes false. The two semicolons in the for header are required. If
the loop-continuation condition is initially false, the program does not execute the for
statement’s body. Instead, execution proceeds with the statement following the for.

Representing a for Statement with an Equivalent while Statement
The for statement often can be represented with an equivalent while statement as follows:

Error-Prevention Tip 5.2
Using the final value and operator <= in a loop’s condition helps avoid off-by-one errors.
For a loop that outputs 1 to 10, the loop-continuation condition should be counter <= 10

rather than counter < 10 (which causes an off-by-one error) or counter < 11 (which is cor-
rect). Many programmers prefer so-called zero-based counting, in which to count 10 times,
counter would be initialized to zero and the loop-continuation test would be counter < 10.

Error-Prevention Tip 5.3
As Chapter 4 mentioned, integers can overflow, causing logic errors. A loop’s control vari-
able also could overflow. Write your loop conditions carefully to prevent this.

o

Fig. 5.3 | for statement header components.

for (initialization; loopContinuationCondition; increment)
 statement

initialization;
while (loopContinuationCondition)
{
 statement
 increment;
}

Initial value of
control variable

Loop-continuation
condition

Incrementing of
control variable

for keyword Control variable Required semicolon Required semicolon

for (int counter = 1; counter <= 10; counter++)

5.3 for Repetition Statement 157

In Section 5.8, we show a case in which a for statement cannot be represented with an
equivalent while statement. Typically, for statements are used for counter-controlled rep-
etition and while statements for sentinel-controlled repetition. However, while and for
can each be used for either repetition type.

Scope of a for Statement’s Control Variable
If the initialization expression in the for header declares the control variable (i.e., the con-
trol variable’s type is specified before the variable name, as in Fig. 5.2), the control variable
can be used only in that for statement—it will not exist outside it. This restricted use is
known as the variable’s scope. The scope of a variable defines where it can be used in a
program. For example, a local variable can be used only in the method that declares it and
only from the point of declaration through the end of the method. Scope is discussed in
detail in Chapter 6, Methods: A Deeper Look.

Expressions in a for Statement’s Header Are Optional
All three expressions in a for header are optional. If the loopContinuationCondition is
omitted, Java assumes that the loop-continuation condition is always true, thus creating an
infinite loop. You might omit the initialization expression if the program initializes the
control variable before the loop. You might omit the increment expression if the program
calculates the increment with statements in the loop’s body or if no increment is needed.
The increment expression in a for acts as if it were a standalone statement at the end of
the for’s body. Therefore, the expressions

are equivalent increment expressions in a for statement. Many programmers prefer coun-
ter++ because it’s concise and because a for loop evaluates its increment expression after
its body executes, so the postfix increment form seems more natural. In this case, the vari-
able being incremented does not appear in a larger expression, so preincrementing and
postincrementing actually have the same effect.

Common Programming Error 5.3
When a for statement’s control variable is declared in the initialization section of the
for’s header, using the control variable after the for’s body is a compilation error.

counter = counter + 1
counter += 1
++counter
counter++

Common Programming Error 5.4
Placing a semicolon immediately to the right of the right parenthesis of a for header makes
that for’s body an empty statement. This is normally a logic error.

Error-Prevention Tip 5.4
Infinite loops occur when the loop-continuation condition in a repetition statement never
becomes false. To prevent this situation in a counter-controlled loop, ensure that the
control variable is modified during each iteration of the loop so that the loop-continuation
condition will eventually become false. In a sentinel-controlled loop, ensure that the sen-
tinel value is able to be input.

158 Chapter 5 Control Statements: Part 2; Logical Operators

Placing Arithmetic Expressions in a for Statement’s Header
The initialization, loop-continuation condition and increment portions of a for statement
can contain arithmetic expressions. For example, assume that x = 2 and y = 10. If x and y
are not modified in the body of the loop, the statement

is equivalent to the statement

The increment of a for statement may also be negative, in which case it’s a decrement, and
the loop counts downward.

Using a for Statement’s Control Variable in the Statement’s Body
Programs frequently display the control-variable value or use it in calculations in the loop
body, but this use is not required. The control variable is commonly used to control repe-
tition without being mentioned in the body of the for.

UML Activity Diagram for the for Statement
The for statement’s UML activity diagram is similar to that of the while statement
(Fig. 4.6). Figure 5.4 shows the activity diagram of the for statement in Fig. 5.2. The
diagram makes it clear that initialization occurs once before the loop-continuation test is
evaluated the first time, and that incrementing occurs each time through the loop after the
body statement executes.

for (int j = x; j <= 4 * x * y; j += y / x)

for (int j = 2; j <= 80; j += 5)

Error-Prevention Tip 5.5
Although the value of the control variable can be changed in the body of a for loop, avoid
doing so, because this practice can lead to subtle errors.

Fig. 5.4 | UML activity diagram for the for statement in Fig. 5.2.

Determine whether
looping should
continue

 System.out.printf(“%d ”, counter);

[counter > 10]

[counter <= 10]

int counter = 1

counter++

Display the
counter value

Initialize
control variable

Increment the
control variable

5.4 Examples Using the for Statement 159

5.4 Examples Using the for Statement
The following examples show techniques for varying the control variable in a for state-
ment. In each case, we write only the appropriate for header. Note the change in the rela-
tional operator for the loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.

b) Vary the control variable from 100 to 1 in decrements of 1.

c) Vary the control variable from 7 to 77 in increments of 7.

d) Vary the control variable from 20 to 2 in decrements of 2.

e) Vary the control variable over the values 2, 5, 8, 11, 14, 17, 20.

f) Vary the control variable over the values 99, 88, 77, 66, 55, 44, 33, 22, 11, 0.

Application: Summing the Even Integers from 2 to 20
We now consider two sample applications that demonstrate simple uses of for. The ap-
plication in Fig. 5.5 uses a for statement to sum the even integers from 2 to 20 and store
the result in an int variable called total.

for (int i = 1; i <= 100; i++)

for (int i = 100; i >= 1; i--)

for (int i = 7; i <= 77; i += 7)

for (int i = 20; i >= 2; i -= 2)

for (int i = 2; i <= 20; i += 3)

for (int i = 99; i >= 0; i -= 11)

Common Programming Error 5.5
Using an incorrect relational operator in the loop-continuation condition of a loop that
counts downward (e.g., using i <= 1 instead of i >= 1 in a loop counting down to 1) is
usually a logic error.

Common Programming Error 5.6
Do not use equality operators (!= or ==) in a loop-continuation condition if the loop’s control
variable increments or decrements by more than 1. For example, consider the for statement
header for (int counter = 1; counter != 10; counter += 2). The loop-continuation test
counter != 10 never becomes false (resulting in an infinite loop) because counter incre-
ments by 2 after each iteration.

1 // Fig. 5.5: Sum.java
2 // Summing integers with the for statement.
3
4 public class Sum
5 {

Fig. 5.5 | Summing integers with the for statement. (Part 1 of 2.)

160 Chapter 5 Control Statements: Part 2; Logical Operators

The initialization and increment expressions can be comma-separated lists that enable
you to use multiple initialization expressions or multiple increment expressions. For
example, although this is discouraged, you could merge the body of the for statement in
lines 11–12 of Fig. 5.5 into the increment portion of the for header by using a comma as
follows:

Application: Compound-Interest Calculations
Let’s use the for statement to compute compound interest. Consider the following prob-
lem:

A person invests $1,000 in a savings account yielding 5% interest. Assuming that all
the interest is left on deposit, calculate and print the amount of money in the account
at the end of each year for 10 years. Use the following formula to determine the
amounts:

a = p (1 + r)n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate (e.g., use 0.05 for 5%)
n is the number of years
a is the amount on deposit at the end of the nth year.

The solution to this problem (Fig. 5.6) involves a loop that performs the indicated
calculation for each of the 10 years the money remains on deposit. Lines 8–10 in method
main declare double variables amount, principal and rate, and initialize principal to
1000.0 and rate to 0.05. Java treats floating-point constants like 1000.0 and 0.05 as type
double. Similarly, Java treats whole-number constants like 7 and -22 as type int.

6 public static void main(String[] args)
7 {
8
9

10 // total even integers from 2 through 20
11
12
13
14 System.out.printf("Sum is %d%n", total);
15 }
16 } // end class Sum

Sum is 110

for (int number = 2; number <= 20; total += number, number += 2)
 ; // empty statement

Good Programming Practice 5.1
For readability limit the size of control-statement headers to a single line if possible.

Fig. 5.5 | Summing integers with the for statement. (Part 2 of 2.)

int total = 0;

for (int number = 2; number <= 20; number += 2)
 total += number;

5.4 Examples Using the for Statement 161

Formatting Strings with Field Widths and Justification
Line 13 outputs the headers for two columns of output. The first column displays the year
and the second column the amount on deposit at the end of that year. We use the format
specifier %20s to output the String "Amount on Deposit". The integer 20 between the %
and the conversion character s indicates that the value should be displayed with a field
width of 20—that is, printf displays the value with at least 20 character positions. If the
value to be output is less than 20 character positions wide (17 characters in this example),
the value is right justified in the field by default. If the year value to be output were more
than four character positions wide, the field width would be extended to the right to
accommodate the entire value—this would push the amount field to the right, upsetting
the neat columns of our tabular output. To output values left justified, simply precede the
field width with the minus sign (–) formatting flag (e.g., %-20s).

1 // Fig. 5.6: Interest.java
2 // Compound-interest calculations with for.
3
4 public class Interest
5 {
6 public static void main(String[] args)
7 {
8 double amount; // amount on deposit at end of each year
9 double principal = 1000.0; // initial amount before interest

10 double rate = 0.05; // interest rate
11
12 // display headers
13 System.out.printf("%s %n", "Year", "Amount on deposit");
14
15
16
17
18
19
20
21
22
23
24 }
25 } // end class Interest

Year Amount on deposit
 1 1,050.00
 2 1,102.50
 3 1,157.63
 4 1,215.51
 5 1,276.28
 6 1,340.10
 7 1,407.10
 8 1,477.46
 9 1,551.33
 10 1,628.89

Fig. 5.6 | Compound-interest calculations with for.

%20s

// calculate amount on deposit for each of ten years
for (int year = 1; year <= 10; ++year)
{
 // calculate new amount for specified year
 amount = principal * Math.pow(1.0 + rate, year);

 // display the year and the amount
 System.out.printf("%4d%,20.2f%n", year, amount);
}

162 Chapter 5 Control Statements: Part 2; Logical Operators

Performing the Interest Calculations with static Method pow of Class Math
The for statement (lines 16–23) executes its body 10 times, varying control variable year
from 1 to 10 in increments of 1. This loop terminates when year becomes 11. (Variable
year represents n in the problem statement.)

Classes provide methods that perform common tasks on objects. In fact, most
methods must be called on a specific object. For example, to output text in Fig. 5.6, line
13 calls method printf on the System.out object. Some classes also provide methods that
perform common tasks and do not require you to first create objects of those classes. These
are called static methods. For example, Java does not include an exponentiation oper-
ator, so the designers of Java’s Math class defined static method pow for raising a value to
a power. You can call a static method by specifying the class name followed by a dot (.)
and the method name, as in

In Chapter 6, you’ll learn how to implement static methods in your own classes.
We use static method pow of class Math to perform the compound-interest calcula-

tion in Fig. 5.6. Math.pow(x, y) calculates the value of x raised to the yth power. The
method receives two double arguments and returns a double value. Line 19 performs the
calculation a = p(1 + r)n, where a is amount, p is principal, r is rate and n is year. Class
Math is defined in package java.lang, so you do not need to import class Math to use it.

The body of the for statement contains the calculation 1.0 + rate, which appears as
an argument to the Math.pow method. In fact, this calculation produces the same result
each time through the loop, so repeating it in every iteration of the loop is wasteful.

Formatting Floating-Point Numbers
After each calculation, line 22 outputs the year and the amount on deposit at the end of
that year. The year is output in a field width of four characters (as specified by %4d). The
amount is output as a floating-point number with the format specifier %,20.2f. The com-
ma (,) formatting flag indicates that the floating-point value should be output with a
grouping separator. The actual separator used is specific to the user’s locale (i.e., country).
For example, in the United States, the number will be output using commas to separate
every three digits and a decimal point to separate the fractional part of the number, as in
1,234.45. The number 20 in the format specification indicates that the value should be
output right justified in a field width of 20 characters. The .2 specifies the formatted num-
ber’s precision—in this case, the number is rounded to the nearest hundredth and output
with two digits to the right of the decimal point.

A Warning about Displaying Rounded Values
We declared variables amount, principal and rate to be of type double in this example.
We’re dealing with fractional parts of dollars and thus need a type that allows decimal
points in its values. Unfortunately, floating-point numbers can cause trouble. Here’s a
simple explanation of what can go wrong when using double (or float) to represent dollar

ClassName.methodName(arguments)

Performance Tip 5.1
In loops, avoid calculations for which the result never changes—such calculations should
typically be placed before the loop. Many of today’s sophisticated optimizing compilers will
place such calculations outside loops in the compiled code.

5.5 do…while Repetition Statement 163

amounts (assuming that dollar amounts are displayed with two digits to the right of the
decimal point): Two double dollar amounts stored in the machine could be 14.234
(which would normally be rounded to 14.23 for display purposes) and 18.673 (which
would normally be rounded to 18.67 for display purposes). When these amounts are add-
ed, they produce the internal sum 32.907, which would normally be rounded to 32.91 for
display purposes. Thus, your output could appear as

but a person adding the individual numbers as displayed would expect the sum to be
32.90. You’ve been warned!

5.5 do…while Repetition Statement
The do…while repetition statement is similar to the while statement. In the while, the
program tests the loop-continuation condition at the beginning of the loop, before execut-
ing the loop’s body; if the condition is false, the body never executes. The do…while state-
ment tests the loop-continuation condition after executing the loop’s body; therefore, the
body always executes at least once. When a do…while statement terminates, execution con-
tinues with the next statement in sequence. Figure 5.7 uses a do…while to output the
numbers 1–10.

 14.23
+ 18.67

 32.91

Error-Prevention Tip 5.6
Do not use variables of type double (or float) to perform precise monetary calculations.
The imprecision of floating-point numbers can lead to errors. In the exercises, you’ll learn
how to use integers to perform precise monetary calculations—Java also provides class
java.math.BigDecimal for this purpose, which we demonstrate in Fig. 8.16.

1 // Fig. 5.7: DoWhileTest.java
2 // do...while repetition statement.
3
4 public class DoWhileTest
5 {
6 public static void main(String[] args)
7 {
8 int counter = 1;
9

10
11
12
13
14
15
16 System.out.println();
17 }
18 } // end class DoWhileTest

Fig. 5.7 | do…while repetition statement. (Part 1 of 2.)

do
{
 System.out.printf("%d ", counter);
 ++counter;
} while (counter <= 10); // end do...while

164 Chapter 5 Control Statements: Part 2; Logical Operators

Line 8 declares and initializes control variable counter. Upon entering the do…while
statement, line 12 outputs counter’s value and line 13 increments counter. Then the pro-
gram evaluates the loop-continuation test at the bottom of the loop (line 14). If the condi-
tion is true, the loop continues at the first body statement (line 12). If the condition is false,
the loop terminates and the program continues at the next statement after the loop.

UML Activity Diagram for the do…while Repetition Statement
Figure 5.8 contains the UML activity diagram for the do…while statement. This diagram
makes it clear that the loop-continuation condition is not evaluated until after the loop
performs the action state at least once. Compare this activity diagram with that of the while
statement (Fig. 4.6).

Braces in a do…while Repetition Statement
It isn’t necessary to use braces in the do…while repetition statement if there’s only one
statement in the body. However, many programmers include the braces, to avoid confu-
sion between the while and do…while statements. For example,

is normally the first line of a while statement. A do…while statement with no braces
around a single-statement body appears as:

1 2 3 4 5 6 7 8 9 10

Fig. 5.8 | do…while repetition statement UML activity diagram.

while (condition)

Fig. 5.7 | do…while repetition statement. (Part 2 of 2.)

Determine whether
looping should
continue [counter > 10]

[counter <= 10]

++counter

Display the
counter value

Increment the
control variable

System.out.printf(“%d ”, counter);

5.6 switch Multiple-Selection Statement 165

which can be confusing. A reader may misinterpret the last line—while(condition);—as
a while statement containing an empty statement (the semicolon by itself). Thus, the
do…while statement with one body statement is usually written with braces as follows:

5.6 switch Multiple-Selection Statement
Chapter 4 discussed the if single-selection statement and the if…else double-selection
statement. The switch multiple-selection statement performs different actions based on
the possible values of a constant integral expression of type byte, short, int or char. As
of Java SE 7, the expression may also be a String, which we discuss in Section 5.7.

Using a switch Statement to Count A, B, C, D and F Grades
Figure 5.9 calculates the class average of a set of numeric grades entered by the user, and
uses a switch statement to determine whether each grade is the equivalent of an A, B, C,
D or F and to increment the appropriate grade counter. The program also displays a sum-
mary of the number of students who received each grade.

Like earlier versions of the class-average program, the main method of class Letter-
Grades (Fig. 5.9) declares local variables total (line 9) and gradeCounter (line 10) to
keep track of the sum of the grades entered by the user and the number of grades entered,
respectively. Lines 11–15 declare counter variables for each grade category. Note that the
variables in lines 9–15 are explicitly initialized to 0.

Method main has two key parts. Lines 26–56 read an arbitrary number of integer
grades from the user using sentinel-controlled repetition, update instance variables total
and gradeCounter, and increment an appropriate letter-grade counter for each grade
entered. Lines 59–80 output a report containing the total of all grades entered, the average
of the grades and the number of students who received each letter grade. Let’s examine
these parts in more detail.

do
 statement
while (condition);

do
{
 statement
} while (condition);

Good Programming Practice 5.2
Always include braces in a do…while statement. This helps eliminate ambiguity between
the while statement and a do…while statement containing only one statement.

1 // Fig. 5.9: LetterGrades.java
2 // LetterGrades class uses the switch statement to count letter grades.
3 import java.util.Scanner;
4
5 public class LetterGrades
6 {
7 public static void main(String[] args)
8 {

Fig. 5.9 | LetterGrades class uses the switch statement to count letter grades. (Part 1 of 3.)

166 Chapter 5 Control Statements: Part 2; Logical Operators

9
10
11
12
13
14
15
16
17 Scanner input = new Scanner(System.in);
18
19 System.out.printf("%s%n%s%n %s%n %s%n",
20 "Enter the integer grades in the range 0-100.",
21 "Type the end-of-file indicator to terminate input:",
22 "On UNIX/Linux/Mac OS X type <Ctrl> d then press Enter",
23 "On Windows type <Ctrl> z then press Enter");
24
25 // loop until user enters the end-of-file indicator
26 while ()
27 {
28 int grade = input.nextInt(); // read grade
29 total += grade; // add grade to total
30 ++gradeCounter; // increment number of grades
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 } // end while
57
58 // display grade report
59 System.out.printf("%nGrade Report:%n");
60

Fig. 5.9 | LetterGrades class uses the switch statement to count letter grades. (Part 2 of 3.)

int total = 0; // sum of grades
int gradeCounter = 0; // number of grades entered
int aCount = 0; // count of A grades
int bCount = 0; // count of B grades
int cCount = 0; // count of C grades
int dCount = 0; // count of D grades
int fCount = 0; // count of F grades

input.hasNext()

// increment appropriate letter-grade counter
switch (grade / 10)
{
 case 9: // grade was between 90
 case 10: // and 100, inclusive
 ++aCount;
 break; // exits switch

 case 8: // grade was between 80 and 89
 ++bCount;
 break; // exits switch

 case 7: // grade was between 70 and 79
 ++cCount;
 break; // exits switch

 case 6: // grade was between 60 and 69
 ++dCount;
 break; // exits switch

 default: // grade was less than 60
 ++fCount;
 break; // optional; exits switch anyway
} // end switch

5.6 switch Multiple-Selection Statement 167

Reading Grades from the User
Lines 19–23 prompt the user to enter integer grades and to type the end-of-file indicator
to terminate the input. The end-of-file indicator is a system-dependent keystroke combi-

61 // if user entered at least one grade...
62 if (gradeCounter != 0)
63 {
64 // calculate average of all grades entered
65 double average = (double) total / gradeCounter;
66
67 // output summary of results
68 System.out.printf("Total of the %d grades entered is %d%n",
69 gradeCounter, total);
70 System.out.printf("Class average is %.2f%n", average);
71 System.out.printf("%n%s%n%s%d%n%s%d%n%s%d%n%s%d%n%s%d%n",
72 "Number of students who received each grade:",
73 "A: ", aCount, // display number of A grades
74 "B: ", bCount, // display number of B grades
75 "C: ", cCount, // display number of C grades
76 "D: ", dCount, // display number of D grades
77 "F: ", fCount); // display number of F grades
78 } // end if
79 else // no grades were entered, so output appropriate message
80 System.out.println("No grades were entered");
81 } // end main
82 } // end class LetterGrades

Enter the integer grades in the range 0-100.
Type the end-of-file indicator to terminate input:
 On UNIX/Linux/Mac OS X type <Ctrl> d then press Enter
 On Windows type <Ctrl> z then press Enter
99
92
45
57
63
71
76
85
90
100
^Z

Grade Report:
Total of the 10 grades entered is 778
Class average is 77.80

Number of students who received each grade:
A: 4
B: 1
C: 2
D: 1
F: 2

Fig. 5.9 | LetterGrades class uses the switch statement to count letter grades. (Part 3 of 3.)

168 Chapter 5 Control Statements: Part 2; Logical Operators

nation which the user enters to indicate that there’s no more data to input. In Chapter 15,
Files, Streams and Object Serialization, you’ll see how the end-of-file indicator is used
when a program reads its input from a file.

On UNIX/Linux/Mac OS X systems, end-of-file is entered by typing the sequence

on a line by itself. This notation means to simultaneously press both the Ctrl key and the
d key. On Windows systems, end-of-file can be entered by typing

[Note: On some systems, you must press Enter after typing the end-of-file key sequence.
Also, Windows typically displays the characters ^Z on the screen when the end-of-file in-
dicator is typed, as shown in the output of Fig. 5.9.]

The while statement (lines 26–56) obtains the user input. The condition at line 26
calls Scanner method hasNext to determine whether there’s more data to input. This
method returns the boolean value true if there’s more data; otherwise, it returns false.
The returned value is then used as the value of the condition in the while statement.
Method hasNext returns false once the user types the end-of-file indicator.

Line 28 inputs a grade value from the user. Line 29 adds grade to total. Line 30
increments gradeCounter. These variables are used to compute the average of the grades.
Lines 33–55 use a switch statement to increment the appropriate letter-grade counter
based on the numeric grade entered.

Processing the Grades
The switch statement (lines 33–55) determines which counter to increment. We assume
that the user enters a valid grade in the range 0–100. A grade in the range 90–100 repre-
sents A, 80–89 represents B, 70–79 represents C, 60–69 represents D and 0–59 represents
F. The switch statement consists of a block that contains a sequence of case labels and
an optional default case. These are used in this example to determine which counter to
increment based on the grade.

When the flow of control reaches the switch, the program evaluates the expression in
the parentheses (grade / 10) following keyword switch. This is the switch’s controlling
expression. The program compares this expression’s value (which must evaluate to an inte-
gral value of type byte, char, short or int, or to a String) with each case label. The con-
trolling expression in line 33 performs integer division, which truncates the fractional part
of the result. Thus, when we divide a value from 0 to 100 by 10, the result is always a value
from 0 to 10. We use several of these values in our case labels. For example, if the user
enters the integer 85, the controlling expression evaluates to 8. The switch compares 8
with each case label. If a match occurs (case 8: at line 40), the program executes that
case’s statements. For the integer 8, line 41 increments bCount, because a grade in the 80s
is a B. The break statement (line 42) causes program control to proceed with the first
statement after the switch—in this program, we reach the end of the while loop, so con-

<Ctrl> d

<Ctrl> z

Portability Tip 5.1
The keystroke combinations for entering end-of-file are system dependent.

5.6 switch Multiple-Selection Statement 169

trol returns to the loop-continuation condition in line 26 to determine whether the loop
should continue executing.

The cases in our switch explicitly test for the values 10, 9, 8, 7 and 6. Note the cases at
lines 35–36 that test for the values 9 and 10 (both of which represent the grade A). Listing
cases consecutively in this manner with no statements between them enables the cases to per-
form the same set of statements—when the controlling expression evaluates to 9 or 10, the
statements in lines 37–38 will execute. The switch statement does not provide a mechanism
for testing ranges of values, so every value you need to test must be listed in a separate case
label. Each case can have multiple statements. The switch statement differs from other con-
trol statements in that it does not require braces around multiple statements in a case.

case without a break Statement
Without break statements, each time a match occurs in the switch, the statements for that
case and subsequent cases execute until a break statement or the end of the switch is en-
countered. This is often referred to as “falling through” to the statements in subsequent
cases. (This feature is perfect for writing a concise program that displays the iterative song
“The Twelve Days of Christmas” in Exercise 5.29.)

The default Case
If no match occurs between the controlling expression’s value and a case label, the
default case (lines 52–54) executes. We use the default case in this example to process
all controlling-expression values that are less than 6—that is, all failing grades. If no match
occurs and the switch does not contain a default case, program control simply continues
with the first statement after the switch.

Displaying the Grade Report
Lines 59–80 output a report based on the grades entered (as shown in the input/output
window in Fig. 5.9). Line 62 determines whether the user entered at least one grade—this
helps us avoid dividing by zero. If so, line 65 calculates the average of the grades. Lines 68–
77 then output the total of all the grades, the class average and the number of students who
received each letter grade. If no grades were entered, line 80 outputs an appropriate mes-
sage. The output in Fig. 5.9 shows a sample grade report based on 10 grades.

switch Statement UML Activity Diagram
Figure 5.10 shows the UML activity diagram for the general switch statement. Most
switch statements use a break in each case to terminate the switch statement after pro-
cessing the case. Figure 5.10 emphasizes this by including break statements in the activity
diagram. The diagram makes it clear that the break statement at the end of a case causes
control to exit the switch statement immediately.

Common Programming Error 5.7
Forgetting a break statement when one is needed in a switch is a logic error.

Error-Prevention Tip 5.7
In a switch statement, ensure that you test for all possible values of the controlling expres-
sion.

170 Chapter 5 Control Statements: Part 2; Logical Operators

The break statement is not required for the switch’s last case (or the optional
default case, when it appears last), because execution continues with the next statement
after the switch.

Notes on the Expression in Each case of a switch
When using the switch statement, remember that each case must contain a constant inte-
gral expression—that is, any combination of integer constants that evaluates to a constant
integer value (e.g., –7, 0 or 221)—or a String. An integer constant is simply an integer val-
ue. In addition, you can use character constants—specific characters in single quotes, such
as 'A', '7' or '$'—which represent the integer values of characters and enum constants (in-
troduced in Section 6.10). (Appendix B shows the integer values of the characters in the
ASCII character set, which is a subset of the Unicode® character set used by Java.)

The expression in each case can also be a constant variable—a variable containing a
value which does not change for the entire program. Such a variable is declared with key-
word final (discussed in Chapter 6). Java has a feature called enum types, which we also
present in Chapter 6—enum type constants can also be used in case labels.

Fig. 5.10 | switch multiple-selection statement UML activity diagram with break statements.

Error-Prevention Tip 5.8
Provide a default case in switch statements. This focuses you on the need to process ex-
ceptional conditions.

Good Programming Practice 5.3
Although each case and the default case in a switch can occur in any order, place the de-
fault case last. When the default case is listed last, the break for that case is not required.

.
.
.

default actions(s)

case a actions(s)

case b actions(s)

case z actions(s) break

break

break

case b

case z

case a

[false]

[true]

[true]

[true]

[false]

[false]

5.7 Class AutoPolicy Case Study: Strings in switch Statements 171

In Chapter 10, Object-Oriented Programming: Polymorphism and Interfaces, we
present a more elegant way to implement switch logic—we use a technique called poly-
morphism to create programs that are often clearer, easier to maintain and easier to extend
than programs using switch logic.

5.7 Class AutoPolicy Case Study: Strings in switch
Statements
Strings can be used as controlling expressions in switch statements, and String literals
can be used in case labels. To demonstrate that Strings can be used as controlling expres-
sions in switch statements and that String literals can be used in case labels, we’ll imple-
ment an app that meets the following requirements:

You’ve been hired by an auto insurance company that serves these northeast states—
Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsyl-
vania, Rhode Island and Vermont. The company would like you to create a program
that produces a report indicating for each of their auto insurance policies whether the
policy is held in a state with “no-fault” auto insurance—Massachusetts, New Jersey,
New York and Pennsylvania.

The Java app that meets these requirements contains two classes—AutoPolicy (Fig. 5.11)
and AutoPolicyTest (Fig. 5.12).

Class AutoPolicy
Class AutoPolicy (Fig. 5.11) represents an auto insurance policy. The class contains:

• int instance variable accountNumber (line 5) to store the policy’s account number

• String instance variable makeAndModel (line 6) to store the car’s make and model
(such as a "Toyota Camry")

• String instance variable state (line 7) to store a two-character state abbreviation
representing the state in which the policy is held (e.g., "MA" for Massachusetts)

• a constructor (lines 10–15) that initializes the class’s instance variables

• methods setAccountNumber and getAccountNumber (lines 18–27) to set and get
an AutoPolicy’s accountNumber instance variable

• methods setMakeAndModel and getMakeAndModel (lines 30–39) to set and get an
AutoPolicy’s makeAndModel instance variable

• methods setState and getState (lines 42–51) to set and get an AutoPolicy’s
state instance variable

• method isNoFaultState (lines 54–70) to return a boolean value indicating
whether the policy is held in a no-fault auto insurance state; note the method
name—the naming convention for a get method that returns a boolean value is
to begin the name with "is" rather than "get" (such a method is commonly
called a predicate method).

In method isNoFaultState, the switch statement’s controlling expression (line 59) is the
String returned by AutoPolicy method getState. The switch statement compares the
controlling expression’s value with the case labels (line 61) to determine whether the pol-
icy is held in Massachusetts, New Jersey, New York or Pennsylvania (the no-fault states).

172 Chapter 5 Control Statements: Part 2; Logical Operators

If there’s a match, then line 62 sets local variable noFaultState to true and the switch
statement terminates; otherwise, the default case sets noFaultState to false (line 65).
Then method isNoFaultState returns local variable noFaultState’s value.

For simplicity, we did not validate an AutoPolicy’s data in the constructor or set
methods, and we assume that state abbreviations are always two uppercase letters. In addi-
tion, a real AutoPolicy class would likely contain many other instance variables and
methods for data such as the account holder’s name, address, etc. In Exercise 5.30, you’ll be
asked to enhance class AutoPolicy by validating its state abbreviation using techniques that
you’ll learn in Section 5.9.

1 // Fig. 5.11: AutoPolicy.java
2 // Class that represents an auto insurance policy.
3 public class AutoPolicy
4 {
5 private int accountNumber; // policy account number
6 private String makeAndModel; // car that the policy applies to
7 private String state; // two-letter state abbreviation
8
9 // constructor

10 public AutoPolicy(int accountNumber, String makeAndModel, String state)
11 {
12 this.accountNumber = accountNumber;
13 this.makeAndModel = makeAndModel;
14 this.state = state;
15 }
16
17 // sets the accountNumber
18 public void setAccountNumber(int accountNumber)
19 {
20 this.accountNumber = accountNumber;
21 }
22
23 // returns the accountNumber
24 public int getAccountNumber()
25 {
26 return accountNumber;
27 }
28
29 // sets the makeAndModel
30 public void setMakeAndModel(String makeAndModel)
31 {
32 this.makeAndModel = makeAndModel;
33 }
34
35 // returns the makeAndModel
36 public String getMakeAndModel()
37 {
38 return makeAndModel;
39 }
40

Fig. 5.11 | Class that represents an auto insurance policy. (Part 1 of 2.)

5.7 Class AutoPolicy Case Study: Strings in switch Statements 173

Class AutoPolicyTest
Class AutoPolicyTest (Fig. 5.12) creates two AutoPolicy objects (lines 8–11 in main).
Lines 14–15 pass each object to static method policyInNoFaultState (lines 20–28),
which uses AutoPolicy methods to determine and display whether the object it receives
represents a policy in a no-fault auto insurance state.

41 // sets the state
42 public void setState(String state)
43 {
44 this.state = state;
45 }
46
47 // returns the state
48 public String getState()
49 {
50 return state;
51 }
52
53 // predicate method returns whether the state has no-fault insurance
54
55 {
56 boolean noFaultState;
57
58
59
60
61
62
63
64
65
66
67
68
69 return noFaultState;
70 }
71 } // end class AutoPolicy

1 // Fig. 5.12: AutoPolicyTest.java
2 // Demonstrating Strings in switch.
3 public class AutoPolicyTest
4 {
5 public static void main(String[] args)
6 {
7 // create two AutoPolicy objects
8 AutoPolicy policy1 =
9 new AutoPolicy(11111111, "Toyota Camry",);

10 AutoPolicy policy2 =
11 new AutoPolicy(22222222, "Ford Fusion",);

Fig. 5.12 | Demonstrating Strings in switch. (Part 1 of 2.)

Fig. 5.11 | Class that represents an auto insurance policy. (Part 2 of 2.)

public boolean isNoFaultState()

// determine whether state has no-fault auto insurance
switch (getState()) // get AutoPolicy object's state abbreviation
{
 case "MA": case "NJ": case "NY": case "PA":
 noFaultState = true;
 break;
 default:
 noFaultState = false;
 break;
}

"NJ"

"ME"

174 Chapter 5 Control Statements: Part 2; Logical Operators

5.8 break and continue Statements
In addition to selection and repetition statements, Java provides statements break (which
we discussed in the context of the switch statement)and continue (presented in this sec-
tion and online Appendix L) to alter the flow of control. The preceding section showed
how break can be used to terminate a switch statement’s execution. This section discusses
how to use break in repetition statements.

break Statement
The break statement, when executed in a while, for, do…while or switch, causes imme-
diate exit from that statement. Execution continues with the first statement after the con-
trol statement. Common uses of the break statement are to escape early from a loop or to
skip the remainder of a switch (as in Fig. 5.9). Figure 5.13 demonstrates a break state-
ment exiting a for.

12
13 // display whether each policy is in a no-fault state
14 policyInNoFaultState(policy1);
15 policyInNoFaultState(policy2);
16 }
17
18 // method that displays whether an AutoPolicy
19 // is in a state with no-fault auto insurance
20 public static void policyInNoFaultState(AutoPolicy policy)
21 {
22 System.out.println("The auto policy:");
23 System.out.printf(
24 "Account #: %d; Car: %s; State %s %s a no-fault state%n%n",
25 policy.getAccountNumber(), policy.getMakeAndModel(),
26 policy.getState(),
27);
28 }
29 } // end class AutoPolicyTest

The auto policy:
Account #: 11111111; Car: Toyota Camry;
State NJ is a no-fault state

The auto policy:
Account #: 22222222; Car: Ford Fusion;
State ME is not a no-fault state

1 // Fig. 5.13: BreakTest.java
2 // break statement exiting a for statement.
3 public class BreakTest
4 {
5 public static void main(String[] args)
6 {

Fig. 5.13 | break statement exiting a for statement. (Part 1 of 2.)

Fig. 5.12 | Demonstrating Strings in switch. (Part 2 of 2.)

(policy.isNoFaultState() ? "is": "is not")

5.8 break and continue Statements 175

When the if statement nested at lines 11–12 in the for statement (lines 9–15) detects
that count is 5, the break statement at line 12 executes. This terminates the for statement,
and the program proceeds to line 17 (immediately after the for statement), which displays
a message indicating the value of the control variable when the loop terminated. The loop
fully executes its body only four times instead of 10.

continue Statement
The continue statement, when executed in a while, for or do…while, skips the remain-
ing statements in the loop body and proceeds with the next iteration of the loop. In while
and do…while statements, the program evaluates the loop-continuation test immediately
after the continue statement executes. In a for statement, the increment expression exe-
cutes, then the program evaluates the loop-continuation test.

7 int count; // control variable also used after loop terminates
8
9 for (count = 1; count <= 10; count++) // loop 10 times

10 {
11 if (count == 5)
12
13
14 System.out.printf("%d ", count);
15 }
16
17 System.out.printf("%nBroke out of loop at count = %d%n", count);
18 }
19 } // end class BreakTest

1 2 3 4
Broke out of loop at count = 5

1 // Fig. 5.14: ContinueTest.java
2 // continue statement terminating an iteration of a for statement.
3 public class ContinueTest
4 {
5 public static void main(String[] args)
6 {
7 for (int count = 1; count <= 10; count++) // loop 10 times
8 {
9 if (count == 5)

10
11
12 System.out.printf("%d ", count);
13 }
14
15 System.out.printf("%nUsed continue to skip printing 5%n");
16 }
17 } // end class ContinueTest

Fig. 5.14 | continue statement terminating an iteration of a for statement. (Part 1 of 2.)

Fig. 5.13 | break statement exiting a for statement. (Part 2 of 2.)

break; // terminates loop if count is 5

continue; // skip remaining code in loop body if count is 5

176 Chapter 5 Control Statements: Part 2; Logical Operators

Figure 5.14 uses continue (line 10) to skip the statement at line 12 when the nested
if determines that count’s value is 5. When the continue statement executes, program
control continues with the increment of the control variable in the for statement (line 7).

In Section 5.3, we stated that while could be used in most cases in place of for. This
is not true when the increment expression in the while follows a continue statement. In
this case, the increment does not execute before the program evaluates the repetition-con-
tinuation condition, so the while does not execute in the same manner as the for.

5.9 Logical Operators
The if, if…else, while, do…while and for statements each require a condition to de-
termine how to continue a program’s flow of control. So far, we’ve studied only simple
conditions, such as count <= 10, number != sentinelValue and total > 1000. Simple con-
ditions are expressed in terms of the relational operators >, <, >= and <= and the equality
operators == and !=, and each expression tests only one condition. To test multiple condi-
tions in the process of making a decision, we performed these tests in separate statements
or in nested if or if…else statements. Sometimes control statements require more com-
plex conditions to determine a program’s flow of control.

Java’s logical operators enable you to form more complex conditions by combining
simple conditions. The logical operators are && (conditional AND), || (conditional OR), &
(boolean logical AND), | (boolean logical inclusive OR), ^ (boolean logical exclusive OR)
and ! (logical NOT). [Note: The &, | and ^ operators are also bitwise operators when they’re
applied to integral operands. We discuss the bitwise operators in online Appendix K.]

Conditional AND (&&) Operator
Suppose we wish to ensure at some point in a program that two conditions are both true
before we choose a certain path of execution. In this case, we can use the && (conditional
AND) operator, as follows:

1 2 3 4 6 7 8 9 10
Used continue to skip printing 5

Software Engineering Observation 5.2
Some programmers feel that break and continue violate structured programming. Since the
same effects are achievable with structured programming techniques, these programmers do
not use break or continue.

Software Engineering Observation 5.3
There’s a tension between achieving quality software engineering and achieving the best-
performing software. Sometimes one of these goals is achieved at the expense of the other.
For all but the most performance-intensive situations, apply the following rule of thumb:
First, make your code simple and correct; then make it fast and small, but only if necessary.

if (gender == FEMALE && age >= 65)
 ++seniorFemales;

Fig. 5.14 | continue statement terminating an iteration of a for statement. (Part 2 of 2.)

5.9 Logical Operators 177

This if statement contains two simple conditions. The condition gender == FEMALE com-
pares variable gender to the constant FEMALE to determine whether a person is female. The
condition age >= 65 might be evaluated to determine whether a person is a senior citizen.
The if statement considers the combined condition

which is true if and only if both simple conditions are true. In this case, the if statement’s
body increments seniorFemales by 1. If either or both of the simple conditions are false,
the program skips the increment. Some programmers find that the preceding combined
condition is more readable when redundant parentheses are added, as in:

The table in Fig. 5.15 summarizes the && operator. The table shows all four possible
combinations of false and true values for expression1 and expression2. Such tables are
called truth tables. Java evaluates to false or true all expressions that include relational
operators, equality operators or logical operators.

Conditional OR (||) Operator
Now suppose we wish to ensure that either or both of two conditions are true before we
choose a certain path of execution. In this case, we use the || (conditional OR) operator,
as in the following program segment:

This statement also contains two simple conditions. The condition semesterAverage >=
90 evaluates to determine whether the student deserves an A in the course because of a sol-
id performance throughout the semester. The condition finalExam >= 90 evaluates to de-
termine whether the student deserves an A in the course because of an outstanding
performance on the final exam. The if statement then considers the combined condition

and awards the student an A if either or both of the simple conditions are true. The only
time the message "Student grade is A" is not printed is when both of the simple condi-
tions are false. Figure 5.16 is a truth table for operator conditional OR (||). Operator &&
has a higher precedence than operator ||. Both operators associate from left to right.

gender == FEMALE && age >= 65

(gender == FEMALE) && (age >= 65)

expression1 expression2 expression1 && expression2

false false false
false true false
true false false
true true true

Fig. 5.15 | && (conditional AND) operator truth table.

if ((semesterAverage >= 90) || (finalExam >= 90))
 System.out.println ("Student grade is A");

(semesterAverage >= 90) || (finalExam >= 90)

178 Chapter 5 Control Statements: Part 2; Logical Operators

Short-Circuit Evaluation of Complex Conditions
The parts of an expression containing && or || operators are evaluated only until it’s known
whether the condition is true or false. Thus, evaluation of the expression

stops immediately if gender is not equal to FEMALE (i.e., the entire expression is false) and
continues if gender is equal to FEMALE (i.e., the entire expression could still be true if the
condition age >= 65 is true). This feature of conditional AND and conditional OR ex-
pressions is called short-circuit evaluation.

Boolean Logical AND (&) and Boolean Logical Inclusive OR (|) Operators
The boolean logical AND (&) and boolean logical inclusive OR (|) operators are identical
to the && and || operators, except that the & and | operators always evaluate both of their
operands (i.e., they do not perform short-circuit evaluation). So, the expression

evaluates age >= 65 regardless of whether gender is equal to 1. This is useful if the right
operand has a required side effect—a modification of a variable’s value. For example, the
expression

guarantees that the condition ++age >= 65 will be evaluated. Thus, the variable age is in-
cremented, regardless of whether the overall expression is true or false.

expression1 expression2 expression1 || expression2

false false false
false true true
true false true
true true true

Fig. 5.16 | || (conditional OR) operator truth table.

(gender == FEMALE) && (age >= 65)

Common Programming Error 5.8
In expressions using operator &&, a condition—we’ll call this the dependent condition—
may require another condition to be true for the evaluation of the dependent condition to be
meaningful. In this case, the dependent condition should be placed after the && operator to
prevent errors. Consider the expression (i != 0) && (10 / i == 2). The dependent condition
(10 / i == 2) must appear after the && operator to prevent the possibility of division by zero.

(gender == 1) & (age >= 65)

(birthday == true) | (++age >= 65)

Error-Prevention Tip 5.9
For clarity, avoid expressions with side effects (such as assignments) in conditions. They
can make code harder to understand and can lead to subtle logic errors.

Error-Prevention Tip 5.10
Assignment (=) expressions generally should not be used in conditions. Every condition
must result in a boolean value; otherwise, a compilation error occurs. In a condition, an
assignment will compile only if a boolean expression is assigned to a boolean variable.

5.9 Logical Operators 179

Boolean Logical Exclusive OR (^)
A simple condition containing the boolean logical exclusive OR (^) operator is true if and
only if one of its operands is true and the other is false. If both are true or both are false,
the entire condition is false. Figure 5.17 is a truth table for the boolean logical exclusive
OR operator (^). This operator is guaranteed to evaluate both of its operands.

Logical Negation (!) Operator
The ! (logical NOT, also called logical negation or logical complement) operator “revers-
es” the meaning of a condition. Unlike the logical operators &&, ||, &, | and ^, which are
binary operators that combine two conditions, the logical negation operator is a unary op-
erator that has only one condition as an operand. The operator is placed before a condition
to choose a path of execution if the original condition (without the logical negation oper-
ator) is false, as in the program segment

which executes the printf call only if grade is not equal to sentinelValue. The paren-
theses around the condition grade == sentinelValue are needed because the logical ne-
gation operator has a higher precedence than the equality operator.

In most cases, you can avoid using logical negation by expressing the condition dif-
ferently with an appropriate relational or equality operator. For example, the previous
statement may also be written as follows:

This flexibility can help you express a condition in a more convenient manner. Figure 5.18
is a truth table for the logical negation operator.

Logical Operators Example
Figure 5.19 uses logical operators to produce the truth tables discussed in this section.
The output shows the boolean expression that was evaluated and its result. We used the

expression1 expression2 expression1 ^ expression2

false false false
false true true
true false true
true true false

Fig. 5.17 | ^ (boolean logical exclusive OR) operator truth table.

if (! (grade == sentinelValue))
 System.out.printf("The next grade is %d%n", grade);

if (grade != sentinelValue)
 System.out.printf("The next grade is %d%n", grade);

expression !expression

false true
true false

Fig. 5.18 | ! (logical NOT) operator truth table.

180 Chapter 5 Control Statements: Part 2; Logical Operators

%b format specifier to display the word “true” or the word “false” based on a boolean ex-
pression’s value. Lines 9–13 produce the truth table for &&. Lines 16–20 produce the truth
table for ||. Lines 23–27 produce the truth table for &. Lines 30–35 produce the truth
table for |. Lines 38–43 produce the truth table for ̂ . Lines 46–47 produce the truth table
for !.

1 // Fig. 5.19: LogicalOperators.java
2 // Logical operators.
3
4 public class LogicalOperators
5 {
6 public static void main(String[] args)
7 {
8 // create truth table for && (conditional AND) operator
9 System.out.printf("%s%n%s: %b%n%s: %b%n%s: %b%n%s: %b%n%n",

10 "Conditional AND (&&)", "false && false", ,
11 "false && true", ,
12 "true && false", ,
13 "true && true",);
14
15 // create truth table for || (conditional OR) operator
16 System.out.printf("%s%n%s: %b%n%s: %b%n%s: %b%n%s: %b%n%n",
17 "Conditional OR (||)", "false || false", ,
18 "false || true", ,
19 "true || false", ,
20 "true || true",);
21
22 // create truth table for & (boolean logical AND) operator
23 System.out.printf("%s%n%s: %b%n%s: %b%n%s: %b%n%s: %b%n%n",
24 "Boolean logical AND (&)", "false & false", ,
25 "false & true", ,
26 "true & false", ,
27 "true & true",);
28
29 // create truth table for | (boolean logical inclusive OR) operator
30 System.out.printf("%s%n%s: %b%n%s: %b%n%s: %b%n%s: %b%n%n",
31 "Boolean logical inclusive OR (|)",
32 "false | false", ,
33 "false | true", ,
34 "true | false", ,
35 "true | true",);
36
37 // create truth table for ^ (boolean logical exclusive OR) operator
38 System.out.printf("%s%n%s: %b%n%s: %b%n%s: %b%n%s: %b%n%n",
39 "Boolean logical exclusive OR (^)",
40 "false ^ false", ,
41 "false ^ true", ,
42 "true ^ false", ,
43 "true ^ true",);
44

Fig. 5.19 | Logical operators. (Part 1 of 2.)

(false && false)
(false && true)
(true && false)
(true && true)

(false || false)
(false || true)
(true || false)
(true || true)

(false & false)
(false & true)
(true & false)
(true & true)

(false | false)
(false | true)
(true | false)
(true | true)

(false ^ false)
(false ^ true)
(true ^ false)
(true ^ true)

5.9 Logical Operators 181

Precedence and Associativity of the Operators Presented So Far
Figure 5.20 shows the precedence and associativity of the Java operators introduced so far.
The operators are shown from top to bottom in decreasing order of precedence.

45 // create truth table for ! (logical negation) operator
46 System.out.printf("%s%n%s: %b%n%s: %b%n", "Logical NOT (!)",
47 "!false", , "!true",);
48 }
49 } // end class LogicalOperators

Conditional AND (&&)
false && false: false
false && true: false
true && false: false
true && true: true

Conditional OR (||)
false || false: false
false || true: true
true || false: true
true || true: true

Boolean logical AND (&)
false & false: false
false & true: false
true & false: false
true & true: true

Boolean logical inclusive OR (|)
false | false: false
false | true: true
true | false: true
true | true: true

Boolean logical exclusive OR (^)
false ^ false: false
false ^ true: true
true ^ false: true
true ^ true: false

Logical NOT (!)
!false: true
!true: false

Operators Associativity Type

++ -- right to left unary postfix

++ -- + - ! (type) right to left unary prefix

* / % left to right multiplicative

Fig. 5.20 | Precedence/associativity of the operators discussed so far. (Part 1 of 2.)

Fig. 5.19 | Logical operators. (Part 2 of 2.)

(!false) (!true)

182 Chapter 5 Control Statements: Part 2; Logical Operators

5.10 Structured Programming Summary
Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is much younger than architecture,
and our collective wisdom is considerably sparser. We’ve learned that structured program-
ming produces programs that are easier than unstructured programs to understand, test,
debug, modify and even prove correct in a mathematical sense.

Java Control Statements Are Single-Entry/Single-Exit
Figure 5.21 uses UML activity diagrams to summarize Java’s control statements. The ini-
tial and final states indicate the single entry point and the single exit point of each control
statement. Arbitrarily connecting individual symbols in an activity diagram can lead to un-
structured programs. Therefore, the programming profession has chosen a limited set of
control statements that can be combined in only two simple ways to build structured pro-
grams.

For simplicity, Java includes only single-entry/single-exit control statements—there’s
only one way to enter and only one way to exit each control statement. Connecting control
statements in sequence to form structured programs is simple. The final state of one con-
trol statement is connected to the initial state of the next—that is, the control statements
are placed one after another in a program in sequence. We call this control-statement
stacking. The rules for forming structured programs also allow for control statements to be
nested.

Rules for Forming Structured Programs
Figure 5.22 shows the rules for forming structured programs. The rules assume that action
states may be used to indicate any action. The rules also assume that we begin with the
simplest activity diagram (Fig. 5.23) consisting of only an initial state, an action state, a
final state and transition arrows.

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

& left to right boolean logical AND

^ left to right boolean logical exclusive OR

| left to right boolean logical inclusive OR

&& left to right conditional AND

|| left to right conditional OR

?: right to left conditional

= += -= *= /= %= right to left assignment

Operators Associativity Type

Fig. 5.20 | Precedence/associativity of the operators discussed so far. (Part 2 of 2.)

5.10 Structured Programming Summary 183

Fig. 5.21 | Java’s single-entry/single-exit sequence, selection and repetition statements.

break

[t][f]

if…else statement
(double selection)

if statement
(single selection)

[t]

[f]

[t]

[f]

break
[t]

break
[t]

[f]

[f]

switch statement with breaks
(multiple selection)

Sequence Selection

Repetition

default processing

initialization

increment

.
.
.

.
.
.

[t]

[f]

for statement

[t]

[f]

while statement

[t]

[f]

do…while statement

184 Chapter 5 Control Statements: Part 2; Logical Operators

Applying the rules in Fig. 5.22 always results in a properly structured activity diagram
with a neat, building-block appearance. For example, repeatedly applying rule 2 to the sim-
plest activity diagram results in an activity diagram containing many action states in sequence
(Fig. 5.24). Rule 2 generates a stack of control statements, so let’s call rule 2 the stacking rule.
The vertical dashed lines in Fig. 5.24 are not part of the UML—we use them to separate the
four activity diagrams that demonstrate rule 2 of Fig. 5.22 being applied.

Rules for forming structured programs

1. Begin with the simplest activity diagram (Fig. 5.23).

2. Any action state can be replaced by two action states in sequence.

3. Any action state can be replaced by any control statement (sequence of
action states, if, if…else, switch, while, do…while or for).

4. Rules 2 and 3 can be applied as often as you like and in any order.

Fig. 5.22 | Rules for forming structured programs.

Fig. 5.23 | Simplest activity diagram.

o

Fig. 5.24 | Repeatedly applying rule 2 of Fig. 5.22 to the simplest activity diagram.

action state

action state action state

apply
rule 2

apply
rule 2

apply
rule 2

action stateaction state

action state action state

action state action state

.
.
.

5.10 Structured Programming Summary 185

Rule 3 is called the nesting rule. Repeatedly applying rule 3 to the simplest activity dia-
gram results in one with neatly nested control statements. For example, in Fig. 5.25, the
action state in the simplest activity diagram is replaced with a double-selection (if…else)
statement. Then rule 3 is applied again to the action states in the double-selection statement,
replacing each with a double-selection statement. The dashed action-state symbol around
each double-selection statement represents the action state that was replaced. [Note: The
dashed arrows and dashed action-state symbols shown in Fig. 5.25 are not part of the UML.
They’re used here to illustrate that any action state can be replaced with a control statement.]

Rule 4 generates larger, more involved and more deeply nested statements. The dia-
grams that emerge from applying the rules in Fig. 5.22 constitute the set of all possible
structured activity diagrams and hence the set of all possible structured programs. The
beauty of the structured approach is that we use only seven simple single-entry/single-exit
control statements and assemble them in only two simple ways.

Fig. 5.25 | Repeatedly applying rule 3 of Fig. 5.22 to the simplest activity diagram.

action stateaction state

[t][f]

[t][f]

[t][f][t][f]

action state

action stateaction state action stateaction state

apply
rule 3

apply
rule 3

apply
rule 3

186 Chapter 5 Control Statements: Part 2; Logical Operators

If the rules in Fig. 5.22 are followed, an “unstructured’ activity diagram (like the one
in Fig. 5.26) cannot be created. If you’re uncertain about whether a particular diagram is
structured, apply the rules of Fig. 5.22 in reverse to reduce it to the simplest activity dia-
gram. If you can reduce it, the original diagram is structured; otherwise, it’s not.

Three Forms of Control
Structured programming promotes simplicity. Only three forms of control are needed to
implement an algorithm:

• sequence

• selection

• repetition

The sequence structure is trivial. Simply list the statements to execute in the order in
which they should execute. Selection is implemented in one of three ways:

• if statement (single selection)

• if…else statement (double selection)

• switch statement (multiple selection)

In fact, it’s straightforward to prove that the simple if statement is sufficient to provide
any form of selection—everything that can be done with the if…else statement and the
switch statement can be implemented by combining if statements (although perhaps not
as clearly and efficiently).

Repetition is implemented in one of three ways:

• while statement

• do…while statement

• for statement

[Note: There’s a fourth repetition statement—the enhanced for statement—that we discuss
in Section 7.7.] It’s straightforward to prove that the while statement is sufficient to pro-
vide any form of repetition. Everything that can be done with do…while and for can be
done with the while statement (although perhaps not as conveniently).

Combining these results illustrates that any form of control ever needed in a Java pro-
gram can be expressed in terms of

Fig. 5.26 | “Unstructured” activity diagram.

action state

action state

action state action state

5.11 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals 187

• sequence

• if statement (selection)

• while statement (repetition)

and that these can be combined in only two ways—stacking and nesting. Indeed, structured
programming is the essence of simplicity.

5.11 (Optional) GUI and Graphics Case Study: Drawing
Rectangles and Ovals
This section demonstrates drawing rectangles and ovals, using the Graphics methods
drawRect and drawOval, respectively. These methods are demonstrated in Fig. 5.27.

1 // Fig. 5.27: Shapes.java
2 // Drawing a cascade of shapes based on the user’s choice.
3 import java.awt.Graphics;
4 import javax.swing.JPanel;
5
6 public class Shapes extends JPanel
7 {
8 private int choice; // user's choice of which shape to draw
9

10 // constructor sets the user's choice
11 public Shapes(int userChoice)
12 {
13 choice = userChoice;
14 }
15
16 // draws a cascade of shapes starting from the top-left corner
17 public void paintComponent(Graphics g)
18 {
19 super.paintComponent(g);
20
21 for (int i = 0; i < 10; i++)
22 {
23 // pick the shape based on the user's choice
24 switch (choice)
25 {
26 case 1: // draw rectangles
27
28
29 break;
30 case 2: // draw ovals
31
32
33 break;
34 }
35 }
36 }
37 } // end class Shapes

Fig. 5.27 | Drawing a cascade of shapes based on the user’s choice.

g.drawRect(10 + i * 10, 10 + i * 10,
 50 + i * 10, 50 + i * 10);

g.drawOval(10 + i * 10, 10 + i * 10,
 50 + i * 10, 50 + i * 10);

188 Chapter 5 Control Statements: Part 2; Logical Operators

Line 6 begins the class declaration for Shapes, which extends JPanel. Instance vari-
able choice determines whether paintComponent should draw rectangles or ovals. The
Shapes constructor initializes choice with the value passed in parameter userChoice.

Method paintComponent performs the actual drawing. Remember, the first statement
in every paintComponent method should be a call to super.paintComponent, as in line
19. Lines 21–35 loop 10 times to draw 10 shapes. The nested switch statement (lines 24–
34) chooses between drawing rectangles and drawing ovals.

If choice is 1, then the program draws rectangles. Lines 27–28 call Graphics method
drawRect. Method drawRect requires four arguments. The first two represent the x- and
y-coordinates of the upper-left corner of the rectangle; the next two represent the rect-
angle’s width and height. In this example, we start at a position 10 pixels down and 10
pixels right of the top-left corner, and every iteration of the loop moves the upper-left
corner another 10 pixels down and to the right. The width and the height of the rectangle
start at 50 pixels and increase by 10 pixels in each iteration.

If choice is 2, the program draws ovals. It creates an imaginary rectangle called a
bounding rectangle and places inside it an oval that touches the midpoints of all four sides.
Method drawOval (lines 31–32) requires the same four arguments as method drawRect.
The arguments specify the position and size of the bounding rectangle for the oval. The
values passed to drawOval in this example are exactly the same as those passed to drawRect
in lines 27–28. Since the width and height of the bounding rectangle are identical in this
example, lines 27–28 draw a circle. As an exercise, try modifying the program to draw both
rectangles and ovals to see how drawOval and drawRect are related.

Class ShapesTest
Figure 5.28 is responsible for handling input from the user and creating a window to dis-
play the appropriate drawing based on the user’s response. Line 3 imports JFrame to han-
dle the display, and line 4 imports JOptionPane to handle the input. Lines 11–13 prompt
the user with an input dialog and store the user’s response in variable input. Notice that
when displaying multiple lines of prompt text in a JOptionPane, you must use \n to begin
a new line of text, rather than %n. Line 15 uses Integer method parseInt to convert the
String entered by the user to an int and stores the result in variable choice. Line 18 cre-
ates a Shapes object and passes the user’s choice to the constructor. Lines 20–25 perform
the standard operations that create and set up a window in this case study—create a frame,
set it to exit the application when closed, add the drawing to the frame, set the frame size
and make it visible.

1 // Fig. 5.28: ShapesTest.java
2 // Obtaining user input and creating a JFrame to display Shapes.
3 import javax.swing.JFrame; //handle the display
4 import javax.swing.JOptionPane;
5
6 public class ShapesTest
7 {
8 public static void main(String[] args)
9 {

Fig. 5.28 | Obtaining user input and creating a JFrame to display Shapes. (Part 1 of 2.)

5.11 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals 189

GUI and Graphics Case Study Exercises
5.1 Draw 12 concentric circles in the center of a JPanel (Fig. 5.29). The innermost circle
should have a radius of 10 pixels, and each successive circle should have a radius 10 pixels larger than
the previous one. Begin by finding the center of the JPanel. To get the upper-left corner of a circle,
move up one radius and to the left one radius from the center. The width and height of the bound-
ing rectangle are both the same as the circle’s diameter (i.e., twice the radius).

10 // obtain user's choice
11 String input = JOptionPane.showInputDialog(
12 "Enter 1 to draw rectangles " +
13 "Enter 2 to draw ovals");
14
15 int choice = Integer.parseInt(input); // convert input to int
16
17 // create the panel with the user's input
18 Shapes panel = new Shapes(choice);
19
20 JFrame application = new JFrame(); // creates a new JFrame
21
22 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23 application.add(panel);
24 application.setSize(300, 300);
25 application.setVisible(true);
26 }
27 } // end class ShapesTest

Fig. 5.28 | Obtaining user input and creating a JFrame to display Shapes. (Part 2 of 2.)

\n

190 Chapter 5 Control Statements: Part 2; Logical Operators

5.2 Modify Exercise 5.16 from the end-of-chapter exercises to read input using dialogs and to
display the bar chart using rectangles of varying lengths.

5.12 Wrap-Up
In this chapter, we completed our introduction to control statements, which enable you to
control the flow of execution in methods. Chapter 4 discussed if, if…else and while. This
chapter demonstrated for, do…while and switch. We showed that any algorithm can be
developed using combinations of the sequence structure, the three types of selection state-
ments—if, if…else and switch—and the three types of repetition statements—while,
do…while and for. In this chapter and Chapter 4, we discussed how you can combine these
building blocks to utilize proven program-construction and problem-solving techniques.
You used the break statement to exit a switch statement and to immediately terminate a
loop, and used a continue statement to terminate a loop’s current iteration and proceed with
the loop’s next iteration. This chapter also introduced Java’s logical operators, which enable
you to use more complex conditional expressions in control statements. In Chapter 6, we ex-
amine methods in greater depth.

Fig. 5.29 | Drawing concentric circles.

Summary
Section 5.2 Essentials of Counter-Controlled Repetition
• Counter-controlled repetition (p. 153) requires a control variable, the initial value of the control

variable, the increment by which the control variable is modified each time through the loop (al-
so known as each iteration of the loop) and the loop-continuation condition that determines
whether looping should continue.

• You can declare a variable and initialize it in the same statement.

Section 5.3 for Repetition Statement
• The while statement can be used to implement any counter-controlled loop.

• The for statement (p. 155) specifies all the details of counter-controlled repetition in its header

• When the for statement begins executing, its control variable is declared and initialized. If the
loop-continuation condition is initially true, the body executes. After executing the loop’s body,
the increment expression executes. Then the loop-continuation test is performed again to deter-
mine whether the program should continue with the next iteration of the loop.

 Summary 191

• The general format of the for statement is

for (initialization; loopContinuationCondition; increment)
 statement

where the initialization expression names the loop’s control variable and provides its initial value,
loopContinuationCondition determines whether the loop should continue executing and incre-
ment modifies the control variable’s value, so that the loop-continuation condition eventually be-
comes false. The two semicolons in the for header are required.

• Most for statements can be represented with equivalent while statements as follows:

initialization;

while (loopContinuationCondition)
{
 statement
 increment;
}

• Typically, for statements are used for counter-controlled repetition and while statements for
sentinel-controlled repetition.

• If the initialization expression in the for header declares the control variable, the control variable
can be used only in that for statement—it will not exist outside the for statement.

• The expressions in a for header are optional. If the loopContinuationCondition is omitted, Java
assumes that it’s always true, thus creating an infinite loop. You might omit the initialization ex-
pression if the control variable is initialized before the loop. You might omit the increment expres-
sion if the increment is calculated with statements in the loop’s body or if no increment is needed.

• The increment expression in a for acts as if it’s a standalone statement at the end of the for’s body.

• A for statement can count downward by using a negative increment—i.e., a decrement (p. 158).

• If the loop-continuation condition is initially false, the for statement’s body does not execute.

Section 5.4 Examples Using the for Statement
• Java treats floating-point constants like 1000.0 and 0.05 as type double. Similarly, Java treats

whole-number constants like 7 and -22 as type int.

• The format specifier %4s outputs a String in a field width (p. 161) of 4—that is, printf displays
the value with at least 4 character positions. If the value to be output is less than 4 character po-
sitions wide, the value is right justified (p. 161) in the field by default. If the value is greater than
4 character positions wide, the field width expands to accommodate the appropriate number of
characters. To left justify (p. 161) the value, use a negative integer to specify the field width.

• Math.pow(x, y) (p. 162) calculates the value of x raised to the yth power. The method receives
two double arguments and returns a double value.

• The comma (,) formatting flag (p. 162) in a format specifier indicates that a floating-point value
should be output with a grouping separator (p. 162). The actual separator used is specific to the
user’s locale (i.e., country). In the United States, the number will have commas separating every
three digits and a decimal point separating the fractional part of the number, as in 1,234.45.

• The . in a format specifier indicates that the integer to its right is the number’s precision.

Section 5.5 do…while Repetition Statement
• The do…while statement (p. 163) is similar to the while statement. In the while, the program tests

the loop-continuation condition at the beginning of the loop, before executing its body; if the con-
dition is false, the body never executes. The do…while statement tests the loop-continuation con-
dition after executing the loop’s body; therefore, the body always executes at least once.

192 Chapter 5 Control Statements: Part 2; Logical Operators

Section 5.6 switch Multiple-Selection Statement
• The switch statement (p. 165) performs different actions based on the possible values of a constant

integral expression (a constant value of type byte, short, int or char, but not long), or a String.

• The end-of-file indicator is a system-dependent keystroke combination that terminates user in-
put. On UNIX/Linux/Mac OS X systems, end-of-file is entered by typing the sequence <Ctrl>
d on a line by itself. This notation means to simultaneously press both the Ctrl key and the d key.
On Windows systems, enter end-of-file by typing <Ctrl> z.

• Scanner method hasNext (p. 168) determines whether there’s more data to input. This method
returns the boolean value true if there’s more data; otherwise, it returns false. As long as the
end-of-file indicator has not been typed, method hasNext will return true.

• The switch statement consists of a block that contains a sequence of case labels (p. 168) and an
optional default case (p. 168).

• In a switch, the program evaluates the controlling expression and compares its value with each
case label. If a match occurs, the program executes the statements for that case.

• Listing cases consecutively with no statements between them enables the cases to perform the
same set of statements.

• Every value you wish to test in a switch must be listed in a separate case label.

• Each case can have multiple statements, and these need not be placed in braces.

• A case’s statements typically end with a break statement (p. 168) that terminates the switch’s
execution.

• Without break statements, each time a match occurs in the switch, the statements for that case
and subsequent cases execute until a break statement or the end of the switch is encountered.

• If no match occurs between the controlling expression’s value and a case label, the optional
default case executes. If no match occurs and the switch does not contain a default case, pro-
gram control simply continues with the first statement after the switch.

Section 5.7 Class AutoPolicy Case Study: Strings in switch Statements
• Strings can be used in a switch statement’s controlling expression and case labels.

Section 5.8 break and continue Statements
• The break statement, when executed in a while, for, do…while or switch, causes immediate

exit from that statement.

• The continue statement (p. 174), when executed in a while, for or do…while, skips the loop’s
remaining body statements and proceeds with its next iteration. In while and do…while state-
ments, the program evaluates the loop-continuation test immediately. In a for statement, the in-
crement expression executes, then the program evaluates the loop-continuation test.

Section 5.9 Logical Operators
• Simple conditions are expressed in terms of the relational operators >, <, >= and <= and the equal-

ity operators == and !=, and each expression tests only one condition.

• Logical operators (p. 176) enable you to form more complex conditions by combining simple con-
ditions. The logical operators are && (conditional AND), || (conditional OR), & (boolean logical
AND), | (boolean logical inclusive OR), ^ (boolean logical exclusive OR) and ! (logical NOT).

• To ensure that two conditions are both true, use the && (conditional AND) operator. If either or
both of the simple conditions are false, the entire expression is false.

• To ensure that either or both of two conditions are true, use the || (conditional OR) operator,
which evaluates to true if either or both of its simple conditions are true.

 Self-Review Exercises 193

• A condition using && or || operators (p. 176) uses short-circuit evaluation (p. 178)—they’re
evaluated only until it’s known whether the condition is true or false.

• The & and | operators (p. 178) work identically to the && and || operators but always evaluate
both operands.

• A simple condition containing the boolean logical exclusive OR (^; p. 179) operator is true if and
only if one of its operands is true and the other is false. If both operands are true or both are false,
the entire condition is false. This operator is also guaranteed to evaluate both of its operands.

• The unary ! (logical NOT; p. 179) operator “reverses” the value of a condition.

Self-Review Exercises
5.1 Fill in the blanks in each of the following statements:

a) Typically, statements are used for counter-controlled repetition and
 statements for sentinel-controlled repetition.

b) The do…while statement tests the loop-continuation condition executing
the loop’s body; therefore, the body always executes at least once.

c) The statement selects among multiple actions based on the possible values
of an integer variable or expression, or a String.

d) The statement, when executed in a repetition statement, skips the remaining
statements in the loop body and proceeds with the next iteration of the loop.

e) The operator can be used to ensure that two conditions are both true before
choosing a certain path of execution.

f) If the loop-continuation condition in a for header is initially , the program
does not execute the for statement’s body.

g) Methods that perform common tasks and do not require objects are called
methods.

5.2 State whether each of the following is true or false. If false, explain why.
a) The default case is required in the switch selection statement.
b) The break statement is required in the last case of a switch selection statement.
c) The expression ((x > y) && (a < b)) is true if either x > y is true or a < b is true.
d) An expression containing the || operator is true if either or both of its operands are true.
e) The comma (,) formatting flag in a format specifier (e.g., %,20.2f) indicates that a value

should be output with a thousands separator.
f) To test for a range of values in a switch statement, use a hyphen (–) between the start

and end values of the range in a case label.
g) Listing cases consecutively with no statements between them enables the cases to per-

form the same set of statements.

5.3 Write a Java statement or a set of Java statements to accomplish each of the following tasks:
a) Sum the odd integers between 1 and 99, using a for statement. Assume that the integer

variables sum and count have been declared.
b) Calculate the value of 2.5 raised to the power of 3, using the pow method.
c) Print the integers from 1 to 20, using a while loop and the counter variable i. Assume

that the variable i has been declared, but not initialized. Print only five integers per line.
[Hint: Use the calculation i % 5. When the value of this expression is 0, print a newline
character; otherwise, print a tab character. Assume that this code is an application. Use
the System.out.println() method to output the newline character, and use the Sys-
tem.out.print('\t') method to output the tab character.]

d) Repeat part (c), using a for statement.

194 Chapter 5 Control Statements: Part 2; Logical Operators

5.4 Find the error in each of the following code segments, and explain how to correct it:
a) i = 1;

while (i <= 10);
 ++i;
}

b) for (k = 0.1; k != 1.0; k += 0.1)
 System.out.println(k);

c) switch (n)
{
 case 1:
 System.out.println("The number is 1");
 case 2:
 System.out.println("The number is 2");
 break;
 default:
 System.out.println("The number is not 1 or 2");
 break;
}

d) The following code should print the values 1 to 10:
n = 1;
while (n < 10)
 System.out.println(n++);

Answers to Self-Review Exercises
5.1 a) for, while. b) after. c) switch. d) continue. e) && (conditional AND). f) false. g) static.

5.2 a) False. The default case is optional. If no default action is needed, then there’s no need
for a default case. b) False. The break statement is used to exit the switch statement. The break
statement is not required for the last case in a switch statement. c) False. Both of the relational ex-
pressions must be true for the entire expression to be true when using the && operator. d) True.
e) True. f) False. The switch statement does not provide a mechanism for testing ranges of values,
so every value that must be tested should be listed in a separate case label. g) True.

5.3 a) sum = 0;
for (count = 1; count <= 99; count += 2)
 sum += count;

b) double result = Math.pow(2.5, 3);
c) i = 1;

while (i <= 20)
{
 System.out.print(i);

 if (i % 5 == 0)
 System.out.println();
 else
 System.out.print('\t');

 ++i;
}

 Exercises 195

d) for (i = 1; i <= 20; i++)
{
 System.out.print(i);

 if (i % 5 == 0)
 System.out.println();
 else
 System.out.print('\t');
}

5.4 a) Error: The semicolon after the while header causes an infinite loop, and there’s a miss-
ing left brace.
Correction: Replace the semicolon by a {, or remove both the ; and the }.

b) Error: Using a floating-point number to control a for statement may not work, because
floating-point numbers are represented only approximately by most computers.
Correction: Use an integer, and perform the proper calculation in order to get the values
you desire:

for (k = 1; k != 10; k++)
 System.out.println((double) k / 10);

c) Error: The missing code is the break statement in the statements for the first case.
Correction: Add a break statement at the end of the statements for the first case. This
omission is not necessarily an error if you want the statement of case 2: to execute every
time the case 1: statement executes.

d) Error: An improper relational operator is used in the while’s continuation condition.
Correction: Use <= rather than <, or change 10 to 11.

Exercises
5.5 Describe the four basic elements of counter-controlled repetition.

5.6 Compare and contrast the while and for repetition statements.

5.7 Discuss a situation in which it would be more appropriate to use a do…while statement
than a while statement. Explain why.

5.8 Compare and contrast the break and continue statements.

5.9 Find and correct the error(s) in each of the following segments of code:
a) For (i = 100, i >= 1, i++)

 System.out.println(i);
b) The following code should print whether integer value is odd or even:

switch (value % 2)
{
 case 0:
 System.out.println("Even integer");

 case 1:
 System.out.println("Odd integer");
}

c) The following code should output the odd integers from 19 to 1:

for (i = 19; i >= 1; i += 2)
 System.out.println(i);

196 Chapter 5 Control Statements: Part 2; Logical Operators

d) The following code should output the even integers from 2 to 100:

counter = 2;

do
{
 System.out.println(counter);
 counter += 2;
} While (counter < 100);

5.10 What does the following program do?

5.11 (Find the Smallest Value) Write an application that finds the smallest of several integers.
Assume that the first value read specifies the number of values to input from the user.

5.12 (Calculating the Product of Odd Integers) Write an application that calculates the product
of the odd integers from 1 to 15.

5.13 (Factorials) Factorials are used frequently in probability problems. The factorial of a positive
integer n (written n! and pronounced “n factorial”) is equal to the product of the positive integers from
1 to n. Write an application that calculates the factorials of 1 through 20. Use type long. Display the
results in tabular format. What difficulty might prevent you from calculating the factorial of 100?

5.14 (Modified Compound-Interest Program) Modify the compound-interest application of
Fig. 5.6 to repeat its steps for interest rates of 5%, 6%, 7%, 8%, 9% and 10%. Use a for loop to
vary the interest rate.

5.15 (Triangle Printing Program) Write an application that displays the following patterns sep-
arately, one below the other. Use for loops to generate the patterns. All asterisks (*) should be print-
ed by a single statement of the form System.out.print('*'); which causes the asterisks to print side
by side. A statement of the form System.out.println(); can be used to move to the next line. A
statement of the form System.out.print(' '); can be used to display a space for the last two pat-
terns. There should be no other output statements in the program. [Hint: The last two patterns re-
quire that each line begin with an appropriate number of blank spaces.]

(a) (b) (c) (d)
* ********** ********** *
** ********* ********* **
*** ******** ******** ***
**** ******* ******* ****
***** ****** ****** *****
****** ***** ***** ******
******* **** **** *******
******** *** *** ********
********* ** ** *********
********** * * **********

1 // Exercise 5.10: Printing.java
2 public class Printing
3 {
4 public static void main(String[] args)
5 {
6 for (int i = 1; i <= 10; i++)
7 {
8 for (int j = 1; j <= 5; j++)
9 System.out.print('@');

10
11 System.out.println();
12 }
13 }
14 } // end class Printing

 Exercises 197

5.16 (Bar Chart Printing Program) One interesting application of computers is to display
graphs and bar charts. Write an application that reads five numbers between 1 and 30. For each
number that’s read, your program should display the same number of adjacent asterisks. For exam-
ple, if your program reads the number 7, it should display *******. Display the bars of asterisks after
you read all five numbers.

5.17 (Calculating Sales) An online retailer sells five products whose retail prices are as follows:
Product 1, $2.98; product 2, $4.50; product 3, $9.98; product 4, $4.49 and product 5, $6.87.
Write an application that reads a series of pairs of numbers as follows:

a) product number
b) quantity sold

Your program should use a switch statement to determine the retail price for each product. It
should calculate and display the total retail value of all products sold. Use a sentinel-controlled
loop to determine when the program should stop looping and display the final results.

5.18 (Modified Compound-Interest Program) Modify the application in Fig. 5.6 to use only in-
tegers to calculate the compound interest. [Hint: Treat all monetary amounts as integral numbers
of pennies. Then break the result into its dollars and cents portions by using the division and re-
mainder operations, respectively. Insert a period between the dollars and the cents portions.]

5.19 Assume that i = 1, j = 2, k = 3 and m = 2. What does each of the following statements print?
a) System.out.println(i == 1);
b) System.out.println(j == 3);
c) System.out.println((i >= 1) && (j < 4));
d) System.out.println((m <= 99) & (k < m));
e) System.out.println((j >= i) || (k == m));
f) System.out.println((k + m < j) | (3 - j >= k));
g) System.out.println(!(k > m));

5.20 (Calculating the Value of π) Calculate the value of π from the infinite series

Print a table that shows the value of π approximated by computing the first 200,000 terms of this
series. How many terms do you have to use before you first get a value that begins with 3.14159?

5.21 (Pythagorean Triples) A right triangle can have sides whose lengths are all integers. The set
of three integer values for the lengths of the sides of a right triangle is called a Pythagorean triple.
The lengths of the three sides must satisfy the relationship that the sum of the squares of two of the
sides is equal to the square of the hypotenuse. Write an application that displays a table of the
Pythagorean triples for side1, side2 and the hypotenuse, all no larger than 500. Use a triple-nested
for loop that tries all possibilities. This method is an example of “brute-force” computing. You’ll
learn in more advanced computer science courses that for many interesting problems there’s no
known algorithmic approach other than using sheer brute force.

5.22 (Modified Triangle Printing Program) Modify Exercise 5.15 to combine your code from
the four separate triangles of asterisks such that all four patterns print side by side. [Hint: Make clev-
er use of nested for loops.]

5.23 (De Morgan’s Laws) In this chapter, we discussed the logical operators &&, &, ||, |, ^ and !.
De Morgan’s laws can sometimes make it more convenient for us to express a logical expression.
These laws state that the expression !(condition1 && condition2) is logically equivalent to the expres-
sion (!condition1 || !condition2). Also, the expression !(condition1 || condition2) is logically
equivalent to the expression (!condition1 && !condition2). Use De Morgan’s laws to write equivalent

π 4
4
3
---–

4
5

4
7
---–

4
9

4
11
------– …+ + +=

198 Chapter 5 Control Statements: Part 2; Logical Operators

expressions for each of the following, then write an application to show that both the original ex-
pression and the new expression in each case produce the same value:

a) !(x < 5) && !(y >= 7)
b) !(a == b) || !(g != 5)
c) !((x <= 8) && (y > 4))
d) !((i > 4) || (j <= 6))

5.24 (Diamond Printing Program) Write an application that prints the following diamond
shape. You may use output statements that print a single asterisk (*), a single space or a single new-
line character. Maximize your use of repetition (with nested for statements), and minimize the
number of output statements.

5.25 (Modified Diamond Printing Program) Modify the application you wrote in Exercise 5.24
to read an odd number in the range 1 to 19 to specify the number of rows in the diamond. Your
program should then display a diamond of the appropriate size.

5.26 A criticism of the break statement and the continue statement is that each is unstructured.
Actually, these statements can always be replaced by structured statements, although doing so can
be awkward. Describe in general how you’d remove any break statement from a loop in a program
and replace it with some structured equivalent. [Hint: The break statement exits a loop from the
body of the loop. The other way to exit is by failing the loop-continuation test. Consider using in
the loop-continuation test a second test that indicates “early exit because of a ‘break’ condition.”]
Use the technique you develop here to remove the break statement from the application in
Fig. 5.13.

5.27 What does the following program segment do?

for (i = 1; i <= 5; i++)
{
 for (j = 1; j <= 3; j++)
 {
 for (k = 1; k <= 4; k++)
 System.out.print('*');

 System.out.println();
 } // end inner for

 System.out.println();
} // end outer for

5.28 Describe in general how you’d remove any continue statement from a loop in a program
and replace it with some structured equivalent. Use the technique you develop here to remove the
continue statement from the program in Fig. 5.14.

5.29 (“The Twelve Days of Christmas” Song) Write an application that uses repetition and
switch statements to print the song “The Twelve Days of Christmas.” One switch statement should
be used to print the day (“first,” “second,” and so on). A separate switch statement should be used

*

*

 Making a Difference 199

to print the remainder of each verse. Visit the website en.wikipedia.org/wiki/The_Twelve_Days_
of_Christmas_(song) for the lyrics of the song.

5.30 (Modified AutoPolicy Class) Modify class AutoPolicy in Fig. 5.11 to validate the two-letter
state codes for the northeast states. The codes are: CT for Connecticut, MA for Massachusetts, ME
for Maine, NH for New Hampshire, NJ for New Jersey, NY for New York, PA for Pennsylvania
and VT for Vermont. In AutoPolicy method setState, use the logical OR (||) operator
(Section 5.9) to create a compound condition in an if…else statement that compares the method’s
argument with each two-letter code. If the code is incorrect, the else part of the if…else statement
should display an error message. In later chapters, you’ll learn how to use exception handling to in-
dicate that a method received an invalid value.

Making a Difference
5.31 (Global Warming Facts Quiz) The controversial issue of global warming has been widely
publicized by the film “An Inconvenient Truth,” featuring former Vice President Al Gore. Mr. Gore
and a U.N. network of scientists, the Intergovernmental Panel on Climate Change, shared the 2007
Nobel Peace Prize in recognition of “their efforts to build up and disseminate greater knowledge
about man-made climate change.” Research both sides of the global warming issue online (you
might want to search for phrases like “global warming skeptics”). Create a five-question multiple-
choice quiz on global warming, each question having four possible answers (numbered 1–4). Be ob-
jective and try to fairly represent both sides of the issue. Next, write an application that administers
the quiz, calculates the number of correct answers (zero through five) and returns a message to the
user. If the user correctly answers five questions, print “Excellent”; if four, print “Very good”; if
three or fewer, print “Time to brush up on your knowledge of global warming,” and include a list
of some of the websites where you found your facts.

5.32 (Tax Plan Alternatives; The “FairTax”) There are many proposals to make taxation fairer.
Check out the FairTax initiative in the United States at www.fairtax.org. Research how the pro-
posed FairTax works. One suggestion is to eliminate income taxes and most other taxes in favor of
a 23% consumption tax on all products and services that you buy. Some FairTax opponents ques-
tion the 23% figure and say that because of the way the tax is calculated, it would be more accurate
to say the rate is 30%—check this carefully. Write a program that prompts the user to enter expenses
in various expense categories they have (e.g., housing, food, clothing, transportation, education,
health care, vacations), then prints the estimated FairTax that person would pay.

5.33 (Facebook User Base Growth) According to CNNMoney.com, Facebook hit one billion us-
ers in October 2012. Using the compound-growth technique you learned in Fig. 5.6 and assuming
its user base grows at a rate of 4% per month, how many months will it take for Facebook to grow
its user base to 1.5 billion users? How many months will it take for Facebook to grow its user base
to two billion users?

www.fairtax.org

6 Methods: A Deeper Look

Form ever follows function.
—Louis Henri Sullivan

E pluribus unum.
(One composed of many.)
—Virgil

O! call back yesterday, bid time
return.
—William Shakespeare

Answer me in one word.
—William Shakespeare

There is a point at which
methods devour themselves.
—Frantz Fanon

O b j e c t i v e s
In this chapter you’ll learn:

■ How static methods and
fields are associated with
classes rather than objects.

■ How the method-call/return
mechanism is supported by
the method-call stack.

■ About argument promotion
and casting.

■ How packages group related
classes.

■ How to use secure random-
number generation to
implement game-playing
applications.

■ How the visibility of
declarations is limited to
specific regions of programs.

■ What method overloading is
and how to create overloaded
methods.

6.1 Introduction 201

6.1 Introduction
Experience has shown that the best way to develop and maintain a large program is to con-
struct it from small, simple pieces, or modules. This technique is called divide and con-
quer. Methods, which we introduced in Chapter 3, help you modularize programs. In this
chapter, we study methods in more depth.

You’ll learn more about static methods, which can be called without the need for an
object of the class to exist. You’ll also learn how Java is able to keep track of which method
is currently executing, how local variables of methods are maintained in memory and how
a method knows where to return after it completes execution.

We’ll take a brief diversion into simulation techniques with random-number genera-
tion and develop a version of the dice game called craps that uses most of the programming
techniques you’ve used to this point in the book. In addition, you’ll learn how to declare
constants in your programs.

Many of the classes you’ll use or create while developing applications will have more
than one method of the same name. This technique, called overloading, is used to imple-
ment methods that perform similar tasks for arguments of different types or for different
numbers of arguments.

We continue our discussion of methods in Chapter 18, Recursion. Recursion pro-
vides an intriguing way of thinking about methods and algorithms.

6.2 Program Modules in Java
You write Java programs by combining new methods and classes with predefined ones
available in the Java Application Programming Interface (also referred to as the Java API
or Java class library) and in various other class libraries. Related classes are typically
grouped into packages so that they can be imported into programs and reused. You’ll learn
how to group your own classes into packages in Section 21.4.10. The Java API provides a
rich collection of predefined classes that contain methods for performing common math-
ematical calculations, string manipulations, character manipulations, input/output opera-
tions, database operations, networking operations, file processing, error checking and
more.

6.1 Introduction
6.2 Program Modules in Java
6.3 static Methods, static Fields

and Class Math
6.4 Declaring Methods with Multiple

Parameters
6.5 Notes on Declaring and Using

Methods
6.6 Method-Call Stack and Stack Frames
6.7 Argument Promotion and Casting

6.8 Java API Packages
6.9 Case Study: Secure Random-Number

Generation
6.10 Case Study: A Game of Chance;

Introducing enum Types
6.11 Scope of Declarations
6.12 Method Overloading
6.13 (Optional) GUI and Graphics Case

Study: Colors and Filled Shapes
6.14 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

202 Chapter 6 Methods: A Deeper Look

Divide and Conquer with Classes and Methods
Classes and methods help you modularize a program by separating its tasks into self-con-
tained units. The statements in the method bodies are written only once, are hidden from
other methods and can be reused from several locations in a program.

One motivation for modularizing a program into classes and methods is the divide-
and-conquer approach, which makes program development more manageable by con-
structing programs from small, simple pieces. Another is software reusability—using
existing classes and methods as building blocks to create new programs. Often, you can
create programs mostly from existing classes and methods rather than by building custom-
ized code. For example, in earlier programs, we did not define how to read data from the
keyboard—Java provides these capabilities in the methods of class Scanner. A third moti-
vation is to avoid repeating code. Dividing a program into meaningful classes and methods
makes the program easier to debug and maintain.

Hierarchical Relationship Between Method Calls
As you know, a method is invoked by a method call, and when the called method com-
pletes its task, it returns control and possibly a result to the caller. An analogy to this pro-
gram structure is the hierarchical form of management (Fig. 6.1). A boss (the caller) asks
a worker (the called method) to perform a task and report back (return) the results after
completing the task. The boss method does not know how the worker method performs
its designated tasks. The worker may also call other worker methods, unbeknown to the
boss. This “hiding” of implementation details promotes good software engineering.
Figure 6.1 shows the boss method communicating with several worker methods in a hi-
erarchical manner. The boss method divides its responsibilities among the various worker
methods. Here, worker1 acts as a “boss method” to worker4 and worker5.

Software Engineering Observation 6.1
Familiarize yourself with the rich collection of classes and methods provided by the Java
API (http://docs.oracle.com/javase/7/docs/api/). Section 6.8 overviews several
common packages. Online Appendix F explains how to navigate the API documentation.
Don’t reinvent the wheel. When possible, reuse Java API classes and methods. This reduces
program development time and avoids introducing programming errors.

Software Engineering Observation 6.2
To promote software reusability, every method should be limited to performing a single,
well-defined task, and the name of the method should express that task effectively.

Error-Prevention Tip 6.1
A method that performs one task is easier to test and debug than one that performs many tasks.

Software Engineering Observation 6.3
If you cannot choose a concise name that expresses a method’s task, your method might be
attempting to perform too many tasks. Break such a method into several smaller ones.

Error-Prevention Tip 6.2
When you call a method that returns a value indicating whether the method performed
its task successfully, be sure to check the return value of that method and, if that method
was unsuccessful, deal with the issue appropriately.

http://docs.oracle.com/javase/7/docs/api/

6.3 static Methods, static Fields and Class Math 203

6.3 static Methods, static Fields and Class Math
Although most methods execute in response to method calls on specific objects, this is not
always the case. Sometimes a method performs a task that does not depend on an object.
Such a method applies to the class in which it’s declared as a whole and is known as a stat-
ic method or a class method.

It’s common for classes to contain convenient static methods to perform common
tasks. For example, recall that we used static method pow of class Math to raise a value to
a power in Fig. 5.6. To declare a method as static, place the keyword static before the
return type in the method’s declaration. For any class imported into your program, you
can call the class’s static methods by specifying the name of the class in which the
method is declared, followed by a dot (.) and the method name, as in

Math Class Methods
We use various Math class methods here to present the concept of static methods. Class
Math provides a collection of methods that enable you to perform common mathematical
calculations. For example, you can calculate the square root of 900.0 with the static
method call

This expression evaluates to 30.0. Method sqrt takes an argument of type double and re-
turns a result of type double. To output the value of the preceding method call in the com-
mand window, you might write the statement

In this statement, the value that sqrt returns becomes the argument to method println.
There was no need to create a Math object before calling method sqrt. Also all Math class
methods are static—therefore, each is called by preceding its name with the class name
Math and the dot (.) separator.

Fig. 6.1 | Hierarchical boss-method/worker-method relationship.

ClassName.methodName(arguments)

Math.sqrt(900.0)

System.out.println(Math.sqrt(900.0));

Software Engineering Observation 6.4
Class Math is part of the java.lang package, which is implicitly imported by the compiler,
so it’s not necessary to import class Math to use its methods.

boss

worker2 worker3worker1

worker5worker4

204 Chapter 6 Methods: A Deeper Look

Method arguments may be constants, variables or expressions. If c = 13.0, d = 3.0 and
f = 4.0, then the statement

calculates and prints the square root of 13.0 + 3.0 * 4.0 = 25.0—namely, 5.0. Figure 6.2
summarizes several Math class methods. In the figure, x and y are of type double.

static Variables
Recall from Section 3.2 that each object of a class maintains its own copy of every instance
variable of the class. There are variables for which each object of a class does not need its
own separate copy (as you’ll see momentarily). Such variables are declared static and are
also known as class variables. When objects of a class containing static variables are cre-
ated, all the objects of that class share one copy of those variables. Together a class’s static
variables and instance variables are known as its fields. You’ll learn more about static
fields in Section 8.11.

Math Class static Constants PI and E
Class Math declares two constants, Math.PI and Math.E, that represent high-precision ap-
proximations to commonly used mathematical constants. Math.PI (3.141592653589793)
is the ratio of a circle’s circumference to its diameter. Math.E (2.718281828459045) is the

System.out.println(Math.sqrt(c + d * f));

Method Description Example

abs(x) absolute value of x abs(23.7) is 23.7
abs(0.0) is 0.0
abs(-23.7) is 23.7

ceil(x) rounds x to the smallest integer not
less than x

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

cos(x) trigonometric cosine of x (x in radians) cos(0.0) is 1.0

exp(x) exponential method ex exp(1.0) is 2.71828
exp(2.0) is 7.38906

floor(x) rounds x to the largest integer not
greater than x

floor(9.2) is 9.0
floor(-9.8) is -10.0

log(x) natural logarithm of x (base e) log(Math.E) is 1.0
log(Math.E * Math.E) is 2.0

max(x, y) larger value of x and y max(2.3, 12.7) is 12.7
max(-2.3, -12.7) is -2.3

min(x, y) smaller value of x and y min(2.3, 12.7) is 2.3
min(-2.3, -12.7) is -12.7

pow(x, y) x raised to the power y (i.e., xy) pow(2.0, 7.0) is 128.0
pow(9.0, 0.5) is 3.0

sin(x) trigonometric sine of x (x in radians) sin(0.0) is 0.0

sqrt(x) square root of x sqrt(900.0) is 30.0

tan(x) trigonometric tangent of x (x in radians) tan(0.0) is 0.0

Fig. 6.2 | Math class methods.

6.4 Declaring Methods with Multiple Parameters 205

base value for natural logarithms (calculated with static Math method log). These con-
stants are declared in class Math with the modifiers public, final and static. Making
them public allows you to use them in your own classes. Any field declared with keyword
final is constant—its value cannot change after the field is initialized. Making these fields
static allows them to be accessed via the class name Math and a dot (.) separator, just as
class Math’s methods are.

Why Is Method main Declared static?
When you execute the Java Virtual Machine (JVM) with the java command, the JVM
attempts to invoke the main method of the class you specify—at this point no objects of
the class have been created. Declaring main as static allows the JVM to invoke main with-
out creating an instance of the class. When you execute your application, you specify its
class name as an argument to the java command, as in

The JVM loads the class specified by ClassName and uses that class name to invoke method
main. In the preceding command, ClassName is a command-line argument to the JVM
that tells it which class to execute. Following the ClassName, you can also specify a list of
Strings (separated by spaces) as command-line arguments that the JVM will pass to your
application. Such arguments might be used to specify options (e.g., a filename) to run the
application. As you’ll learn in Chapter 7, Arrays and ArrayLists, your application can ac-
cess those command-line arguments and use them to customize the application.

6.4 Declaring Methods with Multiple Parameters
Methods often require more than one piece of information to perform their tasks. We now
consider how to write your own methods with multiple parameters.

Figure 6.3 uses a method called maximum to determine and return the largest of three
double values. In main, lines 14–18 prompt the user to enter three double values, then
read them from the user. Line 21 calls method maximum (declared in lines 28–41) to deter-
mine the largest of the three values it receives as arguments. When method maximum
returns the result to line 21, the program assigns maximum’s return value to local variable
result. Then line 24 outputs the maximum value. At the end of this section, we’ll discuss
the use of operator + in line 24.

java ClassName argument1 argument2 …

1 // Fig. 6.3: MaximumFinder.java
2 // Programmer-declared method maximum with three double parameters.
3 import java.util.Scanner;
4
5 public class MaximumFinder
6 {
7 // obtain three floating-point values and locate the maximum value
8 public static void main(String[] args)
9 {

10 // create Scanner for input from command window
11 Scanner input = new Scanner(System.in);
12

Fig. 6.3 | Programmer-declared method maximum with three double parameters. (Part 1 of 2.)

206 Chapter 6 Methods: A Deeper Look

The public and static Keywords
Method maximum’s declaration begins with keyword public to indicate that the method is
“available to the public”—it can be called from methods of other classes. The keyword
static enables the main method (another static method) to call maximum as shown in
line 21 without qualifying the method name with the class name MaximumFinder—static
methods in the same class can call each other directly. Any other class that uses maximum
must fully qualify the method name with the class name.

13 // prompt for and input three floating-point values
14 System.out.print(
15 "Enter three floating-point values separated by spaces: ");
16 double number1 = input.nextDouble(); // read first double
17 double number2 = input.nextDouble(); // read second double
18 double number3 = input.nextDouble(); // read third double
19
20 // determine the maximum value
21
22
23 // display maximum value
24 System.out.println();
25 }
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 } // end class MaximumFinder

Enter three floating-point values separated by spaces: 9.35 2.74 5.1
Maximum is: 9.35

Enter three floating-point values separated by spaces: 5.8 12.45 8.32
Maximum is: 12.45

Enter three floating-point values separated by spaces: 6.46 4.12 10.54
Maximum is: 10.54

Fig. 6.3 | Programmer-declared method maximum with three double parameters. (Part 2 of 2.)

double result = maximum(number1, number2, number3);

"Maximum is: " + result

// returns the maximum of its three double parameters
public static double maximum(double x, double y, double z)
{
 double maximumValue = x; // assume x is the largest to start

 // determine whether y is greater than maximumValue
 if (y > maximumValue)
 maximumValue = y;

 // determine whether z is greater than maximumValue
 if (z > maximumValue)
 maximumValue = z;

 return maximumValue;
}

6.4 Declaring Methods with Multiple Parameters 207

Method maximum
Consider maximum’s declaration (lines 28–41). Line 28 indicates that it returns a double val-
ue, that the method’s name is maximum and that the method requires three double parameters
(x, y and z) to accomplish its task. Multiple parameters are specified as a comma-separated
list. When maximum is called from line 21, the parameters x, y and z are initialized with copies
of the values of arguments number1, number2 and number3, respectively. There must be one
argument in the method call for each parameter in the method declaration. Also, each argu-
ment must be consistent with the type of the corresponding parameter. For example, a pa-
rameter of type double can receive values like 7.35, 22 or –0.03456, but not Strings like
"hello" nor the boolean values true or false. Section 6.7 discusses the argument types that
can be provided in a method call for each parameter of a primitive type.

To determine the maximum value, we begin with the assumption that parameter x
contains the largest value, so line 30 declares local variable maximumValue and initializes it
with the value of parameter x. Of course, it’s possible that parameter y or z contains the
actual largest value, so we must compare each of these values with maximumValue. The if
statement at lines 33–34 determines whether y is greater than maximumValue. If so, line 34
assigns y to maximumValue. The if statement at lines 37–38 determines whether z is
greater than maximumValue. If so, line 38 assigns z to maximumValue. At this point the
largest of the three values resides in maximumValue, so line 40 returns that value to line 21.
When program control returns to the point in the program where maximum was called,
maximum’s parameters x, y and z no longer exist in memory.

Implementing Method maximum by Reusing Method Math.max
The entire body of our maximum method could also be implemented with two calls to
Math.max, as follows:

The first call to Math.max specifies arguments x and Math.max(y, z). Before any method
can be called, its arguments must be evaluated to determine their values. If an argument is
a method call, the method call must be performed to determine its return value. So, in the
preceding statement, Math.max(y, z) is evaluated to determine the maximum of y and z.
Then the result is passed as the second argument to the other call to Math.max, which re-
turns the larger of its two arguments. This is a good example of software reuse—we find the
largest of three values by reusing Math.max, which finds the larger of two values. Note how
concise this code is compared to lines 30–38 of Fig. 6.3.

Software Engineering Observation 6.5
Methods can return at most one value, but the returned value could be a reference to an
object that contains many values.

Software Engineering Observation 6.6
Variables should be declared as fields only if they’re required for use in more than one method
of the class or if the program should save their values between calls to the class’s methods.

Common Programming Error 6.1
Declaring method parameters of the same type as float x, y instead of float x, float
y is a syntax error—a type is required for each parameter in the parameter list.

return Math.max(x, Math.max(y, z));

208 Chapter 6 Methods: A Deeper Look

Assembling Strings with String Concatenation
Java allows you to assemble String objects into larger strings by using operators + or +=.
This is known as string concatenation. When both operands of operator + are String ob-
jects, operator + creates a new String object in which the characters of the right operand
are placed at the end of those in the left operand—e.g., the expression "hello " + "there"
creates the String "hello there".

In line 24 of Fig. 6.3, the expression "Maximum is: " + result uses operator + with
operands of types String and double. Every primitive value and object in Java can be rep-
resented as a String. When one of the + operator’s operands is a String, the other is con-
verted to a String, then the two are concatenated. In line 24, the double value is converted
to its String representation and placed at the end of the String "Maximum is: ". If there
are any trailing zeros in a double value, these will be discarded when the number is con-
verted to a String—for example 9.3500 would be represented as 9.35.

Primitive values used in String concatenation are converted to Strings. A boolean
concatenated with a String is converted to the String "true" or "false". All objects have
a toString method that returns a String representation of the object. (We discuss toString
in more detail in subsequent chapters.) When an object is concatenated with a String, the
object’s toString method is implicitly called to obtain the String representation of the
object. Method toString also can be called explicitly.

You can break large String literals into several smaller Strings and place them on
multiple lines of code for readability. In this case, the Strings can be reassembled using
concatenation. We discuss the details of Strings in Chapter 14.

6.5 Notes on Declaring and Using Methods
There are three ways to call a method:

1. Using a method name by itself to call another method of the same class—such as
maximum(number1, number2, number3) in line 21 of Fig. 6.3.

2. Using a variable that contains a reference to an object, followed by a dot (.) and
the method name to call a non-static method of the referenced object—such as
the method call in line 16 of Fig. 3.2, myAccount.getName(), which calls a meth-
od of class Account from the main method of AccountTest. Non-static meth-
ods are typically called instance methods.

Common Programming Error 6.2
It’s a syntax error to break a String literal across lines. If necessary, you can split a String
into several smaller Strings and use concatenation to form the desired String.

Common Programming Error 6.3
Confusing the + operator used for string concatenation with the + operator used for addi-
tion can lead to strange results. Java evaluates the operands of an operator from left to
right. For example, if integer variable y has the value 5, the expression "y + 2 = " + y + 2

results in the string "y + 2 = 52", not "y + 2 = 7", because first the value of y (5) is con-
catenated to the string "y + 2 = ", then the value 2 is concatenated to the new larger string
"y + 2 = 5". The expression "y + 2 = " + (y + 2) produces the desired result "y + 2 = 7".

6.6 Method-Call Stack and Stack Frames 209

3. Using the class name and a dot (.) to call a static method of a class—such as
Math.sqrt(900.0) in Section 6.3.

A static method can call other static methods of the same class directly (i.e., using
the method name by itself) and can manipulate static variables in the same class directly.
To access the class’s instance variables and instance methods, a static method must use
a reference to an object of the class. Instance methods can access all fields (static variables
and instance variables) and methods of the class.

Recall that static methods relate to a class as a whole, whereas instance methods are
associated with a specific instance (object) of the class and may manipulate the instance
variables of that object. Many objects of a class, each with its own copies of the instance
variables, may exist at the same time. Suppose a static method were to invoke an instance
method directly. How would the static method know which object’s instance variables
to manipulate? What would happen if no objects of the class existed at the time the
instance method was invoked? Thus, Java does not allow a static method to directly
access instance variables and instance methods of the same class.

There are three ways to return control to the statement that calls a method. If the
method does not return a result, control returns when the program flow reaches the
method-ending right brace or when the statement

is executed. If the method returns a result, the statement

evaluates the expression, then returns the result to the caller.

6.6 Method-Call Stack and Stack Frames
To understand how Java performs method calls, we first need to consider a data structure
(i.e., collection of related data items) known as a stack. You can think of a stack as analo-
gous to a pile of dishes. When a dish is placed on the pile, it’s normally placed at the top
(referred to as pushing the dish onto the stack). Similarly, when a dish is removed from
the pile, it’s normally removed from the top (referred to as popping the dish off the stack).

return;

return expression;

Common Programming Error 6.4
Declaring a method outside the body of a class declaration or inside the body of another
method is a syntax error.

Common Programming Error 6.5
Redeclaring a parameter as a local variable in the method’s body is a compilation error.

Common Programming Error 6.6
Forgetting to return a value from a method that should return a value is a compilation
error. If a return type other than void is specified, the method must contain a return
statement that returns a value consistent with the method’s return type. Returning a value
from a method whose return type has been declared void is a compilation error.

210 Chapter 6 Methods: A Deeper Look

Stacks are known as last-in, first-out (LIFO) data structures—the last item pushed onto
the stack is the first item popped from the stack.

When a program calls a method, the called method must know how to return to its
caller, so the return address of the calling method is pushed onto the method-call stack. If
a series of method calls occurs, the successive return addresses are pushed onto the stack in
last-in, first-out order so that each method can return to its caller.

The method-call stack also contains the memory for the local variables (including the
method parameters) used in each invocation of a method during a program’s execution.
This data, stored as a portion of the method-call stack, is known as the stack frame (or
activation record) of the method call. When a method call is made, the stack frame for
that method call is pushed onto the method-call stack. When the method returns to its
caller, the stack frame for this method call is popped off the stack and those local variables
are no longer known to the program. If a local variable holding a reference to an object is
the only variable in the program with a reference to that object, then, when the stack frame
containing that local variable is popped off the stack, the object can no longer be accessed
by the program and will eventually be deleted from memory by the JVM during garbage
collection, which we discuss in Section 8.10.

Of course, a computer’s memory is finite, so only a certain amount can be used to
store stack frames on the method-call stack. If more method calls occur than can have their
stack frames stored, an error known as a stack overflow occurs—we’ll talk more about this
in Chapter 11, Exception Handling: A Deeper Look.

6.7 Argument Promotion and Casting
Another important feature of method calls is argument promotion—converting an argu-
ment’s value, if possible, to the type that the method expects to receive in its corresponding
parameter. For example, a program can call Math method sqrt with an int argument even
though a double argument is expected. The statement

correctly evaluates Math.sqrt(4) and prints the value 2.0. The method declaration’s pa-
rameter list causes Java to convert the int value 4 to the double value 4.0 before passing
the value to method sqrt. Such conversions may lead to compilation errors if Java’s pro-
motion rules are not satisfied. These rules specify which conversions are allowed—that is,
which ones can be performed without losing data. In the sqrt example above, an int is
converted to a double without changing its value. However, converting a double to an int
truncates the fractional part of the double value—thus, part of the value is lost. Converting
large integer types to small integer types (e.g., long to int, or int to short) may also result
in changed values.

The promotion rules apply to expressions containing values of two or more primitive
types and to primitive-type values passed as arguments to methods. Each value is pro-
moted to the “highest” type in the expression. Actually, the expression uses a temporary
copy of each value—the types of the original values remain unchanged. Figure 6.4 lists the
primitive types and the types to which each can be promoted. The valid promotions for a
given type are always to a type higher in the table. For example, an int can be promoted
to the higher types long, float and double.

System.out.println(Math.sqrt(4));

6.8 Java API Packages 211

Converting values to types lower in the table of Fig. 6.4 will result in different values
if the lower type cannot represent the value of the higher type (e.g., the int value 2000000
cannot be represented as a short, and any floating-point number with digits after its
decimal point cannot be represented in an integer type such as long, int or short). There-
fore, in cases where information may be lost due to conversion, the Java compiler requires
you to use a cast operator (introduced in Section 4.10) to explicitly force the conversion to
occur—otherwise a compilation error occurs. This enables you to “take control” from the
compiler. You essentially say, “I know this conversion might cause loss of information, but
for my purposes here, that’s fine.” Suppose method square calculates the square of an
integer and thus requires an int argument. To call square with a double argument named
doubleValue, we would be required to write the method call as

This method call explicitly casts (converts) doubleValue’s value to a a temporary integer
for use in method square. Thus, if doubleValue’s value is 4.5, the method receives the
value 4 and returns 16, not 20.25.

6.8 Java API Packages
As you’ve seen, Java contains many predefined classes that are grouped into categories of
related classes called packages. Together, these are known as the Java Application Pro-
gramming Interface (Java API), or the Java class library. A great strength of Java is the
Java API’s thousands of classes. Some key Java API packages that we use in this book are
described in Fig. 6.5, which represents only a small portion of the reusable components in
the Java API.

square((int) doubleValue)

Common Programming Error 6.7
Casting a primitive-type value to another primitive type may change the value if the new
type is not a valid promotion. For example, casting a floating-point value to an integer
value may introduce truncation errors (loss of the fractional part) into the result.

Type Valid promotions

double None

float double

long float or double

int long, float or double

char int, long, float or double

short int, long, float or double (but not char)

byte short, int, long, float or double (but not char)

boolean None (boolean values are not considered to be
numbers in Java)

Fig. 6.4 | Promotions allowed for primitive types.

212 Chapter 6 Methods: A Deeper Look

Package Description

java.awt.event The Java Abstract Window Toolkit Event Package contains classes and
interfaces that enable event handling for GUI components in both the
java.awt and javax.swing packages. (See Chapter 12, GUI Compo-
nents: Part 1, and Chapter 22, GUI Components: Part 2.)

java.awt.geom The Java 2D Shapes Package contains classes and interfaces for work-
ing with Java’s advanced two-dimensional graphics capabilities. (See
Chapter 13, .)

java.io The Java Input/Output Package contains classes and interfaces that
enable programs to input and output data. (See Chapter 15, Files,
Streams and Object Serialization.)

java.lang The Java Language Package contains classes and interfaces (discussed
throughout the book) that are required by many Java programs. This
package is imported by the compiler into all programs.

java.net The Java Networking Package contains classes and interfaces that
enable programs to communicate via computer networks like the Inter-
net. (See online Chapter 28, Networking.)

java.security The Java Security Package contains classes and interfaces for enhancing
application security.

java.sql The JDBC Package contains classes and interfaces for working with
databases. (See Chapter 24, Accessing Databases with JDBC.)

java.util The Java Utilities Package contains utility classes and interfaces that
enable storing and processing of large amounts of data. Many of these
classes and interfaces have been updated to support Java SE 8’s new
lambda capabilities. (See Chapter 16, Generic Collections.)

java.util.concurrent The Java Concurrency Package contains utility classes and interfaces
for implementing programs that can perform multiple tasks in parallel.
(See Chapter 23, Concurrency.)

javax.swing The Java Swing GUI Components Package contains classes and inter-
faces for Java’s Swing GUI components that provide support for porta-
ble GUIs. This package still uses some elements of the older java.awt
package. (See Chapter 12, GUI Components: Part 1, and Chapter 22,
GUI Components: Part 2.)

javax.swing.event The Java Swing Event Package contains classes and interfaces that
enable event handling (e.g., responding to button clicks) for GUI com-
ponents in package javax.swing. (See Chapter 12, GUI Components:
Part 1, and Chapter 22, GUI Components: Part 2.)

javax.xml.ws The JAX-WS Package contains classes and interfaces for working with
web services in Java. (See online Chapter 32, REST-Based Web Services.)

javafx packages JavaFX is the preferred GUI technology for the future. We discuss these
packages in Chapter 25, JavaFX GUI: Part 1 and in the online JavaFX
GUI and multimedia chapters.

Fig. 6.5 | Java API packages (a subset). (Part 1 of 2.)

6.9 Case Study: Secure Random-Number Generation 213

The set of packages available in Java is quite large. In addition to those summarized
in Fig. 6.5, Java includes packages for complex graphics, advanced graphical user inter-
faces, printing, advanced networking, security, database processing, multimedia, accessi-
bility (for people with disabilities), concurrent programming, cryptography, XML
processing and many other capabilities. For an overview of the packages in Java, visit

You can locate additional information about a predefined Java class’s methods in the
Java API documentation at

When you visit this site, click the Index link to see an alphabetical listing of all the classes
and methods in the Java API. Locate the class name and click its link to see the online de-
scription of the class. Click the METHOD link to see a table of the class’s methods. Each
static method will be listed with the word “static” preceding its return type.

6.9 Case Study: Secure Random-Number Generation
We now take a brief diversion into a popular type of programming application—simula-
tion and game playing. In this and the next section, we develop a game-playing program
with multiple methods. The program uses most of the control statements presented thus
far in the book and introduces several new programming concepts.

The element of chance can be introduced in a program via an object of class Secure-
Random (package java.security). Such objects can produce random boolean, byte,
float, double, int, long and Gaussian values. In the next several examples, we use objects
of class SecureRandom to produce random values.

Moving to Secure Random Numbers
Recent editions of this book used Java’s Random class to obtain “random” values. This class
produced deterministic values that could be predicted by malicious programmers. Secure-
Random objects produce nondeterministic random numbers that cannot be predicted.

Deterministic random numbers have been the source of many software security
breaches. Most programming languages now have library features similar to Java’s Secure-

Some Java SE 8 Packages Used in This Book

java.time The new Java SE 8 Date/Time API Package contains classes and inter-
faces for working with dates and times. These features are designed to
replace the older date and time capabilities of package java.util. (See
Chapter 23, Concurrency.)

java.util.function and
java.util.stream

These packages contain classes and interfaces for working with Java
SE 8’s functional programming capabilities. (See Chapter 17, Java SE 8
Lambdas and Streams.)

http://docs.oracle.com/javase/7/docs/api/overview-summary.html
http://download.java.net/jdk8/docs/api/overview-summary.html

http://docs.oracle.com/javase/7/docs/api/

Package Description

Fig. 6.5 | Java API packages (a subset). (Part 2 of 2.)

http://docs.oracle.com/javase/7/docs/api/overview-summary.html
http://download.java.net/jdk8/docs/api/overview-summary.html
http://docs.oracle.com/javase/7/docs/api/

214 Chapter 6 Methods: A Deeper Look

Random class for producing nondeterministic random numbers to help prevent such prob-
lems. From this point forward in the text, when we refer to “random numbers” we mean
“secure random numbers.”

Creating a SecureRandom Object
A new secure random-number generator object can be created as follows:

It can then be used to generate random values—we discuss only random int values here.
For more information on the SecureRandom class, see docs.oracle.com/javase/7/docs/
api/java/security/SecureRandom.html.

Obtaining a Random int Value
Consider the following statement:

SecureRandom method nextInt generates a random int value. If it truly produces values
at random, then every value in the range should have an equal chance (or probability) of
being chosen each time nextInt is called.

Changing the Range of Values Produced By nextInt
The range of values produced by method nextInt generally differs from the range of val-
ues required in a particular Java application. For example, a program that simulates coin
tossing might require only 0 for “heads” and 1 for “tails.” A program that simulates the
rolling of a six-sided die might require random integers in the range 1–6. A program that
randomly predicts the next type of spaceship (out of four possibilities) that will fly across
the horizon in a video game might require random integers in the range 1–4. For cases like
these, class SecureRandom provides another version of method nextInt that receives an
int argument and returns a value from 0 up to, but not including, the argument’s value.
For example, for coin tossing, the following statement returns 0 or 1.

Rolling a Six-Sided Die
To demonstrate random numbers, let’s develop a program that simulates 20 rolls of a six-
sided die and displays the value of each roll. We begin by using nextInt to produce ran-
dom values in the range 0–5, as follows:

The argument 6—called the scaling factor—represents the number of unique values that
nextInt should produce (in this case six—0, 1, 2, 3, 4 and 5). This manipulation is called
scaling the range of values produced by SecureRandom method nextInt.

A six-sided die has the numbers 1–6 on its faces, not 0–5. So we shift the range of
numbers produced by adding a shifting value—in this case 1—to our previous result, as in

The shifting value (1) specifies the first value in the desired range of random integers. The
preceding statement assigns face a random integer in the range 1–6.

SecureRandom randomNumbers = new SecureRandom();

int randomValue = randomNumbers.nextInt();

int randomValue = randomNumbers.nextInt(2);

int face = randomNumbers.nextInt(6);

int face = 1 + randomNumbers.nextInt(6);

6.9 Case Study: Secure Random-Number Generation 215

Rolling a Six-Sided Die 20 Times
Figure 6.6 shows two sample outputs which confirm that the results of the preceding cal-
culation are integers in the range 1–6, and that each run of the program can produce a
different sequence of random numbers. Line 3 imports class SecureRandom from the
java.security package. Line 10 creates the SecureRandom object randomNumbers to pro-
duce random values. Line 16 executes 20 times in a loop to roll the die. The if statement
(lines 21–22) in the loop starts a new line of output after every five numbers to create a
neat, five-column format.

Rolling a Six-Sided Die 6,000,000 Times
To show that the numbers produced by nextInt occur with approximately equal likeli-
hood, let’s simulate 6,000,000 rolls of a die with the application in Fig. 6.7. Each integer
from 1 to 6 should appear approximately 1,000,000 times.

1 // Fig. 6.6: RandomIntegers.java
2 // Shifted and scaled random integers.
3
4
5 public class RandomIntegers
6 {
7 public static void main(String[] args)
8 {
9

10
11
12 // loop 20 times
13 for (int counter = 1; counter <= 20; counter++)
14 {
15 // pick random integer from 1 to 6
16 int face = 1 + randomNumbers.nextInt(6);
17
18 System.out.printf("%d ", face); // display generated value
19
20 // if counter is divisible by 5, start a new line of output
21 if (counter % 5 == 0)
22 System.out.println();
23 }
24 }
25 } // end class RandomIntegers

1 5 3 6 2
5 2 6 5 2
4 4 4 2 6
3 1 6 2 2

6 5 4 2 6
1 2 5 1 3
6 3 2 2 1
6 4 2 6 4

Fig. 6.6 | Shifted and scaled random integers.

import java.security.SecureRandom; // program uses class SecureRandom

// randomNumbers object will produce secure random numbers
SecureRandom randomNumbers = new SecureRandom();

216 Chapter 6 Methods: A Deeper Look

1 // Fig. 6.7: RollDie.java
2 // Roll a six-sided die 6,000,000 times.
3 import java.security.SecureRandom;
4
5 public class RollDie
6 {
7 public static void main(String[] args)
8 {
9 // randomNumbers object will produce secure random numbers

10 SecureRandom randomNumbers = new SecureRandom();
11
12 int frequency1 = 0; // count of 1s rolled
13 int frequency2 = 0; // count of 2s rolled
14 int frequency3 = 0; // count of 3s rolled
15 int frequency4 = 0; // count of 4s rolled
16 int frequency5 = 0; // count of 5s rolled
17 int frequency6 = 0; // count of 6s rolled
18
19 // tally counts for 6,000,000 rolls of a die
20 for (int roll = 1; roll <= 6000000; roll++)
21 {
22
23
24 // use face value 1-6 to determine which counter to increment
25 switch ()
26 {
27 case 1:
28 ++frequency1; // increment the 1s counter
29 break;
30 case 2:
31 ++frequency2; // increment the 2s counter
32 break;
33 case 3:
34 ++frequency3; // increment the 3s counter
35 break;
36 case 4:
37 ++frequency4; // increment the 4s counter
38 break;
39 case 5:
40 ++frequency5; // increment the 5s counter
41 break;
42 case 6:
43 ++frequency6; // increment the 6s counter
44 break;
45 }
46 }
47
48 System.out.println("Face\tFrequency"); // output headers
49 System.out.printf("1\t%d%n2\t%d%n3\t%d%n4\t%d%n5\t%d%n6\t%d%n",
50 frequency1, frequency2, frequency3, frequency4,
51 frequency5, frequency6);
52 }
53 } // end class RollDie

Fig. 6.7 | Roll a six-sided die 6,000,000 times. (Part 1 of 2.)

int face = 1 + randomNumbers.nextInt(6); // number from 1 to 6

face

6.9 Case Study: Secure Random-Number Generation 217

As the sample outputs show, scaling and shifting the values produced by nextInt
enables the program to simulate rolling a six-sided die. The application uses nested control
statements (the switch is nested inside the for) to determine the number of times each side
of the die appears. The for statement (lines 20–46) iterates 6,000,000 times. During each
iteration, line 22 produces a random value from 1 to 6. That value is then used as the con-
trolling expression (line 25) of the switch statement (lines 25–45). Based on the face value,
the switch statement increments one of the six counter variables during each iteration of
the loop. This switch statement has no default case, because we have a case for every pos-
sible die value that the expression in line 22 could produce. Run the program, and observe
the results. As you’ll see, every time you run this program, it produces different results.

When we study arrays in Chapter 7, we’ll show an elegant way to replace the entire
switch statement in this program with a single statement. Then, when we study Java SE
8’s new functional programming capabilities in Chapter 17, we’ll show how to replace the
loop that rolls the dice, the switch statement and the statement that displays the results
with a single statement!

Generalized Scaling and Shifting of Random Numbers
Previously, we simulated the rolling of a six-sided die with the statement

This statement always assigns to variable face an integer in the range 1 ≤ face ≤ 6. The
width of this range (i.e., the number of consecutive integers in the range) is 6, and the start-
ing number in the range is 1. In the preceding statement, the width of the range is deter-
mined by the number 6 that’s passed as an argument to SecureRandom method nextInt,
and the starting number of the range is the number 1 that’s added to randomNumbers.nex-
tInt(6). We can generalize this result as

where shiftingValue specifies the first number in the desired range of consecutive integers
and scalingFactor specifies how many numbers are in the range.

Face Frequency
1 999501
2 1000412
3 998262
4 1000820
5 1002245
6 998760

Face Frequency
1 999647
2 999557
3 999571
4 1000376
5 1000701
6 1000148

int face = 1 + randomNumbers.nextInt(6);

int number = shiftingValue + randomNumbers.nextInt(scalingFactor);

Fig. 6.7 | Roll a six-sided die 6,000,000 times. (Part 2 of 2.)

218 Chapter 6 Methods: A Deeper Look

It’s also possible to choose integers at random from sets of values other than ranges of
consecutive integers. For example, to obtain a random value from the sequence 2, 5, 8, 11
and 14, you could use the statement

In this case, randomNumbers.nextInt(5) produces values in the range 0–4. Each value
produced is multiplied by 3 to produce a number in the sequence 0, 3, 6, 9 and 12. We
add 2 to that value to shift the range of values and obtain a value from the sequence 2, 5,
8, 11 and 14. We can generalize this result as

where shiftingValue specifies the first number in the desired range of values, difference-
BetweenValues represents the constant difference between consecutive numbers in the se-
quence and scalingFactor specifies how many numbers are in the range.

A Note About Performance
Using SecureRandom instead of Random to achieve higher levels of security incurs a signif-
icant performance penalty. For “casual” applications, you might want to use class Random
from package java.util—simply replace SecureRandom with Random.

6.10 Case Study: A Game of Chance; Introducing enum
Types
A popular game of chance is a dice game known as craps, which is played in casinos and
back alleys throughout the world. The rules of the game are straightforward:

You roll two dice. Each die has six faces, which contain one, two, three, four, five and
six spots, respectively. After the dice have come to rest, the sum of the spots on the two
upward faces is calculated. If the sum is 7 or 11 on the first throw, you win. If the sum
is 2, 3 or 12 on the first throw (called “craps”), you lose (i.e., the “house” wins). If the
sum is 4, 5, 6, 8, 9 or 10 on the first throw, that sum becomes your “point.” To win,
you must continue rolling the dice until you “make your point” (i.e., roll that same
point value). You lose by rolling a 7 before making your point.

Figure 6.8 simulates the game of craps, using methods to implement the game’s logic. The
main method (lines 21–65) calls the rollDice method (lines 68–81) as necessary to roll
the dice and compute their sum. The sample outputs show winning and losing on the first
roll, and winning and losing on a subsequent roll.

int number = 2 + 3 * randomNumbers.nextInt(5);

int number = shiftingValue +
 differenceBetweenValues * randomNumbers.nextInt(scalingFactor);

1 // Fig. 6.8: Craps.java
2 // Craps class simulates the dice game craps.
3 import java.security.SecureRandom;
4
5 public class Craps
6 {
7 // create secure random number generator for use in method rollDice
8 private static final SecureRandom randomNumbers = new SecureRandom();

Fig. 6.8 | Craps class simulates the dice game craps. (Part 1 of 3.)

6.10 Case Study: A Game of Chance; Introducing enum Types 219

9
10
11
12
13 // constants that represent common rolls of the dice
14
15
16
17
18
19
20 // plays one game of craps
21 public static void main(String[] args)
22 {
23 int myPoint = 0; // point if no win or loss on first roll
24
25
26
27
28 // determine game status and point based on first roll
29 switch (sumOfDice)
30 {
31
32
33
34 break;
35
36
37
38
39 break;
40
41
42
43 System.out.printf("Point is %d%n", myPoint);
44 break;
45 }
46
47 // while game is not complete
48 while () // not WON or LOST
49 {
50
51
52 // determine game status
53 if (sumOfDice == myPoint) // win by making point
54 ;
55 else
56 if (sumOfDice == SEVEN) // lose by rolling 7 before point
57
58 }
59

Fig. 6.8 | Craps class simulates the dice game craps. (Part 2 of 3.)

// enum type with constants that represent the game status
private enum Status { CONTINUE, WON, LOST };

private static final int SNAKE_EYES = 2;
private static final int TREY = 3;
private static final int SEVEN = 7;
private static final int YO_LEVEN = 11;
private static final int BOX_CARS = 12;

Status gameStatus; // can contain CONTINUE, WON or LOST

int sumOfDice = rollDice(); // first roll of the dice

case SEVEN: // win with 7 on first roll
case YO_LEVEN: // win with 11 on first roll

gameStatus = Status.WON;

case SNAKE_EYES: // lose with 2 on first roll
case TREY: // lose with 3 on first roll
case BOX_CARS: // lose with 12 on first roll

gameStatus = Status.LOST;

default: // did not win or lose, so remember point
gameStatus = Status.CONTINUE; // game is not over
myPoint = sumOfDice; // remember the point

gameStatus == Status.CONTINUE

sumOfDice = rollDice(); // roll dice again

gameStatus = Status.WON

gameStatus = Status.LOST;

220 Chapter 6 Methods: A Deeper Look

Method rollDice
In the rules of the game, the player must roll two dice on the first and all subsequent rolls.
We declare method rollDice (lines 68–81) to roll the dice and compute and print their
sum. Method rollDice is declared once, but it’s called from two places (lines 26 and 50)
in main, which contains the logic for one complete game of craps. Method rollDice takes

60 // display won or lost message
61 if ()
62 System.out.println("Player wins");
63 else
64 System.out.println("Player loses");
65 }
66
67 // roll dice, calculate sum and display results
68
69 {
70 // pick random die values
71 int die1 = 1 + randomNumbers.nextInt(6); // first die roll
72 int die2 = 1 + randomNumbers.nextInt(6); // second die roll
73
74 int sum = die1 + die2; // sum of die values
75
76 // display results of this roll
77 System.out.printf("Player rolled %d + %d = %d%n",
78 die1, die2, sum);
79
80
81 }
82 } // end class Craps

Player rolled 5 + 6 = 11
Player wins

Player rolled 5 + 4 = 9
Point is 9
Player rolled 4 + 2 = 6
Player rolled 3 + 6 = 9
Player wins

Player rolled 1 + 2 = 3
Player loses

Player rolled 2 + 6 = 8
Point is 8
Player rolled 5 + 1 = 6
Player rolled 2 + 1 = 3
Player rolled 1 + 6 = 7
Player loses

Fig. 6.8 | Craps class simulates the dice game craps. (Part 3 of 3.)

gameStatus == Status.WON

public static int rollDice()

return sum;

6.10 Case Study: A Game of Chance; Introducing enum Types 221

no arguments, so it has an empty parameter list. Each time it’s called, rollDice returns
the sum of the dice, so the return type int is indicated in the method header (line 68).
Although lines 71 and 72 look the same (except for the die names), they do not necessarily
produce the same result. Each of these statements produces a random value in the range 1–
6. Variable randomNumbers (used in lines 71–72) is not declared in the method. Instead it’s
declared as a private static final variable of the class and initialized in line 8. This en-
ables us to create one SecureRandom object that’s reused in each call to rollDice. If there
were a program that contained multiple instances of class Craps, they’d all share this one
SecureRandom object.

Method main’s Local Variables
The game is reasonably involved. The player may win or lose on the first roll, or may win
or lose on any subsequent roll. Method main (lines 21–65) uses local variable myPoint (line
23) to store the “point” if the player doesn’t win or lose on the first roll, local variable
gameStatus (line 24) to keep track of the overall game status and local variable sumOfDice
(line 26) to hold the sum of the dice for the most recent roll. Variable myPoint is initialized
to 0 to ensure that the application will compile. If you do not initialize myPoint, the com-
piler issues an error, because myPoint is not assigned a value in every case of the switch
statement, and thus the program could try to use myPoint before it’s assigned a value. By
contrast, gameStatus is assigned a value in every case of the switch statement (including
the default case)—thus, it’s guaranteed to be initialized before it’s used, so we do not
need to initialize it in line 24.

enum Type Status
Local variable gameStatus (line 24) is declared to be of a new type called Status (declared
at line 11). Type Status is a private member of class Craps, because Status will be used
only in that class. Status is a type called an enum type, which, in its simplest form, declares
a set of constants represented by identifiers. An enum type is a special kind of class that’s
introduced by the keyword enum and a type name (in this case, Status). As with classes,
braces delimit an enum declaration’s body. Inside the braces is a comma-separated list of
enum constants, each representing a unique value. The identifiers in an enum must be
unique. You’ll learn more about enum types in Chapter 8.

Variables of type Status can be assigned only the three constants declared in the enum
(line 11) or a compilation error will occur. When the game is won, the program sets local
variable gameStatus to Status.WON (lines 33 and 54). When the game is lost, the program
sets local variable gameStatus to Status.LOST (lines 38 and 57). Otherwise, the program
sets local variable gameStatus to Status.CONTINUE (line 41) to indicate that the game is
not over and the dice must be rolled again.

Good Programming Practice 6.1
Use only uppercase letters in the names of enum constants to make them stand out and re-
mind you that they’re not variables.

Good Programming Practice 6.2
Using enum constants (like Status.WON, Status.LOST and Status.CONTINUE) rather
than literal values (such as 0, 1 and 2) makes programs easier to read and maintain.

222 Chapter 6 Methods: A Deeper Look

Logic of the main Method
Line 26 in main calls rollDice, which picks two random values from 1 to 6, displays the
values of the first die, the second die and their sum, and returns the sum. Method main
next enters the switch statement (lines 29–45), which uses the sumOfDice value from line
26 to determine whether the game has been won or lost, or should continue with another
roll. The values that result in a win or loss on the first roll are declared as private static
final int constants in lines 14–18. The identifier names use casino parlance for these
sums. These constants, like enum constants, are declared by convention with all capital let-
ters, to make them stand out in the program. Lines 31–34 determine whether the player
won on the first roll with SEVEN (7) or YO_LEVEN (11). Lines 35–39 determine whether the
player lost on the first roll with SNAKE_EYES (2), TREY (3), or BOX_CARS (12). After the first
roll, if the game is not over, the default case (lines 40–44) sets gameStatus to Sta-
tus.CONTINUE, saves sumOfDice in myPoint and displays the point.

If we’re still trying to “make our point” (i.e., the game is continuing from a prior roll),
lines 48–58 execute. Line 50 rolls the dice again. If sumOfDice matches myPoint (line 53),
line 54 sets gameStatus to Status.WON, then the loop terminates because the game is com-
plete. If sumOfDice is SEVEN (line 56), line 57 sets gameStatus to Status.LOST, and the
loop terminates because the game is complete. When the game completes, lines 61–64 dis-
play a message indicating whether the player won or lost, and the program terminates.

The program uses the various program-control mechanisms we’ve discussed. The
Craps class uses two methods—main and rollDice (called twice from main)—and the
switch, while, if…else and nested if control statements. Note also the use of multiple
case labels in the switch statement to execute the same statements for sums of SEVEN and
YO_LEVEN (lines 31–32) and for sums of SNAKE_EYES, TREY and BOX_CARS (lines 35–37).

Why Some Constants Are Not Defined as enum Constants
You might be wondering why we declared the sums of the dice as private static final
int constants rather than as enum constants. The reason is that the program must compare
the int variable sumOfDice (line 26) to these constants to determine the outcome of each
roll. Suppose we declared enum Sum containing constants (e.g., Sum.SNAKE_EYES) represent-
ing the five sums used in the game, then used these constants in the switch statement (lines
29–45). Doing so would prevent us from using sumOfDice as the switch statement’s con-
trolling expression, because Java does not allow an int to be compared to an enum constant.
To achieve the same functionality as the current program, we would have to use a variable
currentSum of type Sum as the switch’s controlling expression. Unfortunately, Java does
not provide an easy way to convert an int value to a particular enum constant. This could
be done with a separate switch statement. This would be cumbersome and would not im-
prove the program’s readability (thus defeating the purpose of using an enum).

6.11 Scope of Declarations
You’ve seen declarations of various Java entities, such as classes, methods, variables and pa-
rameters. Declarations introduce names that can be used to refer to such Java entities. The
scope of a declaration is the portion of the program that can refer to the declared entity by
its name. Such an entity is said to be “in scope” for that portion of the program. This sec-
tion introduces several important scope issues.

6.11 Scope of Declarations 223

The basic scope rules are as follows:

1. The scope of a parameter declaration is the body of the method in which the dec-
laration appears.

2. The scope of a local-variable declaration is from the point at which the declara-
tion appears to the end of that block.

3. The scope of a local-variable declaration that appears in the initialization section
of a for statement’s header is the body of the for statement and the other expres-
sions in the header.

4. A method or field’s scope is the entire body of the class. This enables a class’s in-
stance methods to use the fields and other methods of the class.

Any block may contain variable declarations. If a local variable or parameter in a
method has the same name as a field of the class, the field is hidden until the block termi-
nates execution—this is called shadowing. To access a shadowed field in a block:

• If the field is an instance variable, precede its name with the this keyword and a
dot (.), as in this.x.

• If the field is a static class variable, precede its name with the class’s name and
a dot (.), as in ClassName.x.

Figure 6.9 demonstrates scoping issues with fields and local variables. Line 7 declares
and initializes the field x to 1. This field is shadowed in any block (or method) that declares
a local variable named x. Method main (lines 11–23) declares a local variable x (line 13)
and initializes it to 5. This local variable’s value is output to show that the field x (whose
value is 1) is shadowed in main. The program declares two other methods—useLocalVa-
riable (lines 26–35) and useField (lines 38–45)—that each take no arguments and
return no results. Method main calls each method twice (lines 17–20). Method useLocal-
Variable declares local variable x (line 28). When useLocalVariable is first called (line
17), it creates local variable x and initializes it to 25 (line 28), outputs the value of x (lines
30–31), increments x (line 32) and outputs the value of x again (lines 33–34). When
uselLocalVariable is called a second time (line 19), it recreates local variable x and rein-
itializes it to 25, so the output of each useLocalVariable call is identical.

1 // Fig. 6.9: Scope.java
2 // Scope class demonstrates field and local variable scopes.
3
4 public class Scope
5 {
6
7
8
9 // method main creates and initializes local variable x

10 // and calls methods useLocalVariable and useField
11 public static void main(String[] args)
12 {
13
14

Fig. 6.9 | Scope class demonstrates field and local-variable scopes. (Part 1 of 2.)

// field that is accessible to all methods of this class
private static int x = 1;

int x = 5; // method's local variable x shadows field x

224 Chapter 6 Methods: A Deeper Look

Method useField does not declare any local variables. Therefore, when it refers to x,
field x (line 7) of the class is used. When method useField is first called (line 18), it out-
puts the value (1) of field x (lines 40–41), multiplies the field x by 10 (line 42) and outputs

15 System.out.printf("local x in main is %d%n", x);
16
17 useLocalVariable(); // useLocalVariable has local x
18 useField(); // useField uses class Scope's field x
19 useLocalVariable(); // useLocalVariable reinitializes local x
20 useField(); // class Scope's field x retains its value
21
22 System.out.printf("%nlocal x in main is %d%n", x);
23 }
24
25 // create and initialize local variable x during each call
26 public static void useLocalVariable()
27 {
28
29
30 System.out.printf(
31 "%nlocal x on entering method useLocalVariable is %d%n", x);
32
33 System.out.printf(
34 "local x before exiting method useLocalVariable is %d%n", x);
35 }
36
37 // modify class Scope's field x during each call
38 public static void useField()
39 {
40 System.out.printf(
41 "%nfield x on entering method useField is %d%n", x);
42
43 System.out.printf(
44 "field x before exiting method useField is %d%n", x);
45 }
46 } // end class Scope

local x in main is 5

local x on entering method useLocalVariable is 25
local x before exiting method useLocalVariable is 26

field x on entering method useField is 1
field x before exiting method useField is 10

local x on entering method useLocalVariable is 25
local x before exiting method useLocalVariable is 26

field x on entering method useField is 10
field x before exiting method useField is 100

local x in main is 5

Fig. 6.9 | Scope class demonstrates field and local-variable scopes. (Part 2 of 2.)

int x = 25; // initialized each time useLocalVariable is called

++x; // modifies this method's local variable x

x *= 10; // modifies class Scope's field x

6.12 Method Overloading 225

the value (10) of field x again (lines 43–44) before returning. The next time method use-
Field is called (line 20), the field has its modified value (10), so the method outputs 10,
then 100. Finally, in method main, the program outputs the value of local variable x again
(line 22) to show that none of the method calls modified main’s local variable x, because
the methods all referred to variables named x in other scopes.

Principle of Least Privilege
In a general sense, “things” should have the capabilities they need to get their job done,
but no more. An example is the scope of a variable. A variable should not be visible when
it’s not needed.

6.12 Method Overloading
Methods of the same name can be declared in the same class, as long as they have different
sets of parameters (determined by the number, types and order of the parameters)—this
is called method overloading. When an overloaded method is called, the compiler selects
the appropriate method by examining the number, types and order of the arguments in
the call. Method overloading is commonly used to create several methods with the same
name that perform the same or similar tasks, but on different types or different numbers of
arguments. For example, Math methods abs, min and max (summarized in Section 6.3) are
overloaded with four versions each:

1. One with two double parameters.

2. One with two float parameters.

3. One with two int parameters.

4. One with two long parameters.

Our next example demonstrates declaring and invoking overloaded methods. We demon-
strate overloaded constructors in Chapter 8.

Declaring Overloaded Methods
Class MethodOverload (Fig. 6.10) includes two overloaded versions of method square—
one that calculates the square of an int (and returns an int) and one that calculates the
square of a double (and returns a double). Although these methods have the same name
and similar parameter lists and bodies, think of them simply as different methods. It may
help to think of the method names as “square of int” and “square of double,” respectively.

Good Programming Practice 6.3
Declare variables as close to where they’re first used as possible.

1 // Fig. 6.10: MethodOverload.java
2 // Overloaded method declarations.
3
4 public class MethodOverload
5 {

Fig. 6.10 | Overloaded method declarations. (Part 1 of 2.)

226 Chapter 6 Methods: A Deeper Look

Line 9 invokes method square with the argument 7. Literal integer values are treated
as type int, so the method call in line 9 invokes the version of square at lines 14–19 that
specifies an int parameter. Similarly, line 10 invokes method square with the argument
7.5. Literal floating-point values are treated as type double, so the method call in line 10
invokes the version of square at lines 22–27 that specifies a double parameter. Each
method first outputs a line of text to prove that the proper method was called in each case.
The values in lines 10 and 24 are displayed with the format specifier %f. We did not specify
a precision in either case. By default, floating-point values are displayed with six digits of
precision if the precision is not specified in the format specifier.

Distinguishing Between Overloaded Methods
The compiler distinguishes overloaded methods by their signatures—a combination of the
method’s name and the number, types and order of its parameters, but not its return type. If
the compiler looked only at method names during compilation, the code in Fig. 6.10 would
be ambiguous—the compiler would not know how to distinguish between the two square
methods (lines 14–19 and 22–27). Internally, the compiler uses longer method names that
include the original method name, the types of each parameter and the exact order of the
parameters to determine whether the methods in a class are unique in that class.

6 // test overloaded square methods
7 public static void main(String[] args)
8 {
9 System.out.printf("Square of integer 7 is %d%n",);

10 System.out.printf("Square of double 7.5 is %f%n",);
11 }
12
13 // square method with int argument
14
15 {
16 System.out.printf("%nCalled square with int argument: %d%n",
17 intValue);
18 return intValue * intValue;
19 }
20
21 // square method with double argument
22
23 {
24 System.out.printf("%nCalled square with double argument: %f%n",
25 doubleValue);
26 return doubleValue * doubleValue;
27 }
28 } // end class MethodOverload

Called square with int argument: 7
Square of integer 7 is 49

Called square with double argument: 7.500000
Square of double 7.5 is 56.250000

Fig. 6.10 | Overloaded method declarations. (Part 2 of 2.)

square(7)
square(7.5)

public static int square(int intValue)

public static double square(double doubleValue)

6.13 (Optional) GUI and Graphics Case Study: Colors and Filled Shapes 227

For example, in Fig. 6.10, the compiler might (internally) use the logical name
“square of int” for the square method that specifies an int parameter and “square of
double” for the square method that specifies a double parameter (the actual names the
compiler uses are messier). If method1’s declaration begins as

then the compiler might use the logical name “method1 of int and float.” If the param-
eters are specified as

then the compiler might use the logical name “method1 of float and int.” The order of
the parameter types is important—the compiler considers the preceding two method1
headers to be distinct.

Return Types of Overloaded Methods
In discussing the logical names of methods used by the compiler, we did not mention the
return types of the methods. Method calls cannot be distinguished only by return type. If you
had overloaded methods that differed only by their return types and you called one of the
methods in a standalone statement as in:

the compiler would not be able to determine the version of the method to call, because the
return value is ignored. When two methods have the same signature and different return
types, the compiler issues an error message indicating that the method is already defined in
the class. Overloaded methods can have different return types if the methods have different
parameter lists. Also, overloaded methods need not have the same number of parameters.

6.13 (Optional) GUI and Graphics Case Study: Colors
and Filled Shapes
Although you can create many interesting designs with just lines and basic shapes, class
Graphics provides many more capabilities. The next two features we introduce are colors
and filled shapes. Adding color enriches the drawings a user sees on the computer screen.
Shapes can be filled with solid colors.

Colors displayed on computer screens are defined by their red, green, and blue com-
ponents (called RGB values) that have integer values from 0 to 255. The higher the value
of a component color, the richer that color’s shade will be. Java uses class Color (package
java.awt) to represent colors using their RGB values. For convenience, class Color con-
tains various predefined static Color objects—BLACK, BLUE, CYAN, DARK_GRAY, GRAY,
GREEN, LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, WHITE and YELLOW. Each can be accessed
via the class name and a dot (.) as in Color.RED. You can create custom colors by passing
the red-, green- and blue-component values to class Color’s constructor:

void method1(int a, float b)

void method1(float a, int b)

square(2);

Common Programming Error 6.8
Declaring overloaded methods with identical parameter lists is a compilation error re-
gardless of whether the return types are different.

public Color(int r, int g, int b)

228 Chapter 6 Methods: A Deeper Look

Graphics methods fillRect and fillOval draw filled rectangles and ovals, respec-
tively. These have the same parameters as drawRect and drawOval; the first two are the
coordinates for the upper-left corner of the shape, while the next two determine the width
and height. The example in Figs. 6.11–6.12 demonstrates colors and filled shapes by
drawing and displaying a yellow smiley face on the screen.

The import statements in lines 3–5 of Fig. 6.11 import classes Color, Graphics and
JPanel. Class DrawSmiley (lines 7–30) uses class Color to specify drawing colors, and uses
class Graphics to draw.

Class JPanel again provides the area in which we draw. Line 14 in method paint-
Component uses Graphics method setColor to set the current drawing color to
Color.YELLOW. Method setColor requires one argument, the Color to set as the drawing
color. In this case, we use the predefined object Color.YELLOW.

Line 15 draws a circle with diameter 200 to represent the face—when the width and
height arguments are identical, method fillOval draws a circle. Next, line 18 sets the
color to Color.Black, and lines 19–20 draw the eyes. Line 23 draws the mouth as an oval,
but this is not quite what we want.

1 // Fig. 6.11: DrawSmiley.java
2 // Drawing a smiley face using colors and filled shapes.
3
4 import java.awt.Graphics;
5 import javax.swing.JPanel;
6
7 public class DrawSmiley extends JPanel
8 {
9 public void paintComponent(Graphics g)

10 {
11 super.paintComponent(g);
12
13 // draw the face
14
15
16
17 // draw the eyes
18
19
20
21
22 // draw the mouth
23
24
25 // "touch up" the mouth into a smile
26
27
28
29 }
30 } // end class DrawSmiley

Fig. 6.11 | Drawing a smiley face using colors and filled shapes.

import java.awt.Color;

g.setColor(Color.YELLOW);
g.fillOval(10, 10, 200, 200);

g.setColor(Color.BLACK);
g.fillOval(55, 65, 30, 30);
g.fillOval(135, 65, 30, 30);

g.fillOval(50, 110, 120, 60);

g.setColor(Color.YELLOW);
g.fillRect(50, 110, 120, 30);
g.fillOval(50, 120, 120, 40);

6.13 (Optional) GUI and Graphics Case Study: Colors and Filled Shapes 229

To create a happy face, we’ll touch up the mouth. Line 26 sets the color to
Color.YELLOW, so any shapes we draw will blend in with the face. Line 27 draws a rectangle
that’s half the mouth’s height. This erases the top half of the mouth, leaving just the
bottom half. To create a better smile, line 28 draws another oval to slightly cover the upper
portion of the mouth. Class DrawSmileyTest (Fig. 6.12) creates and displays a JFrame
containing the drawing. When the JFrame is displayed, the system calls method paint-
Component to draw the smiley face.

GUI and Graphics Case Study Exercises
6.1 Using method fillOval, draw a bull’s-eye that alternates between two random colors, as in
Fig. 6.13. Use the constructor Color(int r, int g, int b) with random arguments to generate ran-
dom colors.

6.2 Create a program that draws 10 random filled shapes in random colors, positions and sizes
(Fig. 6.14). Method paintComponent should contain a loop that iterates 10 times. In each iteration,
the loop should determine whether to draw a filled rectangle or an oval, create a random color and
choose coordinates and dimensions at random. The coordinates should be chosen based on the pan-
el’s width and height. Lengths of sides should be limited to half the width or height of the window.

1 // Fig. 6.12: DrawSmileyTest.java
2 // Test application that displays a smiley face.
3 import javax.swing.JFrame;
4
5 public class DrawSmileyTest
6 {
7 public static void main(String[] args)
8 {
9 DrawSmiley panel = new DrawSmiley();

10 JFrame application = new JFrame();
11
12 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 application.add(panel);
14 application.setSize(230, 250);
15 application.setVisible(true);
16 }
17 } // end class DrawSmileyTest

Fig. 6.12 | Test application that displays a smiley face.

230 Chapter 6 Methods: A Deeper Look

6.14 Wrap-Up
In this chapter, you learned more about method declarations. You also learned the differ-
ence between instance methods and static methods and how to call static methods by
preceding the method name with the name of the class in which it appears and the dot (.)
separator. You learned how to use operators + and += to perform string concatenations.
We discussed how the method-call stack and stack frames keep track of the methods that
have been called and where each method must return to when it completes its task. We
also discussed Java’s promotion rules for converting implicitly between primitive types and
how to perform explicit conversions with cast operators. Next, you learned about some of
the commonly used packages in the Java API.

You saw how to declare named constants using both enum types and private static
final variables. You used class SecureRandom to generate random numbers for simula-
tions. You also learned about the scope of fields and local variables in a class. Finally, you
learned that multiple methods in one class can be overloaded by providing methods with
the same name and different signatures. Such methods can be used to perform the same
or similar tasks using different types or different numbers of parameters.

Fig. 6.13 | A bulls-eye with two alternating, random colors.

Fig. 6.14 | Randomly generated shapes.

 Summary 231

In Chapter 7, you’ll learn how to maintain lists and tables of data in arrays. You’ll see
a more elegant implementation of the application that rolls a die 6,000,000 times. We’ll
present two versions of a GradeBook case study that stores sets of student grades in a Grade-
Book object. You’ll also learn how to access an application’s command-line arguments that
are passed to method main when an application begins execution.

Summary
Section 6.1 Introduction
• Experience has shown that the best way to develop and maintain a large program is to construct

it from small, simple pieces, or modules. This technique is called divide and conquer (p. 201).

Section 6.2 Program Modules in Java
• Methods are declared within classes. Classes are typically grouped into packages so they can be

imported and reused.

• Methods allow you to modularize a program by separating its tasks into self-contained units. The
statements in a method are written only once and hidden from other methods.

• Using existing methods as building blocks to create new programs is a form of software reusabil-
ity (p. 202) that allows you to avoid repeating code within a program.

Section 6.3 static Methods, static Fields and Class Math
• A method call specifies the name of the method to call and provides the arguments that the called

method requires to perform its task. When the method call completes, the method returns either
a result, or simply control, to its caller.

• A class may contain static methods to perform common tasks that do not require an object of
the class. Any data a static method might require to perform its tasks can be sent to the method
as arguments in a method call. A static method is called by specifying the name of the class in
which the method is declared followed by a dot (.) and the method name, as in

ClassName.methodName(arguments)

• Class Math provides static methods for performing common mathematical calculations.

• The constant Math.PI (p. 204; 3.141592653589793) is the ratio of a circle’s circumference to its
diameter. The constant Math.E (p. 204; 2.718281828459045) is the base value for natural loga-
rithms (calculated with static Math method log).

• Math.PI and Math.E are declared with the modifiers public, final and static. Making them
public allows you to use these fields in your own classes. A field declared with keyword final
(p. 205) is constant—its value cannot be changed after it’s initialized. Both PI and E are declared
final because their values never change. Making these fields static allows them to be accessed
via the class name Math and a dot (.) separator, just like class Math’s methods.

• All the objects of a class share one copy of the class’s static fields. Together the class variables
(p. 204) and instance variables represent the fields of a class.

• When you execute the Java Virtual Machine (JVM) with the java command, the JVM loads the
class you specify and uses that class name to invoke method main. You can specify additional
command-line arguments (p. 205) that the JVM will pass to your application.

• You can place a main method in every class you declare—only the main method in the class you
use to execute the application will be called by the java command.

232 Chapter 6 Methods: A Deeper Look

Section 6.4 Declaring Methods with Multiple Parameters
• When a method is called, the program makes a copy of the method’s argument values and assigns

them to the method’s corresponding parameters. When program control returns to the point in
the program where the method was called, the method’s parameters are removed from memory.

• A method can return at most one value, but the returned value could be a reference to an object
that contains many values.

• Variables should be declared as fields of a class only if they’re required for use in more than one
method of the class or if the program should save their values between calls to the class’s methods.

• When a method has more than one parameter, the parameters are specified as a comma-separated
list. There must be one argument in the method call for each parameter in the method declara-
tion. Also, each argument must be consistent with the type of the corresponding parameter. If a
method does not accept arguments, the parameter list is empty.

• Strings can be concatenated (p. 208) using operator +, which places the characters of the right
operand at the end of those in the left operand.

• Every primitive value and object in Java can be represented as a String. When an object is concat-
enated with a String, the object is converted to a String, then the two Strings are concatenated.

• If a boolean is concatenated with a String, the word "true" or the word "false" is used to rep-
resent the boolean value.

• All objects in Java have a special method named toString that returns a String representation
of the object’s contents. When an object is concatenated with a String, the JVM implicitly calls
the object’s toString method to obtain the string representation of the object.

• You can break large String literals into several smaller Strings and place them on multiple lines
of code for readability, then reassemble the Strings using concatenation.

Section 6.5 Notes on Declaring and Using Methods
• There are three ways to call a method—using a method name by itself to call another method of

the same class; using a variable that contains a reference to an object, followed by a dot (.) and
the method name to call a method of the referenced object; and using the class name and a dot
(.) to call a static method of a class.

• There are three ways to return control to a statement that calls a method. If the method does not
return a result, control returns when the program flow reaches the method-ending right brace or
when the statement

return;

is executed. If the method returns a result, the statement

return expression;

evaluates the expression, then immediately returns the resulting value to the caller.

Section 6.6 Method-Call Stack and Stack Frames
• Stacks (p. 209) are known as last-in, first-out (LIFO) data structures—the last item pushed (in-

serted) onto the stack is the first item popped (removed) from the stack.

• A called method must know how to return to its caller, so the return address of the calling meth-
od is pushed onto the method-call stack when the method is called. If a series of method calls
occurs, the successive return addresses are pushed onto the stack in last-in, first-out order so that
the last method to execute will be the first to return to its caller.

• The method-call stack (p. 210) contains the memory for the local variables used in each invoca-
tion of a method during a program’s execution. This data is known as the method call’s stack

 Summary 233

frame or activation record. When a method call is made, the stack frame for that method call is
pushed onto the method-call stack. When the method returns to its caller, its stack frame call is
popped off the stack and the local variables are no longer known to the program.

• If there are more method calls than can have their stack frames stored on the method-call stack,
an error known as a stack overflow (p. 210) occurs. The application will compile correctly, but
its execution causes a stack overflow.

Section 6.7 Argument Promotion and Casting
• Argument promotion (p. 210) converts an argument’s value to the type that the method expects

to receive in its corresponding parameter.

• Promotion rules (p. 210) apply to expressions containing values of two or more primitive types
and to primitive-type values passed as arguments to methods. Each value is promoted to the
“highest” type in the expression. In cases where information may be lost due to conversion, the
Java compiler requires you to use a cast operator to explicitly force the conversion to occur.

Section 6.9 Case Study: Secure Random-Number Generation
• Objects of class SecureRandom (package java.security; p. 213) can produce nondeterministic

random values.

• SecureRandom method nextInt (p. 214) generates a random int value.

• Class SecureRandom provides another version of method nextInt that receives an int argument
and returns a value from 0 up to, but not including, the argument’s value.

• Random numbers in a range (p. 214) can be generated with

int number = shiftingValue + randomNumbers.nextInt(scalingFactor);

where shiftingValue specifies the first number in the desired range of consecutive integers, and
scalingFactor specifies how many numbers are in the range.

• Random numbers can be chosen from nonconsecutive integer ranges, as in

int number = shiftingValue +
 differenceBetweenValues * randomNumbers.nextInt(scalingFactor);

where shiftingValue specifies the first number in the range of values, differenceBetweenValues rep-
resents the difference between consecutive numbers in the sequence and scalingFactor specifies
how many numbers are in the range.

Section 6.10 Case Study: A Game of Chance; Introducing enum Types
• An enum type (p. 221) is introduced by the keyword enum and a type name. As with any class,

braces ({ and }) delimit the body of an enum declaration. Inside the braces is a comma-separated
list of enum constants, each representing a unique value. The identifiers in an enum must be
unique. Variables of an enum type can be assigned only constants of that enum type.

• Constants can also be declared as private static final variables. Such constants are declared by
convention with all capital letters to make them stand out in the program.

Section 6.11 Scope of Declarations
• Scope (p. 222) is the portion of the program in which an entity, such as a variable or a method,

can be referred to by its name. Such an entity is said to be “in scope” for that portion of the pro-
gram.

• The scope of a parameter declaration is the body of the method in which the declaration appears.

• The scope of a local-variable declaration is from the point at which the declaration appears to the
end of that block.

234 Chapter 6 Methods: A Deeper Look

• The scope of a local-variable declaration that appears in the initialization section of a for state-
ment’s header is the body of the for statement and the other expressions in the header.

• The scope of a method or field of a class is the entire body of the class. This enables a class’s meth-
ods to use simple names to call the class’s other methods and to access the class’s fields.

• Any block may contain variable declarations. If a local variable or parameter in a method has the
same name as a field, the field is shadowed (p. 223) until the block terminates execution.

Section 6.12 Method Overloading
• Java allows overloaded methods (p. 225) in a class, as long as the methods have different sets of

parameters (determined by the number, order and types of the parameters).

• Overloaded methods are distinguished by their signatures (p. 226)—combinations of the meth-
ods’ names and the number, types and order of their parameters, but not their return types.

Self-Review Exercises
6.1 Fill in the blanks in each of the following statements:

a) A method is invoked with a(n) .
b) A variable known only within the method in which it’s declared is called a(n) .
c) The statement in a called method can be used to pass the value of an expres-

sion back to the calling method.
d) The keyword indicates that a method does not return a value.
e) Data can be added or removed only from the of a stack.
f) Stacks are known as data structures; the last item pushed (inserted) onto the

stack is the first item popped (removed) from the stack.
g) The three ways to return control from a called method to a caller are ,

 and .
h) An object of class produces truly random numbers.
i) The method-call stack contains the memory for local variables on each invocation of a

method during a program’s execution. This data, stored as a portion of the method-call
stack, is known as the or of the method call.

j) If there are more method calls than can be stored on the method-call stack, an error
known as a(n) occurs.

k) The of a declaration is the portion of a program that can refer to the entity in
the declaration by name.

l) It’s possible to have several methods with the same name that each operate on different
types or numbers of arguments. This feature is called method .

6.2 For the class Craps in Fig. 6.8, state the scope of each of the following entities:
a) the variable randomNumbers.
b) the variable die1.
c) the method rollDice.
d) the method main.
e) the variable sumOfDice.

6.3 Write an application that tests whether the examples of the Math class method calls shown
in Fig. 6.2 actually produce the indicated results.

6.4 Give the method header for each of the following methods:
a) Method hypotenuse, which takes two double-precision, floating-point arguments

side1 and side2 and returns a double-precision, floating-point result.
b) Method smallest, which takes three integers x, y and z and returns an integer.

 Answers to Self-Review Exercises 235

c) Method instructions, which does not take any arguments and does not return a value.
[Note: Such methods are commonly used to display instructions to a user.]

d) Method intToFloat, which takes integer argument number and returns a float.

6.5 Find the error in each of the following program segments. Explain how to correct the error.
a) void g()

{
 System.out.println("Inside method g");

 void h()
 {
 System.out.println("Inside method h");
 }
}

b) int sum(int x, int y)
{
 int result;
 result = x + y;
}

c) void f(float a);
{
 float a;
 System.out.println(a);
}

d) void product()
{
 int a = 6, b = 5, c = 4, result;
 result = a * b * c;
 System.out.printf("Result is %d%n", result);
 return result;
}

6.6 Declare method sphereVolume to calculate and return the volume of the sphere. Use the
following statement to calculate the volume:

double volume = (4.0 / 3.0) * Math.PI * Math.pow(radius, 3)

Write a Java application that prompts the user for the double radius of a sphere, calls sphereVolume
to calculate the volume and displays the result.

Answers to Self-Review Exercises
6.1 a) method call. b) local variable. c) return. d) void. e) top. f) last-in, first-out (LIFO).
g) return; or return expression; or encountering the closing right brace of a method. h) SecureRan-
dom. i) stack frame, activation record. j) stack overflow. k) scope. l) method overloading.

6.2 a) class body. b) block that defines method rollDice’s body. c) class body. d) class body.
e) block that defines method main’s body.

6.3 The following solution demonstrates the Math class methods in Fig. 6.2:

1 // Exercise 6.3: MathTest.java
2 // Testing the Math class methods.
3 public class MathTest
4 {
5 public static void main(String[] args)
6 {

236 Chapter 6 Methods: A Deeper Look

6.4 a) double hypotenuse(double side1, double side2)
b) int smallest(int x, int y, int z)
c) void instructions()
d) float intToFloat(int number)

6.5 a) Error: Method h is declared within method g.
Correction: Move the declaration of h outside the declaration of g.

b) Error: The method is supposed to return an integer, but does not.
Correction: Delete the variable result, and place the statement
 return x + y;
in the method, or add the following statement at the end of the method body:
 return result;

7 System.out.printf("Math.abs(23.7) = %f%n", Math.abs(23.7));
8 System.out.printf("Math.abs(0.0) = %f%n", Math.abs(0.0));
9 System.out.printf("Math.abs(-23.7) = %f%n", Math.abs(-23.7));

10 System.out.printf("Math.ceil(9.2) = %f%n", Math.ceil(9.2));
11 System.out.printf("Math.ceil(-9.8) = %f%n", Math.ceil(-9.8));
12 System.out.printf("Math.cos(0.0) = %f%n", Math.cos(0.0));
13 System.out.printf("Math.exp(1.0) = %f%n", Math.exp(1.0));
14 System.out.printf("Math.exp(2.0) = %f%n", Math.exp(2.0));
15 System.out.printf("Math.floor(9.2) = %f%n", Math.floor(9.2));
16 System.out.printf("Math.floor(-9.8) = %f%n", Math.floor(-9.8));
17 System.out.printf("Math.log(Math.E) = %f%n", Math.log(Math.E));
18 System.out.printf("Math.log(Math.E * Math.E) = %f%n",
19 Math.log(Math.E * Math.E));
20 System.out.printf("Math.max(2.3, 12.7) = %f%n", Math.max(2.3, 12.7));
21 System.out.printf("Math.max(-2.3, -12.7) = %f%n",
22 Math.max(-2.3, -12.7));
23 System.out.printf("Math.min(2.3, 12.7) = %f%n", Math.min(2.3, 12.7));
24 System.out.printf("Math.min(-2.3, -12.7) = %f%n",
25 Math.min(-2.3, -12.7));
26 System.out.printf("Math.pow(2.0, 7.0) = %f%n", Math.pow(2.0, 7.0));
27 System.out.printf("Math.pow(9.0, 0.5) = %f%n", Math.pow(9.0, 0.5));
28 System.out.printf("Math.sin(0.0) = %f%n", Math.sin(0.0));
29 System.out.printf("Math.sqrt(900.0) = %f%n", Math.sqrt(900.0));
30 System.out.printf("Math.tan(0.0) = %f%n", Math.tan(0.0));
31 } // end main
32 } // end class MathTest

Math.abs(23.7) = 23.700000
Math.abs(0.0) = 0.000000
Math.abs(-23.7) = 23.700000
Math.ceil(9.2) = 10.000000
Math.ceil(-9.8) = -9.000000
Math.cos(0.0) = 1.000000
Math.exp(1.0) = 2.718282
Math.exp(2.0) = 7.389056
Math.floor(9.2) = 9.000000
Math.floor(-9.8) = -10.000000
Math.log(Math.E) = 1.000000
Math.log(Math.E * Math.E) = 2.000000
Math.max(2.3, 12.7) = 12.700000
Math.max(-2.3, -12.7) = -2.300000
Math.min(2.3, 12.7) = 2.300000
Math.min(-2.3, -12.7) = -12.700000
Math.pow(2.0, 7.0) = 128.000000
Math.pow(9.0, 0.5) = 3.000000
Math.sin(0.0) = 0.000000
Math.sqrt(900.0) = 30.000000
Math.tan(0.0) = 0.000000

 Exercises 237

c) Error: The semicolon after the right parenthesis of the parameter list is incorrect, and
the parameter a should not be redeclared in the method.
Correction: Delete the semicolon after the right parenthesis of the parameter list, and
delete the declaration float a;.

d) Error: The method returns a value when it’s not supposed to.
Correction: Change the return type from void to int.

6.6 The following solution calculates the volume of a sphere, using the radius entered by the user:

Exercises
6.7 What is the value of x after each of the following statements is executed?

a) x = Math.abs(7.5);
b) x = Math.floor(7.5);
c) x = Math.abs(0.0);
d) x = Math.ceil(0.0);
e) x = Math.abs(-6.4);
f) x = Math.ceil(-6.4);
g) x = Math.ceil(-Math.abs(-8 + Math.floor(-5.5)));

6.8 (Parking Charges) A parking garage charges a $2.00 minimum fee to park for up to three
hours. The garage charges an additional $0.50 per hour for each hour or part thereof in excess of three
hours. The maximum charge for any given 24-hour period is $10.00. Assume that no car parks for
longer than 24 hours at a time. Write an application that calculates and displays the parking charges
for each customer who parked in the garage yesterday. You should enter the hours parked for each
customer. The program should display the charge for the current customer and should calculate and
display the running total of yesterday’s receipts. It should use the method calculateCharges to de-
termine the charge for each customer.

1 // Exercise 6.6: Sphere.java
2 // Calculate the volume of a sphere.
3 import java.util.Scanner;
4
5 public class Sphere
6 {
7 // obtain radius from user and display volume of sphere
8 public static void main(String[] args)
9 {

10 Scanner input = new Scanner(System.in);
11
12 System.out.print("Enter radius of sphere: ");
13 double radius = input.nextDouble();
14
15 System.out.printf("Volume is %f%n", sphereVolume(radius));
16 } // end method determineSphereVolume
17
18 // calculate and return sphere volume
19 public static double sphereVolume(double radius)
20 {
21 double volume = (4.0 / 3.0) * Math.PI * Math.pow(radius, 3);
22 return volume;
23 } // end method sphereVolume
24 } // end class Sphere

Enter radius of sphere: 4
Volume is 268.082573

238 Chapter 6 Methods: A Deeper Look

6.9 (Rounding Numbers) Math.floor can be used to round values to the nearest integer—e.g.,

y = Math.floor(x + 0.5);

will round the number x to the nearest integer and assign the result to y. Write an application that
reads double values and uses the preceding statement to round each of the numbers to the nearest
integer. For each number processed, display both the original number and the rounded number.

6.10 (Rounding Numbers) To round numbers to specific decimal places, use a statement like

y = Math.floor(x * 10 + 0.5) / 10;

which rounds x to the tenths position (i.e., the first position to the right of the decimal point), or

y = Math.floor(x * 100 + 0.5) / 100;

which rounds x to the hundredths position (i.e., the second position to the right of the decimal
point). Write an application that defines four methods for rounding a number x in various ways:

a) roundToInteger(number)
b) roundToTenths(number)
c) roundToHundredths(number)
d) roundToThousandths(number)

For each value read, your program should display the original value, the number rounded to the
nearest integer, the number rounded to the nearest tenth, the number rounded to the nearest hun-
dredth and the number rounded to the nearest thousandth.

6.11 Answer each of the following questions:
a) What does it mean to choose numbers “at random”?
b) Why is the nextInt method of class SecureRandom useful for simulating games of

chance?
c) Why is it often necessary to scale or shift the values produced by a SecureRandom object?
d) Why is computerized simulation of real-world situations a useful technique?

6.12 Write statements that assign random integers to the variable n in the following ranges:
a) 1 ≤ n ≤ 2.
b) 1 ≤ n ≤ 100.
c) 0 ≤ n ≤ 9.
d) 1000 ≤ n ≤ 1112.
e) –1 ≤ n ≤ 1.
f) –3 ≤ n ≤ 11.

6.13 Write statements that will display a random number from each of the following sets:
a) 2, 4, 6, 8, 10.
b) 3, 5, 7, 9, 11.
c) 6, 10, 14, 18, 22.

6.14 (Exponentiation) Write a method integerPower(base, exponent) that returns the value of

base exponent

For example, integerPower(3, 4) calculates 34 (or 3 * 3 * 3 * 3). Assume that exponent is a posi-
tive, nonzero integer and that base is an integer. Use a for or while statement to control the calcu-
lation. Do not use any Math class methods. Incorporate this method into an application that reads
integer values for base and exponent and performs the calculation with the integerPower method.

6.15 (Hypotenuse Calculations) Define a method hypotenuse that calculates the hypotenuse of
a right triangle when the lengths of the other two sides are given. The method should take two ar-
guments of type double and return the hypotenuse as a double. Incorporate this method into an

 Exercises 239

application that reads values for side1 and side2 and performs the calculation with the hypotenuse
method. Use Math methods pow and sqrt to determine the length of the hypotenuse for each of the
triangles in Fig. 6.15. [Note: Class Math also provides method hypot to perform this calculation.]

6.16 (Multiples) Write a method isMultiple that determines, for a pair of integers, whether the
second integer is a multiple of the first. The method should take two integer arguments and return
true if the second is a multiple of the first and false otherwise. [Hint: Use the remainder operator.]
Incorporate this method into an application that inputs a series of pairs of integers (one pair at a
time) and determines whether the second value in each pair is a multiple of the first.

6.17 (Even or Odd) Write a method isEven that uses the remainder operator (%) to determine
whether an integer is even. The method should take an integer argument and return true if the in-
teger is even and false otherwise. Incorporate this method into an application that inputs a se-
quence of integers (one at a time) and determines whether each is even or odd.

6.18 (Displaying a Square of Asterisks) Write a method squareOfAsterisks that displays a solid
square (the same number of rows and columns) of asterisks whose side is specified in integer param-
eter side. For example, if side is 4, the method should display

Incorporate this method into an application that reads an integer value for side from the user and
outputs the asterisks with the squareOfAsterisks method.

6.19 (Displaying a Square of Any Character) Modify the method created in Exercise 6.18 to re-
ceive a second parameter of type char called fillCharacter. Form the square using the char pro-
vided as an argument. Thus, if side is 5 and fillCharacter is #, the method should display

#####
#####
#####
#####
#####

Use the following statement (in which input is a Scanner object) to read a character from the user
at the keyboard:

char fill = input.next().charAt(0);

6.20 (Circle Area) Write an application that prompts the user for the radius of a circle and uses
a method called circleArea to calculate the area of the circle.

6.21 (Separating Digits) Write methods that accomplish each of the following tasks:
a) Calculate the integer part of the quotient when integer a is divided by integer b.
b) Calculate the integer remainder when integer a is divided by integer b.

Triangle Side 1 Side 2

1 3.0 4.0

2 5.0 12.0

3 8.0 15.0

Fig. 6.15 | Values for the sides of triangles in Exercise 6.15.

240 Chapter 6 Methods: A Deeper Look

c) Use the methods developed in parts (a) and (b) to write a method displayDigits that
receives an integer between 1 and 99999 and displays it as a sequence of digits, separating
each pair of digits by two spaces. For example, the integer 4562 should appear as

4 5 6 2

Incorporate the methods into an application that inputs an integer and calls display-
Digits by passing the method the integer entered. Display the results.

6.22 (Temperature Conversions) Implement the following integer methods:
a) Method celsius returns the Celsius equivalent of a Fahrenheit temperature, using the

calculation

celsius = 5.0 / 9.0 * (fahrenheit - 32);

b) Method fahrenheit returns the Fahrenheit equivalent of a Celsius temperature, using
the calculation

fahrenheit = 9.0 / 5.0 * celsius + 32;

c) Use the methods from parts (a) and (b) to write an application that enables the user ei-
ther to enter a Fahrenheit temperature and display the Celsius equivalent or to enter a
Celsius temperature and display the Fahrenheit equivalent.

6.23 (Find the Minimum) Write a method minimum3 that returns the smallest of three floating-
point numbers. Use the Math.min method to implement minimum3. Incorporate the method into an
application that reads three values from the user, determines the smallest value and displays the re-
sult.

6.24 (Perfect Numbers) An integer number is said to be a perfect number if its factors, including
1 (but not the number itself), sum to the number. For example, 6 is a perfect number, because 6 =
1 + 2 + 3. Write a method isPerfect that determines whether parameter number is a perfect number.
Use this method in an application that displays all the perfect numbers between 1 and 1000. Display
the factors of each perfect number to confirm that the number is indeed perfect. Challenge the com-
puting power of your computer by testing numbers much larger than 1000. Display the results.

6.25 (Prime Numbers) A positive integer is prime if it’s divisible by only 1 and itself. For example,
2, 3, 5 and 7 are prime, but 4, 6, 8 and 9 are not. The number 1, by definition, is not prime.

a) Write a method that determines whether a number is prime.
b) Use this method in an application that determines and displays all the prime numbers

less than 10,000. How many numbers up to 10,000 do you have to test to ensure that
you’ve found all the primes?

c) Initially, you might think that n/2 is the upper limit for which you must test to see
whether a number n is prime, but you need only go as high as the square root of n. Re-
write the program, and run it both ways.

6.26 (Reversing Digits) Write a method that takes an integer value and returns the number with
its digits reversed. For example, given the number 7631, the method should return 1367. Incorpo-
rate the method into an application that reads a value from the user and displays the result.

6.27 (Greatest Common Divisor) The greatest common divisor (GCD) of two integers is the largest
integer that evenly divides each of the two numbers. Write a method gcd that returns the greatest
common divisor of two integers. [Hint: You might want to use Euclid’s algorithm. You can find
information about it at en.wikipedia.org/wiki/Euclidean_algorithm.] Incorporate the method
into an application that reads two values from the user and displays the result.

6.28 Write a method qualityPoints that inputs a student’s average and returns 4 if it’s 90–100,
3 if 80–89, 2 if 70–79, 1 if 60–69 and 0 if lower than 60. Incorporate the method into an application
that reads a value from the user and displays the result.

 Making a Difference 241

6.29 (Coin Tossing) Write an application that simulates coin tossing. Let the program toss a coin
each time the user chooses the “Toss Coin” menu option. Count the number of times each side of
the coin appears. Display the results. The program should call a separate method flip that takes no
arguments and returns a value from a Coin enum (HEADS and TAILS). [Note: If the program realistically
simulates coin tossing, each side of the coin should appear approximately half the time.]

6.30 (Guess the Number) Write an application that plays “guess the number” as follows: Your
program chooses the number to be guessed by selecting a random integer in the range 1 to 1000.
The application displays the prompt Guess a number between 1 and 1000. The player inputs a first
guess. If the player's guess is incorrect, your program should display Too high. Try again. or Too
low. Try again. to help the player “zero in” on the correct answer. The program should prompt the
user for the next guess. When the user enters the correct answer, display Congratulations. You
guessed the number!, and allow the user to choose whether to play again. [Note: The guessing tech-
nique employed in this problem is similar to a binary search, which is discussed in Chapter 19,
Searching, Sorting and Big O.]

6.31 (Guess the Number Modification) Modify the program of Exercise 6.30 to count the num-
ber of guesses the player makes. If the number is 10 or fewer, display Either you know the secret
or you got lucky! If the player guesses the number in 10 tries, display Aha! You know the secret!
If the player makes more than 10 guesses, display You should be able to do better! Why should it
take no more than 10 guesses? Well, with each “good guess,” the player should be able to eliminate
half of the numbers, then half of the remaining numbers, and so on.

6.32 (Distance Between Points) Write method distance to calculate the distance between two
points (x1, y1) and (x2, y2). All numbers and return values should be of type double. Incorporate
this method into an application that enables the user to enter the coordinates of the points.

6.33 (Craps Game Modification) Modify the craps program of Fig. 6.8 to allow wagering. Ini-
tialize variable bankBalance to 1000 dollars. Prompt the player to enter a wager. Check that wager
is less than or equal to bankBalance, and if it’s not, have the user reenter wager until a valid wager
is entered. Then, run one game of craps. If the player wins, increase bankBalance by wager and dis-
play the new bankBalance. If the player loses, decrease bankBalance by wager, display the new bank-
Balance, check whether bankBalance has become zero and, if so, display the message "Sorry. You
busted!" As the game progresses, display various messages to create some “chatter,” such as "Oh,
you're going for broke, huh?" or "Aw c'mon, take a chance!" or "You're up big. Now's the time
to cash in your chips!". Implement the “chatter” as a separate method that randomly chooses the
string to display.

6.34 (Table of Binary, Octal and Hexadecimal Numbers) Write an application that displays a
table of the binary, octal and hexadecimal equivalents of the decimal numbers in the range 1
through 256. If you aren’t familiar with these number systems, read online Appendix J first.

Making a Difference
As computer costs decline, it becomes feasible for every student, regardless of economic circum-
stance, to have a computer and use it in school. This creates exciting possibilities for improving the
educational experience of all students worldwide, as suggested by the next five exercises. [Note:
Check out initiatives such as the One Laptop Per Child Project (www.laptop.org). Also, research
“green” laptops—what are some key “going green” characteristics of these devices? Look into the
Electronic Product Environmental Assessment Tool (www.epeat.net), which can help you assess
the “greenness” of desktops, notebooks and monitors to help you decide which products to pur-
chase.]

6.35 (Computer-Assisted Instruction) The use of computers in education is referred to as com-
puter-assisted instruction (CAI). Write a program that will help an elementary school student learn

www.laptop.org
www.epeat.net

242 Chapter 6 Methods: A Deeper Look

multiplication. Use a SecureRandom object to produce two positive one-digit integers. The program
should then prompt the user with a question, such as

How much is 6 times 7?

The student then inputs the answer. Next, the program checks the student’s answer. If it’s correct,
display the message "Very good!" and ask another multiplication question. If the answer is wrong,
display the message "No. Please try again." and let the student try the same question repeatedly
until the student finally gets it right. A separate method should be used to generate each new ques-
tion. This method should be called once when the application begins execution and each time the
user answers the question correctly.

6.36 (Computer-Assisted Instruction: Reducing Student Fatigue) One problem in CAI environ-
ments is student fatigue. This can be reduced by varying the computer’s responses to hold the stu-
dent’s attention. Modify the program of Exercise 6.35 so that various comments are displayed for
each answer as follows:

Possible responses to a correct answer:

Very good!
Excellent!
Nice work!
Keep up the good work!

Possible responses to an incorrect answer:

No. Please try again.
Wrong. Try once more.
Don't give up!
No. Keep trying.

Use random-number generation to choose a number from 1 to 4 that will be used to select
one of the four appropriate responses to each correct or incorrect answer. Use a switch statement to
issue the responses.

6.37 (Computer-Assisted Instruction: Monitoring Student Performance) More sophisticated
computer-assisted instruction systems monitor the student’s performance over a period of time. The
decision to begin a new topic is often based on the student’s success with previous topics. Modify
the program of Exercise 6.36 to count the number of correct and incorrect responses typed by the
student. After the student types 10 answers, your program should calculate the percentage that are
correct. If the percentage is lower than 75%, display "Please ask your teacher for extra help.",
then reset the program so another student can try it. If the percentage is 75% or higher, display
"Congratulations, you are ready to go to the next level!", then reset the program so another
student can try it.

6.38 (Computer-Assisted Instruction: Difficulty Levels) Exercises 6.35–6.37 developed a com-
puter-assisted instruction program to help teach an elementary school student multiplication. Mod-
ify the program to allow the user to enter a difficulty level. At a difficulty level of 1, the program
should use only single-digit numbers in the problems; at a difficulty level of 2, numbers as large as
two digits, and so on.

6.39 (Computer-Assisted Instruction: Varying the Types of Problems) Modify the program of
Exercise 6.38 to allow the user to pick a type of arithmetic problem to study. An option of 1 means
addition problems only, 2 means subtraction problems only, 3 means multiplication problems only,
4 means division problems only and 5 means a random mixture of all these types.

7Arrays and ArrayLists

Begin at the beginning, … and
go on till you come to the end:
then stop.
—Lewis Carroll

To go beyond is as wrong as to
fall short.
—Confucius
O b j e c t i v e s
In this chapter you’ll:

■ Learn what arrays are.
■ Use arrays to store data in

and retrieve data from lists
and tables of values.

■ Declare arrays, initialize
arrays and refer to individual
elements of arrays.

■ Iterate through arrays with
the enhanced for statement.

■ Pass arrays to methods.
■ Declare and manipulate

multidimensional arrays.
■ Use variable-length argument

lists.
■ Read command-line

arguments into a program.
■ Build an object-oriented

instructor gradebook class.
■ Perform common array

manipulations with the
methods of class Arrays.

■ Use class ArrayList to
manipulate a dynamically
resizable arraylike data
structure.

244 Chapter 7 Arrays and ArrayLists

7.1 Introduction
This chapter introduces data structures—collections of related data items. Array objects
are data structures consisting of related data items of the same type. Arrays make it conve-
nient to process related groups of values. Arrays remain the same length once they’re cre-
ated. We study data structures in depth in Chapters 16–21.

After discussing how arrays are declared, created and initialized, we present practical
examples that demonstrate common array manipulations. We introduce Java’s exception-
handling mechanism and use it to allow a program to continue executing when it attempts
to access an array element that does not exist. We also present a case study that examines
how arrays can help simulate the shuffling and dealing of playing cards in a card-game
application. We introduce Java’s enhanced for statement, which allows a program to access
the data in an array more easily than does the counter-controlled for statement presented
in Section 5.3. We build two versions of an instructor GradeBook case study that use arrays
to maintain sets of student grades in memory and analyze student grades. We show how to
use variable-length argument lists to create methods that can be called with varying num-
bers of arguments, and we demonstrate how to process command-line arguments in method
main. Next, we present some common array manipulations with static methods of class
Arrays from the java.util package.

Although commonly used, arrays have limited capabilities. For instance, you must
specify an array’s size, and if at execution time you wish to modify it, you must do so by
creating a new array. At the end of this chapter, we introduce one of Java’s prebuilt data

7.1 Introduction
7.2 Arrays
7.3 Declaring and Creating Arrays
7.4 Examples Using Arrays

7.4.1 Creating and Initializing an Array
7.4.2 Using an Array Initializer
7.4.3 Calculating the Values to Store in an

Array
7.4.4 Summing the Elements of an Array
7.4.5 Using Bar Charts to Display Array

Data Graphically
7.4.6 Using the Elements of an Array as

Counters
7.4.7 Using Arrays to Analyze Survey Results

7.5 Exception Handling: Processing the
Incorrect Response

7.5.1 The try Statement
7.5.2 Executing the catch Block
7.5.3 toString Method of the Exception

Parameter
7.6 Case Study: Card Shuffling and

Dealing Simulation

7.7 Enhanced for Statement
7.8 Passing Arrays to Methods
7.9 Pass-By-Value vs. Pass-By-Reference

7.10 Case Study: Class GradeBook Using
an Array to Store Grades

7.11 Multidimensional Arrays
7.12 Case Study: Class GradeBook Using

a Two-Dimensional Array
7.13 Variable-Length Argument Lists
7.14 Using Command-Line Arguments
7.15 Class Arrays
7.16 Introduction to Collections and Class

ArrayList
7.17 (Optional) GUI and Graphics Case

Study: Drawing Arcs
7.18 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Special Section: Building Your Own Computer | Making a Difference

7.2 Arrays 245

structures from the Java API’s collection classes. These offer greater capabilities than tradi-
tional arrays. They’re reusable, reliable, powerful and efficient. We focus on the ArrayList
collection. ArrayLists are similar to arrays but provide additional functionality, such as
dynamic resizing as necessary to accommodate more or fewer elements.

Java SE 8
After reading Chapter 17, Java SE 8 Lambdas and Streams, you’ll be able to reimplement
many of Chapter 7’s examples in a more concise and elegant manner, and in a way that
makes them easier to parallelize to improve performance on today’s multi-core systems.

7.2 Arrays
An array is a group of variables (called elements or components) containing values that all
have the same type. Arrays are objects, so they’re considered reference types. As you’ll soon
see, what we typically think of as an array is actually a reference to an array object in mem-
ory. The elements of an array can be either primitive types or reference types (including arrays,
as we’ll see in Section 7.11). To refer to a particular element in an array, we specify the
name of the reference to the array and the position number of the element in the array. The
position number of the element is called the element’s index or subscript.

Logical Array Representation
Figure 7.1 shows a logical representation of an integer array called c. This array contains
12 elements. A program refers to any one of these elements with an array-access expression
that includes the name of the array followed by the index of the particular element in
square brackets ([]). The first element in every array has index zero and is sometimes
called the zeroth element. Thus, the elements of array c are c[0], c[1], c[2] and so on.
The highest index in array c is 11, which is 1 less than 12—the number of elements in the
array. Array names follow the same conventions as other variable names.

Fig. 7.1 | A 12-element array.

-45

62

-3

1

6453

78

0

-89

1543

72

0

6

c[0]
Name of array (c)

Index (or subscript) of the

c[7]

c[8]

c[9]

c[10]

c[11]

c[6]

c[5]

c[4]

c[3]

c[2]

c[1]

element in array c

246 Chapter 7 Arrays and ArrayLists

An index must be a nonnegative integer. A program can use an expression as an index.
For example, if we assume that variable a is 5 and variable b is 6, then the statement

adds 2 to array element c[11]. An indexed array name is an array-access expression, which
can be used on the left side of an assignment to place a new value into an array element.

Let’s examine array c in Fig. 7.1 more closely. The name of the array is c. Every array
object knows its own length and stores it in a length instance variable. The expression
c.length returns array c’s length. Even though the length instance variable of an array is
public, it cannot be changed because it’s a final variable. This array’s 12 elements are
referred to as c[0], c[1], c[2], …, c[11]. The value of c[0] is -45, the value of c[1] is
6, the value of c[2] is 0, the value of c[7] is 62 and the value of c[11] is 78. To calculate
the sum of the values contained in the first three elements of array c and store the result
in variable sum, we would write

To divide the value of c[6] by 2 and assign the result to the variable x, we would write

7.3 Declaring and Creating Arrays
Array objects occupy space in memory. Like other objects, arrays are created with keyword
new. To create an array object, you specify the type of the array elements and the number
of elements as part of an array-creation expression that uses keyword new. Such an expres-
sion returns a reference that can be stored in an array variable. The following declaration
and array-creation expression create an array object containing 12 int elements and store
the array’s reference in the array variable named c:

This expression can be used to create the array in Fig. 7.1. When an array is created, each
of its elements receives a default value—zero for the numeric primitive-type elements,
false for boolean elements and null for references. As you’ll soon see, you can provide
nondefault element values when you create an array.

Creating the array in Fig. 7.1 can also be performed in two steps as follows:

In the declaration, the square brackets following the type indicate that c is a variable that
will refer to an array (i.e., the variable will store an array reference). In the assignment state-
ment, the array variable c receives the reference to a new array of 12 int elements.

c[a + b] += 2;

Common Programming Error 7.1
An index must be an int value or a value of a type that can be promoted to int—namely,
byte, short or char, but not long; otherwise, a compilation error occurs.

sum = c[0] + c[1] + c[2];

x = c[6] / 2;

int[] c = new int[12];

int[] c; // declare the array variable
c = new int[12]; // create the array; assign to array variable

Common Programming Error 7.2
In an array declaration, specifying the number of elements in the square brackets of the
declaration (e.g., int[12] c;) is a syntax error.

7.4 Examples Using Arrays 247

A program can create several arrays in a single declaration. The following declaration
reserves 100 elements for b and 27 elements for x:

When the type of the array and the square brackets are combined at the beginning of the
declaration, all the identifiers in the declaration are array variables. In this case, variables b
and x refer to String arrays. For readability, we prefer to declare only one variable per dec-
laration. The preceding declaration is equivalent to:

When only one variable is declared in each declaration, the square brackets can be
placed either after the type or after the array variable name, as in:

but placing the square brackets after the type is preferred.

A program can declare arrays of any type. Every element of a primitive-type array con-
tains a value of the array’s declared element type. Similarly, in an array of a reference type,
every element is a reference to an object of the array’s declared element type. For example,
every element of an int array is an int value, and every element of a String array is a ref-
erence to a String object.

7.4 Examples Using Arrays
This section presents several examples that demonstrate declaring arrays, creating arrays,
initializing arrays and manipulating array elements.

7.4.1 Creating and Initializing an Array
The application of Fig. 7.2 uses keyword new to create an array of 10 int elements, which
are initially zero (the default initial value for int variables). Line 9 declares array—a ref-
erence capable of referring to an array of int elements—then initializes the variable with
a reference to an array object containing 10 int elements. Line 11 outputs the column
headings. The first column contains the index (0–9) of each array element, and the second
column contains the default initial value (0) of each array element.

String[] b = new String[100], x = new String[27];

String[] b = new String[100]; // create array b
String[] x = new String[27]; // create array x

Good Programming Practice 7.1
For readability, declare only one variable per declaration. Keep each declaration on a sep-
arate line, and include a comment describing the variable being declared.

String b[] = new String[100]; // create array b
String x[] = new String[27]; // create array x

Common Programming Error 7.3
Declaring multiple array variables in a single declaration can lead to subtle errors. Consider
the declaration int[] a, b, c;. If a, b and c should be declared as array variables, then this
declaration is correct—placing square brackets directly following the type indicates that all
the identifiers in the declaration are array variables. However, if only a is intended to be an
array variable, and b and c are intended to be individual int variables, then this declara-
tion is incorrect—the declaration int a[], b, c; would achieve the desired result.

248 Chapter 7 Arrays and ArrayLists

The for statement (lines 14–15) outputs the index (represented by counter) and value
of each array element (represented by array[counter]). Control variable counter is initially
0—index values start at 0, so using zero-based counting allows the loop to access every ele-
ment of the array. The for’s loop-continuation condition uses the expression array.length
(line 14) to determine the length of the array. In this example, the length of the array is 10,
so the loop continues executing as long as the value of control variable counter is less than
10. The highest index value of a 10-element array is 9, so using the less-than operator in the
loop-continuation condition guarantees that the loop does not attempt to access an element
beyond the end of the array (i.e., during the final iteration of the loop, counter is 9). We’ll
soon see what Java does when it encounters such an out-of-range index at execution time.

7.4.2 Using an Array Initializer
You can create an array and initialize its elements with an array initializer—a comma-sep-
arated list of expressions (called an initializer list) enclosed in braces. In this case, the array
length is determined by the number of elements in the initializer list. For example,

creates a five-element array with index values 0–4. Element n[0] is initialized to 10, n[1]
is initialized to 20, and so on. When the compiler encounters an array declaration that in-

1 // Fig. 7.2: InitArray.java
2 // Initializing the elements of an array to default values of zero.
3
4 public class InitArray
5 {
6 public static void main(String[] args)
7 {
8
9

10
11 System.out.printf("%s%8s%n", "Index", "Value"); // column headings
12
13
14
15
16 }
17 } // end class InitArray

Index Value
 0 0
 1 0
 2 0
 3 0
 4 0
 5 0
 6 0
 7 0
 8 0
 9 0

Fig. 7.2 | Initializing the elements of an array to default values of zero.

int[] n = { 10, 20, 30, 40, 50 };

// declare variable array and initialize it with an array object
int[] array = new int[10]; // create the array object

// output each array element's value
for (int counter = 0; counter < array.length; counter++)
 System.out.printf("%5d%8d%n", counter, array[counter]);

7.4 Examples Using Arrays 249

cludes an initializer list, it counts the number of initializers in the list to determine the size
of the array, then sets up the appropriate new operation “behind the scenes.”

The application in Fig. 7.3 initializes an integer array with 10 values (line 9) and dis-
plays the array in tabular format. The code for displaying the array elements (lines 14–15)
is identical to that in Fig. 7.2 (lines 15–16).

7.4.3 Calculating the Values to Store in an Array
The application in Fig. 7.4 creates a 10-element array and assigns to each element one of
the even integers from 2 to 20 (2, 4, 6, …, 20). Then the application displays the array in
tabular format. The for statement at lines 12–13 calculates an array element’s value by
multiplying the current value of the control variable counter by 2, then adding 2.

1 // Fig. 7.3: InitArray.java
2 // Initializing the elements of an array with an array initializer.
3
4 public class InitArray
5 {
6 public static void main(String[] args)
7 {
8
9

10
11 System.out.printf("%s%8s%n", "Index", "Value"); // column headings
12
13 // output each array element's value
14 for (int counter = 0; counter < array.length; counter++)
15 System.out.printf("%5d%8d%n", counter, array[counter]);
16
17 } // end class InitArray

Index Value
 0 32
 1 27
 2 64
 3 18
 4 95
 5 14
 6 90
 7 70
 8 60
 9 37

Fig. 7.3 | Initializing the elements of an array with an array initializer.

1 // Fig. 7.4: InitArray.java
2 // Calculating the values to be placed into the elements of an array.
3
4 public class InitArray
5 {

Fig. 7.4 | Calculating the values to be placed into the elements of an array. (Part 1 of 2.)

// initializer list specifies the initial value for each element
int[] array = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

250 Chapter 7 Arrays and ArrayLists

Line 8 uses the modifier final to declare the constant variable ARRAY_LENGTH with the
value 10. Constant variables must be initialized before they’re used and cannot be modified
thereafter. If you attempt to modify a final variable after it’s initialized in its declaration,
the compiler issues an error message like

6 public static void main(String[] args)
7 {
8
9

10
11 // calculate value for each array element
12 for (int counter = 0; counter < array.length; counter++)
13
14
15 System.out.printf("%s%8s%n", "Index", "Value"); // column headings
16
17 // output each array element's value
18 for (int counter = 0; counter < array.length; counter++)
19 System.out.printf("%5d%8d%n", counter, array[counter]);
20 }
21 } // end class InitArray

Index Value
 0 2
 1 4
 2 6
 3 8
 4 10
 5 12
 6 14
 7 16
 8 18
 9 20

cannot assign a value to final variable variableName

Good Programming Practice 7.2
Constant variables also are called named constants. They often make programs more
readable than programs that use literal values (e.g., 10)—a named constant such as
ARRAY_LENGTH clearly indicates its purpose, whereas a literal value could have different
meanings based on its context.

Good Programming Practice 7.3
Multiword named constants should have each word separated from the next with an un-
derscore (_) as in ARRAY_LENGTH.

Common Programming Error 7.4
Assigning a value to a final variable after it has been initialized is a compilation error.
Similarly, attempting to access the value of a final variable before it’s initialized results in
a compilation error like, “variable variableName might not have been initialized.”

Fig. 7.4 | Calculating the values to be placed into the elements of an array. (Part 2 of 2.)

final int ARRAY_LENGTH = 10; // declare constant
int[] array = new int[ARRAY_LENGTH]; // create array

array[counter] = 2 + 2 * counter;

7.4 Examples Using Arrays 251

7.4.4 Summing the Elements of an Array
Often, the elements of an array represent a series of values to be used in a calculation. If,
for example, they represent exam grades, a professor may wish to total the elements of the
array and use that sum to calculate the class average for the exam. The GradeBook examples
in Figs. 7.14 and 7.18 use this technique.

Figure 7.5 sums the values contained in a 10-element integer array. The program
declares, creates and initializes the array at line 8. The for statement performs the calcu-
lations. [Note: The values supplied as array initializers are often read into a program rather
than specified in an initializer list. For example, an application could input the values from
a user or from a file on disk (as discussed in Chapter 15, Files, Streams and Object Serial-
ization). Reading the data into a program (rather than “hand coding” it into the program)
makes the program more reusable, because it can be used with different sets of data.]

7.4.5 Using Bar Charts to Display Array Data Graphically
Many programs present data to users in a graphical manner. For example, numeric values
are often displayed as bars in a bar chart. In such a chart, longer bars represent proportion-
ally larger numeric values. One simple way to display numeric data graphically is with a
bar chart that shows each numeric value as a bar of asterisks (*).

Professors often like to examine the distribution of grades on an exam. A professor
might graph the number of grades in each of several categories to visualize the grade dis-
tribution. Suppose the grades on an exam were 87, 68, 94, 100, 83, 78, 85, 91, 76 and 87.
They include one grade of 100, two grades in the 90s, four grades in the 80s, two grades
in the 70s, one grade in the 60s and no grades below 60. Our next application (Fig. 7.6)
stores this grade distribution data in an array of 11 elements, each corresponding to a cat-
egory of grades. For example, array[0] indicates the number of grades in the range 0–9,
array[7] the number of grades in the range 70–79 and array[10] the number of 100

1 // Fig. 7.5: SumArray.java
2 // Computing the sum of the elements of an array.
3
4 public class SumArray
5 {
6 public static void main(String[] args)
7 {
8 int[] array = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };
9 int total = 0;

10
11
12
13
14
15 System.out.printf("Total of array elements: %d%n", total);
16 }
17 } // end class SumArray

Total of array elements: 849

Fig. 7.5 | Computing the sum of the elements of an array.

// add each element's value to total
for (int counter = 0; counter < array.length; counter++)
 total += array[counter];

252 Chapter 7 Arrays and ArrayLists

grades. The GradeBook classes later in the chapter (Figs. 7.14 and 7.18) contain code that
calculates these grade frequencies based on a set of grades. For now, we manually create
the array with the given grade frequencies.

The application reads the numbers from the array and graphs the information as a bar
chart. It displays each grade range followed by a bar of asterisks indicating the number of
grades in that range. To label each bar, lines 16–20 output a grade range (e.g., "70-79: ")
based on the current value of counter. When counter is 10, line 17 outputs 100 with a

1 // Fig. 7.6: BarChart.java
2 // Bar chart printing program.
3
4 public class BarChart
5 {
6 public static void main(String[] args)
7 {
8 int[] array = { 0, 0, 0, 0, 0, 0, 1, 2, 4, 2, 1 };
9

10 System.out.println("Grade distribution:");
11
12 // for each array element, output a bar of the chart
13 for (int counter = 0; counter < array.length; counter++)
14 {
15 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
16 if (counter == 10)
17 System.out.printf("%5d: ", 100);
18 else
19 System.out.printf("%02d-%02d: ",
20 counter * 10, counter * 10 + 9);
21
22
23
24
25
26 System.out.println();
27 }
28 }
29 } // end class BarChart

Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **
 100: *

Fig. 7.6 | Bar chart printing program.

// print bar of asterisks
for (int stars = 0; stars < array[counter]; stars++)
 System.out.print("*");

7.4 Examples Using Arrays 253

field width of 5, followed by a colon and a space, to align the label "100: " with the other
bar labels. The nested for statement (lines 23–24) outputs the bars. Note the loop-con-
tinuation condition at line 23 (stars < array[counter]). Each time the program reaches
the inner for, the loop counts from 0 up to array[counter], thus using a value in array
to determine the number of asterisks to display. In this example, no students received a
grade below 60, so array[0]–array[5] contain zeroes, and no asterisks are displayed next
to the first six grade ranges. In line 19, the format specifier %02d indicates that an int value
should be formatted as a field of two digits. The 0 flag in the format specifier displays a
leading 0 for values with fewer digits than the field width (2).

7.4.6 Using the Elements of an Array as Counters
Sometimes, programs use counter variables to summarize data, such as the results of a sur-
vey. In Fig. 6.7, we used separate counters in our die-rolling program to track the number
of occurrences of each side of a six-sided die as the program rolled the die 6,000,000 times.
An array version of this application is shown in Fig. 7.7.

Figure 7.7 uses the array frequency (line 10) to count the occurrences of each side of
the die. The single statement in line 14 of this program replaces lines 22–45 of Fig. 6.7. Line

1 // Fig. 7.7: RollDie.java
2 // Die-rolling program using arrays instead of switch.
3 import java.security.SecureRandom;
4
5 public class RollDie
6 {
7 public static void main(String[] args)
8 {
9 SecureRandom randomNumbers = new SecureRandom();

10 int[] frequency = new int[7]; // array of frequency counters
11
12 // roll die 6,000,000 times; use die value as frequency index
13 for (int roll = 1; roll <= 6000000; roll++)
14
15
16 System.out.printf("%s%10s%n", "Face", "Frequency");
17
18 // output each array element's value
19 for (int face = 1; face < frequency.length; face++)
20 System.out.printf("%4d%10d%n", face, frequency[face]);
21 }
22 } // end class RollDie

Face Frequency
 1 999690
 2 999512
 3 1000575
 4 999815
 5 999781
 6 1000627

Fig. 7.7 | Die-rolling program using arrays instead of switch.

++frequency[1 + randomNumbers.nextInt(6)];

254 Chapter 7 Arrays and ArrayLists

14 uses the random value to determine which frequency element to increment during
each iteration of the loop. The calculation in line 14 produces random numbers from 1 to
6, so the array frequency must be large enough to store six counters. However, we use a
seven-element array in which we ignore frequency[0]—it’s more logical to have the face
value 1 increment frequency[1] than frequency[0]. Thus, each face value is used as an
index for array frequency. In line 14, the calculation inside the square brackets evaluates
first to determine which element of the array to increment, then the ++ operator adds one
to that element. We also replaced lines 49–51 from Fig. 6.7 by looping through array fre-
quency to output the results (lines 19–20). When we study Java SE 8’s new functional pro-
gramming capabilities in Chapter 17, we’ll show how to replace lines 13–14 and 19–20
with a single statement!

7.4.7 Using Arrays to Analyze Survey Results
Our next example uses arrays to summarize data collected in a survey. Consider the fol-
lowing problem statement:

Twenty students were asked to rate on a scale of 1 to 5 the quality of the food in the
student cafeteria, with 1 being “awful” and 5 being “excellent.” Place the 20 responses
in an integer array and determine the frequency of each rating.

This is a typical array-processing application (Fig. 7.8). We wish to summarize the num-
ber of responses of each type (that is, 1–5). Array responses (lines 9–10) is a 20-element
integer array containing the students’ survey responses. The last value in the array is inten-
tionally an incorrect response (14). When a Java program executes, array element indices
are checked for validity—all indices must be greater than or equal to 0 and less than the
length of the array. Any attempt to access an element outside that range of indices results
in a runtime error that’s known as an ArrayIndexOutOfBoundsException. At the end of
this section, we’ll discuss the invalid response value, demonstrate array bounds checking
and introduce Java’s exception-handling mechanism, which can be used to detect and
handle an ArrayIndexOutOfBoundsException.

1 // Fig. 7.8: StudentPoll.java
2 // Poll analysis program.
3
4 public class StudentPoll
5 {
6 public static void main(String[] args)
7 {
8 // student response array (more typically, input at runtime)
9 int[] responses = { 1, 2, 5, 4, 3, 5, 2, 1, 3, 3, 1, 4, 3, 3, 3,

10 2, 3, 3, 2, 14 };
11
12
13
14
15
16

Fig. 7.8 | Poll analysis program. (Part 1 of 2.)

int[] frequency = new int[6]; // array of frequency counters

// for each answer, select responses element and use that value
// as frequency index to determine element to increment
for (int answer = 0; answer < responses.length; answer++)
{

7.4 Examples Using Arrays 255

The frequency Array
We use the six-element array frequency (line 11) to count the number of occurrences of
each response. Each element is used as a counter for one of the possible types of survey re-
sponses—frequency[1] counts the number of students who rated the food as 1, frequen-
cy[2] counts the number of students who rated the food as 2, and so on.

Summarizing the Results
The for statement (lines 15–27) reads the responses from the array responses one at a
time and increments one of the counters frequency[1] to frequency[5]; we ignore fre-
quency[0] because the survey responses are limited to the range 1–5. The key statement
in the loop appears in line 19. This statement increments the appropriate frequency coun-
ter as determined by the value of responses[answer].

Let’s step through the first few iterations of the for statement:

• When the counter answer is 0, responses[answer] is the value of responses[0]
(that is, 1—see line 9). In this case, frequency[responses[answer]] is interpret-
ed as frequency[1], and the counter frequency[1] is incremented by one. To
evaluate the expression, we begin with the value in the innermost set of brackets
(answer, currently 0). The value of answer is plugged into the expression, and the

17
18
19
20
21
22
23
24
25
26
27
28
29 System.out.printf("%s%10s%n", "Rating", "Frequency");
30
31 // output each array element's value
32 for (int rating = 1; rating < frequency.length; rating++)
33 System.out.printf("%6d%10d%n", rating, frequency[rating]);
34 }
35 } // end class StudentPoll

java.lang.ArrayIndexOutOfBoundsException: 14
 responses[19] = 14

Rating Frequency
 1 3
 2 4
 3 8
 4 2
 5 2

Fig. 7.8 | Poll analysis program. (Part 2 of 2.)

 try
 {
 ++frequency[responses[answer]];
 }
 catch (ArrayIndexOutOfBoundsException e)
 {
 System.out.println(e); // invokes toString method
 System.out.printf(" responses[%d] = %d%n%n",
 answer, responses[answer]);
 }
}

256 Chapter 7 Arrays and ArrayLists

next set of brackets (responses[answer]) is evaluated. That value is used as the
index for the frequency array to determine which counter to increment (in this
case, frequency[1]).

• The next time through the loop answer is 1, responses[answer] is the value of
responses[1] (that is, 2—see line 9), so frequency[responses[answer]] is in-
terpreted as frequency[2], causing frequency[2] to be incremented.

• When answer is 2, responses[answer] is the value of responses[2] (that is, 5—
see line 9), so frequency[responses[answer]] is interpreted as frequency[5],
causing frequency[5] to be incremented, and so on.

Regardless of the number of responses processed, only a six-element array (in which we ig-
nore element zero) is required to summarize the results, because all the correct response val-
ues are values from 1 to 5, and the index values for a six-element array are 0–5. In the
program’s output, the Frequency column summarizes only 19 of the 20 values in the re-
sponses array—the last element of the array responses contains an (intentionally) incor-
rect response that was not counted. Section 7.5 discusses what happens when the program
in Fig. 7.8 encounters the invalid response (14) in the last element of array responses.

7.5 Exception Handling: Processing the Incorrect
Response
An exception indicates a problem that occurs while a program executes. The name “excep-
tion” suggests that the problem occurs infrequently—if the “rule” is that a statement normal-
ly executes correctly, then the problem represents the “exception to the rule.” Exception
handling helps you create fault-tolerant programs that can resolve (or handle) exceptions.
In many cases, this allows a program to continue executing as if no problems were encoun-
tered. For example, the StudentPoll application still displays results (Fig. 7.8), even though
one of the responses was out of range. More severe problems might prevent a program from
continuing normal execution, instead requiring the program to notify the user of the prob-
lem, then terminate. When the JVM or a method detects a problem, such as an invalid array
index or an invalid method argument, it throws an exception—that is, an exception occurs.
Methods in your own classes can also throw exceptions, as you’ll learn in Chapter 8.

7.5.1 The try Statement
To handle an exception, place any code that might throw an exception in a try statement
(lines 17–26). The try block (lines 17–20) contains the code that might throw an excep-
tion, and the catch block (lines 21–26) contains the code that handles the exception if one
occurs. You can have many catch blocks to handle different types of exceptions that might
be thrown in the corresponding try block. When line 19 correctly increments an element
of the frequency array, lines 21–26 are ignored. The braces that delimit the bodies of the
try and catch blocks are required.

7.5.2 Executing the catch Block
When the program encounters the invalid value 14 in the responses array, it attempts to
add 1 to frequency[14], which is outside the bounds of the array—the frequency array

7.6 Case Study: Card Shuffling and Dealing Simulation 257

has only six elements (with indexes 0–5). Because array bounds checking is performed at
execution time, the JVM generates an exception—specifically line 19 throws an
ArrayIndexOutOfBoundsException to notify the program of this problem. At this point
the try block terminates and the catch block begins executing—if you declared any local
variables in the try block, they’re now out of scope (and no longer exist), so they’re not ac-
cessible in the catch block.

The catch block declares an exception parameter (e) of type (IndexOutOfRangeEx-
ception). The catch block can handle exceptions of the specified type. Inside the catch
block, you can use the parameter’s identifier to interact with a caught exception object.

7.5.3 toString Method of the Exception Parameter
When lines 21–26 catch the exception, the program displays a message indicating the
problem that occurred. Line 23 implicitly calls the exception object’s toString method to
get the error message that’s implicitly stored in the exception object and display it. Once
the message is displayed in this example, the exception is considered handled and the pro-
gram continues with the next statement after the catch block’s closing brace. In this ex-
ample, the end of the for statement is reached (line 27), so the program continues with the
increment of the control variable in line 15. We discuss exception handling again in
Chapter 8, and more deeply in Chapter 11.

7.6 Case Study: Card Shuffling and Dealing Simulation
The examples in the chapter thus far have used arrays containing elements of primitive
types. Recall from Section 7.2 that the elements of an array can be either primitive types
or reference types. This section uses random-number generation and an array of reference-
type elements, namely objects representing playing cards, to develop a class that simulates
card shuffling and dealing. This class can then be used to implement applications that play
specific card games. The exercises at the end of the chapter use the classes developed here
to build a simple poker application.

We first develop class Card (Fig. 7.9), which represents a playing card that has a face
(e.g., "Ace", "Deuce", "Three", …, "Jack", "Queen", "King") and a suit (e.g., "Hearts",
"Diamonds", "Clubs", "Spades"). Next, we develop the DeckOfCards class (Fig. 7.10),
which creates a deck of 52 playing cards in which each element is a Card object. We then
build a test application (Fig. 7.11) that demonstrates class DeckOfCards’s card shuffling
and dealing capabilities.

Error-Prevention Tip 7.1
When writing code to access an array element, ensure that the array index remains greater
than or equal to 0 and less than the length of the array. This would prevent ArrayIndex-
OutOfBoundsExceptions if your program is correct.

Software Engineering Observation 7.1
Systems in industry that have undergone extensive testing are still likely to contain bugs.
Our preference for industrial-strength systems is to catch and deal with runtime excep-
tions, such as ArrayIndexOutOfBoundsExceptions, to ensure that a system either stays up
and running or degrades gracefully, and to inform the system’s developers of the problem.

258 Chapter 7 Arrays and ArrayLists

Class Card
Class Card (Fig. 7.9) contains two String instance variables—face and suit—that are
used to store references to the face name and suit name for a specific Card. The constructor
for the class (lines 10–14) receives two Strings that it uses to initialize face and suit.
Method toString (lines 17–20) creates a String consisting of the face of the card, the
String " of " and the suit of the card. Card’s toString method can be invoked explicitly
to obtain a string representation of a Card object (e.g., "Ace of Spades"). The toString
method of an object is called implicitly when the object is used where a String is expected
(e.g., when printf outputs the object as a String using the %s format specifier or when
the object is concatenated to a String using the + operator). For this behavior to occur,
toString must be declared with the header shown in Fig. 7.9.

Class DeckOfCards
Class DeckOfCards (Fig. 7.10) declares as an instance variable a Card array named deck
(line 7). An array of a reference type is declared like any other array. Class DeckOfCards also
declares an integer instance variable currentCard (line 8) representing the sequence num-
ber (0–51) of the next Card to be dealt from the deck array, and a named constant
NUMBER_OF_CARDS (line 9) indicating the number of Cards in the deck (52).

1 // Fig. 7.9: Card.java
2 // Card class represents a playing card.
3
4 public class Card
5 {
6 private final String face; // face of card ("Ace", "Deuce", ...)
7 private final String suit; // suit of card ("Hearts", "Diamonds", ...)
8
9 // two-argument constructor initializes card's face and suit

10 public Card(String cardFace, String cardSuit)
11 {
12 this.face = cardFace; // initialize face of card
13 this.suit = cardSuit; // initialize suit of card
14 }
15
16
17
18
19
20
21 } // end class Card

Fig. 7.9 | Card class represents a playing card.

1 // Fig. 7.10: DeckOfCards.java
2 // DeckOfCards class represents a deck of playing cards.
3 import java.security.SecureRandom;
4

Fig. 7.10 | DeckOfCards class represents a deck of playing cards. (Part 1 of 2.)

// return String representation of Card
public String toString()
{
 return face + " of " + suit;
}

7.6 Case Study: Card Shuffling and Dealing Simulation 259

5 public class DeckOfCards
6 {
7
8 private int currentCard; // index of next Card to be dealt (0-51)
9 private static final int NUMBER_OF_CARDS = 52; // constant # of Cards

10 // random number generator
11 private static final SecureRandom randomNumbers = new SecureRandom();
12
13 // constructor fills deck of Cards
14 public DeckOfCards()
15 {
16
17
18
19
20
21 currentCard = 0; // first Card dealt will be deck[0]
22
23
24
25
26
27 }
28
29 // shuffle deck of Cards with one-pass algorithm
30 public void shuffle()
31 {
32 // next call to method dealCard should start at deck[0] again
33 currentCard = 0;
34
35 // for each Card, pick another random Card (0-51) and swap them
36 for (int first = 0; first < deck.length; first++)
37 {
38 // select a random number between 0 and 51
39 int second = randomNumbers.nextInt(NUMBER_OF_CARDS);
40
41 // swap current Card with randomly selected Card
42
43
44
45 }
46 }
47
48 // deal one Card
49 public Card dealCard()
50 {
51 // determine whether Cards remain to be dealt
52 if ()
53 return deck[currentCard++]; // return current Card in array
54 else
55 return null; // return null to indicate that all Cards were dealt
56 }
57 } // end class DeckOfCards

Fig. 7.10 | DeckOfCards class represents a deck of playing cards. (Part 2 of 2.)

private Card[] deck; // array of Card objects

String[] faces = { "Ace", "Deuce", "Three", "Four", "Five", "Six",
 "Seven", "Eight", "Nine", "Ten", "Jack", "Queen", "King" };
String[] suits = { "Hearts", "Diamonds", "Clubs", "Spades" };

deck = new Card[NUMBER_OF_CARDS]; // create array of Card objects

// populate deck with Card objects
for (int count = 0; count < deck.length; count++)
 deck[count] =
 new Card(faces[count % 13], suits[count / 13]);

Card temp = deck[first];
deck[first] = deck[second];
deck[second] = temp;

currentCard < deck.length

260 Chapter 7 Arrays and ArrayLists

DeckOfCards Constructor
The class’s constructor instantiates the deck array (line 20) with NUMBER_OF_CARDS (52) ele-
ments. The elements of deck are null by default, so the constructor uses a for statement
(lines 24–26) to fill the deck with Cards. The loop initializes control variable count to 0 and
loops while count is less than deck.length, causing count to take on each integer value from
0 to 51 (the indices of the deck array). Each Card is instantiated and initialized with two
Strings—one from the faces array (which contains the Strings "Ace" through "King")
and one from the suits array (which contains the Strings "Hearts", "Diamonds", "Clubs"
and "Spades"). The calculation count % 13 always results in a value from 0 to 12 (the 13 in-
dices of the faces array in lines 16–17), and the calculation count / 13 always results in a
value from 0 to 3 (the four indices of the suits array in line 18). When the deck array is
initialized, it contains the Cards with faces "Ace" through "King" in order for each suit (all
13 "Hearts", then all the "Diamonds", then the "Clubs", then the "Spades"). We use arrays
of Strings to represent the faces and suits in this example. In Exercise 7.34, we ask you to
modify this example to use arrays of enum constants to represent the faces and suits.

DeckOfCards Method shuffle
Method shuffle (lines 30–46) shuffles the Cards in the deck. The method loops through
all 52 Cards (array indices 0 to 51). For each Card, a number between 0 and 51 is picked
randomly to select another Card. Next, the current Card object and the randomly selected
Card object are swapped in the array. This exchange is performed by the three assignments
in lines 42–44. The extra variable temp temporarily stores one of the two Card objects be-
ing swapped. The swap cannot be performed with only the two statements

If deck[first] is the "Ace" of "Spades" and deck[second] is the "Queen" of "Hearts",
after the first assignment, both array elements contain the "Queen" of "Hearts" and the
"Ace" of "Spades" is lost—so, the extra variable temp is needed. After the for loop termi-
nates, the Card objects are randomly ordered. A total of only 52 swaps are made in a single
pass of the entire array, and the array of Card objects is shuffled!

[Note: It’s recommended that you use a so-called unbiased shuffling algorithm for real
card games. Such an algorithm ensures that all possible shuffled card sequences are equally
likely to occur. Exercise 7.35 asks you to research the popular unbiased Fisher-Yates shuf-
fling algorithm and use it to reimplement the DeckOfCards method shuffle.]

DeckOfCards Method dealCard
Method dealCard (lines 49–56) deals one Card in the array. Recall that currentCard in-
dicates the index of the next Card to be dealt (i.e., the Card at the top of the deck). Thus,
line 52 compares currentCard to the length of the deck array. If the deck is not empty
(i.e., currentCard is less than 52), line 53 returns the “top” Card and postincrements cur-
rentCard to prepare for the next call to dealCard—otherwise, null is returned. Recall
from Chapter 3 that null represents a “reference to nothing.”

Shuffling and Dealing Cards
Figure 7.11 demonstrates class DeckOfCards. Line 9 creates a DeckOfCards object named
myDeckOfCards. The DeckOfCards constructor creates the deck with the 52 Card objects

deck[first] = deck[second];
deck[second] = deck[first];

7.6 Case Study: Card Shuffling and Dealing Simulation 261

in order by suit and face. Line 10 invokes myDeckOfCards’s shuffle method to rearrange
the Card objects. Lines 13–20 deal all 52 Cards and print them in four columns of 13
Cards each. Line 16 deals one Card object by invoking myDeckOfCards’s dealCard meth-
od, then displays the Card left justified in a field of 19 characters. When a Card is output
as a String, the Card’s toString method (lines 17–20 of Fig. 7.9) is implicitly invoked.
Lines 18–19 start a new line after every four Cards.

Preventing NullPointerExceptions
In Fig. 7.10, we created a deck array of 52 Card references—each element of every refer-
ence-type array created with new is default initialized to null. Reference-type variables
which are fields of a class are also initialized to null by default. A NullPointerException
occurs when you try to call a method on a null reference. In industrial-strength code, en-
suring that references are not null before you use them to call methods prevents Null-
PointerExceptions.

1 // Fig. 7.11: DeckOfCardsTest.java
2 // Card shuffling and dealing.
3
4 public class DeckOfCardsTest
5 {
6 // execute application
7 public static void main(String[] args)
8 {
9 DeckOfCards myDeckOfCards = new DeckOfCards();

10 myDeckOfCards.shuffle(); // place Cards in random order
11
12 // print all 52 Cards in the order in which they are dealt
13 for (int i = 1; i <= 52; i++)
14 {
15 // deal and display a Card
16 System.out.printf("%-19s", myDeckOfCards.dealCard());
17
18 if (i % 4 == 0) // output a newline after every fourth card
19 System.out.println();
20 }
21 }
22 } // end class DeckOfCardsTest

Six of Spades Eight of Spades Six of Clubs Nine of Hearts
Queen of Hearts Seven of Clubs Nine of Spades King of Hearts
Three of Diamonds Deuce of Clubs Ace of Hearts Ten of Spades
Four of Spades Ace of Clubs Seven of Diamonds Four of Hearts
Three of Clubs Deuce of Hearts Five of Spades Jack of Diamonds
King of Clubs Ten of Hearts Three of Hearts Six of Diamonds
Queen of Clubs Eight of Diamonds Deuce of Diamonds Ten of Diamonds
Three of Spades King of Diamonds Nine of Clubs Six of Hearts
Ace of Spades Four of Diamonds Seven of Hearts Eight of Clubs
Deuce of Spades Eight of Hearts Five of Hearts Queen of Spades
Jack of Hearts Seven of Spades Four of Clubs Nine of Diamonds
Ace of Diamonds Queen of Diamonds Five of Clubs King of Spades
Five of Diamonds Ten of Clubs Jack of Spades Jack of Clubs

Fig. 7.11 | Card shuffling and dealing.

262 Chapter 7 Arrays and ArrayLists

7.7 Enhanced for Statement
The enhanced for statement iterates through the elements of an array without using a
counter, thus avoiding the possibility of “stepping outside” the array. We show how to use
the enhanced for statement with the Java API’s prebuilt data structures (called collections)
in Section 7.16. The syntax of an enhanced for statement is:

where parameter has a type and an identifier (e.g., int number), and arrayName is the array
through which to iterate. The type of the parameter must be consistent with the type of the
elements in the array. As the next example illustrates, the identifier represents successive
element values in the array on successive iterations of the loop.

Figure 7.12 uses the enhanced for statement (lines 12–13) to sum the integers in an
array of student grades. The enhanced for’s parameter is of type int, because array con-
tains int values—the loop selects one int value from the array during each iteration. The
enhanced for statement iterates through successive values in the array one by one. The
statement’s header can be read as “for each iteration, assign the next element of array to
int variable number, then execute the following statement.” Thus, for each iteration, iden-
tifier number represents an int value in array. Lines 12–13 are equivalent to the following
counter-controlled repetition used in lines 12–13 of Fig. 7.5 to total the integers in array,
except that counter cannot be accessed in the enhanced for statement:

The enhanced for statement can be used only to obtain array elements—it cannot be
used to modify elements. If your program needs to modify elements, use the traditional
counter-controlled for statement.

for (parameter : arrayName)
 statement

for (int counter = 0; counter < array.length; counter++)
 total += array[counter];

1 // Fig. 7.12: EnhancedForTest.java
2 // Using the enhanced for statement to total integers in an array.
3
4 public class EnhancedForTest
5 {
6 public static void main(String[] args)
7 {
8 int[] array = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };
9 int total = 0;

10
11
12
13
14
15 System.out.printf("Total of array elements: %d%n", total);
16 }
17 } // end class EnhancedForTest

Total of array elements: 849

Fig. 7.12 | Using the enhanced for statement to total integers in an array.

// add each element's value to total
for (int number : array)
 total += number;

7.8 Passing Arrays to Methods 263

 The enhanced for statement can be used in place of the counter-controlled for state-
ment whenever code looping through an array does not require access to the counter indi-
cating the index of the current array element. For example, totaling the integers in an array
requires access only to the element values—the index of each element is irrelevant. How-
ever, if a program must use a counter for some reason other than simply to loop through
an array (e.g., to print an index number next to each array element value, as in the exam-
ples earlier in this chapter), use the counter-controlled for statement.

Java SE 8
The for statement and the enhanced for statement each iterate sequentially from a starting
value to an ending value. In Chapter 17, Java SE 8 Lambdas and Streams, you’ll learn about
class Stream and its forEach method. Working together, these provide an elegant, more
concise and less error prone means for iterating through collections so that some of the it-
erations may occur in parallel with others to achieve better multi-core system performance.

7.8 Passing Arrays to Methods
This section demonstrates how to pass arrays and individual array elements as arguments
to methods. To pass an array argument to a method, specify the name of the array without
any brackets. For example, if array hourlyTemperatures is declared as

then the method call

passes the reference of array hourlyTemperatures to method modifyArray. Every array
object “knows” its own length. Thus, when we pass an array object’s reference into a meth-
od, we need not pass the array length as an additional argument.

For a method to receive an array reference through a method call, the method’s
parameter list must specify an array parameter. For example, the method header for
method modifyArray might be written as

indicating that modifyArray receives the reference of a double array in parameter b. The
method call passes array hourlyTemperature’s reference, so when the called method uses
the array variable b, it refers to the same array object as hourlyTemperatures in the caller.

When an argument to a method is an entire array or an individual array element of a
reference type, the called method receives a copy of the reference. However, when an argu-
ment to a method is an individual array element of a primitive type, the called method
receives a copy of the element’s value. Such primitive values are called scalars or scalar
quantities. To pass an individual array element to a method, use the indexed name of the
array element as an argument in the method call.

Error-Prevention Tip 7.2
The enhanced for statement simplifies the code for iterating through an array making the
code more readable and eliminating several error possibilities, such as improperly specifying
the control variable’s initial value, the loop-continuation test and the increment expression.

double[] hourlyTemperatures = new double[24];

modifyArray(hourlyTemperatures);

void modifyArray(double[] b)

264 Chapter 7 Arrays and ArrayLists

Figure 7.13 demonstrates the difference between passing an entire array and passing
a primitive-type array element to a method. Notice that main invokes static methods
modifyArray (line 19) and modifyElement (line 30) directly. Recall from Section 6.4 that
a static method of a class can invoke other static methods of the same class directly.

The enhanced for statement at lines 16–17 outputs the elements of array. Line 19
invokes method modifyArray, passing array as an argument. The method (lines 36–40)
receives a copy of array’s reference and uses it to multiply each of array’s elements by 2. To
prove that array’s elements were modified, lines 23–24 output array’s elements again. As
the output shows, method modifyArray doubled the value of each element. We could not
use the enhanced for statement in lines 38–39 because we’re modifying the array’s elements.

1 // Fig. 7.13: PassArray.java
2 // Passing arrays and individual array elements to methods.
3
4 public class PassArray
5 {
6 // main creates array and calls modifyArray and modifyElement
7 public static void main(String[] args)
8 {
9 int[] array = { 1, 2, 3, 4, 5 };

10
11 System.out.printf(
12 "Effects of passing reference to entire array:%n" +
13 "The values of the original array are:%n");
14
15 // output original array elements
16 for (int value : array)
17 System.out.printf(" %d", value);
18
19
20 System.out.printf("%n%nThe values of the modified array are:%n");
21
22 // output modified array elements
23 for (int value : array)
24 System.out.printf(" %d", value);
25
26 System.out.printf(
27 "%n%nEffects of passing array element value:%n" +
28 "array[3] before modifyElement: %d%n", array[3]);
29
30
31 System.out.printf(
32 "array[3] after modifyElement: %d%n", array[3]);
33 }
34
35
36
37
38
39
40

Fig. 7.13 | Passing arrays and individual array elements to methods. (Part 1 of 2.)

modifyArray(array); // pass array reference

modifyElement(array[3]); // attempt to modify array[3]

// multiply each element of an array by 2
public static void modifyArray(int[] array2)
{
 for (int counter = 0; counter < array2.length; counter++)
 array2[counter] *= 2;
}

7.9 Pass-By-Value vs. Pass-By-Reference 265

Figure 7.13 next demonstrates that when a copy of an individual primitive-type array
element is passed to a method, modifying the copy in the called method does not affect the
original value of that element in the calling method’s array. Lines 26–28 output the value
of array[3] before invoking method modifyElement. Remember that the value of this ele-
ment is now 8 after it was modified in the call to modifyArray. Line 30 calls method mod-
ifyElement and passes array[3] as an argument. Remember that array[3] is actually one
int value (8) in array. Therefore, the program passes a copy of the value of array[3].
Method modifyElement (lines 43–48) multiplies the value received as an argument by 2,
stores the result in its parameter element, then outputs the value of element (16). Since
method parameters, like local variables, cease to exist when the method in which they’re
declared completes execution, the method parameter element is destroyed when method
modifyElement terminates. When the program returns control to main, lines 31–32
output the unmodified value of array[3] (i.e., 8).

7.9 Pass-By-Value vs. Pass-By-Reference
The preceding example demonstrated how arrays and primitive-type array elements are
passed as arguments to methods. We now take a closer look at how arguments in general
are passed to methods. Two ways to pass arguments in method calls in many programming
languages are pass-by-value and pass-by-reference (sometimes called call-by-value and
call-by-reference). When an argument is passed by value, a copy of the argument’s value is
passed to the called method. The called method works exclusively with the copy. Changes
to the called method’s copy do not affect the original variable’s value in the caller.

When an argument is passed by reference, the called method can access the argu-
ment’s value in the caller directly and modify that data, if necessary. Pass-by-reference
improves performance by eliminating the need to copy possibly large amounts of data.

41
42
43
44
45
46
47
48
49 } // end class PassArray

Effects of passing reference to entire array:
The values of the original array are:
 1 2 3 4 5

The values of the modified array are:
 2 4 6 8 10

Effects of passing array element value:
array[3] before modifyElement: 8
Value of element in modifyElement: 16
array[3] after modifyElement: 8

Fig. 7.13 | Passing arrays and individual array elements to methods. (Part 2 of 2.)

// multiply argument by 2
public static void modifyElement(int element)
{
 element *= 2;
 System.out.printf(
 "Value of element in modifyElement: %d%n", element);
}

266 Chapter 7 Arrays and ArrayLists

Unlike some other languages, Java does not allow you to choose pass-by-value or pass-
by-reference—all arguments are passed by value. A method call can pass two types of values
to a method—copies of primitive values (e.g., values of type int and double) and copies
of references to objects. Objects themselves cannot be passed to methods. When a method
modifies a primitive-type parameter, changes to the parameter have no effect on the orig-
inal argument value in the calling method. For example, when line 30 in main of Fig. 7.13
passes array[3] to method modifyElement, the statement in line 45 that doubles the
value of parameter element has no effect on the value of array[3] in main. This is also
true for reference-type parameters. If you modify a reference-type parameter so that it
refers to another object, only the parameter refers to the new object—the reference stored
in the caller’s variable still refers to the original object.

Although an object’s reference is passed by value, a method can still interact with the
referenced object by calling its public methods using the copy of the object’s reference.
Since the reference stored in the parameter is a copy of the reference that was passed as an
argument, the parameter in the called method and the argument in the calling method
refer to the same object in memory. For example, in Fig. 7.13, both parameter array2 in
method modifyArray and variable array in main refer to the same array object in memory.
Any changes made using the parameter array2 are carried out on the object that array
references in the calling method. In Fig. 7.13, the changes made in modifyArray using
array2 affect the contents of the array object referenced by array in main. Thus, with a
reference to an object, the called method can manipulate the caller’s object directly.

7.10 Case Study: Class GradeBook Using an Array to
Store Grades
We now present the first part of our case study on developing a GradeBook class that in-
structors can use to maintain students’ grades on an exam and display a grade report that
includes the grades, class average, lowest grade, highest grade and a grade distribution bar
chart. The version of class GradeBook presented in this section stores the grades for one
exam in a one-dimensional array. In Section 7.12, we present a version of class GradeBook
that uses a two-dimensional array to store students’ grades for several exams.

Storing Student Grades in an Array in Class GradeBook
Class GradeBook (Fig. 7.14) uses an array of ints to store several students’ grades on a sin-
gle exam. Array grades is declared as an instance variable (line 7), so each GradeBook ob-
ject maintains its own set of grades. The constructor (lines 10–14) has two parameters—
the name of the course and an array of grades. When an application (e.g., class GradeBook-
Test in Fig. 7.15) creates a GradeBook object, the application passes an existing int array
to the constructor, which assigns the array’s reference to instance variable grades (line 13).
The grades array’s size is determined by the length instance variable of the constructor’s

Performance Tip 7.1
Passing references to arrays, instead of the array objects themselves, makes sense for perfor-
mance reasons. Because everything in Java is passed by value, if array objects were passed,
a copy of each element would be passed. For large arrays, this would waste time and con-
sume considerable storage for the copies of the elements.

7.10 Case Study: Class GradeBook Using an Array to Store Grades 267

array parameter. Thus, a GradeBook object can process a variable number of grades. The
grade values in the argument could have been input from a user, read from a file on disk
(as discussed in Chapter 15) or come from a variety of other sources. In class GradeBook-
Test, we initialize an array with grade values (Fig. 7.15, line 10). Once the grades are
stored in instance variable grades of class GradeBook, all the class’s methods can access the
elements of grades.

1 // Fig. 7.14: GradeBook.java
2 // GradeBook class using an array to store test grades.
3
4 public class GradeBook
5 {
6 private String courseName; // name of course this GradeBook represents
7
8
9 // constructor

10 public GradeBook(String courseName,)
11 {
12 this.courseName = courseName;
13
14 }
15
16 // method to set the course name
17 public void setCourseName(String courseName)
18 {
19 this.courseName = courseName;
20 }
21
22 // method to retrieve the course name
23 public String getCourseName()
24 {
25 return courseName;
26 }
27
28 // perform various operations on the data
29 public void processGrades()
30 {
31 // output grades array
32
33
34 // call method getAverage to calculate the average grade
35 System.out.printf("%nClass average is %.2f%n",);
36
37 // call methods getMinimum and getMaximum
38 System.out.printf("Lowest grade is %d%nHighest grade is %d%n%n",
39 ,);
40
41 // call outputBarChart to print grade distribution chart
42
43 }
44

Fig. 7.14 | GradeBook class using an array to store test grades. (Part 1 of 3.)

private int[] grades; // array of student grades

int[] grades

this.grades = grades;

outputGrades();

getAverage()

getMinimum() getMaximum()

outputBarChart();

268 Chapter 7 Arrays and ArrayLists

45 // find minimum grade
46 public int getMinimum()
47 {
48 int lowGrade = grades[0]; // assume grades[0] is smallest
49
50
51
52
53
54
55
56
57
58 return lowGrade;
59 }
60
61 // find maximum grade
62 public int getMaximum()
63 {
64 int highGrade = grades[0]; // assume grades[0] is largest
65
66 // loop through grades array
67 for (int grade : grades)
68 {
69 // if grade greater than highGrade, assign it to highGrade
70 if (grade > highGrade)
71 highGrade = grade; // new highest grade
72 }
73
74 return highGrade;
75 }
76
77 // determine average grade for test
78 public double getAverage()
79 {
80 int total = 0;
81
82
83
84
85
86 // return average of grades
87 return (double) total / ;
88 }
89
90 // output bar chart displaying grade distribution
91 public void outputBarChart()
92 {
93 System.out.println("Grade distribution:");
94
95 // stores frequency of grades in each range of 10 grades
96 int[] frequency = new int[11];

Fig. 7.14 | GradeBook class using an array to store test grades. (Part 2 of 3.)

// loop through grades array
for (int grade : grades)
{
 // if grade lower than lowGrade, assign it to lowGrade
 if (grade < lowGrade)
 lowGrade = grade; // new lowest grade
}

// sum grades for one student
for (int grade : grades)
 total += grade;

grades.length

7.10 Case Study: Class GradeBook Using an Array to Store Grades 269

Method processGrades (lines 29–43) contains a series of method calls that output a
report summarizing the grades. Line 32 calls method outputGrades to print the contents
of the array grades. Lines 126–128 in method outputGrades output the students’ grades.
A counter-controlled for statement must be used in this case, because lines 127–128 use
counter variable student’s value to output each grade next to a particular student number
(see the output in Fig. 7.15). Although array indices start at 0, a professor might typically
number students starting at 1. Thus, lines 127–128 output student + 1 as the student
number to produce grade labels "Student 1: ", "Student 2: ", and so on.

Method processGrades next calls method getAverage (line 35) to obtain the average
of the grades in the array. Method getAverage (lines 78–88) uses an enhanced for state-
ment to total the values in array grades before calculating the average. The parameter in
the enhanced for’s header (e.g., int grade) indicates that for each iteration, the int vari-
able grade takes on a value in the array grades. The averaging calculation in line 87 uses
grades.length to determine the number of grades being averaged.

97
98
99
100
101
102 // for each grade frequency, print bar in chart
103 for (int count = 0; count < frequency.length; count++)
104 {
105 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
106 if (count == 10)
107 System.out.printf("%5d: ", 100);
108 else
109 System.out.printf("%02d-%02d: ",
110 count * 10, count * 10 + 9);
111
112 // print bar of asterisks
113 for (int stars = 0; stars < frequency[count]; stars++)
114 System.out.print("*");
115
116 System.out.println();
117 }
118 }
119
120 // output the contents of the grades array
121 public void outputGrades()
122 {
123 System.out.printf("The grades are:%n%n");
124
125 // output each student's grade
126
127
128
129 }
130 } // end class GradeBook

Fig. 7.14 | GradeBook class using an array to store test grades. (Part 3 of 3.)

// for each grade, increment the appropriate frequency
for (int grade : grades)
 ++frequency[grade / 10];

for (int student = 0; student < grades.length; student++)
 System.out.printf("Student %2d: %3d%n",
 student + 1, grades[student]);

270 Chapter 7 Arrays and ArrayLists

Lines 38–39 in method processGrades call methods getMinimum and getMaximum to
determine the lowest and highest grades of any student on the exam, respectively. Each of
these methods uses an enhanced for statement to loop through array grades. Lines 51–
56 in method getMinimum loop through the array. Lines 54–55 compare each grade to
lowGrade; if a grade is less than lowGrade, lowGrade is set to that grade. When line 58 exe-
cutes, lowGrade contains the lowest grade in the array. Method getMaximum (lines 62–75)
works similarly to method getMinimum.

Finally, line 42 in method processGrades calls outputBarChart to print a grade distri-
bution chart using a technique similar to that in Fig. 7.6. In that example, we manually cal-
culated the number of grades in each category (i.e., 0–9, 10–19, …, 90–99 and 100) by
simply looking at a set of grades. Here, lines 99–100 use a technique similar to that in
Figs. 7.7–7.8 to calculate the frequency of grades in each category. Line 96 declares and cre-
ates array frequency of 11 ints to store the frequency of grades in each category. For each
grade in array grades, lines 99–100 increment the appropriate frequency array element. To
determine which one to increment, line 100 divides the current grade by 10 using integer
division—e.g., if grade is 85, line 100 increments frequency[8] to update the count of
grades in the range 80–89. Lines 103–117 print the bar chart (as shown in Fig. 7.15) based
on the values in array frequency. Like lines 23–24 of Fig. 7.6, lines 113–116 of Fig. 7.14
use a value in array frequency to determine the number of asterisks to display in each bar.

Class GradeBookTest That Demonstrates Class GradeBook
The application of Fig. 7.15 creates an object of class GradeBook (Fig. 7.14) using the int
array gradesArray (declared and initialized in line 10). Lines 12–13 pass a course name and
gradesArray to the GradeBook constructor. Lines 14–15 display a welcome message that in-
cludes the course name stored in the GradeBook object. Line 16 invokes the GradeBook ob-
ject’s processGrades method. The output summarizes the 10 grades in myGradeBook.

Software Engineering Observation 7.2
A test harness (or test application) is responsible for creating an object of the class being
tested and providing it with data. This data could come from any of several sources. Test
data can be placed directly into an array with an array initializer, it can come from the
user at the keyboard, from a file (as you’ll see in Chapter 15), from a database (as you’ll
see in Chapter 24) or from a network (as you’ll see in online Chapter 28). After passing
this data to the class’s constructor to instantiate the object, the test harness should call upon
the object to test its methods and manipulate its data. Gathering data in the test harness
like this allows the class to be more reusable, able to manipulate data from several sources.

1 // Fig. 7.15: GradeBookTest.java
2 // GradeBookTest creates a GradeBook object using an array of grades,
3 // then invokes method processGrades to analyze them.
4 public class GradeBookTest
5 {
6 // main method begins program execution
7 public static void main(String[] args)
8 {

Fig. 7.15 | GradeBookTest creates a GradeBook object using an array of grades, then invokes
method processGrades to analyze them. (Part 1 of 2.)

7.10 Case Study: Class GradeBook Using an Array to Store Grades 271

Java SE 8
In Chapter 17, Java SE 8 Lambdas and Streams, the example of Fig. 17.5 uses stream
methods min, max, count and average to process the elements of an int array elegantly
and concisely without having to write repetition statements. In Chapter 23, Concurrency,
the example of Fig. 23.29 uses stream method summaryStatistics to perform all of these
operations in one method call.

9
10
11
12 GradeBook myGradeBook = new GradeBook(
13 "CS101 Introduction to Java Programming",);
14 System.out.printf("Welcome to the grade book for%n%s%n%n",
15 myGradeBook.getCourseName());
16 myGradeBook.processGrades();
17 }
18 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to Java Programming

The grades are:

Student 1: 87
Student 2: 68
Student 3: 94
Student 4: 100
Student 5: 83
Student 6: 78
Student 7: 85
Student 8: 91
Student 9: 76
Student 10: 87

Class average is 84.90
Lowest grade is 68
Highest grade is 100

Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **
 100: *

Fig. 7.15 | GradeBookTest creates a GradeBook object using an array of grades, then invokes
method processGrades to analyze them. (Part 2 of 2.)

// array of student grades
int[] gradesArray = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };

gradesArray

272 Chapter 7 Arrays and ArrayLists

7.11 Multidimensional Arrays
Multidimensional arrays with two dimensions are often used to represent tables of values
with data arranged in rows and columns. To identify a particular table element, you specify
two indices. By convention, the first identifies the element’s row and the second its column.
Arrays that require two indices to identify each element are called two-dimensional arrays.
(Multidimensional arrays can have more than two dimensions.) Java does not support mul-
tidimensional arrays directly, but it allows you to specify one-dimensional arrays whose ele-
ments are also one-dimensional arrays, thus achieving the same effect. Figure 7.16 illustrates
a two-dimensional array named a with three rows and four columns (i.e., a three-by-four ar-
ray). In general, an array with m rows and n columns is called an m-by-n array.

Every element in array a is identified in Fig. 7.16 by an array-access expression of the form
a[row][column]; a is the name of the array, and row and column are the indices that uniquely
identify each element by row and column index. The names of the elements in row 0 all have
a first index of 0, and the names of the elements in column 3 all have a second index of 3.

Arrays of One-Dimensional Arrays
Like one-dimensional arrays, multidimensional arrays can be initialized with array initial-
izers in declarations. A two-dimensional array b with two rows and two columns could be
declared and initialized with nested array initializers as follows:

The initial values are grouped by row in braces. So 1 and 2 initialize b[0][0] and b[0][1],
respectively, and 3 and 4 initialize b[1][0] and b[1][1], respectively. The compiler
counts the number of nested array initializers (represented by sets of braces within the out-
er braces) to determine the number of rows in array b. The compiler counts the initializer
values in the nested array initializer for a row to determine the number of columns in that
row. As we’ll see momentarily, this means that rows can have different lengths.

Multidimensional arrays are maintained as arrays of one-dimensional arrays. Therefore
array b in the preceding declaration is actually composed of two separate one-dimensional
arrays—one containing the values in the first nested initializer list {1, 2} and one con-
taining the values in the second nested initializer list {3, 4}. Thus, array b itself is an array
of two elements, each a one-dimensional array of int values.

Fig. 7.16 | Two-dimensional array with three rows and four columns.

int[][] b = {{1, 2}, {3, 4}};

Row 0

Row 1

Row 2

Column index
Row index
Array name

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

Column 0 Column 1 Column 2 Column 3

a[1][3]

a[2][3]

7.11 Multidimensional Arrays 273

Two-Dimensional Arrays with Rows of Different Lengths
The manner in which multidimensional arrays are represented makes them quite flexible.
In fact, the lengths of the rows in array b are not required to be the same. For example,

creates integer array b with two elements (determined by the number of nested array ini-
tializers) that represent the rows of the two-dimensional array. Each element of b is a ref-
erence to a one-dimensional array of int variables. The int array for row 0 is a one-
dimensional array with two elements (1 and 2), and the int array for row 1 is a one-dimen-
sional array with three elements (3, 4 and 5).

Creating Two-Dimensional Arrays with Array-Creation Expressions
A multidimensional array with the same number of columns in every row can be created
with an array-creation expression. For example, the following line declares array b and as-
sign it a reference to a three-by-four array:

In this case, we use the literal values 3 and 4 to specify the number of rows and number of
columns, respectively, but this is not required. Programs can also use variables to specify
array dimensions, because new creates arrays at execution time—not at compile time. The el-
ements of a multidimensional array are initialized when the array object is created.

A multidimensional array in which each row has a different number of columns can
be created as follows:

The preceding statements create a two-dimensional array with two rows. Row 0 has five
columns, and row 1 has three columns.

Two-Dimensional Array Example: Displaying Element Values
Figure 7.17 demonstrates initializing two-dimensional arrays with array initializers, and
using nested for loops to traverse the arrays (i.e., manipulate every element of each array).
Class InitArray’s main declares two arrays. The declaration of array1 (line 9) uses nested
array initializers of the same length to initialize the first row to the values 1, 2 and 3, and
the second row to the values 4, 5 and 6. The declaration of array2 (line 10) uses nested
initializers of different lengths. In this case, the first row is initialized to two elements with
the values 1 and 2, respectively. The second row is initialized to one element with the value
3. The third row is initialized to three elements with the values 4, 5 and 6, respectively.

int[][] b = {{1, 2}, {3, 4, 5}};

int[][] b = new int[3][4];

int[][] b = new int[2][]; // create 2 rows
b[0] = new int[5]; // create 5 columns for row 0
b[1] = new int[3]; // create 3 columns for row 1

1 // Fig. 7.17: InitArray.java
2 // Initializing two-dimensional arrays.
3
4 public class InitArray
5 {

Fig. 7.17 | Initializing two-dimensional arrays. (Part 1 of 2.)

274 Chapter 7 Arrays and ArrayLists

Lines 13 and 16 call method outputArray (lines 20–31) to output the elements of
array1 and array2, respectively. Method outputArray’s parameter—int[][] array—
indicates that the method receives a two-dimensional array. The nested for statement
(lines 23–30) outputs the rows of a two-dimensional array. In the loop-continuation con-
dition of the outer for statement, the expression array.length determines the number of
rows in the array. In the inner for statement, the expression array[row].length deter-
mines the number of columns in the current row of the array. The inner for statement’s
condition enables the loop to determine the exact number of columns in each row. We
demonstrate nested enhanced for statements in Fig. 7.18.

Common Multidimensional-Array Manipulations Performed with for Statements
Many common array manipulations use for statements. As an example, the following for
statement sets all the elements in row 2 of array a in Fig. 7.16 to zero:

6 // create and output two-dimensional arrays
7 public static void main(String[] args)
8 {
9

10
11
12 System.out.println("Values in array1 by row are");
13 outputArray(array1); // displays array1 by row
14
15 System.out.printf("%nValues in array2 by row are%n");
16 outputArray(array2); // displays array2 by row
17 }
18
19 // output rows and columns of a two-dimensional array
20 public static void outputArray()
21 {
22
23
24
25
26
27
28
29
30
31 }
32 } // end class InitArray

Values in array1 by row are
1 2 3
4 5 6

Values in array2 by row are
1 2
3
4 5 6

Fig. 7.17 | Initializing two-dimensional arrays. (Part 2 of 2.)

int[][] array1 = {{1, 2, 3}, {4, 5, 6}};
int[][] array2 = {{1, 2}, {3}, {4, 5, 6}};

int[][] array

// loop through array's rows
for (int row = 0; row < array.length; row++)
{
 // loop through columns of current row
 for (int column = 0; column < array[row].length; column++)
 System.out.printf("%d ", array[row][column]);

 System.out.println();
}

7.12 Case Study: Class GradeBook Using a Two-Dimensional Array 275

We specified row 2; therefore, we know that the first index is always 2 (0 is the first row,
and 1 is the second row). This for loop varies only the second index (i.e., the column in-
dex). If row 2 of array a contains four elements, then the preceding for statement is equiv-
alent to the assignment statements

The following nested for statement totals the values of all the elements in array a:

These nested for statements total the array elements one row at a time. The outer for state-
ment begins by setting the row index to 0 so that the first row’s elements can be totaled by
the inner for statement. The outer for then increments row to 1 so that the second row
can be totaled. Then, the outer for increments row to 2 so that the third row can be to-
taled. The variable total can be displayed when the outer for statement terminates. In
the next example, we show how to process a two-dimensional array in a similar manner
using nested enhanced for statements.

7.12 Case Study: Class GradeBook Using a Two-
Dimensional Array
In Section 7.10, we presented class GradeBook (Fig. 7.14), which used a one-dimensional
array to store student grades on a single exam. In most semesters, students take several ex-
ams. Professors are likely to want to analyze grades across the entire semester, both for a
single student and for the class as a whole.

Storing Student Grades in a Two-Dimensional Array in Class GradeBook
Figure 7.18 contains a GradeBook class that uses a two-dimensional array grades to store
the grades of several students on multiple exams. Each row of the array represents a single
student’s grades for the entire course, and each column represents the grades of all the stu-
dents who took a particular exam. Class GradeBookTest (Fig. 7.19) passes the array as an
argument to the GradeBook constructor. In this example, we use a ten-by-three array for ten
students’ grades on three exams. Five methods perform array manipulations to process the
grades. Each method is similar to its counterpart in the earlier one-dimensional array ver-
sion of GradeBook (Fig. 7.14). Method getMinimum (lines 46–62) determines the lowest
grade of any student for the semester. Method getMaximum (lines 65–83) determines the
highest grade of any student for the semester. Method getAverage (lines 86–96) deter-
mines a particular student’s semester average. Method outputBarChart (lines 99–129) out-

for (int column = 0; column < a[2].length; column++)
 a[2][column] = 0;

a[2][0] = 0;
a[2][1] = 0;
a[2][2] = 0;
a[2][3] = 0;

int total = 0;
for (int row = 0; row < a.length; row++)
{
 for (int column = 0; column < a[row].length; column++)
 total += a[row][column];
}

276 Chapter 7 Arrays and ArrayLists

puts a grade bar chart for the entire semester’s student grades. Method outputGrades (lines
132–156) outputs the array in a tabular format, along with each student’s semester average.

1 // Fig. 7.18: GradeBook.java
2 // GradeBook class using a two-dimensional array to store grades.
3
4 public class GradeBook
5 {
6 private String courseName; // name of course this grade book represents
7
8
9 // two-argument constructor initializes courseName and grades array

10 public GradeBook(String courseName,)
11 {
12 this.courseName = courseName;
13
14 }
15
16 // method to set the course name
17 public void setCourseName(String courseName)
18 {
19 this.courseName = courseName;
20 }
21
22 // method to retrieve the course name
23 public String getCourseName()
24 {
25 return courseName;
26 }
27
28 // perform various operations on the data
29 public void processGrades()
30 {
31 // output grades array
32 outputGrades();
33
34 // call methods getMinimum and getMaximum
35 System.out.printf("%n%s %d%n%s %d%n%n",
36 "Lowest grade in the grade book is", getMinimum(),
37 "Highest grade in the grade book is", getMaximum());
38
39 // output grade distribution chart of all grades on all tests
40 outputBarChart();
41 }
42
43 // find minimum grade
44 public int getMinimum()
45 {
46 // assume first element of grades array is smallest
47 int lowGrade = grades[0][0];
48

Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 1 of 4.)

private int[][] grades; // two-dimensional array of student grades

int[][] grades

this.grades = grades;

7.12 Case Study: Class GradeBook Using a Two-Dimensional Array 277

49
50
51
52
53
54
55
56
57
58
59
60
61 return lowGrade;
62 }
63
64 // find maximum grade
65 public int getMaximum()
66 {
67 // assume first element of grades array is largest
68 int highGrade = grades[0][0];
69
70 // loop through rows of grades array
71 for (int[] studentGrades : grades)
72 {
73 // loop through columns of current row
74 for (int grade : studentGrades)
75 {
76 // if grade greater than highGrade, assign it to highGrade
77 if (grade > highGrade)
78 highGrade = grade;
79 }
80 }
81
82 return highGrade;
83 }
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98 // output bar chart displaying overall grade distribution
99 public void outputBarChart()
100 {

Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 2 of 4.)

// loop through rows of grades array
for (int[] studentGrades : grades)
{
 // loop through columns of current row
 for (int grade : studentGrades)
 {
 // if grade less than lowGrade, assign it to lowGrade
 if (grade < lowGrade)
 lowGrade = grade;
 }
}

// determine average grade for particular set of grades
public double getAverage(int[] setOfGrades)
{
 int total = 0;

 // sum grades for one student
 for (int grade : setOfGrades)
 total += grade;

 // return average of grades
 return (double) total / setOfGrades.length;
}

278 Chapter 7 Arrays and ArrayLists

101 System.out.println("Overall grade distribution:");
102
103 // stores frequency of grades in each range of 10 grades
104 int[] frequency = new int[11];
105
106
107
108
109
110
111
112
113 // for each grade frequency, print bar in chart
114 for (int count = 0; count < frequency.length; count++)
115 {
116 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
117 if (count == 10)
118 System.out.printf("%5d: ", 100);
119 else
120 System.out.printf("%02d-%02d: ",
121 count * 10, count * 10 + 9);
122
123 // print bar of asterisks
124 for (int stars = 0; stars < frequency[count]; stars++)
125 System.out.print("*");
126
127 System.out.println();
128 }
129 }
130
131 // output the contents of the grades array
132 public void outputGrades()
133 {
134 System.out.printf("The grades are:%n%n");
135 System.out.print(" "); // align column heads
136
137 // create a column heading for each of the tests
138 for (int test = 0; test < grades[0].length; test++)
139 System.out.printf("Test %d ", test + 1);
140
141 System.out.println("Average"); // student average column heading
142
143 // create rows/columns of text representing array grades
144 for (int student = 0; student < grades.length; student++)
145 {
146 System.out.printf("Student %2d", student + 1);
147
148 for (int test : grades[student]) // output student's grades
149 System.out.printf("%8d", test);
150
151 // call method getAverage to calculate student's average grade;
152 // pass row of grades as the argument to getAverage
153

Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 3 of 4.)

// for each grade in GradeBook, increment the appropriate frequency
for (int[] studentGrades : grades)
{
 for (int grade : studentGrades)
 ++frequency[grade / 10];
}

double average = getAverage(grades[student]);

7.12 Case Study: Class GradeBook Using a Two-Dimensional Array 279

Methods getMinimum and getMaximum
Methods getMinimum, getMaximum, outputBarChart and outputGrades each loop
through array grades by using nested for statements—for example, the nested enhanced
for statement (lines 50–59) from the declaration of method getMinimum. The outer en-
hanced for statement iterates through the two-dimensional array grades, assigning suc-
cessive rows to parameter studentGrades on successive iterations. The square brackets
following the parameter name indicate that studentGrades refers to a one-dimensional
int array—namely, a row in array grades containing one student’s grades. To find the
lowest overall grade, the inner for statement compares the elements of the current one-
dimensional array studentGrades to variable lowGrade. For example, on the first iteration
of the outer for, row 0 of grades is assigned to parameter studentGrades. The inner en-
hanced for statement then loops through studentGrades and compares each grade value
with lowGrade. If a grade is less than lowGrade, lowGrade is set to that grade. On the sec-
ond iteration of the outer enhanced for statement, row 1 of grades is assigned to stu-
dentGrades, and the elements of this row are compared with variable lowGrade. This
repeats until all rows of grades have been traversed. When execution of the nested state-
ment is complete, lowGrade contains the lowest grade in the two-dimensional array.
Method getMaximum works similarly to method getMinimum.

Method outputBarChart
Method outputBarChart in Fig. 7.18 is nearly identical to the one in Fig. 7.14. However,
to output the overall grade distribution for a whole semester, the method here uses nested
enhanced for statements (lines 107–111) to create the one-dimensional array frequency
based on all the grades in the two-dimensional array. The rest of the code in each of the
two outputBarChart methods that displays the chart is identical.

Method outputGrades
Method outputGrades (lines 132–156) uses nested for statements to output values of the
array grades and each student’s semester average. The output (Fig. 7.19) shows the result,
which resembles the tabular format of a professor’s physical grade book. Lines 138–139
print the column headings for each test. We use a counter-controlled for statement here
so that we can identify each test with a number. Similarly, the for statement in lines 144–
155 first outputs a row label using a counter variable to identify each student (line 146).
Although array indices start at 0, lines 139 and 146 output test + 1 and student + 1, re-
spectively, to produce test and student numbers starting at 1 (see the output in Fig. 7.19).
The inner for statement (lines 148–149) uses the outer for statement’s counter variable
student to loop through a specific row of array grades and output each student’s test
grade. An enhanced for statement can be nested in a counter-controlled for statement,
and vice versa. Finally, line 153 obtains each student’s semester average by passing the cur-
rent row of grades (i.e., grades[student]) to method getAverage.

154 System.out.printf("%9.2f%n", average);
155 }
156 }
157 } // end class GradeBook

Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 4 of 4.)

280 Chapter 7 Arrays and ArrayLists

Method getAverage
Method getAverage (lines 86–96) takes one argument—a one-dimensional array of test
results for a particular student. When line 153 calls getAverage, the argument is
grades[student], which specifies that a particular row of the two-dimensional array
grades should be passed to getAverage. For example, based on the array created in
Fig. 7.19, the argument grades[1] represents the three values (a one-dimensional array of
grades) stored in row 1 of the two-dimensional array grades. Recall that a two-dimension-
al array is one whose elements are one-dimensional arrays. Method getAverage calculates
the sum of the array elements, divides the total by the number of test results and returns
the floating-point result as a double value (line 95).

Class GradeBookTest That Demonstrates Class GradeBook
Figure 7.19 creates an object of class GradeBook (Fig. 7.18) using the two-dimensional ar-
ray of ints named gradesArray (declared and initialized in lines 10–19). Lines 21–22 pass
a course name and gradesArray to the GradeBook constructor. Lines 23–24 display a wel-
come message containing the course name, then line 25 invokes myGradeBook’s process-
Grades method to display a report summarizing the students’ grades for the semester.

1 // Fig. 7.19: GradeBookTest.java
2 // GradeBookTest creates GradeBook object using a two-dimensional array
3 // of grades, then invokes method processGrades to analyze them.
4 public class GradeBookTest
5 {
6 // main method begins program execution
7 public static void main(String[] args)
8 {
9

10
11
12
13
14
15
16
17
18
19
20
21 GradeBook myGradeBook = new GradeBook(
22 "CS101 Introduction to Java Programming",);
23 System.out.printf("Welcome to the grade book for%n%s%n%n",
24 myGradeBook.getCourseName());
25 myGradeBook.processGrades();
26 }
27 } // end class GradeBookTest

Fig. 7.19 | GradeBookTest creates GradeBook object using a two-dimensional array of grades,
then invokes method processGrades to analyze them. (Part 1 of 2.)

// two-dimensional array of student grades
int[][] gradesArray = {{87, 96, 70},
 {68, 87, 90},
 {94, 100, 90},
 {100, 81, 82},
 {83, 65, 85},
 {78, 87, 65},
 {85, 75, 83},
 {91, 94, 100},
 {76, 72, 84},
 {87, 93, 73}};

gradesArray

7.13 Variable-Length Argument Lists 281

7.13 Variable-Length Argument Lists
With variable-length argument lists, you can create methods that receive an unspecified
number of arguments. A type followed by an ellipsis (...) in a method’s parameter list
indicates that the method receives a variable number of arguments of that particular type.
This use of the ellipsis can occur only once in a parameter list, and the ellipsis, together
with its type and the parameter name, must be placed at the end of the parameter list.
While you can use method overloading and array passing to accomplish much of what is
accomplished with variable-length argument lists, using an ellipsis in a method’s parame-
ter list is more concise.

Figure 7.20 demonstrates method average (lines 7–16), which receives a variable-
length sequence of doubles. Java treats the variable-length argument list as an array whose
elements are all of the same type. So, the method body can manipulate the parameter num-
bers as an array of doubles. Lines 12–13 use the enhanced for loop to walk through the
array and calculate the total of the doubles in the array. Line 15 accesses numbers.length
to obtain the size of the numbers array for use in the averaging calculation. Lines 29, 31
and 33 in main call method average with two, three and four arguments, respectively.
Method average has a variable-length argument list (line 7), so it can average as many

Welcome to the grade book for
CS101 Introduction to Java Programming

The grades are:

 Test 1 Test 2 Test 3 Average
Student 1 87 96 70 84.33
Student 2 68 87 90 81.67
Student 3 94 100 90 94.67
Student 4 100 81 82 87.67
Student 5 83 65 85 77.67
Student 6 78 87 65 76.67
Student 7 85 75 83 81.00
Student 8 91 94 100 95.00
Student 9 76 72 84 77.33
Student 10 87 93 73 84.33

Lowest grade in the grade book is 65
Highest grade in the grade book is 100

Overall grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: ***
70-79: ******
80-89: ***********
90-99: *******
 100: ***

Fig. 7.19 | GradeBookTest creates GradeBook object using a two-dimensional array of grades,
then invokes method processGrades to analyze them. (Part 2 of 2.)

282 Chapter 7 Arrays and ArrayLists

double arguments as the caller passes. The output shows that each call to method average
returns the correct value.

Common Programming Error 7.5
Placing an ellipsis indicating a variable-length argument list in the middle of a parameter
list is a syntax error. An ellipsis may be placed only at the end of the parameter list.

1 // Fig. 7.20: VarargsTest.java
2 // Using variable-length argument lists.
3
4 public class VarargsTest
5 {
6 // calculate average
7 public static double average()
8 {
9 double total = 0.0;

10
11 // calculate total using the enhanced for statement
12
13
14
15 return total / ;
16 }
17
18 public static void main(String[] args)
19 {
20 double d1 = 10.0;
21 double d2 = 20.0;
22 double d3 = 30.0;
23 double d4 = 40.0;
24
25 System.out.printf("d1 = %.1f%nd2 = %.1f%nd3 = %.1f%nd4 = %.1f%n%n",
26 d1, d2, d3, d4);
27
28 System.out.printf("Average of d1 and d2 is %.1f%n",
29);
30 System.out.printf("Average of d1, d2 and d3 is %.1f%n",
31);
32 System.out.printf("Average of d1, d2, d3 and d4 is %.1f%n",
33);
34 }
35 } // end class VarargsTest

d1 = 10.0
d2 = 20.0
d3 = 30.0
d4 = 40.0

Average of d1 and d2 is 15.0
Average of d1, d2 and d3 is 20.0
Average of d1, d2, d3 and d4 is 25.0

Fig. 7.20 | Using variable-length argument lists.

double... numbers

for (double d : numbers)
 total += d;

numbers.length

average(d1, d2)

average(d1, d2, d3)

average(d1, d2, d3, d4)

7.14 Using Command-Line Arguments 283

7.14 Using Command-Line Arguments
It’s possible to pass arguments from the command line to an application via method main’s
String[] parameter, which receives an array of Strings. By convention, this parameter is
named args. When an application is executed using the java command, Java passes the
command-line arguments that appear after the class name in the java command to the
application’s main method as Strings in the array args. The number of command-line ar-
guments is obtained by accessing the array’s length attribute. Common uses of command-
line arguments include passing options and filenames to applications.

Our next example uses command-line arguments to determine the size of an array, the
value of its first element and the increment used to calculate the values of the array’s
remaining elements. The command

passes three arguments, 5, 0 and 4, to the application InitArray. Command-line argu-
ments are separated by white space, not commas. When this command executes, InitAr-
ray’s main method receives the three-element array args (i.e., args.length is 3) in which
args[0] contains the String "5", args[1] contains the String "0" and args[2] contains
the String "4". The program determines how to use these arguments—in Fig. 7.21 we
convert the three command-line arguments to int values and use them to initialize an ar-
ray. When the program executes, if args.length is not 3, the program prints an error mes-
sage and terminates (lines 9–12). Otherwise, lines 14–32 initialize and display the array
based on the values of the command-line arguments.

Line 16 gets args[0]—a String that specifies the array size—and converts it to an
int value that the program uses to create the array in line 17. The static method
parseInt of class Integer converts its String argument to an int.

Lines 20–21 convert the args[1] and args[2] command-line arguments to int
values and store them in initialValue and increment, respectively. Lines 24–25 calcu-
late the value for each array element.

java InitArray 5 0 4

1 // Fig. 7.21: InitArray.java
2 // Initializing an array using command-line arguments.
3
4 public class InitArray
5 {
6 public static void main()
7 {
8 // check number of command-line arguments
9 if ()

10 System.out.printf(
11 "Error: Please re-enter the entire command, including%n" +
12 "an array size, initial value and increment.%n");
13 else
14 {
15 // get array size from first command-line argument
16
17 int[] array = new int[arrayLength];

Fig. 7.21 | Initializing an array using command-line arguments. (Part 1 of 2.)

String[] args

args.length != 3

int arrayLength = Integer.parseInt(args[0]);

284 Chapter 7 Arrays and ArrayLists

The output of the first execution shows that the application received an insufficient
number of command-line arguments. The second execution uses command-line argu-
ments 5, 0 and 4 to specify the size of the array (5), the value of the first element (0) and
the increment of each value in the array (4), respectively. The corresponding output shows
that these values create an array containing the integers 0, 4, 8, 12 and 16. The output
from the third execution shows that the command-line arguments 8, 1 and 2 produce an
array whose 8 elements are the nonnegative odd integers from 1 to 15.

18
19 // get initial value and increment from command-line arguments
20
21
22
23
24
25
26
27 System.out.printf("%s%8s%n", "Index", "Value");
28
29 // display array index and value
30 for (int counter = 0; counter < array.length; counter++)
31 System.out.printf("%5d%8d%n", counter, array[counter]);
32 }
33 }
34 } // end class InitArray

java InitArray
Error: Please re-enter the entire command, including
an array size, initial value and increment.

java InitArray 5 0 4
Index Value
 0 0
 1 4
 2 8
 3 12
 4 16

java InitArray 8 1 2
Index Value
 0 1
 1 3
 2 5
 3 7
 4 9
 5 11
 6 13
 7 15

Fig. 7.21 | Initializing an array using command-line arguments. (Part 2 of 2.)

int initialValue = Integer.parseInt(args[1]);
int increment = Integer.parseInt(args[2]);

// calculate value for each array element
for (int counter = 0; counter < array.length; counter++)
 array[counter] = initialValue + increment * counter;

7.15 Class Arrays 285

7.15 Class Arrays
Class Arrays helps you avoid reinventing the wheel by providing static methods for
common array manipulations. These methods include sort for sorting an array (i.e., ar-
ranging elements into ascending order), binarySearch for searching a sorted array (i.e., de-
termining whether an array contains a specific value and, if so, where the value is located),
equals for comparing arrays and fill for placing values into an array. These methods are
overloaded for primitive-type arrays and for arrays of objects. Our focus in this section is
on using the built-in capabilities provided by the Java API. Chapter 19, Searching, Sorting
and Big O, shows how to implement your own sorting and searching algorithms, a subject
of great interest to computer-science researchers and students.

Figure 7.22 uses Arrays methods sort, binarySearch, equals and fill, and shows
how to copy arrays with class System’s static arraycopy method. In main, line 11 sorts
the elements of array doubleArray. The static method sort of class Arrays orders the
array’s elements in ascending order by default. We discuss how to sort in descending order
later in the chapter. Overloaded versions of sort allow you to sort a specific range of ele-
ments within the array. Lines 12–15 output the sorted array.

1 // Fig. 7.22: ArrayManipulations.java
2 // Arrays class methods and System.arraycopy.
3 import java.util.Arrays;
4
5 public class ArrayManipulations
6 {
7 public static void main(String[] args)
8 {
9 // sort doubleArray into ascending order

10 double[] doubleArray = { 8.4, 9.3, 0.2, 7.9, 3.4 };
11
12 System.out.printf("%ndoubleArray: ");
13
14 for (double value : doubleArray)
15 System.out.printf("%.1f ", value);
16
17 // fill 10-element array with 7s
18 int[] filledIntArray = new int[10];
19
20 displayArray(filledIntArray, "filledIntArray");
21
22 // copy array intArray into array intArrayCopy
23 int[] intArray = { 1, 2, 3, 4, 5, 6 };
24 int[] intArrayCopy = new int[intArray.length];
25
26 displayArray(intArray, "intArray");
27 displayArray(intArrayCopy, "intArrayCopy");
28
29 // compare intArray and intArrayCopy for equality
30
31 System.out.printf("%n%nintArray %s intArrayCopy%n",
32 (b ? "==" : "!="));

Fig. 7.22 | Arrays class methods and System.arraycopy. (Part 1 of 2.)

Arrays.sort(doubleArray);

Arrays.fill(filledIntArray, 7);

System.arraycopy(intArray, 0, intArrayCopy, 0, intArray.length);

boolean b = Arrays.equals(intArray, intArrayCopy);

286 Chapter 7 Arrays and ArrayLists

Line 19 calls static method fill of class Arrays to populate all 10 elements of
filledIntArray with 7s. Overloaded versions of fill allow you to populate a specific
range of elements with the same value. Line 20 calls our class’s displayArray method
(declared at lines 59–65) to output the contents of filledIntArray.

Line 25 copies the elements of intArray into intArrayCopy. The first argument
(intArray) passed to System method arraycopy is the array from which elements are to

33
34 // compare intArray and filledIntArray for equality
35
36 System.out.printf("intArray %s filledIntArray%n",
37 (b ? "==" : "!="));
38
39 // search intArray for the value 5
40
41
42 if (location >= 0)
43 System.out.printf(
44 "Found 5 at element %d in intArray%n", location);
45 else
46 System.out.println("5 not found in intArray");
47
48 // search intArray for the value 8763
49
50
51 if (location >= 0)
52 System.out.printf(
53 "Found 8763 at element %d in intArray%n", location);
54 else
55 System.out.println("8763 not found in intArray");
56 }
57
58 // output values in each array
59 public static void displayArray(int[] array, String description)
60 {
61 System.out.printf("%n%s: ", description);
62
63 for (int value : array)
64 System.out.printf("%d ", value);
65 }
66 } // end class ArrayManipulations

doubleArray: 0.2 3.4 7.9 8.4 9.3
filledIntArray: 7 7 7 7 7 7 7 7 7 7
intArray: 1 2 3 4 5 6
intArrayCopy: 1 2 3 4 5 6

intArray == intArrayCopy
intArray != filledIntArray
Found 5 at element 4 in intArray
8763 not found in intArray

Fig. 7.22 | Arrays class methods and System.arraycopy. (Part 2 of 2.)

b = Arrays.equals(intArray, filledIntArray);

int location = Arrays.binarySearch(intArray, 5);

location = Arrays.binarySearch(intArray, 8763);

7.16 Introduction to Collections and Class ArrayList 287

be copied. The second argument (0) is the index that specifies the starting point in the
range of elements to copy from the array. This value can be any valid array index. The
third argument (intArrayCopy) specifies the destination array that will store the copy. The
fourth argument (0) specifies the index in the destination array where the first copied ele-
ment should be stored. The last argument specifies the number of elements to copy from the
array in the first argument. In this case, we copy all the elements in the array.

Lines 30 and 35 call static method equals of class Arrays to determine whether all
the elements of two arrays are equivalent. If the arrays contain the same elements in the
same order, the method returns true; otherwise, it returns false.

Lines 40 and 49 call static method binarySearch of class Arrays to perform a
binary search on intArray, using the second argument (5 and 8763, respectively) as the
key. If value is found, binarySearch returns the index of the element; otherwise, bina-
rySearch returns a negative value. The negative value returned is based on the search key’s
insertion point—the index where the key would be inserted in the array if we were per-
forming an insert operation. After binarySearch determines the insertion point, it
changes its sign to negative and subtracts 1 to obtain the return value. For example, in
Fig. 7.22, the insertion point for the value 8763 is the element with index 6 in the array.
Method binarySearch changes the insertion point to –6, subtracts 1 from it and returns
the value –7. Subtracting 1 from the insertion point guarantees that method binarySearch
returns positive values (>= 0) if and only if the key is found. This return value is useful for
inserting elements in a sorted array. Chapter 19 discusses binary searching in detail.

Java SE 8—Class Arrays Method parallelSort
The Arrays class now has several new “parallel” methods that take advantage of multi-core
hardware. Arrays method parallelSort can sort large arrays more efficiently on multi-
core systems. In Section 23.12, we create a very large array and use features of the
Java SE 8 Date/Time API to compare how long it takes to sort the array with methods
sort and parallelSort.

7.16 Introduction to Collections and Class ArrayList
The Java API provides several predefined data structures, called collections, used to store
groups of related objects in memory. These classes provide efficient methods that organize,
store and retrieve your data without requiring knowledge of how the data is being stored.
This reduces application-development time.

You’ve used arrays to store sequences of objects. Arrays do not automatically change
their size at execution time to accommodate additional elements. The collection class

Error-Prevention Tip 7.3
When comparing array contents, always use Arrays.equals(array1, array2), which
compares the two arrays’ contents, rather than array1.equals(array2), which compares
whether array1 and array2 refer to the same array object.

Common Programming Error 7.6
Passing an unsorted array to binarySearch is a logic error—the value returned is unde-
fined.

288 Chapter 7 Arrays and ArrayLists

ArrayList<T> (package java.util) provides a convenient solution to this problem—it
can dynamically change its size to accommodate more elements. The T (by convention) is
a placeholder—when declaring a new ArrayList, replace it with the type of elements that
you want the ArrayList to hold. For example,

declares list as an ArrayList collection that can store only Strings. Classes with this
kind of placeholder that can be used with any type are called generic classes. Only
nonprimitive types can be used to declare variables and create objects of generic classes. How-
ever, Java provides a mechanism—known as boxing—that allows primitive values to be
wrapped as objects for use with generic classes. So, for example,

declares integers as an ArrayList that can store only Integers. When you place an int
value into an ArrayList<Integer>, the int value is boxed (wrapped) as an Integer object,
and when you get an Integer object from an ArrayList<Integer>, then assign the object
to an int variable, the int value inside the object is unboxed (unwrapped).

Additional generic collection classes and generics are discussed in Chapters 16 and 20,
respectively. Figure 7.23 shows some common methods of class ArrayList<T>.

Demonstrating an ArrayList<String>
Figure 7.24 demonstrates some common ArrayList capabilities. Line 10 creates a new
empty ArrayList of Strings with a default initial capacity of 10 elements. The capacity
indicates how many items the ArrayList can hold without growing. ArrayList is imple-
mented using a conventional array behind the scenes. When the ArrayList grows, it must
create a larger internal array and copy each element to the new array. This is a time-con-
suming operation. It would be inefficient for the ArrayList to grow each time an element
is added. Instead, it grows only when an element is added and the number of elements is
equal to the capacity—i.e., there’s no space for the new element.

ArrayList<String> list;

ArrayList<Integer> integers;

Method Description

add Adds an element to the end of the ArrayList.
clear Removes all the elements from the ArrayList.
contains Returns true if the ArrayList contains the specified element; otherwise,

returns false.
get Returns the element at the specified index.
indexOf Returns the index of the first occurrence of the specified element in the

ArrayList.
remove Overloaded. Removes the first occurrence of the specified value or the ele-

ment at the specified index.
size Returns the number of elements stored in the ArrayList.
trimToSize Trims the capacity of the ArrayList to the current number of elements.

Fig. 7.23 | Some methods and properties of class ArrayList<T>.

7.16 Introduction to Collections and Class ArrayList 289

1 // Fig. 7.24: ArrayListCollection.java
2 // Generic ArrayList<T> collection demonstration.
3 import java.util.ArrayList;
4
5 public class ArrayListCollection
6 {
7 public static void main(String[] args)
8 {
9 // create a new ArrayList of Strings with an initial capacity of 10

10 ArrayList<String> items = new ArrayList<String>();
11
12 items.add("red"); // append an item to the list
13 items.add(0, "yellow"); // insert "yellow" at index 0
14
15 // header
16 System.out.print(
17 "Display list contents with counter-controlled loop:");
18
19 // display the colors in the list
20 for (int i = 0; i < items.size(); i++)
21 System.out.printf(" %s", items.get(i));
22
23 // display colors using enhanced for in the display method
24 display(items,
25 "%nDisplay list contents with enhanced for statement:");
26
27 items.add("green"); // add "green" to the end of the list
28 items.add("yellow"); // add "yellow" to the end of the list
29 display(items, "List with two new elements:");
30
31 items.remove("yellow"); // remove the first "yellow"
32 display(items, "Remove first instance of yellow:");
33
34 items.remove(1); // remove item at index 1
35 display(items, "Remove second list element (green):");
36
37 // check if a value is in the List
38 System.out.printf("\"red\" is %sin the list%n",
39 items.contains("red") ? "": "not ");
40
41 // display number of elements in the List
42 System.out.printf("Size: %s%n", items.size());
43 }
44
45 // display the ArrayList's elements on the console
46 public static void display(ArrayList<String> items, String header)
47 {
48 System.out.printf(header); // display header
49
50 // display each element in items
51 for (String item : items)
52 System.out.printf(" %s", item);
53

Fig. 7.24 | Generic ArrayList<T> collection demonstration. (Part 1 of 2.)

290 Chapter 7 Arrays and ArrayLists

The add method adds elements to the ArrayList (lines 12–13). The add method with
one argument appends its argument to the end of the ArrayList. The add method with two
arguments inserts a new element at the specified position. The first argument is an index.
As with arrays, collection indices start at zero. The second argument is the value to insert
at that index. The indices of all subsequent elements are incremented by one. Inserting an
element is usually slower than adding an element to the end of the ArrayList

Lines 20–21 display the items in the ArrayList. Method size returns the number of
elements currently in the ArrayList. Method get (line 21) obtains the element at a specified
index. Lines 24–25 display the elements again by invoking method display (defined at lines
46–55). Lines 27–28 add two more elements to the ArrayList, then line 29 displays the ele-
ments again to confirm that the two elements were added to the end of the collection.

The remove method is used to remove an element with a specific value (line 31). It
removes only the first such element. If no such element is in the ArrayList, remove does
nothing. An overloaded version of the method removes the element at the specified index
(line 34). When an element is removed, the indices of any elements after the removed ele-
ment decrease by one.

Line 39 uses the contains method to check if an item is in the ArrayList. The con-
tains method returns true if the element is found in the ArrayList, and false otherwise.
The method compares its argument to each element of the ArrayList in order, so using
contains on a large ArrayList can be inefficient. Line 42 displays the ArrayList’s size.

Java SE 7—Diamond (<>) Notation for Creating an Object of a Generic Class
Consider line 10 of Fig. 7.24:

Notice that ArrayList<String> appears in the variable declaration and in the class instance
creation expression. Java SE 7 introduced the diamond (<>) notation to simplify statements
like this. Using <> in a class instance creation expression for an object of a generic class tells
the compiler to determine what belongs in the angle brackets. In Java SE 7 and higher, the
preceding statement can be written as:

When the compiler encounters the diamond (<>) in the class instance creation expression,
it uses the declaration of variable items to determine the ArrayList’s element type
(String)—this is known as inferring the element type.

54 System.out.println();
55 }
56 } // end class ArrayListCollection

Display list contents with counter-controlled loop: yellow red
Display list contents with enhanced for statement: yellow red
List with two new elements: yellow red green yellow
Remove first instance of yellow: red green yellow
Remove second list element (green): red yellow
"red" is in the list
Size: 2

ArrayList<String> items = new ArrayList<String>();

ArrayList<String> items = new ArrayList<>();

Fig. 7.24 | Generic ArrayList<T> collection demonstration. (Part 2 of 2.)

7.17 (Optional) GUI and Graphics Case Study: Drawing Arcs 291

7.17 (Optional) GUI and Graphics Case Study: Drawing
Arcs
Using Java’s graphics features, we can create complex drawings that would be more tedious
to code line by line. In Figs. 7.25–7.26, we use arrays and repetition statements to draw a
rainbow by using Graphics method fillArc. Drawing arcs in Java is similar to drawing
ovals—an arc is simply a section of an oval.

In Fig. 7.25, lines 10–11 declare and create two new color constants—VIOLET and
INDIGO. As you may know, the colors of a rainbow are red, orange, yellow, green, blue,
indigo and violet. Java has predefined constants only for the first five colors. Lines 15–17
initialize an array with the colors of the rainbow, starting with the innermost arcs first. The
array begins with two Color.WHITE elements, which, as you’ll soon see, are for drawing the
empty arcs at the center of the rainbow. The instance variables can be initialized when
they’re declared, as shown in lines 10–17. The constructor (lines 20–23) contains a single
statement that calls method setBackground (which is inherited from class JPanel) with
the parameter Color.WHITE. Method setBackground takes a single Color argument and
sets the background of the component to that color.

1 // Fig. 7.25: DrawRainbow.java
2 // Drawing a rainbow using arcs and an array of colors.
3 import java.awt.Color;
4 import java.awt.Graphics;
5 import javax.swing.JPanel;
6
7 public class DrawRainbow extends JPanel
8 {
9 // define indigo and violet

10 private final static Color VIOLET = new Color(128, 0, 128);
11 private final static Color INDIGO = new Color(75, 0, 130);
12
13 // colors to use in the rainbow, starting from the innermost
14 // The two white entries result in an empty arc in the center
15 private Color[] colors =
16 { Color.WHITE, Color.WHITE, VIOLET, INDIGO, Color.BLUE,
17 Color.GREEN, Color.YELLOW, Color.ORANGE, Color.RED };
18
19 // constructor
20 public DrawRainbow()
21 {
22 setBackground(Color.WHITE); // set the background to white
23 }
24
25 // draws a rainbow using concentric arcs
26 public void paintComponent(Graphics g)
27 {
28 super.paintComponent(g);
29
30 int radius = 20; // radius of an arc
31

Fig. 7.25 | Drawing a rainbow using arcs and an array of colors. (Part 1 of 2.)

292 Chapter 7 Arrays and ArrayLists

Line 30 in paintComponent declares local variable radius, which determines the
radius of each arc. Local variables centerX and centerY (lines 33–34) determine the loca-
tion of the midpoint on the base of the rainbow. The loop at lines 37–46 uses control vari-
able counter to count backward from the end of the array, drawing the largest arcs first
and placing each successive smaller arc on top of the previous one. Line 40 sets the color
to draw the current arc from the array. The reason we have Color.WHITE entries at the
beginning of the array is to create the empty arc in the center. Otherwise, the center of the
rainbow would just be a solid violet semicircle. You can change the individual colors and
the number of entries in the array to create new designs.

The fillArc method call at lines 43–45 draws a filled semicircle. Method fillArc
requires six parameters. The first four represent the bounding rectangle in which the arc
will be drawn. The first two of these specify the coordinates for the upper-left corner of the
bounding rectangle, and the next two specify its width and height. The fifth parameter is
the starting angle on the oval, and the sixth specifies the sweep, or the amount of arc to
cover. The starting angle and sweep are measured in degrees, with zero degrees pointing
right. A positive sweep draws the arc counterclockwise, while a negative sweep draws the arc
clockwise. A method similar to fillArc is drawArc—it requires the same parameters as
fillArc, but draws the edge of the arc rather than filling it.

Class DrawRainbowTest (Fig. 7.26) creates and sets up a JFrame to display the
rainbow. Once the program makes the JFrame visible, the system calls the paintCompo-
nent method in class DrawRainbow to draw the rainbow on the screen.

32 // draw the rainbow near the bottom-center
33 int centerX = getWidth() / 2;
34 int centerY = getHeight() - 10;
35
36 // draws filled arcs starting with the outermost
37 for (int counter = colors.length; counter > 0; counter--)
38 {
39 // set the color for the current arc
40 g.setColor(colors[counter - 1]);
41
42 // fill the arc from 0 to 180 degrees
43 g.fillArc(centerX - counter * radius,
44 centerY - counter * radius,
45 counter * radius * 2, counter * radius * 2, 0, 180);
46 }
47 }
48 } // end class DrawRainbow

1 // Fig. 7.26: DrawRainbowTest.java
2 // Test application to display a rainbow.
3 import javax.swing.JFrame;
4
5 public class DrawRainbowTest
6 {

Fig. 7.26 | Test application to display a rainbow. (Part 1 of 2.)

Fig. 7.25 | Drawing a rainbow using arcs and an array of colors. (Part 2 of 2.)

7.17 (Optional) GUI and Graphics Case Study: Drawing Arcs 293

GUI and Graphics Case Study Exercise
7.1 (Drawing Spirals) In this exercise, you’ll draw spirals with methods drawLine and drawArc.

a) Draw a square-shaped spiral (as in the left screen capture of Fig. 7.27), centered on the
panel, using method drawLine. One technique is to use a loop that increases the line
length after drawing every second line. The direction in which to draw the next line
should follow a distinct pattern, such as down, left, up, right.

b) Draw a circular spiral (as in the right screen capture of Fig. 7.27), using method
drawArc to draw one semicircle at a time. Each successive semicircle should have a larger
radius (as specified by the bounding rectangle’s width) and should continue drawing
where the previous semicircle finished.

7 public static void main(String[] args)
8 {
9 DrawRainbow panel = new DrawRainbow();

10 JFrame application = new JFrame();
11
12 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 application.add(panel);
14 application.setSize(400, 250);
15 application.setVisible(true);
16 }
17 } // end class DrawRainbowTest

Fig. 7.27 | Drawing a spiral using drawLine (left) and drawArc (right).

Fig. 7.26 | Test application to display a rainbow. (Part 2 of 2.)

294 Chapter 7 Arrays and ArrayLists

7.18 Wrap-Up
This chapter began our introduction to data structures, exploring the use of arrays to store
data in and retrieve data from lists and tables of values. The chapter examples demonstrated
how to declare an array, initialize an array and refer to individual elements of an array. The
chapter introduced the enhanced for statement to iterate through arrays. We used excep-
tion handling to test for ArrayIndexOutOfBoundsExceptions that occur when a program
attempts to access an array element outside the bounds of an array. We also illustrated how
to pass arrays to methods and how to declare and manipulate multidimensional arrays. Fi-
nally, the chapter showed how to write methods that use variable-length argument lists and
how to read arguments passed to a program from the command line.

We introduced the ArrayList<T> generic collection, which provides all the function-
ality and performance of arrays, along with other useful capabilities such as dynamic
resizing. We used the add methods to add new items to the end of an ArrayList and to
insert items in an ArrayList. The remove method was used to remove the first occurrence
of a specified item, and an overloaded version of remove was used to remove an item at a
specified index. We used the size method to obtain number of items in the ArrayList.

We continue our coverage of data structures in Chapter 16, Generic Collections.
Chapter 16 introduces the Java Collections Framework, which uses generics to allow you
to specify the exact types of objects that a particular data structure will store. Chapter 16
also introduces Java’s other predefined data structures. Chapter 16 covers additional
methods of class Arrays. You’ll be able to use some of the Arrays methods discussed in
Chapter 16 after reading the current chapter, but some of the Arrays methods require
knowledge of concepts presented later in the book. Chapter 20 discusses generics, which
enable you to create general models of methods and classes that can be declared once, but
used with many different data types. Chapter 21, Custom Generic Data Structures, shows
how to build dynamic data structures, such as lists, queues, stacks and trees, that can grow
and shrink as programs execute.

We’ve now introduced the basic concepts of classes, objects, control statements,
methods, arrays and collections. In Chapter 8, we take a deeper look at classes and objects.

Summary
Section 7.1 Introduction
• Arrays (p. 244) are fixed-length data structures consisting of related data items of the same type.

Section 7.2 Arrays
• An array is a group of variables (called elements or components; p. 245) containing values that

all have the same type. Arrays are objects, so they’re considered reference types.

• A program refers to any one of an array’s elements with an array-access expression (p. 245) that
includes the name of the array followed by the index of the particular element in square brackets
([]; p. 245).

• The first element in every array has index zero (p. 245) and is sometimes called the zeroth element.

• An index must be a nonnegative integer. A program can use an expression as an index.

• An array object knows its own length and stores this information in a length instance variable
(p. 246).

 Summary 295

Section 7.3 Declaring and Creating Arrays
• To create an array object, specify the array’s element type and the number of elements as part of

an array-creation expression (p. 246) that uses keyword new.

• When an array is created, each element receives a default value—zero for numeric primitive-type
elements, false for boolean elements and null for references.

• In an array declaration, the type and the square brackets can be combined at the beginning of the
declaration to indicate that all the identifiers in the declaration are array variables.

• Every element of a primitive-type array contains a variable of the array’s declared type. Every el-
ement of a reference-type array is a reference to an object of the array’s declared type.

Section 7.4 Examples Using Arrays
• A program can create an array and initialize its elements with an array initializer (p. 248).

• Constant variables (p. 250) are declared with keyword final, must be initialized before they’re
used and cannot be modified thereafter.

Section 7.5 Exception Handling: Processing the Incorrect Response
• An exception indicates a problem that occurs while a program executes. The name “exception”

suggests that the problem occurs infrequently—if the “rule” is that a statement normally executes
correctly, then the problem represents the “exception to the rule.”

• Exception handling (p. 256) enables you to create fault-tolerant programs.

• When a Java program executes, the JVM checks array indices to ensure that they’re greater than
or equal to 0 and less than the array’s length. If a program uses an invalid index, Java generates
an exception (p. 256) to indicate that an error occurred in the program at execution time.

• To handle an exception, place any code that might throw an exception (p. 256) in a try state-
ment.

• The try block (p. 256) contains the code that might throw an exception, and the catch block
(p. 256) contains the code that handles the exception if one occurs.

• You can have many catch blocks to handle different types of exceptions that might be thrown in
the corresponding try block.

• When a try block terminates, any variables declared in the try block go out of scope.

• A catch block declares a type and an exception parameter. Inside the catch block, you can use
the parameter’s identifier to interact with a caught exception object.

• When a program is executed, array element indices are checked for validity—all indices must be
greater than or equal to 0 and less than the length of the array. If an attempt is made to use an in-
valid index to access an element, an ArrayIndexOutOfRangeException (p. 257) exception occurs.

• An exception object’s toString method returns the exception’s error message.

Section 7.6 Case Study: Card Shuffling and Dealing Simulation
• The toString method of an object is called implicitly when the object is used where a String is

expected (e.g., when printf outputs the object as a String using the %s format specifier or when
the object is concatenated to a String using the + operator).

Section 7.7 Enhanced for Statement
• The enhanced for statement (p. 262) allows you to iterate through the elements of an array or a

collection without using a counter. The syntax of an enhanced for statement is:

for (parameter : arrayName)
 statement

296 Chapter 7 Arrays and ArrayLists

where parameter has a type and an identifier (e.g., int number), and arrayName is the array
through which to iterate.

• The enhanced for statement cannot be used to modify elements in an array. If a program needs
to modify elements, use the traditional counter-controlled for statement.

Section 7.8 Passing Arrays to Methods
• When an argument is passed by value, a copy of the argument’s value is made and passed to the

called method. The called method works exclusively with the copy.

Section 7.9 Pass-By-Value vs. Pass-By-Reference
• When an argument is passed by reference (p. 265), the called method can access the argument’s

value in the caller directly and possibly modify it.

• All arguments in Java are passed by value. A method call can pass two types of values to a meth-
od—copies of primitive values and copies of references to objects. Although an object’s reference
is passed by value (p. 265), a method can still interact with the referenced object by calling its
public methods using the copy of the object’s reference.

• To pass an object reference to a method, simply specify in the method call the name of the vari-
able that refers to the object.

• When you pass an array or an individual array element of a reference type to a method, the called
method receives a copy of the array or element’s reference. When you pass an individual element
of a primitive type, the called method receives a copy of the element’s value.

• To pass an individual array element to a method, use the indexed name of the array.

Section 7.11 Multidimensional Arrays
• Multidimensional arrays with two dimensions are often used to represent tables of values con-

sisting of information arranged in rows and columns.

• A two-dimensional array (p. 272) with m rows and n columns is called an m-by-n array. Such an
array can be initialized with an array initializer of the form

arrayType[][] arrayName = {{row1 initializer}, {row2 initializer}, …};

• Multidimensional arrays are maintained as arrays of separate one-dimensional arrays. As a result,
the lengths of the rows in a two-dimensional array are not required to be the same.

• A multidimensional array with the same number of columns in every row can be created with an
array-creation expression of the form

arrayType[][] arrayName = new arrayType[numRows][numColumns];

Section 7.13 Variable-Length Argument Lists
• An argument type followed by an ellipsis (...; p. 281) in a method’s parameter list indicates that

the method receives a variable number of arguments of that particular type. The ellipsis can occur
only once in a method’s parameter list. It must be at the end of the parameter list.

• A variable-length argument list (p. 281) is treated as an array within the method body. The num-
ber of arguments in the array can be obtained using the array’s length field.

Section 7.14 Using Command-Line Arguments
• Passing arguments to main (p. 283) from the command line is achieved by including a parameter

of type String[] in the parameter list of main. By convention, main’s parameter is named args.

• Java passes command-line arguments that appear after the class name in the java command to
the application’s main method as Strings in the array args.

 Self-Review Exercises 297

Section 7.15 Class Arrays
• Class Arrays (p. 285) provides static methods that peform common array manipulations, in-

cluding sort to sort an array, binarySearch to search a sorted array, equals to compare arrays
and fill to place items in an array.

• Class System’s arraycopy method (p. 285) enables you to copy the elements of one array into
another.

Section 7.16 Introduction to Collections and Class ArrayList
• The Java API’s collection classes provide efficient methods that organize, store and retrieve data

without requiring knowledge of how the data is being stored.

• An ArrayList<T> (p. 288) is similar to an array but can be dynamically resized.

• The add method (p. 290) with one argument appends an element to the end of an ArrayList.

• The add method with two arguments inserts a new element at a specified position in an ArrayList.

• The size method (p. 290) returns the number of elements currently in an ArrayList.

• The remove method with a reference to an object as an argument removes the first element that
matches the argument’s value.

• The remove method with an integer argument removes the element at the specified index, and
all elements above that index are shifted down by one.

• The contains method returns true if the element is found in the ArrayList, and false otherwise.

Self-Review Exercises
7.1 Fill in the blank(s) in each of the following statements:

a) Lists and tables of values can be stored in and .
b) An array is a group of (called elements or components) containing values that

all have the same .
c) The allows you to iterate through an array’s elements without using a counter.
d) The number used to refer to a particular array element is called the element’s .
e) An array that uses two indices is referred to as a(n) array.
f) Use the enhanced for statement to walk through double array numbers.
g) Command-line arguments are stored in .
h) Use the expression to receive the total number of arguments in a command

line. Assume that command-line arguments are stored in String[] args.
i) Given the command java MyClass test, the first command-line argument is .
j) A(n) in the parameter list of a method indicates that the method can receive

a variable number of arguments.

7.2 Determine whether each of the following is true or false. If false, explain why.
a) An array can store many different types of values.
b) An array index should normally be of type float.
c) An individual array element that’s passed to a method and modified in that method will

contain the modified value when the called method completes execution.
d) Command-line arguments are separated by commas.

7.3 Perform the following tasks for an array called fractions:
a) Declare a constant ARRAY_SIZE that’s initialized to 10.
b) Declare an array with ARRAY_SIZE elements of type double, and initialize the elements to 0.
c) Refer to array element 4.
d) Assign the value 1.667 to array element 9.
e) Assign the value 3.333 to array element 6.

298 Chapter 7 Arrays and ArrayLists

f) Sum all the elements of the array, using a for statement. Declare the integer variable x
as a control variable for the loop.

7.4 Perform the following tasks for an array called table:
a) Declare and create the array as an integer array that has three rows and three columns.

Assume that the constant ARRAY_SIZE has been declared to be 3.
b) How many elements does the array contain?
c) Use a for statement to initialize each element of the array to the sum of its indices. As-

sume that the integer variables x and y are declared as control variables.

7.5 Find and correct the error in each of the following program segments:
a) final int ARRAY_SIZE = 5;

ARRAY_SIZE = 10;
b) Assume int[] b = new int[10];

for (int i = 0; i <= b.length; i++)
 b[i] = 1;

c) Assume int[][] a = {{1, 2}, {3, 4}};
 a[1, 1] = 5;

Answers to Self-Review Exercises
7.1 a) arrays, collections. b) variables, type. c) enhanced for statement. d) index (or subscript
or position number). e) two-dimensional. f) for (double d : numbers). g) an array of Strings, called
args by convention. h) args.length. i) test. j) ellipsis (...).

7.2 a) False. An array can store only values of the same type.
b) False. An array index must be an integer or an integer expression.
c) For individual primitive-type elements of an array: False. A called method receives and

manipulates a copy of the value of such an element, so modifications do not affect the
original value. If the reference of an array is passed to a method, however, modifications
to the array elements made in the called method are indeed reflected in the original. For
individual elements of a reference type: True. A called method receives a copy of the
reference of such an element, and changes to the referenced object will be reflected in
the original array element.

d) False. Command-line arguments are separated by white space.

7.3 a) final int ARRAY_SIZE = 10;
b) double[] fractions = new double[ARRAY_SIZE];
c) fractions[4]
d) fractions[9] = 1.667;
e) fractions[6] = 3.333;
f) double total = 0.0;

for (int x = 0; x < fractions.length; x++)
 total += fractions[x];

7.4 a) int[][] table = new int[ARRAY_SIZE][ARRAY_SIZE];
b) Nine.
c) for (int x = 0; x < table.length; x++)

 for (int y = 0; y < table[x].length; y++)
 table[x][y] = x + y;

7.5 a) Error: Assigning a value to a constant after it has been initialized.
Correction: Assign the correct value to the constant in a final int ARRAY_SIZE
declaration or declare another variable.

 Exercises 299

b) Error: Referencing an array element outside the bounds of the array (b[10]).
Correction: Change the <= operator to <.

c) Error: Array indexing is performed incorrectly.
Correction: Change the statement to a[1][1] = 5;.

Exercises
7.6 Fill in the blanks in each of the following statements:

a) One-dimensional array p contains four elements. The names of those elements are
, , and .

b) Naming an array, stating its type and specifying the number of dimensions in the array
is called the array.

c) In a two-dimensional array, the first index identifies the of an element and the
second index identifies the of an element.

d) An m-by-n array contains rows, columns and elements.
e) The name of the element in row 3 and column 5 of array d is .

7.7 Determine whether each of the following is true or false. If false, explain why.
a) To refer to a particular location or element within an array, we specify the name of the

array and the value of the particular element.
b) An array declaration reserves space for the array.
c) To indicate that 100 locations should be reserved for integer array p, you write the dec-

laration
 p[100];

d) An application that initializes the elements of a 15-element array to zero must contain
at least one for statement.

e) An application that totals the elements of a two-dimensional array must contain nested
for statements.

7.8 Write Java statements to accomplish each of the following tasks:
a) Display the value of element 6 of array f.
b) Initialize each of the five elements of one-dimensional integer array g to 8.
c) Total the 100 elements of floating-point array c.
d) Copy 11-element array a into the first portion of array b, which contains 34 elements.
e) Determine and display the smallest and largest values contained in 99-element floating-

point array w.

7.9 Consider a two-by-three integer array t.
a) Write a statement that declares and creates t.
b) How many rows does t have?
c) How many columns does t have?
d) How many elements does t have?
e) Write access expressions for all the elements in row 1 of t.
f) Write access expressions for all the elements in column 2 of t.
g) Write a single statement that sets the element of t in row 0 and column 1 to zero.
h) Write individual statements to initialize each element of t to zero.
i) Write a nested for statement that initializes each element of t to zero.
j) Write a nested for statement that inputs the values for the elements of t from the user.
k) Write a series of statements that determines and displays the smallest value in t.
l) Write a single printf statement that displays the elements of the first row of t.
m) Write a statement that totals the elements of the third column of t. Do not use repetition.
n) Write a series of statements that displays the contents of t in tabular format. List the

column indices as headings across the top, and list the row indices at the left of each row.

300 Chapter 7 Arrays and ArrayLists

7.10 (Sales Commissions) Use a one-dimensional array to solve the following problem: A com-
pany pays its salespeople on a commission basis. The salespeople receive $200 per week plus 9% of
their gross sales for that week. For example, a salesperson who grosses $5,000 in sales in a week re-
ceives $200 plus 9% of $5,000, or a total of $650. Write an application (using an array of counters)
that determines how many of the salespeople earned salaries in each of the following ranges (assume
that each salesperson’s salary is truncated to an integer amount):

a) $200–299
b) $300–399
c) $400–499
d) $500–599
e) $600–699
f) $700–799
g) $800–899
h) $900–999
i) $1,000 and over

Summarize the results in tabular format.

7.11 Write statements that perform the following one-dimensional-array operations:
a) Set the 10 elements of integer array counts to zero.
b) Add one to each of the 15 elements of integer array bonus.
c) Display the five values of integer array bestScores in column format.

7.12 (Duplicate Elimination) Use a one-dimensional array to solve the following problem:
Write an application that inputs five numbers, each between 10 and 100, inclusive. As each number
is read, display it only if it’s not a duplicate of a number already read. Provide for the “worst case,”
in which all five numbers are different. Use the smallest possible array to solve this problem. Display
the complete set of unique values input after the user enters each new value.

7.13 Label the elements of three-by-five two-dimensional array sales to indicate the order in
which they’re set to zero by the following program segment:

for (int row = 0; row < sales.length; row++)
{
 for (int col = 0; col < sales[row].length; col++)
 {
 sales[row][col] = 0;
 }
}

7.14 (Variable-Length Argument List) Write an application that calculates the product of a series
of integers that are passed to method product using a variable-length argument list. Test your meth-
od with several calls, each with a different number of arguments.

7.15 (Command-Line Arguments) Rewrite Fig. 7.2 so that the size of the array is specified by the
first command-line argument. If no command-line argument is supplied, use 10 as the default size
of the array.

7.16 (Using the Enhanced for Statement) Write an application that uses an enhanced for state-
ment to sum the double values passed by the command-line arguments. [Hint: Use the static
method parseDouble of class Double to convert a String to a double value.]

7.17 (Dice Rolling) Write an application to simulate the rolling of two dice. The application
should use an object of class Random once to roll the first die and again to roll the second die. The
sum of the two values should then be calculated. Each die can show an integer value from 1 to 6, so
the sum of the values will vary from 2 to 12, with 7 being the most frequent sum, and 2 and 12 the
least frequent. Figure 7.28 shows the 36 possible combinations of the two dice. Your application

 Exercises 301

should roll the dice 36,000,000 times. Use a one-dimensional array to tally the number of times
each possible sum appears. Display the results in tabular format.

7.18 (Game of Craps) Write an application that runs 1,000,000 games of craps (Fig. 6.8) and
answers the following questions:

a) How many games are won on the first roll, second roll, …, twentieth roll and after the
twentieth roll?

b) How many games are lost on the first roll, second roll, …, twentieth roll and after the
twentieth roll?

c) What are the chances of winning at craps? [Note: You should discover that craps is one
of the fairest casino games. What do you suppose this means?]

d) What is the average length of a game of craps?
e) Do the chances of winning improve with the length of the game?

7.19 (Airline Reservations System) A small airline has just purchased a computer for its new au-
tomated reservations system. You’ve been asked to develop the new system. You’re to write an ap-
plication to assign seats on each flight of the airline’s only plane (capacity: 10 seats).

Your application should display the following alternatives: Please type 1 for First Class and
Please type 2 for Economy. If the user types 1, your application should assign a seat in the first-
class section (seats 1–5). If the user types 2, your application should assign a seat in the economy
section (seats 6–10). Your application should then display a boarding pass indicating the person’s
seat number and whether it’s in the first-class or economy section of the plane.

Use a one-dimensional array of primitive type boolean to represent the seating chart of the
plane. Initialize all the elements of the array to false to indicate that all the seats are empty. As
each seat is assigned, set the corresponding element of the array to true to indicate that the seat is
no longer available.

Your application should never assign a seat that has already been assigned. When the economy
section is full, your application should ask the person if it’s acceptable to be placed in the first-class
section (and vice versa). If yes, make the appropriate seat assignment. If no, display the message
"Next flight leaves in 3 hours."

7.20 (Total Sales) Use a two-dimensional array to solve the following problem: A company has
four salespeople (1 to 4) who sell five different products (1 to 5). Once a day, each salesperson passes
in a slip for each type of product sold. Each slip contains the following:

a) The salesperson number
b) The product number
c) The total dollar value of that product sold that day

Thus, each salesperson passes in between 0 and 5 sales slips per day. Assume that the information
from all the slips for last month is available. Write an application that will read all this information for

Fig. 7.28 | The 36 possible sums of two dice.

2

1

3

4

5

6

3

2

4

5

6

7

4

3

5

6

7

8

5

4

6

7

8

9

6

5

7

8

9

10

7

6

8

9

10

11

8

7

9

10

11

12

321 654

302 Chapter 7 Arrays and ArrayLists

last month’s sales and summarize the total sales by salesperson and by product. All totals should be
stored in the two-dimensional array sales. After processing all the information for last month, dis-
play the results in tabular format, with each column representing a salesperson and each row repre-
senting a particular product. Cross-total each row to get the total sales of each product for last month.
Cross-total each column to get the total sales by salesperson for last month. Your output should
include these cross-totals to the right of the totaled rows and to the bottom of the totaled columns.

7.21 (Turtle Graphics) The Logo language made the concept of turtle graphics famous. Imagine
a mechanical turtle that walks around the room under the control of a Java application. The turtle
holds a pen in one of two positions, up or down. While the pen is down, the turtle traces out shapes
as it moves, and while the pen is up, the turtle moves about freely without writing anything. In this
problem, you’ll simulate the operation of the turtle and create a computerized sketchpad.

Use a 20-by-20 array floor that’s initialized to zeros. Read commands from an array that con-
tains them. Keep track of the current position of the turtle at all times and whether the pen is cur-
rently up or down. Assume that the turtle always starts at position (0, 0) of the floor with its pen
up. The set of turtle commands your application must process are shown in Fig. 7.29.

Suppose that the turtle is somewhere near the center of the floor. The following “program”
would draw and display a 12-by-12 square, leaving the pen in the up position:

2
5,12
3
5,12
3
5,12
3
5,12
1
6
9

As the turtle moves with the pen down, set the appropriate elements of array floor to 1s. When the
6 command (display the array) is given, wherever there’s a 1 in the array, display an asterisk or any
character you choose. Wherever there’s a 0, display a blank.

Write an application to implement the turtle graphics capabilities discussed here. Write several
turtle graphics programs to draw interesting shapes. Add other commands to increase the power of
your turtle graphics language.

Command Meaning

1 Pen up

2 Pen down

3 Turn right

4 Turn left

5,10 Move forward 10 spaces (replace 10 for a different number of spaces)

6 Display the 20-by-20 array

9 End of data (sentinel)

Fig. 7.29 | Turtle graphics commands.

 Exercises 303

7.22 (Knight’s Tour) An interesting puzzler for chess buffs is the Knight’s Tour problem, origi-
nally proposed by the mathematician Euler. Can the knight piece move around an empty chess-
board and touch each of the 64 squares once and only once? We study this intriguing problem in
depth here.

The knight makes only L-shaped moves (two spaces in one direction and one space in a per-
pendicular direction). Thus, as shown in Fig. 7.30, from a square near the middle of an empty
chessboard, the knight (labeled K) can make eight different moves (numbered 0 through 7).

a) Draw an eight-by-eight chessboard on a sheet of paper, and attempt a Knight’s Tour by
hand. Put a 1 in the starting square, a 2 in the second square, a 3 in the third, and so on.
Before starting the tour, estimate how far you think you’ll get, remembering that a full
tour consists of 64 moves. How far did you get? Was this close to your estimate?

b) Now let’s develop an application that will move the knight around a chessboard. The
board is represented by an eight-by-eight two-dimensional array board. Each square is
initialized to zero. We describe each of the eight possible moves in terms of its horizon-
tal and vertical components. For example, a move of type 0, as shown in Fig. 7.30, con-
sists of moving two squares horizontally to the right and one square vertically upward.
A move of type 2 consists of moving one square horizontally to the left and two squares
vertically upward. Horizontal moves to the left and vertical moves upward are indicated
with negative numbers. The eight moves may be described by two one-dimensional ar-
rays, horizontal and vertical, as follows:

horizontal[0] = 2 vertical[0] = -1
horizontal[1] = 1 vertical[1] = -2
horizontal[2] = -1 vertical[2] = -2
horizontal[3] = -2 vertical[3] = -1
horizontal[4] = -2 vertical[4] = 1
horizontal[5] = -1 vertical[5] = 2
horizontal[6] = 1 vertical[6] = 2
horizontal[7] = 2 vertical[7] = 1

Let the variables currentRow and currentColumn indicate the row and column,
respectively, of the knight’s current position. To make a move of type moveNumber,
where moveNumber is between 0 and 7, your application should use the statements

currentRow += vertical[moveNumber];
currentColumn += horizontal[moveNumber];

Write an application to move the knight around the chessboard. Keep a counter
that varies from 1 to 64. Record the latest count in each square the knight moves to.

Fig. 7.30 | The eight possible moves of the knight.

0 54321

K

2 1

3

4

0

7

5 6

1

2

0

3

4

5

6

7

6 7

304 Chapter 7 Arrays and ArrayLists

Test each potential move to see if the knight has already visited that square. Test every
potential move to ensure that the knight does not land off the chessboard. Run the
application. How many moves did the knight make?

c) After attempting to write and run a Knight’s Tour application, you’ve probably devel-
oped some valuable insights. We’ll use these insights to develop a heuristic (i.e., a com-
mon-sense rule) for moving the knight. Heuristics do not guarantee success, but a
carefully developed heuristic greatly improves the chance of success. You may have ob-
served that the outer squares are more troublesome than the squares nearer the center
of the board. In fact, the most troublesome or inaccessible squares are the four corners.

Intuition may suggest that you should attempt to move the knight to the most
troublesome squares first and leave open those that are easiest to get to, so that when
the board gets congested near the end of the tour, there will be a greater chance of suc-
cess.

We could develop an “accessibility heuristic” by classifying each of the squares
according to how accessible it is and always moving the knight (using the knight’s L-
shaped moves) to the most inaccessible square. We label a two-dimensional array
accessibility with numbers indicating from how many squares each particular
square is accessible. On a blank chessboard, each of the 16 squares nearest the center is
rated as 8, each corner square is rated as 2, and the other squares have accessibility
numbers of 3, 4 or 6 as follows:

2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2

Write a new version of the Knight’s Tour, using the accessibility heuristic. The
knight should always move to the square with the lowest accessibility number. In case
of a tie, the knight may move to any of the tied squares. Therefore, the tour may begin
in any of the four corners. [Note: As the knight moves around the chessboard, your
application should reduce the accessibility numbers as more squares become occupied.
In this way, at any given time during the tour, each available square’s accessibility num-
ber will remain equal to precisely the number of squares from which that square may
be reached.] Run this version of your application. Did you get a full tour? Modify the
application to run 64 tours, one starting from each square of the chessboard. How
many full tours did you get?

d) Write a version of the Knight’s Tour application that, when encountering a tie between
two or more squares, decides what square to choose by looking ahead to those squares
reachable from the “tied” squares. Your application should move to the tied square for
which the next move would arrive at a square with the lowest accessibility number.

7.23 (Knight’s Tour: Brute-Force Approaches) In part (c) of Exercise 7.22, we developed a solu-
tion to the Knight’s Tour problem. The approach used, called the “accessibility heuristic,” generates
many solutions and executes efficiently.

As computers continue to increase in power, we’ll be able to solve more problems with sheer
computer power and relatively unsophisticated algorithms. Let’s call this approach “brute-force”
problem solving.

a) Use random-number generation to enable the knight to walk around the chessboard (in
its legitimate L-shaped moves) at random. Your application should run one tour and
display the final chessboard. How far did the knight get?

 Exercises 305

b) Most likely, the application in part (a) produced a relatively short tour. Now modify your
application to attempt 1,000 tours. Use a one-dimensional array to keep track of the num-
ber of tours of each length. When your application finishes attempting the 1,000 tours, it
should display this information in neat tabular format. What was the best result?

c) Most likely, the application in part (b) gave you some “respectable” tours, but no full
tours. Now let your application run until it produces a full tour. [Caution: This version
of the application could run for hours on a powerful computer.] Once again, keep a ta-
ble of the number of tours of each length, and display this table when the first full tour
is found. How many tours did your application attempt before producing a full tour?
How much time did it take?

d) Compare the brute-force version of the Knight’s Tour with the accessibility-heuristic
version. Which required a more careful study of the problem? Which algorithm was
more difficult to develop? Which required more computer power? Could we be certain
(in advance) of obtaining a full tour with the accessibility-heuristic approach? Could we
be certain (in advance) of obtaining a full tour with the brute-force approach? Argue the
pros and cons of brute-force problem solving in general.

7.24 (Eight Queens) Another puzzler for chess buffs is the Eight Queens problem, which asks the
following: Is it possible to place eight queens on an empty chessboard so that no queen is “attacking”
any other (i.e., no two queens are in the same row, in the same column or along the same diagonal)?
Use the thinking developed in Exercise 7.22 to formulate a heuristic for solving the Eight Queens
problem. Run your application. [Hint: It’s possible to assign a value to each square of the chessboard
to indicate how many squares of an empty chessboard are “eliminated” if a queen is placed in that
square. Each of the corners would be assigned the value 22, as demonstrated by Fig. 7.31. Once
these “elimination numbers” are placed in all 64 squares, an appropriate heuristic might be as fol-
lows: Place the next queen in the square with the smallest elimination number. Why is this strategy
intuitively appealing?]

7.25 (Eight Queens: Brute-Force Approaches) In this exercise, you’ll develop several brute-force
approaches to solving the Eight Queens problem introduced in Exercise 7.24.

a) Use the random brute-force technique developed in Exercise 7.23 to solve the Eight
Queens problem.

b) Use an exhaustive technique (i.e., try all possible combinations of eight queens on the
chessboard) to solve the Eight Queens problem.

c) Why might the exhaustive brute-force approach not be appropriate for solving the
Knight’s Tour problem?

d) Compare and contrast the random brute-force and exhaustive brute-force approaches.

m

Fig. 7.31 | The 22 squares eliminated by placing a queen in the upper left corner.

* *****

* *

* *

* *

* *

* *

*

*

*

*

*

*

306 Chapter 7 Arrays and ArrayLists

7.26 (Knight’s Tour: Closed-Tour Test) In the Knight’s Tour (Exercise 7.22), a full tour occurs
when the knight makes 64 moves, touching each square of the chessboard once and only once. A
closed tour occurs when the 64th move is one move away from the square in which the knight start-
ed the tour. Modify the application you wrote in Exercise 7.22 to test for a closed tour if a full tour
has occurred.

7.27 (Sieve of Eratosthenes) A prime number is any integer greater than 1 that’s evenly divisible
only by itself and 1. The Sieve of Eratosthenes is a method of finding prime numbers. It operates as
follows:

a) Create a primitive-type boolean array with all elements initialized to true. Array ele-
ments with prime indices will remain true. All other array elements will eventually be
set to false.

b) Starting with array index 2, determine whether a given element is true. If so, loop
through the remainder of the array and set to false every element whose index is a mul-
tiple of the index for the element with value true. Then continue the process with the
next element with value true. For array index 2, all elements beyond element 2 in the
array that have indices which are multiples of 2 (indices 4, 6, 8, 10, etc.) will be set to
false; for array index 3, all elements beyond element 3 in the array that have indices
which are multiples of 3 (indices 6, 9, 12, 15, etc.) will be set to false; and so on.

When this process completes, the array elements that are still true indicate that the index is a
prime number. These indices can be displayed. Write an application that uses an array of 1,000 ele-
ments to determine and display the prime numbers between 2 and 999. Ignore array elements 0
and 1.

7.28 (Simulation: The Tortoise and the Hare) In this problem, you’ll re-create the classic race of
the tortoise and the hare. You’ll use random-number generation to develop a simulation of this
memorable event.

Our contenders begin the race at square 1 of 70 squares. Each square represents a possible
position along the race course. The finish line is at square 70. The first contender to reach or pass
square 70 is rewarded with a pail of fresh carrots and lettuce. The course weaves its way up the side
of a slippery mountain, so occasionally the contenders lose ground.

A clock ticks once per second. With each tick of the clock, your application should adjust the
position of the animals according to the rules in Fig. 7.32. Use variables to keep track of the posi-
tions of the animals (i.e., position numbers are 1–70). Start each animal at position 1 (the “starting
gate”). If an animal slips left before square 1, move it back to square 1.

Animal Move type Percentage of the time Actual move

Tortoise Fast plod 50% 3 squares to the right

Slip 20% 6 squares to the left

Slow plod 30% 1 square to the right

Hare Sleep 20% No move at all

Big hop 20% 9 squares to the right

Big slip 10% 12 squares to the left

Small hop 30% 1 square to the right

Small slip 20% 2 squares to the left

Fig. 7.32 | Rules for adjusting the positions of the tortoise and the hare.

 Exercises 307

Generate the percentages in Fig. 7.32 by producing a random integer i in the range 1 ≤ i ≤
10. For the tortoise, perform a “fast plod” when 1 ≤ i ≤ 5, a “slip” when 6 ≤ i ≤ 7 or a “slow
plod” when 8 ≤ i ≤10. Use a similar technique to move the hare.

Begin the race by displaying

BANG !!!!!
AND THEY'RE OFF !!!!!

Then, for each tick of the clock (i.e., each repetition of a loop), display a 70-position line showing
the letter T in the position of the tortoise and the letter H in the position of the hare. Occasionally,
the contenders will land on the same square. In this case, the tortoise bites the hare, and your appli-
cation should display OUCH!!! beginning at that position. All output positions other than the T, the
H or the OUCH!!! (in case of a tie) should be blank.

After each line is displayed, test for whether either animal has reached or passed square 70. If
so, display the winner and terminate the simulation. If the tortoise wins, display TORTOISE WINS!!!
YAY!!! If the hare wins, display Hare wins. Yuch. If both animals win on the same tick of the
clock, you may want to favor the tortoise (the “underdog”), or you may want to display It's a tie.
If neither animal wins, perform the loop again to simulate the next tick of the clock. When you’re
ready to run your application, assemble a group of fans to watch the race. You’ll be amazed at how
involved your audience gets!

Later in the book, we introduce a number of Java capabilities, such as graphics, images, ani-
mation, sound and multithreading. As you study those features, you might enjoy enhancing your
tortoise-and-hare contest simulation.

7.29 (Fibonacci Series) The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with the terms 0 and 1 and has the property that each succeeding term is the sum of the two
preceding terms.

a) Write a method fibonacci(n) that calculates the nth Fibonacci number. Incorporate
this method into an application that enables the user to enter the value of n.

b) Determine the largest Fibonacci number that can be displayed on your system.
c) Modify the application you wrote in part (a) to use double instead of int to calculate

and return Fibonacci numbers, and use this modified application to repeat part (b).

Exercises 7.30–7.34 are reasonably challenging. Once you’ve done them, you ought to
be able to implement most popular card games easily.
7.30 (Card Shuffling and Dealing) Modify the application of Fig. 7.11 to deal a five-card poker
hand. Then modify class DeckOfCards of Fig. 7.10 to include methods that determine whether a
hand contains

a) a pair
b) two pairs
c) three of a kind (e.g., three jacks)
d) four of a kind (e.g., four aces)
e) a flush (i.e., all five cards of the same suit)
f) a straight (i.e., five cards of consecutive face values)
g) a full house (i.e., two cards of one face value and three cards of another face value)

[Hint: Add methods getFace and getSuit to class Card of Fig. 7.9.]

7.31 (Card Shuffling and Dealing) Use the methods developed in Exercise 7.30 to write an ap-
plication that deals two five-card poker hands, evaluates each hand and determines which is better.

308 Chapter 7 Arrays and ArrayLists

7.32 (Project: Card Shuffling and Dealing) Modify the application developed in Exercise 7.31
so that it can simulate the dealer. The dealer’s five-card hand is dealt “face down,” so the player can-
not see it. The application should then evaluate the dealer’s hand, and, based on the quality of the
hand, the dealer should draw one, two or three more cards to replace the corresponding number of
unneeded cards in the original hand. The application should then reevaluate the dealer’s hand.
[Caution: This is a difficult problem!]

7.33 (Project: Card Shuffling and Dealing) Modify the application developed in Exercise 7.32
so that it can handle the dealer’s hand automatically, but the player is allowed to decide which cards
of the player’s hand to replace. The application should then evaluate both hands and determine who
wins. Now use this new application to play 20 games against the computer. Who wins more games,
you or the computer? Have a friend play 20 games against the computer. Who wins more games?
Based on the results of these games, refine your poker-playing application. (This, too, is a difficult
problem.) Play 20 more games. Does your modified application play a better game?

7.34 (Project: Card Shuffling and Dealing) Modify the application of Figs. 7.9–7.11 to use Face
and Suit enum types to represent the faces and suits of the cards. Declare each of these enum types as
a public type in its own source-code file. Each Card should have a Face and a Suit instance variable.
These should be initialized by the Card constructor. In class DeckOfCards, create an array of Faces
that’s initialized with the names of the constants in the Face enum type and an array of Suits that’s
initialized with the names of the constants in the Suit enum type. [Note: When you output an enum
constant as a String, the name of the constant is displayed.]

7.35 (Fisher-Yates Shuffling Algorithm) Research the Fisher-Yates shuffling algorithm online,
then use it to reimplement the shuffle method in Fig. 7.10.

Special Section: Building Your Own Computer
In the next several problems, we take a temporary diversion from the world of high-level language
programming to “peel open” a computer and look at its internal structure. We introduce machine-
language programming and write several machine-language programs. To make this an especially
valuable experience, we then build a computer (through the technique of software-based simula-
tion) on which you can execute your machine-language programs.

7.36 (Machine-Language Programming) Let’s create a computer called the Simpletron. As its
name implies, it’s a simple machine, but powerful. The Simpletron runs programs written in the
only language it directly understands: Simpletron Machine Language (SML).

The Simpletron contains an accumulator—a special register in which information is put
before the Simpletron uses that information in calculations or examines it in various ways. All the
information in the Simpletron is handled in terms of words. A word is a signed four-digit decimal
number, such as +3364, -1293, +0007 and -0001. The Simpletron is equipped with a 100-word
memory, and these words are referenced by their location numbers 00, 01, …, 99.

Before running an SML program, we must load, or place, the program into memory. The first
instruction (or statement) of every SML program is always placed in location 00. The simulator
will start executing at this location.

Each instruction written in SML occupies one word of the Simpletron’s memory (so instructions
are signed four-digit decimal numbers). We shall assume that the sign of an SML instruction is always
plus, but the sign of a data word may be either plus or minus. Each location in the Simpletron’s mem-
ory may contain an instruction, a data value used by a program or an unused (and so undefined) area
of memory. The first two digits of each SML instruction are the operation code specifying the opera-
tion to be performed. SML operation codes are summarized in Fig. 7.33.

The last two digits of an SML instruction are the operand—the address of the memory location
containing the word to which the operation applies. Let’s consider several simple SML programs.

 Special Section: Building Your Own Computer 309

The first SML program (Fig. 7.34) reads two numbers from the keyboard and computes and
displays their sum. The instruction +1007 reads the first number from the keyboard and places it
into location 07 (which has been initialized to 0). Then instruction +1008 reads the next number
into location 08. The load instruction, +2007, puts the first number into the accumulator, and the
add instruction, +3008, adds the second number to the number in the accumulator. All SML arith-
metic instructions leave their results in the accumulator. The store instruction, +2109, places the result
back into memory location 09, from which the write instruction, +1109, takes the number and dis-
plays it (as a signed four-digit decimal number). The halt instruction, +4300, terminates execution.

Operation code Meaning

Input/output operations:

final int READ = 10; Read a word from the keyboard into a specific location in memory.

final int WRITE = 11; Write a word from a specific location in memory to the screen.

Load/store operations:

final int LOAD = 20; Load a word from a specific location in memory into the accumulator.

final int STORE = 21; Store a word from the accumulator into a specific location in memory.

Arithmetic operations:

final int ADD = 30; Add a word from a specific location in memory to the word in the
accumulator (leave the result in the accumulator).

final int SUBTRACT = 31; Subtract a word from a specific location in memory from the word in
the accumulator (leave the result in the accumulator).

final int DIVIDE = 32; Divide a word from a specific location in memory into the word in
the accumulator (leave result in the accumulator).

final int MULTIPLY = 33; Multiply a word from a specific location in memory by the word in
the accumulator (leave the result in the accumulator).

Transfer-of-control operations:

final int BRANCH = 40; Branch to a specific location in memory.

final int BRANCHNEG = 41; Branch to a specific location in memory if the accumulator is negative.

final int BRANCHZERO = 42; Branch to a specific location in memory if the accumulator is zero.

final int HALT = 43; Halt. The program has completed its task.

Fig. 7.33 | Simpletron Machine Language (SML) operation codes.

Location Number Instruction

00 +1007 (Read A)
01 +1008 (Read B)
02 +2007 (Load A)
03 +3008 (Add B)
04 +2109 (Store C)

Fig. 7.34 | SML program that reads two integers and computes their sum. (Part 1 of 2.)

310 Chapter 7 Arrays and ArrayLists

The second SML program (Fig. 7.35) reads two numbers from the keyboard and determines
and displays the larger value. Note the use of the instruction +4107 as a conditional transfer of con-
trol, much the same as Java’s if statement.

Now write SML programs to accomplish each of the following tasks:
a) Use a sentinel-controlled loop to read 10 positive numbers. Compute and display their

sum.
b) Use a counter-controlled loop to read seven numbers, some positive and some negative,

and compute and display their average.
c) Read a series of numbers, and determine and display the largest number. The first num-

ber read indicates how many numbers should be processed.

7.37 (Computer Simulator) In this problem, you’re going to build your own computer. No,
you’ll not be soldering components together. Rather, you’ll use the powerful technique of software-
based simulation to create an object-oriented software model of the Simpletron of Exercise 7.36. Your
Simpletron simulator will turn the computer you’re using into a Simpletron, and you’ll actually be
able to run, test and debug the SML programs you wrote in Exercise 7.36.

When you run your Simpletron simulator, it should begin by displaying:

*** Welcome to Simpletron! ***
*** Please enter your program one instruction ***
*** (or data word) at a time. I will display ***
*** the location number and a question mark (?). ***
*** You then type the word for that location. ***
*** Type -99999 to stop entering your program. ***

05 +1109 (Write C)
06 +4300 (Halt)
07 +0000 (Variable A)
08 +0000 (Variable B)
09 +0000 (Result C)

Location Number Instruction

00 +1009 (Read A)
01 +1010 (Read B)
02 +2009 (Load A)
03 +3110 (Subtract B)
04 +4107 (Branch negative to 07)
05 +1109 (Write A)
06 +4300 (Halt)
07 +1110 (Write B)
08 +4300 (Halt)
09 +0000 (Variable A)
10 +0000 (Variable B)

Fig. 7.35 | SML program that reads two integers and determines the larger.

Location Number Instruction

Fig. 7.34 | SML program that reads two integers and computes their sum. (Part 2 of 2.)

 Special Section: Building Your Own Computer 311

Your application should simulate the memory of the Simpletron with a one-dimensional array mem-
ory that has 100 elements. Now assume that the simulator is running, and let’s examine the dialog
as we enter the program of Fig. 7.35 (Exercise 7.36):

00 ? +1009
01 ? +1010
02 ? +2009
03 ? +3110
04 ? +4107
05 ? +1109
06 ? +4300
07 ? +1110
08 ? +4300
09 ? +0000
10 ? +0000
11 ? -99999

Your program should display the memory location followed by a question mark. Each value to the
right of a question mark is input by the user. When the sentinel value -99999 is input, the program
should display the following:

*** Program loading completed ***
*** Program execution begins ***

The SML program has now been placed (or loaded) in array memory. Now the Simpletron exe-
cutes the SML program. Execution begins with the instruction in location 00 and, as in Java, con-
tinues sequentially, unless directed to some other part of the program by a transfer of control.

Use the variable accumulator to represent the accumulator register. Use the variable instruc-
tionCounter to keep track of the location in memory that contains the instruction being per-
formed. Use the variable operationCode to indicate the operation currently being performed (i.e.,
the left two digits of the instruction word). Use the variable operand to indicate the memory loca-
tion on which the current instruction operates. Thus, operand is the rightmost two digits of the
instruction currently being performed. Do not execute instructions directly from memory. Rather,
transfer the next instruction to be performed from memory to a variable called instructionRegis-
ter. Then pick off the left two digits and place them in operationCode, and pick off the right two
digits and place them in operand. When the Simpletron begins execution, the special registers are
all initialized to zero.

Now, let’s walk through execution of the first SML instruction, +1009 in memory location 00.
This procedure is called an instruction-execution cycle.

The instructionCounter tells us the location of the next instruction to be performed. We
fetch the contents of that location from memory by using the Java statement

instructionRegister = memory[instructionCounter];

The operation code and the operand are extracted from the instruction register by the statements

operationCode = instructionRegister / 100;
operand = instructionRegister % 100;

Now the Simpletron must determine that the operation code is actually a read (versus a write, a
load, and so on). A switch differentiates among the 12 operations of SML. In the switch state-
ment, the behavior of various SML instructions is simulated as shown in Fig. 7.36. We discuss
branch instructions shortly and leave the others to you.

When the SML program completes execution, the name and contents of each register as well
as the complete contents of memory should be displayed. Such a printout is often called a com-
puter dump (no, a computer dump is not a place where old computers go). To help you program
your dump method, a sample dump format is shown in Fig. 7.37. A dump after executing a
Simpletron program would show the actual values of instructions and data values at the moment
execution terminated.

312 Chapter 7 Arrays and ArrayLists

Let’s proceed with the execution of our program’s first instruction—namely, the +1009 in loca-
tion 00. As we’ve indicated, the switch statement simulates this task by prompting the user to enter
a value, reading the value and storing it in memory location memory[operand]. The value is then
read into location 09.

At this point, simulation of the first instruction is completed. All that remains is to prepare
the Simpletron to execute the next instruction. Since the instruction just performed was not a
transfer of control, we need merely increment the instruction-counter register as follows:

instructionCounter++;

This action completes the simulated execution of the first instruction. The entire process (i.e., the
instruction-execution cycle) begins anew with the fetch of the next instruction to execute.

Now let’s consider how the branching instructions—the transfers of control—are simulated.
All we need to do is adjust the value in the instruction counter appropriately. Therefore, the
unconditional branch instruction (40) is simulated within the switch as

instructionCounter = operand;

The conditional “branch if accumulator is zero” instruction is simulated as

if (accumulator == 0)
 instructionCounter = operand;

Instruction Description

read: Display the prompt "Enter an integer", then input the integer and store it
in location memory[operand].

load: accumulator = memory[operand];

add: accumulator += memory[operand];

halt: This instruction displays the message
*** Simpletron execution terminated ***

Fig. 7.36 | Behavior of several SML instructions in the Simpletron.

REGISTERS:
accumulator +0000
instructionCounter 00
instructionRegister +0000
operationCode 00
operand 00

MEMORY:
 0 1 2 3 4 5 6 7 8 9
 0 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
10 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
20 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
30 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
40 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
50 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
60 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
70 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
80 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
90 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000

Fig. 7.37 | A sample dump.

 Special Section: Building Your Own Computer 313

At this point, you should implement your Simpletron simulator and run each of the SML
programs you wrote in Exercise 7.36. If you desire, you may embellish SML with additional fea-
tures and provide for these features in your simulator.

Your simulator should check for various types of errors. During the program-loading phase,
for example, each number the user types into the Simpletron’s memory must be in the range -9999
to +9999. Your simulator should test that each number entered is in this range and, if not, keep
prompting the user to re-enter the number until the user enters a correct number.

During the execution phase, your simulator should check for various serious errors, such as
attempts to divide by zero, attempts to execute invalid operation codes, and accumulator overflows
(i.e., arithmetic operations resulting in values larger than +9999 or smaller than -9999). Such seri-
ous errors are called fatal errors. When a fatal error is detected, your simulator should display an
error message, such as

*** Attempt to divide by zero ***
*** Simpletron execution abnormally terminated ***

and should display a full computer dump in the format we discussed previously. This treatment
will help the user locate the error in the program.

7.38 (Simpletron Simulator Modifications) In Exercise 7.37, you wrote a software simulation of a
computer that executes programs written in Simpletron Machine Language (SML). In this exercise,
we propose several modifications and enhancements to the Simpletron Simulator. In the exercises of
Chapter 21, we propose building a compiler that converts programs written in a high-level program-
ming language (a variation of Basic) to Simpletron Machine Language. Some of the following modi-
fications and enhancements may be required to execute the programs produced by the compiler:

a) Extend the Simpletron Simulator’s memory to contain 1,000 memory locations to en-
able the Simpletron to handle larger programs.

b) Allow the simulator to perform remainder calculations. This modification requires an
additional SML instruction.

c) Allow the simulator to perform exponentiation calculations. This modification requires
an additional SML instruction.

d) Modify the simulator to use hexadecimal rather than integer values to represent SML
instructions.

e) Modify the simulator to allow output of a newline. This modification requires an addi-
tional SML instruction.

f) Modify the simulator to process floating-point values in addition to integer values.
g) Modify the simulator to handle string input. [Hint: Each Simpletron word can be di-

vided into two groups, each holding a two-digit integer. Each two-digit integer repre-
sents the ASCII (see Appendix B) decimal equivalent of a character. Add a machine-
language instruction that will input a string and store the string, beginning at a specific
Simpletron memory location. The first half of the word at that location will be a count
of the number of characters in the string (i.e., the length of the string). Each succeeding
half-word contains one ASCII character expressed as two decimal digits. The machine-
language instruction converts each character into its ASCII equivalent and assigns it to
a half-word.]

h) Modify the simulator to handle output of strings stored in the format of part (g). [Hint:
Add a machine-language instruction that will display a string, beginning at a certain
Simpletron memory location. The first half of the word at that location is a count of the
number of characters in the string (i.e., the length of the string). Each succeeding half-
word contains one ASCII character expressed as two decimal digits. The machine-lan-
guage instruction checks the length and displays the string by translating each two-digit
number into its equivalent character.]

314 Chapter 7 Arrays and ArrayLists

7.39 (Enhanced GradeBook) Modify the GradeBook class of Fig. 7.18 so that the constructor ac-
cepts as parameters the number of students and the number of exams, then builds an appropriately
sized two-dimensional array, rather than receiving a preinitialized two-dimensional array as it does
now. Set each element of the new two-dimensional array to -1 to indicate that no grade has been
entered for that element. Add a setGrade method that sets one grade for a particular student on a
particular exam. Modify class GradeBookTest of Fig. 7.19 to input the number of students and
number of exams for the GradeBook and to allow the instructor to enter one grade at a time.

Making a Difference
7.40 (Polling) The Internet and the web are enabling more people to network, join a cause, voice
opinions, and so on. Recent presidential candidates have used the Internet intensively to get out
their messages and raise money for their campaigns. In this exercise, you’ll write a simple polling
program that allows users to rate five social-consciousness issues from 1 (least important) to 10
(most important). Pick five causes that are important to you (e.g., political issues, global environ-
mental issues). Use a one-dimensional array topics (of type String) to store the five causes. To sum-
marize the survey responses, use a 5-row, 10-column two-dimensional array responses (of type
int), each row corresponding to an element in the topics array. When the program runs, it should
ask the user to rate each issue. Have your friends and family respond to the survey. Then have the
program display a summary of the results, including:

a) A tabular report with the five topics down the left side and the 10 ratings across the top,
listing in each column the number of ratings received for each topic.

b) To the right of each row, show the average of the ratings for that issue.
c) Which issue received the highest point total? Display both the issue and the point total.
d) Which issue received the lowest point total? Display both the issue and the point total.

8Classes and Objects:
A Deeper Look

Is it a world to hide virtues in?
—William Shakespeare

But what, to serve
our private ends,
Forbids the cheating
of our friends?
—Charles Churchill

This above all: to thine own self
be true.
—William Shakespeare.

O b j e c t i v e s
In this chapter you’ll:

■ Use the throw statement to
indicate that a problem has
occurred.

■ Use keyword this in a
constructor to call another
constructor in the same class.

■ Use static variables and
methods.

■ Import static members of
a class.

■ Use the enum type to create
sets of constants with unique
identifiers.

■ Declare enum constants with
parameters.

■ Use BigDecimal for precise
monetary calculations.

316 Chapter 8 Classes and Objects: A Deeper Look

8.1 Introduction
We now take a deeper look at building classes, controlling access to members of a class and
creating constructors. We show how to throw an exception to indicate that a problem has
occurred (Section 7.5 discussed catching exceptions). We use the this keyword to enable
one constructor to conveniently call another constructor of the same class. We discuss
composition—a capability that allows a class to have references to objects of other classes as
members. We reexamine the use of set and get methods. Recall that Section 6.10 intro-
duced the basic enum type to declare a set of constants. In this chapter, we discuss the re-
lationship between enum types and classes, demonstrating that an enum type, like a class,
can be declared in its own file with constructors, methods and fields. The chapter also dis-
cusses static class members and final instance variables in detail. We show a special re-
lationship between classes in the same package. Finally, we demonstrate how to use class
BigDecimal to perform precise monetary calculations. Two additional types of classes—
nested classes and anonymous inner classes—are discussed in Chapter 12.

8.2 Time Class Case Study
Our first example consists of two classes—Time1 (Fig. 8.1) and Time1Test (Fig. 8.2).
Class Time1 represents the time of day. Class Time1Test’s main method creates one object
of class Time1 and invokes its methods. The output of this program appears in Fig. 8.2.

Time1 Class Declaration
Class Time1’s private int instance variables hour, minute and second (lines 6–8) repre-
sent the time in universal-time format (24-hour clock format in which hours are in the
range 0–23, and minutes and seconds are each in the range 0–59). Time1 contains public
methods setTime (lines 12–25), toUniversalString (lines 28–31) and toString (lines
34–39). These methods are also called the public services or the public interface that the
class provides to its clients.

8.1 Introduction
8.2 Time Class Case Study
8.3 Controlling Access to Members
8.4 Referring to the Current Object’s

Members with the this Reference
8.5 Time Class Case Study: Overloaded

Constructors
8.6 Default and No-Argument

Constructors
8.7 Notes on Set and Get Methods
8.8 Composition
8.9 enum Types

8.10 Garbage Collection

8.11 static Class Members
8.12 static Import
8.13 final Instance Variables
8.14 Package Access
8.15 Using BigDecimal for Precise

Monetary Calculations
8.16 (Optional) GUI and Graphics Case

Study: Using Objects with Graphics
8.17 Wrap-Up

Summary | Self-Review Exercise | Answers to Self-Review Exercise | Exercises | Making a Difference

8.2 Time Class Case Study 317

Default Constructor
In this example, class Time1 does not declare a constructor, so the compiler supplies a de-
fault constructor. Each instance variable implicitly receives the default int value. Instance
variables also can be initialized when they’re declared in the class body, using the same ini-
tialization syntax as with a local variable.

Method setTime and Throwing Exceptions
Method setTime (lines 12–25) is a public method that declares three int parameters and
uses them to set the time. Lines 15–16 test each argument to determine whether the value
is outside the proper range. The hour value must be greater than or equal to 0 and less than

1 // Fig. 8.1: Time1.java
2 // Time1 class declaration maintains the time in 24-hour format.
3
4 public class Time1
5 {
6
7
8
9

10 // set a new time value using universal time; throw an
11 // exception if the hour, minute or second is invalid
12 public void setTime(int hour, int minute, int second)
13 {
14 // validate hour, minute and second
15 if (hour < 0 || hour >= 24 || minute < 0 || minute >= 60 ||
16 second < 0 || second >= 60)
17 {
18
19
20 }
21
22 this.hour = hour;
23 this.minute = minute;
24 this.second = second;
25 }
26
27 // convert to String in universal-time format (HH:MM:SS)
28 public String toUniversalString()
29 {
30
31 }
32
33 // convert to String in standard-time format (H:MM:SS AM or PM)
34 public String toString()
35 {
36
37
38
39 }
40 } // end class Time1

Fig. 8.1 | Time1 class declaration maintains the time in 24-hour format.

private int hour; // 0 - 23
private int minute; // 0 - 59
private int second; // 0 - 59

throw new IllegalArgumentException(
 "hour, minute and/or second was out of range");

return String.format("%02d:%02d:%02d", hour, minute, second);

return String.format("%d:%02d:%02d %s",
 ((hour == 0 || hour == 12) ? 12 : hour % 12),
 minute, second, (hour < 12 ? "AM" : "PM"));

318 Chapter 8 Classes and Objects: A Deeper Look

24, because universal-time format represents hours as integers from 0 to 23 (e.g., 1 PM is
hour 13 and 11 PM is hour 23; midnight is hour 0 and noon is hour 12). Similarly, both
minute and second values must be greater than or equal to 0 and less than 60. For values
outside these ranges, setTime throws an exception of type IllegalArgumentException
(lines 18–19), which notifies the client code that an invalid argument was passed to the
method. As you learned in Section 7.5, you can use try...catch to catch exceptions and
attempt to recover from them, which we’ll do in Fig. 8.2. The class instance creation ex-
pression in the throw statement (Fig. 8.1; line 18) creates a new object of type Illegal-
ArgumentException. The parentheses following the class name indicate a call to the
IllegalArgumentException constructor. In this case, we call the constructor that allows
us to specify a custom error message. After the exception object is created, the throw state-
ment immediately terminates method setTime and the exception is returned to the calling
method that attempted to set the time. If the argument values are all valid, lines 22–24
assign them to the hour, minute and second instance variables.

Method toUniversalString
Method toUniversalString (lines 28–31) takes no arguments and returns a String in
universal-time format, consisting of two digits each for the hour, minute and second—re-
call that you can use the 0 flag in a printf format specification (e.g., "%02d") to display
leading zeros for a value that doesn’t use all the character positions in the specified field
width. For example, if the time were 1:30:07 PM, the method would return 13:30:07.
Line 30 uses static method format of class String to return a String containing the for-
matted hour, minute and second values, each with two digits and possibly a leading 0
(specified with the 0 flag). Method format is similar to method System.out.printf ex-
cept that format returns a formatted String rather than displaying it in a command win-
dow. The formatted String is returned by method toUniversalString.

Method toString
Method toString (lines 34–39) takes no arguments and returns a String in standard-time
format, consisting of the hour, minute and second values separated by colons and followed
by AM or PM (e.g., 11:30:17 AM or 1:27:06 PM). Like method toUniversalString, meth-
od toString uses static String method format to format the minute and second as two-
digit values, with leading zeros if necessary. Line 37 uses a conditional operator (?:) to de-
termine the value for hour in the String—if the hour is 0 or 12 (AM or PM), it appears
as 12; otherwise, it appears as a value from 1 to 11. The conditional operator in line 30
determines whether AM or PM will be returned as part of the String.

Recall all objects in Java have a toString method that returns a String representation
of the object. We chose to return a String containing the time in standard-time format.
Method toString is called implicitly whenever a Time1 object appears in the code where
a String is needed, such as the value to output with a %s format specifier in a call to
System.out.printf. You may also call toString explicitly to obtain a String representa-
tion of a Time object.

Software Engineering Observation 8.1
For a method like setTime in Fig. 8.1, validate all of the method’s arguments before using
them to set instance variable values to ensure that the object’s data is modified only if all
the arguments are valid.

8.2 Time Class Case Study 319

Using Class Time1
Class Time1Test (Fig. 8.2) uses class Time1. Line 9 declares and creates a Time1 object
time. Operator new implicitly invokes class Time1’s default constructor, because Time1
does not declare any constructors. To confirm that the Time1 object was initialized prop-
erly, line 12 calls the private method displayTime (lines 35–39), which, in turn, calls the
Time1 object’s toUniversalString and toString methods to output the time in univer-
sal-time format and standard-time format, respectively. Note that toString could have
been called implicitly here rather than explicitly. Next, line 16 invokes method setTime
of the time object to change the time. Then line 17 calls displayTime again to output the
time in both formats to confirm that it was set correctly.

Software Engineering Observation 8.2
Recall from Chapter 3 that methods declared with access modifier private can be called
only by other methods of the class in which the private methods are declared. Such meth-
ods are commonly referred to as utility methods or helper methods because they’re typi-
cally used to support the operation of the class’s other methods.

1 // Fig. 8.2: Time1Test.java
2 // Time1 object used in an app.
3
4 public class Time1Test
5 {
6 public static void main(String[] args)
7 {
8 // create and initialize a Time1 object
9

10
11 // output string representations of the time
12 displayTime("After time object is created", time);
13 System.out.println();
14
15 // change time and output updated time
16
17 displayTime("After calling setTime", time);
18 System.out.println();
19
20 // attempt to set time with invalid values
21 try
22 {
23
24 }
25 catch (IllegalArgumentException e)
26 {
27 System.out.printf("Exception: %s%n%n", e.getMessage());
28 }
29
30 // display time after attempt to set invalid values
31 displayTime("After calling setTime with invalid values", time);
32 }

Fig. 8.2 | Time1 object used in an app. (Part 1 of 2.)

Time1 time = new Time1(); // invokes Time1 constructor

time.setTime(13, 27, 6);

time.setTime(99, 99, 99); // all values out of range

320 Chapter 8 Classes and Objects: A Deeper Look

Calling Time1 Method setTime with Invalid Values
To illustrate that method setTime validates its arguments, line 23 calls method setTime
with invalid arguments of 99 for the hour, minute and second. This statement is placed in
a try block (lines 21–24) in case setTime throws an IllegalArgumentException, which
it will do since the arguments are all invalid. When this occurs, the exception is caught at
lines 25–28, and line 27 displays the exception’s error message by calling its getMessage
method. Line 31 outputs the time again in both formats to confirm that setTime did not
change the time when invalid arguments were supplied.

Software Engineering of the Time1 Class Declaration
Consider several issues of class design with respect to class Time1. The instance variables
hour, minute and second are each declared private. The actual data representation used
within the class is of no concern to the class’s clients. For example, it would be perfectly
reasonable for Time1 to represent the time internally as the number of seconds since mid-
night or the number of minutes and seconds since midnight. Clients could use the same
public methods and get the same results without being aware of this. (Exercise 8.5 asks
you to represent the time in class Time2 of Fig. 8.5 as the number of seconds since mid-
night and show that indeed no change is visible to the clients of the class.)

33
34 // displays a Time1 object in 24-hour and 12-hour formats
35 private static void displayTime(String header, Time1 t)
36 {
37 System.out.printf("%s%nUniversal time: %s%nStandard time: %s%n",
38 header, ,);
39 }
40 } // end class Time1Test

After time object is created
Universal time: 00:00:00
Standard time: 12:00:00 AM

After calling setTime
Universal time: 13:27:06
Standard time: 1:27:06 PM

Exception: hour, minute and/or second was out of range

After calling setTime with invalid values
Universal time: 13:27:06
Standard time: 1:27:06 PM

Software Engineering Observation 8.3
Classes simplify programming, because the client can use only a class’s public methods.
Such methods are usually client oriented rather than implementation oriented. Clients are
neither aware of, nor involved in, a class’s implementation. Clients generally care about
what the class does but not how the class does it.

Fig. 8.2 | Time1 object used in an app. (Part 2 of 2.)

t.toUniversalString() t.toString()

8.3 Controlling Access to Members 321

Java SE 8—Date/Time API
This section’s example and several of this chapter’s later examples demonstrate various
class-implementation concepts in classes that represent dates and times. In professional
Java development, rather than building your own date and time classes, you’ll typically re-
use the ones provided by the Java API. Though Java has always had classes for manipulat-
ing dates and times, Java SE 8 introduces a new Date/Time API—defined by the classes
in the package java.time—applications built with Java SE 8 should use the Date/Time
API’s capabilities, rather than those in earlier Java versions. The new API fixes various is-
sues with the older classes and provides more robust, easier-to-use capabilities for manip-
ulating dates, times, time zones, calendars and more. We use some Date/Time API
features in Chapter 23. You can learn more about the Date/Time API’s classes at:

8.3 Controlling Access to Members
The access modifiers public and private control access to a class’s variables and methods.
In Chapter 9, we’ll introduce the additional access modifier protected. The primary pur-
pose of public methods is to present to the class’s clients a view of the services the class
provides (i.e., the class’s public interface). Clients need not be concerned with how the
class accomplishes its tasks. For this reason, the class’s private variables and private
methods (i.e., its implementation details) are not accessible to its clients.

Figure 8.3 demonstrates that private class members are not accessible outside the
class. Lines 9–11 attempt to access the private instance variables hour, minute and
second of the Time1 object time. When this program is compiled, the compiler generates
error messages that these private members are not accessible. This program assumes that
the Time1 class from Fig. 8.1 is used.

Software Engineering Observation 8.4
Interfaces change less frequently than implementations. When an implementation chang-
es, implementation-dependent code must change accordingly. Hiding the implementation
reduces the possibility that other program parts will become dependent on class imple-
mentation details.

download.java.net/jdk8/docs/api/java/time/package-summary.html

1 // Fig. 8.3: MemberAccessTest.java
2 // Private members of class Time1 are not accessible.
3 public class MemberAccessTest
4 {
5 public static void main(String[] args)
6 {
7 Time1 time = new Time1(); // create and initialize Time1 object
8
9

10
11
12 }
13 } // end class MemberAccessTest

Fig. 8.3 | Private members of class Time1 are not accessible. (Part 1 of 2.)

time.hour = 7; // error: hour has private access in Time1
time.minute = 15; // error: minute has private access in Time1
time.second = 30; // error: second has private access in Time1

322 Chapter 8 Classes and Objects: A Deeper Look

8.4 Referring to the Current Object’s Members with the
this Reference
Every object can access a reference to itself with keyword this (sometimes called the this
reference). When an instance method is called for a particular object, the method’s body
implicitly uses keyword this to refer to the object’s instance variables and other methods.
This enables the class’s code to know which object should be manipulated. As you’ll see in
Fig. 8.4, you can also use keyword this explicitly in an instance method’s body.
Section 8.5 shows another interesting use of keyword this. Section 8.11 explains why
keyword this cannot be used in a static method.

We now demonstrate implicit and explicit use of the this reference (Fig. 8.4). This
example is the first in which we declare two classes in one file—class ThisTest is declared
in lines 4–11, and class SimpleTime in lines 14–47. We do this to demonstrate that when
you compile a .java file containing more than one class, the compiler produces a separate
class file with the .class extension for every compiled class. In this case, two separate files
are produced—SimpleTime.class and ThisTest.class. When one source-code (.java)
file contains multiple class declarations, the compiler places both class files for those classes
in the same directory. Note also in Fig. 8.4 that only class ThisTest is declared public. A
source-code file can contain only one public class—otherwise, a compilation error occurs.
Non-public classes can be used only by other classes in the same package. So, in this
example, class SimpleTime can be used only by class ThisTest.

MemberAccessTest.java:9: hour has private access in Time1
 time.hour = 7; // error: hour has private access in Time1
 ^
MemberAccessTest.java:10: minute has private access in Time1
 time.minute = 15; // error: minute has private access in Time1
 ^
MemberAccessTest.java:11: second has private access in Time1
 time.second = 30; // error: second has private access in Time1
 ^
3 errors

Common Programming Error 8.1
An attempt by a method that’s not a member of a class to access a private member of that
class generates a compilation error.

1 // Fig. 8.4: ThisTest.java
2 // this used implicitly and explicitly to refer to members of an object.
3
4 public class ThisTest
5 {
6 public static void main(String[] args)
7 {

Fig. 8.4 | this used implicitly and explicitly to refer to members of an object. (Part 1 of 2.)

Fig. 8.3 | Private members of class Time1 are not accessible. (Part 2 of 2.)

8.4 Referring to the Current Object’s Members with the this Reference 323

Class SimpleTime (lines 14–47) declares three private instance variables—hour,
minute and second (lines 16–18). The class’s constructor (lines 23–28) receives three int
arguments to initialize a SimpleTime object. Once again, we used parameter names for the
constructor (line 23) that are identical to the class’s instance-variable names (lines 16–18),
so we use the this reference to refer to the instance variables in lines 25–27.

8 SimpleTime time = new SimpleTime(15, 30, 19);
9 System.out.println(time.buildString());

10 }
11 } // end class ThisTest
12
13 // class SimpleTime demonstrates the "this" reference
14 class SimpleTime
15 {
16 private int hour; // 0-23
17 private int minute; // 0-59
18 private int second; // 0-59
19
20 // if the constructor uses parameter names identical to
21 // instance variable names the "this" reference is
22 // required to distinguish between the names
23 public SimpleTime(int hour, int minute, int second)
24 {
25
26
27
28 }
29
30 // use explicit and implicit "this" to call toUniversalString
31 public String buildString()
32 {
33 return String.format("%24s: %s%n%24s: %s",
34 "this.toUniversalString()", ,
35 "toUniversalString()",);
36 }
37
38 // convert to String in universal-time format (HH:MM:SS)
39 public String toUniversalString()
40 {
41 // "this" is not required here to access instance variables,
42 // because method does not have local variables with same
43 // names as instance variables
44 return String.format("%02d:%02d:%02d",
45 , ,);
46 }
47 } // end class SimpleTime

this.toUniversalString(): 15:30:19
 toUniversalString(): 15:30:19

Fig. 8.4 | this used implicitly and explicitly to refer to members of an object. (Part 2 of 2.)

this.hour = hour; // set "this" object's hour
this.minute = minute; // set "this" object's minute
this.second = second; // set "this" object's second

this.toUniversalString()
toUniversalString()

this.hour this.minute this.second

324 Chapter 8 Classes and Objects: A Deeper Look

Method buildString (lines 31–36) returns a String created by a statement that uses
the this reference explicitly and implicitly. Line 34 uses it explicitly to call method toUni-
versalString. Line 35 uses it implicitly to call the same method. Both lines perform the
same task. You typically will not use this explicitly to reference other methods within the
current object. Also, line 45 in method toUniversalString explicitly uses the this refer-
ence to access each instance variable. This is not necessary here, because the method does
not have any local variables that shadow the instance variables of the class.

Class ThisTest’s main method (lines 6–10) demonstrates class SimpleTime. Line 8
creates an instance of class SimpleTime and invokes its constructor. Line 9 invokes the
object’s buildString method, then displays the results.

8.5 Time Class Case Study: Overloaded Constructors
As you know, you can declare your own constructor to specify how objects of a class should
be initialized. Next, we demonstrate a class with several overloaded constructors that en-
able objects of that class to be initialized in different ways. To overload constructors, sim-
ply provide multiple constructor declarations with different signatures.

Class Time2 with Overloaded Constructors
The Time1 class’s default constructor in Fig. 8.1 initialized hour, minute and second to
their default 0 values (i.e., midnight in universal time). The default constructor does not
enable the class’s clients to initialize the time with nonzero values. Class Time2 (Fig. 8.5)
contains five overloaded constructors that provide convenient ways to initialize objects. In
this program, four of the constructors invoke a fifth, which in turn ensures that the value
supplied for hour is in the range 0 to 23, and the values for minute and second are each
in the range 0 to 59. The compiler invokes the appropriate constructor by matching the
number, types and order of the types of the arguments specified in the constructor call
with the number, types and order of the types of the parameters specified in each construc-
tor declaration. Class Time2 also provides set and get methods for each instance variable.

Error-Prevention Tip 8.1
Most IDEs will issue a warning if you say x = x; instead of this.x = x;. The statement
x = x; is often called a no-op (no operation).

Performance Tip 8.1
Java conserves storage by maintaining only one copy of each method per class—this method
is invoked by every object of the class. Each object, on the other hand, has its own copy of
the class’s instance variables. Each method of the class implicitly uses this to determine
the specific object of the class to manipulate.

1 // Fig. 8.5: Time2.java
2 // Time2 class declaration with overloaded constructors.
3
4 public class Time2
5 {

Fig. 8.5 | Time2 class with overloaded constructors. (Part 1 of 4.)

8.5 Time Class Case Study: Overloaded Constructors 325

6 private int hour; // 0 - 23
7 private int minute; // 0 - 59
8 private int second; // 0 - 59
9

10 // Time2 no-argument constructor:
11 // initializes each instance variable to zero
12
13 {
14
15 }
16
17 // Time2 constructor: hour supplied, minute and second defaulted to 0
18
19 {
20
21 }
22
23 // Time2 constructor: hour and minute supplied, second defaulted to 0
24
25 {
26
27 }
28
29 // Time2 constructor: hour, minute and second supplied
30
31 {
32 if (hour < 0 || hour >= 24)
33 throw new IllegalArgumentException("hour must be 0-23");
34
35 if (minute < 0 || minute >= 60)
36 throw new IllegalArgumentException("minute must be 0-59");
37
38 if (second < 0 || second >= 60)
39 throw new IllegalArgumentException("second must be 0-59");
40
41 this.hour = hour;
42 this.minute = minute;
43 this.second = second;
44 }
45
46 // Time2 constructor: another Time2 object supplied
47
48 {
49
50
51 }
52
53 // Set Methods
54 // set a new time value using universal time;
55 // validate the data
56 public void setTime(int hour, int minute, int second)
57 {

Fig. 8.5 | Time2 class with overloaded constructors. (Part 2 of 4.)

public Time2()

this(0, 0, 0); // invoke constructor with three arguments

public Time2(int hour)

this(hour, 0, 0); // invoke constructor with three arguments

public Time2(int hour, int minute)

this(hour, minute, 0); // invoke constructor with three arguments

public Time2(int hour, int minute, int second)

public Time2(Time2 time)

// invoke constructor with three arguments
this(time.getHour(), time.getMinute(), time.getSecond());

326 Chapter 8 Classes and Objects: A Deeper Look

58 if (hour < 0 || hour >= 24)
59 throw new IllegalArgumentException("hour must be 0-23");
60
61 if (minute < 0 || minute >= 60)
62 throw new IllegalArgumentException("minute must be 0-59");
63
64 if (second < 0 || second >= 60)
65 throw new IllegalArgumentException("second must be 0-59");
66
67 this.hour = hour;
68 this.minute = minute;
69 this.second = second;
70 }
71
72 // validate and set hour
73 public void setHour(int hour)
74 {
75 if (hour < 0 || hour >= 24)
76 throw new IllegalArgumentException("hour must be 0-23");
77
78 this.hour = hour;
79 }
80
81 // validate and set minute
82 public void setMinute(int minute)
83 {
84 if (minute < 0 && minute >= 60)
85 throw new IllegalArgumentException("minute must be 0-59");
86
87 this.minute = minute;
88 }
89
90 // validate and set second
91 public void setSecond(int second)
92 {
93 if (second >= 0 && second < 60)
94 throw new IllegalArgumentException("second must be 0-59");
95
96 this.second = second;
97 }
98
99 // Get Methods
100 // get hour value
101 public int getHour()
102 {
103 return hour;
104 }
105
106 // get minute value
107 public int getMinute()
108 {
109 return minute;
110 }

Fig. 8.5 | Time2 class with overloaded constructors. (Part 3 of 4.)

8.5 Time Class Case Study: Overloaded Constructors 327

Class Time2’s Constructors—Calling One Constructor from Another via this
Lines 12–15 declare a so-called no-argument constructor that’s invoked without arguments.
Once you declare any constructors in a class, the compiler will not provide a default construc-
tor. This no-argument constructor ensures that class Time2’s clients can create Time2 objects
with default values. Such a constructor simply initializes the object as specified in the con-
structor’s body. In the body, we introduce a use of this that’s allowed only as the first state-
ment in a constructor’s body. Line 14 uses this in method-call syntax to invoke the Time2
constructor that takes three parameters (lines 30–44) with values of 0 for the hour, minute
and second. Using this as shown here is a popular way to reuse initialization code provided
by another of the class’s constructors rather than defining similar code in the no-argument
constructor’s body. We use this syntax in four of the five Time2 constructors to make the class
easier to maintain and modify. If we need to change how objects of class Time2 are initialized,
only the constructor that the class’s other constructors call will need to be modified.

Lines 18–21 declare a Time2 constructor with a single int parameter representing the
hour, which is passed with 0 for the minute and second to the constructor at lines 30–44.
Lines 24–27 declare a Time2 constructor that receives two int parameters representing the
hour and minute, which are passed with 0 for the second to the constructor at lines 30–
44. Like the no-argument constructor, each of these constructors invokes the constructor
at lines 30–44 to minimize code duplication. Lines 30–44 declare the Time2 constructor

111
112 // get second value
113 public int getSecond()
114 {
115 return second;
116 }
117
118 // convert to String in universal-time format (HH:MM:SS)
119 public String toUniversalString()
120 {
121 return String.format(
122 "%02d:%02d:%02d", getHour(), getMinute(), getSecond());
123 }
124
125 // convert to String in standard-time format (H:MM:SS AM or PM)
126 public String toString()
127 {
128 return String.format("%d:%02d:%02d %s",
129 ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12),
130 getMinute(), getSecond(), (getHour() < 12 ? "AM" : "PM"));
131 }
132 } // end class Time2

Common Programming Error 8.2
It’s a compilation error when this is used in a constructor’s body to call another of the
class’s constructors if that call is not the first statement in the constructor. It’s also a com-
pilation error when a method attempts to invoke a constructor directly via this.

Fig. 8.5 | Time2 class with overloaded constructors. (Part 4 of 4.)

328 Chapter 8 Classes and Objects: A Deeper Look

that receives three int parameters representing the hour, minute and second. This con-
structor validates and initializes the instance variables.

Lines 47–51 declare a Time2 constructor that receives a reference to another Time2
object. The values from the Time2 argument are passed to the three-argument constructor
at lines 30–44 to initialize the hour, minute and second. Line 50 could have directly
accessed the hour, minute and second values of the argument time with the expressions
time.hour, time.minute and time.second—even though hour, minute and second are
declared as private variables of class Time2. This is due to a special relationship between
objects of the same class. We’ll see in a moment why it’s preferable to use the get methods.

Class Time2’s setTime Method
Method setTime (lines 56–70) throws an IllegalArgumentException (lines 59, 62 and
65) if any the method’s arguments is out of range. Otherwise, it sets Time2’s instance vari-
ables to the argument values (lines 67–69).

Notes Regarding Class Time2’s set and get Methods and Constructors
Time2’s get methods are called throughout the class. In particular, methods toUniversal-
String and toString call methods getHour, getMinute and getSecond in line 122 and lines
129–130, respectively. In each case, these methods could have accessed the class’s private
data directly without calling the get methods. However, consider changing the representation
of the time from three int values (requiring 12 bytes of memory) to a single int value rep-
resenting the total number of seconds that have elapsed since midnight (requiring only four
bytes of memory). If we made such a change, only the bodies of the methods that access the
private data directly would need to change—in particular, the three-argument constructor,
the setTime method and the individual set and get methods for the hour, minute and second.
There would be no need to modify the bodies of methods toUniversalString or toString
because they do not access the data directly. Designing the class in this manner reduces the
likelihood of programming errors when altering the class’s implementation.

Similarly, each Time2 constructor could include a copy of the appropriate statements
from the three-argument constructor. Doing so may be slightly more efficient, because the
extra constructor calls are eliminated. But, duplicating statements makes changing the class’s
internal data representation more difficult. Having the Time2 constructors call the con-
structor with three arguments requires that any changes to the implementation of the three-
argument constructor be made only once. Also, the compiler can optimize programs by
removing calls to simple methods and replacing them with the expanded code of their dec-
larations—a technique known as inlining the code, which improves program performance.

Using Class Time2’s Overloaded Constructors
Class Time2Test (Fig. 8.6) invokes the overloaded Time2 constructors (lines 8–12 and 24).
Line 8 invokes the Time2 no-argument constructor. Lines 9–12 demonstrate passing argu-
ments to the other Time2 constructors. Line 9 invokes the single-argument constructor that
receives an int at lines 18–21 of Fig. 8.5. Line 10 invokes the two-argument constructor at
lines 24–27 of Fig. 8.5. Line 11 invokes the three-argument constructor at lines 30–44 of

Software Engineering Observation 8.5
When one object of a class has a reference to another object of the same class, the first object
can access all the second object’s data and methods (including those that are private).

8.5 Time Class Case Study: Overloaded Constructors 329

Fig. 8.5. Line 12 invokes the single-argument constructor that takes a Time2 at lines 47–51
of Fig. 8.5. Next, the app displays the String representations of each Time2 object to con-
firm that it was initialized properly (lines 15–19). Line 24 attempts to initialize t6 by creating
a new Time2 object and passing three invalid values to the constructor. When the constructor
attempts to use the invalid hour value to initialize the object’s hour, an IllegalArgumentEx-
ception occurs. We catch this exception at line 26 and display its error message, which re-
sults in the last line of the output.

1 // Fig. 8.6: Time2Test.java
2 // Overloaded constructors used to initialize Time2 objects.
3
4 public class Time2Test
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12
13
14 System.out.println("Constructed with:");
15 displayTime("t1: all default arguments", t1);
16 displayTime("t2: hour specified; default minute and second", t2);
17 displayTime("t3: hour and minute specified; default second", t3);
18 displayTime("t4: hour, minute and second specified", t4);
19 displayTime("t5: Time2 object t4 specified", t5);
20
21 // attempt to initialize t6 with invalid values
22 try
23 {
24
25 }
26 catch (IllegalArgumentException e)
27 {
28 System.out.printf("%nException while initializing t6: %s%n",
29 e.getMessage());
30 }
31 }
32
33 // displays a Time2 object in 24-hour and 12-hour formats
34 private static void displayTime(String header, Time2 t)
35 {
36 System.out.printf("%s%n %s%n %s%n",
37 header, t.toUniversalString(), t.toString());
38 }
39 } // end class Time2Test

Constructed with:
t1: all default arguments
 00:00:00
 12:00:00 AM

Fig. 8.6 | Overloaded constructors used to initialize Time2 objects. (Part 1 of 2.)

Time2 t1 = new Time2(); // 00:00:00
Time2 t2 = new Time2(2); // 02:00:00
Time2 t3 = new Time2(21, 34); // 21:34:00
Time2 t4 = new Time2(12, 25, 42); // 12:25:42
Time2 t5 = new Time2(t4); // 12:25:42

Time2 t6 = new Time2(27, 74, 99); // invalid values

330 Chapter 8 Classes and Objects: A Deeper Look

8.6 Default and No-Argument Constructors
Every class must have at least one constructor. If you do not provide any in a class’s decla-
ration, the compiler creates a default constructor that takes no arguments when it’s invoked.
The default constructor initializes the instance variables to the initial values specified in
their declarations or to their default values (zero for primitive numeric types, false for
boolean values and null for references). In Section 9.4.1, you’ll learn that the default con-
structor also performs another task.

Recall that if your class declares constructors, the compiler will not create a default
constructor. In this case, you must declare a no-argument constructor if default initializa-
tion is required. Like a default constructor, a no-argument constructor is invoked with
empty parentheses. The Time2 no-argument constructor (lines 12–15 of Fig. 8.5) explic-
itly initializes a Time2 object by passing to the three-argument constructor 0 for each
parameter. Since 0 is the default value for int instance variables, the no-argument con-
structor in this example could actually be declared with an empty body. In this case, each
instance variable would receive its default value when the no-argument constructor is
called. If we omit the no-argument constructor, clients of this class would not be able to
create a Time2 object with the expression new Time2().

8.7 Notes on Set and Get Methods
As you know, a class’s private fields can be manipulated only by its methods. A typical
manipulation might be the adjustment of a customer’s bank balance (e.g., a private in-

t2: hour specified; default minute and second
 02:00:00
 2:00:00 AM
t3: hour and minute specified; default second
 21:34:00
 9:34:00 PM
t4: hour, minute and second specified
 12:25:42
 12:25:42 PM
t5: Time2 object t4 specified
 12:25:42
 12:25:42 PM
Exception while initializing t6: hour must be 0-23

Error-Prevention Tip 8.2
Ensure that you do not include a return type in a constructor definition. Java allows other
methods of the class besides its constructors to have the same name as the class and to specify
return types. Such methods are not constructors and will not be called when an object of
the class is instantiated.

Common Programming Error 8.3
A compilation error occurs if a program attempts to initialize an object of a class by passing
the wrong number or types of arguments to the class’s constructor.

Fig. 8.6 | Overloaded constructors used to initialize Time2 objects. (Part 2 of 2.)

8.7 Notes on Set and Get Methods 331

stance variable of a class BankAccount) by a method computeInterest. Set methods are
also commonly called mutator methods, because they typically change an object’s state—
i.e., modify the values of instance variables. Get methods are also commonly called accessor
methods or query methods.

Set and Get Methods vs. public Data
It would seem that providing set and get capabilities is essentially the same as making a
class’s instance variables public. This is one of the subtleties that makes Java so desirable
for software engineering. A public instance variable can be read or written by any method
that has a reference to an object containing that variable. If an instance variable is declared
private, a public get method certainly allows other methods to access it, but the get meth-
od can control how the client can access it. For example, a get method might control the
format of the data it returns, shielding the client code from the actual data representation.
A public set method can—and should—carefully scrutinize attempts to modify the vari-
able’s value and throw an exception if necessary. For example, attempts to set the day of
the month to 37 or a person’s weight to a negative value should be rejected. Thus, al-
though set and get methods provide access to private data, the access is restricted by the
implementation of the methods. This helps promote good software engineering.

Validity Checking in Set Methods
The benefits of data integrity do not follow automatically simply because instance vari-
ables are declared private—you must provide validity checking. A class’s set methods
could determine that attempts were made to assign invalid data to objects of the class. Typ-
ically set methods have void return type and use exception handling to indicate attempts
to assign invalid data. We discuss exception handling in detail in Chapter 11.

Software Engineering Observation 8.6
Classes should never have public nonconstant data, but declaring data public static
final enables you to make constants available to clients of your class. For example, class
Math offers public static final constants Math.E and Math.PI.

Error-Prevention Tip 8.3
Do not provide public static final constants if the constants’ values are likely to change
in future versions of your software.

Software Engineering Observation 8.7
When appropriate, provide public methods to change and retrieve the values of private
instance variables. This architecture helps hide the implementation of a class from its cli-
ents, which improves program modifiability.

Error-Prevention Tip 8.4
Using set and get methods helps you create classes that are easier to debug and maintain.
If only one method performs a particular task, such as setting an instance variable in an
object, it’s easier to debug and maintain the class. If the instance variable is not being set
properly, the code that actually modifies instance variable is localized to one set method.
Your debugging efforts can be focused on that one method.

332 Chapter 8 Classes and Objects: A Deeper Look

Predicate Methods
Another common use for accessor methods is to test whether a condition is true or false—
such methods are often called predicate methods. An example would be class ArrayList’s
isEmpty method, which returns true if the ArrayList is empty and false otherwise. A
program might test isEmpty before attempting to read another item from an ArrayList.

8.8 Composition
A class can have references to objects of other classes as members. This is called composi-
tion and is sometimes referred to as a has-a relationship. For example, an AlarmClock ob-
ject needs to know the current time and the time when it’s supposed to sound its alarm,
so it’s reasonable to include two references to Time objects in an AlarmClock object. A car
has-a steering wheel, a break pedal and an accelerator pedal.

Class Date
This composition example contains classes Date (Fig. 8.7), Employee (Fig. 8.8) and Em-
ployeeTest (Fig. 8.9). Class Date (Fig. 8.7) declares instance variables month, day and
year (lines 6–8) to represent a date. The constructor receives three int parameters. Lines
17–19 validate the month—if it’s out-of-range, lines 18–19 throw an exception. Lines 22–
25 validate the day. If the day is incorrect based on the number of days in the particular
month (except February 29th which requires special testing for leap years), lines 24–25
throw an exception. Lines 28–31 perform the leap year testing for February. If the month
is February and the day is 29 and the year is not a leap year, lines 30–31 throw an excep-
tion. If no exceptions are thrown, then lines 33–35 initialize the Date’s instance variables
and lines 38–38 output the this reference as a String. Since this is a reference to the
current Date object, the object’s toString method (lines 42–45) is called implicitly to ob-
tain the object’s String representation. In this example, we assume that the value for year
is correct—an industrial-strength Date class should also validate the year.

1 // Fig. 8.7: Date.java
2 // Date class declaration.
3
4 public class Date
5 {
6 private int month; // 1-12
7 private int day; // 1-31 based on month
8 private int year; // any year
9

10 private static final int[] daysPerMonth =
11 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
12
13 // constructor: confirm proper value for month and day given the year
14 public Date(int month, int day, int year)
15 {
16 // check if month in range
17 if (month <= 0 || month > 12)
18 throw new IllegalArgumentException(
19 "month (" + month + ") must be 1-12");

Fig. 8.7 | Date class declaration. (Part 1 of 2.)

8.8 Composition 333

Class Employee
Class Employee (Fig. 8.8) has instance variables firstName, lastName, birthDate and
hireDate. Members firstName and lastName are references to String objects. Members
birthDate and hireDate are references to Date objects. This demonstrates that a class can
have as instance variables references to objects of other classes. The Employee constructor
(lines 12–19) takes four parameters representing the first name, last name, birth date and
hire date. The objects referenced by the parameters are assigned to the Employee object’s
instance variables. When class Employee’s toString method is called, it returns a String
containing the employee’s name and the String representations of the two Date objects.
Each of these Strings is obtained with an implicit call to the Date class’s toString method.

20
21 // check if day in range for month
22 if (day <= 0 ||
23 (day > daysPerMonth[month] && !(month == 2 && day == 29)))
24 throw new IllegalArgumentException("day (" + day +
25 ") out-of-range for the specified month and year");
26
27 // check for leap year if month is 2 and day is 29
28 if (month == 2 && day == 29 && !(year % 400 == 0 ||
29 (year % 4 == 0 && year % 100 != 0)))
30 throw new IllegalArgumentException("day (" + day +
31 ") out-of-range for the specified month and year");
32
33 this.month = month;
34 this.day = day;
35 this.year = year;
36
37 System.out.printf(
38 "Date object constructor for date %s%n", this);
39 }
40
41 // return a String of the form month/day/year
42 public String toString()
43 {
44 return String.format("%d/%d/%d", month, day, year);
45 }
46 } // end class Date

1 // Fig. 8.8: Employee.java
2 // Employee class with references to other objects.
3
4 public class Employee
5 {
6 private String firstName;
7 private String lastName;
8
9

Fig. 8.8 | Employee class with references to other objects. (Part 1 of 2.)

Fig. 8.7 | Date class declaration. (Part 2 of 2.)

private Date birthDate;
private Date hireDate;

334 Chapter 8 Classes and Objects: A Deeper Look

Class EmployeeTest
Class EmployeeTest (Fig. 8.9) creates two Date objects to represent an Employee’s birth-
day and hire date, respectively. Line 10 creates an Employee and initializes its instance vari-
ables by passing to the constructor two Strings (representing the Employee’s first and last
names) and two Date objects (representing the birthday and hire date). Line 12 implicitly
invokes the Employee’s toString method to display the values of its instance variables and
demonstrate that the object was initialized properly.

10
11 // constructor to initialize name, birth date and hire date
12 public Employee(String firstName, String lastName, Date birthDate,
13 Date hireDate)
14 {
15 this.firstName = firstName;
16 this.lastName = lastName;
17 this.birthDate = birthDate;
18 this.hireDate = hireDate;
19 }
20
21 // convert Employee to String format
22 public String toString()
23 {
24 return String.format("%s, %s Hired: %s Birthday: %s",
25 lastName, firstName, hireDate, birthDate);
26 }
27 } // end class Employee

1 // Fig. 8.9: EmployeeTest.java
2 // Composition demonstration.
3
4 public class EmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 Date birth = new Date(7, 24, 1949);
9 Date hire = new Date(3, 12, 1988);

10 Employee employee = new Employee("Bob", "Blue", birth, hire);
11
12
13 }
14 } // end class EmployeeTest

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988
Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

Fig. 8.9 | Composition demonstration.

Fig. 8.8 | Employee class with references to other objects. (Part 2 of 2.)

System.out.println(employee);

8.9 enum Types 335

8.9 enum Types
In Fig. 6.8, we introduced the basic enum type, which defines a set of constants represented
as unique identifiers. In that program the enum constants represented the game’s status. In
this section we discuss the relationship between enum types and classes. Like classes, all
enum types are reference types. An enum type is declared with an enum declaration, which is
a comma-separated list of enum constants—the declaration may optionally include other
components of traditional classes, such as constructors, fields and methods (as you’ll see
momentarily). Each enum declaration declares an enum class with the following restrictions:

1. enum constants are implicitly final.

2. enum constants are implicitly static.

3. Any attempt to create an object of an enum type with operator new results in a
compilation error.

The enum constants can be used anywhere constants can be used, such as in the case labels
of switch statements and to control enhanced for statements.

Declaring Instance Variables, a Constructor and Methods in an enum Type
Figure 8.10 demonstrates instance variables, a constructor and methods in an enum type.
The enum declaration (lines 5–37) contains two parts—the enum constants and the other
members of the enum type. The first part (lines 8–13) declares six constants. Each is op-
tionally followed by arguments that are passed to the enum constructor (lines 20–24). Like
the constructors you’ve seen in classes, an enum constructor can specify any number of pa-
rameters and can be overloaded. In this example, the enum constructor requires two String
parameters. To properly initialize each enum constant, we follow it with parentheses con-
taining two String arguments. The second part (lines 16–36) declares the other members
of the enum type—two instance variables (lines 16–17), a constructor (lines 20–24) and
two methods (lines 27–30 and 33–36).

Lines 16–17 declare the instance variables title and copyrightYear. Each enum con-
stant in enum type Book is actually an object of enum type Book that has its own copy of
instance variables title and copyrightYear. The constructor (lines 20–24) takes two
String parameters, one that specifies the book’s title and one that specifies its copyright
year. Lines 22–23 assign these parameters to the instance variables. Lines 27–36 declare
methods, which return the book title and copyright year, respectively.

1 // Fig. 8.10: Book.java
2 // Declaring an enum type with a constructor and explicit instance fields
3 // and accessors for these fields
4
5 public enum Book
6 {
7
8
9

10

Fig. 8.10 | Declaring an enum type with a constructor and explicit instance fields and accessors
for these fields. (Part 1 of 2.)

// declare constants of enum type
JHTP("Java How to Program", "2015"),
CHTP("C How to Program", "2013"),
IW3HTP("Internet & World Wide Web How to Program", "2012"),

336 Chapter 8 Classes and Objects: A Deeper Look

Using enum type Book
Figure 8.11 tests the enum type Book and illustrates how to iterate through a range of enum
constants. For every enum, the compiler generates the static method values (called in
line 12) that returns an array of the enum’s constants in the order they were declared. Lines
12–14 use the enhanced for statement to display all the constants declared in the enum
Book. Line 14 invokes the enum Book’s getTitle and getCopyrightYear methods to get
the title and copyright year associated with the constant. When an enum constant is con-
verted to a String (e.g., book in line 13), the constant’s identifier is used as the String
representation (e.g., JHTP for the first enum constant).

11
12
13
14
15 // instance fields
16 private final String title; // book title
17 private final String copyrightYear; // copyright year
18
19 // enum constructor
20 Book(String title, String copyrightYear)
21 {
22 this.title = title;
23 this.copyrightYear = copyrightYear;
24 }
25
26 // accessor for field title
27 public String getTitle()
28 {
29 return title;
30 }
31
32 // accessor for field copyrightYear
33 public String getCopyrightYear()
34 {
35 return copyrightYear;
36 }
37 } // end enum Book

1 // Fig. 8.11: EnumTest.java
2 // Testing enum type Book.
3 import java.util.EnumSet;
4
5 public class EnumTest
6 {
7 public static void main(String[] args)
8 {

Fig. 8.11 | Testing enum type Book. (Part 1 of 2.)

Fig. 8.10 | Declaring an enum type with a constructor and explicit instance fields and accessors
for these fields. (Part 2 of 2.)

CPPHTP("C++ How to Program", "2014"),
VBHTP("Visual Basic How to Program", "2014"),
CSHARPHTP("Visual C# How to Program", "2014");

8.10 Garbage Collection 337

Lines 19–21 use the static method range of class EnumSet (declared in package
java.util) to display a range of the enum Book’s constants. Method range takes two
parameters—the first and the last enum constants in the range—and returns an EnumSet
that contains all the constants between these two constants, inclusive. For example, the
expression EnumSet.range(Book.JHTP, Book.CPPHTP) returns an EnumSet containing
Book.JHTP, Book.CHTP, Book.IW3HTP and Book.CPPHTP. The enhanced for statement can
be used with an EnumSet just as it can with an array, so lines 12–14 use it to display the
title and copyright year of every book in the EnumSet. Class EnumSet provides several other
static methods for creating sets of enum constants from the same enum type.

8.10 Garbage Collection
Every object uses system resources, such as memory. We need a disciplined way to give
resources back to the system when they’re no longer needed; otherwise, “resource leaks”
might occur that would prevent resources from being reused by your program or possibly

9 System.out.println("All books:");
10
11 // print all books in enum Book
12 for ()
13 System.out.printf("%-10s%-45s%s%n", book,
14 ,);
15
16 System.out.printf("%nDisplay a range of enum constants:%n");
17
18 // print first four books
19 for (Book book :)
20 System.out.printf("%-10s%-45s%s%n", book,
21 ,);
22 }
23 } // end class EnumTest

All books:
JHTP Java How to Program 2015
CHTP C How to Program 2013
IW3HTP Internet & World Wide Web How to Program 2012
CPPHTP C++ How to Program 2014
VBHTP Visual Basic How to Program 2014
CSHARPHTP Visual C# How to Program 2014

Display a range of enum constants:
JHTP Java How to Program 2015
CHTP C How to Program 2013
IW3HTP Internet & World Wide Web How to Program 2012
CPPHTP C++ How to Program 2014

Common Programming Error 8.4
In an enum declaration, it’s a syntax error to declare enum constants after the enum type’s
constructors, fields and methods.

Fig. 8.11 | Testing enum type Book. (Part 2 of 2.)

Book book : Book.values()

book.getTitle() book.getCopyrightYear()

EnumSet.range(Book.JHTP, Book.CPPHTP)

book.getTitle() book.getCopyrightYear()

338 Chapter 8 Classes and Objects: A Deeper Look

by other programs. The JVM performs automatic garbage collection to reclaim the mem-
ory occupied by objects that are no longer used. When there are no more references to an
object, the object is eligible to be collected. Collection typically occurs when the JVM ex-
ecutes its garbage collector, which may not happen for a while, or even at all before a pro-
gram terminates. So, memory leaks that are common in other languages like C and C++
(because memory is not automatically reclaimed in those languages) are less likely in Java,
but some can still happen in subtle ways. Resource leaks other than memory leaks can also
occur. For example, an app may open a file on disk to modify its contents—if the app does
not close the file, it must terminate before any other app can use the file.

A Note about Class Object’s finalize Method
Every class in Java has the methods of class Object (package java.lang), one of which is
method finalize. (You’ll learn more about class Object in Chapter 9.) You should never
use method finalize, because it can cause many problems and there’s uncertainty as to
whether it will ever get called before a program terminates.

The original intent of finalize was to allow the garbage collector to perform termi-
nation housekeeping on an object just before reclaiming the object’s memory. Now, it’s
considered better practice for any class that uses system resources—such as files on disk—
to provide a method that programmers can call to release resources when they’re no longer
needed in a program. AutoClosable objects reduce the likelihood of resource leaks when
you use them with the try-with-resources statement. As its name implies, an AutoClos-
able object is closed automatically, once a try-with-resources statement finishes using the
object. We discuss this in more detail in Section 11.12.

8.11 static Class Members
Every object has its own copy of all the instance variables of the class. In certain cases, only
one copy of a particular variable should be shared by all objects of a class. A static field—
called a class variable—is used in such cases. A static variable represents classwide infor-
mation—all objects of the class share the same piece of data. The declaration of a static
variable begins with the keyword static.

Motivating static
Let’s motivate static data with an example. Suppose that we have a video game with Mar-
tians and other space creatures. Each Martian tends to be brave and willing to attack other
space creatures when the Martian is aware that at least four other Martians are present. If
fewer than five Martians are present, each of them becomes cowardly. Thus, each Martian
needs to know the martianCount. We could endow class Martian with martianCount as
an instance variable. If we do this, then every Martian will have a separate copy of the in-
stance variable, and every time we create a new Martian, we’ll have to update the instance
variable martianCount in every Martian object. This wastes space with the redundant cop-
ies, wastes time in updating the separate copies and is error prone. Instead, we declare mar-

Software Engineering Observation 8.8
Many Java API classes (e.g., class Scanner and classes that read files from or write files to
disk) provide close or dispose methods that programmers can call to release resources
when they’re no longer needed in a program.

8.11 static Class Members 339

tianCount to be static, making martianCount classwide data. Every Martian can see the
martianCount as if it were an instance variable of class Martian, but only one copy of the
static martianCount is maintained. This saves space. We save time by having the Mar-
tian constructor increment the static martianCount—there’s only one copy, so we do
not have to increment separate copies for each Martian object.

Class Scope
Static variables have class scope—they can be used in all of the class’s methods. We can ac-
cess a class’s public static members through a reference to any object of the class, or by
qualifying the member name with the class name and a dot (.), as in Math.random(). A
class’s private static class members can be accessed by client code only through methods
of the class. Actually, static class members exist even when no objects of the class exist—
they’re available as soon as the class is loaded into memory at execution time. To access a
public static member when no objects of the class exist (and even when they do), prefix
the class name and a dot (.) to the static member, as in Math.PI. To access a private
static member when no objects of the class exist, provide a public static method and
call it by qualifying its name with the class name and a dot.

static Methods Cannot Directly Access Instance Variables and Instance Methods
A static method cannot access a class’s instance variables and instance methods, because
a static method can be called even when no objects of the class have been instantiated.
For the same reason, the this reference cannot be used in a static method. The this ref-
erence must refer to a specific object of the class, and when a static method is called, there
might not be any objects of its class in memory.

Tracking the Number of Employee Objects That Have Been Created
Our next program declares two classes—Employee (Fig. 8.12) and EmployeeTest
(Fig. 8.13). Class Employee declares private static variable count (Fig. 8.12, line 7) and
public static method getCount (lines 36–39). The static variable count maintains a
count of the number of objects of class Employee that have been created so far. This class

Software Engineering Observation 8.9
Use a static variable when all objects of a class must use the same copy of the variable.

Software Engineering Observation 8.10
Static class variables and methods exist, and can be used, even if no objects of that class
have been instantiated.

Common Programming Error 8.5
A compilation error occurs if a static method calls an instance method in the same class
by using only the method name. Similarly, a compilation error occurs if a static method
attempts to access an instance variable in the same class by using only the variable name.

Common Programming Error 8.6
Referring to this in a static method is a compilation error.

340 Chapter 8 Classes and Objects: A Deeper Look

variable is initialized to zero in line 7. If a static variable is not initialized, the compiler
assigns it a default value—in this case 0, the default value for type int.

When Employee objects exist, variable count can be used in any method of an
Employee object—this example increments count in the constructor (line 18). The public
static method getCount (lines 36–39) returns the number of Employee objects that have
been created so far. When no objects of class Employee exist, client code can access variable
count by calling method getCount via the class name, as in Employee.getCount(). When
objects exist, method getCount can also be called via any reference to an Employee object.

1 // Fig. 8.12: Employee.java
2 // static variable used to maintain a count of the number of
3 // Employee objects in memory.
4
5 public class Employee
6 {
7
8 private String firstName;
9 private String lastName;

10
11 // initialize Employee, add 1 to static count and
12 // output String indicating that constructor was called
13 public Employee(String firstName, String lastName)
14 {
15 this.firstName = firstName;
16 this.lastName = lastName;
17
18
19 System.out.printf("Employee constructor: %s %s; count = %d%n",
20 firstName, lastName, count);
21 }
22
23 // get first name
24 public String getFirstName()
25 {
26 return firstName;
27 }
28
29 // get last name
30 public String getLastName()
31 {
32 return lastName;
33 }
34
35
36
37
38
39
40 } // end class Employee

Fig. 8.12 | static variable used to maintain a count of the number of Employee objects in
memory.

private static int count = 0; // number of Employees created

++count; // increment static count of employees

// static method to get static count value
public static int getCount()
{
 return count;
}

8.11 static Class Members 341

Class EmployeeTest
EmployeeTest method main (Fig. 8.13) instantiates two Employee objects (lines 13–14).
When each Employee object’s constructor is invoked, lines 15–16 of Fig. 8.12 assign the
Employee’s first name and last name to instance variables firstName and lastName. These
two statements do not make copies of the original String arguments. Actually, String ob-
jects in Java are immutable—they cannot be modified after they’re created. Therefore, it’s
safe to have many references to one String object. This is not normally the case for objects
of most other classes in Java. If String objects are immutable, you might wonder why
we’re able to use operators + and += to concatenate String objects. String-concatenation
actually results in a new String object containing the concatenated values. The original
String objects are not modified.

Good Programming Practice 8.1
Invoke every static method by using the class name and a dot (.) to emphasize that the
method being called is a static method.

1 // Fig. 8.13: EmployeeTest.java
2 // static member demonstration.
3
4 public class EmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 // show that count is 0 before creating Employees
9 System.out.printf("Employees before instantiation: %d%n",

10);
11
12 // create two Employees; count should be 2
13
14
15
16 // show that count is 2 after creating two Employees
17 System.out.printf("%nEmployees after instantiation:%n");
18 System.out.printf("via e1.getCount(): %d%n",);
19 System.out.printf("via e2.getCount(): %d%n",);
20 System.out.printf("via Employee.getCount(): %d%n",
21);
22
23 // get names of Employees
24 System.out.printf("%nEmployee 1: %s %s%nEmployee 2: %s %s%n",
25 e1.getFirstName(), e1.getLastName(),
26 e2.getFirstName(), e2.getLastName());
27 }
28 } // end class EmployeeTest

Employees before instantiation: 0
Employee constructor: Susan Baker; count = 1
Employee constructor: Bob Blue; count = 2

Fig. 8.13 | static member demonstration. (Part 1 of 2.)

Employee.getCount()

Employee e1 = new Employee("Susan", "Baker");
Employee e2 = new Employee("Bob", "Blue");

e1.getCount()
e2.getCount()

Employee.getCount()

342 Chapter 8 Classes and Objects: A Deeper Look

When main terminates, local variables e1 and e2 are discarded—remember that a local
variable exists only until the block in which it’s declared completes execution. Because e1
and e2 were the only references to the Employee objects created in lines 13–14 (Fig. 8.13),
these objects become “eligible for garbage collection” as main terminates.

In a typical app, the garbage collector might eventually reclaim the memory for any
objects that are eligible for collection. If any objects are not reclaimed before the program
terminates, the operating system will reclaim the memory used by the program. The JVM
does not guarantee when, or even whether, the garbage collector will execute. When it
does, it’s possible that no objects or only a subset of the eligible objects will be collected.

8.12 static Import
In Section 6.3, you learned about the static fields and methods of class Math. We access
class Math’s static fields and methods by preceding each with the class name Math and a
dot (.). A static import declaration enables you to import the static members of a class
or interface so you can access them via their unqualified names in your class—that is, the
class name and a dot (.) are not required when using an imported static member.

static Import Forms
A static import declaration has two forms—one that imports a particular static mem-
ber (which is known as single static import) and one that imports all static members
of a class (known as static import on demand). The following syntax imports a particular
static member:

where packageName is the package of the class (e.g., java.lang), ClassName is the name of
the class (e.g., Math) and staticMemberName is the name of the static field or method
(e.g., PI or abs). The following syntax imports all static members of a class:

The asterisk (*) indicates that all static members of the specified class should be available
for use in the file. static import declarations import only static class members. Regular
import statements should be used to specify the classes used in a program.

Demonstrating static Import
Figure 8.14 demonstrates a static import. Line 3 is a static import declaration, which
imports all static fields and methods of class Math from package java.lang. Lines 9–12
access the Math class’s static fields E (line 11) and PI (line 12) and the static methods

Employees after instantiation:
via e1.getCount(): 2
via e2.getCount(): 2
via Employee.getCount(): 2

Employee 1: Susan Baker
Employee 2: Bob Blue

import static packageName.ClassName.staticMemberName;

import static packageName.ClassName.*;

Fig. 8.13 | static member demonstration. (Part 2 of 2.)

8.13 final Instance Variables 343

sqrt (line 9) and ceil (line 10) without preceding the field names or method names with
class name Math and a dot.

8.13 final Instance Variables
The principle of least privilege is fundamental to good software engineering. In the con-
text of an app’s code, it states that code should be granted only the amount of privilege
and access that it needs to accomplish its designated task, but no more. This makes your
programs more robust by preventing code from accidentally (or maliciously) modifying
variable values and calling methods that should not be accessible.

Let’s see how this principle applies to instance variables. Some of them need to be
modifiable and some do not. You can use the keyword final to specify that a variable is
not modifiable (i.e., it’s a constant) and that any attempt to modify it is an error. For
example,

declares a final (constant) instance variable INCREMENT of type int. Such variables can be
initialized when they’re declared. If they’re not, they must be initialized in every construc-
tor of the class. Initializing constants in constructors enables each object of the class to have
a different value for the constant. If a final variable is not initialized in its declaration or
in every constructor, a compilation error occurs.

Common Programming Error 8.7
A compilation error occurs if a program attempts to import two or more classes’ static
methods that have the same signature or static fields that have the same name.

1 // Fig. 8.14: StaticImportTest.java
2 // Static import of Math class methods.
3
4
5 public class StaticImportTest
6 {
7 public static void main(String[] args)
8 {
9 System.out.printf("sqrt(900.0) = %.1f%n",);

10 System.out.printf("ceil(-9.8) = %.1f%n",);
11 System.out.printf("E = %f%n", E);
12 System.out.printf("PI = %f%n", PI);
13 }
14 } // end class StaticImportTest

sqrt(900.0) = 30.0
ceil(-9.8) = -9.0
E = 2.718282
PI = 3.141593

Fig. 8.14 | static import of Math class methods.

private final int INCREMENT;

import static java.lang.Math.*;

sqrt(900.0)
ceil(-9.8)

344 Chapter 8 Classes and Objects: A Deeper Look

8.14 Package Access
If no access modifier (public, protected or private—we discuss protected in
Chapter 9) is specified for a method or variable when it’s declared in a class, the method
or variable is considered to have package access. In a program that consists of one class
declaration, this has no specific effect. However, if a program uses multiple classes from the
same package (i.e., a group of related classes), these classes can access each other’s package-
access members directly through references to objects of the appropriate classes, or in the
case of static members through the class name. Package access is rarely used.

Figure 8.15 demonstrates package access. The app contains two classes in one source-
code file—the PackageDataTest class containing main (lines 5–21) and the PackageData
class (lines 24–41). Classes in the same source file are part of the same package. Conse-
quently, class PackageDataTest is allowed to modify the package-access data of Package-
Data objects. When you compile this program, the compiler produces two separate .class
files—PackageDataTest.class and PackageData.class. The compiler places the two
.class files in the same directory. You can also place class PackageData (lines 24–41) in
a separate source-code file.

In the PackageData class declaration, lines 26–27 declare the instance variables
number and string with no access modifiers—therefore, these are package-access instance
variables. Class PackageDataTest’s main method creates an instance of the PackageData
class (line 9) to demonstrate the ability to modify the PackageData instance variables
directly (as shown in lines 15–16). The results of the modification can be seen in the
output window.

Software Engineering Observation 8.11
Declaring an instance variable as final helps enforce the principle of least privilege. If an
instance variable should not be modified, declare it to be final to prevent modification.
For example, in Fig. 8.8, the instance variables firstName, lastName, birthDate and
hireDate are never modified after they’re initialized, so they should be declared final.
We’ll enforce this practice in all programs going forward. You’ll see additional benefits of
final in Chapter 23, Concurrency.

Common Programming Error 8.8
Attempting to modify a final instance variable after it’s initialized is a compilation error.

Error-Prevention Tip 8.5
Attempts to modify a final instance variable are caught at compilation time rather than
causing execution-time errors. It’s always preferable to get bugs out at compilation time,
if possible, rather than allow them to slip through to execution time (where experience has
found that repair is often many times more expensive).

Software Engineering Observation 8.12
A final field should also be declared static if it’s initialized in its declaration to a value
that’s the same for all objects of the class. After this initialization, its value can never
change. Therefore, we don’t need a separate copy of the field for every object of the class.
Making the field static enables all objects of the class to share the final field.

8.15 Using BigDecimal for Precise Monetary Calculations 345

8.15 Using BigDecimal for Precise Monetary Calculations
In earlier chapters, we demonstrated monetary calculations using values of type double. In
Chapter 5, we discussed the fact that some double values are represented approximately.

1 // Fig. 8.15: PackageDataTest.java
2 // Package-access members of a class are accessible by other classes
3 // in the same package.
4
5 public class PackageDataTest
6 {
7 public static void main(String[] args)
8 {
9

10
11 // output String representation of packageData
12 System.out.printf("After instantiation:%n%s%n", packageData);
13
14
15
16
17
18 // output String representation of packageData
19 System.out.printf("%nAfter changing values:%n%s%n", packageData);
20 }
21 } // end class PackageDataTest
22
23 // class with package access instance variables
24 class PackageData
25 {
26
27
28
29 // constructor
30 public PackageData()
31 {
32 number = 0;
33 string = "Hello";
34 }
35
36 // return PackageData object String representation
37 public String toString()
38 {
39 return String.format("number: %d; string: %s", number, string);
40 }
41 } // end class PackageData

After instantiation:
number: 0; string: Hello

After changing values:
number: 77; string: Goodbye

Fig. 8.15 | Package-access members of a class are accessible by other classes in the same package.

PackageData packageData = new PackageData();

// change package access data in packageData object
packageData.number = 77;
packageData.string = "Goodbye";

int number; // package-access instance variable
String string; // package-access instance variable

346 Chapter 8 Classes and Objects: A Deeper Look

Any application that requires precise floating-point calculations—such as those in financial
applications—should instead use class BigDecimal (from package java.math).

Interest Calculations Using BigDecimal
Figure 8.16 reimplements the interest calculation example of Fig. 5.6 using objects of class
BigDecimal to perform the calculations. We also introduce class NumberFormat (package
java.text) for formatting numeric values as locale-specific Strings—for example, in the
U.S. locale, the value 1234.56, would be formatted as "1,234.56", whereas in many Eu-
ropean locales it would be formatted as "1.234,56".

1 // Interest.java
2 // Compound-interest calculations with BigDecimal.
3 import java.math.BigDecimal;
4 import java.text.NumberFormat;
5
6 public class Interest
7 {
8 public static void main(String args[])
9 {

10
11
12
13
14 // display headers
15 System.out.printf("%s%20s%n", "Year", "Amount on deposit");
16
17 // calculate amount on deposit for each of ten years
18 for (int year = 1; year <= 10; year++)
19 {
20
21
22
23
24 // display the year and the amount
25 System.out.printf("%4d%20s%n", year,
26);
27 }
28 }
29 } // end class Interest

Year Amount on deposit
 1 $1,050.00
 2 $1,102.50
 3 $1,157.62
 4 $1,215.51
 5 $1,276.28
 6 $1,340.10
 7 $1,407.10
 8 $1,477.46
 9 $1,551.33
 10 $1,628.89

Fig. 8.16 | Compound-interest calculations with BigDecimal.

// initial principal amount before interest
BigDecimal principal = BigDecimal.valueOf(1000.0);
BigDecimal rate = BigDecimal.valueOf(0.05); // interest rate

// calculate new amount for specified year
BigDecimal amount =
 principal.multiply(rate.add(BigDecimal.ONE).pow(year));

NumberFormat.getCurrencyInstance().format(amount)

8.15 Using BigDecimal for Precise Monetary Calculations 347

Creating BigDecimal Objects
Lines 11–12 declare and initialize BigDecimal variables principal and rate using the
BigDecimal static method valueOf that receives a double argument and returns a Big-
Decimal object that represents the exact value specified.

Performing the Interest Calculations with BigDecimal
Lines 21–22 perform the interest calculation using BigDecimal methods multiply, add
and pow. The expression in line 22 evaluates as follows:

1. First, the expression rate.add(BigDecimal.ONE) adds 1 to the rate to produce
a BigDecimal containing 1.05—this is equivalent to 1.0 + rate in line 19 of
Fig. 5.6. The BigDecimal constant ONE represents the value 1. Class BigDecimal
also provides the commonly used constants ZERO (0) and TEN (10).

2. Next, BigDecimal method pow is called on the preceding result to raise 1.05 to
the power year—this is equivalent to passing 1.0 + rate and year to method
Math.pow in line 19 of Fig. 5.6.

3. Finally, we call BigDecimal method multiply on the principal object, passing
the preceding result as the argument. This returns a BigDecimal representing the
amount on deposit at the end of the specified year.

Since the expression rate.add(BigDecimal.ONE) produces the same value in each itera-
tion of the loop, we could have simply initialized rate to 1.05 in line 12; however, we chose
to mimic the precise calculations we used in line 19 of Fig. 5.6.

Formatting Currency Values with NumberFormat
During each iteration of the loop, line 26

evaluates as follows:

1. First, the expression uses NumberFormat’s static method getCurrencyInstance
to get a NumberFormat that’s pre-configured to format numeric values as locale-
specific currency Strings—for example, in the U.S. locale, the numeric value
1628.89 is formatted as $1,628.89. Locale-specific formatting is an important
part of internationalization—the process of customizing your applications for
users’ various locales and spoken languages.

2. Next, the expression invokes method NumberFormat method format (on the ob-
ject returned by getCurrencyInstance) to perform the formatting of the amount
value. Method format then returns the locale-specific String representation,
rounded to two-digits to the right of the decimal point.

Rounding BigDecimal Values
In addition to precise calculations, BigDecimal also gives you control over how values are
rounded—by default all calculations are exact and no rounding occurs. If you do not specify
how to round BigDecimal values and a given value cannot be represented exactly—such as
the result of 1 divided by 3, which is 0.3333333…—an ArithmeticException occurs.

Though we do not do so in this example, you can specify the rounding mode for Big-
Decimal by supplying a MathContext object (package java.math) to class BigDecimal’s

NumberFormat.getCurrencyInstance().format(amount)

348 Chapter 8 Classes and Objects: A Deeper Look

constructor when you create a BigDecimal. You may also provide a MathContext to var-
ious BigDecimal methods that perform calculations. Class MathContext contains several
pre-configured MathContext objects that you can learn about at

By default, each pre-configured MathContext uses so called “bankers rounding” as ex-
plained for the RoundingMode constant HALF_EVEN at:

Scaling BigDecimal Values
A BigDecimal’s scale is the number of digits to the right of its decimal point. If you need
a BigDecimal rounded to a specific digit, you can call BigDecimal method setScale. For
example, the following expression returns a BigDecimal with two digits to the right of the
decimal point and using bankers rounding:

8.16 (Optional) GUI and Graphics Case Study: Using
Objects with Graphics
Most of the graphics you’ve seen to this point did not vary with each program execution.
Exercise 6.2 in Section 6.13 asked you to create a program that generated shapes and col-
ors at random. In that exercise, the drawing changed every time the system called paint-
Component. To create a more consistent drawing that remains the same each time it’s
drawn, we must store information about the displayed shapes so that we can reproduce
them each time the system calls paintComponent. To do this, we’ll create a set of shape
classes that store information about each shape. We’ll make these classes “smart” by allow-
ing objects of these classes to draw themselves by using a Graphics object.

Class MyLine
Figure 8.17 declares class MyLine, which has all these capabilities. Class MyLine imports
classes Color and Graphics (lines 3–4). Lines 8–11 declare instance variables for the co-
ordinates of the endpoints needed to draw a line, and line 12 declares the instance variable
that stores the color of the line. The constructor at lines 15–22 takes five parameters, one
for each instance variable that it initializes. Method draw at lines 25–29 requires a Graph-
ics object and uses it to draw the line in the proper color and between the endpoints.

http://docs.oracle.com/javase/7/docs/api/java/math/MathContext.html

http://docs.oracle.com/javase/7/docs/api/java/math/
 RoundingMode.html#HALF_EVEN

amount.setScale(2, RoundingMode.HALF_EVEN)

1 // Fig. 8.17: MyLine.java
2 // MyLine class represents a line.
3 import java.awt.Color;
4 import java.awt.Graphics;
5
6 public class MyLine
7 {

Fig. 8.17 | MyLine class represents a line. (Part 1 of 2.)

http://docs.oracle.com/javase/7/docs/api/java/math/MathContext.html
http://docs.oracle.com/javase/7/docs/api/java/math/RoundingMode.html#HALF_EVEN
http://docs.oracle.com/javase/7/docs/api/java/math/RoundingMode.html#HALF_EVEN

8.16 (Optional) GUI and Graphics Case Study: Using Objects with Graphics 349

Class DrawPanel
In Fig. 8.18, we declare class DrawPanel, which will generate random objects of class
MyLine. Line 12 declares the MyLine array lines to store the lines to draw. Inside the con-
structor (lines 15–37), line 17 sets the background color to Color.WHITE. Line 19 creates
the array with a random length between 5 and 9. The loop at lines 22–36 creates a new
MyLine for every element in the array. Lines 25–28 generate random coordinates for each
line’s endpoints, and lines 31–32 generate a random color for the line. Line 35 creates a
new MyLine object with the randomly generated values and stores it in the array. Method
paintComponent iterates through the MyLine objects in array lines using an enhanced for
statement (lines 45–46). Each iteration calls the draw method of the current MyLine object
and passes it the Graphics object for drawing on the panel.

8 private int x1; // x-coordinate of first endpoint
9 private int y1; // y-coordinate of first endpoint

10 private int x2; // x-coordinate of second endpoint
11 private int y2; // y-coordinate of second endpoint
12 private Color color; // color of this line
13
14 // constructor with input values
15 public MyLine(int x1, int y1, int x2, int y2, Color color)
16 {
17 this.x1 = x1;
18 this.y1 = y1;
19 this.x2 = x2;
20 this.y2 = y2;
21 this.color = color;
22 }
23
24 // Draw the line in the specified color
25 public void draw(Graphics g)
26 {
27 g.setColor(color);
28 g.drawLine(x1, y1, x2, y2);
29 }
30 } // end class MyLine

1 // Fig. 8.18: DrawPanel.java
2 // Program that uses class MyLine
3 // to draw random lines.
4 import java.awt.Color;
5 import java.awt.Graphics;
6 import java.security.SecureRandom;
7 import javax.swing.JPanel;
8
9 public class DrawPanel extends JPanel

10 {
11 private SecureRandom randomNumbers = new SecureRandom();
12 private MyLine[] lines; // array of lines

Fig. 8.18 | Program that uses class MyLine to draw random lines. (Part 1 of 2.)

Fig. 8.17 | MyLine class represents a line. (Part 2 of 2.)

350 Chapter 8 Classes and Objects: A Deeper Look

Class TestDraw
Class TestDraw in Fig. 8.19 sets up a new window to display our drawing. Since we’re set-
ting the coordinates for the lines only once in the constructor, the drawing does not
change if paintComponent is called to refresh the drawing on the screen.

13
14 // constructor, creates a panel with random shapes
15 public DrawPanel()
16 {
17 setBackground(Color.WHITE);
18
19 lines = new MyLine[5 + randomNumbers.nextInt(5)];
20
21 // create lines
22 for (int count = 0; count < lines.length; count++)
23 {
24 // generate random coordinates
25 int x1 = randomNumbers.nextInt(300);
26 int y1 = randomNumbers.nextInt(300);
27 int x2 = randomNumbers.nextInt(300);
28 int y2 = randomNumbers.nextInt(300);
29
30 // generate a random color
31 Color color = new Color(randomNumbers.nextInt(256),
32 randomNumbers.nextInt(256), randomNumbers.nextInt(256));
33
34 // add the line to the list of lines to be displayed
35 lines[count] = new MyLine(x1, y1, x2, y2, color);
36 }
37 }
38
39 // for each shape array, draw the individual shapes
40 public void paintComponent(Graphics g)
41 {
42 super.paintComponent(g);
43
44 // draw the lines
45 for (MyLine line : lines)
46 line.draw(g);
47 }
48 } // end class DrawPanel

1 // Fig. 8.19: TestDraw.java
2 // Creating a JFrame to display a DrawPanel.
3 import javax.swing.JFrame;
4
5 public class TestDraw
6 {

Fig. 8.19 | Creating a JFrame to display a DrawPanel. (Part 1 of 2.)

Fig. 8.18 | Program that uses class MyLine to draw random lines. (Part 2 of 2.)

8.16 (Optional) GUI and Graphics Case Study: Using Objects with Graphics 351

GUI and Graphics Case Study Exercise
8.1 Extend the program in Figs. 8.17–8.19 to randomly draw rectangles and ovals. Create classes
MyRectangle and MyOval. Both of these classes should include x1, y1, x2, y2 coordinates, a color and a
boolean flag to determine whether the shape is filled. Declare a constructor in each class with argu-
ments for initializing all the instance variables. To help draw rectangles and ovals, each class should
provide methods getUpperLeftX, getUpperLeftY, getWidth and getHeight that calculate the upper-
left x-coordinate, upper-left y-coordinate, width and height, respectively. The upper-left x-coordinate
is the smaller of the two x-coordinate values, the upper-left y-coordinate is the smaller of the two y-
coordinate values, the width is the absolute value of the difference between the two x-coordinate val-
ues, and the height is the absolute value of the difference between the two y-coordinate values.

Class DrawPanel, which extends JPanel and handles the creation of the shapes, should declare
three arrays, one for each shape type. The length of each array should be a random number
between 1 and 5. The constructor of class DrawPanel will fill each array with shapes of random
position, size, color and fill.

In addition, modify all three shape classes to include the following:
a) A constructor with no arguments that sets the shape’s coordinates to 0, the color of the

shape to Color.BLACK, and the filled property to false (MyRectangle and MyOval only).
b) Set methods for the instance variables in each class. The methods that set a coordinate

value should verify that the argument is greater than or equal to zero before setting the
coordinate—if it’s not, they should set the coordinate to zero. The constructor should
call the set methods rather than initialize the local variables directly.

c) Get methods for the instance variables in each class. Method draw should reference the
coordinates by the get methods rather than access them directly.

7 public static void main(String[] args)
8 {
9 DrawPanel panel = new DrawPanel();

10 JFrame app = new JFrame();
11
12 app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 app.add(panel);
14 app.setSize(300, 300);
15 app.setVisible(true);
16 }
17 } // end class TestDraw

Fig. 8.19 | Creating a JFrame to display a DrawPanel. (Part 2 of 2.)

352 Chapter 8 Classes and Objects: A Deeper Look

8.17 Wrap-Up
In this chapter, we presented additional class concepts. The Time class case study showed
a complete class declaration consisting of private data, overloaded public constructors
for initialization flexibility, set and get methods for manipulating the class’s data, and
methods that returned String representations of a Time object in two different formats.
You also learned that every class can declare a toString method that returns a String rep-
resentation of an object of the class and that method toString can be called implicitly
whenever an object of a class appears in the code where a String is expected. We showed
how to throw an exception to indicate that a problem has occurred.

You learned that the this reference is used implicitly in a class’s instance methods to
access the class’s instance variables and other instance methods. You also saw explicit uses
of the this reference to access the class’s members (including shadowed fields) and how
to use keyword this in a constructor to call another constructor of the class.

We discussed the differences between default constructors provided by the compiler
and no-argument constructors provided by the programmer. You learned that a class can
have references to objects of other classes as members—a concept known as composition.
You learned more about enum types and how they can be used to create a set of constants
for use in a program. You learned about Java’s garbage-collection capability and how it
(unpredictably) reclaims the memory of objects that are no longer used. The chapter
explained the motivation for static fields in a class and demonstrated how to declare and
use static fields and methods in your own classes. You also learned how to declare and
initialize final variables.

You learned that fields declared without an access modifier are given package access
by default. You saw the relationship between classes in the same package that allows each
class in a package to access the package-access members of other classes in the package.
Finally, we demonstrated how to use class BigDecimal to perform precise monetary calcu-
lations.

In the next chapter, you’ll learn about an important aspect of object-oriented pro-
gramming in Java—inheritance. You’ll see that all classes in Java are related by inheritance,
directly or indirectly, to the class called Object. You’ll also begin to understand how the
relationships between classes enable you to build more powerful apps.

Summary
Section 8.2 Time Class Case Study
• The public methods of a class are also known as the class’s public services or public interface

(p. 316). They present to the class’s clients a view of the services the class provides.

• A class’s private members are not accessible to its clients.

• String class static method format (p. 318) is similar to method System.out.printf except that
format returns a formatted String rather than displaying it in a command window.

• All objects in Java have a toString method that returns a String representation of the object.
Method toString is called implicitly when an object appears in code where a String is needed.

Section 8.3 Controlling Access to Members
• The access modifiers public and private control access to a class’s variables and methods.

 Summary 353

• The primary purpose of public methods is to present to the class’s clients a view of the services
the class provides. Clients need not be concerned with how the class accomplishes its tasks.

• A class’s private variables and private methods (i.e., its implementation details) are not acces-
sible to its clients.

Section 8.4 Referring to the Current Object’s Members with the this Reference
• An instance method of an object implicitly uses keyword this (p. 322) to refer to the object’s

instance variables and other methods. Keyword this can also be used explicitly.

• The compiler produces a separate file with the .class extension for every compiled class.

• If a local variable has the same name as a class’s field, the local variable shadows the field. You
can use the this reference in a method to refer to the shadowed field explicitly.

Section 8.5 Time Class Case Study: Overloaded Constructors
• Overloaded constructors enable objects of a class to be initialized in different ways. The compiler

differentiates overloaded constructors (p. 324) by their signatures.

• To call one constructor of a class from another of the same class, you can use the this keyword
followed by parentheses containing the constructor arguments. If used, such a constructor call
must appear as the first statement in the constructor’s body.

Section 8.6 Default and No-Argument Constructors
• If no constructors are provided in a class, the compiler creates a default constructor.

• If a class declares constructors, the compiler will not create a default constructor. In this case, you
must declare a no-argument constructor (p. 327) if default initialization is required.

Section 8.7 Notes on Set and Get Methods
• Set methods are commonly called mutator methods (p. 331) because they typically change a val-

ue. Get methods are commonly called accessor methods (p. 331) or query methods. A predicate
method (p. 332) tests whether a condition is true or false.

Section 8.8 Composition
• A class can have references to objects of other classes as members. This is called composition

(p. 332) and is sometimes referred to as a has-a relationship.

Section 8.9 enum Types
• All enum types (p. 335) are reference types. An enum type is declared with an enum declaration,

which is a comma-separated list of enum constants. The declaration may optionally include other
components of traditional classes, such as constructors, fields and methods.

• enum constants are implicitly final, because they declare constants that should not be modified.

• enum constants are implicitly static.

• Any attempt to create an object of an enum type with operator new results in a compilation error.

• enum constants can be used anywhere constants can be used, such as in the case labels of switch
statements and to control enhanced for statements.

• Each enum constant in an enum declaration is optionally followed by arguments which are passed
to the enum constructor.

• For every enum, the compiler generates a static method called values (p. 336) that returns an
array of the enum’s constants in the order in which they were declared.

• EnumSet static method range (p. 337) receives the first and last enum constants in a range and
returns an EnumSet that contains all the constants between these two constants, inclusive.

354 Chapter 8 Classes and Objects: A Deeper Look

Section 8.10 Garbage Collection
• The Java Virtual Machine (JVM) performs automatic garbage collection (p. 338) to reclaim the

memory occupied by objects that are no longer in use. When there are no more references to an
object, the object is eligible for garbage collection. The memory for such an object can be re-
claimed when the JVM executes its garbage collector.

Section 8.11 static Class Members
• A static variable (p. 338) represents classwide information that’s shared among the class’s objects.

• static variables have class scope. A class’s public static members can be accessed through a ref-
erence to any object of the class, or they can be accessed by qualifying the member name with
the class name and a dot (.). Client code can access a class’s private static class members only
through methods of the class.

• static class members exist as soon as the class is loaded into memory.

• A method declared static cannot access a class’s instance variables and instance methods, be-
cause a static method can be called even when no objects of the class have been instantiated.

• The this reference cannot be used in a static method.

Section 8.12 static Import
• A static import declaration (p. 342) enables you to refer to imported static members without

the class name and a dot (.). A single static import declaration imports one static member,
and a static import on demand imports all static members of a class.

Section 8.13 final Instance Variables
• In the context of an app’s code, the principle of least privilege (p. 343) states that code should be

granted only the amount of privilege and access that it needs to accomplish its designated task.

• Keyword final specifies that a variable is not modifiable. Such variables must be initialized when
they’re declared or by each of a class’s constructors.

Section 8.14 Package Access
• If no access modifier is specified for a method or variable when it’s declared in a class, the method

or variable is considered to have package access (p. 344).

Section 8.15 Using BigDecimal for Precise Monetary Calculations
• Any application that requires precise floating-point calculations without rounding errors—such as

those in financial applications—should instead use class BigDecimal (package java.math; p. 346).

• BigDecimal static method valueOf (p. 347) with a double argument returns a BigDecimal that
represents the exact value specified.

• BigDecimal method add (p. 347) adds its argument BigDecimal to the BigDecimal on which the
method is called and returns the result.

• BigDecimal provides the constants ONE (1), ZERO (0) and TEN (10).

• BigDecimal method pow (p. 347) raises its first argument to the power specified in its second ar-
gument.

• BigDecimal method multiply (p. 347) multiplies its argument BigDecimal with the BigDecimal
on which the method is called and returns the result.

• Class NumberFormat (package java.text; p. 347) provides capabilities for formatting numeric
values as locale-specific Strings. The class’s static method getCurrencyInstance returns a pre-
configured NumberFormat for local-specific currency values. NumberFormat method format per-
forms the formatting.

 Self-Review Exercise 355

• Locale-specific formatting is an important part of internationalization—the process of custom-
izing your applications for users’ various locales and spoken languages.

• BigDecimal gives you control over how values are rounded—by default all calculations are exact
and no rounding occurs. If you do not specify how to round BigDecimal values and a given value
cannot be represented exactly an ArithmeticException occurs.

• You can specify the rounding mode for BigDecimal by supplying a MathContext object (package
java.math) to class BigDecimal’s constructor when you create a BigDecimal. You may also pro-
vide a MathContext to various BigDecimal methods that perform calculations. By default, each
pre-configured MathContext uses so called “bankers rounding.”

• A BigDecimal’s scale is the number of digits to the right of its decimal point. If you need a Big-
Decimal rounded to a specific digit, you can call BigDecimal method setScale.

Self-Review Exercise
8.1 Fill in the blanks in each of the following statements:

a) A(n) imports all static members of a class.
b) String class static method is similar to method System.out.printf, but re-

turns a formatted String rather than displaying a String in a command window.
c) If a method contains a local variable with the same name as one of its class’s fields, the

local variable the field in that method’s scope.
d) The public methods of a class are also known as the class’s or .
e) A(n) declaration specifies one class to import.
f) If a class declares constructors, the compiler will not create a(n) .
g) An object’s method is called implicitly when an object appears in code where

a String is needed.
h) Get methods are commonly called or .
i) A(n) method tests whether a condition is true or false.
j) For every enum, the compiler generates a static method called that returns an

array of the enum’s constants in the order in which they were declared.
k) Composition is sometimes referred to as a(n) relationship.
l) A(n) declaration contains a comma-separated list of constants.
m) A(n) variable represents classwide information that’s shared by all the objects

of the class.
n) A(n) declaration imports one static member.
o) The states that code should be granted only the amount of privilege and access

that it needs to accomplish its designated task.
p) Keyword specifies that a variable is not modifiable after initialiation in a dec-

laration or constructor.
q) A(n) declaration imports only the classes that the program uses from a partic-

ular package.
r) Set methods are commonly called because they typically change a value.
s) Use class to perform precise monetary calculations.
t) Use the statement to indicate that a problem has occurred.

Answers to Self-Review Exercise
8.1 a) static import on demand. b) format. c) shadows. d) public services, public interface.
e) single-type-import. f) default constructor. g) toString. h) accessor methods, query methods.
i) predicate. j) values. k) has-a. l) enum. m) static. n) single static import. o) principle of least
privilege. p) final. q) type-import-on-demand. r) mutator methods. s) BigDecimal. t) throw.

356 Chapter 8 Classes and Objects: A Deeper Look

Exercises
8.2 (Based on Section 8.14) Explain the notion of package access in Java. Explain the negative
aspects of package access.

8.3 What happens when a return type, even void, is specified for a constructor?

8.4 (Rectangle Class) Create a class Rectangle with attributes length and width, each of which
defaults to 1. Provide methods that calculate the rectangle’s perimeter and area. It has set and get
methods for both length and width. The set methods should verify that length and width are each
floating-point numbers larger than 0.0 and less than 20.0. Write a program to test class Rectangle.

8.5 (Modifying the Internal Data Representation of a Class) It would be perfectly reasonable
for the Time2 class of Fig. 8.5 to represent the time internally as the number of seconds since mid-
night rather than the three integer values hour, minute and second. Clients could use the same pub-
lic methods and get the same results. Modify the Time2 class of Fig. 8.5 to implement the time as
the number of seconds since midnight and show that no change is visible to the clients of the class.

8.6 (Savings Account Class) Create class SavingsAccount. Use a static variable annualInter-
estRate to store the annual interest rate for all account holders. Each object of the class contains a
private instance variable savingsBalance indicating the amount the saver currently has on deposit.
Provide method calculateMonthlyInterest to calculate the monthly interest by multiplying the
savingsBalance by annualInterestRate divided by 12—this interest should be added to savings-
Balance. Provide a static method modifyInterestRate that sets the annualInterestRate to a new
value. Write a program to test class SavingsAccount. Instantiate two savingsAccount objects,
saver1 and saver2, with balances of $2000.00 and $3000.00, respectively. Set annualInterestRate
to 4%, then calculate the monthly interest for each of 12 months and print the new balances for
both savers. Next, set the annualInterestRate to 5%, calculate the next month’s interest and print
the new balances for both savers.

8.7 (Enhancing Class Time2) Modify class Time2 of Fig. 8.5 to include a tick method that in-
crements the time stored in a Time2 object by one second. Provide method incrementMinute to in-
crement the minute by one and method incrementHour to increment the hour by one. Write a
program that tests the tick method, the incrementMinute method and the incrementHour method
to ensure that they work correctly. Be sure to test the following cases:

a) incrementing into the next minute,
b) incrementing into the next hour and
c) incrementing into the next day (i.e., 11:59:59 PM to 12:00:00 AM).

8.8 (Enhancing Class Date) Modify class Date of Fig. 8.7 to perform error checking on the ini-
tializer values for instance variables month, day and year (currently it validates only the month and
day). Provide a method nextDay to increment the day by one. Write a program that tests method
nextDay in a loop that prints the date during each iteration to illustrate that the method works cor-
rectly. Test the following cases:

a) incrementing into the next month and
b) incrementing into the next year.

8.9 Rewrite the code in Fig. 8.14 to use a separate import declaration for each static member
of class Math that’s used in the example.

8.10 Write an enum type TrafficLight, whose constants (RED, GREEN, YELLOW) take one parame-
ter—the duration of the light. Write a program to test the TrafficLight enum so that it displays the
enum constants and their durations.

8.11 (Complex Numbers) Create a class called Complex for performing arithmetic with complex
numbers. Complex numbers have the form

realPart + imaginaryPart * i

 Exercises 357

where i is

Write a program to test your class. Use floating-point variables to represent the private data of the
class. Provide a constructor that enables an object of this class to be initialized when it’s declared.
Provide a no-argument constructor with default values in case no initializers are provided. Provide
public methods that perform the following operations:

a) Add two Complex numbers: The real parts are added together and the imaginary parts
are added together.

b) Subtract two Complex numbers: The real part of the right operand is subtracted from
the real part of the left operand, and the imaginary part of the right operand is sub-
tracted from the imaginary part of the left operand.

c) Print Complex numbers in the form (realPart, imaginaryPart).

8.12 (Date and Time Class) Create class DateAndTime that combines the modified Time2 class of
Exercise 8.7 and the modified Date class of Exercise 8.8. Modify method incrementHour to call
method nextDay if the time is incremented into the next day. Modify methods toString and toUni-
versalString to output the date in addition to the time. Write a program to test the new class Da-
teAndTime. Specifically, test incrementing the time to the next day.

8.13 (Set of Integers) Create class IntegerSet. Each IntegerSet object can hold integers in the
range 0–100. The set is represented by an array of booleans. Array element a[i] is true if integer i
is in the set. Array element a[j] is false if integer j is not in the set. The no-argument constructor
initializes the array to the “empty set” (i.e., all false values).

Provide the following methods: The static method union creates a set that’s the set-theoretic
union of two existing sets (i.e., an element of the new set’s array is set to true if that element is true
in either or both of the existing sets—otherwise, the new set’s element is set to false). The static
method intersection creates a set which is the set-theoretic intersection of two existing sets (i.e.,
an element of the new set’s array is set to false if that element is false in either or both of the
existing sets—otherwise, the new set’s element is set to true). Method insertElement inserts a new
integer k into a set (by setting a[k] to true). Method deleteElement deletes integer m (by setting
a[m] to false). Method toString returns a String containing a set as a list of numbers separated
by spaces. Include only those elements that are present in the set. Use --- to represent an empty
set. Method isEqualTo determines whether two sets are equal. Write a program to test class Inte-
gerSet. Instantiate several IntegerSet objects. Test that all your methods work properly.

8.14 (Date Class) Create class Date with the following capabilities:
a) Output the date in multiple formats, such as

MM/DD/YYYY
June 14, 1992
DDD YYYY

b) Use overloaded constructors to create Date objects initialized with dates of the formats
in part (a). In the first case the constructor should receive three integer values. In the
second case it should receive a String and two integer values. In the third case it should
receive two integer values, the first of which represents the day number in the year.
[Hint: To convert the String representation of the month to a numeric value, compare
Strings using the equals method. For example, if s1 and s2 are Strings, the method
call s1.equals(s2) returns true if the Strings are identical and otherwise returns
false.]

8.15 (Rational Numbers) Create a class called Rational for performing arithmetic with fractions.
Write a program to test your class. Use integer variables to represent the private instance variables
of the class—the numerator and the denominator. Provide a constructor that enables an object of

1–

358 Chapter 8 Classes and Objects: A Deeper Look

this class to be initialized when it’s declared. The constructor should store the fraction in reduced
form. The fraction

2/4

is equivalent to 1/2 and would be stored in the object as 1 in the numerator and 2 in the denomina-
tor. Provide a no-argument constructor with default values in case no initializers are provided. Pro-
vide public methods that perform each of the following operations:

a) Add two Rational numbers: The result of the addition should be stored in reduced
form. Implement this as a static method.

b) Subtract two Rational numbers: The result of the subtraction should be stored in re-
duced form. Implement this as a static method.

c) Multiply two Rational numbers: The result of the multiplication should be stored in
reduced form. Implement this as a static method.

d) Divide two Rational numbers: The result of the division should be stored in reduced
form. Implement this as a static method.

e) Return a String representation of a Rational number in the form a/b, where a is the
numerator and b is the denominator.

f) Return a String representation of a Rational number in floating-point format. (Con-
sider providing formatting capabilities that enable the user of the class to specify the
number of digits of precision to the right of the decimal point.)

8.16 (Huge Integer Class) Create a class HugeInteger which uses a 40-element array of digits to
store integers as large as 40 digits each. Provide methods parse, toString, add and subtract. Meth-
od parse should receive a String, extract each digit using method charAt and place the integer
equivalent of each digit into the integer array. For comparing HugeInteger objects, provide the fol-
lowing methods: isEqualTo, isNotEqualTo, isGreaterThan, isLessThan, isGreaterThanOrEqualTo
and isLessThanOrEqualTo. Each of these is a predicate method that returns true if the relationship
holds between the two HugeInteger objects and returns false if the relationship does not hold. Pro-
vide a predicate method isZero. If you feel ambitious, also provide methods multiply, divide and
remainder. [Note: Primitive boolean values can be output as the word “true” or the word “false” with
format specifier %b.]

8.17 (Tic-Tac-Toe) Create a class TicTacToe that will enable you to write a program to play Tic-
Tac-Toe. The class contains a private 3-by-3 two-dimensional array. Use an enum type to represent
the value in each cell of the array. The enum’s constants should be named X, O and EMPTY (for a po-
sition that does not contain an X or an O). The constructor should initialize the board elements to
EMPTY. Allow two human players. Wherever the first player moves, place an X in the specified square,
and place an O wherever the second player moves. Each move must be to an empty square. After
each move, determine whether the game has been won and whether it’s a draw. If you feel ambi-
tious, modify your program so that the computer makes the moves for one of the players. Also, allow
the player to specify whether he or she wants to go first or second. If you feel exceptionally ambi-
tious, develop a program that will play three-dimensional Tic-Tac-Toe on a 4-by-4-by-4 board
[Note: This is an extremely challenging project!].

8.18 (Account Class with BigDecimal balance) Rewrite the Account class of Section 3.5 to store
the balance as a BigDecimal object and to perform all calculations using BigDecimals.

Making a Difference
8.19 (Project: Emergency Response Class) The North American emergency response service, 9-1-1,
connects callers to a local Public Service Answering Point (PSAP). Traditionally, the PSAP would ask
the caller for identification information—including the caller’s address, phone number and the nature
of the emergency, then dispatch the appropriate emergency responders (such as the police, an ambu-

 Making a Difference 359

lance or the fire department). Enhanced 9-1-1 (or E9-1-1) uses computers and databases to determine
the caller’s physical address, directs the call to the nearest PSAP, and displays the caller’s phone num-
ber and address to the call taker. Wireless Enhanced 9-1-1 provides call takers with identification in-
formation for wireless calls. Rolled out in two phases, the first phase required carriers to provide the
wireless phone number and the location of the cell site or base station transmitting the call. The sec-
ond phase required carriers to provide the location of the caller (using technologies such as GPS). To
learn more about 9-1-1, visit http://www.fcc.gov/pshs/services/911-services/Welcome.html and
http://people.howstuffworks.com/9-1-1.htm.

An important part of creating a class is determining the class’s attributes (instance variables).
For this class design exercise, research 9-1-1 services on the Internet. Then, design a class called
Emergency that might be used in an object-oriented 9-1-1 emergency response system. List the
attributes that an object of this class might use to represent the emergency. For example, the class
might include information on who reported the emergency (including their phone number), the
location of the emergency, the time of the report, the nature of the emergency, the type of response
and the status of the response. The class attributes should completely describe the nature of the
problem and what’s happening to resolve that problem.

http://www.fcc.gov/pshs/services/911-services/Welcome.html
http://people.howstuffworks.com/9-1-1.htm

9 Object-Oriented
Programming: Inheritance

Say not you know another
entirely,
till you have divided an
inheritance with him.
—Johann Kasper Lavater

This method is to define as the
number of a class the class of all
classes similar to the given class.
—Bertrand Russell

O b j e c t i v e s
In this chapter you’ll:

■ Understand inheritance and
how to use it to develop new
classes based on existing
classes.

■ Learn the notions of
superclasses and subclasses
and the relationship between
them.

■ Use keyword extends to
create a class that inherits
attributes and behaviors from
another class.

■ Use access modifier
protected in a superclass
to give subclass methods
access to these superclass
members.

■ Access superclass members
with super from a subclass.

■ Learn how constructors are
used in inheritance
hierarchies.

■ Learn about the methods of
class Object, the direct or
indirect superclass of all
classes.

9.1 Introduction 361

9.1 Introduction
This chapter continues our discussion of object-oriented programming (OOP) by intro-
ducing inheritance, in which a new class is created by acquiring an existing class’s mem-
bers and possibly embellishing them with new or modified capabilities. With inheritance,
you can save time during program development by basing new classes on existing proven
and debugged high-quality software. This also increases the likelihood that a system will
be implemented and maintained effectively.

When creating a class, rather than declaring completely new members, you can des-
ignate that the new class should inherit the members of an existing class. The existing class
is called the superclass, and the new class is the subclass. (The C++ programming language
refers to the superclass as the base class and the subclass as the derived class.) A subclass
can become a superclass for future subclasses.

A subclass can add its own fields and methods. Therefore, a subclass is more specific
than its superclass and represents a more specialized group of objects. The subclass exhibits
the behaviors of its superclass and can modify those behaviors so that they operate appro-
priately for the subclass. This is why inheritance is sometimes referred to as specialization.

The direct superclass is the superclass from which the subclass explicitly inherits. An
indirect superclass is any class above the direct superclass in the class hierarchy, which
defines the inheritance relationships among classes—as you’ll see in Section 9.2, diagrams
help you understand these relationships. In Java, the class hierarchy begins with class
Object (in package java.lang), which every class in Java directly or indirectly extends (or
“inherits from”). Section 9.6 lists the methods of class Object that are inherited by all
other Java classes. Java supports only single inheritance, in which each class is derived
from exactly one direct superclass. Unlike C++, Java does not support multiple inheritance
(which occurs when a class is derived from more than one direct superclass). Chapter 10,
Object-Oriented Programming: Polymorphism and Interfaces, explains how to use Java
interfaces to realize many of the benefits of multiple inheritance while avoiding the associ-
ated problems.

9.1 Introduction
9.2 Superclasses and Subclasses
9.3 protected Members
9.4 Relationship Between Superclasses and

Subclasses
9.4.1 Creating and Using a

CommissionEmployee Class
9.4.2 Creating and Using a

BasePlusCommissionEmployee Class
9.4.3 Creating a CommissionEmployee–

BasePlusCommissionEmployee
Inheritance Hierarchy

9.4.4 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using protected
Instance Variables

9.4.5 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using
private Instance Variables

9.5 Constructors in Subclasses
9.6 Class Object
9.7 (Optional) GUI and Graphics

Case Study: Displaying Text and
Images Using Labels

9.8 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

362 Chapter 9 Object-Oriented Programming: Inheritance

We distinguish between the is-a relationship and the has-a relationship. Is-a repre-
sents inheritance. In an is-a relationship, an object of a subclass can also be treated as an object
of its superclass—e.g., a car is a vehicle. By contrast, has-a represents composition (see
Chapter 8). In a has-a relationship, an object contains as members references to other objects—
e.g., a car has a steering wheel (and a car object has a reference to a steering-wheel object).

New classes can inherit from classes in class libraries. Organizations develop their
own class libraries and can take advantage of others available worldwide. Some day, most
new software likely will be constructed from standardized reusable components, just as
automobiles and most computer hardware are constructed today. This will facilitate the
rapid development of more powerful, abundant and economical software.

9.2 Superclasses and Subclasses
Often, an object of one class is an object of another class as well. For example, a CarLoan
is a Loan as are HomeImprovementLoans and MortgageLoans. Thus, in Java, class CarLoan
can be said to inherit from class Loan. In this context, class Loan is a superclass and class
CarLoan is a subclass. A CarLoan is a specific type of Loan, but it’s incorrect to claim that
every Loan is a CarLoan—the Loan could be any type of loan. Figure 9.1 lists several simple
examples of superclasses and subclasses—superclasses tend to be “more general” and sub-
classes “more specific.”

Because every subclass object is an object of its superclass, and one superclass can have
many subclasses, the set of objects represented by a superclass is often larger than the set
of objects represented by any of its subclasses. For example, the superclass Vehicle repre-
sents all vehicles, including cars, trucks, boats, bicycles and so on. By contrast, subclass Car
represents a smaller, more specific subset of vehicles.

University Community Member Hierarchy
Inheritance relationships form treelike hierarchical structures. A superclass exists in a hier-
archical relationship with its subclasses. Let’s develop a sample class hierarchy (Fig. 9.2),
also called an inheritance hierarchy. A university community has thousands of members,
including employees, students and alumni. Employees are either faculty or staff members.
Faculty members are either administrators (e.g., deans and department chairpersons) or
teachers. The hierarchy could contain many other classes. For example, students can be
graduate or undergraduate students. Undergraduate students can be freshmen, sopho-
mores, juniors or seniors.

Superclass Subclasses

Student GraduateStudent, UndergraduateStudent
Shape Circle, Triangle, Rectangle, Sphere, Cube
Loan CarLoan, HomeImprovementLoan, MortgageLoan
Employee Faculty, Staff
BankAccount CheckingAccount, SavingsAccount

Fig. 9.1 | Inheritance examples.

9.2 Superclasses and Subclasses 363

Each arrow in the hierarchy represents an is-a relationship. As we follow the arrows
upward in this class hierarchy, we can state, for example, that “an Employee is a
CommunityMember” and “a Teacher is a Faculty member.” CommunityMember is the direct
superclass of Employee, Student and Alumnus and is an indirect superclass of all the other
classes in the diagram. Starting from the bottom, you can follow the arrows and apply the
is-a relationship up to the topmost superclass. For example, an Administrator is a Fac-
ulty member, is an Employee, is a CommunityMember and, of course, is an Object.

Shape Hierarchy
Now consider the Shape inheritance hierarchy in Fig. 9.3. This hierarchy begins with su-
perclass Shape, which is extended by subclasses TwoDimensionalShape and ThreeDim-
ensionalShape—Shapes are either TwoDimensionalShapes or ThreeDimensionalShapes.
The third level of this hierarchy contains specific types of TwoDimensionalShapes and
ThreeDimensionalShapes. As in Fig. 9.2, we can follow the arrows from the bottom of the
diagram to the topmost superclass in this class hierarchy to identify several is-a relation-
ships. For example, a Triangle is a TwoDimensionalShape and is a Shape, while a Sphere
is a ThreeDimensionalShape and is a Shape. This hierarchy could contain many other
classes. For example, ellipses and trapezoids also are TwoDimensionalShapes.

Fig. 9.2 | Inheritance hierarchy UML class diagram for university CommunityMembers.

Fig. 9.3 | Inheritance hierarchy UML class diagram for Shapes.

Student

CommunityMember

Administrator

AlumnusEmployee

StaffFaculty

Teacher

ThreeDimensionalShape

TetrahedronCubeSphereSquare TriangleCircle

Shape

TwoDimensionalShape

364 Chapter 9 Object-Oriented Programming: Inheritance

Not every class relationship is an inheritance relationship. In Chapter 8, we discussed
the has-a relationship, in which classes have members that are references to objects of other
classes. Such relationships create classes by composition of existing classes. For example,
given the classes Employee, BirthDate and TelephoneNumber, it’s improper to say that an
Employee is a BirthDate or that an Employee is a TelephoneNumber. However, an
Employee has a BirthDate, and an Employee has a TelephoneNumber.

It’s possible to treat superclass objects and subclass objects similarly—their common-
alities are expressed in the superclass’s members. Objects of all classes that extend a
common superclass can be treated as objects of that superclass—such objects have an is-a
relationship with the superclass. Later in this chapter and in Chapter 10, we consider
many examples that take advantage of the is-a relationship.

A subclass can customize methods that it inherits from its superclass. To do this, the
subclass overrides (redefines) the superclass method with an appropriate implementation,
as we’ll see in the chapter’s code examples.

9.3 protected Members
Chapter 8 discussed access modifiers public and private. A class’s public members are
accessible wherever the program has a reference to an object of that class or one of its sub-
classes. A class’s private members are accessible only within the class itself. In this section,
we introduce the access modifier protected. Using protected access offers an intermedi-
ate level of access between public and private. A superclass’s protected members can be
accessed by members of that superclass, by members of its subclasses and by members of
other classes in the same package—protected members also have package access.

All public and protected superclass members retain their original access modifier
when they become members of the subclass—public members of the superclass become
public members of the subclass, and protected members of the superclass become pro-
tected members of the subclass. A superclass’s private members are not accessible outside
the class itself. Rather, they’re hidden from its subclasses and can be accessed only through
the public or protected methods inherited from the superclass.

Subclass methods can refer to public and protected members inherited from the
superclass simply by using the member names. When a subclass method overrides an inher-
ited superclass method, the superclass version of the method can be accessed from the sub-
class by preceding the superclass method name with keyword super and a dot (.)
separator. We discuss accessing overridden members of the superclass in Section 9.4.

Software Engineering Observation 9.1
Methods of a subclass cannot directly access private members of their superclass. A
subclass can change the state of private superclass instance variables only through non-
private methods provided in the superclass and inherited by the subclass.

Software Engineering Observation 9.2
Declaring private instance variables helps you test, debug and correctly modify systems.
If a subclass could access its superclass’s private instance variables, classes that inherit
from that subclass could access the instance variables as well. This would propagate access
to what should be private instance variables, and the benefits of information hiding
would be lost.

9.4 Relationship Between Superclasses and Subclasses 365

9.4 Relationship Between Superclasses and Subclasses
We now use an inheritance hierarchy containing types of employees in a company’s payroll
application to discuss the relationship between a superclass and its subclass. In this com-
pany, commission employees (who will be represented as objects of a superclass) are paid a
percentage of their sales, while base-salaried commission employees (who will be represented
as objects of a subclass) receive a base salary plus a percentage of their sales.

We divide our discussion of the relationship between these classes into five examples.
The first declares class CommissionEmployee, which directly inherits from class Object
and declares as private instance variables a first name, last name, social security number,
commission rate and gross (i.e., total) sales amount.

The second example declares class BasePlusCommissionEmployee, which also directly
inherits from class Object and declares as private instance variables a first name, last
name, social security number, commission rate, gross sales amount and base salary. We
create this class by writing every line of code the class requires—we’ll soon see that it’s much
more efficient to create it by inheriting from class CommissionEmployee.

The third example declares a new BasePlusCommissionEmployee class that extends
class CommissionEmployee (i.e., a BasePlusCommissionEmployee is a CommissionEm-
ployee who also has a base salary). This software reuse lets us write much less code when
developing the new subclass. In this example, class BasePlusCommissionEmployee
attempts to access class CommissionEmployee’s private members—this results in compi-
lation errors, because the subclass cannot access the superclass’s private instance variables.

The fourth example shows that if CommissionEmployee’s instance variables are
declared as protected, the BasePlusCommissionEmployee subclass can access that data
directly. Both BasePlusCommissionEmployee classes contain identical functionality, but
we show how the inherited version is easier to create and manage.

After we discuss the convenience of using protected instance variables, we create the
fifth example, which sets the CommissionEmployee instance variables back to private to
enforce good software engineering. Then we show how the BasePlusCommissionEm-
ployee subclass can use CommissionEmployee’s public methods to manipulate (in a con-
trolled manner) the private instance variables inherited from CommissionEmployee.

9.4.1 Creating and Using a CommissionEmployee Class
We begin by declaring class CommissionEmployee (Fig. 9.4). Line 4 begins the class dec-
laration and indicates that class CommissionEmployee extends (i.e., inherits from) class Ob-
ject (from package java.lang). This causes class CommissionEmployee to inherit the class
Object’s methods—class Object does not have any fields. If you don’t explicitly specify
which class a new class extends, the class extends Object implicitly. For this reason, you
typically will not include “extends Object” in your code—we do so in this one example
only for demonstration purposes.

Overview of Class CommissionEmployee’s Methods and Instance Variables
Class CommissionEmployee’s public services include a constructor (lines 13–34) and
methods earnings (lines 87–90) and toString (lines 93–101). Lines 37–52 declare pub-
lic get methods for the class’s final instance variables (declared in lines 6–8) firstName,
lastName and socialSecurityNumber. These three instance variables are declared final
because they do not need to be modified after they’re initialized—this is also why we do

366 Chapter 9 Object-Oriented Programming: Inheritance

not provide corresponding set methods. Lines 55–84 declare public set and get methods
for the class’s grossSales and commissionRate instance variables (declared in lines 9–10).
The class declares its instance variables as private, so objects of other classes cannot di-
rectly access these variables.

1 // Fig. 9.4: CommissionEmployee.java
2 // CommissionEmployee class represents an employee paid a
3 // percentage of gross sales.
4
5 {
6 private final String firstName;
7 private final String lastName;
8 private final String socialSecurityNumber;
9 private double grossSales; // gross weekly sales

10 private double commissionRate; // commission percentage
11
12 // five-argument constructor
13 public CommissionEmployee(String firstName, String lastName,
14 String socialSecurityNumber, double grossSales,
15 double commissionRate)
16 {
17 // implicit call to Object's default constructor occurs here
18
19 // if grossSales is invalid throw exception
20 if (grossSales < 0.0)
21 throw new IllegalArgumentException(
22 "Gross sales must be >= 0.0");
23
24 // if commissionRate is invalid throw exception
25 if (commissionRate <= 0.0 || commissionRate >= 1.0)
26 throw new IllegalArgumentException(
27 "Commission rate must be > 0.0 and < 1.0");
28
29 this.firstName = firstName;
30 this.lastName = lastName;
31 this.socialSecurityNumber = socialSecurityNumber;
32 this.grossSales = grossSales;
33 this.commissionRate = commissionRate;
34 } // end constructor
35
36 // return first name
37 public String getFirstName()
38 {
39 return firstName;
40 }
41
42 // return last name
43 public String getLastName()
44 {
45 return lastName;
46 }

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of gross sales.
(Part 1 of 3.)

public class CommissionEmployee extends Object

9.4 Relationship Between Superclasses and Subclasses 367

47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 }
53
54 // set gross sales amount
55 public void setGrossSales(double grossSales)
56 {
57 if (grossSales < 0.0)
58 throw new IllegalArgumentException(
59 "Gross sales must be >= 0.0");
60
61 this.grossSales = grossSales;
62 }
63
64 // return gross sales amount
65 public double getGrossSales()
66 {
67 return grossSales;
68 }
69
70 // set commission rate
71 public void setCommissionRate(double commissionRate)
72 {
73 if (commissionRate <= 0.0 || commissionRate >= 1.0)
74 throw new IllegalArgumentException(
75 "Commission rate must be > 0.0 and < 1.0");
76
77 this.commissionRate = commissionRate;
78 }
79
80 // return commission rate
81 public double getCommissionRate()
82 {
83 return commissionRate;
84 }
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of gross sales.
(Part 2 of 3.)

// calculate earnings
public double earnings()
{
 return commissionRate * grossSales;
}

// return String representation of CommissionEmployee object
@Override // indicates that this method overrides a superclass method
public String toString()
{
 return String.format("%s: %s %s%n%s: %s%n%s: %.2f%n%s: %.2f",
 "commission employee", firstName, lastName,
 "social security number", socialSecurityNumber,

368 Chapter 9 Object-Oriented Programming: Inheritance

Class CommissionEmployee’s Constructor
Constructors are not inherited, so class CommissionEmployee does not inherit class
Object’s constructor. However, a superclass’s constructors are still available to be called by
subclasses. In fact, Java requires that the first task of any subclass constructor is to call its direct
superclass’s constructor, either explicitly or implicitly (if no constructor call is specified), to
ensure that the instance variables inherited from the superclass are initialized properly. The
syntax for calling a superclass constructor explicitly is discussed in Section 9.4.3. In this
example, class CommissionEmployee’s constructor calls class Object’s constructor implic-
itly. If the code does not include an explicit call to the superclass constructor, Java implic-
itly calls the superclass’s default or no-argument constructor. The comment in line 17 of
Fig. 9.4 indicates where the implicit call to the superclass Object’s default constructor is
made (you do not write the code for this call). Object’s default constructor does nothing.
Even if a class does not have constructors, the default constructor that the compiler im-
plicitly declares for the class will call the superclass’s default or no-argument constructor.

After the implicit call to Object’s constructor, lines 20–22 and 25–27 validate the
grossSales and commissionRate arguments. If these are valid (that is, the constructor
does not throw an IllegalArgumentException), lines 29–33 assign the constructor’s
arguments to the class’s instance variables.

We did not validate the values of arguments firstName, lastName and socialSecu-
rityNumber before assigning them to the corresponding instance variables. We could val-
idate the first and last names—perhaps to ensure that they’re of a reasonable length.
Similarly, a social security number could be validated using regular expressions
(Section 14.7) to ensure that it contains nine digits, with or without dashes (e.g., 123-45-
6789 or 123456789).

Class CommissionEmployee’s earnings Method
Method earnings (lines 87–90) calculates a CommissionEmployee’s earnings. Line 89
multiplies the commissionRate by the grossSales and returns the result.

Class CommissionEmployee’s toString Method and the @Override Annotation
Method toString (lines 93–101) is special—it’s one of the methods that every class inher-
its directly or indirectly from class Object (summarized in Section 9.6). Method toString
returns a String representing an object. It’s called implicitly whenever an object must be
converted to a String representation, such as when an object is output by printf or out-
put by String method format via the %s format specifier. Class Object’s toString meth-
od returns a String that includes the name of the object’s class. It’s primarily a placeholder
that can be overridden by a subclass to specify an appropriate String representation of the
data in a subclass object. Method toString of class CommissionEmployee overrides (rede-
fines) class Object’s toString method. When invoked, CommissionEmployee’s toString

99
100
101
102 } // end class CommissionEmployee

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of gross sales.
(Part 3 of 3.)

 "gross sales", grossSales,
 "commission rate", commissionRate);
}

9.4 Relationship Between Superclasses and Subclasses 369

method uses String method format to return a String containing information about the
CommissionEmployee. To override a superclass method, a subclass must declare a method
with the same signature (method name, number of parameters, parameter types and order
of parameter types) as the superclass method—Object’s toString method takes no pa-
rameters, so CommissionEmployee declares toString with no parameters.

Line 93 uses the optional @Override annotation to indicate that the following
method declaration (i.e., toString) should override an existing superclass method. This
annotation helps the compiler catch a few common errors. For example, in this case, you
intend to override superclass method toString, which is spelled with a lowercase “t” and
an uppercase “S.” If you inadvertently use a lowercase “s,” the compiler will flag this as an
error because the superclass does not contain a method named toString. If you didn’t use
the @Override annotation, toString would be an entirely different method that would
not be called if a CommissionEmployee were used where a String was needed.

Another common overriding error is declaring the wrong number or types of param-
eters in the parameter list. This creates an unintentional overload of the superclass method,
rather than overriding the existing method. If you then attempt to call the method (with
the correct number and types of parameters) on a subclass object, the superclass’s version
is invoked—potentially leading to subtle logic errors. When the compiler encounters a
method declared with @Override, it compares the method’s signature with the superclass’s
method signatures. If there isn’t an exact match, the compiler issues an error message, such
as “method does not override or implement a method from a supertype.” You would then
correct your method’s signature so that it matches one in the superclass.

Class CommissionEmployeeTest
Figure 9.5 tests class CommissionEmployee. Lines 9–10 instantiate a CommissionEmployee
object and invoke CommissionEmployee’s constructor (lines 13–34 of Fig. 9.4) to initialize
it with "Sue" as the first name, "Jones" as the last name, "222-22-2222" as the social secu-
rity number, 10000 as the gross sales amount ($10,000) and .06 as the commission rate (i.e.,
6%). Lines 15–24 use CommissionEmployee’s get methods to retrieve the object’s instance-
variable values for output. Lines 26–27 invoke the object’s setGrossSales and setCommis-
sionRate methods to change the values of instance variables grossSales and commission-

Error-Prevention Tip 9.1
Though the @Override annotation is optional, declare overridden methods with it to en-
sure at compilation time that you defined their signatures correctly. It’s always better to
find errors at compile time rather than at runtime. For this reason, the toString methods
in Fig. 7.9 and in Chapter 8’s examples should have been declared with @Override.

Common Programming Error 9.1
It’s a compilation error to override a method with a more restricted access modifier—a
public superclass method cannot become a protected or private subclass method; a pro-
tected superclass method cannot become a private subclass method. Doing so would
break the is-a relationship, which requires that all subclass objects be able to respond to
method calls made to public methods declared in the superclass. If a public method, could
be overridden as a protected or private method, the subclass objects would not be able
to respond to the same method calls as superclass objects. Once a method is declared public
in a superclass, the method remains public for all that class’s direct and indirect subclasses.

370 Chapter 9 Object-Oriented Programming: Inheritance

Rate. Lines 29–30 output the String representation of the updated CommissionEmployee.
When an object is output using the %s format specifier, the object’s toString method is in-
voked implicitly to obtain the object’s String representation. [Note: In this chapter, we do
not use the earnings method in each class, but it’s used extensively in Chapter 10.]

1 // Fig. 9.5: CommissionEmployeeTest.java
2 // CommissionEmployee class test program.
3
4 public class CommissionEmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 // instantiate CommissionEmployee object
9

10
11
12 // get commission employee data
13 System.out.println(
14 "Employee information obtained by get methods:");
15 System.out.printf("%n%s %s%n", "First name is",
16);
17 System.out.printf("%s %s%n", "Last name is",
18);
19 System.out.printf("%s %s%n", "Social security number is",
20);
21 System.out.printf("%s %.2f%n", "Gross sales is",
22);
23 System.out.printf("%s %.2f%n", "Commission rate is",
24);
25
26
27
28
29 System.out.printf("%n%s:%n%n %n",
30 "Updated employee information obtained by toString",);
31 } // end main
32 } // end class CommissionEmployeeTest

Employee information obtained by get methods:

First name is Sue
Last name is Jones
Social security number is 222-22-2222
Gross sales is 10000.00
Commission rate is 0.06

Updated employee information obtained by toString:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 5000.00
commission rate: 0.10

Fig. 9.5 | CommissionEmployee class test program.

CommissionEmployee employee = new CommissionEmployee(
 "Sue", "Jones", "222-22-2222", 10000, .06);

employee.getFirstName()

employee.getLastName()

employee.getSocialSecurityNumber()

employee.getGrossSales()

employee.getCommissionRate()

employee.setGrossSales(5000);
employee.setCommissionRate(.1);

%s
employee

9.4 Relationship Between Superclasses and Subclasses 371

9.4.2 Creating and Using a BasePlusCommissionEmployee Class
We now discuss the second part of our introduction to inheritance by declaring and testing
(a completely new and independent) class BasePlusCommissionEmployee (Fig. 9.6),
which contains a first name, last name, social security number, gross sales amount, com-
mission rate and base salary. Class BasePlusCommissionEmployee’s public services in-
clude a BasePlusCommissionEmployee constructor (lines 15–42) and methods earnings
(lines 111–114) and toString (lines 117–126). Lines 45–108 declare public get and set
methods for the class’s private instance variables (declared in lines 7–12) firstName,
lastName, socialSecurityNumber, grossSales, commissionRate and baseSalary.
These variables and methods encapsulate all the necessary features of a base-salaried com-
mission employee. Note the similarity between this class and class CommissionEmployee
(Fig. 9.4)—in this example, we’ll not yet exploit that similarity.

1 // Fig. 9.6: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class represents an employee who receives
3 // a base salary in addition to commission.
4
5 public class BasePlusCommissionEmployee
6 {
7 private final String firstName;
8 private final String lastName;
9 private final String socialSecurityNumber;

10 private double grossSales; // gross weekly sales
11 private double commissionRate; // commission percentage
12
13
14 // six-argument constructor
15 public BasePlusCommissionEmployee(String firstName, String lastName,
16 String socialSecurityNumber, double grossSales,
17 double commissionRate,)
18 {
19 // implicit call to Object's default constructor occurs here
20
21 // if grossSales is invalid throw exception
22 if (grossSales < 0.0)
23 throw new IllegalArgumentException(
24 "Gross sales must be >= 0.0");
25
26 // if commissionRate is invalid throw exception
27 if (commissionRate <= 0.0 || commissionRate >= 1.0)
28 throw new IllegalArgumentException(
29 "Commission rate must be > 0.0 and < 1.0");
30
31
32
33
34
35

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 1 of 3.)

private double baseSalary; // base salary per week

double baseSalary

// if baseSalary is invalid throw exception
if (baseSalary < 0.0)
 throw new IllegalArgumentException(
 "Base salary must be >= 0.0");

372 Chapter 9 Object-Oriented Programming: Inheritance

36 this.firstName = firstName;
37 this.lastName = lastName;
38 this.socialSecurityNumber = socialSecurityNumber;
39 this.grossSales = grossSales;
40 this.commissionRate = commissionRate;
41
42 } // end constructor
43
44 // return first name
45 public String getFirstName()
46 {
47 return firstName;
48 }
49
50 // return last name
51 public String getLastName()
52 {
53 return lastName;
54 }
55
56 // return social security number
57 public String getSocialSecurityNumber()
58 {
59 return socialSecurityNumber;
60 }
61
62 // set gross sales amount
63 public void setGrossSales(double grossSales)
64 {
65 if (grossSales < 0.0)
66 throw new IllegalArgumentException(
67 "Gross sales must be >= 0.0");
68
69 this.grossSales = grossSales;
70 }
71
72 // return gross sales amount
73 public double getGrossSales()
74 {
75 return grossSales;
76 }
77
78 // set commission rate
79 public void setCommissionRate(double commissionRate)
80 {
81 if (commissionRate <= 0.0 || commissionRate >= 1.0)
82 throw new IllegalArgumentException(
83 "Commission rate must be > 0.0 and < 1.0");
84
85 this.commissionRate = commissionRate;
86 }
87

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 2 of 3.)

this.baseSalary = baseSalary;

9.4 Relationship Between Superclasses and Subclasses 373

Class BasePlusCommissionEmployee does not specify “extends Object” in line 5, so
the class implicitly extends Object. Also, like class CommissionEmployee’s constructor
(lines 13–34 of Fig. 9.4), class BasePlusCommissionEmployee’s constructor invokes class
Object’s default constructor implicitly, as noted in the comment in line 19.

Class BasePlusCommissionEmployee’s earnings method (lines 111–114) returns the
result of adding the BasePlusCommissionEmployee’s base salary to the product of the
commission rate and the employee’s gross sales.

Class BasePlusCommissionEmployee overrides Object method toString to return a
String containing the BasePlusCommissionEmployee’s information. Once again, we use

88 // return commission rate
89 public double getCommissionRate()
90 {
91 return commissionRate;
92 }
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110 // calculate earnings
111 public double earnings()
112 {
113
114 }
115
116 // return String representation of BasePlusCommissionEmployee
117 @Override
118 public String toString()
119 {
120 return String.format(
121 "%s: %s %s%n%s: %s%n%s: %.2f%n%s: %.2f%n%s: %.2f",
122 , firstName, lastName,
123 "social security number", socialSecurityNumber,
124 "gross sales", grossSales, "commission rate", commissionRate,
125);
126 }
127 } // end class BasePlusCommissionEmployee

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 3 of 3.)

// set base salary
public void setBaseSalary(double baseSalary)
{
 if (baseSalary < 0.0)
 throw new IllegalArgumentException(
 "Base salary must be >= 0.0");

 this.baseSalary = baseSalary;
}

// return base salary
public double getBaseSalary()
{
 return baseSalary;
}

return baseSalary + (commissionRate * grossSales);

"base-salaried commission employee"

"base salary", baseSalary

374 Chapter 9 Object-Oriented Programming: Inheritance

format specifier %.2f to format the gross sales, commission rate and base salary with two
digits of precision to the right of the decimal point (line 121).

Testing Class BasePlusCommissionEmployee
Figure 9.7 tests class BasePlusCommissionEmployee. Lines 9–11 create a BasePlusCom-
missionEmployee object and pass "Bob", "Lewis", "333-33-3333", 5000, .04 and 300 to
the constructor as the first name, last name, social security number, gross sales, commis-
sion rate and base salary, respectively. Lines 16–27 use BasePlusCommissionEmployee’s
get methods to retrieve the values of the object’s instance variables for output. Line 29 in-
vokes the object’s setBaseSalary method to change the base salary. Method setBaseSal-
ary (Fig. 9.6, lines 95–102) ensures that instance variable baseSalary is not assigned a
negative value. Line 33 of Fig. 9.7 invokes method toString explicitly to get the object’s
String representation.

1 // Fig. 9.7: BasePlusCommissionEmployeeTest.java
2 // BasePlusCommissionEmployee test program.
3
4 public class BasePlusCommissionEmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 // instantiate BasePlusCommissionEmployee object
9

10
11
12
13 // get base-salaried commission employee data
14 System.out.println(
15 "Employee information obtained by get methods:%n");
16 System.out.printf("%s %s%n", "First name is",
17);
18 System.out.printf("%s %s%n", "Last name is",
19);
20 System.out.printf("%s %s%n", "Social security number is",
21);
22 System.out.printf("%s %.2f%n", "Gross sales is",
23);
24 System.out.printf("%s %.2f%n", "Commission rate is",
25);
26 System.out.printf("%s %.2f%n", "Base salary is",
27);
28
29
30
31 System.out.printf("%n%s:%n%n%s%n",
32 "Updated employee information obtained by toString",
33);
34 } // end main
35 } // end class BasePlusCommissionEmployeeTest

Fig. 9.7 | BasePlusCommissionEmployee test program. (Part 1 of 2.)

BasePlusCommissionEmployee employee =
 new BasePlusCommissionEmployee(
 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);

employee.getFirstName()

employee.getLastName()

employee.getSocialSecurityNumber()

employee.getGrossSales()

employee.getCommissionRate()

employee.getBaseSalary()

employee.setBaseSalary(1000);

employee.toString()

9.4 Relationship Between Superclasses and Subclasses 375

Notes on Class BasePlusCommissionEmployee
Much of class BasePlusCommissionEmployee’s code (Fig. 9.6) is similar, or identical, to
that of class CommissionEmployee (Fig. 9.4). For example, private instance variables
firstName and lastName and methods setFirstName, getFirstName, setLastName and
getLastName are identical to those of class CommissionEmployee. The classes also both
contain private instance variables socialSecurityNumber, commissionRate and gross-
Sales, and corresponding get and set methods. In addition, the BasePlusCommissionEm-
ployee constructor is almost identical to that of class CommissionEmployee, except that
BasePlusCommissionEmployee’s constructor also sets the baseSalary. The other addi-
tions to class BasePlusCommissionEmployee are private instance variable baseSalary
and methods setBaseSalary and getBaseSalary. Class BasePlusCommissionEmployee’s
toString method is almost identical to that of class CommissionEmployee except that it
also outputs instance variable baseSalary with two digits of precision to the right of the
decimal point.

We literally copied code from class CommissionEmployee and pasted it into class Base-
PlusCommissionEmployee, then modified class BasePlusCommissionEmployee to include
a base salary and methods that manipulate the base salary. This “copy-and-paste” approach
is often error prone and time consuming. Worse yet, it spreads copies of the same code
throughout a system, creating code-maintenance problems—changes to the code would
need to be made in multiple classes. Is there a way to “acquire” the instance variables and
methods of one class in a way that makes them part of other classes without duplicating
code? Next we answer this question, using a more elegant approach to building classes that
emphasizes the benefits of inheritance.

Employee information obtained by get methods:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information obtained by toString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Software Engineering Observation 9.3
With inheritance, the instance variables and methods that are the same for all the classes
in the hierarchy are declared in a superclass. Changes made to these common features in
the superclass are inherited by the subclass. Without inheritance, changes would need to
be made to all the source-code files that contain a copy of the code in question.

Fig. 9.7 | BasePlusCommissionEmployee test program. (Part 2 of 2.)

376 Chapter 9 Object-Oriented Programming: Inheritance

9.4.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee Inheritance Hierarchy
Now we declare class BasePlusCommissionEmployee (Fig. 9.8) to extend class Commis-
sionEmployee (Fig. 9.4). A BasePlusCommissionEmployee object is a CommissionEm-
ployee, because inheritance passes on class CommissionEmployee’s capabilities. Class
BasePlusCommissionEmployee also has instance variable baseSalary (Fig. 9.8, line 6).
Keyword extends (line 4) indicates inheritance. BasePlusCommissionEmployee inherits
CommissionEmployee’s instance variables and methods.

Only CommissionEmployee’s public and protected members are directly accessible
in the subclass. The CommissionEmployee constructor is not inherited. So, the public
BasePlusCommissionEmployee services include its constructor (lines 9–23), public
methods inherited from CommissionEmployee, and methods setBaseSalary (lines 26–
33), getBaseSalary (lines 36–39), earnings (lines 42–47) and toString (lines 50–60).
Methods earnings and toString override the corresponding methods in class Commis-
sionEmployee because their superclass versions do not properly calculate a BasePlusCom-
missionEmployee’s earnings or return an appropriate String representation, respectively.

Software Engineering Observation 9.4
At the design stage in an object-oriented system, you’ll often find that certain classes are
closely related. You should “factor out” common instance variables and methods and place
them in a superclass. Then use inheritance to develop subclasses, specializing them with
capabilities beyond those inherited from the superclass.

Software Engineering Observation 9.5
Declaring a subclass does not affect its superclass’s source code. Inheritance preserves the
integrity of the superclass.

1 // Fig. 9.8: BasePlusCommissionEmployee.java
2 // private superclass members cannot be accessed in a subclass.
3
4
5 {
6 private double baseSalary; // base salary per week
7
8 // six-argument constructor
9 public BasePlusCommissionEmployee(String firstName, String lastName,

10 String socialSecurityNumber, double grossSales,
11 double commissionRate, double baseSalary)
12 {
13
14
15
16
17 // if baseSalary is invalid throw exception
18 if (baseSalary < 0.0)
19 throw new IllegalArgumentException(
20 "Base salary must be >= 0.0");
21

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 1 of 3.)

public class BasePlusCommissionEmployee extends CommissionEmployee

// explicit call to superclass CommissionEmployee constructor
super(firstName, lastName, socialSecurityNumber,
 grossSales, commissionRate);

9.4 Relationship Between Superclasses and Subclasses 377

22 this.baseSalary = baseSalary;
23 }
24
25 // set base salary
26 public void setBaseSalary(double baseSalary)
27 {
28 if (baseSalary < 0.0)
29 throw new IllegalArgumentException(
30 "Base salary must be >= 0.0");
31
32 this.baseSalary = baseSalary;
33 }
34
35 // return base salary
36 public double getBaseSalary()
37 {
38 return baseSalary;
39 }
40
41 // calculate earnings
42
43 public double earnings()
44 {
45
46
47 }
48
49 // return String representation of BasePlusCommissionEmployee
50
51 public String toString()
52 {
53
54
55
56
57
58
59
60 }
61 } // end class BasePlusCommissionEmployee

BasePlusCommissionEmployee.java:46: error: commissionRate has private access
in CommissionEmployee
 return baseSalary + (commissionRate * grossSales);
 ^
BasePlusCommissionEmployee.java:46: error: grossSales has private access in
CommissionEmployee
 return baseSalary + (commissionRate * grossSales);
 ^
BasePlusCommissionEmployee.java:56: error: firstName has private access in
CommissionEmployee
 "base-salaried commission employee", firstName, lastName,
 ^

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 2 of 3.)

@Override

// not allowed: commissionRate and grossSales private in superclass
return baseSalary + (commissionRate * grossSales);

@Override

// not allowed: attempts to access private superclass members
return String.format(
 "%s: %s %s%n%s: %s%n%s: %.2f%n%s: %.2f%n%s: %.2f",
 "base-salaried commission employee", firstName, lastName,
 "social security number", socialSecurityNumber,
 "gross sales", grossSales, "commission rate", commissionRate,
 "base salary", baseSalary);

378 Chapter 9 Object-Oriented Programming: Inheritance

A Subclass’s Constructor Must Call Its Superclass’s Constructor
Each subclass constructor must implicitly or explicitly call one of its superclass’s construc-
tors to initialize the instance variables inherited from the superclass. Lines 14–15 in Base-
PlusCommissionEmployee’s six-argument constructor (lines 9–23) explicitly call class
CommissionEmployee’s five-argument constructor (declared at lines 13–34 of Fig. 9.4) to
initialize the superclass portion of a BasePlusCommissionEmployee object (i.e., variables
firstName, lastName, socialSecurityNumber, grossSales and commissionRate). We
do this by using the superclass constructor call syntax—keyword super, followed by a set
of parentheses containing the superclass constructor arguments, which are used to initial-
ize the superclass instance variables firstName, lastName, socialSecurityNumber,
grossSales and commissionRate, respectively. If BasePlusCommissionEmployee’s con-
structor did not invoke the superclass’s constructor explicitly, the compiler would attempt
to insert a call to the superclass’s default or no-argument constructor. Class Commission-
Employee does not have such a constructor, so the compiler would issue an error. The ex-
plicit superclass constructor call in lines 14–15 of Fig. 9.8 must be the first statement in
the constructor’s body. When a superclass contains a no-argument constructor, you can
use super() to call that constructor explicitly, but this is rarely done.

BasePlusCommissionEmployee Methods Earnings and toString
The compiler generates errors for line 46 (Fig. 9.8) because CommissionEmployee’s in-
stance variables commissionRate and grossSales are private—subclass BasePlusCom-
missionEmployee’s methods are not allowed to access superclass CommissionEmployee’s
private instance variables. We used red text in Fig. 9.8 to indicate erroneous code. The
compiler issues additional errors at lines 56–58 of BasePlusCommissionEmployee’s to-
String method for the same reason. The errors in BasePlusCommissionEmployee could
have been prevented by using the get methods inherited from class CommissionEmployee.

BasePlusCommissionEmployee.java:56: error: lastName has private access in
CommissionEmployee
 "base-salaried commission employee", firstName, lastName,
 ^
BasePlusCommissionEmployee.java:57: error: socialSecurityNumber has private
access in CommissionEmployee
 "social security number", socialSecurityNumber,
 ^
BasePlusCommissionEmployee.java:58: error: grossSales has private access in
CommissionEmployee
 "gross sales", grossSales, "commission rate", commissionRate,
 ^
BasePlusCommissionEmployee.java:58: error: commissionRate has private access
inCommissionEmployee
 "gross sales", grossSales, "commission rate", commissionRate,
 ^

Software Engineering Observation 9.6
You learned previously that you should not call a class’s instance methods from its
constructors and that we’ll say why in Chapter 10. Calling a superclass constructor from
a subclass constructor does not contradict this advice.

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 3 of 3.)

9.4 Relationship Between Superclasses and Subclasses 379

For example, line 46 could have called getCommissionRate and getGrossSales to access
CommissionEmployee’s private instance variables commissionRate and grossSales, re-
spectively. Lines 56–58 also could have used appropriate get methods to retrieve the values
of the superclass’s instance variables.

9.4.4 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using protected Instance Variables
To enable class BasePlusCommissionEmployee to directly access superclass instance vari-
ables firstName, lastName, socialSecurityNumber, grossSales and commissionRate,
we can declare those members as protected in the superclass. As we discussed in
Section 9.3, a superclass’s protected members are accessible by all subclasses of that su-
perclass. In the new CommissionEmployee class, we modified only lines 6–10 of Fig. 9.4
to declare the instance variables with the protected access modifier as follows:

The rest of the class declaration (which is not shown here) is identical to that of Fig. 9.4.
We could have declared CommissionEmployee’s instance variables public to enable sub-

class BasePlusCommissionEmployee to access them. However, declaring public instance
variables is poor software engineering because it allows unrestricted access to the these vari-
ables from any class, greatly increasing the chance of errors. With protected instance vari-
ables, the subclass gets access to the instance variables, but classes that are not subclasses and
classes that are not in the same package cannot access these variables directly—recall that
protected class members are also visible to other classes in the same package.

Class BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Fig. 9.9) extends the new version of class Commis-
sionEmployee with protected instance variables. BasePlusCommissionEmployee objects
inherit CommissionEmployee’s protected instance variables firstName, lastName, so-
cialSecurityNumber, grossSales and commissionRate—all these variables are now pro-
tected members of BasePlusCommissionEmployee. As a result, the compiler does not
generate errors when compiling line 45 of method earnings and lines 54–56 of method
toString. If another class extends this version of class BasePlusCommissionEmployee, the
new subclass also can access the protected members.

protected final String firstName;
protected final String lastName;
protected final String socialSecurityNumber;
protected double grossSales; // gross weekly sales
protected double commissionRate; // commission percentage

1 // Fig. 9.9: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee inherits protected instance
3 // variables from CommissionEmployee.
4
5
6 {
7 private double baseSalary; // base salary per week

Fig. 9.9 | BasePlusCommissionEmployee inherits protected instance variables from
CommissionEmployee. (Part 1 of 2.)

public class BasePlusCommissionEmployee extends CommissionEmployee

380 Chapter 9 Object-Oriented Programming: Inheritance

8
9 // six-argument constructor

10 public BasePlusCommissionEmployee(String firstName, String lastName,
11 String socialSecurityNumber, double grossSales,
12 double commissionRate, double baseSalary)
13 {
14
15
16
17 // if baseSalary is invalid throw exception
18 if (baseSalary < 0.0)
19 throw new IllegalArgumentException(
20 "Base salary must be >= 0.0");
21
22 this.baseSalary = baseSalary;
23 }
24
25 // set base salary
26 public void setBaseSalary(double baseSalary)
27 {
28 if (baseSalary < 0.0)
29 throw new IllegalArgumentException(
30 "Base salary must be >= 0.0");
31
32 this.baseSalary = baseSalary;
33 }
34
35 // return base salary
36 public double getBaseSalary()
37 {
38 return baseSalary;
39 }
40
41 // calculate earnings
42 @Override // indicates that this method overrides a superclass method
43 public double earnings()
44 {
45
46 }
47
48 // return String representation of BasePlusCommissionEmployee
49 @Override
50 public String toString()
51 {
52
53
54
55
56
57
58 }
59 } // end class BasePlusCommissionEmployee

Fig. 9.9 | BasePlusCommissionEmployee inherits protected instance variables from
CommissionEmployee. (Part 2 of 2.)

super(firstName, lastName, socialSecurityNumber,
 grossSales, commissionRate);

return baseSalary + (commissionRate * grossSales);

return String.format(
 "%s: %s %s%n%s: %s%n%s: %.2f%n%s: %.2f%n%s: %.2f",
 "base-salaried commission employee", firstName, lastName,
 "social security number", socialSecurityNumber,
 "gross sales", grossSales, "commission rate", commissionRate,
 "base salary", baseSalary);

9.4 Relationship Between Superclasses and Subclasses 381

A Subclass Object Contains the Instance Variables of All of Its Superclasses
When you create a BasePlusCommissionEmployee object, it contains all instance variables
declared in the class hierarchy to that point—that is, those from classes Object (which
does not have instance variables), CommissionEmployee and BasePlusCommissionEmploy-
ee. Class BasePlusCommissionEmployee does not inherit CommissionEmployee’s five-ar-
gument constructor, but explicitly invokes it (lines 14–15) to initialize the instance variables
that BasePlusCommissionEmployee inherited from CommissionEmployee. Similarly, Com-
missionEmployee’s constructor implicitly calls class Object’s constructor. BasePlusCom-
missionEmployee’s constructor must explicitly call CommissionEmployee’s constructor
because CommissionEmployee does not have a no-argument constructor that could be in-
voked implicitly.

Testing Class BasePlusCommissionEmployee
The BasePlusCommissionEmployeeTest class for this example is identical to that of
Fig. 9.7 and produces the same output, so we do not show it here. Although the version of
class BasePlusCommissionEmployee in Fig. 9.6 does not use inheritance and the version in
Fig. 9.9 does, both classes provide the same functionality. The source code in Fig. 9.9 (59
lines) is considerably shorter than that in Fig. 9.6 (127 lines), because most of the class’s
functionality is now inherited from CommissionEmployee—there’s now only one copy of
the CommissionEmployee functionality. This makes the code easier to maintain, modify
and debug, because the code related to a CommissionEmployee exists only in that class.

Notes on Using protected Instance Variables
In this example, we declared superclass instance variables as protected so that subclasses
could access them. Inheriting protected instance variables enables direct access to the
variables by subclasses. In most cases, however, it’s better to use private instance variables
to encourage proper software engineering. Your code will be easier to maintain, modify
and debug.

Using protected instance variables creates several potential problems. First, the sub-
class object can set an inherited variable’s value directly without using a set method. There-
fore, a subclass object can assign an invalid value to the variable, possibly leaving the object
in an inconsistent state. For example, if we were to declare CommissionEmployee’s instance
variable grossSales as protected, a subclass object (e.g., BasePlusCommissionEmployee)
could then assign a negative value to grossSales. Another problem with using protected
instance variables is that subclass methods are more likely to be written so that they depend
on the superclass’s data implementation. In practice, subclasses should depend only on the
superclass services (i.e., non-private methods) and not on the superclass data implemen-
tation. With protected instance variables in the superclass, we may need to modify all the
subclasses of the superclass if the superclass implementation changes. For example, if for
some reason we were to change the names of instance variables firstName and lastName
to first and last, then we would have to do so for all occurrences in which a subclass
directly references superclass instance variables firstName and lastName. Such a class is
said to be fragile or brittle, because a small change in the superclass can “break” subclass
implementation. You should be able to change the superclass implementation while still
providing the same services to the subclasses. Of course, if the superclass services change,
we must reimplement our subclasses. A third problem is that a class’s protected members

382 Chapter 9 Object-Oriented Programming: Inheritance

are visible to all classes in the same package as the class containing the protected mem-
bers—this is not always desirable.

9.4.5 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using private Instance Variables
Let’s reexamine our hierarchy once more, this time using good software engineering prac-
tices.

Class CommissionEmployee
Class CommissionEmployee (Fig. 9.10) declares instance variables firstName, lastName,
socialSecurityNumber, grossSales and commissionRate as private (lines 6–10) and
provides public methods getFirstName, getLastName, getSocialSecurityNumber, set-
GrossSales, getGrossSales, setCommissionRate, getCommissionRate, earnings and
toString for manipulating these values. Methods earnings (lines 87–90) and toString
(lines 93–101) use the class’s get methods to obtain the values of its instance variables. If
we decide to change the names of the instance variables, the earnings and toString dec-
larations will not require modification—only the bodies of the get and set methods that di-
rectly manipulate the instance variables will need to change. These changes occur solely
within the superclass—no changes to the subclass are needed. Localizing the effects of chang-
es like this is a good software engineering practice.

Software Engineering Observation 9.7
Use the protected access modifier when a superclass should provide a method only to its
subclasses and other classes in the same package, but not to other clients.

Software Engineering Observation 9.8
Declaring superclass instance variables private (as opposed to protected) enables the
superclass implementation of these instance variables to change without affecting subclass
implementations.

Error-Prevention Tip 9.2
When possible, do not include protected instance variables in a superclass. Instead, in-
clude non-private methods that access private instance variables. This will help ensure
that objects of the class maintain consistent states.

1 // Fig. 9.10: CommissionEmployee.java
2 // CommissionEmployee class uses methods to manipulate its
3 // private instance variables.
4 public class CommissionEmployee
5 {
6
7
8
9

10

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private instance
variables. (Part 1 of 3.)

private final String firstName;
private final String lastName;
private final String socialSecurityNumber;
private double grossSales; // gross weekly sales
private double commissionRate; // commission percentage

9.4 Relationship Between Superclasses and Subclasses 383

11
12 // five-argument constructor
13 public CommissionEmployee(String firstName, String lastName,
14 String socialSecurityNumber, double grossSales,
15 double commissionRate)
16 {
17 // implicit call to Object constructor occurs here
18
19 // if grossSales is invalid throw exception
20 if (grossSales < 0.0)
21 throw new IllegalArgumentException(
22 "Gross sales must be >= 0.0");
23
24 // if commissionRate is invalid throw exception
25 if (commissionRate <= 0.0 || commissionRate >= 1.0)
26 throw new IllegalArgumentException(
27 "Commission rate must be > 0.0 and < 1.0");
28
29 this.firstName = firstName;
30 this.lastName = lastName;
31 this.socialSecurityNumber = socialSecurityNumber;
32 this.grossSales = grossSales;
33 this.commissionRate = commissionRate;
34 } // end constructor
35
36 // return first name
37 public String getFirstName()
38 {
39 return firstName;
40 }
41
42 // return last name
43 public String getLastName()
44 {
45 return lastName;
46 }
47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 }
53
54 // set gross sales amount
55 public void setGrossSales(double grossSales)
56 {
57 if (grossSales < 0.0)
58 throw new IllegalArgumentException(
59 "Gross sales must be >= 0.0");
60
61 this.grossSales = grossSales;
62 }

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private instance
variables. (Part 2 of 3.)

384 Chapter 9 Object-Oriented Programming: Inheritance

Class BasePlusCommissionEmployee
Subclass BasePlusCommissionEmployee (Fig. 9.11) inherits CommissionEmployee’s non-
private methods and can access (in a controlled way) the private superclass members via
those methods. Class BasePlusCommissionEmployee has several changes that distinguish
it from Fig. 9.9. Methods earnings (lines 43–47) and toString (lines 50–55) each invoke
method getBaseSalary to obtain the base salary value, rather than accessing baseSalary
directly. If we decide to rename instance variable baseSalary, only the bodies of method
setBaseSalary and getBaseSalary will need to change.

63
64 // return gross sales amount
65 public double getGrossSales()
66 {
67 return grossSales;
68 }
69
70 // set commission rate
71 public void setCommissionRate(double commissionRate)
72 {
73 if (commissionRate <= 0.0 || commissionRate >= 1.0)
74 throw new IllegalArgumentException(
75 "Commission rate must be > 0.0 and < 1.0");
76
77 this.commissionRate = commissionRate;
78 }
79
80 // return commission rate
81 public double getCommissionRate()
82 {
83 return commissionRate;
84 }
85
86 // calculate earnings
87 public double earnings()
88 {
89 return * ;
90 }
91
92 // return String representation of CommissionEmployee object
93 @Override
94 public String toString()
95 {
96 return String.format("%s: %s %s%n%s: %s%n%s: %.2f%n%s: %.2f",
97 "commission employee", , ,
98 "social security number", ,
99 "gross sales", ,
100 "commission rate",);
101 }
102 } // end class CommissionEmployee

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private instance
variables. (Part 3 of 3.)

getCommissionRate() getGrossSales()

getFirstName() getLastName()
getSocialSecurityNumber()

getGrossSales()
getCommissionRate()

9.4 Relationship Between Superclasses and Subclasses 385

1 // Fig. 9.11: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class inherits from CommissionEmployee
3 // and accesses the superclass’s private data via inherited
4 // public methods.
5
6 public class BasePlusCommissionEmployee extends CommissionEmployee
7 {
8 private double baseSalary; // base salary per week
9

10 // six-argument constructor
11 public BasePlusCommissionEmployee(String firstName, String lastName,
12 String socialSecurityNumber, double grossSales,
13 double commissionRate, double baseSalary)
14 {
15 super(firstName, lastName, socialSecurityNumber,
16 grossSales, commissionRate);
17
18 // if baseSalary is invalid throw exception
19 if (baseSalary < 0.0)
20 throw new IllegalArgumentException(
21 "Base salary must be >= 0.0");
22
23 this.baseSalary = baseSalary;
24 }
25
26 // set base salary
27 public void setBaseSalary(double baseSalary)
28 {
29 if (baseSalary < 0.0)
30 throw new IllegalArgumentException(
31 "Base salary must be >= 0.0");
32
33 this.baseSalary = baseSalary;
34 }
35
36 // return base salary
37 public double getBaseSalary()
38 {
39 return baseSalary;
40 }
41
42 // calculate earnings
43 @Override
44 public double earnings()
45 {
46
47 }
48
49 // return String representation of BasePlusCommissionEmployee
50 @Override
51 public String toString()
52 {

Fig. 9.11 | BasePlusCommissionEmployee class inherits from CommissionEmployee and
accesses the superclass’s private data via inherited public methods. (Part 1 of 2.)

return getBaseSalary() + super.earnings();

386 Chapter 9 Object-Oriented Programming: Inheritance

Class BasePlusCommissionEmployee’s earnings Method
Method earnings (lines 43–47) overrides class CommissionEmployee’s earnings method
(Fig. 9.10, lines 87–90) to calculate a base-salaried commission employee’s earnings. The
new version obtains the portion of the earnings based on commission alone by calling Com-
missionEmployee’s earnings method with super.earnings() (line 46), then adds the
base salary to this value to calculate the total earnings. Note the syntax used to invoke an
overridden superclass method from a subclass—place the keyword super and a dot (.) sep-
arator before the superclass method name. This method invocation is a good software en-
gineering practice—if a method performs all or some of the actions needed by another
method, call that method rather than duplicate its code. By having BasePlusCommission-
Employee’s earnings method invoke CommissionEmployee’s earnings method to calcu-
late part of a BasePlusCommissionEmployee object’s earnings, we avoid duplicating the
code and reduce code-maintenance problems.

Class BasePlusCommissionEmployee’s toString Method
Similarly, BasePlusCommissionEmployee’s toString method (Fig. 9.11, lines 50–55)
overrides CommissionEmployee’s toString method (Fig. 9.10, lines 93–101) to return a
String representation that’s appropriate for a base-salaried commission employee. The new
version creates part of a BasePlusCommissionEmployee object’s String representation (i.e.,
the String "commission employee" and the values of class CommissionEmployee’s private
instance variables) by calling CommissionEmployee’s toString method with the expression
super.toString() (Fig. 9.11, line 54). BasePlusCommissionEmployee’s toString meth-
od then completes the remainder of a BasePlusCommissionEmployee object’s String rep-
resentation (i.e., the value of class BasePlusCommissionEmployee’s base salary).

Testing Class BasePlusCommissionEmployee
Class BasePlusCommissionEmployeeTest performs the same manipulations on a Base-
PlusCommissionEmployee object as in Fig. 9.7 and produces the same output, so we do
not show it here. Although each BasePlusCommissionEmployee class you’ve seen behaves
identically, the version in Fig. 9.11 is the best engineered. By using inheritance and by call-
ing methods that hide the data and ensure consistency, we’ve efficiently and effectively
constructed a well-engineered class.

53
54
55 }
56 } // end class BasePlusCommissionEmployee

Common Programming Error 9.2
When a superclass method is overridden in a subclass, the subclass version often calls the
superclass version to do a portion of the work. Failure to prefix the superclass method name
with the keyword super and the dot (.) separator when calling the superclass’s method
causes the subclass method to call itself, potentially creating an error called infinite recur-
sion, which would eventually cause the method-call stack to overflow—a fatal runtime
error. Recursion, used correctly, is a powerful capability discussed in Chapter 18.

Fig. 9.11 | BasePlusCommissionEmployee class inherits from CommissionEmployee and
accesses the superclass’s private data via inherited public methods. (Part 2 of 2.)

return String.format("%s %s%n%s: %.2f", "base-salaried",
 super.toString(), "base salary", getBaseSalary());

9.5 Constructors in Subclasses 387

9.5 Constructors in Subclasses
As we explained, instantiating a subclass object begins a chain of constructor calls in which
the subclass constructor, before performing its own tasks, explicitly uses super to call one of
the constructors in its direct superclass or implicitly calls the superclass's default or no-argu-
ment constructor. Similarly, if the superclass is derived from another class—true of every
class except Object—the superclass constructor invokes the constructor of the next class up
the hierarchy, and so on. The last constructor called in the chain is always Object’s construc-
tor. The original subclass constructor’s body finishes executing last. Each superclass’s con-
structor manipulates the superclass instance variables that the subclass object inherits. For
example, consider again the CommissionEmployee–BasePlusCommissionEmployee hierar-
chy from Figs. 9.10–9.11. When an app creates a BasePlusCommissionEmployee object, its
constructor is called. That constructor calls CommissionEmployee’s constructor, which in
turn calls Object’s constructor. Class Object’s constructor has an empty body, so it immedi-
ately returns control to CommissionEmployee’s constructor, which then initializes the
CommissionEmployee instance variables that are part of the BasePlusCommissionEmployee
object. When CommissionEmployee’s constructor completes execution, it returns control to
BasePlusCommissionEmployee’s constructor, which initializes the baseSalary.

9.6 Class Object
As we discussed earlier in this chapter, all classes in Java inherit directly or indirectly from
class Object (package java.lang), so its 11 methods (some are overloaded) are inherited
by all other classes. Figure 9.12 summarizes Object’s methods. We discuss several Object
methods throughout this book (as indicated in Fig. 9.12).

Software Engineering Observation 9.9
Java ensures that even if a constructor does not assign a value to an instance variable, the
variable is still initialized to its default value (e.g., 0 for primitive numeric types, false
for booleans, null for references).

Method Description

equals This method compares two objects for equality and returns true if they’re equal
and false otherwise. The method takes any Object as an argument. When objects
of a particular class must be compared for equality, the class should override
method equals to compare the contents of the two objects. For the requirements of
implementing this method (which include also overriding method hashCode), refer
to the method’s documentation at docs.oracle.com/javase/7/docs/api/java/
lang/Object.html#equals(java.lang.Object). The default equals implementa-
tion uses operator == to determine whether two references refer to the same object in
memory. Section 14.3.3 demonstrates class String’s equals method and differenti-
ates between comparing String objects with == and with equals.

hashCode Hashcodes are int values used for high-speed storage and retrieval of information
stored in a data structure that’s known as a hashtable (see Section 16.11). This
method is also called as part of Object’s default toString method implementation.

Fig. 9.12 | Object methods. (Part 1 of 2.)

388 Chapter 9 Object-Oriented Programming: Inheritance

9.7 (Optional) GUI and Graphics Case Study:
Displaying Text and Images Using Labels
Programs often use labels when they need to display information or instructions to the
user in a graphical user interface. Labels are a convenient way of identifying GUI compo-
nents on the screen and keeping the user informed about the current state of the program.
In Java, an object of class JLabel (from package javax.swing) can display text, an image
or both. The example in Fig. 9.13 demonstrates several JLabel features, including a plain
text label, an image label and a label with both text and an image.

toString This method (introduced in Section 9.4.1) returns a String representation of an
object. The default implementation of this method returns the package name and
class name of the object’s class typically followed by a hexadecimal representation of
the value returned by the object’s hashCode method.

wait, notify,
notifyAll

Methods notify, notifyAll and the three overloaded versions of wait are related to
multithreading, which is discussed in Chapter 23.

getClass Every object in Java knows its own type at execution time. Method getClass (used
in Sections 10.5 and 12.5) returns an object of class Class (package java.lang)
that contains information about the object’s type, such as its class name (returned
by Class method getName).

finalize This protected method is called by the garbage collector to perform termination
housekeeping on an object just before the garbage collector reclaims the object’s
memory. Recall from Section 8.10 that it’s unclear whether, or when, finalize will
be called. For this reason, most programmers should avoid method finalize.

clone This protected method, which takes no arguments and returns an Object refer-
ence, makes a copy of the object on which it’s called. The default implementation
performs a so-called shallow copy—instance-variable values in one object are cop-
ied into another object of the same type. For reference types, only the references are
copied. A typical overridden clone method’s implementation would perform a
deep copy that creates a new object for each reference-type instance variable. Imple-
menting clone correctly is difficult. For this reason, its use is discouraged. Some indus-
try experts suggest that object serialization should be used instead. We discuss
object serialization in Chapter 15. Recall from Chapter 7 that arrays are objects. As
a result, like all other objects, arrays inherit the members of class Object. Every
array has an overridden clone method that copies the array. However, if the array
stores references to objects, the objects are not copied—a shallow copy is per-
formed.

1 // Fig 9.13: LabelDemo.java
2 // Demonstrates the use of labels.
3 import java.awt.BorderLayout;
4 import javax.swing.ImageIcon;

Fig. 9.13 | JLabel with text and with images. (Part 1 of 2.)

Method Description

Fig. 9.12 | Object methods. (Part 2 of 2.)

9.7 Displaying Text and Images Using Labels 389

Lines 3–6 import the classes we need to display JLabels. BorderLayout from package
java.awt contains constants that specify where we can place GUI components in the

5 import javax.swing.JLabel;
6 import javax.swing.JFrame;
7
8 public class LabelDemo
9 {

10 public static void main(String[] args)
11 {
12 // Create a label with plain text
13 JLabel northLabel = new JLabel("North");
14
15 // create an icon from an image so we can put it on a JLabel
16 ImageIcon labelIcon = new ImageIcon("GUItip.gif");
17
18 // create a label with an Icon instead of text
19 JLabel centerLabel = new JLabel(labelIcon);
20
21 // create another label with an Icon
22 JLabel southLabel = new JLabel(labelIcon);
23
24 // set the label to display text (as well as an icon)
25 southLabel.setText("South");
26
27 // create a frame to hold the labels
28 JFrame application = new JFrame();
29
30 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
31
32 // add the labels to the frame; the second argument specifies
33 // where on the frame to add the label
34 application.add(northLabel, BorderLayout.NORTH);
35 application.add(centerLabel, BorderLayout.CENTER);
36 application.add(southLabel, BorderLayout.SOUTH);
37
38 application.setSize(300, 300);
39 application.setVisible(true);
40 } // end main
41 } // end class LabelDemo

Fig. 9.13 | JLabel with text and with images. (Part 2 of 2.)

390 Chapter 9 Object-Oriented Programming: Inheritance

JFrame. Class ImageIcon represents an image that can be displayed on a JLabel, and class
JFrame represents the window that will contain all the labels.

Line 13 creates a JLabel that displays its constructor argument—the string "North".
Line 16 declares local variable labelIcon and assigns it a new ImageIcon. The constructor
for ImageIcon receives a String that specifies the path to the image. Since we specify only
a filename, Java assumes that it’s in the same directory as class LabelDemo. ImageIcon can
load images in GIF, JPEG and PNG image formats. Line 19 declares and initializes local
variable centerLabel with a JLabel that displays the labelIcon. Line 22 declares and ini-
tializes local variable southLabel with a JLabel similar to the one in line 19. However,
line 25 calls method setText to change the text the label displays. Method setText can
be called on any JLabel to change its text. This JLabel displays both the icon and the text.

Line 28 creates the JFrame that displays the JLabels, and line 30 indicates that the pro-
gram should terminate when the JFrame is closed. We attach the labels to the JFrame in
lines 34–36 by calling an overloaded version of method add that takes two parameters. The
first parameter is the component we want to attach, and the second is the region in which
it should be placed. Each JFrame has an associated layout that helps the JFrame position
the GUI components that are attached to it. The default layout for a JFrame is known as a
BorderLayout and has five regions—NORTH (top), SOUTH (bottom), EAST (right side), WEST
(left side) and CENTER. Each of these is declared as a constant in class BorderLayout. When
calling method add with one argument, the JFrame places the component in the CENTER
automatically. If a position already contains a component, then the new component takes
its place. Lines 38 and 39 set the size of the JFrame and make it visible on screen.

GUI and Graphics Case Study Exercise
9.1 Modify GUI and Graphics Case Study Exercise 8.1 to include a JLabel as a status bar that
displays counts representing the number of each shape displayed. Class DrawPanel should declare a
method that returns a String containing the status text. In main, first create the DrawPanel, then
create the JLabel with the status text as an argument to the JLabel’s constructor. Attach the JLabel
to the SOUTH region of the JFrame, as shown in Fig. 9.14.

Fig. 9.14 | JLabel displaying shape statistics.

9.8 Wrap-Up 391

9.8 Wrap-Up
This chapter introduced inheritance—the ability to create classes by acquiring an existing
class’s members (without copying and pasting the code) and having the ability to embellish
them with new capabilities. You learned the notions of superclasses and subclasses and
used keyword extends to create a subclass that inherits members from a superclass. We
showed how to use the @Override annotation to prevent unintended overloading by indi-
cating that a method overrides a superclass method. We introduced the access modifier
protected; subclass methods can directly access protected superclass members. You
learned how to use super to access overridden superclass members. You also saw how con-
structors are used in inheritance hierarchies. Finally, you learned about the methods of
class Object, the direct or indirect superclass of all Java classes.

In Chapter 10, Object-Oriented Programming: Polymorphism and Interfaces, we
build on our discussion of inheritance by introducing polymorphism—an object-oriented
concept that enables us to write programs that conveniently handle, in a more general and
convenient manner, objects of a wide variety of classes related by inheritance. After
studying Chapter 10, you’ll be familiar with classes, objects, encapsulation, inheritance
and polymorphism—the key technologies of object-oriented programming.

Summary
Section 9.1 Introduction
• Inheritance (p. 361) reduces program-development time.

• The direct superclass (p. 361) of a subclass is the one from which the subclass inherits. An indirect
superclass (p. 361) of a subclass is two or more levels up the class hierarchy from that subclass.

• In single inheritance (p. 361), a class is derived from one superclass. In multiple inheritance, a
class is derived from more than one direct superclass. Java does not support multiple inheritance.

• A subclass is more specific than its superclass and represents a smaller group of objects (p. 361).

• Every object of a subclass is also an object of that class’s superclass. However, a superclass object
is not an object of its class’s subclasses.

• An is-a relationship (p. 362) represents inheritance. In an is-a relationship, an object of a subclass
also can be treated as an object of its superclass.

• A has-a relationship (p. 362) represents composition. In a has-a relationship, a class object con-
tains references to objects of other classes.

Section 9.2 Superclasses and Subclasses
• Single-inheritance relationships form treelike hierarchical structures—a superclass exists in a hi-

erarchical relationship with its subclasses.

Section 9.3 protected Members
• A superclass’s public members are accessible wherever the program has a reference to an object

of that superclass or one of its subclasses.

• A superclass’s private members can be accessed directly only within the superclass’s declaration.

• A superclass’s protected members (p. 364) have an intermediate level of protection between
public and private access. They can be accessed by members of the superclass, by members of
its subclasses and by members of other classes in the same package.

392 Chapter 9 Object-Oriented Programming: Inheritance

• A superclass’s private members are hidden in its subclasses and can be accessed only through
the public or protected methods inherited from the superclass.

• An overridden superclass method can be accessed from a subclass if the superclass method name
is preceded by super (p. 364) and a dot (.) separator.

Section 9.4 Relationship Between Superclasses and Subclasses
• A subclass cannot access the private members of its superclass, but it can access the non-private

members.

• A subclass can invoke a constructor of its superclass by using the keyword super, followed by a
set of parentheses containing the superclass constructor arguments. This must appear as the first
statement in the subclass constructor’s body.

• A superclass method can be overridden in a subclass to declare an appropriate implementation
for the subclass.

• The @Override annotation (p. 369) indicates that a method should override a superclass method.
When the compiler encounters a method declared with @Override, it compares the method’s sig-
nature with the superclass’s method signatures. If there isn’t an exact match, the compiler issues
an error message, such as “method does not override or implement a method from a supertype.”

• Method toString takes no arguments and returns a String. The Object class’s toString method
is normally overridden by a subclass.

• When an object is output using the %s format specifier, the object’s toString method is called
implicitly to obtain its String representation.

Section 9.5 Constructors in Subclasses
• The first task of a subclass constructor is to call its direct superclass’s constructor (p. 378) to en-

sure that the instance variables inherited from the superclass are initialized.

Section 9.6 Class Object
• See the table of class Object’s methods in Fig. 9.12.

Self-Review Exercises
9.1 Fill in the blanks in each of the following statements:

a) is a form of software reusability in which new classes acquire the members of
existing classes and embellish those classes with new capabilities.

b) A superclass’s members can be accessed in the superclass declaration and in
subclass declarations.

c) In a(n) relationship, an object of a subclass can also be treated as an object of
its superclass.

d) In a(n) relationship, a class object has references to objects of other classes as
members.

e) In single inheritance, a class exists in a(n) relationship with its subclasses.
f) A superclass’s members are accessible anywhere that the program has a refer-

ence to an object of that superclass or to an object of one of its subclasses.
g) When an object of a subclass is instantiated, a superclass is called implicitly or

explicitly.
h) Subclass constructors can call superclass constructors via the keyword.

9.2 State whether each of the following is true or false. If a statement is false, explain why.
a) Superclass constructors are not inherited by subclasses.
b) A has-a relationship is implemented via inheritance.

 Answers to Self-Review Exercises 393

c) A Car class has an is-a relationship with the SteeringWheel and Brakes classes.
d) When a subclass redefines a superclass method by using the same signature, the subclass

is said to overload that superclass method.

Answers to Self-Review Exercises
9.1 a) Inheritance. b) public and protected. c) is-a or inheritance. d) has-a or composition.
e) hierarchical. f) public. g) constructor. h) super.

9.2 a) True. b) False. A has-a relationship is implemented via composition. An is-a relationship
is implemented via inheritance. c) False. This is an example of a has-a relationship. Class Car has an
is-a relationship with class Vehicle. d) False. This is known as overriding, not overloading—an
overloaded method has the same name, but a different signature.

Exercises
9.3 (Using Composition Rather Than Inheritance) Many programs written with inheritance
could be written with composition instead, and vice versa. Rewrite class BasePlusCommissionEm-
ployee (Fig. 9.11) of the CommissionEmployee–BasePlusCommissionEmployee hierarchy to use
composition rather than inheritance.

9.4 (Software Reuse) Discuss the ways in which inheritance promotes software reuse, saves time
during program development and helps prevent errors.

9.5 (Student Inheritance Hierarchy) Draw an inheritance hierarchy for students at a university
similar to the hierarchy shown in Fig. 9.2. Use Student as the superclass of the hierarchy, then ex-
tend Student with classes UndergraduateStudent and GraduateStudent. Continue to extend the hi-
erarchy as deep (i.e., as many levels) as possible. For example, Freshman, Sophomore, Junior and
Senior might extend UndergraduateStudent, and DoctoralStudent and MastersStudent might be
subclasses of GraduateStudent. After drawing the hierarchy, discuss the relationships that exist be-
tween the classes. [Note: You do not need to write any code for this exercise.]

9.6 (Shape Inheritance Hierarchy) The world of shapes is much richer than the shapes included
in the inheritance hierarchy of Fig. 9.3. Write down all the shapes you can think of—both two-di-
mensional and three-dimensional—and form them into a more complete Shape hierarchy with as
many levels as possible. Your hierarchy should have class Shape at the top. Classes TwoDimension-
alShape and ThreeDimensionalShape should extend Shape. Add additional subclasses, such as Quad-
rilateral and Sphere, at their correct locations in the hierarchy as necessary.

9.7 (protected vs. private) Some programmers prefer not to use protected access, because
they believe it breaks the encapsulation of the superclass. Discuss the relative merits of using pro-
tected access vs. using private access in superclasses.

9.8 (Quadrilateral Inheritance Hierarchy) Write an inheritance hierarchy for classes Quadri-
lateral, Trapezoid, Parallelogram, Rectangle and Square. Use Quadrilateral as the superclass
of the hierarchy. Create and use a Point class to represent the points in each shape. Make the hier-
archy as deep (i.e., as many levels) as possible. Specify the instance variables and methods for each
class. The private instance variables of Quadrilateral should be the x-y coordinate pairs for the
four endpoints of the Quadrilateral. Write a program that instantiates objects of your classes and
outputs each object’s area (except Quadrilateral).

9.9 (What Does Each Code Snippet Do?)
a) Assume that the following method call is located in an overridden earnings method in

a subclass:

 super.earnings()

394 Chapter 9 Object-Oriented Programming: Inheritance

b) Assume that the following line of code appears before a method declaration:

 @Override

c) Assume that the following line of code appears as the first statement in a constructor’s
body:

 super(firstArgument, secondArgument);

9.10 (Write a Line of Code) Write a line of code that performs each of the following tasks:
a) Specify that class PieceWorker inherits from class Employee.
b) Call superclass Employee’s toString method from subclass PieceWorker’s toString

method.
c) Call superclass Employee’s constructor from subclass PieceWorker’s constructor—as-

sume that the superclass constructor receives three Strings representing the first name,
last name and social security number.

9.11 (Using super in a Constructor’s Body) Explain why you would use super in the first state-
ment of a subclass constructor’s body.

9.12 (Using super in an Instance Method’s Body) Explain why you would use super in the body
of a subclass’s instance method.

9.13 (Calling get Methods in a Class’s Body) In Figs. 9.10–9.11 methods earnings and to-
String each call various get methods within the same class. Explain the benefits of calling these get
methods within the classes.

9.14 (Employee Hierarchy) In this chapter, you studied an inheritance hierarchy in which class
BasePlusCommissionEmployee inherited from class CommissionEmployee. However, not all types of
employees are CommissionEmployees. In this exercise, you’ll create a more general Employee superclass
that factors out the attributes and behaviors in class CommissionEmployee that are common to all Em-
ployees. The common attributes and behaviors for all Employees are firstName, lastName, socialSe-
curityNumber, getFirstName, getLastName, getSocialSecurityNumber and a portion of method
toString. Create a new superclass Employee that contains these instance variables and methods and a
constructor. Next, rewrite class CommissionEmployee from Section 9.4.5 as a subclass of Employee.
Class CommissionEmployee should contain only the instance variables and methods that are not de-
clared in superclass Employee. Class CommissionEmployee’s constructor should invoke class Employee’s
constructor and CommissionEmployee’s toString method should invoke Employee’s toString method.
Once you’ve completed these modifications, run the CommissionEmployeeTest and BasePlusCommis-
sionEmployeeTest apps using these new classes to ensure that the apps still display the same results for
a CommissionEmployee object and BasePlusCommissionEmployee object, respectively.

9.15 (Creating a New Subclass of Employee) Other types of Employees might include Salaried-
Employees who get paid a fixed weekly salary, PieceWorkers who get paid by the number of pieces
they produce or HourlyEmployees who get paid an hourly wage with time-and-a-half—1.5 times the
hourly wage—for hours worked over 40 hours.

Create class HourlyEmployee that inherits from class Employee (Exercise 9.14) and has
instance variable hours (a double) that represents the hours worked, instance variable wage (a dou-
ble) that represents the wages per hour, a constructor that takes as arguments a first name, a last
name, a social security number, an hourly wage and the number of hours worked, set and get meth-
ods for manipulating the hours and wage, an earnings method to calculate an HourlyEmployee’s
earnings based on the hours worked and a toString method that returns the HourlyEmployee’s
String representation. Method setWage should ensure that wage is nonnegative, and setHours
should ensure that the value of hours is between 0 and 168 (the total number of hours in a week).
Use class HourlyEmployee in a test program that’s similar to the one in Fig. 9.5.

10Object-Oriented
Programming:
Polymorphism and Interfaces

General propositions do not
decide concrete cases.
—Oliver Wendell Holmes

A philosopher of imposing
stature doesn’t think in a
vacuum. Even his most abstract
ideas are, to some extent,
conditioned by what is or is not
known in the time when he
lives.
—Alfred North Whitehead

O b j e c t i v e s
In this chapter you’ll:

■ Learn the concept of
polymorphism.

■ Use overridden methods to
effect polymorphism.

■ Distinguish between abstract
and concrete classes.

■ Declare abstract methods to
create abstract classes.

■ Learn how polymorphism
makes systems extensible
and maintainable.

■ Determine an object’s type at
execution time.

■ Declare and implement
interfaces, and become
familiar with the Java SE 8
interface enhancements.

396 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

10.1 Introduction
We continue our study of object-oriented programming by explaining and demonstrating
polymorphism with inheritance hierarchies. Polymorphism enables you to “program in
the general” rather than “program in the specific.” In particular, polymorphism enables you
to write programs that process objects that share the same superclass, either directly or in-
directly, as if they were all objects of the superclass; this can simplify programming.

Consider the following example of polymorphism. Suppose we create a program that
simulates the movement of several types of animals for a biological study. Classes Fish,
Frog and Bird represent the types of animals under investigation. Imagine that each class
extends superclass Animal, which contains a method move and maintains an animal’s cur-
rent location as x-y coordinates. Each subclass implements method move. Our program
maintains an Animal array containing references to objects of the various Animal sub-
classes. To simulate the animals’ movements, the program sends each object the same mes-
sage once per second—namely, move. Each specific type of Animal responds to a move
message in its own way—a Fish might swim three feet, a Frog might jump five feet and a
Bird might fly ten feet. Each object knows how to modify its x-y coordinates appropriately
for its specific type of movement. Relying on each object to know how to “do the right
thing” (i.e., do what’s appropriate for that type of object) in response to the same method
call is the key concept of polymorphism. The same message (in this case, move) sent to a
variety of objects has many forms of results—hence the term polymorphism.

10.1 Introduction
10.2 Polymorphism Examples
10.3 Demonstrating Polymorphic Behavior
10.4 Abstract Classes and Methods
10.5 Case Study: Payroll System Using

Polymorphism
10.5.1 Abstract Superclass Employee
10.5.2 Concrete Subclass

SalariedEmployee
10.5.3 Concrete Subclass HourlyEmployee
10.5.4 Concrete Subclass

CommissionEmployee
10.5.5 Indirect Concrete Subclass

BasePlusCommissionEmployee
10.5.6 Polymorphic Processing, Operator

instanceof and Downcasting
10.6 Allowed Assignments Between

Superclass and Subclass Variables
10.7 final Methods and Classes
10.8 A Deeper Explanation of Issues with

Calling Methods from Constructors

10.9 Creating and Using Interfaces
10.9.1 Developing a Payable Hierarchy
10.9.2 Interface Payable
10.9.3 Class Invoice
10.9.4 Modifying Class Employee to

Implement Interface Payable
10.9.5 Modifying Class

SalariedEmployee for Use in the
Payable Hierarchy

10.9.6 Using Interface Payable to Process
Invoices and Employees
Polymorphically

10.9.7 Some Common Interfaces of the Java
API

10.10 Java SE 8 Interface Enhancements
10.10.1 default Interface Methods
10.10.2 static Interface Methods
10.10.3 Functional Interfaces

10.11 (Optional) GUI and Graphics Case
Study: Drawing with Polymorphism

10.12 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises |
Exercises | Making a Difference

10.1 Introduction 397

Implementing for Extensibility
With polymorphism, we can design and implement systems that are easily extensible—new
classes can be added with little or no modification to the general portions of the program,
as long as the new classes are part of the inheritance hierarchy that the program processes
generically. The new classes simply “plug right in.” The only parts of a program that must
be altered are those that require direct knowledge of the new classes that we add to the hier-
archy. For example, if we extend class Animal to create class Tortoise (which might re-
spond to a move message by crawling one inch), we need to write only the Tortoise class
and the part of the simulation that instantiates a Tortoise object. The portions of the sim-
ulation that tell each Animal to move generically can remain the same.

Chapter Overview
First, we discuss common examples of polymorphism. We then provide a simple example
demonstrating polymorphic behavior. We use superclass references to manipulate both su-
perclass objects and subclass objects polymorphically.

We then present a case study that revisits the employee hierarchy of Section 9.4.5. We
develop a simple payroll application that polymorphically calculates the weekly pay of sev-
eral different types of employees using each employee’s earnings method. Though the
earnings of each type of employee are calculated in a specific way, polymorphism allows us
to process the employees “in the general.” In the case study, we enlarge the hierarchy to
include two new classes—SalariedEmployee (for people paid a fixed weekly salary) and
HourlyEmployee (for people paid an hourly salary and “time-and-a-half” for overtime).
We declare a common set of functionality for all the classes in the updated hierarchy in an
“abstract” class, Employee, from which “concrete” classes SalariedEmployee, HourlyEm-
ployee and CommissionEmployee inherit directly and “concrete” class BasePlusCommis-
sionEmployee inherits indirectly. As you’ll soon see, when we invoke each employee’s
earnings method off a superclass Employee reference (regardless of the employee’s type), the cor-
rect earnings subclass calculation is performed, due to Java’s polymorphic capabilities.

Programming in the Specific
Occasionally, when performing polymorphic processing, we need to program “in the spe-
cific.” Our Employee case study demonstrates that a program can determine the type of an
object at execution time and act on that object accordingly. In the case study, we’ve decided
that BasePlusCommissionEmployees should receive 10% raises on their base salaries. So,
we use these capabilities to determine whether a particular employee object is a Base-
PlusCommissionEmployee. If so, we increase that employee’s base salary by 10%.

Interfaces
The chapter continues with an introduction to Java interfaces, which are particularly useful
for assigning common functionality to possibly unrelated classes. This allows objects of
these classes to be processed polymorphically—objects of classes that implement the same
interface can respond to all of the interface method calls. To demonstrate creating and us-
ing interfaces, we modify our payroll application to create a generalized accounts payable
application that can calculate payments due for company employees and invoice amounts
to be billed for purchased goods.

398 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

10.2 Polymorphism Examples
Let’s consider several additional examples of polymorphism.

Quadrilaterals
If class Rectangle is derived from class Quadrilateral, then a Rectangle object is a more
specific version of a Quadrilateral. Any operation (e.g., calculating the perimeter or the
area) that can be performed on a Quadrilateral can also be performed on a Rectangle.
These operations can also be performed on other Quadrilaterals, such as Squares, Par-
allelograms and Trapezoids. The polymorphism occurs when a program invokes a meth-
od through a superclass Quadrilateral variable—at execution time, the correct subclass
version of the method is called, based on the type of the reference stored in the superclass
variable. You’ll see a simple code example that illustrates this process in Section 10.3.

Space Objects in a Video Game
Suppose we design a video game that manipulates objects of classes Martian, Venusian, Plu-
tonian, SpaceShip and LaserBeam. Imagine that each class inherits from the superclass
SpaceObject, which contains method draw. Each subclass implements this method. A
screen manager maintains a collection (e.g., a SpaceObject array) of references to objects of
the various classes. To refresh the screen, the screen manager periodically sends each object
the same message—namely, draw. However, each object responds its own way, based on its
class. For example, a Martian object might draw itself in red with green eyes and the appro-
priate number of antennae. A SpaceShip object might draw itself as a bright silver flying sau-
cer. A LaserBeam object might draw itself as a bright red beam across the screen. Again, the
same message (in this case, draw) sent to a variety of objects has “many forms” of results.

A screen manager might use polymorphism to facilitate adding new classes to a system
with minimal modifications to the system’s code. Suppose that we want to add Mercurian
objects to our video game. To do so, we’d build a class Mercurian that extends SpaceOb-
ject and provides its own draw method implementation. When Mercurian objects appear
in the SpaceObject collection, the screen-manager code invokes method draw, exactly as it
does for every other object in the collection, regardless of its type. So the new Mercurian objects
simply “plug right in” without any modification of the screen manager code by the pro-
grammer. Thus, without modifying the system (other than to build new classes and
modify the code that creates new objects), you can use polymorphism to conveniently
include additional types that were not even considered when the system was created.

Software Engineering Observation 10.1
Polymorphism enables you to deal in generalities and let the execution-time environment
handle the specifics. You can tell objects to behave in manners appropriate to those objects,
without knowing their specific types, as long as they belong to the same inheritance hierarchy.

Software Engineering Observation 10.2
Polymorphism promotes extensibility: Software that invokes polymorphic behavior is
independent of the object types to which messages are sent. New object types that can respond
to existing method calls can be incorporated into a system without modifying the base system.
Only client code that instantiates new objects must be modified to accommodate new types.

10.3 Demonstrating Polymorphic Behavior 399

10.3 Demonstrating Polymorphic Behavior
Section 9.4 created a class hierarchy, in which class BasePlusCommissionEmployee inher-
ited from CommissionEmployee. The examples in that section manipulated Commission-
Employee and BasePlusCommissionEmployee objects by using references to them to
invoke their methods—we aimed superclass variables at superclass objects and subclass
variables at subclass objects. These assignments are natural and straightforward—super-
class variables are intended to refer to superclass objects, and subclass variables are intended
to refer to subclass objects. However, as you’ll soon see, other assignments are possible.

In the next example, we aim a superclass reference at a subclass object. We then show
how invoking a method on a subclass object via a superclass reference invokes the subclass
functionality—the type of the referenced object, not the type of the variable, determines
which method is called. This example demonstrates that an object of a subclass can be treated
as an object of its superclass, enabling various interesting manipulations. A program can create
an array of superclass variables that refer to objects of many subclass types. This is allowed
because each subclass object is an object of its superclass. For instance, we can assign the
reference of a BasePlusCommissionEmployee object to a superclass CommissionEmployee
variable, because a BasePlusCommissionEmployee is a CommissionEmployee—so we can
treat a BasePlusCommissionEmployee as a CommissionEmployee.

As you’ll learn later in the chapter, you cannot treat a superclass object as a subclass
object, because a superclass object is not an object of any of its subclasses. For example, we
cannot assign the reference of a CommissionEmployee object to a subclass BasePlusCom-
missionEmployee variable, because a CommissionEmployee is not a BasePlusCommission-
Employee—a CommissionEmployee does not have a baseSalary instance variable and does
not have methods setBaseSalary and getBaseSalary. The is-a relationship applies only
up the hierarchy from a subclass to its direct (and indirect) superclasses, and not vice versa
(i.e., not down the hierarchy from a superclass to its subclasses or indirect subclasses).

The Java compiler does allow the assignment of a superclass reference to a subclass
variable if we explicitly cast the superclass reference to the subclass type. Why would we
ever want to perform such an assignment? A superclass reference can be used to invoke only
the methods declared in the superclass—attempting to invoke subclass-only methods
through a superclass reference results in compilation errors. If a program needs to perform
a subclass-specific operation on a subclass object referenced by a superclass variable, the
program must first cast the superclass reference to a subclass reference through a technique
known as downcasting. This enables the program to invoke subclass methods that are not
in the superclass. We demonstrate the mechanics of downcasting in Section 10.5.

The example in Fig. 10.1 demonstrates three ways to use superclass and subclass vari-
ables to store references to superclass and subclass objects. The first two are straightfor-
ward—as in Section 9.4, we assign a superclass reference to a superclass variable, and a
subclass reference to a subclass variable. Then we demonstrate the relationship between
subclasses and superclasses (i.e., the is-a relationship) by assigning a subclass reference to a
superclass variable. This program uses classes CommissionEmployee and BasePlusCommis-
sionEmployee from Fig. 9.10 and Fig. 9.11, respectively.

Software Engineering Observation 10.3
Although it’s allowed, you should generally avoid downcasting.

400 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

1 // Fig. 10.1: PolymorphismTest.java
2 // Assigning superclass and subclass references to superclass and
3 // subclass variables.
4
5 public class PolymorphismTest
6 {
7 public static void main(String[] args)
8 {
9

10
11
12
13
14
15
16
17
18 // invoke toString on superclass object using superclass variable
19 System.out.printf("%s %s:%n%n%s%n%n",
20 "Call CommissionEmployee's toString with superclass reference ",
21 "to superclass object",);
22
23 // invoke toString on subclass object using subclass variable
24 System.out.printf("%s %s:%n%n%s%n%n",
25 "Call BasePlusCommissionEmployee's toString with subclass",
26 "reference to subclass object",
27);
28
29 // invoke toString on subclass object using superclass variable
30
31
32 System.out.printf("%s %s:%n%n%s%n",
33 "Call BasePlusCommissionEmployee's toString with superclass",
34 "reference to subclass object",);
35 } // end main
36 } // end class PolymorphismTest

Call CommissionEmployee's toString with superclass reference to superclass
object:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Call BasePlusCommissionEmployee's toString with subclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass variables.
(Part 1 of 2.)

// assign superclass reference to superclass variable
CommissionEmployee commissionEmployee = new CommissionEmployee(
 "Sue", "Jones", "222-22-2222", 10000, .06);

// assign subclass reference to subclass variable
BasePlusCommissionEmployee basePlusCommissionEmployee =
 new BasePlusCommissionEmployee(
 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);

commissionEmployee.toString()

basePlusCommissionEmployee.toString()

CommissionEmployee commissionEmployee2 =
 basePlusCommissionEmployee;

commissionEmployee2.toString()

10.4 Abstract Classes and Methods 401

In Fig. 10.1, lines 10–11 create a CommissionEmployee object and assign its reference
to a CommissionEmployee variable. Lines 14–16 create a BasePlusCommissionEmployee
object and assign its reference to a BasePlusCommissionEmployee variable. These assign-
ments are natural—for example, a CommissionEmployee variable’s primary purpose is to
hold a reference to a CommissionEmployee object. Lines 19–21 use commissionEmployee
to invoke toString explicitly. Because commissionEmployee refers to a CommissionEm-
ployee object, superclass CommissionEmployee’s version of toString is called. Similarly,
lines 24–27 use basePlusCommissionEmployee to invoke toString explicitly on the Base-
PlusCommissionEmployee object. This invokes subclass BasePlusCommissionEmployee’s
version of toString.

Lines 30–31 then assign the reference of subclass object basePlusCommissionEm-
ployee to a superclass CommissionEmployee variable, which lines 32–34 use to invoke
method toString. When a superclass variable contains a reference to a subclass object, and
that reference is used to call a method, the subclass version of the method is called. Hence,
commissionEmployee2.toString() in line 34 actually calls class BasePlusCommissionEm-
ployee’s toString method. The Java compiler allows this “crossover” because an object
of a subclass is an object of its superclass (but not vice versa). When the compiler encoun-
ters a method call made through a variable, the compiler determines if the method can be
called by checking the variable’s class type. If that class contains the proper method decla-
ration (or inherits one), the call is compiled. At execution time, the type of the object to
which the variable refers determines the actual method to use. This process, called dynamic
binding, is discussed in detail in Section 10.5.

10.4 Abstract Classes and Methods
When we think of a class, we assume that programs will create objects of that type. Some-
times it’s useful to declare classes—called abstract classes—for which you never intend to
create objects. Because they’re used only as superclasses in inheritance hierarchies, we refer
to them as abstract superclasses. These classes cannot be used to instantiate objects, be-
cause, as we’ll soon see, abstract classes are incomplete. Subclasses must declare the “missing
pieces” to become “concrete” classes, from which you can instantiate objects. Otherwise,
these subclasses, too, will be abstract. We demonstrate abstract classes in Section 10.5.

Purpose of Abstract Classes
An abstract class’s purpose is to provide an appropriate superclass from which other classes
can inherit and thus share a common design. In the Shape hierarchy of Fig. 9.3, for exam-

Call BasePlusCommissionEmployee's toString with superclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass variables.
(Part 2 of 2.)

402 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

ple, subclasses inherit the notion of what it means to be a Shape—perhaps common attri-
butes such as location, color and borderThickness, and behaviors such as draw, move,
resize and changeColor. Classes that can be used to instantiate objects are called concrete
classes. Such classes provide implementations of every method they declare (some of the
implementations can be inherited). For example, we could derive concrete classes Circle,
Square and Triangle from abstract superclass TwoDimensionalShape. Similarly, we could
derive concrete classes Sphere, Cube and Tetrahedron from abstract superclass ThreeDi-
mensionalShape. Abstract superclasses are too general to create real objects—they specify
only what is common among subclasses. We need to be more specific before we can create
objects. For example, if you send the draw message to abstract class TwoDimensionalShape,
the class knows that two-dimensional shapes should be drawable, but it does not know
what specific shape to draw, so it cannot implement a real draw method. Concrete classes
provide the specifics that make it reasonable to instantiate objects.

Not all hierarchies contain abstract classes. However, you’ll often write client code
that uses only abstract superclass types to reduce the client code’s dependencies on a range
of subclass types. For example, you can write a method with a parameter of an abstract
superclass type. When called, such a method can receive an object of any concrete class that
directly or indirectly extends the superclass specified as the parameter’s type.

Abstract classes sometimes constitute several levels of a hierarchy. For example, the
Shape hierarchy of Fig. 9.3 begins with abstract class Shape. On the next level of the hier-
archy are abstract classes TwoDimensionalShape and ThreeDimensionalShape. The next
level of the hierarchy declares concrete classes for TwoDimensionalShapes (Circle, Square
and Triangle) and for ThreeDimensionalShapes (Sphere, Cube and Tetrahedron).

Declaring an Abstract Class and Abstract Methods
You make a class abstract by declaring it with keyword abstract. An abstract class nor-
mally contains one or more abstract methods. An abstract method is an instance method
with keyword abstract in its declaration, as in

Abstract methods do not provide implementations. A class that contains any abstract
methods must be explicitly declared abstract even if that class contains some concrete
(nonabstract) methods. Each concrete subclass of an abstract superclass also must provide
concrete implementations of each of the superclass’s abstract methods. Constructors and
static methods cannot be declared abstract. Constructors are not inherited, so an
abstract constructor could never be implemented. Though non-private static
methods are inherited, they cannot be overridden. Since abstract methods are meant to
be overridden so that they can process objects based on their types, it would not make
sense to declare a static method as abstract.

public abstract void draw(); // abstract method

Software Engineering Observation 10.4
An abstract class declares common attributes and behaviors (both abstract and concrete)
of the various classes in a class hierarchy. An abstract class typically contains one or more
abstract methods that subclasses must override if they are to be concrete. The instance
variables and concrete methods of an abstract class are subject to the normal rules of
inheritance.

10.4 Abstract Classes and Methods 403

Using Abstract Classes to Declare Variables
Although we cannot instantiate objects of abstract superclasses, you’ll soon see that we can
use abstract superclasses to declare variables that can hold references to objects of any con-
crete class derived from those abstract superclasses. We’ll use such variables to manipulate
subclass objects polymorphically. You also can use abstract superclass names to invoke
static methods declared in those abstract superclasses.

Consider another application of polymorphism. A drawing program needs to display
many shapes, including types of new shapes that you’ll add to the system after writing the
drawing program. The drawing program might need to display shapes, such as Circles,
Triangles, Rectangles or others, that derive from abstract class Shape. The drawing pro-
gram uses Shape variables to manage the objects that are displayed. To draw any object in
this inheritance hierarchy, the drawing program uses a superclass Shape variable con-
taining a reference to the subclass object to invoke the object’s draw method. This method
is declared abstract in superclass Shape, so each concrete subclass must implement
method draw in a manner specific to that shape—each object in the Shape inheritance
hierarchy knows how to draw itself. The drawing program does not have to worry about the
type of each object or whether the program has ever encountered objects of that type.

Layered Software Systems
Polymorphism is particularly effective for implementing so-called layered software systems.
In operating systems, for example, each type of physical device could operate quite differ-
ently from the others. Even so, commands to read or write data from and to devices may
have a certain uniformity. For each device, the operating system uses a piece of software
called a device driver to control all communication between the system and the device. The
write message sent to a device-driver object needs to be interpreted specifically in the con-
text of that driver and how it manipulates devices of a specific type. However, the write
call itself really is no different from the write to any other device in the system—place some
number of bytes from memory onto that device. An object-oriented operating system
might use an abstract superclass to provide an “interface” appropriate for all device drivers.
Then, through inheritance from that abstract superclass, subclasses are formed that all be-
have similarly. The device-driver methods are declared as abstract methods in the abstract
superclass. The implementations of these abstract methods are provided in the concrete
subclasses that correspond to the specific types of device drivers. New devices are always
being developed, often long after the operating system has been released. When you buy
a new device, it comes with a device driver provided by the device vendor. The device is
immediately operational after you connect it to your computer and install the driver. This
is another elegant example of how polymorphism makes systems extensible.

Common Programming Error 10.1
Attempting to instantiate an object of an abstract class is a compilation error.

Common Programming Error 10.2
Failure to implement a superclass’s abstract methods in a subclass is a compilation error
unless the subclass is also declared abstract.

404 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

10.5 Case Study: Payroll System Using Polymorphism
This section reexamines the CommissionEmployee-BasePlusCommissionEmployee hierar-
chy that we explored throughout Section 9.4. Now we use an abstract method and poly-
morphism to perform payroll calculations based on an enhanced employee inheritance
hierarchy that meets the following requirements:

A company pays its employees on a weekly basis. The employees are of four types: Salaried
employees are paid a fixed weekly salary regardless of the number of hours worked, hourly
employees are paid by the hour and receive overtime pay (i.e., 1.5 times their hourly sal-
ary rate) for all hours worked in excess of 40 hours, commission employees are paid a per-
centage of their sales and base-salaried commission employees receive a base salary plus a
percentage of their sales. For the current pay period, the company has decided to reward
salaried-commission employees by adding 10% to their base salaries. The company
wants you to write an application that performs its payroll calculations polymorphically.

We use abstract class Employee to represent the general concept of an employee. The
classes that extend Employee are SalariedEmployee, CommissionEmployee and Hourly-
Employee. Class BasePlusCommissionEmployee—which extends CommissionEmployee—
represents the last employee type. The UML class diagram in Fig. 10.2 shows the inheri-
tance hierarchy for our polymorphic employee-payroll application. Abstract class name
Employee is italicized—a convention of the UML.

Abstract superclass Employee declares the “interface” to the hierarchy—that is, the set
of methods that a program can invoke on all Employee objects. We use the term “interface”
here in a general sense to refer to the various ways programs can communicate with objects
of any Employee subclass. Be careful not to confuse the general notion of an “interface”
with the formal notion of a Java interface, the subject of Section 10.9. Each employee,
regardless of the way his or her earnings are calculated, has a first name, a last name and a
social security number, so private instance variables firstName, lastName and social-
SecurityNumber appear in abstract superclass Employee.

The diagram in Fig. 10.3 shows each of the five classes in the hierarchy down the left
side and methods earnings and toString across the top. For each class, the diagram
shows the desired results of each method. We do not list superclass Employee’s get methods
because they’re not overridden in any of the subclasses—each of these methods is inherited
and used “as is” by each subclass.

Fig. 10.2 | Employee hierarchy UML class diagram.

Employee

CommissionEmployee HourlyEmployeeSalariedEmployee

BasePlusCommissionEmployee

10.5 Case Study: Payroll System Using Polymorphism 405

The following sections implement the Employee class hierarchy of Fig. 10.2. The first
section implements abstract superclass Employee. The next four sections each implement
one of the concrete classes. The last section implements a test program that builds objects
of all these classes and processes those objects polymorphically.

10.5.1 Abstract Superclass Employee
Class Employee (Fig. 10.4) provides methods earnings and toString, in addition to the
get methods that return the values of Employee’s instance variables. An earnings method
certainly applies generically to all employees. But each earnings calculation depends on the
employee’s particular class. So we declare earnings as abstract in superclass Employee
because a specific default implementation does not make sense for that method—there isn’t
enough information to determine what amount earnings should return.

Each subclass overrides earnings with an appropriate implementation. To calculate an
employee’s earnings, the program assigns to a superclass Employee variable a reference to the
employee’s object, then invokes the earnings method on that variable. We maintain an
array of Employee variables, each holding a reference to an Employee object. You cannot use
class Employee directly to create Employee objects, because Employee is an abstract class. Due
to inheritance, however, all objects of all Employee subclasses may be thought of as Employee

Fig. 10.3 | Polymorphic interface for the Employee hierarchy classes.

weeklySalary

abstract

Commission-
Employee

BasePlus-
Commission-
Employee

Hourly-
Employee

Salaried-
Employee

Employee

toStringearnings

if (hours <= 40)
 wage * hours
else if (hours > 40)
{
 40 * wage +
 (hours - 40) *
 wage * 1.5
}

commissionRate *
grossSales

(commissionRate *
grossSales) +
baseSalary

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklySalary

hourly employee: firstName lastName
social security number: SSN
hourly wage: wage; hours worked: hours

commission employee: firstName lastName
social security number: SSN
gross sales: grossSales;
commission rate: commissionRate

base salaried commission employee:
 firstName lastName
social security number: SSN
gross sales: grossSales;
commission rate: commissionRate;
base salary: baseSalary

firstName lastName
social security number: SSN

406 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

objects. The program will iterate through the array and call method earnings for each
Employee object. Java processes these method calls polymorphically. Declaring earnings as
an abstract method in Employee enables the calls to earnings through Employee variables
to compile and forces every direct concrete subclass of Employee to override earnings.

Method toString in class Employee returns a String containing the first name, last
name and social security number of the employee. As we’ll see, each subclass of Employee
overrides method toString to create a String representation of an object of that class that
contains the employee’s type (e.g., "salaried employee:") followed by the rest of the
employee’s information.

Let’s consider class Employee’s declaration (Fig. 10.4). The class includes a con-
structor that receives the first name, last name and social security number (lines 11–17);
get methods that return the first name, last name and social security number (lines 20–23,
26–29 and 32–35, respectively); method toString (lines 38–43), which returns the
String representation of an Employee; and abstract method earnings (line 46), which
will be implemented by each of the concrete subclasses. The Employee constructor does not
validate its parameters in this example; normally, such validation should be provided.

1 // Fig. 10.4: Employee.java
2 // Employee abstract superclass.
3
4
5 {
6 private final String firstName;
7 private final String lastName;
8 private final String socialSecurityNumber;
9

10 // constructor
11 public Employee(String firstName, String lastName,
12 String socialSecurityNumber)
13 {
14 this.firstName = firstName;
15 this.lastName = lastName;
16 this.socialSecurityNumber = socialSecurityNumber;
17 }
18
19 // return first name
20 public String getFirstName()
21 {
22 return firstName;
23 }
24
25 // return last name
26 public String getLastName()
27 {
28 return lastName;
29 }
30
31 // return social security number
32 public String getSocialSecurityNumber()
33 {

Fig. 10.4 | Employee abstract superclass. (Part 1 of 2.)

public abstract class Employee

10.5 Case Study: Payroll System Using Polymorphism 407

Why did we decide to declare earnings as an abstract method? It simply does not
make sense to provide a specific implementation of this method in class Employee. We
cannot calculate the earnings for a general Employee—we first must know the specific type
of Employee to determine the appropriate earnings calculation. By declaring this method
abstract, we indicate that each concrete subclass must provide an appropriate earnings
implementation and that a program will be able to use superclass Employee variables to
invoke method earnings polymorphically for any type of Employee.

10.5.2 Concrete Subclass SalariedEmployee
Class SalariedEmployee (Fig. 10.5) extends class Employee (line 4) and overrides abstract
method earnings (lines 38–42), which makes SalariedEmployee a concrete class. The class
includes a constructor (lines 9–19) that receives a first name, a last name, a social security
number and a weekly salary; a set method to assign a new nonnegative value to instance vari-
able weeklySalary (lines 22–29); a get method to return weeklySalary’s value (lines 32–
35); a method earnings (lines 38–42) to calculate a SalariedEmployee’s earnings; and a
method toString (lines 45–50), which returns a String including "salaried employee: "
followed by employee-specific information produced by superclass Employee’s toString
method and Salaried-Employee’s getWeeklySalary method. Class SalariedEmployee’s
constructor passes the first name, last name and social security number to the Employee con-
structor (line 12) to initialize the private instance variables of the superclass. Once again,
we’ve duplicated the weeklySalary validation code in the constructor and the setWeekly-
Salary method. Recall that more complex validation could be placed in a static class meth-
od that’s called from the constructor and the set method.

Method earnings overrides Employee’s abstract method earnings to provide a con-
crete implementation that returns the SalariedEmployee’s weekly salary. If we do not

34 return socialSecurityNumber;
35 }
36
37 // return String representation of Employee object
38 @Override
39 public String toString()
40 {
41 return String.format("%s %s%nsocial security number: %s",
42 getFirstName(), getLastName(), getSocialSecurityNumber());
43 }
44
45
46
47 } // end abstract class Employee

Error-Prevention Tip 10.1
We’ve said that you should not call a class’s instance methods from its constructors—you
can call static class methods and make the required call to one of the superclass’s con-
structors. If you follow this advice, you’ll avoid the problem of calling the class’s overrid-
able methods either directly or indirectly, which can lead to runtime errors.

Fig. 10.4 | Employee abstract superclass. (Part 2 of 2.)

// abstract method must be overridden by concrete subclasses
public abstract double earnings(); // no implementation here

408 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

1 // Fig. 10.5: SalariedEmployee.java
2 // SalariedEmployee concrete class extends abstract class Employee.
3
4
5 {
6 private double weeklySalary;
7
8 // constructor
9 public SalariedEmployee(String firstName, String lastName,

10 String socialSecurityNumber, double weeklySalary)
11 {
12 super(firstName, lastName, socialSecurityNumber);
13
14 if (weeklySalary < 0.0)
15 throw new IllegalArgumentException(
16 "Weekly salary must be >= 0.0");
17
18 this.weeklySalary = weeklySalary;
19 }
20
21 // set salary
22 public void setWeeklySalary(double weeklySalary)
23 {
24 if (weeklySalary < 0.0)
25 throw new IllegalArgumentException(
26 "Weekly salary must be >= 0.0");
27
28 this.weeklySalary = weeklySalary;
29 }
30
31 // return salary
32 public double getWeeklySalary()
33 {
34 return weeklySalary;
35 }
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 } // end class SalariedEmployee

Fig. 10.5 | SalariedEmployee concrete class extends abstract class Employee.

public class SalariedEmployee extends Employee

// calculate earnings; override abstract method earnings in Employee
@Override
public double earnings()
{
 return getWeeklySalary();
}

// return String representation of SalariedEmployee object
@Override
public String toString()
{
 return String.format("salaried employee: %s%n%s: $%,.2f",
 super.toString(), "weekly salary", getWeeklySalary());
}

10.5 Case Study: Payroll System Using Polymorphism 409

implement earnings, class SalariedEmployee must be declared abstract—otherwise,
class SalariedEmployee will not compile. Of course, we want SalariedEmployee to be a
concrete class in this example.

Method toString (lines 45–50) overrides Employee method toString. If class Sala-
riedEmployee did not override toString, SalariedEmployee would have inherited the
Employee version of toString. In that case, SalariedEmployee’s toString method would
simply return the employee’s full name and social security number, which does not ade-
quately represent a SalariedEmployee. To produce a complete String representation of a
SalariedEmployee, the subclass’s toString method returns "salaried employee: " fol-
lowed by the superclass Employee-specific information (i.e., first name, last name and social
security number) obtained by invoking the superclass’s toString method (line 49)—this is a
nice example of code reuse. The String representation of a SalariedEmployee also contains
the employee’s weekly salary obtained by invoking the class’s getWeeklySalary method.

10.5.3 Concrete Subclass HourlyEmployee
Class HourlyEmployee (Fig. 10.6) also extends Employee (line 4). The class includes a con-
structor (lines 10–25) that receives a first name, a last name, a social security number, an
hourly wage and the number of hours worked. Lines 28–35 and 44–51 declare set methods
that assign new values to instance variables wage and hours, respectively. Method setWage
(lines 28–35) ensures that wage is nonnegative, and method setHours (lines 44–51) ensures
that the value of hours is between 0 and 168 (the total number of hours in a week) inclusive.
Class HourlyEmployee also includes get methods (lines 38–41 and 54–57) to return the val-
ues of wage and hours, respectively; a method earnings (lines 60–67) to calculate an Hour-
lyEmployee’s earnings; and a method toString (lines 70–76), which returns a String
containing the employee’s type ("hourly employee: ") and the employee-specific informa-
tion. The HourlyEmployee constructor, like the SalariedEmployee constructor, passes the
first name, last name and social security number to the superclass Employee constructor
(line 13) to initialize the private instance variables. In addition, method toString calls su-
perclass method toString (line 74) to obtain the Employee-specific information (i.e., first
name, last name and social security number)—this is another nice example of code reuse.

1 // Fig. 10.6: HourlyEmployee.java
2 // HourlyEmployee class extends Employee.
3
4
5 {
6 private double wage; // wage per hour
7 private double hours; // hours worked for week
8
9 // constructor

10 public HourlyEmployee(String firstName, String lastName,
11 String socialSecurityNumber, double wage, double hours)
12 {
13 super(firstName, lastName, socialSecurityNumber);
14

Fig. 10.6 | HourlyEmployee class extends Employee. (Part 1 of 3.)

public class HourlyEmployee extends Employee

410 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

15 if (wage < 0.0) // validate wage
16 throw new IllegalArgumentException(
17 "Hourly wage must be >= 0.0");
18
19 if ((hours < 0.0) || (hours > 168.0)) // validate hours
20 throw new IllegalArgumentException(
21 "Hours worked must be >= 0.0 and <= 168.0");
22
23 this.wage = wage;
24 this.hours = hours;
25 }
26
27 // set wage
28 public void setWage(double wage)
29 {
30 if (wage < 0.0) // validate wage
31 throw new IllegalArgumentException(
32 "Hourly wage must be >= 0.0");
33
34 this.wage = wage;
35 }
36
37 // return wage
38 public double getWage()
39 {
40 return wage;
41 }
42
43 // set hours worked
44 public void setHours(double hours)
45 {
46 if ((hours < 0.0) || (hours > 168.0)) // validate hours
47 throw new IllegalArgumentException(
48 "Hours worked must be >= 0.0 and <= 168.0");
49
50 this.hours = hours;
51 }
52
53 // return hours worked
54 public double getHours()
55 {
56 return hours;
57 }
58
59
60
61
62
63
64
65
66
67

Fig. 10.6 | HourlyEmployee class extends Employee. (Part 2 of 3.)

// calculate earnings; override abstract method earnings in Employee
@Override
public double earnings()
{
 if (getHours() <= 40) // no overtime
 return getWage() * getHours();
 else
 return 40 * getWage() + (getHours() - 40) * getWage() * 1.5;
}

10.5 Case Study: Payroll System Using Polymorphism 411

10.5.4 Concrete Subclass CommissionEmployee
Class CommissionEmployee (Fig. 10.7) extends class Employee (line 4). The class includes a
constructor (lines 10–25) that takes a first name, a last name, a social security number, a sales
amount and a commission rate; set methods (lines 28–34 and 43–50) to assign valid new val-
ues to instance variables commissionRate and grossSales, respectively; get methods (lines
37–40 and 53–56) that retrieve the values of these instance variables; method earnings
(lines 59–63) to calculate a CommissionEmployee’s earnings; and method toString (lines
66–73), which returns the employee’s type, namely, "commission employee: " and employ-
ee-specific information. The constructor also passes the first name, last name and social se-
curity number to superclass Employee’s constructor (line 14) to initialize Employee’s private
instance variables. Method toString calls superclass method toString (line 70) to obtain the
Employee-specific information (i.e., first name, last name and social security number).

68
69
70
71
72
73
74
75
76
77 } // end class HourlyEmployee

1 // Fig. 10.7: CommissionEmployee.java
2 // CommissionEmployee class extends Employee.
3
4
5 {
6 private double grossSales; // gross weekly sales
7 private double commissionRate; // commission percentage
8
9 // constructor

10 public CommissionEmployee(String firstName, String lastName,
11 String socialSecurityNumber, double grossSales,
12 double commissionRate)
13 {
14 super(firstName, lastName, socialSecurityNumber);
15
16 if (commissionRate <= 0.0 || commissionRate >= 1.0) // validate
17 throw new IllegalArgumentException(
18 "Commission rate must be > 0.0 and < 1.0");
19
20 if (grossSales < 0.0) // validate
21 throw new IllegalArgumentException("Gross sales must be >= 0.0");
22

Fig. 10.7 | CommissionEmployee class extends Employee. (Part 1 of 2.)

Fig. 10.6 | HourlyEmployee class extends Employee. (Part 3 of 3.)

// return String representation of HourlyEmployee object
@Override
public String toString()
{
 return String.format("hourly employee: %s%n%s: $%,.2f; %s: %,.2f",
 super.toString(), "hourly wage", getWage(),
 "hours worked", getHours());
}

public class CommissionEmployee extends Employee

412 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

23 this.grossSales = grossSales;
24 this.commissionRate = commissionRate;
25 }
26
27 // set gross sales amount
28 public void setGrossSales(double grossSales)
29 {
30 if (grossSales < 0.0) // validate
31 throw new IllegalArgumentException("Gross sales must be >= 0.0");
32
33 this.grossSales = grossSales;
34 }
35
36 // return gross sales amount
37 public double getGrossSales()
38 {
39 return grossSales;
40 }
41
42 // set commission rate
43 public void setCommissionRate(double commissionRate)
44 {
45 if (commissionRate <= 0.0 || commissionRate >= 1.0) // validate
46 throw new IllegalArgumentException(
47 "Commission rate must be > 0.0 and < 1.0");
48
49 this.commissionRate = commissionRate;
50 }
51
52 // return commission rate
53 public double getCommissionRate()
54 {
55 return commissionRate;
56 }
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74 } // end class CommissionEmployee

Fig. 10.7 | CommissionEmployee class extends Employee. (Part 2 of 2.)

// calculate earnings; override abstract method earnings in Employee
@Override
public double earnings()
{
 return getCommissionRate() * getGrossSales();
}

// return String representation of CommissionEmployee object
@Override
public String toString()
{
 return String.format("%s: %s%n%s: $%,.2f; %s: %.2f",
 "commission employee", super.toString(),
 "gross sales", getGrossSales(),
 "commission rate", getCommissionRate());
}

10.5 Case Study: Payroll System Using Polymorphism 413

10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Fig. 10.8) extends class CommissionEmployee (line
4) and therefore is an indirect subclass of class Employee. Class BasePlusCommission-
Employee has a constructor (lines 9–20) that receives a first name, a last name, a social se-
curity number, a sales amount, a commission rate and a base salary. It then passes all of
these except the base salary to the CommissionEmployee constructor (lines 13–14) to ini-
tialize the superclass instance variables. BasePlusCommissionEmployee also contains a set
method (lines 23–29) to assign a new value to instance variable baseSalary and a get
method (lines 32–35) to return baseSalary’s value. Method earnings (lines 38–42) cal-
culates a BasePlusCommissionEmployee’s earnings. Line 41 in method earnings calls su-
perclass CommissionEmployee’s earnings method to calculate the commission-based
portion of the employee’s earnings—this is another nice example of code reuse. Base-
PlusCommissionEmployee’s toString method (lines 45–51) creates a String representa-
tion of a BasePlusCommissionEmployee that contains "base-salaried", followed by the
String obtained by invoking superclass CommissionEmployee’s toString method (line
49), then the base salary. The result is a String beginning with "base-salaried commis-
sion employee" followed by the rest of the BasePlusCommissionEmployee’s information.
Recall that CommissionEmployee’s toString obtains the employee’s first name, last name
and social security number by invoking the toString method of its superclass (i.e., Employ-
ee)—yet another example of code reuse. BasePlusCommissionEmployee’s toString initi-
ates a chain of method calls that span all three levels of the Employee hierarchy.

1 // Fig. 10.8: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class extends CommissionEmployee.
3
4
5 {
6 private double baseSalary; // base salary per week
7
8 // constructor
9 public BasePlusCommissionEmployee(String firstName, String lastName,

10 String socialSecurityNumber, double grossSales,
11 double commissionRate, double baseSalary)
12 {
13 super(firstName, lastName, socialSecurityNumber,
14 grossSales, commissionRate);
15
16 if (baseSalary < 0.0) // validate baseSalary
17 throw new IllegalArgumentException("Base salary must be >= 0.0");
18
19 this.baseSalary = baseSalary;
20 }
21
22 // set base salary
23 public void setBaseSalary(double baseSalary)
24 {
25 if (baseSalary < 0.0) // validate baseSalary
26 throw new IllegalArgumentException("Base salary must be >= 0.0");

Fig. 10.8 | BasePlusCommissionEmployee class extends CommissionEmployee. (Part 1 of 2.)

public class BasePlusCommissionEmployee extends CommissionEmployee

414 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

10.5.6 Polymorphic Processing, Operator instanceof and
Downcasting
To test our Employee hierarchy, the application in Fig. 10.9 creates an object of each of the
four concrete classes SalariedEmployee, HourlyEmployee, CommissionEmployee and Base-
PlusCommissionEmployee. The program manipulates these objects nonpolymorphically, via
variables of each object’s own type, then polymorphically, using an array of Employee vari-
ables. While processing the objects polymorphically, the program increases the base salary
of each BasePlusCommissionEmployee by 10%—this requires determining the object’s type
at execution time. Finally, the program polymorphically determines and outputs the type of
each object in the Employee array. Lines 9–18 create objects of each of the four concrete
Employee subclasses. Lines 22–30 output the String representation and earnings of each
of these objects nonpolymorphically. Each object’s toString method is called implicitly by
printf when the object is output as a String with the %s format specifier.

27
28 this.baseSalary = baseSalary;
29 }
30
31 // return base salary
32 public double getBaseSalary()
33 {
34 return baseSalary;
35 }
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 } // end class BasePlusCommissionEmployee

1 // Fig. 10.9: PayrollSystemTest.java
2 // Employee hierarchy test program.
3
4 public class PayrollSystemTest
5 {

Fig. 10.9 | Employee hierarchy test program. (Part 1 of 4.)

Fig. 10.8 | BasePlusCommissionEmployee class extends CommissionEmployee. (Part 2 of 2.)

// calculate earnings; override method earnings in CommissionEmployee
@Override
public double earnings()
{
 return getBaseSalary() + super.earnings();
}

// return String representation of BasePlusCommissionEmployee object
@Override
public String toString()
{
 return String.format("%s %s; %s: $%,.2f",
 "base-salaried", super.toString(),
 "base salary", getBaseSalary());
}

10.5 Case Study: Payroll System Using Polymorphism 415

6 public static void main(String[] args)
7 {
8
9

10
11
12
13
14
15
16
17
18
19
20 System.out.println("Employees processed individually:");
21
22 System.out.printf("%n%s%n%s: $%,.2f%n%n",
23 salariedEmployee, "earned", salariedEmployee.earnings());
24 System.out.printf("%s%n%s: $%,.2f%n%n",
25 hourlyEmployee, "earned", hourlyEmployee.earnings());
26 System.out.printf("%s%n%s: $%,.2f%n%n",
27 commissionEmployee, "earned", commissionEmployee.earnings());
28 System.out.printf("%s%n%s: $%,.2f%n%n",
29 basePlusCommissionEmployee,
30 "earned", basePlusCommissionEmployee.earnings());
31
32 // create four-element Employee array
33
34
35
36
37
38
39
40
41 System.out.printf("Employees processed polymorphically:%n%n");
42
43 // generically process each element in array employees
44 for (Employee currentEmployee : employees)
45 {
46 System.out.println(); // invokes toString
47
48 // determine whether element is a BasePlusCommissionEmployee
49 if ()
50 {
51 // downcast Employee reference to
52 // BasePlusCommissionEmployee reference
53 BasePlusCommissionEmployee employee =
54 ;
55
56 employee.setBaseSalary(1.10 * employee.getBaseSalary());
57

Fig. 10.9 | Employee hierarchy test program. (Part 2 of 4.)

// create subclass objects
SalariedEmployee salariedEmployee =
 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
HourlyEmployee hourlyEmployee =
 new HourlyEmployee("Karen", "Price", "222-22-2222", 16.75, 40);
CommissionEmployee commissionEmployee =
 new CommissionEmployee(
 "Sue", "Jones", "333-33-3333", 10000, .06);
BasePlusCommissionEmployee basePlusCommissionEmployee =
 new BasePlusCommissionEmployee(
 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);

Employee[] employees = new Employee[4];

// initialize array with Employees
employees[0] = salariedEmployee;
employees[1] = hourlyEmployee;
employees[2] = commissionEmployee;
employees[3] = basePlusCommissionEmployee;

currentEmployee

currentEmployee instanceof BasePlusCommissionEmployee

(BasePlusCommissionEmployee) currentEmployee

416 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

58 System.out.printf(
59 "new base salary with 10%% increase is: $%,.2f%n",
60 employee.getBaseSalary());
61 } // end if
62
63 System.out.printf(
64 "earned $%,.2f%n%n",);
65 } // end for
66
67
68
69
70
71 } // end main
72 } // end class PayrollSystemTest

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned: $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned: $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned: $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00

Employees processed polymorphically:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned $600.00

Fig. 10.9 | Employee hierarchy test program. (Part 3 of 4.)

currentEmployee.earnings()

// get type name of each object in employees array
for (int j = 0; j < employees.length; j++)
 System.out.printf("Employee %d is a %s%n", j,
 employees[j].getClass().getName());

earned: $500.00

10.5 Case Study: Payroll System Using Polymorphism 417

Creating the Array of Employees
Line 33 declares employees and assigns it an array of four Employee variables. Line 36 as-
signs to employees[0] a reference to a SalariedEmployee object. Line 37 assigns to
employees[1] a reference to an HourlyEmployee object. Line 38 assigns to employees[2]
a reference to a CommissionEmployee object. Line 39 assigns to employee[3] a reference
to a BasePlusCommissionEmployee object. These assignments are allowed, because a Sal-
ariedEmployee is an Employee, an HourlyEmployee is an Employee, a CommissionEmploy-
ee is an Employee and a BasePlusCommissionEmployee is an Employee. Therefore, we can
assign the references of SalariedEmployee, HourlyEmployee, CommissionEmployee and
BasePlusCommissionEmployee objects to superclass Employee variables, even though Em-
ployee is an abstract class.

Polymorphically Processing Employees
Lines 44–65 iterate through array employees and invoke methods toString and earn-
ings with Employee variable currentEmployee, which is assigned the reference to a differ-
ent Employee in the array on each iteration. The output illustrates that the specific
methods for each class are indeed invoked. All calls to method toString and earnings are
resolved at execution time, based on the type of the object to which currentEmployee re-
fers. This process is known as dynamic binding or late binding. For example, line 46 im-
plicitly invokes method toString of the object to which currentEmployee refers. As a
result of dynamic binding, Java decides which class’s toString method to call at execution
time rather than at compile time. Only the methods of class Employee can be called via an
Employee variable (and Employee, of course, includes the methods of class Object). A su-
perclass reference can be used to invoke only methods of the superclass—the subclass meth-
od implementations are invoked polymorphically.

Performing Type-Specific Operations on BasePlusCommissionEmployees
We perform special processing on BasePlusCommissionEmployee objects—as we encoun-
ter these objects at execution time, we increase their base salary by 10%. When processing
objects polymorphically, we typically do not need to worry about the specifics, but to adjust
the base salary, we do have to determine the specific type of Employee object at execution
time. Line 49 uses the instanceof operator to determine whether a particular Employee
object’s type is BasePlusCommissionEmployee. The condition in line 49 is true if the ob-
ject referenced by currentEmployee is a BasePlusCommissionEmployee. This would also
be true for any object of a BasePlusCommissionEmployee subclass because of the is-a rela-

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00; commission rate: 0.04;

Employee 0 is a SalariedEmployee
Employee 1 is a HourlyEmployee
Employee 2 is a CommissionEmployee
Employee 3 is a BasePlusCommissionEmployee

Fig. 10.9 | Employee hierarchy test program. (Part 4 of 4.)

base salary: $300.00
new base salary with 10% increase is: $330.00
earned $530.00

418 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

tionship a subclass has with its superclass. Lines 53–54 downcast currentEmployee from
type Employee to type BasePlusCommissionEmployee—this cast is allowed only if the ob-
ject has an is-a relationship with BasePlusCommissionEmployee. The condition at line 49
ensures that this is the case. This cast is required if we’re to invoke subclass BasePlusCom-
missionEmployee methods getBaseSalary and setBaseSalary on the current Employee
object—as you’ll see momentarily, attempting to invoke a subclass-only method directly on a
superclass reference is a compilation error.

If the instanceof expression in line 49 is true, lines 53–60 perform the special pro-
cessing required for the BasePlusCommissionEmployee object. Using BasePlusCommis-
sionEmployee variable employee, line 56 invokes subclass-only methods getBaseSalary
and setBaseSalary to retrieve and update the employee’s base salary with the 10% raise.

Calling earnings Polymorphically
Lines 63–64 invoke method earnings on currentEmployee, which polymorphically calls
the appropriate subclass object’s earnings method. Obtaining the earnings of the Sala-
riedEmployee, HourlyEmployee and CommissionEmployee polymorphically in lines 63–
64 produces the same results as obtaining these employees’ earnings individually in lines
22–27. The earnings amount obtained for the BasePlusCommissionEmployee in lines 63–
64 is higher than that obtained in lines 28–30, due to the 10% increase in its base salary.

Getting Each Employee’s Class Name
Lines 68–70 display each employee’s type as a String. Every object knows its own class and
can access this information through the getClass method, which all classes inherit from
class Object. Method getClass returns an object of type Class (from package ja-
va.lang), which contains information about the object’s type, including its class name.
Line 70 invokes getClass on the current object to get its class. The result of the getClass
call is used to invoke getName to get the object’s class name.

Avoiding Compilation Errors with Downcasting
In the previous example, we avoided several compilation errors by downcasting an Employ-
ee variable to a BasePlusCommissionEmployee variable in lines 53–54. If you remove the
cast operator (BasePlusCommissionEmployee) from line 54 and attempt to assign Em-
ployee variable currentEmployee directly to BasePlusCommissionEmployee variable em-
ployee, you’ll receive an “incompatible types” compilation error. This error indicates
that the attempt to assign the reference of superclass object currentEmployee to subclass
variable employee is not allowed. The compiler prevents this assignment because a Com-
missionEmployee is not a BasePlusCommissionEmployee—the is-a relationship applies only
between the subclass and its superclasses, not vice versa.

Common Programming Error 10.3
Assigning a superclass variable to a subclass variable is a compilation error.

Common Programming Error 10.4
When downcasting a reference, a ClassCastException occurs if the referenced object at ex-
ecution time does not have an is-a relationship with the type specified in the cast operator.

10.6 Allowed Assignments Between Superclass and Subclass Variables 419

Similarly, if lines 56 and 60 used superclass variable currentEmployee to invoke sub-
class-only methods getBaseSalary and setBaseSalary, we’d receive “cannot find
symbol” compilation errors at these lines. Attempting to invoke subclass-only methods via
a superclass variable is not allowed—even though lines 56 and 60 execute only if
instanceof in line 49 returns true to indicate that currentEmployee holds a reference to
a BasePlusCommissionEmployee object. Using a superclass Employee variable, we can
invoke only methods found in class Employee—earnings, toString and Employee’s get
and set methods.

10.6 Allowed Assignments Between Superclass and
Subclass Variables
Now that you’ve seen a complete application that processes diverse subclass objects polymor-
phically, we summarize what you can and cannot do with superclass and subclass objects
and variables. Although a subclass object also is a superclass object, the two classes are nev-
ertheless different. As discussed previously, subclass objects can be treated as objects of their
superclass. But because the subclass can have additional subclass-only members, assigning
a superclass reference to a subclass variable is not allowed without an explicit cast—such an
assignment would leave the subclass members undefined for the superclass object.

We’ve discussed three proper ways to assign superclass and subclass references to vari-
ables of superclass and subclass types:

1. Assigning a superclass reference to a superclass variable is straightforward.

2. Assigning a subclass reference to a subclass variable is straightforward.

3. Assigning a subclass reference to a superclass variable is safe, because the subclass
object is an object of its superclass. However, the superclass variable can be used
to refer only to superclass members. If this code refers to subclass-only members
through the superclass variable, the compiler reports errors.

10.7 final Methods and Classes
We saw in Sections 6.3 and 6.10 that variables can be declared final to indicate that they
cannot be modified after they’re initialized—such variables represent constant values. It’s
also possible to declare methods, method parameters and classes with the final modifier.

Final Methods Cannot Be Overridden
A final method in a superclass cannot be overridden in a subclass—this guarantees that
the final method implementation will be used by all direct and indirect subclasses in the
hierarchy. Methods that are declared private are implicitly final, because it’s not possi-
ble to override them in a subclass. Methods that are declared static are also implicitly fi-
nal. A final method’s declaration can never change, so all subclasses use the same method

Software Engineering Observation 10.5
Although the actual method that’s called depends on the runtime type of the object to
which a variable refers, a variable can be used to invoke only those methods that are
members of that variable’s type, which the compiler verifies.

420 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

implementation, and calls to final methods are resolved at compile time—this is known
as static binding.

Final Classes Cannot Be Superclasses
A final class cannot extended to create a subclass. All methods in a final class are im-
plicitly final. Class String is an example of a final class. If you were allowed to create a
subclass of String, objects of that subclass could be used wherever Strings are expected.
Since class String cannot be extended, programs that use Strings can rely on the func-
tionality of String objects as specified in the Java API. Making the class final also pre-
vents programmers from creating subclasses that might bypass security restrictions.

We’ve now discussed declaring variables, methods and classes final, and we’ve
emphasized that if something can be final it should be final. Compilers can perform var-
ious optimizations when they know something is final. When we study concurrency in
Chapter 23, you’ll see that final variables make it much easier to parallelize your pro-
grams for use on today’s multi-core processors. For more insights on the use of final, visit

10.8 A Deeper Explanation of Issues with Calling
Methods from Constructors
Do not call overridable methods from constructors. When creating a subclass object, this
could lead to an overridden method being called before the subclass object is fully initialized.

Recall that when you construct a subclass object, its constructor first calls one of the
direct superclass’s constructors. If the superclass constructor calls an overridable method, the
subclass’s version of that method will be called by the superclass constructor—before the sub-
class constructor’s body has a chance to execute. This could lead to subtle, difficult-to-
detect errors if the subclass method that was called depends on initialization that has not
yet been performed in the subclass constructor’s body.

It’s acceptable to call a static method from a constructor. For example, a constructor
and a set method often perform the same validation for a particular instance variable. If the
validation code is brief, it’s acceptible to duplicate it in the constructor and the set method.
If lengthier validation is required, define a static validation method (typically a private
helper method) then call it from the constructor and the set method. It’s also acceptable
for a constructor to call a final instance method, provided that the method does not
directly or indirectly call an overridable instance method.

http://docs.oracle.com/javase/tutorial/java/IandI/final.html

Common Programming Error 10.5
Attempting to declare a subclass of a final class is a compilation error.

Software Engineering Observation 10.6
In the Java API, the vast majority of classes are not declared final. This enables
inheritance and polymorphism. However, in some cases, it’s important to declare classes
final—typically for security reasons. Also, unless you carefully design a class for extension,
you should declare the class as final to avoid (often subtle) errors.

http://docs.oracle.com/javase/tutorial/java/IandI/final.html

10.9 Creating and Using Interfaces 421

10.9 Creating and Using Interfaces
[Note: As written, this section and its code example apply through Java SE 7. Java SE 8’s interface
enhancements are introduced in Section 10.10 and discussed in more detail in Chapter 17.]

Our next example (Figs. 10.11–10.15) reexamines the payroll system of Section 10.5.
Suppose that the company involved wishes to perform several accounting operations in a
single accounts payable application—in addition to calculating the earnings that must be
paid to each employee, the company must also calculate the payment due on each of sev-
eral invoices (i.e., bills for goods purchased). Though applied to unrelated things (i.e., em-
ployees and invoices), both operations have to do with obtaining some kind of payment
amount. For an employee, the payment refers to the employee’s earnings. For an invoice,
the payment refers to the total cost of the goods listed on the invoice. Can we calculate
such different things as the payments due for employees and invoices in a single application
polymorphically? Does Java offer a capability requiring that unrelated classes implement a
set of common methods (e.g., a method that calculates a payment amount)? Java interfaces
offer exactly this capability.

Standardizing Interactions
Interfaces define and standardize the ways in which things such as people and systems can
interact with one another. For example, the controls on a radio serve as an interface between
radio users and a radio’s internal components. The controls allow users to perform only a
limited set of operations (e.g., change the station, adjust the volume, choose between AM
and FM), and different radios may implement the controls in different ways (e.g., using
push buttons, dials, voice commands). The interface specifies what operations a radio must
permit users to perform but does not specify how the operations are performed.

Software Objects Communicate Via Interfaces
Software objects also communicate via interfaces. A Java interface describes a set of meth-
ods that can be called on an object to tell it, for example, to perform some task or return
some piece of information. The next example introduces an interface named Payable to
describe the functionality of any object that must be “capable of being paid” and thus must
offer a method to determine the proper payment amount due. An interface declaration
begins with the keyword interface and contains only constants and abstract methods.
Unlike classes, all interface members must be public, and interfaces may not specify any im-
plementation details, such as concrete method declarations and instance variables. All
methods declared in an interface are implicitly public abstract methods, and all fields
are implicitly public, static and final.

Using an Interface
To use an interface, a concrete class must specify that it implements the interface and must
declare each method in the interface with the signature specified in the interface declara-
tion. To specify that a class implements an interface, add the implements keyword and the

Good Programming Practice 10.1
According to the Java Language Specification, it’s proper style to declare an interface’s
abstract methods without keywords public and abstract, because they’re redundant
in interface-method declarations. Similarly, an interface’s constants should be declared
without keywords public, static and final, because they, too, are redundant.

422 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

name of the interface to the end of your class declaration’s first line. A class that does not
implement all the methods of the interface is an abstract class and must be declared
abstract. Implementing an interface is like signing a contract with the compiler that states,
“I will declare all the methods specified by the interface or I will declare my class abstract.”

Relating Disparate Types
An interface is often used when disparate classes—i.e., classes that are not related by a class
hierarchy—need to share common methods and constants. This allows objects of unrelat-
ed classes to be processed polymorphically—objects of classes that implement the same in-
terface can respond to the same method calls. You can create an interface that describes the
desired functionality, then implement this interface in any classes that require that func-
tionality. For example, in the accounts payable application developed in this section, we
implement interface Payable in any class that must be able to calculate a payment amount
(e.g., Employee, Invoice).

Interfaces vs. Abstract Classes
An interface is often used in place of an abstract class when there’s no default implementation to
inherit—that is, no fields and no default method implementations. Like public abstract
classes, interfaces are typically public types. Like a public class, a public interface must be
declared in a file with the same name as the interface and the .java filename extension.

Tagging Interfaces
We’ll see in Chapter 15, Files, Streams and Object Serialization, the notion of tagging in-
terfaces (also called marker interfaces)—empty interfaces that have no methods or constant
values. They’re used to add is-a relationships to classes. For example, in Chapter 15 we’ll
discuss a mechanism called object serialization, which can convert objects to byte represen-
tations and can convert those byte representations back to objects. To enable this mecha-
nism to work with your objects, you simply have to mark them as Serializable by adding
implements Serializable to the end of your class declaration’s first line. Then, all the
objects of your class have the is-a relationship with Serializable.

10.9.1 Developing a Payable Hierarchy
To build an application that can determine payments for employees and invoices alike, we
first create interface Payable, which contains method getPaymentAmount that returns a
double amount that must be paid for an object of any class that implements the interface.
Method getPaymentAmount is a general-purpose version of method earnings of the
Employee hierarchy—method earnings calculates a payment amount specifically for an
Employee, while getPaymentAmount can be applied to a broad range of possibly unrelated
objects. After declaring interface Payable, we introduce class Invoice, which implements

Common Programming Error 10.6
Failing to implement any method of an interface in a concrete class that implements the in-
terface results in a compilation error indicating that the class must be declared abstract.

Software Engineering Observation 10.7
Many developers feel that interfaces are an even more important modeling technology than
classes, especially with the new interface enhancements in Java SE 8 (see Section 10.10).

10.9 Creating and Using Interfaces 423

interface Payable. We then modify class Employee such that it also implements interface
Payable. Finally, we update Employee subclass SalariedEmployee to “fit” into the Pay-
able hierarchy by renaming SalariedEmployee method earnings as getPaymentAmount.

Classes Invoice and Employee both represent things for which the company must be
able to calculate a payment amount. Both classes implement the Payable interface, so a
program can invoke method getPaymentAmount on Invoice objects and Employee objects
alike. As we’ll soon see, this enables the polymorphic processing of Invoices and Employees
required for the company’s accounts payable application.

The UML class diagram in Fig. 10.10 shows the interface and class hierarchy used in
our accounts payable application. The hierarchy begins with interface Payable. The UML
distinguishes an interface from other classes by placing the word “interface” in guillemets
(« and ») above the interface name. The UML expresses the relationship between a class
and an interface through a relationship known as realization. A class is said to realize, or
implement, the methods of an interface. A class diagram models a realization as a dashed
arrow with a hollow arrowhead pointing from the implementing class to the interface. The
diagram in Fig. 10.10 indicates that classes Invoice and Employee each realize interface
Payable. As in the class diagram of Fig. 10.2, class Employee appears in italics, indicating
that it’s an abstract class. Concrete class SalariedEmployee extends Employee, inheriting its
superclass’s realization relationship with interface Payable.

10.9.2 Interface Payable
The declaration of interface Payable begins in Fig. 10.11 at line 4. Interface Payable con-
tains public abstract method getPaymentAmount. Interface methods are always public
and abstract, so they do not need to be declared as such. Interface Payable has only one
method, but interfaces can have any number of methods. In addition, method get-
PaymentAmount has no parameters, but interface methods can have parameters. Interfaces
may also contain final static constants.

Good Programming Practice 10.2
When declaring a method in an interface, choose a method name that describes the meth-
od’s purpose in a general manner, because the method may be implemented by many un-
related classes.

Fig. 10.10 | Payable hierarchy UML class diagram.

Invoice Employee

SalariedEmployee

«interface»
Payable

424 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

10.9.3 Class Invoice
We now create class Invoice (Fig. 10.12) to represent a simple invoice that contains bill-
ing information for only one kind of part. The class declares private instance variables
partNumber, partDescription, quantity and pricePerItem (in lines 6–9) that indicate
the part number, a description of the part, the quantity of the part ordered and the price
per item. Class Invoice also contains a constructor (lines 12–26), get and set methods
(lines 29–69) that manipulate the class’s instance variables and a toString method (lines
72–78) that returns a String representation of an Invoice object. Methods setQuantity
(lines 41–47) and setPricePerItem (lines 56–63) ensure that quantity and pricePer-
Item obtain only nonnegative values.

1 // Fig. 10.11: Payable.java
2 // Payable interface declaration.
3
4
5
6
7

Fig. 10.11 | Payable interface declaration.

1 // Fig. 10.12: Invoice.java
2 // Invoice class that implements Payable.
3
4
5 {
6 private final String partNumber;
7 private final String partDescription;
8 private int quantity;
9 private double pricePerItem;

10
11 // constructor
12 public Invoice(String partNumber, String partDescription, int quantity,
13 double pricePerItem)
14 {
15 if (quantity < 0) // validate quantity
16 throw new IllegalArgumentException("Quantity must be >= 0");
17
18 if (pricePerItem < 0.0) // validate pricePerItem
19 throw new IllegalArgumentException(
20 "Price per item must be >= 0");
21
22 this.quantity = quantity;
23 this.partNumber = partNumber;
24 this.partDescription = partDescription;
25 this.pricePerItem = pricePerItem;
26 } // end constructor
27

Fig. 10.12 | Invoice class that implements Payable. (Part 1 of 3.)

public interface Payable
{
 double getPaymentAmount(); // calculate payment; no implementation
}

public class Invoice implements Payable

10.9 Creating and Using Interfaces 425

28 // get part number
29 public String getPartNumber()
30 {
31 return partNumber; // should validate
32 }
33
34 // get description
35 public String getPartDescription()
36 {
37 return partDescription;
38 }
39
40 // set quantity
41 public void setQuantity(int quantity)
42 {
43 if (quantity < 0) // validate quantity
44 throw new IllegalArgumentException("Quantity must be >= 0");
45
46 this.quantity = quantity;
47 }
48
49 // get quantity
50 public int getQuantity()
51 {
52 return quantity;
53 }
54
55 // set price per item
56 public void setPricePerItem(double pricePerItem)
57 {
58 if (pricePerItem < 0.0) // validate pricePerItem
59 throw new IllegalArgumentException(
60 "Price per item must be >= 0");
61
62 this.pricePerItem = pricePerItem;
63 }
64
65 // get price per item
66 public double getPricePerItem()
67 {
68 return pricePerItem;
69 }
70
71 // return String representation of Invoice object
72 @Override
73 public String toString()
74 {
75 return String.format("%s: %n%s: %s (%s) %n%s: %d %n%s: $%,.2f",
76 "invoice", "part number", getPartNumber(), getPartDescription(),
77 "quantity", getQuantity(), "price per item", getPricePerItem());
78 }
79

Fig. 10.12 | Invoice class that implements Payable. (Part 2 of 3.)

426 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

A Class Can Extend Only One Other Class But Can Implement Many Interfaces
Line 4 indicates that class Invoice implements interface Payable. Like all classes, class In-
voice also implicitly extends Object. Java does not allow subclasses to inherit from more
than one superclass, but it allows a class to inherit from one superclass and implement as
many interfaces as it needs. To implement more than one interface, use a comma-separated
list of interface names after keyword implements in the class declaration, as in:

Class Invoice implements the one abstract method in interface Payable—method
getPaymentAmount is declared in lines 81–85. The method calculates the total payment
required to pay the invoice. The method multiplies the values of quantity and pricePer-
Item (obtained through the appropriate get methods) and returns the result. This method
satisfies the implementation requirement for this method in interface Payable—we’ve ful-
filled the interface contract with the compiler.

10.9.4 Modifying Class Employee to Implement Interface Payable
We now modify class Employee such that it implements interface Payable. Figure 10.13
contains the modified class, which is identical to that of Fig. 10.4 with two exceptions.
First, line 4 of Fig. 10.13 indicates that class Employee now implements interface Payable.
For this example, we renamed method earnings to getPaymentAmount throughout the
Employee hierarchy. As with method earnings in the version of class Employee in
Fig. 10.4, however, it does not make sense to implement method getPaymentAmount in
class Employee because we cannot calculate the earnings payment owed to a general Em-
ployee—we must first know the specific type of Employee. In Fig. 10.4, we declared meth-
od earnings as abstract for this reason, so class Employee had to be declared abstract.
This forced each Employee concrete subclass to override earnings with an implementation.

80
81
82
83
84
85
86 } // end class Invoice

public class ClassName extends SuperclassName implements FirstInterface,
 SecondInterface, …

Software Engineering Observation 10.8
All objects of a class that implements multiple interfaces have the is-a relationship with
each implemented interface type.

1 // Fig. 10.13: Employee.java
2 // Employee abstract superclass that implements Payable.
3

Fig. 10.13 | Employee abstract superclass that implements Payable. (Part 1 of 2.)

Fig. 10.12 | Invoice class that implements Payable. (Part 3 of 3.)

// method required to carry out contract with interface Payable
@Override
public double getPaymentAmount()
{
 return getQuantity() * getPricePerItem(); // calculate total cost
}

10.9 Creating and Using Interfaces 427

In Fig. 10.13, we handle this situation differently. Recall that when a class implements
an interface, it makes a contract with the compiler stating either that the class will implement
each method in the interface or the class will be declared abstract. Because class Employee
does not provide a getPaymentAmount method, the class must be declared abstract. Any
concrete subclass of the abstract class must implement the interface methods to fulfill the
superclass’s contract with the compiler. If the subclass does not do so, it too must be declared

4
5 {
6 private final String firstName;
7 private final String lastName;
8 private final String socialSecurityNumber;
9

10 // constructor
11 public Employee(String firstName, String lastName,
12 String socialSecurityNumber)
13 {
14 this.firstName = firstName;
15 this.lastName = lastName;
16 this.socialSecurityNumber = socialSecurityNumber;
17 }
18
19 // return first name
20 public String getFirstName()
21 {
22 return firstName;
23 }
24
25 // return last name
26 public String getLastName()
27 {
28 return lastName;
29 }
30
31 // return social security number
32 public String getSocialSecurityNumber()
33 {
34 return socialSecurityNumber;
35 }
36
37 // return String representation of Employee object
38 @Override
39 public String toString()
40 {
41 return String.format("%s %s%nsocial security number: %s",
42 getFirstName(), getLastName(), getSocialSecurityNumber());
43 }
44
45
46
47 } // end abstract class Employee

Fig. 10.13 | Employee abstract superclass that implements Payable. (Part 2 of 2.)

public abstract class Employee implements Payable

// Note: We do not implement Payable method getPaymentAmount here so
// this class must be declared abstract to avoid a compilation error.

428 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

abstract. As indicated by the comments in lines 45–46, class Employee of Fig. 10.13 does
not implement method getPaymentAmount, so the class is declared abstract. Each direct
Employee subclass inherits the superclass’s contract to implement method getPaymentAmount
and thus must implement this method to become a concrete class for which objects can be
instantiated. A class that extends one of Employee’s concrete subclasses will inherit an imple-
mentation of getPaymentAmount and thus will also be a concrete class.

10.9.5 Modifying Class SalariedEmployee for Use in the Payable
Hierarchy
Figure 10.14 contains a modified SalariedEmployee class that extends Employee and ful-
fills superclass Employee’s contract to implement Payable method getPaymentAmount.
This version of SalariedEmployee is identical to that of Fig. 10.5, but it replaces method
earnings with method getPaymentAmount (lines 39–43). Recall that the Payable version
of the method has a more general name to be applicable to possibly disparate classes. (If we
included the remaining Employee subclasses from Section 10.5—HourlyEmployee, Com-
missionEmployee and BasePlusCommissionEmployee—in this example, their earnings
methods should also be renamed getPaymentAmount. We leave these modifications to
Exercise 10.15 and use only SalariedEmployee in our test program here. Exercise 10.16
asks you to implement interface Payable in the entire Employee class hierarchy of
Figs. 10.4–10.9 without modifying the Employee subclasses.)

1 // Fig. 10.14: SalariedEmployee.java
2 // SalariedEmployee class that implements interface Payable.
3 // method getPaymentAmount.
4 public class SalariedEmployee extends Employee
5 {
6 private double weeklySalary;
7
8 // constructor
9 public SalariedEmployee(String firstName, String lastName,

10 String socialSecurityNumber, double weeklySalary)
11 {
12 super(firstName, lastName, socialSecurityNumber);
13
14 if (weeklySalary < 0.0)
15 throw new IllegalArgumentException(
16 "Weekly salary must be >= 0.0");
17
18 this.weeklySalary = weeklySalary;
19 }
20
21 // set salary
22 public void setWeeklySalary(double weeklySalary)
23 {
24 if (weeklySalary < 0.0)
25 throw new IllegalArgumentException(
26 "Weekly salary must be >= 0.0");

Fig. 10.14 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part 1 of 2.)

10.9 Creating and Using Interfaces 429

When a class implements an interface, the same is-a relationship provided by inheri-
tance applies. Class Employee implements Payable, so we can say that an Employee is a
Payable. In fact, objects of any classes that extend Employee are also Payable objects. Sal-
ariedEmployee objects, for instance, are Payable objects. Objects of any subclasses of the
class that implements the interface can also be thought of as objects of the interface type.
Thus, just as we can assign the reference of a SalariedEmployee object to a superclass
Employee variable, we can assign the reference of a SalariedEmployee object to an inter-
face Payable variable. Invoice implements Payable, so an Invoice object also is a Pay-
able object, and we can assign the reference of an Invoice object to a Payable variable.

27
28 this.weeklySalary = weeklySalary;
29 }
30
31 // return salary
32 public double getWeeklySalary()
33 {
34 return weeklySalary;
35 }
36
37
38
39
40
41
42
43
44
45 // return String representation of SalariedEmployee object
46 @Override
47 public String toString()
48 {
49 return String.format("salaried employee: %s%n%s: $%,.2f",
50 super.toString(), "weekly salary", getWeeklySalary());
51 }
52 } // end class SalariedEmployee

Software Engineering Observation 10.9
When a method parameter is declared with a superclass or interface type, the method
processes the object passed as an argument polymorphically.

Software Engineering Observation 10.10
Using a superclass reference, we can polymorphically invoke any method declared in the
superclass and its superclasses (e.g., class Object). Using an interface reference, we can
polymorphically invoke any method declared in the interface, its superinterfaces (one
interface can extend another) and in class Object—a variable of an interface type must
refer to an object to call methods, and all objects have the methods of class Object.

Fig. 10.14 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part 2 of 2.)

// calculate earnings; implement interface Payable method that was
// abstract in superclass Employee
@Override
public double getPaymentAmount()
{
 return getWeeklySalary();
}

430 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

10.9.6 Using Interface Payable to Process Invoices and Employees
Polymorphically
PayableInterfaceTest (Fig. 10.15) illustrates that interface Payable can be used to pro-
cess a set of Invoices and Employees polymorphically in a single application. Line 9 declares
payableObjects and assigns it an array of four Payable variables. Lines 12–13 assign the
references of Invoice objects to the first two elements of payableObjects. Lines 14–17
then assign the references of SalariedEmployee objects to the remaining two elements of
payableObjects. These assignments are allowed because an Invoice is a Payable, a Sal-
ariedEmployee is an Employee and an Employee is a Payable. Lines 23–29 use the en-
hanced for statement to polymorphically process each Payable object in payableObjects,
printing the object as a String, along with the payment amount due. Line 27 invokes
method toString via a Payable interface reference, even though toString is not declared
in interface Payable—all references (including those of interface types) refer to objects that ex-
tend Object and therefore have a toString method. (Method toString also can be invoked
implicitly here.) Line 28 invokes Payable method getPaymentAmount to obtain the pay-
ment amount for each object in payableObjects, regardless of the actual type of the object.
The output reveals that each of the method calls in lines 27–28 invokes the appropriate
class’s implementation of methods toString and getPaymentAmount. For instance, when
currentPayable refers to an Invoice during the first iteration of the for loop, class In-
voice’s toString and getPaymentAmount execute.

1 // Fig. 10.15: PayableInterfaceTest.java
2 // Payable interface test program processing Invoices and
3 // Employees polymorphically.
4 public class PayableInterfaceTest
5 {
6 public static void main(String[] args)
7 {
8 // create four-element Payable array
9

10
11 // populate array with objects that implement Payable
12 payableObjects[0] = new Invoice("01234", "seat", 2, 375.00);
13 payableObjects[1] = new Invoice("56789", "tire", 4, 79.95);
14 payableObjects[2] =
15 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
16 payableObjects[3] =
17 new SalariedEmployee("Lisa", "Barnes", "888-88-8888", 1200.00);
18
19 System.out.println(
20 "Invoices and Employees processed polymorphically:");
21
22 // generically process each element in array payableObjects
23 for (Payable currentPayable : payableObjects)
24 {

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 1 of 2.)

Payable[] payableObjects = new Payable[4];

10.9 Creating and Using Interfaces 431

10.9.7 Some Common Interfaces of the Java API
You’ll use interfaces extensively when developing Java applications. The Java API contains
numerous interfaces, and many of the Java API methods take interface arguments and re-
turn interface values. Figure 10.16 overviews a few of the more popular interfaces of the
Java API that we use in later chapters.

25 // output currentPayable and its appropriate payment amount
26 System.out.printf("%n%s %n%s: $%,.2f%n",
27 , // could invoke implicitly
28 "payment due",);
29 }
30 } // end main
31 } // end class PayableInterfaceTest

Invoices and Employees processed polymorphically:

invoice:
part number: 01234 (seat)
quantity: 2
price per item: $375.00
payment due: $750.00

invoice:
part number: 56789 (tire)
quantity: 4
price per item: $79.95
payment due: $319.80

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
payment due: $800.00

salaried employee: Lisa Barnes
social security number: 888-88-8888
weekly salary: $1,200.00
payment due: $1,200.00

Interface Description

Comparable Java contains several comparison operators (e.g., <, <=, >, >=, ==, !=) that allow you
to compare primitive values. However, these operators cannot be used to compare
objects. Interface Comparable is used to allow objects of a class that implements the
interface to be compared to one another. Interface Comparable is commonly used
for ordering objects in a collection such as an array. We use Comparable in
Chapter 16, Generic Collections, and Chapter 20, Generic Classes and Methods.

Fig. 10.16 | Common interfaces of the Java API. (Part 1 of 2.)

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 2 of 2.)

currentPayable.toString()
currentPayable.getPaymentAmount()

432 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

10.10 Java SE 8 Interface Enhancements
This section introduces Java SE 8’s new interface features. We discuss these in more detail
in later chapters.

10.10.1 default Interface Methods
Prior to Java SE 8, interface methods could be only public abstract methods. This meant
that an interface specified what operations an implementing class must perform but not
how the class should perform them.

In Java SE 8, interfaces also may contain public default methods with concrete
default implementations that specify how operations are performed when an imple-
menting class does not override the methods. If a class implements such an interface, the
class also receives the interface’s default implementations (if any). To declare a default
method, place the keyword default before the method’s return type and provide a con-
crete method implementation.

Adding Methods to Existing Interfaces
Prior to Java SE 8, adding methods to an interface would break any implementing classes
that did not implement the new methods. Recall that if you didn’t implement each of an
interface’s methods, you had to declare your class abstract.

Any class that implements the original interface will not break when a default
method is added—the class simply receives the new default method. When a class imple-

Serializable An interface used to identify classes whose objects can be written to (i.e., serialized)
or read from (i.e., deserialized) some type of storage (e.g., file on disk, database
field) or transmitted across a network. We use Serializable in Chapter 15, Files,
Streams and Object Serialization, and Chapter 28, Networking.

Runnable Implemented by any class that represents a task to perform. Objects of such as class
are often executed in parallel using a technique called multithreading (discussed in
Chapter 23, Concurrency). The interface contains one method, run, which speci-
fies the behavior of an object when executed.

GUI event-
listener
interfaces

You work with graphical user interfaces (GUIs) every day. In your web browser,
you might type the address of a website to visit, or you might click a button to
return to a previous site. The browser responds to your interaction and performs
the desired task. Your interaction is known as an event, and the code that the
browser uses to respond to an event is known as an event handler. In Chapter 12,
GUI Components: Part 1, and Chapter 22, GUI Components: Part 2, you’ll learn
how to build GUIs and event handlers that respond to user interactions. Event
handlers are declared in classes that implement an appropriate event-listener inter-
face. Each event-listener interface specifies one or more methods that must be
implemented to respond to user interactions.

AutoCloseable Implemented by classes that can be used with the try-with-resources statement
(Chapter 11, Exception Handling: A Deeper Look) to help prevent resource leaks.

Interface Description

Fig. 10.16 | Common interfaces of the Java API. (Part 2 of 2.)

10.11 (Optional) GUI and Graphics Case Study: Drawing with Polymorphism 433

ments a Java SE 8 interface, the class “signs a contract” with the compiler that says, “I will
declare all the abstract methods specified by the interface or I will declare my class
abstract”—the implementing class is not required to override the interface’s default
methods, but it can if necessary.

Interfaces vs. abstract Classes
Prior to Java SE 8, an interface was typically used (rather than an abstract class) when
there were no implementation details to inherit—no fields and no method implementa-
tions. With default methods, you can instead declare common method implementations
in interfaces, which gives you more flexibility in designing your classes.

10.10.2 static Interface Methods
Prior to Java SE 8, it was common to associate with an interface a class containing static
helper methods for working with objects that implemented the interface. In Chapter 16,
you’ll learn about class Collections which contains many static helper methods for
working with objects that implement interfaces Collection, List, Set and more. For ex-
ample, Collections method sort can sort objects of any class that implements interface
List. With static interface methods, such helper methods can now be declared directly
in interfaces rather than in separate classes.

10.10.3 Functional Interfaces
As of Java SE 8, any interface containing only one abstract method is known as a func-
tional interface. There are many such interfaces throughout the Java SE 7 APIs, and many
new ones in Java SE 8. Some functional interfaces that you’ll use in this book include:

• ActionListener (Chapter 12)—You’ll implement this interface to define a
method that’s called when the user clicks a button.

• Comparator (Chapter 16)—You’ll implement this interface to define a method
that can compare two objects of a given type to determine whether the first object
is less than, equal to or greater than the second.

• Runnable (Chapter 23)—You’ll implement this interface to define a task that
may be run in parallel with other parts of your program.

Functional interfaces are used extensively with Java SE 8’s new lambda capabilities that we
introduce in Chapter 17. In Chapter 12, you’ll often implement an interface by creating
a so-called anonymous inner class that implements the interface’s method(s). In Java SE
8, lambdas provide a shorthand notation for creating anonymous methods that the compiler
automatically translates into anonymous inner classes for you.

10.11 (Optional) GUI and Graphics Case Study: Drawing
with Polymorphism
You may have noticed in the drawing program created in GUI and Graphics Case Study
Exercise 8.1 (and modified in GUI and Graphics Case Study Exercise 9.1) that shape

Software Engineering Observation 10.11
Java SE 8 default methods enable you to evolve existing interfaces by adding new
methods to those interfaces without breaking code that uses them.

434 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

classes have many similarities. Using inheritance, we can “factor out” the common features
from all three classes and place them in a single shape superclass. Then, using variables of
the superclass type, we can manipulate shape objects polymorphically. Removing the re-
dundant code will result in a smaller, more flexible program that’s easier to maintain.

GUI and Graphics Case Study Exercises
10.1 Modify the MyLine, MyOval and MyRectangle classes of GUI and Graphics Case Study
Exercise 8.1 and Exercise 9.1 to create the class hierarchy in Fig. 10.17. Classes of the MyShape hi-
erarchy should be “smart” shape classes that know how to draw themselves (if provided with a
Graphics object that tells them where to draw). Once the program creates an object from this hier-
archy, it can manipulate it polymorphically for the rest of its lifetime as a MyShape.

In your solution, class MyShape in Fig. 10.17 must be abstract. Since MyShape represents any
shape in general, you cannot implement a draw method without knowing specifically what shape it
is. The data representing the coordinates and color of the shapes in the hierarchy should be
declared as private members of class MyShape. In addition to the common data, class MyShape
should declare the following methods:

a) A no-argument constructor that sets all the coordinates of the shape to 0 and the color to
Color.BLACK.

b) A constructor that initializes the coordinates and color to the values of the arguments
supplied.

c) Set methods for the individual coordinates and color that allow the programmer to set
any piece of data independently for a shape in the hierarchy.

d) Get methods for the individual coordinates and color that allow the programmer to re-
trieve any piece of data independently for a shape in the hierarchy.

e) The abstract method

 public abstract void draw(Graphics g);

which the program’s paintComponent method will call to draw a shape on the screen.
To ensure proper encapsulation, all data in class MyShape must be private. This requires

declaring proper set and get methods to manipulate the data. Class MyLine should provide a no-
argument constructor and a constructor with arguments for the coordinates and color. Classes
MyOval and MyRectangle should provide a no-argument constructor and a constructor with argu-

Fig. 10.17 | MyShape hierarchy.

java.lang.Object

MyShape

MyOvalMyLine MyRectangle

10.11 (Optional) GUI and Graphics Case Study: Drawing with Polymorphism 435

ments for the coordinates, color and determining whether the shape is filled. The no-argument
constructor should, in addition to setting the default values, set the shape to be an unfilled shape.

You can draw lines, rectangles and ovals if you know two points in space. Lines require x1, y1,
x2 and y2 coordinates. The drawLine method of the Graphics class will connect the two points
supplied with a line. If you have the same four coordinate values (x1, y1, x2 and y2) for ovals and
rectangles, you can calculate the four arguments needed to draw them. Each requires an upper-left
x-coordinate value (the smaller of the two x-coordinate values), an upper-left y-coordinate value
(the smaller of the two y-coordinate values), a width (the absolute value of the difference between
the two x-coordinate values) and a height (the absolute value of the difference between the two y-
coordinate values). Rectangles and ovals should also have a filled flag that determines whether to
draw the shape as a filled shape.

There should be no MyLine, MyOval or MyRectangle variables in the program—only MyShape
variables that contain references to MyLine, MyOval and MyRectangle objects. The program should
generate random shapes and store them in an array of type MyShape. Method paintComponent
should walk through the MyShape array and draw every shape, by polymorphically calling every
shape’s draw method.

Allow the user to specify (via an input dialog) the number of shapes to generate. The program
will then generate and display the shapes along with a status bar that informs the user how many of
each shape were created.

10.2 (Drawing Application Modification) In the preceding exercise, you created a MyShape hierar-
chy in which classes MyLine, MyOval and MyRectangle extend MyShape directly. If your hierarchy was
properly designed, you should be able to see the similarities between the MyOval and MyRectangle class-
es. Redesign and reimplement the code for the MyOval and MyRectangle classes to “factor out” the
common features into the abstract class MyBoundedShape to produce the hierarchy in Fig. 10.18.

Class MyBoundedShape should declare two constructors that mimic those of class MyShape, only
with an added parameter to specify whether the shape is filled. Class MyBoundedShape should also
declare get and set methods for manipulating the filled flag and methods that calculate the upper-
left x-coordinate, upper-left y-coordinate, width and height. Remember, the values needed to draw
an oval or a rectangle can be calculated from two (x, y) coordinates. If designed properly, the new
MyOval and MyRectangle classes should each have two constructors and a draw method.

Fig. 10.18 | MyShape hierarchy with MyBoundedShape.

java.lang.Object

MyShape

MyLine MyBoundedShape

MyOval MyRectangle

436 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

10.12 Wrap-Up
This chapter introduced polymorphism—the ability to process objects that share the same
superclass in a class hierarchy as if they were all objects of the superclass. We discussed how
polymorphism makes systems extensible and maintainable, then demonstrated how to use
overridden methods to effect polymorphic behavior. We introduced abstract classes,
which allow you to provide an appropriate superclass from which other classes can inherit.
You learned that an abstract class can declare abstract methods that each subclass must im-
plement to become a concrete class and that a program can use variables of an abstract class
to invoke the subclasses’ implementations of abstract methods polymorphically. You also
learned how to determine an object’s type at execution time. We explained the notions of
final methods and classes. Finally, the chapter discussed declaring and implementing an
interface as a way for possibly disparate classes to implement common functionality, en-
abling objects of those classes to be processed polymorphically.

You should now be familiar with classes, objects, encapsulation, inheritance, inter-
faces and polymorphism—the most essential aspects of object-oriented programming.

In the next chapter, you’ll learn about exceptions, useful for handling errors during a
program’s execution. Exception handling provides for more robust programs.

Summary
Section 10.1 Introduction
• Polymorphism (p. 396) enables us to write programs that process objects that share the same su-

perclass as if they were all objects of the superclass; this can simplify programming.

• With polymorphism, we can design and implement systems that are easily extensible. The only
parts of a program that must be altered to accommodate new classes are those that require direct
knowledge of the new classes that you add to the hierarchy.

Section 10.3 Demonstrating Polymorphic Behavior
• When the compiler encounters a method call made through a variable, it determines if the meth-

od can be called by checking the variable’s class type. If that class contains the proper method
declaration (or inherits one), the call is compiled. At execution time, the type of the object to
which the variable refers determines the actual method to use.

Section 10.4 Abstract Classes and Methods
• Abstract classes (p. 401) cannot be used to instantiate objects, because they’re incomplete.

• The primary purpose of an abstract class is to provide an appropriate superclass from which other
classes can inherit and thus share a common design.

• Classes that can be used to instantiate objects are called concrete classes (p. 402). They provide
implementations of every method they declare (some of the implementations can be inherited).

• Programmers often write client code that uses only abstract superclasses (p. 402) to reduce client
code’s dependencies on specific subclass types.

• Abstract classes sometimes constitute several levels of a hierarchy.

• An abstract class normally contains one or more abstract methods (p. 402).

• Abstract methods do not provide implementations.

• A class that contains any abstract methods must be declared as an abstract class (p. 402). Each
concrete subclass must provide implementations of each of the superclass’s abstract methods.

 Summary 437

• Constructors and static methods cannot be declared abstract.

• Abstract superclass variables can hold references to objects of any concrete class derived from the
superclass. Programs typically use such variables to manipulate subclass objects polymorphically.

• Polymorphism is particularly effective for implementing layered software systems.

Section 10.5 Case Study: Payroll System Using Polymorphism
• A hierarchy designer can demand that each concrete subclass provide an appropriate method im-

plementation by including an abstract method in a superclass.

• Most method calls are resolved at execution time, based on the type of the object being manip-
ulated. This process is known as dynamic binding (p. 417) or late binding.

• A superclass variable can be used to invoke only methods declared in the superclass.

• Operator instanceof (p. 417) determines if an object has the is-a relationship with a specific type.

• Every object in Java knows its own class and can access it through Object method getClass
(p. 418), which returns an object of type Class (package java.lang).

• The is-a relationship applies only between the subclass and its superclasses, not vice versa.

Section 10.7 final Methods and Classes
• A method that’s declared final (p. 419) in a superclass cannot be overridden in a subclass.

• Methods declared private are implicitly final, because you can’t override them in a subclass.

• Methods that are declared static are implicitly final.

• A final method’s declaration can never change, so all subclasses use the same implementation, and
calls to final methods are resolved at compile time—this is known as static binding (p. 420).

• The compiler can optimize programs by removing calls to final methods and inlining their ex-
panded code at each method-call location.

• A class that’s declared final cannot be extended (p. 420).

• All methods in a final class are implicitly final.

Section 10.9 Creating and Using Interfaces
• An interface (p. 421) specifies what operations are allowed but not how they’re performed.

• A Java interface describes a set of methods that can be called on an object.

• An interface declaration begins with the keyword interface (p. 421).

• All interface members must be public, and interfaces may not specify any implementation de-
tails, such as concrete method declarations and instance variables.

• All methods declared in an interface are implicitly public abstract methods and all fields are
implicitly public, static and final.

• To use an interface, a concrete class must specify that it implements (p. 421) the interface and
must declare each interface method with the signature specified in the interface declaration. A
class that does not implement all the interface’s methods must be declared abstract.

• Implementing an interface is like signing a contract with the compiler that states, “I will declare
all the methods specified by the interface or I will declare my class abstract.”

• An interface is typically used when disparate (i.e., unrelated) classes need to share common meth-
ods and constants. This allows objects of unrelated classes to be processed polymorphically—ob-
jects of classes that implement the same interface can respond to the same method calls.

• You can create an interface that describes the desired functionality, then implement the interface
in any classes that require that functionality.

438 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

• An interface is often used in place of an abstract class when there’s no default implementation
to inherit—that is, no instance variables and no default method implementations.

• Like public abstract classes, interfaces are typically public types, so they’re normally declared
in files by themselves with the same name as the interface and the .java filename extension.

• Java does not allow subclasses to inherit from more than one superclass, but it does allow a class
to inherit from a superclass and implement more than one interface.

• All objects of a class that implement multiple interfaces have the is-a relationship with each im-
plemented interface type.

• An interface can declare constants. The constants are implicitly public, static and final.

Section 10.10 Java SE 8 Interface Enhancements
• In Java SE 8, an interface may declare default methods—that is, public methods with concrete

implementations that specify how an operation should be performed.

• When a class implements an interface, the class receives the interface’s default concrete imple-
mentations if it does not override them.

• To declare a default method in an interface, you simply place the keyword default before the
method’s return type and provide a complete method body.

• When you enhance an existing an interface with default methods—any classes that implement-
ed the original interface will not break—it’ll simply receive the default method implementations.

• With default methods, you can declare common method implementations in interfaces (rather
than abstract classes), which gives you more flexibility in designing your classes.

• As of Java SE 8, interfaces may now include public static methods.

• As of Java SE 8, any interface containing only one method is known as a functional interface.
There are many such interfaces throughout the Java APIs.

• Functional interfaces are used extensively with Java SE 8’s new lambda capabilities. As you’ll see,
lambdas provide a shorthand notation for creating anonymous methods.

Self-Review Exercises
10.1 Fill in the blanks in each of the following statements:

a) If a class contains at least one abstract method, it’s a(n) class.
b) Classes from which objects can be instantiated are called classes.
c) involves using a superclass variable to invoke methods on superclass and sub-

class objects, enabling you to “program in the general.”
d) Methods that are not interface methods and that do not provide implementations must

be declared using keyword .
e) Casting a reference stored in a superclass variable to a subclass type is called .

10.2 State whether each of the statements that follows is true or false. If false, explain why.
a) All methods in an abstract class must be declared as abstract methods.
b) Invoking a subclass-only method through a subclass variable is not allowed.
c) If a superclass declares an abstract method, a subclass must implement that method.
d) An object of a class that implements an interface may be thought of as an object of that

interface type.

10.3 (Java SE 8 interfaces) Fill in the blanks in each of the following statements:
a) In Java SE 8, an interface may declare —that is, public methods with concrete

implementations that specify how an operation should be performed.
b) As of Java SE 8, interfaces can now include helper methods.
c) As of Java SE 8, any interface containing only one method is known as a(n) .

 Answers to Self-Review Exercises 439

Answers to Self-Review Exercises
10.1 a) abstract. b) concrete. c) Polymorphism. d) abstract. e) downcasting.

10.2 a) False. An abstract class can include methods with implementations and abstract meth-
ods. b) False. Trying to invoke a subclass-only method with a superclass variable is not allowed.
c) False. Only a concrete subclass must implement the method. d) True.

10.3 a) default methods. b) static. c) functional interface.

Exercises
10.4 How does polymorphism enable you to program “in the general” rather than “in the spe-
cific”? Discuss the key advantages of programming “in the general.”

10.5 What are abstract methods? Describe the circumstances in which an abstract method would
be appropriate.

10.6 How does polymorphism promote extensibility?

10.7 Discuss three proper ways in which you can assign superclass and subclass references to vari-
ables of superclass and subclass types.

10.8 Compare and contrast abstract classes and interfaces. Why would you use an abstract class?
Why would you use an interface?

10.9 (Java SE 8 Interfaces) Explain how default methods enable you to add new methods to an
existing interface without breaking the classes that implemented the original interface.

10.10 (Java SE 8 Interfaces) What is a functional interface?

10.11 (Java SE 8 Interfaces) Why is it useful to be able to add static methods to interfaces?

10.12 (Payroll System Modification) Modify the payroll system of Figs. 10.4–10.9 to include pri-
vate instance variable birthDate in class Employee. Use class Date of Fig. 8.7 to represent an em-
ployee’s birthday. Add get methods to class Date. Assume that payroll is processed once per month.
Create an array of Employee variables to store references to the various employee objects. In a loop,
calculate the payroll for each Employee (polymorphically), and add a $100.00 bonus to the person’s
payroll amount if the current month is the one in which the Employee’s birthday occurs.

10.13 (Project: Shape Hierarchy) Implement the Shape hierarchy shown in Fig. 9.3. Each Two-
DimensionalShape should contain method getArea to calculate the area of the two-dimensional
shape. Each ThreeDimensionalShape should have methods getArea and getVolume to calculate the
surface area and volume, respectively, of the three-dimensional shape. Create a program that uses
an array of Shape references to objects of each concrete class in the hierarchy. The program should
print a text description of the object to which each array element refers. Also, in the loop that pro-
cesses all the shapes in the array, determine whether each shape is a TwoDimensionalShape or a
ThreeDimensionalShape. If it’s a TwoDimensionalShape, display its area. If it’s a ThreeDimension-
alShape, display its area and volume.

10.14 (Payroll System Modification) Modify the payroll system of Figs. 10.4–10.9 to include an
additional Employee subclass PieceWorker that represents an employee whose pay is based on the
number of pieces of merchandise produced. Class PieceWorker should contain private instance
variables wage (to store the employee’s wage per piece) and pieces (to store the number of pieces
produced). Provide a concrete implementation of method earnings in class PieceWorker that cal-
culates the employee’s earnings by multiplying the number of pieces produced by the wage per
piece. Create an array of Employee variables to store references to objects of each concrete class in
the new Employee hierarchy. For each Employee, display its String representation and earnings.

440 Chapter 10 Object-Oriented Programming: Polymorphism and Interfaces

10.15 (Accounts Payable System Modification) In this exercise, we modify the accounts payable
application of Figs. 10.11–10.15 to include the complete functionality of the payroll application of
Figs. 10.4–10.9. The application should still process two Invoice objects, but now should process
one object of each of the four Employee subclasses. If the object currently being processed is a Base-
PlusCommissionEmployee, the application should increase the BasePlusCommissionEmployee’s base
salary by 10%. Finally, the application should output the payment amount for each object. Com-
plete the following steps to create the new application:

a) Modify classes HourlyEmployee (Fig. 10.6) and CommissionEmployee (Fig. 10.7) to place
them in the Payable hierarchy as subclasses of the version of Employee (Fig. 10.13) that
implements Payable. [Hint: Change the name of method earnings to getPaymentAmount
in each subclass so that the class satisfies its inherited contract with interface Payable.]

b) Modify class BasePlusCommissionEmployee (Fig. 10.8) such that it extends the version
of class CommissionEmployee created in part (a).

c) Modify PayableInterfaceTest (Fig. 10.15) to polymorphically process two Invoices,
one SalariedEmployee, one HourlyEmployee, one CommissionEmployee and one Base-
PlusCommissionEmployee. First output a String representation of each Payable object.
Next, if an object is a BasePlusCommissionEmployee, increase its base salary by 10%. Fi-
nally, output the payment amount for each Payable object.

10.16 (Accounts Payable System Modification) It’s possible to include the functionality of the pay-
roll application (Figs. 10.4–10.9) in the accounts payable application without modifying Employee
subclasses SalariedEmployee, HourlyEmployee, CommissionEmployee or BasePlusCommission-
Employee. To do so, you can modify class Employee (Fig. 10.4) to implement interface Payable and
declare method getPaymentAmount to invoke method earnings. Method getPaymentAmount would
then be inherited by the subclasses in the Employee hierarchy. When getPaymentAmount is called for
a particular subclass object, it polymorphically invokes the appropriate earnings method for that
subclass. Reimplement Exercise 10.15 using the original Employee hierarchy from the payroll appli-
cation of Figs. 10.4–10.9. Modify class Employee as described in this exercise, and do not modify any
of class Employee’s subclasses.

Making a Difference
10.17 (CarbonFootprint Interface: Polymorphism) Using interfaces, as you learned in this chap-
ter, you can specify similar behaviors for possibly disparate classes. Governments and companies
worldwide are becoming increasingly concerned with carbon footprints (annual releases of carbon
dioxide into the atmosphere) from buildings burning various types of fuels for heat, vehicles burning
fuels for power, and the like. Many scientists blame these greenhouse gases for the phenomenon
called global warming. Create three small classes unrelated by inheritance—classes Building, Car
and Bicycle. Give each class some unique appropriate attributes and behaviors that it does not have
in common with other classes. Write an interface CarbonFootprint with a getCarbonFootprint
method. Have each of your classes implement that interface, so that its getCarbonFootprint method
calculates an appropriate carbon footprint for that class (check out a few websites that explain how
to calculate carbon footprints). Write an application that creates objects of each of the three classes,
places references to those objects in ArrayList<CarbonFootprint>, then iterates through the Array-
List, polymorphically invoking each object’s getCarbonFootprint method. For each object, print
some identifying information and the object’s carbon footprint.

11Exception Handling:
A Deeper Look

It is common sense to take a
method and try it. If it fails,
admit it frankly and try
another. But above all, try
something.
—Franklin Delano Roosevelt

O! throw away the
worser part of it,
And live the purer
with the other half.
—William Shakespeare

If they’re running and they don’t
look where they’re going
I have to come out from
somewhere and catch them.
—Jerome David Salinger

O b j e c t i v e s
In this chapter you’ll:

■ Learn what exceptions are
and how they’re handled.

■ Learn when to use exception
handling.

■ Use try blocks to delimit
code in which exceptions
might occur.

■ Use throw to indicate a
problem.

■ Use catch blocks to specify
exception handlers.

■ Use the finally block to
release resources.

■ Understand the exception
class hierarchy.

■ Create user-defined
exceptions.

442 Chapter 11 Exception Handling: A Deeper Look

11.1 Introduction
As you know from Chapter 7, an exception is an indication of a problem that occurs during
a program’s execution. Exception handling enables you to create applications that can re-
solve (or handle) exceptions. In many cases, handling an exception allows a program to
continute executing as if no problem had been encountered. The features presented in this
chapter help you write robust and fault-tolerant programs that can deal with problems and
continue executing or terminate gracefully. Java exception handling is based in part on the
work of Andrew Koenig and Bjarne Stroustrup.1

First, we demonstrate basic exception-handling techniques by handling an exception
that occurs when a method attempts to divide an integer by zero. Next, we introduce sev-
eral classes at the top of Java’s exception-handling class hierarchy. As you’ll see, only classes
that extend Throwable (package java.lang) directly or indirectly can be used with excep-
tion handling. We then show how to use chained exceptions—when you invoke a method
that indicates an exception, you can throw another exception and chain the original one
to the new one. This enables you to add application-specific information to the orginal
exception. Next, we introduce preconditions and postconditions, which must be true when
your methods are called and when they return, respectively. We then present assertions,
which you can use at development time to help debug your code. We also discuss two
exception-handling features that were introduced in Java SE 7—catching multiple excep-
tions with one catch handler and the new try-with-resources statement that automatically
releases a resource after it’s used in the try block.

This chapter focuses on the exception-handling concepts and presents several
mechanical examples that demonstrate various features. As you’ll see in later chapters,
many Java APIs methods throw exceptions that we handle in our code. Figure 11.1 shows
some of the exception types you’ve already seen and others you’ll learn about.

11.1 Introduction
11.2 Example: Divide by Zero without

Exception Handling
11.3 Example: Handling

ArithmeticExceptions and
InputMismatchExceptions

11.4 When to Use Exception Handling
11.5 Java Exception Hierarchy
11.6 finally Block
11.7 Stack Unwinding and Obtaining

Information from an Exception Object

11.8 Chained Exceptions
11.9 Declaring New Exception Types

11.10 Preconditions and Postconditions
11.11 Assertions
11.12 try-with-Resources: Automatic

Resource Deallocation
11.13 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1. A. Koenig and B. Stroustrup, “Exception Handling for C++ (revised),” Proceedings of the Usenix C++
Conference, pp. 149–176, San Francisco, April 1990.

11.2 Example: Divide by Zero without Exception Handling 443

11.2 Example: Divide by Zero without Exception
Handling
First we demonstrate what happens when errors arise in an application that does not use
exception handling. Figure 11.2 prompts the user for two integers and passes them to
method quotient, which calculates the integer quotient and returns an int result. In this
example, you’ll see that exceptions are thrown (i.e., the exception occurs) by a method
when it detects a problem and is unable to handle it.

Chapter Sample of exceptions used

Chapter 7 ArrayIndexOutOfBoundsException

Chapters 8–10 IllegalArgumentException

Chapter 11 ArithmeticException, InputMismatchException

Chapter 15 SecurityException, FileNotFoundException, IOException,
ClassNotFoundException, IllegalStateException,
FormatterClosedException, NoSuchElementException

Chapter 16 ClassCastException, UnsupportedOperationException,
NullPointerException, custom exception types

Chapter 20 ClassCastException, custom exception types

Chapter 21 IllegalArgumentException, custom exception types

Chapter 23 InterruptedException, IllegalMonitorStateException,
ExecutionException, CancellationException

Chapter 28 MalformedURLException, EOFException, SocketException,
InterruptedException, UnknownHostException

Chapter 24 SQLException, IllegalStateException, PatternSyntaxException

Chapter 31 SQLException

Fig. 11.1 | Various exception types that you’ll see throughout this book

1 // Fig. 11.2: DivideByZeroNoExceptionHandling.java
2 // Integer division without exception handling.
3 import java.util.Scanner;
4
5 public class DivideByZeroNoExceptionHandling
6 {
7 // demonstrates throwing an exception when a divide-by-zero occurs
8 public static int quotient(int numerator, int denominator)
9 {

10
11 }
12
13 public static void main(String[] args)
14 {
15 Scanner scanner = new Scanner(System.in);

Fig. 11.2 | Integer division without exception handling. (Part 1 of 2.)

return numerator / denominator; // possible division by zero

444 Chapter 11 Exception Handling: A Deeper Look

Stack Trace
The first sample execution in Fig. 11.2 shows a successful division. In the second execu-
tion, the user enters the value 0 as the denominator. Several lines of information are dis-
played in response to this invalid input. This information is known as a stack trace, which
includes the name of the exception (java.lang.ArithmeticException) in a descriptive
message that indicates the problem that occurred and the method-call stack (i.e., the call
chain) at the time it occurred. The stack trace includes the path of execution that led to
the exception method by method. This helps you debug the program.

Stack Trace for an ArithmeticException
The first line specifies that an ArithmeticException has occurred. The text after the name
of the exception (“/ by zero”) indicates that this exception occurred as a result of an at-
tempt to divide by zero. Java does not allow division by zero in integer arithmetic. When
this occurs, Java throws an ArithmeticException. ArithmeticExceptions can arise from

16
17 System.out.print("Please enter an integer numerator: ");
18 int numerator = scanner.nextInt();
19 System.out.print("Please enter an integer denominator: ");
20
21
22 int result = quotient(numerator, denominator);
23 System.out.printf(
24 "%nResult: %d / %d = %d%n", numerator, denominator, result);
25 }
26 } // end class DivideByZeroNoExceptionHandling

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: 0
Exception in thread "main" java.lang.ArithmeticException: / by zero
 at DivideByZeroNoExceptionHandling.quotient(
 DivideByZeroNoExceptionHandling.java:10)
 at DivideByZeroNoExceptionHandling.main(
 DivideByZeroNoExceptionHandling.java:22)

Please enter an integer numerator: 100
Please enter an integer denominator: hello
Exception in thread "main" java.util.InputMismatchException
 at java.util.Scanner.throwFor(Unknown Source)
 at java.util.Scanner.next(Unknown Source)
 at java.util.Scanner.nextInt(Unknown Source)
 at java.util.Scanner.nextInt(Unknown Source)
 at DivideByZeroNoExceptionHandling.main(
 DivideByZeroNoExceptionHandling.java:20)

Fig. 11.2 | Integer division without exception handling. (Part 2 of 2.)

int denominator = scanner.nextInt();

11.3 ArithmeticExceptions and InputMismatchExceptions 445

a number of different problems, so the extra data (“/ by zero”) provides more specific in-
formation. Java does allow division by zero with floating-point values. Such a calculation
results in the value positive or negative infinity, which is represented in Java as a floating-
point value (but displays as the string Infinity or -Infinity). If 0.0 is divided by 0.0,
the result is NaN (not a number), which is also represented in Java as a floating-point value
(but displays as NaN). If you need to compare a floating-point value to NaN, use the method
isNaN of class Float (for float values) or of class Double (for double values). Classes
Float and Double are in package java.lang.

Starting from the last line of the stack trace, we see that the exception was detected in
line 22 of method main. Each line of the stack trace contains the class name and method
(e.g., DivideByZeroNoExceptionHandling.main) followed by the filename and line
number (e.g., DivideByZeroNoExceptionHandling.java:22). Moving up the stack trace,
we see that the exception occurs in line 10, in method quotient. The top row of the call
chain indicates the throw point—the initial point at which the exception occurred. The
throw point of this exception is in line 10 of method quotient.

Stack Trace for an InputMismatchException
In the third execution, the user enters the string "hello" as the denominator. Notice again
that a stack trace is displayed. This informs us that an InputMismatchException has oc-
curred (package java.util). Our prior examples that input numeric values assumed that
the user would input a proper integer value. However, users sometimes make mistakes and
input noninteger values. An InputMismatchException occurs when Scanner method
nextInt receives a string that does not represent a valid integer. Starting from the end of
the stack trace, we see that the exception was detected in line 20 of method main. Moving
up the stack trace, we see that the exception occurred in method nextInt. Notice that in
place of the filename and line number, we’re provided with the text Unknown Source. This
means that the so-called debugging symbols that provide the filename and line number in-
formation for that method’s class were not available to the JVM—this is typically the case
for the classes of the Java API. Many IDEs have access to the Java API source code and will
display filenames and line numbers in stack traces.

Program Termination
In the sample executions of Fig. 11.2 when exceptions occur and stack traces are displayed,
the program also exits. This does not always occur in Java. Sometimes a program may con-
tinue even though an exception has occurred and a stack trace has been printed. In such
cases, the application may produce unexpected results. For example, a graphical user in-
terface (GUI) application will often continue executing. In Fig. 11.2 both types of excep-
tions were detected in method main. In the next example, we’ll see how to handle these
exceptions so that you can enable the program to run to normal completion.

11.3 Example: Handling ArithmeticExceptions and
InputMismatchExceptions
The application in Fig. 11.3, which is based on Fig. 11.2, uses exception handling to pro-
cess any ArithmeticExceptions and InputMistmatchExceptions that arise. The applica-
tion still prompts the user for two integers and passes them to method quotient, which
calculates the quotient and returns an int result. This version of the application uses ex-

446 Chapter 11 Exception Handling: A Deeper Look

ception handling so that if the user makes a mistake, the program catches and handles (i.e.,
deals with) the exception—in this case, allowing the user to re-enter the input.

1 // Fig. 11.3: DivideByZeroWithExceptionHandling.java
2 // Handling ArithmeticExceptions and InputMismatchExceptions.
3
4 import java.util.Scanner;
5
6 public class DivideByZeroWithExceptionHandling
7 {
8 // demonstrates throwing an exception when a divide-by-zero occurs
9 public static int quotient(int numerator, int denominator)

10
11 {
12 return numerator / denominator; // possible division by zero
13 }
14
15 public static void main(String[] args)
16 {
17 Scanner scanner = new Scanner(System.in);
18 boolean continueLoop = true; // determines if more input is needed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 }
50 } // end class DivideByZeroWithExceptionHandling

Fig. 11.3 | Handling ArithmeticExceptions and InputMismatchExceptions. (Part 1 of 2.)

import java.util.InputMismatchException;

throws ArithmeticException

do
{
 try // read two numbers and calculate quotient
 {
 System.out.print("Please enter an integer numerator: ");
 int numerator = scanner.nextInt();
 System.out.print("Please enter an integer denominator: ");
 int denominator = scanner.nextInt();

 int result = quotient(numerator, denominator);
 System.out.printf("%nResult: %d / %d = %d%n", numerator,
 denominator, result);
 continueLoop = false; // input successful; end looping
 }
 catch (InputMismatchException inputMismatchException)
 {
 System.err.printf("%nException: %s%n",
 inputMismatchException);
 scanner.nextLine(); // discard input so user can try again
 System.out.printf(
 "You must enter integers. Please try again.%n%n");
 }
 catch (ArithmeticException arithmeticException)
 {
 System.err.printf("%nException: %s%n", arithmeticException);
 System.out.printf(
 "Zero is an invalid denominator. Please try again.%n%n");
 }
} while (continueLoop);

11.3 ArithmeticExceptions and InputMismatchExceptions 447

The first sample execution in Fig. 11.3 does not encounter any problems. In the
second execution the user enters a zero denominator, and an ArithmeticException excep-
tion occurs. In the third execution the user enters the string "hello" as the denominator,
and an InputMismatchException occurs. For each exception, the user is informed of the
mistake and asked to try again, then is prompted for two new integers. In each sample exe-
cution, the program runs to completion successfully.

Class InputMismatchException is imported in line 3. Class ArithmeticException
does not need to be imported because it’s in package java.lang. Line 18 creates the
boolean variable continueLoop, which is true if the user has not yet entered valid input.
Lines 20–48 repeatedly ask users for input until a valid input is received.

Enclosing Code in a try Block
Lines 22–33 contain a try block, which encloses the code that might throw an exception
and the code that should not execute if an exception occurs (i.e., if an exception occurs,
the remaining code in the try block will be skipped). A try block consists of the keyword
try followed by a block of code enclosed in curly braces. [Note: The term “try block”
sometimes refers only to the block of code that follows the try keyword (not including the
try keyword itself). For simplicity, we use the term “try block” to refer to the block of

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: 0

Exception: java.lang.ArithmeticException: / by zero
Zero is an invalid denominator. Please try again.

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: hello

Exception: java.util.InputMismatchException
You must enter integers. Please try again.

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Fig. 11.3 | Handling ArithmeticExceptions and InputMismatchExceptions. (Part 2 of 2.)

448 Chapter 11 Exception Handling: A Deeper Look

code that follows the try keyword, as well as the try keyword.] The statements that read
the integers from the keyboard (lines 25 and 27) each use method nextInt to read an int
value. Method nextInt throws an InputMismatchException if the value read in is not an
integer.

The division that can cause an ArithmeticException is not performed in the try
block. Rather, the call to method quotient (line 29) invokes the code that attempts the
division (line 12); the JVM throws an ArithmeticException object when the denomi-
nator is zero.

Catching Exceptions
The try block in this example is followed by two catch blocks—one that handles an In-
putMismatchException (lines 34–41) and one that handles an ArithmeticException
(lines 42–47). A catch block (also called a catch clause or exception handler) catches (i.e.,
receives) and handles an exception. A catch block begins with the keyword catch followed
by a parameter in parentheses (called the exception parameter, discussed shortly) and a
block of code enclosed in curly braces. [Note: The term “catch clause” is sometimes used
to refer to the keyword catch followed by a block of code, whereas the term “catch block”
refers to only the block of code following the catch keyword, but not including it. For
simplicity, we use the term “catch block” to refer to the block of code following the catch
keyword, as well as the keyword itself.]

At least one catch block or a finally block (discussed in Section 11.6) must imme-
diately follow the try block. Each catch block specifies in parentheses an exception
parameter that identifies the exception type the handler can process. When an exception
occurs in a try block, the catch block that executes is the first one whose type matches the
type of the exception that occurred (i.e., the type in the catch block matches the thrown
exception type exactly or is a direct or indirect superclass of it). The exception parameter’s
name enables the catch block to interact with a caught exception object—e.g., to implic-
itly invoke the caught exception’s toString method (as in lines 37 and 44), which displays
basic information about the exception. Notice that we use the System.err (standard error
stream) object to output error messages. By default, System.err’s print methods, like
those of System.out, display data to the command prompt.

Line 38 of the first catch block calls Scanner method nextLine. Because an Input-
MismatchException occurred, the call to method nextInt never successfully read in the
user’s data—so we read that input with a call to method nextLine. We do not do anything
with the input at this point, because we know that it’s invalid. Each catch block displays
an error message and asks the user to try again. After either catch block terminates, the
user is prompted for input. We’ll soon take a deeper look at how this flow of control works
in exception handling.

Software Engineering Observation 11.1
Exceptions may surface through explicitly mentioned code in a try block, through deeply
nested method calls initiated by code in a try block or from the Java Virtual Machine as
it executes Java bytecodes.

Common Programming Error 11.1
It’s a syntax error to place code between a try block and its corresponding catch blocks.

11.3 ArithmeticExceptions and InputMismatchExceptions 449

Multi-catch
It’s relatively common for a try block to be followed by several catch blocks to handle
various types of exceptions. If the bodies of several catch blocks are identical, you can use
the multi-catch feature (introduced in Java SE 7) to catch those exception types in a single
catch handler and perform the same task. The syntax for a multi-catch is:

Each exception type is separated from the next with a vertical bar (|). The preceding line
of code indicates that any of the types (or their subclasses) can be caught in the exception
handler. Any number of Throwable types can be specified in a multi-catch.

Uncaught Exceptions
An uncaught exception is one for which there are no matching catch blocks. You saw un-
caught exceptions in the second and third outputs of Fig. 11.2. Recall that when excep-
tions occurred in that example, the application terminated early (after displaying the
exception’s stack trace). This does not always occur as a result of uncaught exceptions. Java
uses a “multithreaded” model of program execution—each thread is a concurrent activity.
One program can have many threads. If a program has only one thread, an uncaught ex-
ception will cause the program to terminate. If a program has multiple threads, an un-
caught exception will terminate only the thread in which the exception occurred. In such
programs, however, certain threads may rely on others, and if one thread terminates due
to an uncaught exception, there may be adverse effects on the rest of the program.
Chapter 23, Concurrency, discusses these issues in depth.

Termination Model of Exception Handling
If an exception occurs in a try block (such as an InputMismatchException being thrown
as a result of the code at line 25 of Fig. 11.3), the try block terminates immediately and
program control transfers to the first of the following catch blocks in which the exception
parameter’s type matches the thrown exception’s type. In Fig. 11.3, the first catch block
catches InputMismatchExceptions (which occur if invalid input is entered) and the sec-
ond catch block catches ArithmeticExceptions (which occur if an attempt is made to di-
vide by zero). After the exception is handled, program control does not return to the throw
point, because the try block has expired (and its local variables have been lost). Rather, con-
trol resumes after the last catch block. This is known as the termination model of excep-
tion handling. Some languages use the resumption model of exception handling, in
which, after an exception is handled, control resumes just after the throw point.

Notice that we name our exception parameters (inputMismatchException and
arithmeticException) based on their type. Java programmers often simply use the letter
e as the name of their exception parameters.

After executing a catch block, this program’s flow of control proceeds to the first
statement after the last catch block (line 48 in this case). The condition in the do…while
statement is true (variable continueLoop contains its initial value of true), so control
returns to the beginning of the loop and the user is again prompted for input. This control
statement will loop until valid input is entered. At that point, program control reaches line
32, which assigns false to variable continueLoop. The try block then terminates. If no
exceptions are thrown in the try block, the catch blocks are skipped and control continues
with the first statement after the catch blocks (we’ll learn about another possibility when

catch (Type1 | Type2 | Type3 e)

450 Chapter 11 Exception Handling: A Deeper Look

we discuss the finally block in Section 11.6). Now the condition for the do…while loop
is false, and method main ends.

The try block and its corresponding catch and/or finally blocks form a try state-
ment. Do not confuse the terms “try block” and “try statement”—the latter includes the
try block as well as the following catch blocks and/or finally block.

As with any other block of code, when a try block terminates, local variables declared
in the block go out of scope and are no longer accessible; thus, the local variables of a try
block are not accessible in the corresponding catch blocks. When a catch block termi-
nates, local variables declared within the catch block (including the exception parameter
of that catch block) also go out of scope and are destroyed. Any remaining catch blocks in
the try statement are ignored, and execution resumes at the first line of code after the
try…catch sequence—this will be a finally block, if one is present.

Using the throws Clause
In method quotient (Fig. 11.3, lines 9–13), line 10 is known as a throws clause. It spec-
ifies the exceptions the method might throw if problems occur. This clause, which must
appear after the method’s parameter list and before the body, contains a comma-separated
list of the exception types. Such exceptions may be thrown by statements in the method’s
body or by methods called from there. We’ve added the throws clause to this application
to indicate that this method might throw an ArithmeticException. Method quotient’s
callers are thus informed that the method might throw an ArithmeticException. Some
exception types, such as ArithmeticException, are not required to be listed in the throws
clause. For those that are, the method can throw exceptions that have the is-a relationship
with the classes listed in the throws clause. You’ll learn more about this in Section 11.5.

When line 12 executes, if the denominator is zero, the JVM throws an Arithmetic-
Exception object. This object will be caught by the catch block at lines 42–47, which dis-
plays basic information about the exception by implicitly invoking the exception’s
toString method, then asks the user to try again.

If the denominator is not zero, method quotient performs the division and returns
the result to the point of invocation of method quotient in the try block (line 29). Lines
30–31 display the result of the calculation and line 32 sets continueLoop to false. In this
case, the try block completes successfully, so the program skips the catch blocks and fails
the condition at line 48, and method main completes execution normally.

When quotient throws an ArithmeticException, quotient terminates and does not
return a value, and quotient’s local variables go out of scope (and are destroyed). If quo-
tient contained local variables that were references to objects and there were no other ref-
erences to those objects, the objects would be marked for garbage collection. Also, when an
exception occurs, the try block from which quotient was called terminates before lines
30–32 can execute. Here, too, if local variables were created in the try block prior to the
exception’s being thrown, these variables would go out of scope.

Error-Prevention Tip 11.1
Read the online API documentation for a method before using it in a program. The docu-
mentation specifies the exceptions thrown by the method (if any) and indicates reasons why
such exceptions may occur. Next, read the online API documentation for the specified excep-
tion classes. The documentation for an exception class typically contains potential reasons
that such exceptions occur. Finally, provide for handling those exceptions in your program.

11.4 When to Use Exception Handling 451

If an InputMismatchException is generated by lines 25 or 27, the try block termi-
nates and execution continues with the catch block at lines 34–41. In this case, method
quotient is not called. Then method main continues after the last catch block (line 48).

11.4 When to Use Exception Handling
Exception handling is designed to process synchronous errors, which occur when a state-
ment executes. Common examples we’ll see throughout the book are out-of-range array in-
dices, arithmetic overflow (i.e., a value outside the representable range of values), division by
zero, invalid method parameters and thread interruption (as we’ll see in Chapter 23). Excep-
tion handling is not designed to process problems associated with asynchronous events
(e.g., disk I/O completions, network message arrivals, mouse clicks and keystrokes), which
occur in parallel with, and independent of, the program’s flow of control.

11.5 Java Exception Hierarchy
All Java exception classes inherit directly or indirectly from class Exception, forming an
inheritance hierarchy. You can extend this hierarchy with your own exception classes.

Figure 11.4 shows a small portion of the inheritance hierarchy for class Throwable (a
subclass of Object), which is the superclass of class Exception. Only Throwable objects
can be used with the exception-handling mechanism. Class Throwable has two direct sub-
classes: Exception and Error. Class Exception and its subclasses—for instance, Runtime-
Exception (package java.lang) and IOException (package java.io)—represent
exceptional situations that can occur in a Java program and that can be caught by the
application. Class Error and its subclasses represent abnormal situations that happen in
the JVM. Most Errors happen infrequently and should not be caught by applications—it’s
usually not possible for applications to recover from Errors.

The Java exception hierarchy contains hundreds of classes. Information about Java’s
exception classes can be found throughout the Java API. You can view Throwable’s docu-
mentation at docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html. From
there, you can look at this class’s subclasses to get more information about Java’s Excep-
tions and Errors.

Software Engineering Observation 11.2
Incorporate your exception-handling and error-recovery strategy into your system from the
inception of the design process—including these after a system has been implemented can
be difficult.

Software Engineering Observation 11.3
Exception handling provides a single, uniform technique for documenting, detecting and
recovering from errors. This helps programmers working on large projects understand each
other’s error-processing code.

Software Engineering Observation 11.4
There’s a great variety of situations that generate exceptions—some exceptions are easier
to recover from than others.

452 Chapter 11 Exception Handling: A Deeper Look

Checked vs. Unchecked Exceptions
Java distinguishes between checked exceptions and unchecked exceptions. This distinction
is important, because the Java compiler enforces special requirements for checked exceptions
(discussed momentarily). An exception’s type determines whether it’s checked or unchecked.

RuntimeExceptions Are Unchecked Exceptions
All exception types that are direct or indirect subclasses of RuntimeException (package
java.lang) are unchecked exceptions. These are typically caused by defects in your pro-
gram’s code. Examples of unchecked exceptions include:

• ArrayIndexOutOfBoundsExceptions (discussed in Chapter 7)—You can avoid
these by ensuring that your array indices are always greater than or equal to 0 and
less than the array’s length.

• ArithmeticExceptions (shown in Fig. 11.3)—You can avoid the Arithmetic-
Exception that occurs when you divide by zero by checking the denominator to
determine whether it’s 0 before performing the calculation.

Classes that inherit directly or indirectly from class Error (Fig. 11.4) are unchecked, be-
cause Errors are such serious problems that your program should not even attempt to deal
with them.

Checked Exceptions
All classes that inherit from class Exception but not directly or indirectly from class Run-
timeException are considered to be checked exceptions. Such exceptions are typically
caused by conditions that are not under the control of the program—for example, in file
processing, the program can’t open a file if it does not exist.

Fig. 11.4 | Portion of class Throwable’s inheritance hierarchy.

VirtualMachineErrorAWTError ThreadDeath

ErrorException

RuntimeException IOException

Throwable

ClassCastException NullPointerException ArithmeticException

NoSuchElementException

ArrayIndexOutOfBoundsException

IndexOutOfBoundsException

InputMismatchException

11.5 Java Exception Hierarchy 453

The Compiler and Checked Exceptions
The compiler checks each method call and method declaration to determine whether the
method throws a checked exception. If so, the compiler verifies that the checked exception
is caught or is declared in a throws clause—this is known as the catch-or-declare require-
ment. We show how to catch or declare checked exceptions in the next several examples.
Recall from Section 11.3 that the throws clause specifies the exceptions a method throws.
Such exceptions are not caught in the method’s body. To satisfy the catch part of the catch-
or-declare requirement, the code that generates the exception must be wrapped in a try
block and must provide a catch handler for the checked-exception type (or one of its su-
perclasses). To satisfy the declare part of the catch-or-declare requirement, the method
containing the code that generates the exception must provide a throws clause containing
the checked-exception type after its parameter list and before its method body. If the
catch-or-declare requirement is not satisfied, the compiler will issue an error message. This
forces you to think about the problems that may occur when a method that throws
checked exceptions is called.

The Compiler and Unchecked Exceptions
Unlike checked exceptions, the Java compiler does not examine the code to determine
whether an unchecked exception is caught or declared. Unchecked exceptions typically
can be prevented by proper coding. For example, the unchecked ArithmeticException
thrown by method quotient (lines 9–13) in Fig. 11.3 can be avoided if the method en-
sures that the denominator is not zero before performing the division. Unchecked excep-
tions are not required to be listed in a method’s throws clause—even if they are, it’s not
required that such exceptions be caught by an application.

Error-Prevention Tip 11.2
You must deal with checked exceptions. This results in more robust code than would be
created if you were able to simply ignore them.

Common Programming Error 11.2
If a subclass method overrides a superclass method, it’s an error for the subclass method to
list more exceptions in its throws clause than the superclass method does. However, a sub-
class’s throws clause can contain a subset of a superclass’s throws clause.

Software Engineering Observation 11.5
If your method calls other methods that throw checked exceptions, those exceptions must
be caught or declared. If an exception can be handled meaningfully in a method, the
method should catch the exception rather than declare it.

Software Engineering Observation 11.6
Although the compiler does not enforce the catch-or-declare requirement for unchecked
exceptions, provide appropriate exception-handling code when it’s known that such excep-
tions might occur. For example, a program should process the NumberFormatException
from Integer method parseInt, even though NumberFormatException is an indirect
subclass of RuntimeException (and thus an unchecked exception). This makes your pro-
grams more robust.

454 Chapter 11 Exception Handling: A Deeper Look

Catching Subclass Exceptions
If a catch handler is written to catch superclass exception objects, it can also catch all objects
of that class’s subclasses. This enables catch to handle related exceptions polymorphically.
You can catch each subclass individually if those exceptions require different processing.

Only the First Matching catch Executes
If multiple catch blocks match a particular exception type, only the first matching catch
block executes when an exception of that type occurs. It’s a compilation error to catch the
exact same type in two different catch blocks associated with a particular try block. How-
ever, there can be several catch blocks that match an exception—i.e., several catch blocks
whose types are the same as the exception type or a superclass of that type. For instance,
we could follow a catch block for type ArithmeticException with a catch block for type
Exception—both would match ArithmeticExceptions, but only the first matching
catch block would execute.

11.6 finally Block
Programs that obtain certain resources must return them to the system to avoid so-called
resource leaks. In programming languages such as C and C++, the most common resource
leak is a memory leak. Java performs automatic garbage collection of memory no longer used
by programs, thus avoiding most memory leaks. However, other types of resource leaks can
occur. For example, files, database connections and network connections that are not closed
properly after they’re no longer needed might not be available for use in other programs.

The finally block (which consists of the finally keyword, followed by code
enclosed in curly braces), sometimes referred to as the finally clause, is optional. If it’s

Common Programming Error 11.3
Placing a catch block for a superclass exception type before other catch blocks that catch
subclass exception types would prevent those catch blocks from executing, so a compilation
error occurs.

Error-Prevention Tip 11.3
Catching subclass types individually is subject to error if you forget to test for one or more
of the subclass types explicitly; catching the superclass guarantees that objects of all sub-
classes will be caught. Positioning a catch block for the superclass type after all other sub-
class catch blocks ensures that all subclass exceptions are eventually caught.

Software Engineering Observation 11.7
In industry, throwing or catching type Exception is discouraged—we use it here simply
to demonstrate exception-handling mechanics. In subsequent chapters, we generally throw
and catch more specific exception types.

Error-Prevention Tip 11.4
A subtle issue is that Java does not entirely eliminate memory leaks. Java will not garbage-
collect an object until there are no remaining references to it. Thus, if you erroneously keep
references to unwanted objects, memory leaks can occur.

11.6 finally Block 455

present, it’s placed after the last catch block. If there are no catch blocks, the finally
block, if present, immediately follows the try block.

When the finally Block Executes
The finally block will execute whether or not an exception is thrown in the corresponding
try block. The finally block also will execute if a try block exits by using a return,
break or continue statement or simply by reaching its closing right brace. The one case
in which the finally block will not execute is if the application exits early from a try block
by calling method System.exit. This method, which we demonstrate in Chapter 15, im-
mediately terminates an application.

If an exception that occurs in a try block cannot be caught by one of that try block’s
catch handlers, the program skips the rest of the try block and control proceeds to the
finally block. Then the program passes the exception to the next outer try block—nor-
mally in the calling method—where an associated catch block might catch it. This process
can occur through many levels of try blocks. Also, the exception could go uncaught (as we
discussed in Section 11.3.

If a catch block throws an exception, the finally block still executes. Then the
exception is passed to the next outer try block—again, normally in the calling method.

Releasing Resources in a finally Block
Because a finally block always executes, it typically contains resource-release code. Suppose
a resource is allocated in a try block. If no exception occurs, the catch blocks are skipped and
control proceeds to the finally block, which frees the resource. Control then proceeds to
the first statement after the finally block. If an exception occurs in the try block, the try
block terminates. If the program catches the exception in one of the corresponding catch
blocks, it processes the exception, then the finally block releases the resource and control
proceeds to the first statement after the finally block. If the program doesn’t catch the ex-
ception, the finally block still releases the resource and an attempt is made to catch the ex-
ception in a calling method.

Demonstrating the finally Block
Figure 11.5 demonstrates that the finally block executes even if an exception is not
thrown in the corresponding try block. The program contains static methods main
(lines 6–18), throwException (lines 21–44) and doesNotThrowException (lines 47–64).
Methods throwException and doesNotThrowException are declared static, so main can
call them directly without instantiating a UsingExceptions object.

Error-Prevention Tip 11.5
The finally block is an ideal place to release resources acquired in a try block (such as
opened files), which helps eliminate resource leaks.

Performance Tip 11.1
Always release a resource explicitly and at the earliest possible moment at which it’s no lon-
ger needed. This makes resources available for reuse as early as possible, thus improving
resource utilization and program performance.

456 Chapter 11 Exception Handling: A Deeper Look

1 // Fig. 11.5: UsingExceptions.java
2 // try...catch...finally exception handling mechanism.
3
4 public class UsingExceptions
5 {
6 public static void main(String[] args)
7 {
8 try
9 {

10 throwException();
11 }
12 catch (Exception exception) // exception thrown by throwException
13 {
14 System.err.println("Exception handled in main");
15 }
16
17 doesNotThrowException();
18 }
19
20 // demonstrate try...catch...finally
21 public static void throwException() throws Exception
22 {
23 try // throw an exception and immediately catch it
24 {
25 System.out.println("Method throwException");
26
27 }
28 catch (Exception exception) // catch exception thrown in try
29 {
30 System.err.println(
31 "Exception handled in method throwException");
32
33
34 // code here would not be reached; would cause compilation errors
35
36 }
37
38
39
40
41
42 // code here would not be reached; would cause compilation errors
43
44 }
45
46 // demonstrate finally when no exception occurs
47 public static void doesNotThrowException()
48 {
49 try // try block does not throw an exception
50 {
51 System.out.println("Method doesNotThrowException");
52 }

Fig. 11.5 | try…catch…finally exception-handling mechanism. (Part 1 of 2.)

throw new Exception(); // generate exception

throw exception; // rethrow for further processing

finally // executes regardless of what occurs in try...catch
{
 System.err.println("Finally executed in throwException");
}

11.6 finally Block 457

System.out and System.err are streams—sequences of bytes. While System.out
(known as the standard output stream) displays a program’s output, System.err (known
as the standard error stream) displays a program’s errors. Output from these streams can
be redirected (i.e., sent to somewhere other than the command prompt, such as to a file).
Using two different streams enables you to easily separate error messages from other
output. For instance, data output from System.err could be sent to a log file, while data
output from System.out can be displayed on the screen. For simplicity, this chapter will
not redirect output from System.err, but will display such messages to the command
prompt. You’ll learn more about streams in Chapter 15.

Throwing Exceptions Using the throw Statement
Method main (Fig. 11.5) begins executing, enters its try block and immediately calls
method throwException (line 10). Method throwException throws an Exception. The
statement at line 26 is known as a throw statement—it’s executed to indicate that an ex-
ception has occurred. So far, you’ve caught only exceptions thrown by called methods.
You can throw exceptions yourself by using the throw statement. Just as with exceptions
thrown by the Java API’s methods, this indicates to client applications that an error has
occurred. A throw statement specifies an object to be thrown. The operand of a throw can
be of any class derived from class Throwable.

53 catch (Exception exception) // does not execute
54 {
55 System.err.println(exception);
56 }
57
58
59
60
61
62
63 System.out.println("End of method doesNotThrowException");
64 }
65 } // end class UsingExceptions

Method throwException
Exception handled in method throwException
Finally executed in throwException
Exception handled in main
Method doesNotThrowException
Finally executed in doesNotThrowException
End of method doesNotThrowException

Software Engineering Observation 11.8
When toString is invoked on any Throwable object, its resulting String includes the
descriptive string that was supplied to the constructor, or simply the class name if no
string was supplied.

Fig. 11.5 | try…catch…finally exception-handling mechanism. (Part 2 of 2.)

finally // executes regardless of what occurs in try...catch
{
 System.err.println(
 "Finally executed in doesNotThrowException");
}

458 Chapter 11 Exception Handling: A Deeper Look

Rethrowing Exceptions
Line 32 of Fig. 11.5 rethrows the exception. Exceptions are rethrown when a catch block,
upon receiving an exception, decides either that it cannot process that exception or that it
can only partially process it. Rethrowing an exception defers the exception handling (or
perhaps a portion of it) to another catch block associated with an outer try statement. An
exception is rethrown by using the throw keyword, followed by a reference to the excep-
tion object that was just caught. Exceptions cannot be rethrown from a finally block, as
the exception parameter (a local variable) from the catch block no longer exists.

When a rethrow occurs, the next enclosing try block detects the rethrown exception,
and that try block’s catch blocks attempt to handle it. In this case, the next enclosing try
block is found at lines 8–11 in method main. Before the rethrown exception is handled,
however, the finally block (lines 37–40) executes. Then method main detects the
rethrown exception in the try block and handles it in the catch block (lines 12–15).

Next, main calls method doesNotThrowException (line 17). No exception is thrown
in doesNotThrowException’s try block (lines 49–52), so the program skips the catch
block (lines 53–56), but the finally block (lines 57–61) nevertheless executes. Control
proceeds to the statement after the finally block (line 63). Then control returns to main
and the program terminates.

Software Engineering Observation 11.9
An exception can be thrown without containing information about the problem that
occurred. In this case, simply knowing that an exception of a particular type occurred may
provide sufficient information for the handler to process the problem correctly.

Software Engineering Observation 11.10
Throw exceptions from constructors to indicate that the constructor parameters are not
valid—this prevents an object from being created in an invalid state.

Common Programming Error 11.4
If an exception has not been caught when control enters a finally block and the finally
block throws an exception that’s not caught in the finally block, the first exception will
be lost and the exception from the finally block will be returned to the calling method.

Error-Prevention Tip 11.6
Avoid placing in a finally block code that can throw an exception. If such code is re-
quired, enclose the code in a try…catch within the finally block.

Common Programming Error 11.5
Assuming that an exception thrown from a catch block will be processed by that catch block
or any other catch block associated with the same try statement can lead to logic errors.

Good Programming Practice 11.1
Exception handling removes error-processing code from the main line of a program’s code to
improve program clarity. Do not place try…catch… finally around every statement that
may throw an exception. This decreases readability. Rather, place one try block around a
significant portion of your code, follow the try with catch blocks that handle each possible
exception and follow the catch blocks with a single finally block (if one is required).

11.7 Stack Unwinding and Obtaining Information from an Exception Object 459

11.7 Stack Unwinding and Obtaining Information from
an Exception Object
When an exception is thrown but not caught in a particular scope, the method-call stack is
“unwound,” and an attempt is made to catch the exception in the next outer try block.
This process is called stack unwinding. Unwinding the method-call stack means that the
method in which the exception was not caught terminates, all local variables in that meth-
od go out of scope and control returns to the statement that originally invoked that method.
If a try block encloses that statement, an attempt is made to catch the exception. If a try
block does not enclose that statement or if the exception is not caught, stack unwinding
occurs again. Figure 11.6 demonstrates stack unwinding, and the exception handler in
main shows how to access the data in an exception object.

Stack Unwinding
In main, the try block (lines 8–11) calls method1 (declared at lines 35–38), which in turn
calls method2 (declared at lines 41–44), which in turn calls method3 (declared at lines 47–
50). Line 49 of method3 throws an Exception object—this is the throw point. Because the
throw statement at line 49 is not enclosed in a try block, stack unwinding occurs—
method3 terminates at line 49, then returns control to the statement in method2 that in-
voked method3 (i.e., line 43). Because no try block encloses line 43, stack unwinding oc-
curs again—method2 terminates at line 43 and returns control to the statement in method1
that invoked method2 (i.e., line 37). Because no try block encloses line 37, stack unwinding
occurs one more time—method1 terminates at line 37 and returns control to the statement
in main that invoked method1 (i.e., line 10). The try block at lines 8–11 encloses this state-
ment. The exception has not been handled, so the try block terminates and the first
matching catch block (lines 12–31) catches and processes the exception. If there were no
matching catch blocks, and the exception is not declared in each method that throws it, a
compilation error would occur. Remember that this is not always the case—for unchecked
exceptions, the application will compile, but it will run with unexpected results.

1 // Fig. 11.6: UsingExceptions.java
2 // Stack unwinding and obtaining data from an exception object.
3
4 public class UsingExceptions
5 {
6 public static void main(String[] args)
7 {
8 try
9 {

10
11 }
12 catch (Exception exception) // catch exception thrown in method1
13 {
14 System.err.printf("%s%n%n",);
15
16

Fig. 11.6 | Stack unwinding and obtaining data from an exception object. (Part 1 of 2.)

method1();

exception.getMessage()
exception.printStackTrace();

460 Chapter 11 Exception Handling: A Deeper Look

17 // obtain the stack-trace information
18
19
20 System.out.printf("%nStack trace from getStackTrace:%n");
21 System.out.println("Class\t\tFile\t\t\tLine\tMethod");
22
23 // loop through traceElements to get exception description
24 for (StackTraceElement element : traceElements)
25 {
26 System.out.printf("%s\t",);
27 System.out.printf("%s\t",);
28 System.out.printf("%s\t",);
29 System.out.printf("%s%n",);
30 }
31 }
32 } // end main
33
34 // call method2; throw exceptions back to main
35 public static void method1()
36 {
37
38 }
39
40 // call method3; throw exceptions back to method1
41 public static void method2()
42 {
43
44 }
45
46 // throw Exception back to method2
47 public static void method3()
48 {
49
50 }
51 } // end class UsingExceptions

Exception thrown in method3

java.lang.Exception: Exception thrown in method3
 at UsingExceptions.method3(UsingExceptions.java:49)
 at UsingExceptions.method2(UsingExceptions.java:43)
 at UsingExceptions.method1(UsingExceptions.java:37)
 at UsingExceptions.main(UsingExceptions.java:10)

Stack trace from getStackTrace:
Class File Line Method
UsingExceptions UsingExceptions.java 49 method3
UsingExceptions UsingExceptions.java 43 method2
UsingExceptions UsingExceptions.java 37 method1
UsingExceptions UsingExceptions.java 10 main

Fig. 11.6 | Stack unwinding and obtaining data from an exception object. (Part 2 of 2.)

StackTraceElement[] traceElements = exception.getStackTrace();

element.getClassName()
element.getFileName()
element.getLineNumber()
element.getMethodName()

throws Exception

method2();

throws Exception

method3();

throws Exception

throw new Exception("Exception thrown in method3");

11.8 Chained Exceptions 461

Obtaining Data from an Exception Object
All exceptions derive from class Throwable, which has a printStackTrace method that
outputs to the standard error stream the stack trace (discussed in Section 11.2). Often this
is helpful in testing and debugging. Class Throwable also provides a getStackTrace meth-
od that retrieves the stack-trace information that might be printed by printStackTrace.
Class Throwable’s getMessage method returns the descriptive string stored in an exception.

The catch handler in Fig. 11.6 (lines 12–31) demonstrates getMessage, print-
StackTrace and getStackTrace. If we wanted to output the stack-trace information to
streams other than the standard error stream, we could use the information returned from
getStackTrace and output it to another stream or use one of the overloaded versions of
method printStackTrace. Sending data to other streams is discussed in Chapter 15.

Line 14 invokes the exception’s getMessage method to get the exception description.
Line 15 invokes the exception’s printStackTrace method to output the stack trace that
indicates where the exception occurred. Line 18 invokes the exception’s getStackTrace
method to obtain the stack-trace information as an array of StackTraceElement objects.
Lines 24–30 get each StackTraceElement in the array and invoke its methods getClass-
Name, getFileName, getLineNumber and getMethodName to get the class name, filename,
line number and method name, respectively, for that StackTraceElement. Each Stack-
TraceElement represents one method call on the method-call stack.

The program’s output shows that output of printStackTrace follows the pattern: class-
Name.methodName(fileName:lineNumber), where className, methodName and fileName
indicate the names of the class, method and file in which the exception occurred, respec-
tively, and the lineNumber indicates where in the file the exception occurred. You saw this
in the output for Fig. 11.2. Method getStackTrace enables custom processing of the excep-
tion information. Compare the output of printStackTrace with the output created from
the StackTraceElements to see that both contain the same stack-trace information.

11.8 Chained Exceptions
Sometimes a method responds to an exception by throwing a different exception type
that’s specific to the current application. If a catch block throws a new exception, the orig-

Error-Prevention Tip 11.7
An exception that’s not caught in an application causes Java’s default exception handler to
run. This displays the name of the exception, a descriptive message that indicates the problem
that occurred and a complete execution stack trace. In an application with a single thread
of execution, the application terminates. In an application with multiple threads, the thread
that caused the exception terminates. We discuss multithreading in Chapter 23.

Error-Prevention Tip 11.8
Throwable method toString (inherited by all Throwable subclasses) returns a String
containing the name of the exception’s class and a descriptive message.

Software Engineering Observation 11.11
Occasionally, you might want to ignore an exception by writing a catch handler with an
empty body. Before doing so, ensure that the exception doesn’t indicate a condition that
code higher up the stack might want to know about or recover from.

462 Chapter 11 Exception Handling: A Deeper Look

inal exception’s information and stack trace are lost. Earlier Java versions provided no
mechanism to wrap the original exception information with the new exception’s informa-
tion to provide a complete stack trace showing where the original problem occurred. This
made debugging such problems particularly difficult. Chained exceptions enable an ex-
ception object to maintain the complete stack-trace information from the original excep-
tion. Figure 11.7 demonstrates chained exceptions.

1 // Fig. 11.7: UsingChainedExceptions.java
2 // Chained exceptions.
3
4 public class UsingChainedExceptions
5 {
6 public static void main(String[] args)
7 {
8 try
9 {

10
11 }
12
13 {
14 exception.printStackTrace();
15 }
16 }
17
18 // call method2; throw exceptions back to main
19 public static void method1()
20 {
21 try
22 {
23
24 } // end try
25
26 {
27
28 }
29 }
30
31 // call method3; throw exceptions back to method1
32 public static void method2()
33 {
34 try
35 {
36
37 }
38
39 {
40
41 }
42 }
43

Fig. 11.7 | Chained exceptions. (Part 1 of 2.)

method1();

catch (Exception exception) // exceptions thrown from method1

throws Exception

method2();

catch (Exception exception) // exception thrown from method2

throw new Exception("Exception thrown in method1", exception);

throws Exception

method3();

catch (Exception exception) // exception thrown from method3

throw new Exception("Exception thrown in method2", exception);

11.8 Chained Exceptions 463

Program Flow of Control
The program consists of four methods—main (lines 6–16), method1 (lines 19–29),
method2 (lines 32–42) and method3 (lines 45–48). Line 10 in method main’s try block
calls method1. Line 23 in method1’s try block calls method2. Line 36 in method2’s try
block calls method3. In method3, line 47 throws a new Exception. Because this statement
is not in a try block, method3 terminates, and the exception is returned to the calling
method (method2) at line 36. This statement is in a try block; therefore, the try block
terminates and the exception is caught at lines 38–41. Line 40 in the catch block throws
a new exception. In this case, the Exception constructor with two arguments is called. The
second argument represents the exception that was the original cause of the problem. In
this program, that exception occurred at line 47. Because an exception is thrown from the
catch block, method2 terminates and returns the new exception to the calling method
(method1) at line 23. Once again, this statement is in a try block, so the try block termi-
nates and the exception is caught at lines 25–28. Line 27 in the catch block throws a new
exception and uses the exception that was caught as the second argument to the Exception
constructor. Because an exception is thrown from the catch block, method1 terminates
and returns the new exception to the calling method (main) at line 10. The try block in
main terminates, and the exception is caught at lines 12–15. Line 14 prints a stack trace.

Program Output
Notice in the program output that the first three lines show the most recent exception that
was thrown (i.e., the one from method1 at line 27). The next four lines indicate the excep-
tion that was thrown from method2 at line 40. Finally, the last four lines represent the ex-
ception that was thrown from method3 at line 47. Also notice that, as you read the output
in reverse, it shows how many more chained exceptions remain.

44 // throw Exception back to method2
45 public static void method3() throws Exception
46 {
47
48 }
49 } // end class UsingChainedExceptions

java.lang.Exception: Exception thrown in method1
 at UsingChainedExceptions.method1(UsingChainedExceptions.java:27)
 at UsingChainedExceptions.main(UsingChainedExceptions.java:10)
Caused by: java.lang.Exception: Exception thrown in method2
 at UsingChainedExceptions.method2(UsingChainedExceptions.java:40)
 at UsingChainedExceptions.method1(UsingChainedExceptions.java:23)
 ... 1 more
Caused by: java.lang.Exception: Exception thrown in method3
 at UsingChainedExceptions.method3(UsingChainedExceptions.java:47)
 at UsingChainedExceptions.method2(UsingChainedExceptions.java:36)
 ... 2 more

Fig. 11.7 | Chained exceptions. (Part 2 of 2.)

throw new Exception("Exception thrown in method3");

464 Chapter 11 Exception Handling: A Deeper Look

11.9 Declaring New Exception Types
Most Java programmers use existing classes from the Java API, third-party vendors and
freely available class libraries (usually downloadable from the Internet) to build Java appli-
cations. The methods of those classes typically are declared to throw appropriate excep-
tions when problems occur. You write code that processes these existing exceptions to
make your programs more robust.

If you build classes that other programmers will use, it’s often appropriate to declare
your own exception classes that are specific to the problems that can occur when another
programmer uses your reusable classes.

A New Exception Type Must Extend an Existing One
A new exception class must extend an existing exception class to ensure that the class can
be used with the exception-handling mechanism. An exception class is like any other class;
however, a typical new exception class contains only four constructors:

• one that takes no arguments and passes a default error message String to the su-
perclass constructor

• one that receives a customized error message as a String and passes it to the su-
perclass constructor

• one that receives a customized error message as a String and a Throwable (for
chaining exceptions) and passes both to the superclass constructor

• one that receives a Throwable (for chaining exceptions) and passes it to the super-
class constructor.

Example of a Custom Exception Class
In Chapter 21, Custom Generic Data Structures, we provide an example of a custom ex-
ception class. We declare a reusable class called List that’s capable of storing a list of ref-
erences to objects. Some operations typically performed on a List are not allowed if the
List is empty, such as removing an item from the front or back of the list. For this reason,
some List methods throw exceptions of exception class EmptyListException.

Good Programming Practice 11.2
Associating each type of serious execution-time malfunction with an appropriately named
Exception class improves program clarity.

Software Engineering Observation 11.12
When defining your own exception type, study the existing exception classes in the Java
API and try to extend a related exception class. For example, if you’re creating a new class
to represent when a method attempts a division by zero, you might extend class
ArithmeticException because division by zero occurs during arithmetic. If the existing
classes are not appropriate superclasses for your new exception class, decide whether your
new class should be a checked or an unchecked exception class. If clients should be required
to handle the exception, the new exception class should be a checked exception (i.e., extend
Exception but not RuntimeException). The client application should be able to
reasonably recover from such an exception. If the client code should be able to ignore the
exception (i.e., the exception is an unchecked one), the new exception class should extend
RuntimeException.

11.10 Preconditions and Postconditions 465

11.10 Preconditions and Postconditions
Programmers spend significant amounts of time maintaining and debugging code. To fa-
cilitate these tasks and to improve the overall design, you can specify the expected states
before and after a method’s execution. These states are called preconditions and postcon-
ditions, respectively.

Preconditions
A precondition must be true when a method is invoked. Preconditions describe constraints
on method parameters and any other expectations the method has about the current state
of a program just before it begins executing. If the preconditions are not met, then the meth-
od’s behavior is undefined—it may throw an exception, proceed with an illegal value or at-
tempt to recover from the error. You should not expect consistent behavior if the
preconditions are not satisfied.

Postconditions
A postcondition is true after the method successfully returns. Postconditions describe con-
straints on the return value and any other side effects the method may have. When defining
a method, you should document all postconditions so that others know what to expect
when they call your method, and you should make certain that your method honors all its
postconditions if its preconditions are indeed met.

Throwing Exceptions When Preconditions or Postconditions Are Not Met
When their preconditions or postconditions are not met, methods typically throw excep-
tions. As an example, examine String method charAt, which has one int parameter—an
index in the String. For a precondition, method charAt assumes that index is greater
than or equal to zero and less than the length of the String. If the precondition is met, the
postcondition states that the method will return the character at the position in the String
specified by the parameter index. Otherwise, the method throws an IndexOutOfBounds-
Exception. We trust that method charAt satisfies its postcondition, provided that we
meet the precondition. We need not be concerned with the details of how the method ac-
tually retrieves the character at the index.

Typically, a method’s preconditions and postconditions are described as part of its
specification. When designing your own methods, you should state the preconditions and
postconditions in a comment before the method declaration.

11.11 Assertions
When implementing and debugging a class, it’s sometimes useful to state conditions that
should be true at a particular point in a method. These conditions, called assertions, help
ensure a program’s validity by catching potential bugs and identifying possible logic errors
during development. Preconditions and postconditions are two types of assertions. Pre-
conditions are assertions about a program’s state when a method is invoked, and postcon-
ditions are assertions about its state after a method finishes.

Good Programming Practice 11.3
By convention, all exception-class names should end with the word Exception.

466 Chapter 11 Exception Handling: A Deeper Look

While assertions can be stated as comments to guide you during program develop-
ment, Java includes two versions of the assert statement for validating assertions progra-
matically. The assert statement evaluates a boolean expression and, if false, throws an
AssertionError (a subclass of Error). The first form of the assert statement is

which throws an AssertionError if expression is false. The second form is

which evaluates expression1 and throws an AssertionError with expression2 as the error
message if expression1 is false.

You can use assertions to implement preconditions and postconditions programmati-
cally or to verify any other intermediate states that help you ensure that your code is
working correctly. Figure 11.8 demonstrates the assert statement. Line 11 prompts the
user to enter a number between 0 and 10, then line 12 reads the number. Line 15 deter-
mines whether the user entered a number within the valid range. If the number is out of
range, the assert statement reports an error; otherwise, the program proceeds normally.

You use assertions primarily for debugging and identifying logic errors in an applica-
tion. You must explicitly enable assertions when executing a program, because they reduce

assert expression;

assert expression1 : expression2;

1 // Fig. 11.8: AssertTest.java
2 // Checking with assert that a value is within range
3 import java.util.Scanner;
4
5 public class AssertTest
6 {
7 public static void main(String[] args)
8 {
9 Scanner input = new Scanner(System.in);

10
11 System.out.print("Enter a number between 0 and 10: ");
12 int number = input.nextInt();
13
14 // assert that the value is >= 0 and <= 10
15 assert (number >= 0 && number <= 10) : "bad number: " + number;
16
17 System.out.printf("You entered %d%n", number);
18 }
19 } // end class AssertTest

Enter a number between 0 and 10: 5
You entered 5

Enter a number between 0 and 10: 50
Exception in thread "main" java.lang.AssertionError: bad number: 50
 at AssertTest.main(AssertTest.java:15)

Fig. 11.8 | Checking with assert that a value is within range.

11.12 try-with-Resources: Automatic Resource Deallocation 467

performance and are unnecessary for the program’s user. To do so, use the java com-
mand’s -ea command-line option, as in

11.12 try-with-Resources: Automatic Resource
Deallocation
Typically resource-release code should be placed in a finally block to ensure that a resource
is released, regardless of whether there were exceptions when the resource was used in the
corresponding try block. An alternative notation—the try-with-resources statement (in-
troduced in Java SE 7)—simplifies writing code in which you obtain one or more resourc-
es, use them in a try block and release them in a corresponding finally block. For
example, a file-processing application could process a file with a try-with-resources state-
ment to ensure that the file is closed properly when it’s no longer needed—we demonstrate
this in Chapter 15. Each resource must be an object of a class that implements the Auto-
Closeable interface, and thus provides a close method. The general form of a try-with-
resources statement is

where ClassName is a class that implements the AutoCloseable interface. This code creates
an object of type ClassName and uses it in the try block, then calls its close method to
release any resources used by the object. The try-with-resources statement implicitly calls
the theObject’s close method at the end of the try block. You can allocate multiple re-
sources in the parentheses following try by separating them with a semicolon (;). You’ll
see examples of the try-with-resources statement in Chapters 15 and 24.

11.13 Wrap-Up
In this chapter, you learned how to use exception handling to deal with errors. You learned
that exception handling enables you to remove error-handling code from the “main line”
of the program’s execution. We showed how to use try blocks to enclose code that may
throw an exception, and how to use catch blocks to deal with exceptions that may arise.

You learned about the termination model of exception handling, which dictates that
after an exception is handled, program control does not return to the throw point. We dis-

java -ea AssertTest

Software Engineering Observation 11.13
Users shouldn’t encounter AssertionErrors—these should be used only during program
development. For this reason, you shouldn’t catch AssertionErrors. Instread, allow the
program to terminate, so you can see the error message, then locate and fix the source of the
problem. You should not use assert to indicate runtime problems in production code (as we
did in Fig. 11.8 for demonstration purposes)—use the exception mechanism for this purpose.

try (ClassName theObject = new ClassName())
{
 // use theObject here
}
catch (Exception e)
{
 // catch exceptions that occur while using the resource
}

468 Chapter 11 Exception Handling: A Deeper Look

cussed checked vs. unchecked exceptions, and how to specify with the throws clause the
exceptions that a method might throw.

You learned how to use the finally block to release resources whether or not an
exception occurs. You also learned how to throw and rethrow exceptions. We showed how
to obtain information about an exception using methods printStackTrace, getStack-
Trace and getMessage. Next, we presented chained exceptions, which allow you to wrap
original exception information with new exception information. Then, we showed how to
create your own exception classes.

We introduced preconditions and postconditions to help programmers using your
methods understand conditions that must be true when the method is called and when it
returns, respectively. When preconditions and postconditions are not met, methods typi-
cally throw exceptions. We discussed the assert statement and how it can be used to help
you debug your programs. In particular, assert can be used to ensure that preconditions
and postconditions are met.

We also introduced multi-catch for processing several types of exceptions in the same
catch handler and the try-with-resources statement for automatically deallocating a
resource after it’s used in the try block. In the next chapter, we take a deeper look at graph-
ical user interfaces (GUIs).

Summary
Section 11.1 Introduction
• An exception is an indication of a problem that occurs during a program’s execution.

• Exception handling enables programmers to create applications that can resolve exceptions.

Section 11.2 Example: Divide by Zero without Exception Handling
• Exceptions are thrown (p. 443) when a method detects a problem and is unable to handle it.

• An exception’s stack trace (p. 444) includes the name of the exception in a message that indicates
the problem that occurred and the complete method-call stack at the time the exception occurred.

• The point in the program at which an exception occurs is called the throw point (p. 445).

Section 11.3 Example: Handling ArithmeticExceptions and InputMismatchEx-
ceptions
• A try block (p. 447) encloses code that might throw an exception and code that should not ex-

ecute if that exception occurs.

• Exceptions may surface through explicitly mentioned code in a try block, through calls to other
methods or even through deeply nested method calls initiated by code in the try block.

• A catch block (p. 448) begins with keyword catch and an exception parameter followed by a block
of code that handles the exception. This code executes when the try block detects the exception.

• At least one catch block or a finally block (p. 448) must immediately follow the try block.

• A catch block specifies in parentheses an exception parameter identifying the exception type to
handle. The parameter’s name enables the catch block to interact with a caught exception object.

• An uncaught exception (p. 449) is an exception that occurs for which there are no matching
catch blocks. An uncaught exception will cause a program to terminate early if that program con-
tains only one thread. Otherwise, only the thread in which the exception occurred will terminate.
The rest of the program will run but possibly with adverse results.

 Summary 469

• Multi-catch (p. 449) enables you to catch multiple exception types in a single catch handler and
perform the same task for each type of exception. The syntax for a multi-catch is:

catch (Type1 | Type2 | Type3 e)

• Each exception type is separated from the next with a vertical bar (|).

• If an exception occurs in a try block, the try block terminates immediately and program control
transfers to the first catch block with a parameter type that matches the thrown exception’s type.

• After an exception is handled, program control does not return to the throw point, because the
try block has expired. This is known as the termination model of exception handling (p. 449).

• If there are multiple matching catch blocks when an exception occurs, only the first is executed.

• A throws clause (p. 450) specifies a comma-separated list of exceptions that the method might
throw, and appears after the method’s parameter list and before the method body.

Section 11.4 When to Use Exception Handling
• Exception handling processes synchronous errors (p. 451), which occur when a statement executes.

• Exception handling is not designed to process problems associated with asynchronous events
(p. 451), which occur in parallel with, and independent of, the program’s flow of control.

Section 11.5 Java Exception Hierarchy
• All Java exception classes inherit directly or indirectly from class Exception.

• Programmers can extend the Java exception hierarchy with their own exception classes.

• Class Throwable is the superclass of class Exception and is therefore also the superclass of all ex-
ceptions. Only Throwable objects can be used with the exception-handling mechanism.

• Class Throwable (p. 451) has two subclasses: Exception and Error.

• Class Exception and its subclasses represent problems that could occur in a Java program and be
caught by the application.

• Class Error and its subclasses represent problems that could happen in the Java runtime system.
Errors happen infrequently and typically should not be caught by an application.

• Java distinguishes between two categories of exceptions (p. 452): checked and unchecked.

• The Java compiler does not check to determine if an unchecked exception is caught or declared.
Unchecked exceptions typically can be prevented by proper coding.

• Subclasses of RuntimeException represent unchecked exceptions. All exception types that inherit
from class Exception but not from RuntimeException (p. 452) are checked.

• If a catch block is written to catch exception objects of a superclass type, it can also catch all ob-
jects of that class’s subclasses. This allows for polymorphic processing of related exceptions.

Section 11.6 finally Block
• Programs that obtain certain types of resources must return them to the system to avoid so-called

resource leaks (p. 454). Resource-release code typically is placed in a finally block (p. 454).

• The finally block is optional. If it’s present, it’s placed after the last catch block.

• The finally block will execute whether or not an exception is thrown in the corresponding try
block or any of its corresponding catch blocks.

• If an exception cannot be caught by one of that try block’s associated catch handlers, control
proceeds to the finally block. Then the exception is passed to the next outer try block.

• If a catch block throws an exception, the finally block still executes. Then the exception is
passed to the next outer try block.

470 Chapter 11 Exception Handling: A Deeper Look

• A throw statement (p. 457) can throw any Throwable object.

• Exceptions are rethrown (p. 458) when a catch block, upon receiving an exception, decides ei-
ther that it cannot process that exception or that it can only partially process it. Rethrowing an
exception defers the exception handling (or perhaps a portion of it) to another catch block.

• When a rethrow occurs, the next enclosing try block detects the rethrown exception, and that
try block’s catch blocks attempt to handle it.

Section 11.7 Stack Unwinding and Obtaining Information from an Exception Object
• When an exception is thrown but not caught in a particular scope, the method-call stack is un-

wound, and an attempt is made to catch the exception in the next outer try statement.

• Class Throwable offers a printStackTrace method that prints the method-call stack. Often, this
is helpful in testing and debugging.

• Class Throwable also provides a getStackTrace method that obtains the same stack-trace infor-
mation that’s printed by printStackTrace (p. 461).

• Class Throwable’s getMessage method (p. 461) returns the descriptive string stored in an excep-
tion.

• Method getStackTrace (p. 461) obtains the stack-trace information as an array of StackTrace-
Element objects. Each StackTraceElement represents one method call on the method-call stack.

• StackTraceElement methods (p. 461) getClassName, getFileName, getLineNumber and get-
MethodName get the class name, filename, line number and method name, respectively.

Section 11.8 Chained Exceptions
• Chained exceptions (p. 462) enable an exception object to maintain the complete stack-trace in-

formation, including information about previous exceptions that caused the current exception.

Section 11.9 Declaring New Exception Types
• A new exception class must extend an existing exception class to ensure that the class can be used

with the exception-handling mechanism.

Section 11.10 Preconditions and Postconditions
• A method’s precondition (p. 465) must be true when the method is invoked.

• A method’s postcondition (p. 465) is true after the method successfully returns.

• When designing your own methods, you should state the preconditions and postconditions in a
comment before the method declaration.

Section 11.11 Assertions
• Assertions (p. 465) help catch potential bugs and identify possible logic errors.

• The assert statement (p. 466) allows for validating assertions programmatically.

• To enable assertions at runtime, use the -ea switch when running the java command.

Section 11.12 try-with-Resources: Automatic Resource Deallocation
• The try-with-resources statement (p. 467) simplifies writing code in which you obtain a resource,

use it in a try block and release the resource in a corresponding finally block. Instead, you allocate
the resource in the parentheses following the try keyword and use the resource in the try block;
then the statement implicitly calls the resource’s close method at the end of the try block.

• Each resource must be an object of a class that implements the AutoCloseable interface
(p. 467)—such a class has a close method.

 Self-Review Exercises 471

• You can allocate multiple resources in the parentheses following try by separating them with a
semicolon (;).

Self-Review Exercises
11.1 List five common examples of exceptions.

11.2 Why are exceptions particularly appropriate for dealing with errors produced by methods
of classes in the Java API?

11.3 What is a “resource leak”?

11.4 If no exceptions are thrown in a try block, where does control proceed to when the try
block completes execution?

11.5 Give a key advantage of using catch(Exception exceptionName).

11.6 Should a conventional application catch Error objects? Explain.

11.7 What happens if no catch handler matches the type of a thrown object?

11.8 What happens if several catch blocks match the type of the thrown object?

11.9 Why would a programmer specify a superclass type as the type in a catch block?

11.10 What is the key reason for using finally blocks?

11.11 What happens when a catch block throws an Exception?

11.12 What does the statement throw exceptionReference do in a catch block?

11.13 What happens to a local reference in a try block when that block throws an Exception?

Answers to Self-Review Exercises
11.1 Memory exhaustion, array index out of bounds, arithmetic overflow, division by zero, in-
valid method parameters.

11.2 It’s unlikely that methods of classes in the Java API could perform error processing that
would meet the unique needs of all users.

11.3 A “resource leak” occurs when an executing program does not properly release a resource
when it’s no longer needed.

11.4 The catch blocks for that try statement are skipped, and the program resumes execution
after the last catch block. If there’s a finally block, it’s executed first; then the program resumes
execution after the finally block.

11.5 The form catch(Exception exceptionName) catches any type of exception thrown in a try
block. An advantage is that no thrown Exception can slip by without being caught. You can handle
the exception or rethrow it.

11.6 Errors are usually serious problems with the underlying Java system; most programs will
not want to catch Errors because they will not be able to recover from them.

11.7 This causes the search for a match to continue in the next enclosing try statement. If there’s
a finally block, it will be executed before the exception goes to the next enclosing try statement.
If there are no enclosing try statements for which there are matching catch blocks and the excep-
tions are declared (or unchecked), a stack trace is printed and the current thread terminates early. If
the exceptions are checked, but not caught or declared, compilation errors occur.

11.8 The first matching catch block after the try block is executed.

472 Chapter 11 Exception Handling: A Deeper Look

11.9 This enables a program to catch related types of exceptions and process them in a uniform
manner. However, it’s often useful to process the subclass types individually for more precise excep-
tion handling.

11.10 The finally block is the preferred means for releasing resources to prevent resource leaks.

11.11 First, control passes to the finally block if there is one. Then the exception will be pro-
cessed by a catch block (if one exists) associated with an enclosing try block (if one exists).

11.12 It rethrows the exception for processing by an exception handler of an enclosing try state-
ment, after the finally block of the current try statement executes.

11.13 The reference goes out of scope. If the referenced object becomes unreachable, the object
can be garbage collected.

Exercises
11.14 (Exceptional Conditions) List the various exceptional conditions that have occurred in pro-
grams throughout this text so far. List as many additional exceptional conditions as you can. For
each of these, describe briefly how a program typically would handle the exception by using the ex-
ception-handling techniques discussed in this chapter. Typical exceptions include division by zero
and array index out of bounds.

11.15 (Exceptions and Constructor Failure) Until this chapter, we’ve found dealing with errors
detected by constructors to be a bit awkward. Explain why exception handling is an effective means
for dealing with constructor failure.

11.16 (Catching Exceptions with Superclasses) Use inheritance to create an exception superclass
(called ExceptionA) and exception subclasses ExceptionB and ExceptionC, where ExceptionB inher-
its from ExceptionA and ExceptionC inherits from ExceptionB. Write a program to demonstrate
that the catch block for type ExceptionA catches exceptions of types ExceptionB and ExceptionC.

11.17 (Catching Exceptions Using Class Exception) Write a program that demonstrates how var-
ious exceptions are caught with

catch (Exception exception)

This time, define classes ExceptionA (which inherits from class Exception) and ExceptionB (which
inherits from class ExceptionA). In your program, create try blocks that throw exceptions of types
ExceptionA, ExceptionB, NullPointerException and IOException. All exceptions should be
caught with catch blocks specifying type Exception.

11.18 (Order of catch Blocks) Write a program demonstrating that the order of catch blocks is
important. If you try to catch a superclass exception type before a subclass type, the compiler should
generate errors.

11.19 (Constructor Failure) Write a program that shows a constructor passing information about
constructor failure to an exception handler. Define class SomeClass, which throws an Exception in
the constructor. Your program should try to create an object of type SomeClass and catch the ex-
ception that’s thrown from the constructor.

11.20 (Rethrowing Exceptions) Write a program that illustrates rethrowing an exception. Define
methods someMethod and someMethod2. Method someMethod2 should initially throw an exception.
Method someMethod should call someMethod2, catch the exception and rethrow it. Call someMethod
from method main, and catch the rethrown exception. Print the stack trace of this exception.

11.21 (Catching Exceptions Using Outer Scopes) Write a program showing that a method with its
own try block does not have to catch every possible error generated within the try. Some exceptions
can slip through to, and be handled in, other scopes.

12GUI Components: Part 1

Do you think I can listen all day
to such stuff?
—Lewis Carroll

Even a minor event in the life of
a child is an event of that child’s
world and thus a world event.
—Gaston Bachelard

You pays your money and you
takes your choice.
—Punch

O b j e c t i v e s
In this chapter you’ll:

■ Learn how to use the Nimbus
look-and-feel.

■ Build GUIs and handle events
generated by user
interactions with GUIs.

■ Understand the packages
containing GUI components,
event-handling classes and
interfaces.

■ Create and manipulate
buttons, labels, lists, text
fields and panels.

■ Handle mouse events and
keyboard events.

■ Use layout managers to
arrange GUI components.

474 Chapter 12 GUI Components: Part 1

12.1 Introduction
A graphical user interface (GUI) presents a user-friendly mechanism for interacting with
an application. A GUI (pronounced “GOO-ee”) gives an application a distinctive “look-
and-feel.” GUIs are built from GUI components. These are sometimes called controls or
widgets—short for window gadgets. A GUI component is an object with which the user
interacts via the mouse, the keyboard or another form of input, such as voice recognition.
In this chapter and Chapter 22, GUI Components: Part 2, you’ll learn about many of
Java’s so-called Swing GUI components from the javax.swing package. We cover other
GUI components as they’re needed throughout the book. In Chapter 25 and two online
chapters, you’ll learn about JavaFX—Java’s latest APIs for GUI, graphics and multimedia.

IDE Support for GUI Design
Many IDEs provide GUI design tools with which you can specify a component’s size, lo-
cation and other attributes in a visual manner by using the mouse, the keyboard and drag-
and-drop. The IDEs generate the GUI code for you. This greatly simplifies creating GUIs,
but each IDE generates this code differently. For this reason, we wrote the GUI code by
hand, as you’ll see in the source-code files for this chapter’s examples. We encourage you
to build each GUI visually using your preferred IDE(s).

12.1 Introduction
12.2 Java’s Nimbus Look-and-Feel
12.3 Simple GUI-Based Input/Output with

JOptionPane
12.4 Overview of Swing Components
12.5 Displaying Text and Images in a

Window
12.6 Text Fields and an Introduction to

Event Handling with Nested Classes
12.7 Common GUI Event Types and

Listener Interfaces
12.8 How Event Handling Works
12.9 JButton

12.10 Buttons That Maintain State
12.10.1 JCheckBox
12.10.2 JRadioButton

12.11 JComboBox; Using an Anonymous
Inner Class for Event Handling

12.12 JList
12.13 Multiple-Selection Lists
12.14 Mouse Event Handling
12.15 Adapter Classes
12.16 JPanel Subclass for Drawing with

the Mouse
12.17 Key Event Handling
12.18 Introduction to Layout Managers

12.18.1 FlowLayout
12.18.2 BorderLayout
12.18.3 GridLayout

12.19 Using Panels to Manage More
Complex Layouts

12.20 JTextArea
12.21 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

Look-and-Feel Observation 12.1
Providing different applications with consistent, intuitive user-interface components gives
users a sense of familiarity with a new application, so that they can learn it more quickly
and use it more productively.

12.2 Java’s Nimbus Look-and-Feel 475

Sample GUI: The SwingSet3 Demo Application
As an example of a GUI, consider Fig. 12.1, which shows the SwingSet3 demo application
from the JDK demos and samples download at http://www.oracle.com/technetwork/
java/javase/downloads/index.html. This application is a nice way for you to browse
through the various GUI components provided by Java’s Swing GUI APIs. Simply click a
component name (e.g., JFrame, JTabbedPane, etc.) in the GUI Components area at the left
of the window to see a demonstration of the GUI component in the right side of the win-
dow. The source code for each demo is shown in the text area at the bottom of the win-
dow. We’ve labeled a few of the GUI components in the application. At the top of the
window is a title bar that contains the window’s title. Below that is a menu bar containing
menus (File and View). In the top-right region of the window is a set of buttons—typi-
cally, users click buttons to perform tasks. In the GUI Components area of the window is a
combo box; the user can click the down arrow at the right side of the box to select from a
list of items. The menus, buttons and combo box are part of the application’s GUI. They
enable you to interact with the application.

12.2 Java’s Nimbus Look-and-Feel
A GUI’s look consists of its visual aspects, such as its colors and fonts, and its feel consists
of the components you use to interact with the GUI, such as buttons and menus. Together

Fig. 12.1 | SwingSet3 application demonstrates many of Java’s Swing GUI components.

menu menu bar buttoncombo boxtitle bar text area scroll bar

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

476 Chapter 12 GUI Components: Part 1

these are known as the GUI’s look-and-feel. Swing has a cross-platform look-and-feel
known as Nimbus. For GUI screen captures like Fig. 12.1, we’ve configured our systems
to use Nimbus as the default look-and-feel. There are three ways that you can use Nimbus:

1. Set it as the default for all Java applications that run on your computer.

2. Set it as the look-and-feel at the time that you launch an application by passing a
command-line argument to the java command.

3. Set it as the look-and-feel programatically in your application (see Section 22.6).

To set Nimbus as the default for all Java applications, you must create a text file
named swing.properties in the lib folder of both your JDK installation folder and your
JRE installation folder. Place the following line of code in the file:

In addition to the standalone JRE, there is a JRE nested in your JDK’s installation folder.
If you’re using an IDE that depends on the JDK, you may also need to place the
swing.properties file in the nested jre folder’s lib folder.

If you prefer to select Nimbus on an application-by-application basis, place the fol-
lowing command-line argument after the java command and before the application’s
name when you run the application:

12.3 Simple GUI-Based Input/Output with JOptionPane
The applications in Chapters 2–10 display text in the command window and obtain input
from the command window. Most applications you use on a daily basis use windows or
dialog boxes (also called dialogs) to interact with the user. For example, an e-mail program
allows you to type and read messages in a window the program provides. Dialog boxes are
windows in which programs display important messages to the user or obtain information
from the user. Java’s JOptionPane class (package javax.swing) provides prebuilt dialog
boxes for both input and output. These are displayed by invoking static JOptionPane
methods. Figure 12.2 presents a simple addition application that uses two input dialogs
to obtain integers from the user and a message dialog to display the sum of the integers
the user enters.

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

-Dswing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

1 // Fig. 12.2: Addition.java
2 // Addition program that uses JOptionPane for input and output.
3 import javax.swing.JOptionPane;
4
5 public class Addition
6 {
7 public static void main(String[] args)
8 {
9

10
11

Fig. 12.2 | Addition program that uses JOptionPane for input and output. (Part 1 of 2.)

// obtain user input from JOptionPane input dialogs
String firstNumber =
 JOptionPane.showInputDialog("Enter first integer");

12.3 Simple GUI-Based Input/Output with JOptionPane 477

Input Dialogs
Line 3 imports class JOptionPane. Lines 10–11 declare the local String variable first-
Number and assign it the result of the call to JOptionPane static method showInputDia-
log. This method displays an input dialog (see the screen capture in Fig. 12.2(a)), using
the method’s String argument ("Enter first integer") as a prompt.

The user types characters in the text field, then clicks OK or presses the Enter key to
submit the String to the program. Clicking OK also dismisses (hides) the dialog. [Note:
If you type in the text field and nothing appears, activate the text field by clicking it with
the mouse.] Unlike Scanner, which can be used to input values of several types from the
user at the keyboard, an input dialog can input only Strings. This is typical of most GUI

12
13
14
15 // convert String inputs to int values for use in a calculation
16 int number1 = Integer.parseInt(firstNumber);
17 int number2 = Integer.parseInt(secondNumber);
18
19 int sum = number1 + number2;
20
21
22
23
24 }
25 } // end class Addition

Look-and-Feel Observation 12.2
The prompt in an input dialog typically uses sentence-style capitalization—a style that
capitalizes only the first letter of the first word in the text unless the word is a proper noun
(for example, Jones).

Fig. 12.2 | Addition program that uses JOptionPane for input and output. (Part 2 of 2.)

String secondNumber =
 JOptionPane.showInputDialog("Enter second integer");

// display result in a JOptionPane message dialog
JOptionPane.showMessageDialog(null, "The sum is " + sum,
 "Sum of Two Integers", JOptionPane.PLAIN_MESSAGE);

(a) Input dialog displayed by lines 10–11

(b) Input dialog displayed by lines 12–13

When the user clicks OK,
showInputDialog returns

to the program the 100 typed
by the user as a String; the

program must convert the
String to an int

Text field in which the
user types a value

Prompt to the user

(c) Message dialog displayed by lines 22–23—When the user clicks
OK, the message dialog is dismissed (removed from the screen)

478 Chapter 12 GUI Components: Part 1

components. The user can type any characters in the input dialog’s text field. Our program
assumes that the user enters a valid integer. If the user clicks Cancel, showInputDialog
returns null. If the user either types a noninteger value or clicks the Cancel button in the
input dialog, an exception will occur and the program will not operate correctly. Lines 12–
13 display another input dialog that prompts the user to enter the second integer. Each
JOptionPane dialog that you display is a so called modal dialog—while the dialog is on
the screen, the user cannot interact with the rest of the application.

Converting Strings to int Values
To perform the calculation, we convert the Strings that the user entered to int values.
Recall that the Integer class’s static method parseInt converts its String argument to
an int value and might throw a NumberFormatException. Lines 16–17 assign the convert-
ed values to local variables number1 and number2, and line 19 sums these values.

Message Dialogs
Lines 22–23 use JOptionPane static method showMessageDialog to display a message di-
alog (the last screen of Fig. 12.2) containing the sum. The first argument helps the Java ap-
plication determine where to position the dialog box. A dialog is typically displayed from a
GUI application with its own window. The first argument refers to that window (known as
the parent window) and causes the dialog to appear centered over the parent (as we’ll do in
Section 12.9). If the first argument is null, the dialog box is displayed at the center of your
screen. The second argument is the message to display—in this case, the result of concatenat-
ing the String "The sum is " and the value of sum. The third argument—"Sum of Two In-
tegers"—is the String that should appear in the title bar at the top of the dialog. The fourth
argument—JOptionPane.PLAIN_MESSAGE—is the type of message dialog to display. A
PLAIN_MESSAGE dialog does not display an icon to the left of the message. Class JOptionPane
provides several overloaded versions of methods showInputDialog and showMessageDialog,
as well as methods that display other dialog types. For complete information, visit http://
docs.oracle.com/javase/7/docs/api/javax/swing/JOptionPane.html.

JOptionPane Message Dialog Constants
The constants that represent the message dialog types are shown in Fig. 12.3. All message
dialog types except PLAIN_MESSAGE display an icon to the left of the message. These icons
provide a visual indication of the message’s importance to the user. A QUESTION_MESSAGE
icon is the default icon for an input dialog box (see Fig. 12.2).

Look-and-Feel Observation 12.3
Do not overuse modal dialogs, as they can reduce the usability of your applications. Use a
modal dialog only when it’s necessary to prevent users from interacting with the rest of an
application until they dismiss the dialog.

Look-and-Feel Observation 12.4
The title bar of a window typically uses book-title capitalization—a style that capital-
izes the first letter of each significant word in the text and does not end with any punctu-
ation (for example, Capitalization in a Book Title).

http://docs.oracle.com/javase/7/docs/api/javax/swing/JOptionPane.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JOptionPane.html

12.4 Overview of Swing Components 479

12.4 Overview of Swing Components
Though it’s possible to perform input and output using the JOptionPane dialogs, most
GUI applications require more elaborate user interfaces. The remainder of this chapter
discusses many GUI components that enable application developers to create robust
GUIs. Figure 12.4 lists several basic Swing GUI components that we discuss.

Swing vs. AWT
There are actually two sets of Java GUI components. In Java’s early days, GUIs were built
with components from the Abstract Window Toolkit (AWT) in package java.awt.
These look like the native GUI components of the platform on which a Java program ex-
ecutes. For example, a Button object displayed in a Java program running on Microsoft
Windows looks like those in other Windows applications. On Apple Mac OS X, the But-
ton looks like those in other Mac applications. Sometimes, even the manner in which a
user can interact with an AWT component differs between platforms. The component’s ap-
pearance and the way in which the user interacts with it are known as its look-and-feel.

Message dialog type Icon Description

ERROR_MESSAGE Indicates an error.

INFORMATION_MESSAGE Indicates an informational message.

WARNING_MESSAGE Warns of a potential problem.

QUESTION_MESSAGE Poses a question. This dialog normally requires a
response, such as clicking a Yes or a No button.

PLAIN_MESSAGE no
icon

A dialog that contains a message, but no icon.

Fig. 12.3 | JOptionPane static constants for message dialogs.

Component Description

JLabel Displays uneditable text and/or icons.

JTextField Typically receives input from the user.

JButton Triggers an event when clicked with the mouse.

JCheckBox Specifies an option that can be selected or not selected.

JComboBox A drop-down list of items from which the user can make a selection.

JList A list of items from which the user can make a selection by clicking on any one
of them. Multiple elements can be selected.

JPanel An area in which components can be placed and organized.

Fig. 12.4 | Some basic Swing GUI components.

480 Chapter 12 GUI Components: Part 1

Lightweight vs. Heavyweight GUI Components
Most Swing components are lightweight components—they’re written, manipulated and
displayed completely in Java. AWT components are heavyweight components, because
they rely on the local platform’s windowing system to determine their functionality and
their look-and-feel. Several Swing components are heavyweight components.

Superclasses of Swing’s Lightweight GUI Components
The UML class diagram of Fig. 12.5 shows an inheritance hierarchy of classes from which
lightweight Swing components inherit their common attributes and behaviors.

Class Component (package java.awt) is a superclass that declares the common features
of GUI components in packages java.awt and javax.swing. Any object that is a Con-
tainer (package java.awt) can be used to organize Components by attaching the Compo-
nents to the Container. Containers can be placed in other Containers to organize a GUI.

Class JComponent (package javax.swing) is a subclass of Container. JComponent is
the superclass of all lightweight Swing components and declares their common attributes
and behaviors. Because JComponent is a subclass of Container, all lightweight Swing com-
ponents are also Containers. Some common features supported by JComponent include:

1. A pluggable look-and-feel for customizing the appearance of components (e.g.,
for use on particular platforms). You’ll see an example of this in Section 22.6.

2. Shortcut keys (called mnemonics) for direct access to GUI components through
the keyboard. You’ll see an example of this in Section 22.4.

3. Brief descriptions of a GUI component’s purpose (called tool tips) that are dis-
played when the mouse cursor is positioned over the component for a short time.
You’ll see an example of this in the next section.

4. Support for accessibility, such as braille screen readers for the visually impaired.

5. Support for user-interface localization—that is, customizing the user interface to
display in different languages and use local cultural conventions.

Look-and-Feel Observation 12.5
Swing GUI components allow you to specify a uniform look-and-feel for your application
across all platforms or to use each platform’s custom look-and-feel. An application can
even change the look-and-feel during execution to enable users to choose their own pre-
ferred look-and-feel.

Fig. 12.5 | Common superclasses of the lightweight Swing components.

Object

Component

Container

JComponent

12.5 Displaying Text and Images in a Window 481

12.5 Displaying Text and Images in a Window
Our next example introduces a framework for building GUI applications. Several concepts
in this framework will appear in many of our GUI applications. This is our first example
in which the application appears in its own window. Most windows you’ll create that can
contain Swing GUI components are instances of class JFrame or a subclass of JFrame.
JFrame is an indirect subclass of class java.awt.Window that provides the basic attributes
and behaviors of a window—a title bar at the top, and buttons to minimize, maximize and
close the window. Since an application’s GUI is typically specific to the application, most
of our examples will consist of two classes—a subclass of JFrame that helps us demonstrate
new GUI concepts and an application class in which main creates and displays the appli-
cation’s primary window.

Labeling GUI Components
A typical GUI consists of many components. GUI designers often provide text stating the
purpose of each. Such text is known as a label and is created with a JLabel—a subclass of
JComponent. A JLabel displays read-only text, an image, or both text and an image. Ap-
plications rarely change a label’s contents after creating it.

The application of Figs. 12.6–12.7 demonstrates several JLabel features and presents
the framework we use in most of our GUI examples. We did not highlight the code in this
example, since most of it is new. [Note: There are many more features for each GUI com-
ponent than we can cover in our examples. To learn the complete details of each GUI
component, visit its page in the online documentation. For class JLabel, visit
docs.oracle.com/javase/7/docs/api/javax/swing/JLabel.html.]

Look-and-Feel Observation 12.6
Text in a JLabel normally uses sentence-style capitalization.

1 // Fig. 12.6: LabelFrame.java
2 // JLabels with text and icons.
3 import java.awt.FlowLayout; // specifies how components are arranged
4 import javax.swing.JFrame; // provides basic window features
5 import javax.swing.JLabel; // displays text and images
6 import javax.swing.SwingConstants; // common constants used with Swing
7 import javax.swing.Icon; // interface used to manipulate images
8 import javax.swing.ImageIcon; // loads images
9

10 public class LabelFrame extends JFrame
11 {
12 private final JLabel label1; // JLabel with just text
13 private final JLabel label2; // JLabel constructed with text and icon
14 private final JLabel label3; // JLabel with added text and icon
15
16 // LabelFrame constructor adds JLabels to JFrame
17 public LabelFrame()
18 {

Fig. 12.6 | JLabels with text and icons. (Part 1 of 2.)

482 Chapter 12 GUI Components: Part 1

19 super("Testing JLabel");
20 setLayout(new FlowLayout()); // set frame layout
21
22
23
24
25 add(label1); // add label1 to JFrame
26
27
28
29
30
31
32 add(label2); // add label2 to JFrame
33
34
35
36
37
38
39
40 add(label3); // add label3 to JFrame
41 }
42 } // end class LabelFrame

1 // Fig. 12.7: LabelTest.java
2 // Testing LabelFrame.
3 import javax.swing.JFrame;
4
5 public class LabelTest
6 {
7 public static void main(String[] args)
8 {
9 LabelFrame labelFrame = new LabelFrame();

10 labelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 labelFrame.setSize(260, 180);
12 labelFrame.setVisible(true);
13 }
14 } // end class LabelTest

Fig. 12.7 | Testing LabelFrame.

Fig. 12.6 | JLabels with text and icons. (Part 2 of 2.)

// JLabel constructor with a string argument
label1 = new JLabel("Label with text");
label1.setToolTipText("This is label1");

// JLabel constructor with string, Icon and alignment arguments
Icon bug = new ImageIcon(getClass().getResource("bug1.png"));
label2 = new JLabel("Label with text and icon", bug,
 SwingConstants.LEFT);
label2.setToolTipText("This is label2");

label3 = new JLabel(); // JLabel constructor no arguments
label3.setText("Label with icon and text at bottom");
label3.setIcon(bug); // add icon to JLabel
label3.setHorizontalTextPosition(SwingConstants.CENTER);
label3.setVerticalTextPosition(SwingConstants.BOTTOM);
label3.setToolTipText("This is label3");

12.5 Displaying Text and Images in a Window 483

Class LabelFrame (Fig. 12.6) extends JFrame to inherit the features of a window.
We’ll use an instance of class LabelFrame to display a window containing three JLabels.
Lines 12–14 declare the three JLabel instance variables that are instantiated in the Label-
Frame constructor (lines 17–41). Typically, the JFrame subclass’s constructor builds the
GUI that’s displayed in the window when the application executes. Line 19 invokes super-
class JFrame’s constructor with the argument "Testing JLabel". JFrame’s constructor
uses this String as the text in the window’s title bar.

Specifying the Layout
When building a GUI, you must attach each GUI component to a container, such as a
window created with a JFrame. Also, you typically must decide where to position each GUI
component—known as specifying the layout. Java provides several layout managers that
can help you position components, as you’ll learn later in this chapter and in Chapter 22.

Many IDEs provide GUI design tools in which you can specify components’ exact
sizes and locations in a visual manner by using the mouse; then the IDE will generate the
GUI code for you. Such IDEs can greatly simplify GUI creation.

To ensure that our GUIs can be used with any IDE, we did not use an IDE to create
the GUI code. We use Java’s layout managers to size and position components. With the
FlowLayout layout manager, components are placed in a container from left to right in the
order in which they’re added. When no more components can fit on the current line, they
continue to display left to right on the next line. If the container is resized, a FlowLayout
reflows the components, possibly with fewer or more rows based on the new container
width. Every container has a default layout, which we’re changing for LabelFrame to a
FlowLayout (line 20). Method setLayout is inherited into class LabelFrame indirectly
from class Container. The argument to the method must be an object of a class that imple-
ments the LayoutManager interface (e.g., FlowLayout). Line 20 creates a new FlowLayout
object and passes its reference as the argument to setLayout.

Creating and Attaching label1
Now that we’ve specified the window’s layout, we can begin creating and attaching GUI
components to the window. Line 23 creates a JLabel object and passes "Label with text"
to the constructor. The JLabel displays this text on the screen. Line 24 uses method set-
ToolTipText (inherited by JLabel from JComponent) to specify the tool tip that’s dis-
played when the user positions the mouse cursor over the JLabel in the GUI. You can see
a sample tool tip in the second screen capture of Fig. 12.7. When you execute this appli-
cation, hover the mouse pointer over each JLabel to see its tool tip. Line 25 (Fig. 12.6)
attaches label1 to the LabelFrame by passing label1 to the add method, which is inher-
ited indirectly from class Container.

Common Programming Error 12.1
If you do not explicitly add a GUI component to a container, the GUI component will
not be displayed when the container appears on the screen.

Look-and-Feel Observation 12.7
Use tool tips to add descriptive text to your GUI components. This text helps the user de-
termine the GUI component’s purpose in the user interface.

484 Chapter 12 GUI Components: Part 1

The Icon Interface and Class ImageIcon
Icons are a popular way to enhance the look-and-feel of an application and are also com-
monly used to indicate functionality. For example, the same icon is used to play most of
today’s media on devices like DVD players and MP3 players. Several Swing components
can display images. An icon is normally specified with an Icon (package javax.swing) ar-
gument to a constructor or to the component’s setIcon method. Class ImageIcon sup-
ports several image formats, including Graphics Interchange Format (GIF), Portable
Network Graphics (PNG) and Joint Photographic Experts Group (JPEG).

Line 28 declares an ImageIcon. The file bug1.png contains the image to load and store
in the ImageIcon object. This image is included in the directory for this example. The
ImageIcon object is assigned to Icon reference bug.

Loading an Image Resource
In line 28, the expression getClass().getResource("bug1.png") invokes method get-
Class (inherited indirectly from class Object) to retrieve a reference to the Class object
that represents the LabelFrame class declaration. That reference is then used to invoke
Class method getResource, which returns the location of the image as a URL. The Im-
ageIcon constructor uses the URL to locate the image, then loads it into memory. As we
discussed in Chapter 1, the JVM loads class declarations into memory, using a class loader.
The class loader knows where each class it loads is located on disk. Method getResource
uses the Class object’s class loader to determine the location of a resource, such as an image
file. In this example, the image file is stored in the same location as the LabelFrame.class
file. The techniques described here enable an application to load image files from locations
that are relative to the class file’s location.

Creating and Attaching label2
Lines 29–30 use another JLabel constructor to create a JLabel that displays the text "La-
bel with text and icon" and the Icon bug created in line 28. The last constructor argu-
ment indicates that the label’s contents are left justified, or left aligned (i.e., the icon and
text are at the left side of the label’s area on the screen). Interface SwingConstants (package
javax.swing) declares a set of common integer constants (such as SwingConstants.LEFT,
SwingConstants.CENTER and SwingConstants.RIGHT) that are used with many Swing
components. By default, the text appears to the right of the image when a label contains
both text and an image. The horizontal and vertical alignments of a JLabel can be set with
methods setHorizontalAlignment and setVerticalAlignment, respectively. Line 31
specifies the tool-tip text for label2, and line 32 adds label2 to the JFrame.

Creating and Attaching label3
Class JLabel provides methods to change a JLabel’s appearance after it’s been instantiated.
Line 34 creates an empty JLabel with the no-argument constructor. Line 35 uses JLabel
method setText to set the text displayed on the label. Method getText can be used to
retrieve the JLabel’s current text. Line 36 uses JLabel method setIcon to specify the Icon
to display. Method getIcon can be used to retrieve the current Icon displayed on a label.
Lines 37–38 use JLabel methods setHorizontalTextPosition and setVerticalTextPo-
sition to specify the text position in the label. In this case, the text will be centered horizon-
tally and will appear at the bottom of the label. Thus, the Icon will appear above the text. The
horizontal-position constants in SwingConstants are LEFT, CENTER and RIGHT (Fig. 12.8).

12.6 Text Fields and an Introduction to Event Handling with Nested Classes 485

The vertical-position constants in SwingConstants are TOP, CENTER and BOTTOM (Fig. 12.8).
Line 39 (Fig. 12.6) sets the tool-tip text for label3. Line 40 adds label3 to the JFrame.

Creating and Displaying a LabelFrame Window
Class LabelTest (Fig. 12.7) creates an object of class LabelFrame (line 9), then specifies
the default close operation for the window. By default, closing a window simply hides the
window. However, when the user closes the LabelFrame window, we would like the ap-
plication to terminate. Line 10 invokes LabelFrame’s setDefaultCloseOperation meth-
od (inherited from class JFrame) with constant JFrame.EXIT_ON_CLOSE as the argument
to indicate that the program should terminate when the window is closed by the user. This
line is important. Without it the application will not terminate when the user closes the
window. Next, line 11 invokes LabelFrame’s setSize method to specify the width and
height of the window in pixels. Finally, line 12 invokes LabelFrame’s setVisible method
with the argument true to display the window on the screen. Try resizing the window to
see how the FlowLayout changes the JLabel positions as the window width changes.

12.6 Text Fields and an Introduction to Event Handling
with Nested Classes
Normally, a user interacts with an application’s GUI to indicate the tasks that the appli-
cation should perform. For example, when you write an e-mail in an e-mail application,
clicking the Send button tells the application to send the e-mail to the specified e-mail ad-
dresses. GUIs are event driven. When the user interacts with a GUI component, the in-
teraction—known as an event—drives the program to perform a task. Some common user
interactions that cause an application to perform a task include clicking a button, typing in
a text field, selecting an item from a menu, closing a window and moving the mouse. The
code that performs a task in response to an event is called an event handler, and the process
of responding to events is known as event handling.

Let’s consider two other GUI components that can generate events—JTextFields
and JPasswordFields (package javax.swing). Class JTextField extends class JTextCom-
ponent (package javax.swing.text), which provides many features common to Swing’s
text-based components. Class JPasswordField extends JTextField and adds methods
that are specific to processing passwords. Each of these components is a single-line area in
which the user can enter text via the keyboard. Applications can also display text in a
JTextField (see the output of Fig. 12.10). A JPasswordField shows that characters are
being typed as the user enters them, but hides the actual characters with an echo character,
assuming that they represent a password that should remain known only to the user.

Constant Description Constant Description

Horizontal-position constants Vertical-position constants

LEFT Place text on the left TOP Place text at the top

CENTER Place text in the center CENTER Place text in the center

RIGHT Place text on the right BOTTOM Place text at the bottom

Fig. 12.8 | Positioning constants (static members of interface SwingConstants).

486 Chapter 12 GUI Components: Part 1

When the user types in a JTextField or a JPasswordField, then presses Enter, an
event occurs. Our next example demonstrates how a program can perform a task in response
to that event. The techniques shown here are applicable to all GUI components that gen-
erate events.

The application of Figs. 12.9–12.10 uses classes JTextField and JPasswordField to
create and manipulate four text fields. When the user types in one of the text fields, then
presses Enter, the application displays a message dialog box containing the text the user
typed. You can type only in the text field that’s “in focus.” When you click a component,
it receives the focus. This is important, because the text field with the focus is the one that
generates an event when you press Enter. In this example, when you press Enter in the
JPasswordField, the password is revealed. We begin by discussing the setup of the GUI,
then discuss the event-handling code.

1 // Fig. 12.9: TextFieldFrame.java
2 // JTextFields and JPasswordFields.
3 import java.awt.FlowLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JTextField;
8 import javax.swing.JPasswordField;
9 import javax.swing.JOptionPane;

10
11 public class TextFieldFrame extends JFrame
12 {
13 private final JTextField textField1; // text field with set size
14 private final JTextField textField2; // text field with text
15 private final JTextField textField3; // text field with text and size
16 private final JPasswordField passwordField; // password field with text
17
18 // TextFieldFrame constructor adds JTextFields to JFrame
19 public TextFieldFrame()
20 {
21 super("Testing JTextField and JPasswordField");
22 setLayout(new FlowLayout());
23
24
25
26 add(textField1); // add textField1 to JFrame
27
28
29
30 add(textField2); // add textField2 to JFrame
31
32
33
34
35 add(textField3); // add textField3 to JFrame

Fig. 12.9 | JTextFields and JPasswordFields. (Part 1 of 2.)

// construct text field with 10 columns
textField1 = new JTextField(10);

// construct text field with default text
textField2 = new JTextField("Enter text here");

// construct text field with default text and 21 columns
textField3 = new JTextField("Uneditable text field", 21);
textField3.setEditable(false); // disable editing

12.6 Text Fields and an Introduction to Event Handling with Nested Classes 487

Class TextFieldFrame extends JFrame and declares three JTextField variables and a
JPasswordField variable (lines 13–16). Each of the corresponding text fields is instanti-
ated and attached to the TextFieldFrame in the constructor (lines 19–47).

36
37 // construct password field with default text
38
39 add(passwordField); // add passwordField to JFrame
40
41 // register event handlers
42
43
44
45
46
47 }
48
49 // private inner class for event handling
50
51 {
52 // process text field events
53 @Override
54
55 {
56 String string = "";
57
58 // user pressed Enter in JTextField textField1
59 if ()
60 string = String.format("textField1: %s",
61);
62
63 // user pressed Enter in JTextField textField2
64 else if ()
65 string = String.format("textField2: %s",
66);
67
68 // user pressed Enter in JTextField textField3
69 else if ()
70 string = String.format("textField3: %s",
71);
72
73 // user pressed Enter in JTextField passwordField
74 else if ()
75 string = String.format("passwordField: %s",
76);
77
78 // display JTextField content
79 JOptionPane.showMessageDialog(null, string);
80 }
81 } // end private inner class TextFieldHandler
82 } // end class TextFieldFrame

Fig. 12.9 | JTextFields and JPasswordFields. (Part 2 of 2.)

passwordField = new JPasswordField("Hidden text");

TextFieldHandler handler = new TextFieldHandler();
textField1.addActionListener(handler);
textField2.addActionListener(handler);
textField3.addActionListener(handler);
passwordField.addActionListener(handler);

private class TextFieldHandler implements ActionListener

public void actionPerformed(ActionEvent event)

event.getSource() == textField1

event.getActionCommand()

event.getSource() == textField2

event.getActionCommand()

event.getSource() == textField3

event.getActionCommand()

event.getSource() == passwordField

event.getActionCommand()

488 Chapter 12 GUI Components: Part 1

Creating the GUI
Line 22 sets the TextFieldFrame’s layout to FlowLayout. Line 25 creates textField1 with
10 columns of text. A text column’s width in pixels is determined by the average width of
a character in the text field’s current font. When text is displayed in a text field and the
text is wider than the field itself, a portion of the text at the right side is not visible. If you’re
typing in a text field and the cursor reaches the right edge, the text at the left edge is pushed
off the left side of the field and is no longer visible. Users can use the left and right arrow
keys to move through the complete text. Line 26 adds textField1 to the JFrame.

Line 29 creates textField2 with the initial text "Enter text here" to display in the
text field. The width of the field is determined by the width of the default text specified in
the constructor. Line 30 adds textField2 to the JFrame.

Line 33 creates textField3 and calls the JTextField constructor with two argu-
ments—the default text "Uneditable text field" to display and the text field’s width in
columns (21). Line 34 uses method setEditable (inherited by JTextField from class
JTextComponent) to make the text field uneditable—i.e., the user cannot modify the text
in the field. Line 35 adds textField3 to the JFrame.

Line 38 creates passwordField with the text "Hidden text" to display in the text
field. The width of the field is determined by the width of the default text. When you exe-
cute the application, notice that the text is displayed as a string of asterisks. Line 39 adds
passwordField to the JFrame.

Steps Required to Set Up Event Handling for a GUI Component
This example should display a message dialog containing the text from a text field when
the user presses Enter in that text field. Before an application can respond to an event for
a particular GUI component, you must:

1. Create a class that represents the event handler and implements an appropriate
interface—known as an event-listener interface.

2. Indicate that an object of the class from Step 1 should be notified when the event
occurs—known as registering the event handler.

Using a Nested Class to Implement an Event Handler
All the classes discussed so far were so-called top-level classes—that is, they were not de-
clared inside another class. Java allows you to declare classes inside other classes—these are
called nested classes. Nested classes can be static or non-static. Non-static nested
classes are called inner classes and are frequently used to implement event handlers.

An inner-class object must be created by an object of the top-level class that contains
the inner class. Each inner-class object implicitly has a reference to an object of its top-level
class. The inner-class object is allowed to use this implicit reference to directly access all
the variables and methods of the top-level class. A nested class that’s static does not
require an object of its top-level class and does not implicitly have a reference to an object
of the top-level class. As you’ll see in Chapter 13, Graphics and Java 2D, the Java 2D
graphics API uses static nested classes extensively.

Inner Class TextFieldHandler
The event handling in this example is performed by an object of the private inner class
TextFieldHandler (lines 50–81). This class is private because it will be used only to cre-
ate event handlers for the text fields in top-level class TextFieldFrame. As with other class

12.6 Text Fields and an Introduction to Event Handling with Nested Classes 489

members, inner classes can be declared public, protected or private. Since event han-
dlers tend to be specific to the application in which they’re defined, they’re often imple-
mented as private inner classes or as anonymous inner classes (Section 12.11).

GUI components can generate many events in response to user interactions. Each
event is represented by a class and can be processed only by the appropriate type of event
handler. Normally, a component’s supported events are described in the Java API docu-
mentation for that component’s class and its superclasses. When the user presses Enter in
a JTextField or JPasswordField, an ActionEvent (package java.awt.event) occurs.
Such an event is processed by an object that implements the interface ActionListener
(package java.awt.event). The information discussed here is available in the Java API
documentation for classes JTextField and ActionEvent. Since JPasswordField is a sub-
class of JTextField, JPasswordField supports the same events.

To prepare to handle the events in this example, inner class TextFieldHandler
implements interface ActionListener and declares the only method in that interface—
actionPerformed (lines 53–80). This method specifies the tasks to perform when an
ActionEvent occurs. So, inner class TextFieldHandler satisfies Step 1 listed earlier in this
section. We’ll discuss the details of method actionPerformed shortly.

Registering the Event Handler for Each Text Field
In the TextFieldFrame constructor, line 42 creates a TextFieldHandler object and as-
signs it to variable handler. This object’s actionPerformed method will be called auto-
matically when the user presses Enter in any of the GUI’s text fields. However, before this
can occur, the program must register this object as the event handler for each text field.
Lines 43–46 are the event-registration statements that specify handler as the event handler
for the three JTextFields and the JPasswordField. The application calls JTextField
method addActionListener to register the event handler for each component. This meth-
od receives as its argument an ActionListener object, which can be an object of any class
that implements ActionListener. The object handler is an ActionListener, because
class TextFieldHandler implements ActionListener. After lines 43–46 execute, the ob-
ject handler listens for events. Now, when the user presses Enter in any of these four text
fields, method actionPerformed (line 53–80) in class TextFieldHandler is called to han-
dle the event. If an event handler is not registered for a particular text field, the event that
occurs when the user presses Enter in that text field is consumed—i.e., it’s simply ignored
by the application.

Details of Class TextFieldHandler’s actionPerformed Method
In this example, we use one event-handling object’s actionPerformed method (lines 53–80)
to handle the events generated by four text fields. Since we’d like to output the name of each
text field’s instance variable for demonstration purposes, we must determine which text field

Software Engineering Observation 12.1
The event listener for an event must implement the appropriate event-listener interface.

Common Programming Error 12.2
If you forget to register an event-handler object for a particular GUI component’s event
type, events of that type will be ignored.

490 Chapter 12 GUI Components: Part 1

generated the event each time actionPerformed is called. The event source is the compo-
nent with which the user interacted. When the user presses Enter while a text field or the
password field has the focus, the system creates a unique ActionEvent object that contains
information about the event that just occurred, such as the event source and the text in the
text field. The system passes this ActionEvent object to the event listener’s actionPer-
formed method. Line 56 declares the String that will be displayed. The variable is initialized
with the empty string—a String containing no characters. The compiler requires the vari-
able to be initialized in case none of the branches of the nested if in lines 59–76 executes.

ActionEvent method getSource (called in lines 59, 64, 69 and 74) returns a reference
to the event source. The condition in line 59 asks, “Is the event source textField1?” This
condition compares references with the == operator to determine if they refer to the same
object. If they both refer to textField1, the user pressed Enter in textField1. Then, lines
60–61 create a String containing the message that line 79 displays in a message dialog.
Line 61 uses ActionEvent method getActionCommand to obtain the text the user typed in
the text field that generated the event.

In this example, we display the text of the password in the JPasswordField when the
user presses Enter in that field. Sometimes it’s necessary to programatically process the
characters in a password. Class JPasswordField method getPassword returns the pass-
word’s characters as an array of type char.

Class TextFieldTest
Class TextFieldTest (Fig. 12.10) contains the main method that executes this application
and displays an object of class TextFieldFrame. When you execute the application, even
the uneditable JTextField (textField3) can generate an ActionEvent. To test this, click
the text field to give it the focus, then press Enter. Also, the actual text of the password is
displayed when you press Enter in the JPasswordField. Of course, you would normally
not display the password!

1 // Fig. 12.10: TextFieldTest.java
2 // Testing TextFieldFrame.
3 import javax.swing.JFrame;
4
5 public class TextFieldTest
6 {
7 public static void main(String[] args)
8 {
9 TextFieldFrame textFieldFrame = new TextFieldFrame();

10 textFieldFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 textFieldFrame.setSize(350, 100);
12 textFieldFrame.setVisible(true);
13 }
14 } // end class TextFieldTest

Fig. 12.10 | Testing TextFieldFrame. (Part 1 of 2.)

12.7 Common GUI Event Types and Listener Interfaces 491

This application used a single object of class TextFieldHandler as the event listener
for four text fields. Starting in Section 12.10, you’ll see that it’s possible to declare several
event-listener objects of the same type and register each object for a separate GUI compo-
nent’s event. This technique enables us to eliminate the if…else logic used in this
example’s event handler by providing separate event handlers for each component’s events.

Java SE 8: Implementing Event Listeners with Lambdas
Recall that interfaces like ActionListener that have only one abstract method are func-
tional interfaces in Java SE 8. In Section 17.9, we show a more concise way to implement
such event-listener interfaces with Java SE 8 lambdas.

12.7 Common GUI Event Types and Listener Interfaces
In Section 12.6, you learned that information about the event that occurs when the user
presses Enter in a text field is stored in an ActionEvent object. Many different types of
events can occur when the user interacts with a GUI. The event information is stored in
an object of a class that extends AWTEvent (from package java.awt). Figure 12.11 illus-
trates a hierarchy containing many event classes from the package java.awt.event. Some
of these are discussed in this chapter and Chapter 22. These event types are used with both

Fig. 12.10 | Testing TextFieldFrame. (Part 2 of 2.)

492 Chapter 12 GUI Components: Part 1

AWT and Swing components. Additional event types that are specific to Swing GUI com-
ponents are declared in package javax.swing.event.

Let’s summarize the three parts to the event-handling mechanism that you saw in
Section 12.6—the event source, the event object and the event listener. The event source is
the GUI component with which the user interacts. The event object encapsulates infor-
mation about the event that occurred, such as a reference to the event source and any
event-specific information that may be required by the event listener for it to handle the
event. The event listener is an object that’s notified by the event source when an event
occurs; in effect, it “listens” for an event, and one of its methods executes in response to
the event. A method of the event listener receives an event object when the event listener
is notified of the event. The event listener then uses the event object to respond to the
event. This event-handling model is known as the delegation event model—an event’s
processing is delegated to an object (the event listener) in the application.

For each event-object type, there’s typically a corresponding event-listener interface.
An event listener for a GUI event is an object of a class that implements one or more of
the event-listener interfaces from packages java.awt.event and javax.swing.event.
Many of the event-listener types are common to both Swing and AWT components. Such
types are declared in package java.awt.event, and some of them are shown in Fig. 12.12.
Additional event-listener types that are specific to Swing components are declared in
package javax.swing.event.

Fig. 12.11 | Some event classes of package java.awt.event.

Object

EventObject

AWTEvent

ContainerEvent

FocusEvent

PaintEvent

WindowEvent

InputEvent

ActionEvent

AdjustmentEvent

ItemEvent

TextEvent

ComponentEvent

MouseEventKeyEvent

MouseWheelEvent

12.8 How Event Handling Works 493

Each event-listener interface specifies one or more event-handling methods that must
be declared in the class that implements the interface. Recall from Section 10.9 that any
class which implements an interface must declare all the abstract methods of that inter-
face; otherwise, the class is an abstract class and cannot be used to create objects.

When an event occurs, the GUI component with which the user interacted notifies
its registered listeners by calling each listener’s appropriate event-handling method. For
example, when the user presses the Enter key in a JTextField, the registered listener’s
actionPerformed method is called. In the next section, we complete our discussion of
how the event handling works in the preceding example.

12.8 How Event Handling Works
Let’s illustrate how the event-handling mechanism works, using textField1 from the ex-
ample of Fig. 12.9. We have two remaining open questions from Section 12.7:

1. How did the event handler get registered?

2. How does the GUI component know to call actionPerformed rather than some
other event-handling method?

The first question is answered by the event registration performed in lines 43–46 of
Fig. 12.9. Figure 12.13 diagrams JTextField variable textField1, TextFieldHandler
variable handler and the objects to which they refer.

Registering Events
Every JComponent has an instance variable called listenerList that refers to an object of
class EventListenerList (package javax.swing.event). Each object of a JComponent

Fig. 12.12 | Some common event-listener interfaces of package java.awt.event.

«interface»
ActionListener

«interface»
ComponentListener

«interface»
ContainerListener

«interface»
FocusListener

«interface»
ItemListener

«interface»
KeyListener

«interface»
MouseListener

«interface»
MouseMotionListener

«interface»
TextListener

«interface»
WindowListener

«interface»
java.util.EventListener

«interface»
AdjustmentListener

494 Chapter 12 GUI Components: Part 1

subclass maintains references to its registered listeners in the listenerList. For simplicity,
we’ve diagramed listenerList as an array below the JTextField object in Fig. 12.13.

When the following statement (line 43 of Fig. 12.9) executes

a new entry containing a reference to the TextFieldHandler object is placed in
textField1’s listenerList. Although not shown in the diagram, this new entry also in-
cludes the listener’s type (ActionListener). Using this mechanism, each lightweight
Swing component maintains its own list of listeners that were registered to handle the com-
ponent’s events.

Event-Handler Invocation
The event-listener type is important in answering the second question: How does the GUI
component know to call actionPerformed rather than another method? Every GUI com-
ponent supports several event types, including mouse events, key events and others. When
an event occurs, the event is dispatched only to the event listeners of the appropriate type.
Dispatching is simply the process by which the GUI component calls an event-handling
method on each of its listeners that are registered for the event type that occurred.

Each event type has one or more corresponding event-listener interfaces. For example,
ActionEvents are handled by ActionListeners, MouseEvents by MouseListeners and
MouseMotionListeners, and KeyEvents by KeyListeners. When an event occurs, the GUI
component receives (from the JVM) a unique event ID specifying the event type. The GUI
component uses the event ID to decide the listener type to which the event should be dis-
patched and to decide which method to call on each listener object. For an ActionEvent, the
event is dispatched to every registered ActionListener’s actionPerformed method (the only
method in interface ActionListener). For a MouseEvent, the event is dispatched to every
registered MouseListener or MouseMotionListener, depending on the mouse event that

Fig. 12.13 | Event registration for JTextField textField1.

textField1.addActionListener(handler);

This reference is created by the statement
 textField1.addActionListener(handler);

public void actionPerformed(
 ActionEvent event)
{
 // event handled here
}

listenerList

TextFieldHandler objectJTextField object

textField1 handler

...

12.9 JButton 495

occurs. The MouseEvent’s event ID determines which of the several mouse event-handling
methods are called. All these decisions are handled for you by the GUI components. All you
need to do is register an event handler for the particular event type that your application
requires, and the GUI component will ensure that the event handler’s appropriate method
gets called when the event occurs. We discuss other event types and event-listener interfaces
as they’re needed with each new component we introduce.

12.9 JButton
A button is a component the user clicks to trigger a specific action. A Java application can
use several types of buttons, including command buttons, checkboxes, toggle buttons and
radio buttons. Figure 12.14 shows the inheritance hierarchy of the Swing buttons we cov-
er in this chapter. As you can see, all the button types are subclasses of AbstractButton
(package javax.swing), which declares the common features of Swing buttons. In this
section, we concentrate on buttons that are typically used to initiate a command.

A command button (see Fig. 12.16’s output) generates an ActionEvent when the user
clicks it. Command buttons are created with class JButton. The text on the face of a
JButton is called a button label.

Performance Tip 12.1
GUIs should always remain responsive to the user. Performing a long-running task in an
event handler prevents the user from interacting with the GUI until that task completes.
Section 23.11 demonstrates techniques prevent such problems.

Fig. 12.14 | Swing button hierarchy.

Look-and-Feel Observation 12.8
The text on buttons typically uses book-title capitalization.

Look-and-Feel Observation 12.9
A GUI can have many JButtons, but each button label should be unique in the portion
of the GUI that’s currently displayed. Having more than one JButton with the same label
makes the JButtons ambiguous to the user.

JComponent

AbstractButton

JButton JToggleButton

JCheckBox JRadioButton

496 Chapter 12 GUI Components: Part 1

The application of Figs. 12.15 and 12.16 creates two JButtons and demonstrates that
JButtons can display Icons. Event handling for the buttons is performed by a single
instance of inner class ButtonHandler (Fig. 12.15, lines 39–48).

1 // Fig. 12.15: ButtonFrame.java
2 // Command buttons and action events.
3 import java.awt.FlowLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JButton;
8 import javax.swing.Icon;
9 import javax.swing.ImageIcon;

10 import javax.swing.JOptionPane;
11
12 public class ButtonFrame extends JFrame
13 {
14
15
16
17 // ButtonFrame adds JButtons to JFrame
18 public ButtonFrame()
19 {
20 super("Testing Buttons");
21 setLayout(new FlowLayout());
22
23
24 add(plainJButton); // add plainJButton to JFrame
25
26
27
28
29
30 add(fancyJButton); // add fancyJButton to JFrame
31
32
33
34
35
36 }
37
38 // inner class for button event handling
39
40 {
41 // handle button event
42 @Override
43 public void actionPerformed(ActionEvent event)
44 {
45 JOptionPane.showMessageDialog(, String.format(
46 "You pressed: %s",));
47 }
48 }
49 } // end class ButtonFrame

Fig. 12.15 | Command buttons and action events.

private final JButton plainJButton; // button with just text
private final JButton fancyJButton; // button with icons

plainJButton = new JButton("Plain Button"); // button with text

Icon bug1 = new ImageIcon(getClass().getResource("bug1.gif"));
Icon bug2 = new ImageIcon(getClass().getResource("bug2.gif"));
fancyJButton = new JButton("Fancy Button", bug1); // set image
fancyJButton.setRolloverIcon(bug2); // set rollover image

// create new ButtonHandler for button event handling
ButtonHandler handler = new ButtonHandler();
fancyJButton.addActionListener(handler);
plainJButton.addActionListener(handler);

private class ButtonHandler implements ActionListener

ButtonFrame.this
event.getActionCommand()

12.9 JButton 497

Lines 14–15 declare JButton variables plainJButton and fancyJButton. The corre-
sponding objects are instantiated in the constructor. Line 23 creates plainJButton with
the button label "Plain Button". Line 24 adds the JButton to the JFrame.

A JButton can display an Icon. To provide the user with an extra level of visual inter-
action with the GUI, a JButton can also have a rollover Icon—an Icon that’s displayed
when the user positions the mouse over the JButton. The icon on the JButton changes as
the mouse moves in and out of the JButton’s area on the screen. Lines 26–27 create two

1 // Fig. 12.16: ButtonTest.java
2 // Testing ButtonFrame.
3 import javax.swing.JFrame;
4
5 public class ButtonTest
6 {
7 public static void main(String[] args)
8 {
9 ButtonFrame buttonFrame = new ButtonFrame();

10 buttonFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 buttonFrame.setSize(275, 110);
12 buttonFrame.setVisible(true);
13 }
14 } // end class ButtonTest

Fig. 12.16 | Testing ButtonFrame.

498 Chapter 12 GUI Components: Part 1

ImageIcon objects that represent the default Icon and rollover Icon for the JButton cre-
ated at line 28. Both statements assume that the image files are stored in the same directory
as the application. Images are commonly placed in the same directory as the application or
a subdirectory like images). These image files have been provided for you with the
example.

Line 28 creates fancyButton with the text "Fancy Button" and the icon bug1. By
default, the text is displayed to the right of the icon. Line 29 uses setRolloverIcon (inher-
ited from class AbstractButton) to specify the image displayed on the JButton when the
user positions the mouse over it. Line 30 adds the JButton to the JFrame.

JButtons, like JTextFields, generate ActionEvents that can be processed by any
ActionListener object. Lines 33–35 create an object of private inner class ButtonHan-
dler and use addActionListener to register it as the event handler for each JButton. Class
ButtonHandler (lines 39–48) declares actionPerformed to display a message dialog box
containing the label for the button the user pressed. For a JButton event, ActionEvent
method getActionCommand returns the label on the JButton.

Accessing the this Reference in an Object of a Top-Level Class from an Inner Class
When you execute this application and click one of its buttons, notice that the message
dialog that appears is centered over the application’s window. This occurs because the call
to JOptionPane method showMessageDialog (lines 45–46) uses ButtonFrame.this rather
than null as the first argument. When this argument is not null, it represents the so-called
parent GUI component of the message dialog (in this case the application window is the
parent component) and enables the dialog to be centered over that component when the
dialog is displayed. ButtonFrame.this represents the this reference of the object of top-
level class ButtonFrame.

12.10 Buttons That Maintain State
The Swing GUI components contain three types of state buttons—JToggleButton,
JCheckBox and JRadioButton—that have on/off or true/false values. Classes JCheckBox
and JRadioButton are subclasses of JToggleButton (Fig. 12.14). A JRadioButton is dif-
ferent from a JCheckBox in that normally several JRadioButtons are grouped together and

Look-and-Feel Observation 12.10
Because class AbstractButton supports displaying text and images on a button, all sub-
classes of AbstractButton also support displaying text and images.

Look-and-Feel Observation 12.11
Rollover icons provide visual feedback indicating that an action will occur when when a
JButton is clicked.

Software Engineering Observation 12.2
When used in an inner class, keyword this refers to the current inner-class object being
manipulated. An inner-class method can use its outer-class object’s this by preceding this
with the outer-class name and a dot (.) separator, as in ButtonFrame.this.

12.10 Buttons That Maintain State 499

are mutually exclusive—only one in the group can be selected at any time, just like the but-
tons on a car radio. We first discuss class JCheckBox.

12.10.1 JCheckBox
The application of Figs. 12.17–12.18 uses two JCheckBoxes to select the desired font style
of the text displayed in a JTextField. When selected, one applies a bold style and the other
an italic style. If both are selected, the style is bold and italic. When the application initially
executes, neither JCheckBox is checked (i.e., they’re both false), so the font is plain. Class
CheckBoxTest (Fig. 12.18) contains the main method that executes this application.

1 // Fig. 12.17: CheckBoxFrame.java
2 // JCheckBoxes and item events.
3 import java.awt.FlowLayout;
4 import java.awt.Font;
5 import java.awt.event.ItemListener;
6 import java.awt.event.ItemEvent;
7 import javax.swing.JFrame;
8 import javax.swing.JTextField;
9 import javax.swing.JCheckBox;

10
11 public class CheckBoxFrame extends JFrame
12 {
13 private final JTextField textField; // displays text in changing fonts
14
15
16
17 // CheckBoxFrame constructor adds JCheckBoxes to JFrame
18 public CheckBoxFrame()
19 {
20 super("JCheckBox Test");
21 setLayout(new FlowLayout());
22
23 // set up JTextField and set its font
24 textField = new JTextField("Watch the font style change", 20);
25
26 add(textField); // add textField to JFrame
27
28 boldJCheckBox = new JCheckBox("Bold");
29 italicJCheckBox = new JCheckBox("Italic");
30 add(boldJCheckBox); // add bold checkbox to JFrame
31 add(italicJCheckBox); // add italic checkbox to JFrame
32
33
34
35
36
37 }
38
39 // private inner class for ItemListener event handling
40
41 {

Fig. 12.17 | JCheckBoxes and item events. (Part 1 of 2.)

private final JCheckBox boldJCheckBox; // to select/deselect bold
private final JCheckBox italicJCheckBox; // to select/deselect italic

textField.setFont(new Font("Serif", Font.PLAIN, 14));

// register listeners for JCheckBoxes
CheckBoxHandler handler = new CheckBoxHandler();
boldJCheckBox.addItemListener(handler);
italicJCheckBox.addItemListener(handler);

private class CheckBoxHandler implements ItemListener

500 Chapter 12 GUI Components: Part 1

After the JTextField is created and initialized (Fig. 12.17, line 24), line 25 uses
method setFont (inherited by JTextField indirectly from class Component) to set the font
of the JTextField to a new object of class Font (package java.awt). The new Font is ini-

42 // respond to checkbox events
43 @Override
44
45 {
46 Font font = null; // stores the new Font
47
48 // determine which CheckBoxes are checked and create Font
49 if ()
50 font = new Font("Serif", Font.BOLD + Font.ITALIC, 14);
51 else if ()
52 font = new Font("Serif", Font.BOLD, 14);
53 else if ()
54 font = new Font("Serif", Font.ITALIC, 14);
55 else
56 font = new Font("Serif", Font.PLAIN, 14);
57
58 textField.setFont(font);
59 }
60 }
61 } // end class CheckBoxFrame

1 // Fig. 12.18: CheckBoxTest.java
2 // Testing CheckBoxFrame.
3 import javax.swing.JFrame;
4
5 public class CheckBoxTest
6 {
7 public static void main(String[] args)
8 {
9 CheckBoxFrame checkBoxFrame = new CheckBoxFrame();

10 checkBoxFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 checkBoxFrame.setSize(275, 100);
12 checkBoxFrame.setVisible(true);
13 }
14 } // end class CheckBoxTest

Fig. 12.18 | Testing CheckBoxFrame.

Fig. 12.17 | JCheckBoxes and item events. (Part 2 of 2.)

public void itemStateChanged(ItemEvent event)

boldJCheckBox.isSelected() && italicJCheckBox.isSelected()

boldJCheckBox.isSelected()

italicJCheckBox.isSelected()

12.10 Buttons That Maintain State 501

tialized with "Serif" (a generic font name that represents a font such as Times and is sup-
ported on all Java platforms), Font.PLAIN style and 14-point size. Next, lines 28–29 create
two JCheckBox objects. The String passed to the JCheckBox constructor is the checkbox
label that appears to the right of the JCheckBox by default.

When the user clicks a JCheckBox, an ItemEvent occurs. This event can be handled
by an ItemListener object, which must implement method itemStateChanged. In this
example, the event handling is performed by an instance of private inner class CheckBox-
Handler (lines 40–60). Lines 34–36 create an instance of class CheckBoxHandler and reg-
ister it with method addItemListener as the listener for both the JCheckBox objects.

CheckBoxHandler method itemStateChanged (lines 43–59) is called when the user
clicks the either boldJCheckBox or italicJCheckBox. In this example, we do not deter-
mine which JCheckBox was clicked—we use both of their states to determine the font to
display. Line 49 uses JCheckBox method isSelected to determine if both JCheckBoxes are
selected. If so, line 50 creates a bold italic font by adding the Font constants Font.BOLD
and Font.ITALIC for the font-style argument of the Font constructor. Line 51 determines
whether the boldJCheckBox is selected, and if so line 52 creates a bold font. Line 53 deter-
mines whether the italicJCheckBox is selected, and if so line 54 creates an italic font. If
none of the preceding conditions are true, line 56 creates a plain font using the Font con-
stant Font.PLAIN. Finally, line 58 sets textField’s new font, which changes the font in
the JTextField on the screen.

Relationship Between an Inner Class and Its Top-Level Class
Class CheckBoxHandler used variables boldJCheckBox (lines 49 and 51), italicJCheck-
Box (lines 49 and 53) and textField (line 58) even though they are not declared in the
inner class. Recall that an inner class has a special relationship with its top-level class—it’s
allowed to access all the variables and methods of the top-level class. CheckBoxHandler
method itemStateChanged (line 43–59) uses this relationship to determine which
JCheckBoxes are checked and to set the font on the JTextField. Notice that none of the
code in inner class CheckBoxHandler requires an explicit reference to the top-level class
object.

12.10.2 JRadioButton
Radio buttons (declared with class JRadioButton) are similar to checkboxes in that they
have two states—selected and not selected (also called deselected). However, radio buttons
normally appear as a group in which only one button can be selected at a time (see the out-
put of Fig. 12.20). Radio buttons are used to represent mutually exclusive options (i.e.,
multiple options in the group cannot be selected at the same time). The logical relationship
between radio buttons is maintained by a ButtonGroup object (package javax.swing),
which itself is not a GUI component. A ButtonGroup object organizes a group of buttons
and is not itself displayed in a user interface. Rather, the individual JRadioButton objects
from the group are displayed in the GUI.

The application of Figs. 12.19–12.20 is similar to that of Figs. 12.17–12.18. The user
can alter the font style of a JTextField’s text. The application uses radio buttons that
permit only a single font style in the group to be selected at a time. Class RadioButtonTest
(Fig. 12.20) contains the main method that executes this application.

502 Chapter 12 GUI Components: Part 1

1 // Fig. 12.19: RadioButtonFrame.java
2 // Creating radio buttons using ButtonGroup and JRadioButton.
3 import java.awt.FlowLayout;
4 import java.awt.Font;
5 import java.awt.event.ItemListener;
6 import java.awt.event.ItemEvent;
7 import javax.swing.JFrame;
8 import javax.swing.JTextField;
9 import javax.swing.JRadioButton;

10 import javax.swing.ButtonGroup;
11
12 public class RadioButtonFrame extends JFrame
13 {
14 private final JTextField textField; // used to display font changes
15 private final Font plainFont; // font for plain text
16 private final Font boldFont; // font for bold text
17 private final Font italicFont; // font for italic text
18 private final Font boldItalicFont; // font for bold and italic text
19
20
21
22
23
24
25 // RadioButtonFrame constructor adds JRadioButtons to JFrame
26 public RadioButtonFrame()
27 {
28 super("RadioButton Test");
29 setLayout(new FlowLayout());
30
31 textField = new JTextField("Watch the font style change", 25);
32 add(textField); // add textField to JFrame
33
34 // create radio buttons
35
36
37
38
39 add(plainJRadioButton); // add plain button to JFrame
40 add(boldJRadioButton); // add bold button to JFrame
41 add(italicJRadioButton); // add italic button to JFrame
42 add(boldItalicJRadioButton); // add bold and italic button
43
44
45
46
47
48
49
50
51 // create font objects
52 plainFont = new Font("Serif", Font.PLAIN, 14);
53 boldFont = new Font("Serif", Font.BOLD, 14);

Fig. 12.19 | Creating radio buttons using ButtonGroup and JRadioButton. (Part 1 of 2.)

private final JRadioButton plainJRadioButton; // selects plain text
private final JRadioButton boldJRadioButton; // selects bold text
private final JRadioButton italicJRadioButton; // selects italic text
private final JRadioButton boldItalicJRadioButton; // bold and italic
private final ButtonGroup radioGroup; // holds radio buttons

plainJRadioButton = new JRadioButton("Plain", true);
boldJRadioButton = new JRadioButton("Bold", false);
italicJRadioButton = new JRadioButton("Italic", false);
boldItalicJRadioButton = new JRadioButton("Bold/Italic", false);

// create logical relationship between JRadioButtons
radioGroup = new ButtonGroup(); // create ButtonGroup
radioGroup.add(plainJRadioButton); // add plain to group
radioGroup.add(boldJRadioButton); // add bold to group
radioGroup.add(italicJRadioButton); // add italic to group
radioGroup.add(boldItalicJRadioButton); // add bold and italic

12.10 Buttons That Maintain State 503

54 italicFont = new Font("Serif", Font.ITALIC, 14);
55 boldItalicFont = new Font("Serif", Font.BOLD + Font.ITALIC, 14);
56 textField.setFont(plainFont);
57
58
59
60
61
62
63
64
65
66
67 }
68
69 // private inner class to handle radio button events
70
71 {
72 private Font font; // font associated with this listener
73
74
75 {
76 font = f;
77 }
78
79 // handle radio button events
80 @Override
81 public void itemStateChanged(ItemEvent event)
82 {
83 textField.setFont(font);
84 }
85 }
86 } // end class RadioButtonFrame

1 // Fig. 12.20: RadioButtonTest.java
2 // Testing RadioButtonFrame.
3 import javax.swing.JFrame;
4
5 public class RadioButtonTest
6 {
7 public static void main(String[] args)
8 {
9 RadioButtonFrame radioButtonFrame = new RadioButtonFrame();

10 radioButtonFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 radioButtonFrame.setSize(300, 100);
12 radioButtonFrame.setVisible(true);
13 }
14 } // end class RadioButtonTest

Fig. 12.20 | Testing RadioButtonFrame. (Part 1 of 2.)

Fig. 12.19 | Creating radio buttons using ButtonGroup and JRadioButton. (Part 2 of 2.)

// register events for JRadioButtons
plainJRadioButton.addItemListener(
 new RadioButtonHandler(plainFont));
boldJRadioButton.addItemListener(
 new RadioButtonHandler(boldFont));
italicJRadioButton.addItemListener(
 new RadioButtonHandler(italicFont));
boldItalicJRadioButton.addItemListener(
 new RadioButtonHandler(boldItalicFont));

private class RadioButtonHandler implements ItemListener

public RadioButtonHandler(Font f)

504 Chapter 12 GUI Components: Part 1

Lines 35–42 (Fig. 12.19) in the constructor create four JRadioButton objects and add
them to the JFrame. Each JRadioButton is created with a constructor call like that in line
35. This constructor specifies the label that appears to the right of the JRadioButton by
default and the initial state of the JRadioButton. A true second argument indicates that
the JRadioButton should appear selected when it’s displayed.

Line 45 instantiates ButtonGroup object radioGroup. This object is the “glue” that
forms the logical relationship between the four JRadioButton objects and allows only one
of the four to be selected at a time. It’s possible that no JRadioButtons in a ButtonGroup
are selected, but this can occur only if no preselected JRadioButtons are added to the But-
tonGroup and the user has not selected a JRadioButton yet. Lines 46–49 use ButtonGroup
method add to associate each of the JRadioButtons with radioGroup. If more than one
selected JRadioButton object is added to the group, the selected one that was added first
will be selected when the GUI is displayed.

JRadioButtons, like JCheckBoxes, generate ItemEvents when they’re clicked. Lines
59–66 create four instances of inner class RadioButtonHandler (declared at lines 70–85).
In this example, each event-listener object is registered to handle the ItemEvent generated
when the user clicks a particular JRadioButton. Notice that each RadioButtonHandler
object is initialized with a particular Font object (created in lines 52–55).

Class RadioButtonHandler (line 70–85) implements interface ItemListener so it can
handle ItemEvents generated by the JRadioButtons. The constructor stores the Font
object it receives as an argument in the event-listener object’s instance variable font
(declared at line 72). When the user clicks a JRadioButton, radioGroup turns off the pre-
viously selected JRadioButton, and method itemStateChanged (lines 80–84) sets the font
in the JTextField to the Font stored in the JRadioButton’s corresponding event-listener
object. Notice that line 83 of inner class RadioButtonHandler uses the top-level class’s
textField instance variable to set the font.

12.11 JComboBox; Using an Anonymous Inner Class for
Event Handling
A combo box (sometimes called a drop-down list) enables the user to select one item from
a list (Fig. 12.22). Combo boxes are implemented with class JComboBox, which extends

Fig. 12.20 | Testing RadioButtonFrame. (Part 2 of 2.)

12.11 JComboBox; Using an Anonymous Inner Class for Event Handling 505

class JComponent. JComboBox is a generic class, like the class ArrayList (Chapter 7). When
you create a JComboBox, you specify the type of the objects that it manages—the JCombo-
Box then displays a String representation of each object.

1 // Fig. 12.21: ComboBoxFrame.java
2 // JComboBox that displays a list of image names.
3 import java.awt.FlowLayout;
4 import java.awt.event.ItemListener;
5 import java.awt.event.ItemEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JLabel;
8 import javax.swing.JComboBox;
9 import javax.swing.Icon;

10 import javax.swing.ImageIcon;
11
12 public class ComboBoxFrame extends JFrame
13 {
14
15 private final JLabel label; // displays selected icon
16
17 private static final String[] names =
18 {"bug1.gif", "bug2.gif", "travelbug.gif", "buganim.gif"};
19 private final Icon[] icons = {
20 new ImageIcon(getClass().getResource(names[0])),
21 new ImageIcon(getClass().getResource(names[1])),
22 new ImageIcon(getClass().getResource(names[2])),
23 new ImageIcon(getClass().getResource(names[3]))};
24
25 // ComboBoxFrame constructor adds JComboBox to JFrame
26 public ComboBoxFrame()
27 {
28 super("Testing JComboBox");
29 setLayout(new FlowLayout()); // set frame layout
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Fig. 12.21 | JComboBox that displays a list of image names. (Part 1 of 2.)

private final JComboBox<String> imagesJComboBox; // holds icon names

imagesJComboBox = new JComboBox<String>(names); // set up JComboBox
imagesJComboBox.setMaximumRowCount(3); // display three rows

imagesJComboBox.addItemListener(
 new ItemListener() // anonymous inner class
 {
 // handle JComboBox event
 @Override
 public void itemStateChanged(ItemEvent event)
 {
 // determine whether item selected
 if (event.getStateChange() == ItemEvent.SELECTED)
 label.setIcon(icons[
 imagesJComboBox.getSelectedIndex()]);
 }
 } // end anonymous inner class
); // end call to addItemListener

506 Chapter 12 GUI Components: Part 1

JComboBoxes generate ItemEvents just as JCheckBoxes and JRadioButtons do. This
example also demonstrates a special form of inner class that’s used frequently in event han-
dling. The application (Figs. 12.21–12.22) uses a JComboBox to provide a list of four image
filenames from which the user can select one image to display. When the user selects a
name, the application displays the corresponding image as an Icon on a JLabel. Class Com-
boBoxTest (Fig. 12.22) contains the main method that executes this application. The
screen captures for this application show the JComboBox list after the selection was made
to illustrate which image filename was selected.

49 add(imagesJComboBox); // add combo box to JFrame
50 label = new JLabel(icons[0]); // display first icon
51 add(label); // add label to JFrame
52 }
53 } // end class ComboBoxFrame

1 // Fig. 12.22: ComboBoxTest.java
2 // Testing ComboBoxFrame.
3 import javax.swing.JFrame;
4
5 public class ComboBoxTest
6 {
7 public static void main(String[] args)
8 {
9 ComboBoxFrame comboBoxFrame = new ComboBoxFrame();

10 comboBoxFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 comboBoxFrame.setSize(350, 150);
12 comboBoxFrame.setVisible(true);
13 }
14 } // end class ComboBoxTest

Fig. 12.22 | Testing ComboBoxFrame.

Fig. 12.21 | JComboBox that displays a list of image names. (Part 2 of 2.)

Scrollbar to scroll through the
items in the list

Scroll arrowsScroll box

12.11 JComboBox; Using an Anonymous Inner Class for Event Handling 507

Lines 19–23 (Fig. 12.21) declare and initialize array icons with four new ImageIcon
objects. String array names (lines 17–18) contains the names of the four image files that
are stored in the same directory as the application.

At line 31, the constructor initializes a JComboBox object with the Strings in array
names as the elements in the list. Each item in the list has an index. The first item is added
at index 0, the next at index 1 and so forth. The first item added to a JComboBox appears
as the currently selected item when the JComboBox is displayed. Other items are selected
by clicking the JComboBox, then selecting an item from the list that appears.

Line 32 uses JComboBox method setMaximumRowCount to set the maximum number
of elements that are displayed when the user clicks the JComboBox. If there are additional
items, the JComboBox provides a scrollbar (see the first screen) that allows the user to scroll
through all the elements in the list. The user can click the scroll arrows at the top and
bottom of the scrollbar to move up and down through the list one element at a time, or
else drag the scroll box in the middle of the scrollbar up and down. To drag the scroll box,
position the mouse cursor on it, hold the mouse button down and move the mouse. In
this example, the drop-down list is too short to drag the scroll box, so you can click the up
and down arrows or use your mouse’s wheel to scroll through the four items in the list.
Line 49 attaches the JComboBox to the ComboBoxFrame’s FlowLayout (set in line 29). Line
50 creates the JLabel that displays ImageIcons and initializes it with the first ImageIcon
in array icons. Line 51 attaches the JLabel to the ComboBoxFrame’s FlowLayout.

Using an Anonymous Inner Class for Event Handling
Lines 34–46 are one statement that declares the event listener’s class, creates an object of
that class and registers it as imagesJComboBox’s ItemEvent listener. This event-listener ob-
ject is an instance of an anonymous inner class—a class that’s declared without a name
and typically appears inside a method declaration. As with other inner classes, an anonymous
inner class can access its top-level class’s members. However, an anonymous inner class has
limited access to the local variables of the method in which it’s declared. Since an anony-
mous inner class has no name, one object of the class must be created at the point where
the class is declared (starting at line 35).

Lines 34–47 are a call to imagesJComboBox’s addItemListener method. The argu-
ment to this method must be an object that is an ItemListener (i.e., any object of a class
that implements ItemListener). Lines 35–46 are a class-instance creation expression that
declares an anonymous inner class and creates one object of that class. A reference to that
object is then passed as the argument to addItemListener. The syntax ItemListener()

Look-and-Feel Observation 12.12
Set the maximum row count for a JComboBox to a number of rows that prevents the list
from expanding outside the bounds of the window in which it’s used.

Software Engineering Observation 12.3
An anonymous inner class declared in a method can access the instance variables and
methods of the top-level class object that declared it, as well as the method’s final local
variables, but cannot access the method’s non-final local variables. As of Java SE 8,
anonymous inner classes may also access a methods “effectively final” local variables—see
Chapter 17 for more information.

508 Chapter 12 GUI Components: Part 1

after new begins the declaration of an anonymous inner class that implements interface
ItemListener. This is similar to beginning a class declaration with

The opening left brace at line 36 and the closing right brace at line 46 delimit the
body of the anonymous inner class. Lines 38–45 declare the ItemListener’s itemState-
Changed method. When the user makes a selection from imagesJComboBox, this method
sets label’s Icon. The Icon is selected from array icons by determining the index of the
selected item in the JComboBox with method getSelectedIndex in line 44. For each item
selected from a JComboBox, another item is first deselected—so two ItemEvents occur
when an item is selected. We wish to display only the icon for the item the user just
selected. For this reason, line 42 determines whether ItemEvent method getStateChange
returns ItemEvent.SELECTED. If so, lines 43–44 set label’s icon.

The syntax shown in lines 35–46 for creating an event handler with an anonymous
inner class is similar to the code that would be generated by a Java integrated development
environment (IDE). Typically, an IDE enables you to design a GUI visually, then it gen-
erates code that implements the GUI. You simply insert statements in the event-handling
methods that declare how to handle each event.

Java SE 8: Implementing Anonymous Inner Classes with Lambdas
In Section 17.9, we show how to use Java SE 8 lambdas to create event handlers. As you’ll
learn, the compiler translates a lambda into an object of an anonymous inner class.

12.12 JList
A list displays a series of items from which the user may select one or more items (see the output
of Fig. 12.24). Lists are created with class JList, which directly extends class JComponent.
Class JList—which like JComboBox is a generic class—supports single-selection lists (which
allow only one item to be selected at a time) and multiple-selection lists (which allow any
number of items to be selected). In this section, we discuss single-selection lists.

The application of Figs. 12.23–12.24 creates a JList containing 13 color names.
When a color name is clicked in the JList, a ListSelectionEvent occurs and the appli-
cation changes the background color of the application window to the selected color. Class
ListTest (Fig. 12.24) contains the main method that executes this application.

public class MyHandler implements ItemListener

Software Engineering Observation 12.4
Like any other class, when an anonymous inner class implements an interface, the class
must implement every abstract method in the interface.

1 // Fig. 12.23: ListFrame.java
2 // JList that displays a list of colors.
3 import java.awt.FlowLayout;
4 import java.awt.Color;
5 import javax.swing.JFrame;
6 import javax.swing.JList;

Fig. 12.23 | JList that displays a list of colors. (Part 1 of 2.)

12.12 JList 509

7 import javax.swing.JScrollPane;
8 import javax.swing.event.ListSelectionListener;
9 import javax.swing.event.ListSelectionEvent;

10 import javax.swing.ListSelectionModel;
11
12 public class ListFrame extends JFrame
13 {
14
15 private static final String[] colorNames = {"Black", "Blue", "Cyan",
16 "Dark Gray", "Gray", "Green", "Light Gray", "Magenta",
17 "Orange", "Pink", "Red", "White", "Yellow"};
18 private static final Color[] colors = {Color.BLACK, Color.BLUE,
19 Color.CYAN, Color.DARK_GRAY, Color.GRAY, Color.GREEN,
20 Color.LIGHT_GRAY, Color.MAGENTA, Color.ORANGE, Color.PINK,
21 Color.RED, Color.WHITE, Color.YELLOW};
22
23 // ListFrame constructor add JScrollPane containing JList to JFrame
24 public ListFrame()
25 {
26 super("List Test");
27 setLayout(new FlowLayout());
28
29
30
31
32
33
34
35
36
37
38 colorJList.addListSelectionListener(
39 new ListSelectionListener() // anonymous inner class
40 {
41 // handle list selection events
42 @Override
43 public void valueChanged(ListSelectionEvent event)
44 {
45 getContentPane().setBackground(
46 colors[]);
47 }
48 }
49);
50 }
51 } // end class ListFrame

1 // Fig. 12.24: ListTest.java
2 // Selecting colors from a JList.
3 import javax.swing.JFrame;
4

Fig. 12.24 | Selecting colors from a JList. (Part 1 of 2.)

Fig. 12.23 | JList that displays a list of colors. (Part 2 of 2.)

private final JList<String> colorJList; // list to display colors

colorJList = new JList<String>(colorNames); // list of colorNames
colorJList.setVisibleRowCount(5); // display five rows at once

// do not allow multiple selections
colorJList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

// add a JScrollPane containing JList to frame
add(new JScrollPane(colorJList));

colorJList.getSelectedIndex()

510 Chapter 12 GUI Components: Part 1

Line 29 (Fig. 12.23) creates JList object colorJList. The argument to the JList
constructor is the array of Objects (in this case Strings) to display in the list. Line 30 uses
JList method setVisibleRowCount to determine the number of items visible in the list.

Line 33 uses JList method setSelectionMode to specify the list’s selection mode.
Class ListSelectionModel (of package javax.swing) declares three constants that specify
a JList’s selection mode—SINGLE_SELECTION (which allows only one item to be selected
at a time), SINGLE_INTERVAL_SELECTION (for a multiple-selection list that allows selection
of several contiguous items) and MULTIPLE_INTERVAL_SELECTION (for a multiple-selection
list that does not restrict the items that can be selected).

Unlike a JComboBox, a JList does not provide a scrollbar if there are more items in the
list than the number of visible rows. In this case, a JScrollPane object is used to provide
the scrolling capability. Line 36 adds a new instance of class JScrollPane to the JFrame.
The JScrollPane constructor receives as its argument the JComponent that needs scrolling
functionality (in this case, colorJList). Notice in the screen captures that a scrollbar cre-
ated by the JScrollPane appears at the right side of the JList. By default, the scrollbar
appears only when the number of items in the JList exceeds the number of visible items.

Lines 38–49 use JList method addListSelectionListener to register an object that
implements ListSelectionListener (package javax.swing.event) as the listener for the
JList’s selection events. Once again, we use an instance of an anonymous inner class (lines
39–48) as the listener. In this example, when the user makes a selection from colorJList,
method valueChanged (line 42–47) should change the background color of the List-
Frame to the selected color. This is accomplished in lines 45–46. Note the use of JFrame
method getContentPane in line 45. Each JFrame actually consists of three layers—the
background, the content pane and the glass pane. The content pane appears in front of the
background and is where the GUI components in the JFrame are displayed. The glass pane
is used to display tool tips and other items that should appear in front of the GUI compo-
nents on the screen. The content pane completely hides the background of the JFrame;
thus, to change the background color behind the GUI components, you must change the
content pane’s background color. Method getContentPane returns a reference to the

5 public class ListTest
6 {
7 public static void main(String[] args)
8 {
9 ListFrame listFrame = new ListFrame(); // create ListFrame

10 listFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 listFrame.setSize(350, 150);
12 listFrame.setVisible(true);
13 }
14 } // end class ListTest

Fig. 12.24 | Selecting colors from a JList. (Part 2 of 2.)

12.13 Multiple-Selection Lists 511

JFrame’s content pane (an object of class Container). In line 45, we then use that reference
to call method setBackground, which sets the content pane’s background color to an ele-
ment in the colors array. The color is selected from the array by using the selected item’s
index. JList method getSelectedIndex returns the selected item’s index. As with arrays
and JComboBoxes, JList indexing is zero based.

12.13 Multiple-Selection Lists
A multiple-selection list enables the user to select many items from a JList (see the output
of Fig. 12.26). A SINGLE_INTERVAL_SELECTION list allows selecting a contiguous range of
items. To do so, click the first item, then press and hold the Shift key while clicking the
last item in the range. A MULTIPLE_INTERVAL_SELECTION list (the default) allows continu-
ous range selection as described for a SINGLE_INTERVAL_SELECTION list. Such a list also al-
lows miscellaneous items to be selected by pressing and holding the Ctrl key while clicking
each item to select. To deselect an item, press and hold the Ctrl key while clicking the item
a second time.

The application of Figs. 12.25–12.26 uses multiple-selection lists to copy items from
one JList to another. One list is a MULTIPLE_INTERVAL_SELECTION list and the other is a
SINGLE_INTERVAL_SELECTION list. When you execute the application, try using the selec-
tion techniques described previously to select items in both lists.

1 // Fig. 12.25: MultipleSelectionFrame.java
2 // JList that allows multiple selections.
3 import java.awt.FlowLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JList;
8 import javax.swing.JButton;
9 import javax.swing.JScrollPane;

10 import javax.swing.ListSelectionModel;
11
12 public class MultipleSelectionFrame extends JFrame
13 {
14 private final JList<String> colorJList; // list to hold color names
15 private final JList<String> copyJList; // list to hold copied names
16 private JButton copyJButton; // button to copy selected names
17 private static final String[] colorNames = {"Black", "Blue", "Cyan",
18 "Dark Gray", "Gray", "Green", "Light Gray", "Magenta", "Orange",
19 "Pink", "Red", "White", "Yellow"};
20
21 // MultipleSelectionFrame constructor
22 public MultipleSelectionFrame()
23 {
24 super("Multiple Selection Lists");
25 setLayout(new FlowLayout());
26
27 colorJList = new JList<String>(colorNames); // list of color names
28 colorJList.setVisibleRowCount(5); // show five rows

Fig. 12.25 | JList that allows multiple selections. (Part 1 of 2.)

512 Chapter 12 GUI Components: Part 1

29
30
31 add(new JScrollPane(colorJList)); // add list with scrollpane
32
33 copyJButton = new JButton("Copy >>>");
34 copyJButton.addActionListener(
35 new ActionListener() // anonymous inner class
36 {
37 // handle button event
38 @Override
39 public void actionPerformed(ActionEvent event)
40 {
41 // place selected values in copyJList
42
43
44
45 }
46 }
47);
48
49 add(copyJButton); // add copy button to JFrame
50
51 copyJList = new JList<String>(); // list to hold copied color names
52 copyJList.setVisibleRowCount(5); // show 5 rows
53
54
55
56
57 add(new JScrollPane(copyJList)); // add list with scrollpane
58 }
59 } // end class MultipleSelectionFrame

1 // Fig. 12.26: MultipleSelectionTest.java
2 // Testing MultipleSelectionFrame.
3 import javax.swing.JFrame;
4
5 public class MultipleSelectionTest
6 {
7 public static void main(String[] args)
8 {
9 MultipleSelectionFrame multipleSelectionFrame =

10 new MultipleSelectionFrame();
11 multipleSelectionFrame.setDefaultCloseOperation(
12 JFrame.EXIT_ON_CLOSE);
13 multipleSelectionFrame.setSize(350, 150);
14 multipleSelectionFrame.setVisible(true);
15 }
16 } // end class MultipleSelectionTest

Fig. 12.26 | Testing MultipleSelectionFrame. (Part 1 of 2.)

Fig. 12.25 | JList that allows multiple selections. (Part 2 of 2.)

colorJList.setSelectionMode(
 ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);

copyJList.setListData(
 colorJList.getSelectedValuesList().toArray(
 new String[0]));

copyJList.setFixedCellWidth(100); // set width
copyJList.setFixedCellHeight(15); // set height
copyJList.setSelectionMode(
 ListSelectionModel.SINGLE_INTERVAL_SELECTION);

12.14 Mouse Event Handling 513

Line 27 of Fig. 12.25 creates JList colorJList and initializes it with the Strings in
the array colorNames. Line 28 sets the number of visible rows in colorJList to 5. Lines
29–30 specify that colorJList is a MULTIPLE_INTERVAL_SELECTION list. Line 31 adds a
new JScrollPane containing colorJList to the JFrame. Lines 51–57 perform similar
tasks for copyJList, which is declared as a SINGLE_INTERVAL_SELECTION list. If a JList
does not contain items, it will not diplay in a FlowLayout. For this reason, lines 53–54 use
JList methods setFixedCellWidth and setFixedCellHeight to set copyJList’s width
to 100 pixels and the height of each item in the JList to 15 pixels, respectively.

Normally, an event generated by another GUI component (known as an external
event) specifies when the multiple selections in a JList should be processed. In this
example, the user clicks the JButton called copyJButton to trigger the event that copies
the selected items in colorJList to copyJList.

Lines 34–47 declare, create and register an ActionListener for the copyJButton.
When the user clicks copyJButton, method actionPerformed (lines 38–45) uses JList
method setListData to set the items displayed in copyJList. Lines 43–44 call color-
JList’s method getSelectedValuesList, which returns a List<String> (because the
JList was created as a JList<String>) representing the selected items in colorJList. We
call the List<String>’s toArray method to convert this into an array of Strings that can
be passed as the argument to copyJList’s setListData method. List method toArray
receives as its argument an array representing the type of array that the method will return.
You’ll learn more about List and toArray in Chapter 16.

You might be wondering why copyJList can be used in line 42 even though the
application does not create the object to which it refers until line 49. Remember that
method actionPerformed (lines 38–45) does not execute until the user presses the copy-
JButton, which cannot occur until after the constructor completes execution and the
application displays the GUI. At that point in the application’s execution, copyJList is
already initialized with a new JList object.

12.14 Mouse Event Handling
This section presents the MouseListener and MouseMotionListener event-listener inter-
faces for handling mouse events. Mouse events can be processed for any GUI component
that derives from java.awt.Component. The methods of interfaces MouseListener and
MouseMotionListener are summarized in Figure 12.27. Package javax.swing.event
contains interface MouseInputListener, which extends interfaces MouseListener and
MouseMotionListener to create a single interface containing all the MouseListener and
MouseMotionListener methods. The MouseListener and MouseMotionListener meth-

Fig. 12.26 | Testing MultipleSelectionFrame. (Part 2 of 2.)

514 Chapter 12 GUI Components: Part 1

ods are called when the mouse interacts with a Component if appropriate event-listener ob-
jects are registered for that Component.

Each of the mouse event-handling methods receives as an argument a MouseEvent
object that contains information about the mouse event that occurred, including the x-
and y-coordinates of its location. These coordinates are measured from the upper-left corner
of the GUI component on which the event occurred. The x-coordinates start at 0 and
increase from left to right. The y-coordinates start at 0 and increase from top to bottom. The
methods and constants of class InputEvent (MouseEvent’s superclass) enable you to deter-
mine which mouse button the user clicked.

MouseListener and MouseMotionListener interface methods

Methods of interface MouseListener

public void mousePressed(MouseEvent event)

Called when a mouse button is pressed while the mouse cursor is on a component.

public void mouseClicked(MouseEvent event)

Called when a mouse button is pressed and released while the mouse cursor remains sta-
tionary on a component. Always preceded by a call to mousePressed and mouseReleased.

public void mouseReleased(MouseEvent event)

Called when a mouse button is released after being pressed. Always preceded by a call to
mousePressed and one or more calls to mouseDragged.

public void mouseEntered(MouseEvent event)

Called when the mouse cursor enters the bounds of a component.

public void mouseExited(MouseEvent event)

Called when the mouse cursor leaves the bounds of a component.

Methods of interface MouseMotionListener

public void mouseDragged(MouseEvent event)

Called when the mouse button is pressed while the mouse cursor is on a component and
the mouse is moved while the mouse button remains pressed. Always preceded by a call to
mousePressed. All drag events are sent to the component on which the user began to drag
the mouse.

public void mouseMoved(MouseEvent event)

Called when the mouse is moved (with no mouse buttons pressed) when the mouse cursor
is on a component. All move events are sent to the component over which the mouse is
currently positioned.

Fig. 12.27 | MouseListener and MouseMotionListener interface methods.

Software Engineering Observation 12.5
Calls to mouseDragged are sent to the MouseMotionListener for the Component on which
the drag started. Similarly, the mouseReleased call at the end of a drag operation is sent
to the MouseListener for the Component on which the drag operation started.

12.14 Mouse Event Handling 515

Java also provides interface MouseWheelListener to enable applications to respond to
the rotation of a mouse wheel. This interface declares method mouseWheelMoved, which
receives a MouseWheelEvent as its argument. Class MouseWheelEvent (a subclass of Mouse-
Event) contains methods that enable the event handler to obtain information about the
amount of wheel rotation.

Tracking Mouse Events on a JPanel
The MouseTracker application (Figs. 12.28–12.29) demonstrates the MouseListener and
MouseMotionListener interface methods. The event-handler class (lines 36–97 of
Fig. 12.28) implements both interfaces. You must declare all seven methods from these two
interfaces when your class implements them both. Each mouse event in this example displays
a String in the JLabel called statusBar that is attached to the bottom of the window.

1 // Fig. 12.28: MouseTrackerFrame.java
2 // Mouse event handling.
3 import java.awt.Color;
4 import java.awt.BorderLayout;
5 import java.awt.event.MouseListener;
6 import java.awt.event.MouseMotionListener;
7 import java.awt.event.MouseEvent;
8 import javax.swing.JFrame;
9 import javax.swing.JLabel;

10 import javax.swing.JPanel;
11
12 public class MouseTrackerFrame extends JFrame
13 {
14 private final JPanel mousePanel; // panel in which mouse events occur
15 private final JLabel statusBar; // displays event information
16
17 // MouseTrackerFrame constructor sets up GUI and
18 // registers mouse event handlers
19 public MouseTrackerFrame()
20 {
21 super("Demonstrating Mouse Events");
22
23
24
25
26
27
28
29
30
31
32
33
34 }
35

Fig. 12.28 | Mouse event handling. (Part 1 of 3.)

mousePanel = new JPanel();
mousePanel.setBackground(Color.WHITE);
add(mousePanel, BorderLayout.CENTER); // add panel to JFrame

statusBar = new JLabel("Mouse outside JPanel");
add(statusBar, BorderLayout.SOUTH); // add label to JFrame

// create and register listener for mouse and mouse motion events
MouseHandler handler = new MouseHandler();
mousePanel.addMouseListener(handler);
mousePanel.addMouseMotionListener(handler);

516 Chapter 12 GUI Components: Part 1

36
37
38 {
39 // MouseListener event handlers
40 // handle event when mouse released immediately after press
41 @Override
42
43 {
44 statusBar.setText(String.format("Clicked at [%d, %d]",
45 ,));
46 }
47
48 // handle event when mouse pressed
49 @Override
50
51 {
52 statusBar.setText(String.format("Pressed at [%d, %d]",
53 ,));
54 }
55
56 // handle event when mouse released
57 @Override
58
59 {
60 statusBar.setText(String.format("Released at [%d, %d]",
61 ,));
62 }
63
64 // handle event when mouse enters area
65 @Override
66
67 {
68 statusBar.setText(String.format("Mouse entered at [%d, %d]",
69 ,));
70
71 }
72
73 // handle event when mouse exits area
74 @Override
75
76 {
77 statusBar.setText("Mouse outside JPanel");
78
79 }
80
81 // MouseMotionListener event handlers
82 // handle event when user drags mouse with button pressed
83 @Override
84
85 {
86 statusBar.setText(String.format("Dragged at [%d, %d]",
87 ,));
88 }

Fig. 12.28 | Mouse event handling. (Part 2 of 3.)

private class MouseHandler implements MouseListener,
 MouseMotionListener

public void mouseClicked(MouseEvent event)’

event.getX() event.getY()

public void mousePressed(MouseEvent event)

event.getX() event.getY()

public void mouseReleased(MouseEvent event)

event.getX() event.getY()

public void mouseEntered(MouseEvent event)

event.getX() event.getY()
mousePanel.setBackground(Color.GREEN);

public void mouseExited(MouseEvent event)

mousePanel.setBackground(Color.WHITE);

public void mouseDragged(MouseEvent event)

event.getX() event.getY()

12.14 Mouse Event Handling 517

Line 23 creates JPanel mousePanel. This JPanel’s mouse events aretracked by the app.
Line 24 sets mousePanel’s background color to white. When the user moves the mouse into
the mousePanel, the application will change mousePanel’s background color to green. When
the user moves the mouse out of the mousePanel, the application will change the background
color back to white. Line 25 attaches mousePanel to the JFrame. As you’ve learned, you typ-
ically must specify the layout of the GUI components in a JFrame. In that section, we intro-

89
90 // handle event when user moves mouse
91 @Override
92
93 {
94 statusBar.setText(String.format("Moved at [%d, %d]",
95 ,));
96 }
97 } // end inner class MouseHandler
98 } // end class MouseTrackerFrame

1 // Fig. 12.29: MouseTrackerFrame.java
2 // Testing MouseTrackerFrame.
3 import javax.swing.JFrame;
4
5 public class MouseTracker
6 {
7 public static void main(String[] args)
8 {
9 MouseTrackerFrame mouseTrackerFrame = new MouseTrackerFrame();

10 mouseTrackerFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 mouseTrackerFrame.setSize(300, 100);
12 mouseTrackerFrame.setVisible(true);
13 }
14 } // end class MouseTracker

Fig. 12.29 | Testing MouseTrackerFrame.

Fig. 12.28 | Mouse event handling. (Part 3 of 3.)

public void mouseMoved(MouseEvent event)

event.getX() event.getY()

518 Chapter 12 GUI Components: Part 1

duced the layout manager FlowLayout. Here we use the default layout of a JFrame’s content
pane—BorderLayout, which arranges component NORTH, SOUTH, EAST, WEST and CENTER
regions. NORTH corresponds to the container’s top. This example uses the CENTER and SOUTH
regions. Line 25 uses a two-argument version of method add to place mousePanel in the
CENTER region. The BorderLayout automatically sizes the component in the CENTER to use
all the space in the JFrame that is not occupied by components in the other regions.
Section 12.18.2 discusses BorderLayout in more detail.

Lines 27–28 in the constructor declare JLabel statusBar and attach it to the
JFrame’s SOUTH region. This JLabel occupies the width of the JFrame. The region’s height
is determined by the JLabel.

Line 31 creates an instance of inner class MouseHandler (lines 36–97) called handler
that responds to mouse events. Lines 32–33 register handler as the listener for mouse-
Panel’s mouse events. Methods addMouseListener and addMouseMotionListener are
inherited indirectly from class Component and can be used to register MouseListeners and
MouseMotionListeners, respectively. A MouseHandler object is a MouseListener and is a
MouseMotionListener because the class implements both interfaces. We chose to imple-
ment both interfaces here to demonstrate a class that implements more than one interface,
but we could have implemented interface MouseInputListener instead.

When the mouse enters and exits mousePanel’s area, methods mouseEntered (lines
65–71) and mouseExited (lines 74–79) are called, respectively. Method mouseEntered
displays a message in the statusBar indicating that the mouse entered the JPanel and
changes the background color to green. Method mouseExited displays a message in the
statusBar indicating that the mouse is outside the JPanel (see the first sample output
window) and changes the background color to white.

The other five events display a string in the statusBar that includes the event and the
coordinates at which it occurred. MouseEvent methods getX and getY return the x- and y-
coordinates, respectively, of the mouse at the time the event occurred.

12.15 Adapter Classes
Many event-listener interfaces, such as MouseListener and MouseMotionListener, con-
tain multiple methods. It’s not always desirable to declare every method in an event-listen-
er interface. For instance, an application may need only the mouseClicked handler from
MouseListener or the mouseDragged handler from MouseMotionListener. Interface Win-
dowListener specifies seven window event-handling methods. For many of the listener in-
terfaces that have multiple methods, packages java.awt.event and javax.swing.event
provide event-listener adapter classes. An adapter class implements an interface and pro-
vides a default implementation (with an empty method body) of each method in the in-
terface. Figure 12.30 shows several java.awt.event adapter classes and the interfaces they
implement. You can extend an adapter class to inherit the default implementation of every
method and subsequently override only the method(s) you need for event handling.

Software Engineering Observation 12.6
When a class implements an interface, the class has an is-a relationship with that
interface. All direct and indirect subclasses of that class inherit this interface. Thus, an
object of a class that extends an event-adapter class is an object of the corresponding event-
listener type (e.g., an object of a subclass of MouseAdapter is a MouseListener).

12.15 Adapter Classes 519

Extending MouseAdapter
The application of Figs. 12.31–12.32 demonstrates how to determine the number of
mouse clicks (i.e., the click count) and how to distinguish between the different mouse
buttons. The event listener in this application is an object of inner class MouseClickHan-
dler (Fig. 12.31, lines 25–46) that extends MouseAdapter, so we can declare just the
mouseClicked method we need in this example.

Event-adapter class in java.awt.event Implements interface

ComponentAdapter ComponentListener
ContainerAdapter ContainerListener
FocusAdapter FocusListener
KeyAdapter KeyListener
MouseAdapter MouseListener
MouseMotionAdapter MouseMotionListener
WindowAdapter WindowListener

Fig. 12.30 | Event-adapter classes and the interfaces they implement.

1 // Fig. 12.31: MouseDetailsFrame.java
2 // Demonstrating mouse clicks and distinguishing between mouse buttons.
3 import java.awt.BorderLayout;
4 import java.awt.event.MouseAdapter;
5 import java.awt.event.MouseEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JLabel;
8
9 public class MouseDetailsFrame extends JFrame

10 {
11 private String details; // String displayed in the statusBar
12 private final JLabel statusBar; // JLabel at bottom of window
13
14 // constructor sets title bar String and register mouse listener
15 public MouseDetailsFrame()
16 {
17 super("Mouse clicks and buttons");
18
19 statusBar = new JLabel("Click the mouse");
20 add(statusBar, BorderLayout.SOUTH);
21
22 }
23
24 // inner class to handle mouse events
25 private class MouseClickHandler extends MouseAdapter
26 {
27 // handle mouse-click event and determine which button was pressed
28 @Override
29 public void mouseClicked(MouseEvent event)
30 {

Fig. 12.31 | Demonstrating mouse clicks and distinguishing between mouse buttons. (Part 1 of 2.)

addMouseListener(new MouseClickHandler()); // add handler

520 Chapter 12 GUI Components: Part 1

31 int xPos = event.getX(); // get x-position of mouse
32 int yPos = event.getY(); // get y-position of mouse
33
34 details = String.format("Clicked %d time(s)",
35);
36
37 if () // right mouse button
38 details += " with right mouse button";
39 else if () // middle mouse button
40 details += " with center mouse button";
41 else // left mouse button
42 details += " with left mouse button";
43
44 statusBar.setText(details); // display message in statusBar
45 }
46 }
47 } // end class MouseDetailsFrame

1 // Fig. 12.32: MouseDetails.java
2 // Testing MouseDetailsFrame.
3 import javax.swing.JFrame;
4
5 public class MouseDetails
6 {
7 public static void main(String[] args)
8 {
9 MouseDetailsFrame mouseDetailsFrame = new MouseDetailsFrame();

10 mouseDetailsFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 mouseDetailsFrame.setSize(400, 150);
12 mouseDetailsFrame.setVisible(true);
13 }
14 } // end class MouseDetails

Fig. 12.32 | Testing MouseDetailsFrame.

Fig. 12.31 | Demonstrating mouse clicks and distinguishing between mouse buttons. (Part 2 of 2.)

event.getClickCount()

event.isMetaDown()

event.isAltDown()

12.15 Adapter Classes 521

A user of a Java application may be on a system with a one-, two- or three-button
mouse. Class MouseEvent inherits several methods from class InputEvent that can distin-
guish among mouse buttons on a multibutton mouse or can mimic a multibutton mouse
with a combined keystroke and mouse-button click. Figure 12.33 shows the InputEvent
methods used to distinguish among mouse-button clicks. Java assumes that every mouse
contains a left mouse button. Thus, it’s simple to test for a left-mouse-button click. How-
ever, users with a one- or two-button mouse must use a combination of keystrokes and
mouse-button clicks at the same time to simulate the missing buttons on the mouse. In
the case of a one- or two-button mouse, a Java application assumes that the center mouse
button is clicked if the user holds down the Alt key and clicks the left mouse button on a
two-button mouse or the only mouse button on a one-button mouse. In the case of a one-
button mouse, a Java application assumes that the right mouse button is clicked if the user
holds down the Meta key (sometimes called the Command key or the “Apple” key on a
Mac) and clicks the mouse button.

Line 21 of Fig. 12.31 registers a MouseListener for the MouseDetailsFrame. The
event listener is an object of class MouseClickHandler, which extends MouseAdapter. This
enables us to declare only method mouseClicked (lines 28–45). This method first captures
the coordinates where the event occurred and stores them in local variables xPos and yPos
(lines 31–32). Lines 34–35 create a String called details containing the number of con-
secutive mouse clicks, which is returned by MouseEvent method getClickCount at line 35.
Lines 37–42 use methods isMetaDown and isAltDown to determine which mouse button
the user clicked and append an appropriate String to details in each case. The resulting
String is displayed in the statusBar. Class MouseDetails (Fig. 12.32) contains the main
method that executes the application. Try clicking with each of your mouse’s buttons
repeatedly to see the click count increment.

Common Programming Error 12.3
If you extend an adapter class and misspell the name of the method you’re overriding, and
you do not declare the method with @Override, your method simply becomes another
method in the class. This is a logic error that is difficult to detect, since the program will
call the empty version of the method inherited from the adapter class.

InputEvent method Description

isMetaDown() Returns true when the user clicks the right mouse button on a
mouse with two or three buttons. To simulate a right-mouse-
button click on a one-button mouse, the user can hold down
the Meta key on the keyboard and click the mouse button.

isAltDown() Returns true when the user clicks the middle mouse button on a
mouse with three buttons. To simulate a middle-mouse-button
click on a one- or two-button mouse, the user can press the Alt
key and click the only or left mouse button, respectively.

Fig. 12.33 | InputEvent methods that help determine whether the right or center mouse
button was clicked.

522 Chapter 12 GUI Components: Part 1

12.16 JPanel Subclass for Drawing with the Mouse
Section 12.14 showed how to track mouse events in a JPanel. In this section, we use a
JPanel as a dedicated drawing area in which the user can draw by dragging the mouse. In
addition, this section demonstrates an event listener that extends an adapter class.

Method paintComponent
Lightweight Swing components that extend class JComponent (such as JPanel) contain
method paintComponent, which is called when a lightweight Swing component is dis-
played. By overriding this method, you can specify how to draw shapes using Java’s graph-
ics capabilities. When customizing a JPanel for use as a dedicated drawing area, the
subclass should override method paintComponent and call the superclass version of paint-
Component as the first statement in the body of the overridden method to ensure that the
component displays correctly. The reason is that subclasses of JComponent support trans-
parency. To display a component correctly, the program must determine whether the
component is transparent. The code that determines this is in superclass JComponent’s
paintComponent implementation. When a component is transparent, paintComponent
will not clear its background when the program displays the component. When a compo-
nent is opaque, paintComponent clears the component’s background before the compo-
nent is displayed. The transparency of a Swing lightweight component can be set with
method setOpaque (a false argument indicates that the component is transparent).

Defining the Custom Drawing Area
The Painter application of Figs. 12.34–12.35 demonstrates a customized subclass of JPan-
el that’s used to create a dedicated drawing area. The application uses the mouseDragged
event handler to create a simple drawing application. The user can draw pictures by dragging
the mouse on the JPanel. This example does not use method mouseMoved, so our event-lis-
tener class (the anonymous inner class at lines 20–29 of Fig. 12.34) extends Mouse-
MotionAdapter. Since this class already declares both mouseMoved and mouseDragged, we
can simply override mouseDragged to provide the event handling this application requires.

Error-Prevention Tip 12.1
In a JComponent subclass’s paintComponent method, the first statement should always
call the superclass’s paintComponent method to ensure that an object of the subclass dis-
plays correctly.

Common Programming Error 12.4
If an overridden paintComponent method does not call the superclass’s version, the sub-
class component may not display properly. If an overridden paintComponent method calls
the superclass’s version after other drawing is performed, the drawing will be erased.

1 // Fig. 12.34: PaintPanel.java
2 // Adapter class used to implement event handlers.
3 import java.awt.Point;
4 import java.awt.Graphics;
5 import java.awt.event.MouseEvent;

Fig. 12.34 | Adapter class used to implement event handlers. (Part 1 of 2.)

12.16 JPanel Subclass for Drawing with the Mouse 523

Class PaintPanel (Fig. 12.34) extends JPanel to create the dedicated drawing area.
Class Point (package java.awt) represents an x-y coordinate. We use objects of this class
to store the coordinates of each mouse drag event. Class Graphics is used to draw. In this
example, we use an ArrayList of Points (line 13) to store the location at which each mouse
drag event occurs. As you’ll see, method paintComponent uses these Points to draw.

Lines 19–30 register a MouseMotionListener to listen for the PaintPanel’s mouse
motion events. Lines 20–29 create an object of an anonymous inner class that extends the
adapter class MouseMotionAdapter. Recall that MouseMotionAdapter implements Mouse-
MotionListener, so the anonymous inner class object is a MouseMotionListener. The
anonymous inner class inherits default mouseMoved and mouseDragged implementations,
so it already implements all the interface’s methods. However, the default implementa-

6 import java.awt.event.MouseMotionAdapter;
7 import java.util.ArrayList;
8 import javax.swing.JPanel;
9

10 public class PaintPanel extends JPanel
11 {
12 // list of Point references
13
14
15 // set up GUI and register mouse event handler
16 public PaintPanel()
17 {
18 // handle frame mouse motion event
19 addMouseMotionListener(
20 // anonymous inner class
21 {
22 // store drag coordinates and repaint
23 @Override
24
25 {
26 points.add();
27
28 }
29 }
30);
31 }
32
33 // draw ovals in a 4-by-4 bounding box at specified locations on window
34 @Override
35 public void paintComponent(Graphics g)
36 {
37 super.paintComponent(g); // clears drawing area
38
39 // draw all points
40 for (Point point : points)
41 g.fillOval(, 4, 4);
42 }
43 } // end class PaintPanel

Fig. 12.34 | Adapter class used to implement event handlers. (Part 2 of 2.)

private final ArrayList<Point> points = new ArrayList<>();

new MouseMotionAdapter()

public void mouseDragged(MouseEvent event)

event.getPoint()
repaint(); // repaint JFrame

point.x, point.y

524 Chapter 12 GUI Components: Part 1

tions do nothing when they’re called. So, we override method mouseDragged at lines 23–
28 to capture the coordinates of a mouse drag event and store them as a Point object. Line
26 invokes the MouseEvent’s getPoint method to obtain the Point where the event
occurred and stores it in the ArrayList. Line 27 calls method repaint (inherited indi-
rectly from class Component) to indicate that the PaintPanel should be refreshed on the
screen as soon as possible with a call to the PaintPanel’s paintComponent method.

Method paintComponent (lines 34–42), which receives a Graphics parameter, is
called automatically any time the PaintPanel needs to be displayed on the screen—such
as when the GUI is first displayed—or refreshed on the screen—such as when method
repaint is called or when the GUI component has been hidden by another window on the
screen and subsequently becomes visible again.

Line 37 invokes the superclass version of paintComponent to clear the PaintPanel’s
background (JPanels are opaque by default). Lines 40–41 draw an oval at the location
specified by each Point in the ArrayList. Graphics method fillOval draws a solid oval.
The method’s four parameters represent a rectangular area (called the bounding box) in
which the oval is displayed. The first two parameters are the upper-left x-coordinate and
the upper-left y-coordinate of the rectangular area. The last two coordinates represent the
rectangular area’s width and height. Method fillOval draws the oval so it touches the
middle of each side of the rectangular area. In line 41, the first two arguments are specified
by using class Point’s two public instance variables—x and y. You’ll learn more Graphics
features in Chapter 13.

Using the Custom JPanel in an Application
Class Painter (Fig. 12.35) contains the main method that executes this application. Line
14 creates a PaintPanel object on which the user can drag the mouse to draw. Line 15
attaches the PaintPanel to the JFrame.

Look-and-Feel Observation 12.13
Calling repaint for a Swing GUI component indicates that the component should be re-
freshed on the screen as soon as possible. The component’s background is cleared only if
the component is opaque. JComponent method setOpaque can be passed a boolean argu-
ment indicating whether the component is opaque (true) or transparent (false).

Look-and-Feel Observation 12.14
Drawing on any GUI component is performed with coordinates that are measured from
the upper-left corner (0, 0) of that GUI component, not the upper-left corner of the screen.

1 // Fig. 12.35: Painter.java
2 // Testing PaintPanel.
3 import java.awt.BorderLayout;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6
7 public class Painter
8 {

Fig. 12.35 | Testing PaintPanel. (Part 1 of 2.)

12.17 Key Event Handling 525

12.17 Key Event Handling
This section presents the KeyListener interface for handling key events. Key events are
generated when keys on the keyboard are pressed and released. A class that implements
KeyListener must provide declarations for methods keyPressed, keyReleased and key-
Typed, each of which receives a KeyEvent as its argument. Class KeyEvent is a subclass of
InputEvent. Method keyPressed is called in response to pressing any key. Method key-
Typed is called in response to pressing any key that is not an action key. (The action keys
are any arrow key, Home, End, Page Up, Page Down, any function key, etc.) Method key-
Released is called when the key is released after any keyPressed or keyTyped event.

The application of Figs. 12.36–12.37 demonstrates the KeyListener methods. Class
KeyDemoFrame implements the KeyListener interface, so all three methods are declared in
the application. The constructor (Fig. 12.36, lines 17–28) registers the application to
handle its own key events by using method addKeyListener at line 27. Method addKey-
Listener is declared in class Component, so every subclass of Component can notify Key-
Listener objects of key events for that Component.

9 public static void main(String[] args)
10 {
11 // create JFrame
12 JFrame application = new JFrame("A simple paint program");
13
14
15 application.add(paintPanel, BorderLayout.CENTER);
16
17 // create a label and place it in SOUTH of BorderLayout
18 application.add(new JLabel("Drag the mouse to draw"),
19 BorderLayout.SOUTH);
20
21 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22 application.setSize(400, 200);
23 application.setVisible(true);
24 }
25 } // end class Painter

1 // Fig. 12.36: KeyDemoFrame.java
2 // Key event handling.
3 import java.awt.Color;

Fig. 12.36 | Key event handling. (Part 1 of 3.)

Fig. 12.35 | Testing PaintPanel. (Part 2 of 2.)

PaintPanel paintPanel = new PaintPanel();

526 Chapter 12 GUI Components: Part 1

4 import java.awt.event.KeyListener;
5 import java.awt.event.KeyEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JTextArea;
8
9 public class KeyDemoFrame extends JFrame

10 {
11 private final String line1 = ""; // first line of text area
12 private final String line2 = ""; // second line of text area
13 private final String line3 = ""; // third line of text area
14 private final JTextArea textArea; // text area to display output
15
16 // KeyDemoFrame constructor
17 public KeyDemoFrame()
18 {
19 super("Demonstrating Keystroke Events");
20
21 textArea = new JTextArea(10, 15); // set up JTextArea
22 textArea.setText("Press any key on the keyboard...");
23 textArea.setEnabled(false);
24
25 add(textArea); // add text area to JFrame
26
27
28 }
29
30 // handle press of any key
31 @Override
32
33 {
34 line1 = String.format("Key pressed: %s",
35); // show pressed key
36 setLines2and3(event); // set output lines two and three
37 }
38
39 // handle release of any key
40 @Override
41
42 {
43 line1 = String.format("Key released: %s",
44); // show released key
45 setLines2and3(event); // set output lines two and three
46 }
47
48 // handle press of an action key
49 @Override
50
51 {
52 line1 = String.format("Key typed: %s",);
53 setLines2and3(event); // set output lines two and three
54 }
55

Fig. 12.36 | Key event handling. (Part 2 of 3.)

implements KeyListener

textArea.setDisabledTextColor(Color.BLACK);

addKeyListener(this); // allow frame to process key events

public void keyPressed(KeyEvent event)

KeyEvent.getKeyText(event.getKeyCode())

public void keyReleased(KeyEvent event)

KeyEvent.getKeyText(event.getKeyCode())

public void keyTyped(KeyEvent event)

event.getKeyChar()

12.17 Key Event Handling 527

56 // set second and third lines of output
57 private void setLines2and3(KeyEvent event)
58 {
59 line2 = String.format("This key is %san action key",
60 (? "" : "not "));
61
62
63
64 line3 = String.format("Modifier keys pressed: %s",
65 (temp.equals("") ? "none" : temp)); // output modifiers
66
67 textArea.setText(String.format("%s\n%s\n%s\n",
68 line1, line2, line3)); // output three lines of text
69 }
70 } // end class KeyDemoFrame

1 // Fig. 12.37: KeyDemo.java
2 // Testing KeyDemoFrame.
3 import javax.swing.JFrame;
4
5 public class KeyDemo
6 {
7 public static void main(String[] args)
8 {
9 KeyDemoFrame keyDemoFrame = new KeyDemoFrame();

10 keyDemoFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 keyDemoFrame.setSize(350, 100);
12 keyDemoFrame.setVisible(true);
13 }
14 } // end class KeyDemo

Fig. 12.37 | Testing KeyDemoFrame. (Part 1 of 2.)

Fig. 12.36 | Key event handling. (Part 3 of 3.)

event.isActionKey()

String temp = KeyEvent.getKeyModifiersText(event.getModifiers());

528 Chapter 12 GUI Components: Part 1

At line 25, the constructor adds the JTextArea textArea (where the application’s
output is displayed) to the JFrame. A JTextArea is a multiline area in which you can dis-
play text. (We discuss JTextAreas in more detail in Section 12.20.) Notice in the screen
captures that textArea occupies the entire window. This is due to the JFrame’s default
BorderLayout (discussed in Section 12.18.2 and demonstrated in Fig. 12.41). When a
single Component is added to a BorderLayout, the Component occupies the entire Con-
tainer. Line 23 disables the JTextArea so the user cannot type in it. This causes the text
in the JTextArea to become gray. Line 24 uses method setDisabledTextColor to change
the text color in the JTextArea to black for readability.

Methods keyPressed (lines 31–37) and keyReleased (lines 40–46) use KeyEvent
method getKeyCode to get the virtual key code of the pressed key. Class KeyEvent con-
tains virtual key-code constants that represent every key on the keyboard. These constants
can be compared with getKeyCode’s return value to test for individual keys on the key-
board. The value returned by getKeyCode is passed to static KeyEvent method getKey-
Text, which returns a string containing the name of the key that was pressed. For a
complete list of virtual key constants, see the online documentation for class KeyEvent
(package java.awt.event). Method keyTyped (lines 49–54) uses KeyEvent method get-
KeyChar (which returns a char) to get the Unicode value of the character typed.

All three event-handling methods finish by calling method setLines2and3 (lines 57–
69) and passing it the KeyEvent object. This method uses KeyEvent method isActionKey
(line 60) to determine whether the key in the event was an action key. Also, InputEvent
method getModifiers is called (line 62) to determine whether any modifier keys (such as
Shift, Alt and Ctrl) were pressed when the key event occurred. The result of this method
is passed to static KeyEvent method getKeyModifiersText, which produces a String
containing the names of the pressed modifier keys.

[Note: If you need to test for a specific key on the keyboard, class KeyEvent provides
a key constant for each one. These constants can be used from the key event handlers to
determine whether a particular key was pressed. Also, to determine whether the Alt, Ctrl,
Meta and Shift keys are pressed individually, InputEvent methods isAltDown, isCon-
trolDown, isMetaDown and isShiftDown each return a boolean indicating whether the
particular key was pressed during the key event.]

12.18 Introduction to Layout Managers
Layout managers arrange GUI components in a container for presentation purposes. You
can use the layout managers for basic layout capabilities instead of determining every GUI
component’s exact position and size. This functionality enables you to concentrate on the
basic look-and-feel and lets the layout managers process most of the layout details. All lay-
out managers implement the interface LayoutManager (in package java.awt). Class Con-

Fig. 12.37 | Testing KeyDemoFrame. (Part 2 of 2.)

12.18 Introduction to Layout Managers 529

tainer’s setLayout method takes an object that implements the LayoutManager interface
as an argument. There are basically three ways for you to arrange components in a GUI:

1. Absolute positioning: This provides the greatest level of control over a GUI’s ap-
pearance. By setting a Container’s layout to null, you can specify the absolute
position of each GUI component with respect to the upper-left corner of the Con-
tainer by using Component methods setSize and setLocation or setBounds. If
you do this, you also must specify each GUI component’s size. Programming a
GUI with absolute positioning can be tedious, unless you have an integrated de-
velopment environment (IDE) that can generate the code for you.

2. Layout managers: Using layout managers to position elements can be simpler and
faster than creating a GUI with absolute positioning, and makes your GUIs more
resizable, but you lose some control over the size and the precise positioning of
each component.

3. Visual programming in an IDE: IDEs provide tools that make it easy to create
GUIs. Each IDE typically provides a GUI design tool that allows you to drag and
drop GUI components from a tool box onto a design area. You can then position,
size and align GUI components as you like. The IDE generates the Java code that
creates the GUI. In addition, you can typically add event-handling code for a par-
ticular component by double-clicking the component. Some design tools also al-
low you to use the layout managers described in this chapter and in Chapter 22.

Figure 12.38 summarizes the layout managers presented in this chapter. A couple of
additional layout managers are discussed in Chapter 22.

Look-and-Feel Observation 12.15
Most Java IDEs provide GUI design tools for visually designing a GUI; the tools then
write Java code that creates the GUI. Such tools often provide greater control over the size,
position and alignment of GUI components than do the built-in layout managers.

Look-and-Feel Observation 12.16
It’s possible to set a Container’s layout to null, which indicates that no layout manager
should be used. In a Container without a layout manager, you must position and size the
components and take care that, on resize events, all components are repositioned as neces-
sary. A component’s resize events can be processed by a ComponentListener.

Layout manager Description

FlowLayout Default for javax.swing.JPanel. Places components sequentially, left to
right, in the order they were added. It’s also possible to specify the order
of the components by using the Container method add, which takes a
Component and an integer index position as arguments.

BorderLayout Default for JFrames (and other windows). Arranges the components
into five areas: NORTH, SOUTH, EAST, WEST and CENTER.

GridLayout Arranges the components into rows and columns.

Fig. 12.38 | Layout managers.

530 Chapter 12 GUI Components: Part 1

12.18.1 FlowLayout
FlowLayout is the simplest layout manager. GUI components are placed in a container
from left to right in the order in which they’re added to the container. When the edge of
the container is reached, components continue to display on the next line. Class FlowLay-
out allows GUI components to be left aligned, centered (the default) and right aligned.

The application of Figs. 12.39–12.40 creates three JButton objects and adds them to
the application, using a FlowLayout. The components are center aligned by default. When
the user clicks Left, the FlowLayout’s alignment is changed to left aligned. When the user
clicks Right, the FlowLayout’s alignment is changed to right aligned. When the user clicks
Center, the FlowLayout’s alignment is changed to center aligned. The sample output win-
dows show each alignment. The last sample output shows the centered alignment after the
window has been resized to a smaller width so that the button Right flows onto a new line.

As seen previously, a container’s layout is set with method setLayout of class Con-
tainer. Line 25 (Fig. 12.39) sets the layout manager to the FlowLayout declared at line
23. Normally, the layout is set before any GUI components are added to a container.

Look-and-Feel Observation 12.17
Each individual container can have only one layout manager, but multiple containers in
the same application can each use different layout managers.

1 // Fig. 12.39: FlowLayoutFrame.java
2 // FlowLayout allows components to flow over multiple lines.
3 import java.awt.FlowLayout;
4 import java.awt.Container;
5 import java.awt.event.ActionListener;
6 import java.awt.event.ActionEvent;
7 import javax.swing.JFrame;
8 import javax.swing.JButton;
9

10 public class FlowLayoutFrame extends JFrame
11 {
12 private final JButton leftJButton; // button to set alignment left
13 private final JButton centerJButton; // button to set alignment center
14 private final JButton rightJButton; // button to set alignment right
15 private final FlowLayout layout; // layout object
16 private final Container container; // container to set layout
17
18 // set up GUI and register button listeners
19 public FlowLayoutFrame()
20 {
21 super("FlowLayout Demo");
22
23
24 container = getContentPane(); // get container to layout
25
26
27 // set up leftJButton and register listener
28 leftJButton = new JButton("Left");
29

Fig. 12.39 | FlowLayout allows components to flow over multiple lines. (Part 1 of 2.)

layout = new FlowLayout();

setLayout(layout);

add(leftJButton); // add Left button to frame

12.18 Introduction to Layout Managers 531

30 leftJButton.addActionListener(
31 new ActionListener() // anonymous inner class
32 {
33 // process leftJButton event
34 @Override
35 public void actionPerformed(ActionEvent event)
36 {
37
38
39 // realign attached components
40
41 }
42 }
43);
44
45 // set up centerJButton and register listener
46 centerJButton = new JButton("Center");
47
48 centerJButton.addActionListener(
49 new ActionListener() // anonymous inner class
50 {
51 // process centerJButton event
52 @Override
53 public void actionPerformed(ActionEvent event)
54 {
55
56
57 // realign attached components
58
59 }
60 }
61);
62
63 // set up rightJButton and register listener
64 rightJButton = new JButton("Right");
65
66 rightJButton.addActionListener(
67 new ActionListener() // anonymous inner class
68 {
69 // process rightJButton event
70 @Override
71 public void actionPerformed(ActionEvent event)
72 {
73
74
75 // realign attached components
76
77 }
78 }
79);
80 } // end FlowLayoutFrame constructor
81 } // end class FlowLayoutFrame

Fig. 12.39 | FlowLayout allows components to flow over multiple lines. (Part 2 of 2.)

layout.setAlignment(FlowLayout.LEFT);

layout.layoutContainer(container);

add(centerJButton); // add Center button to frame

layout.setAlignment(FlowLayout.CENTER);

layout.layoutContainer(container);

add(rightJButton); // add Right button to frame

layout.setAlignment(FlowLayout.RIGHT);

layout.layoutContainer(container);

532 Chapter 12 GUI Components: Part 1

Each button’s event handler is specified with a separate anonymous inner-class object
(lines 30–43, 48–61 and 66–79, respectively), and method actionPerformed in each case
executes two statements. For example, line 37 in the event handler for leftJButton uses
FlowLayout method setAlignment to change the alignment for the FlowLayout to a left-
aligned (FlowLayout.LEFT) FlowLayout. Line 40 uses LayoutManager interface method
layoutContainer (which is inherited by all layout managers) to specify that the JFrame
should be rearranged based on the adjusted layout. According to which button was clicked,
the actionPerformed method for each button sets the FlowLayout’s alignment to Flow-
Layout.LEFT (line 37), FlowLayout.CENTER (line 55) or FlowLayout.RIGHT (line 73).

12.18.2 BorderLayout
The BorderLayout layout manager (the default layout manager for a JFrame) arranges
components into five regions: NORTH, SOUTH, EAST, WEST and CENTER. NORTH corresponds to
the top of the container. Class BorderLayout extends Object and implements interface
LayoutManager2 (a subinterface of LayoutManager that adds several methods for en-
hanced layout processing).

A BorderLayout limits a Container to containing at most five components—one in
each region. The component placed in each region can be a container to which other com-
ponents are attached. The components placed in the NORTH and SOUTH regions extend hor-

1 // Fig. 12.40: FlowLayoutDemo.java
2 // Testing FlowLayoutFrame.
3 import javax.swing.JFrame;
4
5 public class FlowLayoutDemo
6 {
7 public static void main(String[] args)
8 {
9 FlowLayoutFrame flowLayoutFrame = new FlowLayoutFrame();

10 flowLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 flowLayoutFrame.setSize(300, 75);
12 flowLayoutFrame.setVisible(true);
13 }
14 } // end class FlowLayoutDemo

Fig. 12.40 | Testing FlowLayoutFrame.

12.18 Introduction to Layout Managers 533

izontally to the sides of the container and are as tall as the components placed in those
regions. The EAST and WEST regions expand vertically between the NORTH and SOUTH
regions and are as wide as the components placed in those regions. The component placed
in the CENTER region expands to fill all remaining space in the layout (which is the reason the
JTextArea in Fig. 12.37 occupies the entire window). If all five regions are occupied, the
entire container’s space is covered by GUI components. If the NORTH or SOUTH region is not
occupied, the GUI components in the EAST, CENTER and WEST regions expand vertically to
fill the remaining space. If the EAST or WEST region is not occupied, the GUI component
in the CENTER region expands horizontally to fill the remaining space. If the CENTER region is
not occupied, the area is left empty—the other GUI components do not expand to fill the
remaining space. The application of Figs. 12.41–12.42 demonstrates the BorderLayout
layout manager by using five JButtons.

1 // Fig. 12.41: BorderLayoutFrame.java
2 // BorderLayout containing five buttons.
3 import java.awt.BorderLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JButton;
8
9 public class BorderLayoutFrame extends JFrame implements ActionListener

10 {
11 private final JButton[] buttons; // array of buttons to hide portions
12 private static final String[] names = {"Hide North", "Hide South",
13 "Hide East", "Hide West", "Hide Center"};
14
15
16 // set up GUI and event handling
17 public BorderLayoutFrame()
18 {
19 super("BorderLayout Demo");
20
21
22 setLayout(layout);
23 buttons = new JButton[names.length];
24
25 // create JButtons and register listeners for them
26 for (int count = 0; count < names.length; count++)
27 {
28 buttons[count] = new JButton(names[count]);
29
30 }
31
32 add(buttons[0], BorderLayout.NORTH);
33 add(buttons[1], BorderLayout.SOUTH);
34 add(buttons[2], BorderLayout.EAST);
35 add(buttons[3], BorderLayout.WEST);
36 add(buttons[4], BorderLayout.CENTER);
37 }

Fig. 12.41 | BorderLayout containing five buttons. (Part 1 of 2.)

private final BorderLayout layout;

layout = new BorderLayout(5, 5); // 5 pixel gaps

buttons[count].addActionListener(this);

534 Chapter 12 GUI Components: Part 1

Line 21 of Fig. 12.41 creates a BorderLayout. The constructor arguments specify the
number of pixels between components that are arranged horizontally (horizontal gap
space) and between components that are arranged vertically (vertical gap space), respec-
tively. The default is one pixel of gap space horizontally and vertically. Line 22 uses
method setLayout to set the content pane’s layout to layout.

We add Components to a BorderLayout with another version of Container method
add that takes two arguments—the Component to add and the region in which the Compo-
nent should appear. For example, line 32 specifies that buttons[0] should appear in the
NORTH region. The components can be added in any order, but only one component should
be added to each region.

Class BorderLayoutFrame implements ActionListener directly in this example, so the
BorderLayoutFrame will handle the events of the JButtons. For this reason, line 29 passes
the this reference to the addActionListener method of each JButton. When the user clicks
a particular JButton in the layout, method actionPerformed (lines 40–53) executes. The
enhanced for statement at lines 44–50 uses an if…else to hide the particular JButton that
generated the event. Method setVisible (inherited into JButton from class Component) is
called with a false argument (line 47) to hide the JButton. If the current JButton in the
array is not the one that generated the event, method setVisible is called with a true argu-
ment (line 49) to ensure that the JButton is displayed on the screen. Line 52 uses Layout-

38
39 // handle button events
40 @Override
41 public void actionPerformed(ActionEvent event)
42 {
43 // check event source and lay out content pane correspondingly
44 for (JButton button : buttons)
45 {
46 if (event.getSource() == button)
47
48 else
49
50 }
51
52
53 }
54 } // end class BorderLayoutFrame

Look-and-Feel Observation 12.18
If no region is specified when adding a Component to a BorderLayout, the layout manager
assumes that the Component should be added to region BorderLayout.CENTER.

Common Programming Error 12.5
When more than one component is added to a region in a BorderLayout, only the last
component added to that region will be displayed. There’s no error that indicates this
problem.

Fig. 12.41 | BorderLayout containing five buttons. (Part 2 of 2.)

button.setVisible(false); // hide the button that was clicked

button.setVisible(true); // show other buttons

layout.layoutContainer(getContentPane()); // lay out content pane

12.18 Introduction to Layout Managers 535

Manager method layoutContainer to recalculate the layout of the content pane. Notice in
the screen captures of Fig. 12.42 that certain regions in the BorderLayout change shape as
JButtons are hidden and displayed in other regions. Try resizing the application window to
see how the various regions resize based on the window’s width and height. For more complex
layouts, group components in JPanels, each with a separate layout manager. Place the JPanels
on the JFrame using either the default BorderLayout or some other layout.

1 // Fig. 12.42: BorderLayoutDemo.java
2 // Testing BorderLayoutFrame.
3 import javax.swing.JFrame;
4
5 public class BorderLayoutDemo
6 {
7 public static void main(String[] args)
8 {
9 BorderLayoutFrame borderLayoutFrame = new BorderLayoutFrame();

10 borderLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 borderLayoutFrame.setSize(300, 200);
12 borderLayoutFrame.setVisible(true);
13 }
14 } // end class BorderLayoutDemo

Fig. 12.42 | Testing BorderLayoutFrame.

horizontal
gap

vertical
gap

536 Chapter 12 GUI Components: Part 1

12.18.3 GridLayout
The GridLayout layout manager divides the container into a grid so that components can
be placed in rows and columns. Class GridLayout inherits directly from class Object and
implements interface LayoutManager. Every Component in a GridLayout has the same
width and height. Components are added to a GridLayout starting at the top-left cell of
the grid and proceeding left to right until the row is full. Then the process continues left
to right on the next row of the grid, and so on. The application of Figs. 12.43–12.44 dem-
onstrates the GridLayout layout manager by using six JButtons.

1 // Fig. 12.43: GridLayoutFrame.java
2 // GridLayout containing six buttons.
3 import java.awt.GridLayout;
4 import java.awt.Container;
5 import java.awt.event.ActionListener;
6 import java.awt.event.ActionEvent;
7 import javax.swing.JFrame;
8 import javax.swing.JButton;
9

10 public class GridLayoutFrame extends JFrame implements ActionListener
11 {
12 private final JButton[] buttons; // array of buttons
13 private static final String[] names =
14 { "one", "two", "three", "four", "five", "six" };
15 private boolean toggle = true; // toggle between two layouts
16 private final Container container; // frame container
17
18
19
20 // no-argument constructor
21 public GridLayoutFrame()
22 {
23 super("GridLayout Demo");
24
25
26 container = getContentPane();
27
28 buttons = new JButton[names.length];
29
30 for (int count = 0; count < names.length; count++)
31 {
32 buttons[count] = new JButton(names[count]);
33 buttons[count].addActionListener(this); // register listener
34
35 }
36 }
37
38 // handle button events by toggling between layouts
39 @Override
40 public void actionPerformed(ActionEvent event)
41 {

Fig. 12.43 | GridLayout containing six buttons. (Part 1 of 2.)

private final GridLayout gridLayout1; // first gridlayout
private final GridLayout gridLayout2; // second gridlayout

gridLayout1 = new GridLayout(2, 3, 5, 5); // 2 by 3; gaps of 5
gridLayout2 = new GridLayout(3, 2); // 3 by 2; no gaps

setLayout(gridLayout1);

add(buttons[count]); // add button to JFrame

12.18 Introduction to Layout Managers 537

Lines 24–25 (Fig. 12.43) create two GridLayout objects. The GridLayout con-
structor used at line 24 specifies a GridLayout with 2 rows, 3 columns, 5 pixels of hori-
zontal-gap space between Components in the grid and 5 pixels of vertical-gap space between
Components in the grid. The GridLayout constructor used at line 25 specifies a GridLayout
with 3 rows and 2 columns that uses the default gap space (1 pixel).

The JButton objects in this example initially are arranged using gridLayout1 (set for
the content pane at line 27 with method setLayout). The first component is added to the
first column of the first row. The next component is added to the second column of the
first row, and so on. When a JButton is pressed, method actionPerformed (lines 39–49)
is called. Every call to actionPerformed toggles the layout between gridLayout2 and
gridLayout1, using boolean variable toggle to determine the next layout to set.

Line 48 shows another way to reformat a container for which the layout has changed.
Container method validate recomputes the container’s layout based on the current
layout manager for the Container and the current set of displayed GUI components.

42 if (toggle) // set layout based on toggle
43 container.setLayout(gridLayout2);
44 else
45 container.setLayout(gridLayout1);
46
47 toggle = !toggle;
48
49 }
50 } // end class GridLayoutFrame

1 // Fig. 12.44: GridLayoutDemo.java
2 // Testing GridLayoutFrame.
3 import javax.swing.JFrame;
4
5 public class GridLayoutDemo
6 {
7 public static void main(String[] args)
8 {
9 GridLayoutFrame gridLayoutFrame = new GridLayoutFrame();

10 gridLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 gridLayoutFrame.setSize(300, 200);
12 gridLayoutFrame.setVisible(true);
13 }
14 } // end class GridLayoutDemo

Fig. 12.44 | Testing GridLayoutFrame.

Fig. 12.43 | GridLayout containing six buttons. (Part 2 of 2.)

container.validate(); // re-lay out container

538 Chapter 12 GUI Components: Part 1

12.19 Using Panels to Manage More Complex Layouts
Complex GUIs (like Fig. 12.1) often require that each component be placed in an exact
location. They often consist of multiple panels, with each panel’s components arranged in
a specific layout. Class JPanel extends JComponent and JComponent extends class Con-
tainer, so every JPanel is a Container. Thus, every JPanel may have components, in-
cluding other panels, attached to it with Container method add. The application of
Figs. 12.45–12.46 demonstrates how a JPanel can be used to create a more complex lay-
out in which several JButtons are placed in the SOUTH region of a BorderLayout.

1 // Fig. 12.45: PanelFrame.java
2 // Using a JPanel to help lay out components.
3 import java.awt.GridLayout;
4 import java.awt.BorderLayout;
5 import javax.swing.JFrame;
6 import javax.swing.JPanel;
7 import javax.swing.JButton;
8
9 public class PanelFrame extends JFrame

10 {
11
12 private final JButton[] buttons;
13
14 // no-argument constructor
15 public PanelFrame()
16 {
17 super("Panel Demo");
18 buttons = new JButton[5];
19
20
21
22 // create and add buttons
23 for (int count = 0; count < buttons.length; count++)
24 {
25 buttons[count] = new JButton("Button " + (count + 1));
26
27 }
28
29
30 }
31 } // end class PanelFrame

Fig. 12.45 | JPanel with five JButtons in a GridLayout attached to the SOUTH region of a
BorderLayout.

1 // Fig. 12.46: PanelDemo.java
2 // Testing PanelFrame.
3 import javax.swing.JFrame;
4

Fig. 12.46 | Testing PanelFrame. (Part 1 of 2.)

private final JPanel buttonJPanel; // panel to hold buttons

buttonJPanel = new JPanel();
buttonJPanel.setLayout(new GridLayout(1, buttons.length));

buttonJPanel.add(buttons[count]); // add button to panel

add(buttonJPanel, BorderLayout.SOUTH); // add panel to JFrame

12.20 JTextArea 539

After JPanel buttonJPanel is declared (line 11 of Fig. 12.45) and created (line 19),
line 20 sets buttonJPanel’s layout to a GridLayout of one row and five columns (there
are five JButtons in array buttons). Lines 23–27 add the JButtons in the array to the
JPanel. Line 26 adds the buttons directly to the JPanel—class JPanel does not have a
content pane, unlike a JFrame. Line 29 uses the JFrame’s default BorderLayout to add
buttonJPanel to the SOUTH region. The SOUTH region is as tall as the buttons on button-
JPanel. A JPanel is sized to the components it contains. As more components are added,
the JPanel grows (according to the restrictions of its layout manager) to accommodate
the components. Resize the window to see how the layout manager affects the size of the
JButtons.

12.20 JTextArea
A JTextArea provides an area for manipulating multiple lines of text. Like class JTextField,
JTextArea is a subclass of JTextComponent, which declares common methods for JText-
Fields, JTextAreas and several other text-based GUI components.

The application in Figs. 12.47–12.48 demonstrates JTextAreas. One JTextArea dis-
plays text that the user can select. The other is uneditable by the user and is used to display
the text the user selected in the first JTextArea. Unlike JTextFields, JTextAreas do not
have action events—when you press Enter while typing in a JTextArea, the cursor simply
moves to the next line. As with multiple-selection JLists (Section 12.13), an external
event from another GUI component indicates when to process the text in a JTextArea.
For example, when typing an e-mail message, you normally click a Send button to send
the text of the message to the recipient. Similarly, when editing a document in a word pro-
cessor, you normally save the file by selecting a Save or Save As… menu item. In this pro-
gram, the button Copy >>> generates the external event that copies the selected text in the
left JTextArea and displays it in the right JTextArea.

5 public class PanelDemo extends JFrame
6 {
7 public static void main(String[] args)
8 {
9 PanelFrame panelFrame = new PanelFrame();

10 panelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 panelFrame.setSize(450, 200);
12 panelFrame.setVisible(true);
13 }
14 } // end class PanelDemo

Fig. 12.46 | Testing PanelFrame. (Part 2 of 2.)

540 Chapter 12 GUI Components: Part 1

In the constructor (lines 18–48), line 21 creates a Box container (package
javax.swing) to organize the GUI components. Box is a subclass of Container that uses

1 // Fig. 12.47: TextAreaFrame.java
2 // Copying selected text from one JText area to another.
3 import java.awt.event.ActionListener;
4 import java.awt.event.ActionEvent;
5 import javax.swing.Box;
6 import javax.swing.JFrame;
7
8 import javax.swing.JButton;
9

10
11 public class TextAreaFrame extends JFrame
12 {
13
14
15 private final JButton copyJButton; // initiates copying of text
16
17 // no-argument constructor
18 public TextAreaFrame()
19 {
20 super("TextArea Demo");
21
22 String demo = "This is a demo string to\n" +
23 "illustrate copying text\nfrom one textarea to \n" +
24 "another textarea using an\nexternal event\n";
25
26
27
28
29 copyJButton = new JButton("Copy >>>"); // create copy button
30
31 copyJButton.addActionListener(
32 new ActionListener() // anonymous inner class
33 {
34 // set text in textArea2 to selected text from textArea1
35 @Override
36 public void actionPerformed(ActionEvent event)
37 {
38
39 }
40 }
41);
42
43
44
45
46
47 add(box); // add box to frame
48 }
49 } // end class TextAreaFrame

Fig. 12.47 | Copying selected text from one JTextArea to another.

import javax.swing.JTextArea;

import javax.swing.JScrollPane;

private final JTextArea textArea1; // displays demo string
private final JTextArea textArea2; // highlighted text is copied here

Box box = Box.createHorizontalBox(); // create box

textArea1 = new JTextArea(demo, 10, 15);
box.add(new JScrollPane(textArea1)); // add scrollpane

box.add(copyJButton); // add copy button to box

textArea2.setText(textArea1.getSelectedText());

textArea2 = new JTextArea(10, 15);
textArea2.setEditable(false);
box.add(new JScrollPane(textArea2)); // add scrollpane

12.20 JTextArea 541

a BoxLayout layout manager (discussed in detail in Section 22.9) to arrange the GUI com-
ponents either horizontally or vertically. Box’s static method createHorizontalBox cre-
ates a Box that arranges components from left to right in the order that they’re attached.

Lines 26 and 43 create JTextAreas textArea1 and textArea2. Line 26 uses JText-
Area’s three-argument constructor, which takes a String representing the initial text and
two ints specifying that the JTextArea has 10 rows and 15 columns. Line 43 uses JText-
Area’s two-argument constructor, specifying that the JTextArea has 10 rows and 15 col-
umns. Line 26 specifies that demo should be displayed as the default JTextArea content.
A JTextArea does not provide scrollbars if it cannot display its complete contents. So, line
27 creates a JScrollPane object, initializes it with textArea1 and attaches it to container
box. By default, horizontal and vertical scrollbars appear as necessary in a JScrollPane.

Lines 29–41 create JButton object copyJButton with the label "Copy >>>", add copy-
JButton to container box and register the event handler for copyJButton’s ActionEvent.
This button provides the external event that determines when the program should copy
the selected text in textArea1 to textArea2. When the user clicks copyJButton, line 38
in actionPerformed indicates that method getSelectedText (inherited into JTextArea
from JTextComponent) should return the selected text from textArea1. The user selects
text by dragging the mouse over the desired text to highlight it. Method setText changes
the text in textArea2 to the string returned by getSelectedText.

Lines 43–45 create textArea2, set its editable property to false and add it to con-
tainer box. Line 47 adds box to the JFrame. Recall from Section 12.18.2 that the default
layout of a JFrame is a BorderLayout and that the add method by default attaches its argu-
ment to the CENTER of the BorderLayout.

1 // Fig. 12.48: TextAreaDemo.java
2 // Testing TextAreaFrame.
3 import javax.swing.JFrame;
4
5 public class TextAreaDemo
6 {
7 public static void main(String[] args)
8 {
9 TextAreaFrame textAreaFrame = new TextAreaFrame();

10 textAreaFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 textAreaFrame.setSize(425, 200);
12 textAreaFrame.setVisible(true);
13 }
14 } // end class TextAreaDemo

Fig. 12.48 | Testing TextAreaFrame.

542 Chapter 12 GUI Components: Part 1

When text reaches the right edge of a JTextArea the text can wrap to the next line.
This is referred to as line wrapping. By default, JTextArea does not wrap lines.

JScrollPane Scrollbar Policies
This example uses a JScrollPane to provide scrolling for a JTextArea. By default,
JScrollPane displays scrollbars only if they’re required. You can set the horizontal and ver-
tical scrollbar policies of a JScrollPane when it’s constructed. If a program has a reference
to a JScrollPane, the program can use JScrollPane methods setHorizontal-
ScrollBarPolicy and setVerticalScrollBarPolicy to change the scrollbar policies at
any time. Class JScrollPane declares the constants

to indicate that a scrollbar should always appear, constants

to indicate that a scrollbar should appear only if necessary (the defaults) and constants

to indicate that a scrollbar should never appear. If the horizontal scrollbar policy is set to
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER, a JTextArea attached to the JScrollPane
will automatically wrap lines.

12.21 Wrap-Up
In this chapter, you learned many GUI components and how to handle their events. You
also learned about nested classes, inner classes and anonymous inner classes. You saw the
special relationship between an inner-class object and an object of its top-level class. You
learned how to use JOptionPane dialogs to obtain text input from the user and how to
display messages to the user. You also learned how to create applications that execute in
their own windows. We discussed class JFrame and components that enable a user to in-
teract with an application. We also showed you how to display text and images to the user.
You learned how to customize JPanels to create custom drawing areas, which you’ll use
extensively in the next chapter. You saw how to organize components on a window using
layout managers and how to creating more complex GUIs by using JPanels to organize
components. Finally, you learned about the JTextArea component in which a user can
enter text and an application can display text. In Chapter 22, you’ll learn about more ad-
vanced GUI components, such as sliders, menus and more complex layout managers. In
the next chapter, you’ll learn how to add graphics to your GUI application. Graphics allow
you to draw shapes and text with colors and styles.

Look-and-Feel Observation 12.19
To provide line wrapping functionality for a JTextArea, invoke JTextArea method set-
LineWrap with a true argument.

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS

JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED
JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED

JScrollPane.VERTICAL_SCROLLBAR_NEVER
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER

 Summary 543

Summary
Section 12.1 Introduction
• A graphical user interface (GUI; p. 474) presents a user-friendly mechanism for interacting with

an application. A GUI gives an application a distinctive look-and-feel (p. 474).

• Providing different applications with consistent, intuitive user-interface components gives users
a sense of familarity with a new application, so that they can learn it more quickly.

• GUIs are built from GUI components (p. 474)—sometimes called controls or widgets.

Section 12.2 Java’s Nimbus Look-and-Feel
• As of Java SE 6 update 10, Java comes bundled with a new, elegant, cross-platform look-and-feel

known as Nimbus (p. 476).

• To set Nimbus as the default for all Java applications, create a swing.properties text file in the
lib folder of your JDK and JRE installation folders. Place the following line of code in the file:

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

• To select Nimbus on an application-by-application basis, place the following command-line ar-
gument after the java command and before the application’s name when you run the application:

-Dswing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

Section 12.3 Simple GUI-Based Input/Output with JOptionPane
• Most applications use windows or dialog boxes (p. 476) to interact with the user.

• Class JOptionPane (p. 476) of package javax.swing (p. 474) provides prebuilt dialog boxes for
both input and output. JOptionPane static method showInputDialog (p. 477) displays an input
dialog (p. 476).

• A prompt typically uses sentence-style capitalization—capitalizing only the first letter of the first
word in the text unless the word is a proper noun.

• An input dialog can input only input Strings. This is typical of most GUI components.

• JOptionPane static method showMessageDialog (p. 478) displays a message dialog (p. 476).

Section 12.4 Overview of Swing Components
• Most Swing GUI components (p. 474) are located in package javax.swing.

• Together, the appearance and the way in which the user interacts with the application are known
as that application’s look-and-feel. Swing GUI components allow you to specify a uniform look-
and-feel for your application across all platforms or to use each platform’s custom look-and-feel.

• Lightweight Swing components are not tied to actual GUI components supported by the under-
lying platform on which an application executes.

• Several Swing components are heavyweight components (p. 480) that require direct interaction
with the local windowing system (p. 480), which may restrict their appearance and functionality.

• Class Component (p. 480) of package java.awt declares many of the attributes and behaviors com-
mon to the GUI components in packages java.awt (p. 479) and javax.swing.

• Class Container (p. 480) of package java.awt is a subclass of Component. Components are attached
to Containers so the Components can be organized and displayed on the screen.

• Class JComponent (p. 480) of package javax.swing is a subclass of Container. JComponent is the su-
perclass of all lightweight Swing components and declares their common attributes and behaviors.

• Some common JComponent features include a pluggable look-and-feel (p. 480), shortcut keys
called mnemonics (p. 480), tool tips (p. 480), support for assistive technologies and support for
user-interface localization (p. 480).

544 Chapter 12 GUI Components: Part 1

Section 12.5 Displaying Text and Images in a Window
• Class JFrame provides the basic attributes and behaviors of a window.

• A JLabel (p. 481) displays read-only text, an image, or both text and an image. Text in a JLabel
normally uses sentence-style capitalization.

• Each GUI component must be attached to a container, such as a window created with a JFrame
(p. 483).

• Many IDEs provide GUI design tools (p. 529) in which you can specify the exact size and loca-
tion of a component by using the mouse; then the IDE will generate the GUI code for you.

• JComponent method setToolTipText (p. 483) specifies the tool tip that’s displayed when the user
positions the mouse cursor over a lightweight component (p. 480).

• Container method add attaches a GUI component to a Container.

• Class ImageIcon (p. 484) supports several image formats, including GIF, PNG and JPEG.

• Method getClass of class Object (p. 484) retrieves a reference to the Class object that represents
the the class declaration for the object on which the method is called.

• Class method getResource (p. 484) returns the location of its argument as a URL. The method
getResource uses the Class object’s class loader to determine the location of the resource.

• The horizontal and vertical alignments of a JLabel can be set with methods setHorizontal-
Alignment (p. 484) and setVerticalAlignment (p. 484), respectively.

• JLabel methods setText (p. 484) and getText (p. 484) set and get the text displayed on a label.

• JLabel methods setIcon (p. 484) and getIcon (p. 484) set and get the Icon (p. 484) on a label.

• JLabel methods setHorizontalTextPosition (p. 484) and setVerticalTextPosition (p. 484)
specify the text position in the label.

• JFrame method setDefaultCloseOperation (p. 485) with constant JFrame.EXIT_ON_CLOSE as the
argument indicates that the program should terminate when the window is closed by the user.

• Component method setSize (p. 485) specifies the width and height of a component.

• Component method setVisible (p. 485) with the argument true displays a JFrame on the screen.

Section 12.6 Text Fields and an Introduction to Event Handling with Nested Classes
• GUIs are event driven—when the user interacts with a GUI component, events (p. 485) drive

the program to perform tasks.

• An event handler (p. 485) performs a task in response to an event.

• Class JTextField (p. 485) extends JTextComponent (p. 485) of package javax.swing.text,
which provides common text-based component features. Class JPasswordField (p. 485) extends
JTextField and adds several methods that are specific to processing passwords.

• A JPasswordField (p. 485) shows that characters are being typed as the user enters them, but
hides the actual characters with echo characters (p. 485).

• A component receives the focus (p. 486) when the user clicks the component.

• JTextComponent method setEditable (p. 488) can be used to make a text field uneditable.

• To respond to an event for a particular GUI component, you must create a class that represents
the event handler and implements an appropriate event-listener interface (p. 488), then register
an object of the event-handling class as the event handler (p. 488).

• Non-static nested classes (p. 488) are called inner classes and are frequently used for event handling.

• An object of a non-static inner class (p. 488) must be created by an object of the top-level class
(p. 488) that contains the inner class.

 Summary 545

• An inner-class object can directly access the instance variables and methods of its top-level class.

• A nested class that’s static does not require an object of its top-level class and does not implicitly
have a reference to an object of the top-level class.

• Pressing Enter in a JTextField or JPasswordField generates an ActionEvent (p. 489) that can be
handled by an ActionListener (p. 489) of package java.awt.event.

• JTextField method addActionListener (p. 489) registers an event handler for a text field’s
ActionEvent.

• The GUI component with which the user interacts is the event source (p. 490).

• An ActionEvent object contains information about the event that just occurred, such as the event
source and the text in the text field.

• ActionEvent method getSource returns a reference to the event source. ActionEvent method
getActionCommand (p. 490) returns the text the user typed in a text field or the label on a JButton.

• JPasswordField method getPassword (p. 490) returns the password the user typed.

Section 12.7 Common GUI Event Types and Listener Interfaces
• Each event-object type typically has a corresponding event-listener interface that specifies one or

more event-handling methods, which must be declared in the class that implements the interface.

Section 12.8 How Event Handling Works
• When an event occurs, the GUI component with which the user interacted notifies its registered

listeners by calling each listener’s appropriate event-handling method.

• Every GUI component supports several event types. When an event occurs, the event is dis-
patched (p. 494) only to the event listeners of the appropriate type.

Section 12.9 JButton

• A button is a component the user clicks to trigger an action. All the button types are subclasses
of AbstractButton (p. 495; package javax.swing). Button labels (p. 495) typically use book-title
capitalization (p. 495).

• Command buttons (p. 495) are created with class JButton.

• A JButton can display an Icon. A JButton can also have a rollover Icon (p. 497)—an Icon that’s
displayed when the user positions the mouse over the button.

• Method setRolloverIcon (p. 498) of class AbstractButton specifies the image displayed on a
button when the user positions the mouse over it.

Section 12.10 Buttons That Maintain State
• There are three Swing state button types—JToggleButton (p. 498), JCheckBox (p. 498) and

JRadioButton (p. 498).

• Classes JCheckBox and JRadioButton are subclasses of JToggleButton.

• Component method setFont (p. 500) sets the component’s font to a new Font object (p. 500) of
package java.awt.

• Clicking a JCheckBox causes an ItemEvent (p. 501) that can be handled by an ItemListener
(p. 501) which defines method itemStateChanged (p. 501). Method addItemListener registers
the listener for the ItemEvent of a JCheckBox or JRadioButton object.

• JCheckBox method isSelected determines whether a JCheckBox is selected.

• JRadioButtons have two states—selected and not selected. Radio buttons (p. 495) normally ap-
pear as a group (p. 501) in which only one button can be selected at a time.

546 Chapter 12 GUI Components: Part 1

• JRadioButtons are used to represent mutually exclusive options (p. 501).

• The logical relationship between JRadioButtons is maintained by a ButtonGroup object (p. 501).

• ButtonGroup method add (p. 504) associates each JRadioButton with a ButtonGroup. If more
than one selected JRadioButton object is added to a group, the selected one that was added first
will be selected when the GUI is displayed.

• JRadioButtons generate ItemEvents when they’re clicked.

Section 12.11 JComboBox; Using an Anonymous Inner Class for Event Handling
• A JComboBox (p. 504) provides a list of items from which the user can make a single selection.

JComboBoxes generate ItemEvents.

• Each item in a JComboBox has an index (p. 507). The first item added to a JComboBox appears as
the currently selected item when the JComboBox is displayed.

• JComboBox method setMaximumRowCount (p. 507) sets the maximum number of elements that are
displayed when the user clicks the JComboBox.

• An anonymous inner class (p. 507) is a class without a name and typically appears inside a meth-
od declaration. One object of the anonymous inner class must be created when the class is de-
clared.

• JComboBox method getSelectedIndex (p. 508) returns the index of the selected item.

Section 12.12 JList

• A JList displays a series of items from which the user may select one or more items. Class JList
supports single-selection lists (p. 508) and multiple-selection lists.

• When the user clicks an item in a JList, a ListSelectionEvent (p. 508) occurs. JList method
addListSelectionListener (p. 510) registers a ListSelectionListener (p. 510) for a JList’s
selection events. A ListSelectionListener of package javax.swing.event(p. 492) must imple-
ment method valueChanged.

• JList method setVisibleRowCount (p. 510) specifies the number of visible items in the list.

• JList method setSelectionMode (p. 510) specifies a list’s selection mode.

• A JList can be attached to a JScrollPane (p. 510) to provide a scrollbar for the JList.

• JFrame method getContentPane (p. 510) returns a reference to the JFrame’s content pane where
GUI components are displayed.

• JList method getSelectedIndex (p. 511) returns the selected item’s index.

Section 12.13 Multiple-Selection Lists
• A multiple-selection list (p. 511) enables the user to select many items from a JList.

• JList method setFixedCellWidth (p. 513) sets a JList’s width. Method setFixedCellHeight
(p. 513) sets the height of each item in a JList.

• Normally, an external event (p. 513) generated by another GUI component (such as a JButton)
specifies when the multiple selections in a JList should be processed.

• JList method setListData (p. 513) sets the items displayed in a JList. JList method getSe-
lectedValues (p. 513) returns an array of Objects representing the selected items in a JList.

Section 12.14 Mouse Event Handling
• The MouseListener (p. 513) and MouseMotionListener (p. 513) event-listener interfaces are

used to handle mouse events (p. 513). Mouse events can be trapped for any GUI component that
extends Component.

 Summary 547

• Interface MouseInputListener (p. 513) of package javax.swing.event extends interfaces
MouseListener and MouseMotionListener to create a single interface containing all their methods.

• Each mouse event-handling method receives a MouseEvent object (p. 494) that contains infor-
mation about the event, including the x- and y-coordinates where the event occurred. Coordi-
nates are measured from the upper-left corner of the GUI component on which the event
occurred.

• The methods and constants of class InputEvent (p. 514; MouseEvent’s superclass) enable an ap-
plication to determine which mouse button the user clicked.

• Interface MouseWheelListener (p. 515) enables applications to respond to mouse-wheel events.

Section 12.15 Adapter Classes
• An adapter class (p. 518) implements an interface and provides default implementations of its

methods. When you extend an adapter class, you can override just the method(s) you need.

• MouseEvent method getClickCount (p. 521) returns the number of consecutive mouse-button
clicks. Methods isMetaDown (p. 528) and isAltDown (p. 521) determine which button was clicked.

Section 12.16 JPanel Subclass for Drawing with the Mouse
• JComponents method paintComponent (p. 522) is called when a lightweight Swing component is

displayed. Override this method to specify how to draw shapes using Java’s graphics capabilities.

• When overriding paintComponent, call the superclass version as the first statement in the body.

• Subclasses of JComponent support transparency. When a component is opaque (p. 522), paint-
Component clears its background before the component is displayed.

• The transparency of a Swing lightweight component can be set with method setOpaque (p. 522;
a false argument indicates that the component is transparent).

• Class Point (p. 523) package java.awt represents an x-y coordinate.

• Class Graphics (p. 523) is used to draw.

• MouseEvent method getPoint (p. 524) obtains the Point where a mouse event occurred.

• Method repaint (p. 524), inherited indirectly from class Component, indicates that a component
should be refreshed on the screen as soon as possible.

• Method paintComponent receives a Graphics parameter and is called automatically whenever a
lightweight component needs to be displayed on the screen.

• Graphics method fillOval (p. 524) draws a solid oval. The first two arguments are the upper-left
x-y coordinate of the bounding box, and the last two are the bounding box’s width and height.

Section 12.17 Key Event Handling
• Interface KeyListener (p. 494) is used to handle key events (p. 494) that are generated when keys

on the keyboard are pressed and released. Method addKeyListener of class Component (p. 525)
registers a KeyListener.

• KeyEvent (p. 494) method getKeyCode (p. 528) gets the virtual key code (p. 528) of the pressed
key. Class KeyEvent contains virtual key-code constants that represent every key on the keyboard.

• KeyEvent method getKeyText (p. 528) returns a string containing the name of the pressed key.

• KeyEvent method getKeyChar (p. 528) gets the Unicode value of the character typed.

• KeyEvent method isActionKey (p. 528) determines whether the key in an event was an action
key (p. 525).

• InputEvent method getModifiers (p. 528) determines whether any modifier keys (such as Shift,
Alt and Ctrl) were pressed when the key event occurred.

548 Chapter 12 GUI Components: Part 1

• KeyEvent method getKeyModifiersText (p. 528) returns a string containing the pressed modifi-
er keys.

Section 12.18 Introduction to Layout Managers
• Layout managers (p. 528) arrange GUI components in a container for presentation purposes.

• All layout managers implement the interface LayoutManager (p. 528) of package java.awt.

• Container method setLayout specifies the layout of a container.

• FlowLayout places components left to right in the order in which they’re added to the container.
When the container’s edge is reached, components continue to display on the next line. FlowLayout
allows GUI components to be left aligned, centered (the default) and right aligned.

• FlowLayout method setAlignment (p. 532) changes the alignment for a FlowLayout.

• BorderLayout (p. 532) the default for a JFrame) arranges components into five regions: NORTH,
SOUTH, EAST, WEST and CENTER. NORTH corresponds to the top of the container.

• A BorderLayout limits a Container to containing at most five components—one in each region.

• GridLayout (p. 536) divides a container into a grid of rows and columns.

• Container method validate (p. 537) recomputes a container’s layout based on the current lay-
out manager for the Container and the current set of displayed GUI components.

Section 12.19 Using Panels to Manage More Complex Layouts
• Complex GUIs often consist of multiple panels with different layouts. Every JPanel may have

components, including other panels, attached to it with Container method add.

Section 12.20 JTextArea

• A JTextArea (p. 539)—a subclass of JTextComponent—may contain multiple lines of text.

• Class Box (p. 540) is a subclass of Container that uses a BoxLayout layout manager (p. 541) to
arrange the GUI components either horizontally or vertically.

• Box static method createHorizontalBox (p. 541) creates a Box that arranges components from
left to right in the order that they’re attached.

• Method getSelectedText (p. 541) returns the selected text from a JTextArea.

• You can set the horizontal and vertical scrollbar policies (p. 542) of a JScrollPane when it’s con-
structed. JScrollPane methods setHorizontalScrollBarPolicy (p. 542) and setVertical-
ScrollBarPolicy (p. 542) can be used to change the scrollbar policies at any time.

Self-Review Exercises
12.1 Fill in the blanks in each of the following statements:

a) Method is called when the mouse is moved with no buttons pressed and an
event listener is registered to handle the event.

b) Text that cannot be modified by the user is called text.
c) A(n) arranges GUI components in a Container.
d) The add method for attaching GUI components is a method of class .
e) GUI is an acronym for .
f) Method is used to specify the layout manager for a container.
g) A mouseDragged method call is preceded by a(n) method call and followed by

a(n) method call.
h) Class contains methods that display message dialogs and input dialogs.
i) An input dialog capable of receiving input from the user is displayed with method

 of class .

 Answers to Self-Review Exercises 549

j) A dialog capable of displaying a message to the user is displayed with method
of class .

k) Both JTextFields and JTextAreas directly extend class .

12.2 Determine whether each statement is true or false. If false, explain why.
a) BorderLayout is the default layout manager for a JFrame’s content pane.
b) When the mouse cursor is moved into the bounds of a GUI component, method

mouseOver is called.
c) A JPanel cannot be added to another JPanel.
d) In a BorderLayout, two buttons added to the NORTH region will be placed side by side.
e) A maximum of five components can be added to a BorderLayout.
f) Inner classes are not allowed to access the members of the enclosing class.
g) A JTextArea’s text is always read-only.
h) Class JTextArea is a direct subclass of class Component.

12.3 Find the error(s) in each of the following statements, and explain how to correct it (them):
a) buttonName = JButton("Caption");
b) JLabel aLabel, JLabel;
c) txtField = new JTextField(50, "Default Text");
d) setLayout(new BorderLayout());

button1 = new JButton("North Star");
button2 = new JButton("South Pole");
add(button1);
add(button2);

Answers to Self-Review Exercises
12.1 a) mouseMoved. b) uneditable (read-only). c) layout manager. d) Container. e) graphical
user interface. f) setLayout. g) mousePressed, mouseReleased. h) JOptionPane. i) showInputDi-
alog, JOptionPane. j) showMessageDialog, JOptionPane. k) JTextComponent.

12.2 a) True.
b) False. Method mouseEntered is called.
c) False. A JPanel can be added to another JPanel, because JPanel is an indirect subclass

of Component. So, a JPanel is a Component. Any Component can be added to a Container.
d) False. Only the last button added will be displayed. Remember that only one compo-

nent should be added to each region in a BorderLayout.
e) True. [Note: Panels containing multiple components can be added to each region.]
f) False. Inner classes have access to all members of the enclosing class declaration.
g) False. JTextAreas are editable by default.
h) False. JTextArea derives from class JTextComponent.

12.3 a) new is needed to create an object.
b) JLabel is a class name and cannot be used as a variable name.
c) The arguments passed to the constructor are reversed. The String must be passed first.
d) BorderLayout has been set, and components are being added without specifying the re-

gion, so both are added to the center region. Proper add statements might be
add(button1, BorderLayout.NORTH);
add(button2, BorderLayout.SOUTH);

Exercises
12.4 Fill in the blanks in each of the following statements:

a) The JTextField class directly extends class .

550 Chapter 12 GUI Components: Part 1

b) Container method attaches a GUI component to a container.
c) Method is called when a mouse button is released (without moving the

mouse).
d) The class is used to create a group of JRadioButtons.

12.5 Determine whether each statement is true or false. If false, explain why.
a) Only one layout manager can be used per Container.
b) GUI components can be added to a Container in any order in a BorderLayout.
c) JRadioButtons provide a series of mutually exclusive options (i.e., only one can be true

at a time).
d) Graphics method setFont is used to set the font for text fields.
e) A JList displays a scrollbar if there are more items in the list than can be displayed.
f) A Mouse object has a method called mouseDragged.

12.6 Determine whether each statement is true or false. If false, explain why.
a) A JPanel is a JComponent.
b) A JPanel is a Component.
c) A JLabel is a Container.
d) A JList is a JPanel.
e) An AbstractButton is a JButton.
f) A JTextField is an Object.
g) ButtonGroup is a subclass of JComponent.

12.7 Find any errors in each of the following lines of code, and explain how to correct them.
a) import javax.swing.JFrame
b) panelObject.GridLayout(8, 8);
c) container.setLayout(new FlowLayout(FlowLayout.DEFAULT));
d) container.add(eastButton, EAST); face

12.8 Create the following GUI. You do not have to provide any functionality.

12.9 Create the following GUI. You do not have to provide any functionality.

12.10 Create the following GUI. You do not have to provide any functionality.

 Exercises 551

12.11 Create the following GUI. You do not have to provide any functionality.

12.12 (Temperature Conversion) Write a temperature-conversion application that converts from
Fahrenheit to Celsius. The Fahrenheit temperature should be entered from the keyboard (via a
JTextField). A JLabel should be used to display the converted temperature. Use the following for-
mula for the conversion:

Celsius = × (Fahrenheit – 32)

12.13 (Temperature-Conversion Modification) Enhance the temperature-conversion application
of Exercise 12.12 by adding the Kelvin temperature scale. The application should also allow the user
to make conversions between any two scales. Use the following formula for the conversion between
Kelvin and Celsius (in addition to the formula in Exercise 12.12):

Kelvin = Celsius + 273.15

12.14 (Guess-the-Number Game) Write an application that plays “guess the number” as follows:
Your application chooses the number to be guessed by selecting an integer at random in the range
1–1000. The application then displays the following in a label:

I have a number between 1 and 1000. Can you guess my number?
Please enter your first guess.

A JTextField should be used to input the guess. As each guess is input, the background color
should change to either red or blue. Red indicates that the user is getting “warmer,” and blue,
“colder.” A JLabel should display either "Too High" or "Too Low" to help the user zero in. When
the user gets the correct answer, "Correct!" should be displayed, and the JTextField used for
input should be changed to be uneditable. A JButton should be provided to allow the user to play
the game again. When the JButton is clicked, a new random number should be generated and the
input JTextField changed to be editable.

12.15 (Displaying Events) It’s often useful to display the events that occur during the execution
of an application. This can help you understand when the events occur and how they’re generated.
Write an application that enables the user to generate and process every event discussed in this chap-
ter. The application should provide methods from the ActionListener, ItemListener, ListSelec-
tionListener, MouseListener, MouseMotionListener and KeyListener interfaces to display
messages when the events occur. Use method toString to convert the event objects received in each
event handler into Strings that can be displayed. Method toString creates a String containing all
the information in the event object.

12.16 (GUI-Based Craps Game) Modify the application of Section 6.10 to provide a GUI that
enables the user to click a JButton to roll the dice. The application should also display four JLabels
and four JTextFields, with one JLabel for each JTextField. The JTextFields should be used to
display the values of each die and the sum of the dice after each roll. The point should be displayed
in the fourth JTextField when the user does not win or lose on the first roll and should continue
to be displayed until the game is lost.

5
9

552 Chapter 12 GUI Components: Part 1

(Optional) GUI and Graphics Case Study Exercise: Expanding the Interface
12.17 (Interactive Drawing Application) In this exercise, you’ll implement a GUI application
that uses the MyShape hierarchy from GUI and Graphics Case Study Exercise 10.2 to create an in-
teractive drawing application. You’ll create two classes for the GUI and provide a test class that
launches the application. The classes of the MyShape hierarchy require no additional changes.

The first class to create is a subclass of JPanel called DrawPanel, which represents the area on
which the user draws the shapes. Class DrawPanel should have the following instance variables:

a) An array shapes of type MyShape that will store all the shapes the user draws.
b) An integer shapeCount that counts the number of shapes in the array.
c) An integer shapeType that determines the type of shape to draw.
d) A MyShape currentShape that represents the current shape the user is drawing.
e) A Color currentColor that represents the current drawing color.
f) A boolean filledShape that determines whether to draw a filled shape.
g) A JLabel statusLabel that represents the status bar. The status bar will display the co-

ordinates of the current mouse position.

Class DrawPanel should also declare the following methods:
a) Overridden method paintComponent that draws the shapes in the array. Use instance

variable shapeCount to determine how many shapes to draw. Method paintComponent
should also call currentShape’s draw method, provided that currentShape is not null.

b) Set methods for the shapeType, currentColor and filledShape.
c) Method clearLastShape should clear the last shape drawn by decrementing instance

variable shapeCount. Ensure that shapeCount is never less than zero.
d) Method clearDrawing should remove all the shapes in the current drawing by setting

shapeCount to zero.

Methods clearLastShape and clearDrawing should call repaint (inherited from JPanel) to refresh
the drawing on the DrawPanel by indicating that the system should call method paintComponent.

Class DrawPanel should also provide event handling to enable the user to draw with the
mouse. Create a single inner class that both extends MouseAdapter and implements MouseMotion-
Listener to handle all mouse events in one class.

In the inner class, override method mousePressed so that it assigns currentShape a new shape
of the type specified by shapeType and initializes both points to the mouse position. Next, override
method mouseReleased to finish drawing the current shape and place it in the array. Set the second
point of currentShape to the current mouse position and add currentShape to the array. Instance
variable shapeCount determines the insertion index. Set currentShape to null and call method
repaint to update the drawing with the new shape.

Override method mouseMoved to set the text of the statusLabel so that it displays the mouse
coordinates—this will update the label with the coordinates every time the user moves (but does
not drag) the mouse within the DrawPanel. Next, override method mouseDragged so that it sets the
second point of the currentShape to the current mouse position and calls method repaint. This
will allow the user to see the shape while dragging the mouse. Also, update the JLabel in mouse-
Dragged with the current position of the mouse.

Create a constructor for DrawPanel that has a single JLabel parameter. In the constructor, ini-
tialize statusLabel with the value passed to the parameter. Also initialize array shapes with 100
entries, shapeCount to 0, shapeType to the value that represents a line, currentShape to null and
currentColor to Color.BLACK. The constructor should then set the background color of the Draw-
Panel to Color.WHITE and register the MouseListener and MouseMotionListener so the JPanel
properly handles mouse events.

Next, create a JFrame subclass called DrawFrame that provides a GUI that enables the user to
control various aspects of drawing. For the layout of the DrawFrame, we recommend a BorderLay-

 Making a Difference 553

out, with the components in the NORTH region, the main drawing panel in the CENTER region, and a
status bar in the SOUTH region, as in Fig. 12.49. In the top panel, create the components listed
below. Each component’s event handler should call the appropriate method in class DrawPanel.

a) A button to undo the last shape drawn.
b) A button to clear all shapes from the drawing.
c) A combo box for selecting the color from the 13 predefined colors.
d) A combo box for selecting the shape to draw.
e) A checkbox that specifies whether a shape should be filled or unfilled.

Declare and create the interface components in DrawFrame’s constructor. You’ll need to create
the status bar JLabel before you create the DrawPanel, so you can pass the JLabel as an argument
to DrawPanel’s constructor. Finally, create a test class that initializes and displays the DrawFrame to
execute the application.

12.18 (GUI-Based Version of the ATM Case Study) Reimplement the Optional ATM Case Study
of Chapters 33–34 as a GUI-based application. Use GUI components to approximate the ATM
user interface shown in Fig. 33.1. For the cash dispenser and the deposit slot use JButtons labeled
Remove Cash and Insert Envelope. This will enable the application to receive events indicating when
the user takes the cash and inserts a deposit envelope, respectively.

Making a Difference
12.19 (Ecofont) Ecofont (www.ecofont.eu/ecofont_en.html)—developed by SPRANQ (a Neth-
erlands-based company)—is a free, open-source computer font designed to reduce by as much as
20% the amount of ink used for printing, thus reducing also the number of ink cartridges used and
the environmental impact of the manufacturing and shipping processes (using less energy, less fuel
for shipping, and so on). The font, based on sans-serif Verdana, has small circular “holes” in the
letters that are not visible in smaller sizes—such as the 9- or 10-point type frequently used. Down-
load Ecofont, then install the font file Spranq_eco_sans_regular.ttf using the instructions from
the Ecofont website. Next, develop a GUI-based program that allows you to type in a text string to
be displayed in the Ecofont. Create Increase Font Size and Decrease Font Size buttons that allow you

Fig. 12.49 | Interface for drawing shapes.

www.ecofont.eu/ecofont_en.html

554 Chapter 12 GUI Components: Part 1

to scale up or down by one point at a time. Start with a default font size of 9 points. As you scale
up, you’ll be able to see the holes in the letters more clearly. As you scale down, the holes will be less
apparent. What is the smallest font size at which you begin to notice the holes?

12.20 (Typing Tutor: Tuning a Crucial Skill in the Computer Age) Typing quickly and correctly
is an essential skill for working effectively with computers and the Internet. In this exercise, you’ll
build a GUI application that can help users learn to “touch type” (i.e., type correctly without look-
ing at the keyboard). The application should display a virtual keyboard (Fig. 12.50) and should al-
low the user to watch what he or she is typing on the screen without looking at the actual keyboard.
Use JButtons to represent the keys. As the user presses each key, the application highlights the cor-
responding JButton on the GUI and adds the character to a JTextArea that shows what the user has
typed so far. [Hint: To highlight a JButton, use its setBackground method to change its background
color. When the key is released, reset its original background color. You can obtain the JButton’s
original background color with the getBackground method before you change its color.]

You can test your program by typing a pangram—a phrase that contains every letter of the
alphabet at least once—such as “The quick brown fox jumped over a lazy dog.” You can find other
pangrams on the web.

To make the program more interesting you could monitor the user’s accuracy. You could have
the user type specific phrases that you’ve prestored in your program and that you display on the
screen above the virtual keyboard. You could keep track of how many keystrokes the user types cor-
rectly and how many are typed incorrectly. You could also keep track of which keys the user is hav-
ing difficulty with and display a report showing those keys.

Fig. 12.50 | Typing tutor.

13Graphics and Java 2D

Treat nature in terms of the
cylinder, the sphere, the cone, all
in perspective.
—Paul Cézanne

Colors, like features, follow the
changes of the emotions.
—Pablo Picasso

Nothing ever becomes real till it
is experienced—even a proverb
is no proverb to you till your life
has illustrated it.
—John Keats

O b j e c t i v e s
In this chapter you’ll:

■ Understand graphics
contexts and graphics
objects.

■ Manipulate colors and fonts.

■ Use methods of class
Graphics to draw various
shapes.

■ Use methods of class
Graphics2D from the Java
2D API to draw various
shapes.

■ Specify Paint and Stroke
characteristics of shapes
displayed with
Graphics2D.

556 Chapter 13 Graphics and Java 2D

13.1 Introduction
In this chapter, we overview several of Java’s capabilities for drawing two-dimensional
shapes, controlling colors and controlling fonts. Part of Java’s initial appeal was its support
for graphics that enabled programmers to visually enhance their applications. Java contains
more sophisticated drawing capabilities as part of the Java 2D API (presented in this chapter)
and its successor technology JavaFX (presented in Chapter 25 and two online chapters). This
chapter begins by introducing many of Java’s original drawing capabilities. Next we present
several of the more powerful Java 2D capabilities, such as controlling the style of lines used
to draw shapes and the way shapes are filled with colors and patterns. The classes that were
part of Java’s original graphics capabilities are now considered to be part of the Java 2D API.

Figure 13.1 shows a portion of the class hierarchy that includes various graphics
classes and Java 2D API classes and interfaces covered in this chapter. Class Color contains
methods and constants for manipulating colors. Class JComponent contains method
paintComponent, which is used to draw graphics on a component. Class Font contains
methods and constants for manipulating fonts. Class FontMetrics contains methods for
obtaining font information. Class Graphics contains methods for drawing strings, lines,
rectangles and other shapes. Class Graphics2D, which extends class Graphics, is used for
drawing with the Java 2D API. Class Polygon contains methods for creating polygons. The
bottom half of the figure lists several classes and interfaces from the Java 2D API. Class
BasicStroke helps specify the drawing characteristics of lines. Classes GradientPaint and
TexturePaint help specify the characteristics for filling shapes with colors or patterns.
Classes GeneralPath, Line2D, Arc2D, Ellipse2D, Rectangle2D and RoundRectangle2D
represent several Java 2D shapes.

To begin drawing in Java, we must first understand Java’s coordinate system
(Fig. 13.2), which is a scheme for identifying every point on the screen. By default, the
upper-left corner of a GUI component (e.g., a window) has the coordinates (0, 0). A coor-
dinate pair is composed of an x-coordinate (the horizontal coordinate) and a y-coordinate
(the vertical coordinate). The x-coordinate is the horizontal distance moving right from
the left edge of the screen. The y-coordinate is the vertical distance moving down from the
top of the screen. The x-axis describes every horizontal coordinate, and the y-axis every ver-
tical coordinate. The coordinates are used to indicate where graphics should be displayed
on a screen. Coordinate units are measured in pixels (which stands for “picture elements”).
A pixel is a display monitor’s smallest unit of resolution.

13.1 Introduction
13.2 Graphics Contexts and Graphics

Objects
13.3 Color Control
13.4 Manipulating Fonts
13.5 Drawing Lines, Rectangles and Ovals

13.6 Drawing Arcs
13.7 Drawing Polygons and Polylines
13.8 Java 2D API
13.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Making a Difference

13.1 Introduction 557

Fig. 13.1 | Classes and interfaces used in this chapter from Java’s original graphics
capabilities and from the Java 2D API.

Portability Tip 13.1
Different display monitors have different resolutions (i.e., the density of the pixels varies).
This can cause graphics to appear in different sizes on different monitors or on the same
monitor with different settings.

java.awt.Color

java.lang.Object

java.awt.Component

java.awt.Font

java.awt.FontMetrics

java.awt.Graphics

java.awt.Polygon

java.awt.geom.Arc2D

java.awt.geom.Ellipse2D

java.awt.geom.Rectangle2D

java.awt.geom.RoundRectangle2D

java.awt.Graphics2D

java.awt.Container javax.swing.JComponent

«interface»
java.awt.Paint

«interface»
java.awt.Shape

«interface»
java.awt.Stroke

java.awt.BasicStroke

java.awt.GradientPaint

java.awt.TexturePaint

java.awt.geom.GeneralPath

java.awt.geom.Line2D

java.awt.geom.RectangularShape

558 Chapter 13 Graphics and Java 2D

13.2 Graphics Contexts and Graphics Objects
A graphics context enables drawing on the screen. A Graphics object manages a graphics
context and draws pixels on the screen that represent text and other graphical objects (e.g.,
lines, ellipses, rectangles and other polygons). Graphics objects contain methods for drawing,
font manipulation, color manipulation and the like.

Class Graphics is an abstract class (i.e., you cannot instantiate Graphics objects).
This contributes to Java’s portability. Because drawing is performed differently on every
platform that supports Java, there cannot be only one implementation of the drawing
capabilities across all systems. When Java is implemented on a particular platform, a sub-
class of Graphics is created that implements the drawing capabilities. This implementa-
tion is hidden by class Graphics, which supplies the interface that enables us to use
graphics in a platform-independent manner.

Recall from Chapter 12 that class Component is the superclass for many of the classes
in package java.awt. Class JComponent (package javax.swing), which inherits indirectly
from class Component, contains a paintComponent method that can be used to draw
graphics. Method paintComponent takes a Graphics object as an argument. This object is
passed to the paintComponent method by the system when a lightweight Swing compo-
nent needs to be repainted. The header for the paintComponent method is

Parameter g receives a reference to an instance of the system-specific subclass of Graphics.
The preceding method header should look familiar to you—it’s the same one we used in
some of the applications in Chapter 12. Actually, class JComponent is a superclass of JPan-
el. Many capabilities of class JPanel are inherited from class JComponent.

You seldom call method paintComponent directly, because drawing graphics is an
event-driven process. As we mentioned in Chapter 11, Java uses a multithreaded model of
program execution. Each thread is a parallel activity. Each program can have many threads.
When you create a GUI-based application, one of those threads is known as the event-
dispatch thread (EDT)—it’s used to process all GUI events. All manipulation of the on-
screen GUI components must be performed in that thread. When a GUI application exe-
cutes, the application container calls method paintComponent (in the event-dispatch
thread) for each lightweight component as the GUI is displayed. For paintComponent to
be called again, an event must occur (such as covering and uncovering the component with
another window).

Fig. 13.2 | Java coordinate system. Units are measured in pixels.

public void paintComponent(Graphics g)

(0, 0)

(x, y)

+y

+x

y-axis

x-axis

13.3 Color Control 559

If you need paintComponent to execute (i.e., if you want to update the graphics drawn
on a Swing component), you can call method repaint, which returns void, takes no argu-
ments and is inherited by all JComponents indirectly from class Component (package
java.awt).

13.3 Color Control
Class Color declares methods and constants for manipulating colors in a Java program.
The predeclared color constants are summarized in Fig. 13.3, and several color methods
and constructors are summarized in Fig. 13.4. Two of the methods in Fig. 13.4 are Graph-
ics methods that are specific to colors.

Color constant RGB value

public static final Color RED 255, 0, 0

public static final Color GREEN 0, 255, 0

public static final Color BLUE 0, 0, 255

public static final Color ORANGE 255, 200, 0

public static final Color PINK 255, 175, 175

public static final Color CYAN 0, 255, 255

public static final Color MAGENTA 255, 0, 255

public static final Color YELLOW 255, 255, 0

public static final Color BLACK 0, 0, 0

public static final Color WHITE 255, 255, 255

public static final Color GRAY 128, 128, 128

public static final Color LIGHT_GRAY 192, 192, 192

public static final Color DARK_GRAY 64, 64, 64

Fig. 13.3 | Color constants and their RGB values.

Method Description

Color constructors and methods

public Color(int r, int g, int b)

Creates a color based on red, green and blue components expressed as integers
from 0 to 255.

public Color(float r, float g, float b)

Creates a color based on red, green and blue components expressed as floating-
point values from 0.0 to 1.0.

public int getRed()

Returns a value between 0 and 255 representing the red content.

Fig. 13.4 | Color methods and color-related Graphics methods. (Part 1 of 2.)

560 Chapter 13 Graphics and Java 2D

Every color is created from a red, a green and a blue value. Together these are called
RGB values. All three RGB components can be integers in the range from 0 to 255, or all
three can be floating-point values in the range 0.0 to 1.0. The first RGB component spec-
ifies the amount of red, the second the amount of green and the third the amount of blue.
The larger the value, the greater the amount of that particular color. Java enables you to
choose from 256 × 256 × 256 (approximately 16.7 million) colors. Not all computers are
capable of displaying all these colors. The screen will display the closest color it can.

Two of class Color’s constructors are shown in Fig. 13.4—one that takes three int
arguments and one that takes three float arguments, with each argument specifying the
amount of red, green and blue. The int values must be in the range 0–255 and the float
values in the range 0.0–1.0. The new Color object will have the specified amounts of red,
green and blue. Color methods getRed, getGreen and getBlue return integer values from
0 to 255 representing the amounts of red, green and blue, respectively. Graphics method
getColor returns a Color object representing the Graphics object’s current drawing color.
Graphics method setColor sets the current drawing color.

Drawing in Different Colors
Figures 13.5–13.6 demonstrate several methods from Fig. 13.4 by drawing filled rectangles
and Strings in several different colors. When the application begins execution, class Col-
orJPanel’s paintComponent method (lines 10–37 of Fig. 13.5) is called to paint the win-
dow. Line 17 uses Graphics method setColor to set the drawing color. Method setColor
receives a Color object. The expression new Color(255, 0, 0) creates a new Color object
that represents red (red value 255, and 0 for the green and blue values). Line 18 uses
Graphics method fillRect to draw a filled rectangle in the current color. Method fill-
Rect draws a rectangle based on its four arguments. The first two integer values represent
the upper-left x-coordinate and upper-left y-coordinate, where the Graphics object begins
drawing the rectangle. The third and fourth arguments are nonnegative integers that
represent the width and the height of the rectangle in pixels, respectively. A rectangle
drawn using method fillRect is filled by the current color of the Graphics object.

public int getGreen()

Returns a value between 0 and 255 representing the green content.

public int getBlue()

Returns a value between 0 and 255 representing the blue content.

Graphics methods for manipulating Colors

public Color getColor()

Returns Color object representing current color for the graphics context.

public void setColor(Color c)

Sets the current color for drawing with the graphics context.

Method Description

Fig. 13.4 | Color methods and color-related Graphics methods. (Part 2 of 2.)

13.3 Color Control 561

1 // Fig. 13.5: ColorJPanel.java
2 // Changing drawing colors.
3 import java.awt.Graphics;
4
5 import javax.swing.JPanel;
6
7 public class ColorJPanel extends JPanel
8 {
9 // draw rectangles and Strings in different colors

10 @Override
11 public void paintComponent(Graphics g)
12 {
13 super.paintComponent(g);
14 this.setBackground(Color.WHITE);
15
16 // set new drawing color using integers
17
18
19 g.drawString("Current RGB: " + , 130, 40);
20
21 // set new drawing color using floats
22
23 g.fillRect(15, 50, 100, 20);
24 g.drawString("Current RGB: " + , 130, 65);
25
26 // set new drawing color using static Color objects
27
28 g.fillRect(15, 75, 100, 20);
29 g.drawString("Current RGB: " + g.getColor(), 130, 90);
30
31 // display individual RGB values
32
33
34 g.fillRect(15, 100, 100, 20);
35 g.drawString("RGB values: " + + ", " +
36 + ", " + , 130, 115);
37 }
38 } // end class ColorJPanel

Fig. 13.5 | Changing drawing colors.

1 // Fig. 13.6: ShowColors.java
2 // Demonstrating Colors.
3 import javax.swing.JFrame;
4
5 public class ShowColors
6 {
7 // execute application
8 public static void main(String[] args)
9 {

Fig. 13.6 | Demonstrating Colors. (Part 1 of 2.)

import java.awt.Color;

g.setColor(new Color(255, 0, 0));
g.fillRect(15, 25, 100, 20);

g.getColor()

g.setColor(new Color(0.50f, 0.75f, 0.0f));

g.getColor()

g.setColor(Color.BLUE);

Color color = Color.MAGENTA;
g.setColor(color);

color.getRed()
color.getGreen() color.getBlue()

562 Chapter 13 Graphics and Java 2D

Line 19 uses Graphics method drawString to draw a String in the current color.
The expression g.getColor() retrieves the current color from the Graphics object. We
then concatenate the Color with string "Current RGB: ", resulting in an implicit call to
class Color’s toString method. The String representation of a Color contains the class
name and package (java.awt.Color) and the red, green and blue values.

Lines 22–24 and 27–29 perform the same tasks again. Line 22 uses the Color con-
structor with three float arguments to create a dark green color (0.50f for red, 0.75f for
green and 0.0f for blue). Note the syntax of the values. The letter f appended to a
floating-point literal indicates that the literal should be treated as type float. Recall that
by default, floating-point literals are treated as type double.

Line 27 sets the current drawing color to one of the predeclared Color constants
(Color.BLUE). The Color constants are static, so they’re created when class Color is
loaded into memory at execution time.

The statement in lines 35–36 makes calls to Color methods getRed, getGreen and
getBlue on the predeclared Color.MAGENTA constant. Method main of class ShowColors
(lines 8–18 of Fig. 13.6) creates the JFrame that will contain a ColorJPanel object where
the colors will be displayed.

10 // create frame for ColorJPanel
11 JFrame frame = new JFrame("Using colors");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 ColorJPanel colorJPanel = new ColorJPanel();
15 frame.add(colorJPanel);
16 frame.setSize(400, 180);
17 frame.setVisible(true);
18 }
19 } // end class ShowColors

Look-and-Feel Observation 13.1
People perceive colors differently. Choose your colors carefully to ensure that your applica-
tion is readable, both for people who can perceive color and for those who are color blind.
Try to avoid using many different colors in close proximity.

Software Engineering Observation 13.1
To change the color, you must create a new Color object (or use one of the predeclared
Color constants). Like String objects, Color objects are immutable (not modifiable).

Fig. 13.6 | Demonstrating Colors. (Part 2 of 2.)

13.3 Color Control 563

The JColorChooser component (package javax.swing) enables application users to
select colors. Figures 13.7–13.8 demonstrate a JColorChooser dialog. When you click the
Change Color button, a JColorChooser dialog appears. When you select a color and press
the dialog’s OK button, the background color of the application window changes.

1 // Fig. 13.7: ShowColors2JFrame.java
2 // Choosing colors with JColorChooser.
3 import java.awt.BorderLayout;
4 import java.awt.Color;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.ActionListener;
7 import javax.swing.JButton;
8 import javax.swing.JFrame;
9

10 import javax.swing.JPanel;
11
12 public class ShowColors2JFrame extends JFrame
13 {
14 private final JButton changeColorJButton;
15 private Color color = Color.LIGHT_GRAY;
16 private final JPanel colorJPanel;
17
18 // set up GUI
19 public ShowColors2JFrame()
20 {
21 super("Using JColorChooser");
22
23 // create JPanel for display color
24 colorJPanel = new JPanel();
25 colorJPanel.setBackground(color);
26
27 // set up changeColorJButton and register its event handler
28 changeColorJButton = new JButton("Change Color");
29 changeColorJButton.addActionListener(
30 new ActionListener() // anonymous inner class
31 {
32 // display JColorChooser when user clicks button
33 @Override
34 public void actionPerformed(ActionEvent event)
35 {
36
37
38
39 // set default color, if no color is returned
40 if (color == null)
41 color = Color.LIGHT_GRAY;
42
43 // change content pane's background color
44
45 } // end method actionPerformed
46 } // end anonymous inner class
47); // end call to addActionListener

Fig. 13.7 | Choosing colors with JColorChooser. (Part 1 of 2.)

import javax.swing.JColorChooser;

color = JColorChooser.showDialog(
 ShowColors2JFrame.this, "Choose a color", color);

colorJPanel.setBackground(color);

564 Chapter 13 Graphics and Java 2D

Class JColorChooser provides static method showDialog, which creates a JColor-
Chooser object, attaches it to a dialog box and displays the dialog. Lines 36–37 of Fig. 13.7

48
49 add(colorJPanel, BorderLayout.CENTER);
50 add(changeColorJButton, BorderLayout.SOUTH);
51
52 setSize(400, 130);
53 setVisible(true);
54 } // end ShowColor2JFrame constructor
55 } // end class ShowColors2JFrame

1 // Fig. 13.8: ShowColors2.java
2 // Choosing colors with JColorChooser.
3 import javax.swing.JFrame;
4
5 public class ShowColors2
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 ShowColors2JFrame application = new ShowColors2JFrame();
11 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 }
13 } // end class ShowColors2

Fig. 13.8 | Choosing colors with JColorChooser.

Fig. 13.7 | Choosing colors with JColorChooser. (Part 2 of 2.)

Select a color from
one of the color

swatches

(a) Initial application window (b) JColorChooser window

(c) Application window after changing JPanel’s
background color

13.3 Color Control 565

invoke this method to display the color-chooser dialog. Method showDialog returns the
selected Color object, or null if the user presses Cancel or closes the dialog without
pressing OK. The method takes three arguments—a reference to its parent Component, a
String to display in the title bar of the dialog and the initial selected Color for the dialog.
The parent component is a reference to the window from which the dialog is displayed (in
this case the JFrame, with the reference name frame). The dialog will be centered on the
parent. If the parent is null, the dialog is centered on the screen. While the color-chooser
dialog is on the screen, the user cannot interact with the parent component until the dialog
is dismissed. This type of dialog is called a modal dialog.

After the user selects a color, lines 40–41 determine whether color is null, and, if so,
set color to Color.LIGHT_GRAY. Line 44 invokes method setBackground to change the
background color of the JPanel. Method setBackground is one of the many Component
methods that can be used on most GUI components. The user can continue to use the
Change Color button to change the background color of the application. Figure 13.8 con-
tains method main, which executes the program.

Figure 13.8(b) shows the default JColorChooser dialog that allows the user to select a
color from a variety of color swatches. There are three tabs across the top of the dialog—
Swatches, HSB and RGB. These represent three different ways to select a color. The HSB tab
allows you to select a color based on hue, saturation and brightness—values that are used to
define the amount of light in a color. Visit http://en.wikipedia.org/wiki/HSL_and_HSV
for more information on HSB. The RGB tab allows you to select a color by using sliders to
select the red, green and blue components. The HSB and RGB tabs are shown in Fig. 13.9.

Fig. 13.9 | HSB and RGB tabs of the JColorChooser dialog. (Part 1 of 2.)

http://en.wikipedia.org/wiki/HSL_and_HSV

566 Chapter 13 Graphics and Java 2D

13.4 Manipulating Fonts
This section introduces methods and constants for manipulating fonts. Most font meth-
ods and font constants are part of class Font. Some constructors, methods and constants
of class Font and class Graphics are summarized in Fig. 13.10.

Method or constant Description

Font constants, constructors and methods

public static final int PLAIN A constant representing a plain font style.

public static final int BOLD A constant representing a bold font style.

public static final int ITALIC A constant representing an italic font style.

public Font(String name,
 int style, int size)

Creates a Font object with the specified font name,
style and size.

public int getStyle() Returns an int indicating the current font style.

public int getSize() Returns an int indicating the current font size.

public String getName() Returns the current font name as a string.

public String getFamily() Returns the font’s family name as a string.

public boolean isPlain() Returns true if the font is plain, else false.

public boolean isBold() Returns true if the font is bold, else false.

public boolean isItalic() Returns true if the font is italic, else false.

Fig. 13.10 | Font-related methods and constants. (Part 1 of 2.)

Fig. 13.9 | HSB and RGB tabs of the JColorChooser dialog. (Part 2 of 2.)

Sliders to select
the red, green
and blue color

components

13.4 Manipulating Fonts 567

Class Font’s constructor takes three arguments—the font name, font style and font
size. The font name is any font currently supported by the system on which the program
is running, such as standard Java fonts Monospaced, SansSerif and Serif. The font style
is Font.PLAIN, Font.ITALIC or Font.BOLD (each is a static field of class Font). Font
styles can be used in combination (e.g., Font.ITALIC + Font.BOLD). The font size is mea-
sured in points. A point is 1/72 of an inch. Graphics method setFont sets the current
drawing font—the font in which text will be displayed—to its Font argument.

The application of Figs. 13.11–13.12 displays text in four different fonts, with each
font in a different size. Figure 13.11 uses the Font constructor to initialize Font objects (in
lines 17, 21, 25 and 30) that are each passed to Graphics method setFont to change the
drawing font. Each call to the Font constructor passes a font name (Serif, Monospaced or
SansSerif) as a string, a font style (Font.PLAIN, Font.ITALIC or Font.BOLD) and a font
size. Once Graphics method setFont is invoked, all text displayed following the call will
appear in the new font until the font is changed. Each font’s information is displayed in
lines 18, 22, 26 and 31–32 using method drawString. The coordinates passed to draw-
String correspond to the lower-left corner of the baseline of the font. Line 29 changes the
drawing color to red, so the next string displayed appears in red. Lines 31–32 display infor-
mation about the final Font object. Method getFont of class Graphics returns a Font
object representing the current font. Method getName returns the current font name as a
string. Method getSize returns the font size in points.

Figure 13.12 contains the main method, which creates a JFrame to display a Font-
JPanel. We add a FontJPanel object to this JFrame (line 15), which displays the graphics
created in Fig. 13.11.

Graphics methods for manipulating Fonts

public Font getFont() Returns a Font object reference representing the
current font.

public void setFont(Font f) Sets the current font to the font, style and size
specified by the Font object reference f.

Portability Tip 13.2
The number of fonts varies across systems. Java provides five font names—Serif, Mono-
spaced, SansSerif, Dialog and DialogInput—that can be used on all Java platforms.
The Java runtime environment (JRE) on each platform maps these logical font names to
actual fonts installed on the platform. The actual fonts used may vary by platform.

Software Engineering Observation 13.2
To change the font, you must create a new Font object. Font objects are immutable—class
Font has no set methods to change the characteristics of the current font.

Method or constant Description

Fig. 13.10 | Font-related methods and constants. (Part 2 of 2.)

568 Chapter 13 Graphics and Java 2D

1 // Fig. 13.11: FontJPanel.java
2 // Display strings in different fonts and colors.
3
4 import java.awt.Color;
5 import java.awt.Graphics;
6 import javax.swing.JPanel;
7
8 public class FontJPanel extends JPanel
9 {

10 // display Strings in different fonts and colors
11 @Override
12 public void paintComponent(Graphics g)
13 {
14 super.paintComponent(g);
15
16 // set font to Serif (Times), bold, 12pt and draw a string
17
18 g.drawString("Serif 12 point bold.", 20, 30);
19
20 // set font to Monospaced (Courier), italic, 24pt and draw a string
21
22 g.drawString("Monospaced 24 point italic.", 20, 50);
23
24 // set font to SansSerif (Helvetica), plain, 14pt and draw a string
25
26 g.drawString("SansSerif 14 point plain.", 20, 70);
27
28 // set font to Serif (Times), bold/italic, 18pt and draw a string
29 g.setColor(Color.RED);
30
31 g.drawString(+ " " + +
32 " point bold italic.", 20, 90);
33 }
34 } // end class FontJPanel

Fig. 13.11 | Display strings in different fonts and colors.

1 // Fig. 13.12: Fonts.java
2 // Using fonts.
3 import javax.swing.JFrame;
4
5 public class Fonts
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for FontJPanel
11 JFrame frame = new JFrame("Using fonts");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 FontJPanel fontJPanel = new FontJPanel();
15 frame.add(fontJPanel);

Fig. 13.12 | Using fonts. (Part 1 of 2.)

import java.awt.Font;

g.setFont(new Font("Serif", Font.BOLD, 12));

g.setFont(new Font("Monospaced", Font.ITALIC, 24));

g.setFont(new Font("SansSerif", Font.PLAIN, 14));

g.setFont(new Font("Serif", Font.BOLD + Font.ITALIC, 18));
g.getFont().getName() g.getFont().getSize()

13.4 Manipulating Fonts 569

Font Metrics
Sometimes it’s necessary to get information about the current drawing font, such as its
name, style and size. Several Font methods used to get font information are summarized
in Fig. 13.10. Method getStyle returns an integer value representing the current style.
The integer value returned is either Font.PLAIN, Font.ITALIC, Font.BOLD or the combi-
nation of Font.ITALIC and Font.BOLD. Method getFamily returns the name of the font
family to which the current font belongs. The name of the font family is platform specific.
Font methods are also available to test the style of the current font, and these too are sum-
marized in Fig. 13.10. Methods isPlain, isBold and isItalic return true if the current
font style is plain, bold or italic, respectively.

Figure 13.13 illustrates some of the common font metrics, which provide precise
information about a font, such as height, descent (the amount a character dips below the
baseline), ascent (the amount a character rises above the baseline) and leading (the differ-
ence between the descent of one line of text and the ascent of the line of text below it—
that is, the interline spacing).

Class FontMetrics declares several methods for obtaining font metrics. These
methods and Graphics method getFontMetrics are summarized in Fig. 13.14. The
application of Figs. 13.15–13.16 uses the methods of Fig. 13.14 to obtain font metric
information for two fonts.

16 frame.setSize(420, 150);
17 frame.setVisible(true);
18 }
19 } // end class Fonts

Fig. 13.13 | Font metrics.

Fig. 13.12 | Using fonts. (Part 2 of 2.)

ascentheight

leading

descent
baseline

570 Chapter 13 Graphics and Java 2D

Method Description

FontMetrics methods
public int getAscent() Returns the ascent of a font in points.
public int getDescent() Returns the descent of a font in points.
public int getLeading() Returns the leading of a font in points.
public int getHeight() Returns the height of a font in points.

Graphics methods for getting a Font’s FontMetrics
public FontMetrics getFontMetrics()
 Returns the FontMetrics object for the current drawing Font.
public FontMetrics getFontMetrics(Font f)
 Returns the FontMetrics object for the specified Font argument.

Fig. 13.14 | FontMetrics and Graphics methods for obtaining font metrics.

1 // Fig. 13.15: MetricsJPanel.java
2 // FontMetrics and Graphics methods useful for obtaining font metrics.
3 import java.awt.Font;
4
5 import java.awt.Graphics;
6 import javax.swing.JPanel;
7
8 public class MetricsJPanel extends JPanel
9 {

10 // display font metrics
11 @Override
12 public void paintComponent(Graphics g)
13 {
14 super.paintComponent(g);
15
16 g.setFont(new Font("SansSerif", Font.BOLD, 12));
17
18 g.drawString("Current font: " + , 10, 30);
19 g.drawString("Ascent: " + , 10, 45);
20 g.drawString("Descent: " + , 10, 60);
21 g.drawString("Height: " + , 10, 75);
22 g.drawString("Leading: " + , 10, 90);
23
24 Font font = new Font("Serif", Font.ITALIC, 14);
25
26 g.setFont(font);
27 g.drawString("Current font: " + font, 10, 120);
28 g.drawString("Ascent: " + , 10, 135);
29 g.drawString("Descent: " + , 10, 150);
30 g.drawString("Height: " + , 10, 165);
31 g.drawString("Leading: " + , 10, 180);
32 }
33 } // end class MetricsJPanel

Fig. 13.15 | FontMetrics and Graphics methods useful for obtaining font metrics.

import java.awt.FontMetrics;

FontMetrics metrics = g.getFontMetrics();
g.getFont()

metrics.getAscent()
metrics.getDescent()

metrics.getHeight()
metrics.getLeading()

metrics = g.getFontMetrics(font);

metrics.getAscent()
metrics.getDescent()

metrics.getHeight()
metrics.getLeading()

13.5 Drawing Lines, Rectangles and Ovals 571

Line 16 of Fig. 13.15 creates and sets the current drawing font to a SansSerif, bold,
12-point font. Line 17 uses Graphics method getFontMetrics to obtain the FontMetrics
object for the current font. Line 18 outputs the String representation of the Font returned
by g.getFont(). Lines 19–22 use FontMetric methods to obtain the ascent, descent,
height and leading for the font.

Line 24 creates a new Serif, italic, 14-point font. Line 25 uses a second version of
Graphics method getFontMetrics, which accepts a Font argument and returns a corre-
sponding FontMetrics object. Lines 28–31 obtain the ascent, descent, height and leading
for the font. The font metrics are slightly different for the two fonts.

13.5 Drawing Lines, Rectangles and Ovals
This section presents Graphics methods for drawing lines, rectangles and ovals. The
methods and their parameters are summarized in Fig. 13.17. For each drawing method
that requires a width and height parameter, the width and height must be nonnegative
values. Otherwise, the shape will not display.

1 // Fig. 13.16: Metrics.java
2 // Displaying font metrics.
3 import javax.swing.JFrame;
4
5 public class Metrics
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for MetricsJPanel
11 JFrame frame = new JFrame("Demonstrating FontMetrics");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 MetricsJPanel metricsJPanel = new MetricsJPanel();
15 frame.add(metricsJPanel);
16 frame.setSize(510, 240);
17 frame.setVisible(true);
18 }
19 } // end class Metrics

Fig. 13.16 | Displaying font metrics.

572 Chapter 13 Graphics and Java 2D

Method Description

public void drawLine(int x1, int y1, int x2, int y2)

Draws a line between the point (x1, y1) and the point (x2, y2).

public void drawRect(int x, int y, int width, int height)

Draws a rectangle of the specified width and height. The rectangle’s top-left
corner is located at (x, y). Only the outline of the rectangle is drawn using the
Graphics object’s color—the body of the rectangle is not filled with this color.

public void fillRect(int x, int y, int width, int height)

Draws a filled rectangle in the current color with the specified width and
height. The rectangle’s top-left corner is located at (x, y).

public void clearRect(int x, int y, int width, int height)

Draws a filled rectangle with the specified width and height in the current
background color. The rectangle’s top-left corner is located at (x, y). This
method is useful if you want to remove a portion of an image.

public void drawRoundRect(int x, int y, int width, int height, int arcWidth,
 int arcHeight)

Draws a rectangle with rounded corners in the current color with the specified
width and height. The arcWidth and arcHeight determine the rounding of the
corners (see Fig. 13.20). Only the outline of the shape is drawn.

public void fillRoundRect(int x, int y, int width, int height, int arcWidth,
 int arcHeight)

Draws a filled rectangle in the current color with rounded corners with the spec-
ified width and height. The arcWidth and arcHeight determine the rounding
of the corners (see Fig. 13.20).

public void draw3DRect(int x, int y, int width, int height, boolean b)

Draws a three-dimensional rectangle in the current color with the specified
width and height. The rectangle’s top-left corner is located at (x, y). The rectan-
gle appears raised when b is true and lowered when b is false. Only the outline
of the shape is drawn.

public void fill3DRect(int x, int y, int width, int height, boolean b)

Draws a filled three-dimensional rectangle in the current color with the speci-
fied width and height. The rectangle’s top-left corner is located at (x, y). The
rectangle appears raised when b is true and lowered when b is false.

public void drawOval(int x, int y, int width, int height)

Draws an oval in the current color with the specified width and height. The
bounding rectangle’s top-left corner is located at (x, y). The oval touches all four
sides of the bounding rectangle at the center of each side (see Fig. 13.21). Only
the outline of the shape is drawn.

public void fillOval(int x, int y, int width, int height)

Draws a filled oval in the current color with the specified width and height.
The bounding rectangle’s top-left corner is located at (x, y). The oval touches the
center of all four sides of the bounding rectangle (see Fig. 13.21).

Fig. 13.17 | Graphics methods that draw lines, rectangles and ovals.

13.5 Drawing Lines, Rectangles and Ovals 573

The application of Figs. 13.18–13.19 demonstrates drawing a variety of lines, rectan-
gles, three-dimensional rectangles, rounded rectangles and ovals. In Fig. 13.18, line 17
draws a red line, line 20 draws an empty blue rectangle and line 21 draws a filled blue rect-
angle. Methods fillRoundRect (line 24) and drawRoundRect (line 25) draw rectangles
with rounded corners. Their first two arguments specify the coordinates of the upper-left
corner of the bounding rectangle—the area in which the rounded rectangle will be drawn.
The upper-left corner coordinates are not the edge of the rounded rectangle, but the coor-
dinates where the edge would be if the rectangle had square corners. The third and fourth
arguments specify the width and height of the rectangle. The last two arguments deter-
mine the horizontal and vertical diameters of the arc (i.e., the arc width and arc height)
used to represent the corners.

Figure 13.20 labels the arc width, arc height, width and height of a rounded rectangle.
Using the same value for the arc width and arc height produces a quarter-circle at each

1 // Fig. 13.18: LinesRectsOvalsJPanel.java
2 // Drawing lines, rectangles and ovals.
3 import java.awt.Color;
4 import java.awt.Graphics;
5 import javax.swing.JPanel;
6
7 public class LinesRectsOvalsJPanel extends JPanel
8 {
9 // display various lines, rectangles and ovals

10 @Override
11 public void paintComponent(Graphics g)
12 {
13 super.paintComponent(g);
14 this.setBackground(Color.WHITE);
15
16 g.setColor(Color.RED);
17
18
19 g.setColor(Color.BLUE);
20
21
22
23 g.setColor(Color.CYAN);
24
25
26
27 g.setColor(Color.GREEN);
28
29
30
31 g.setColor(Color.MAGENTA);
32
33
34 }
35 } // end class LinesRectsOvalsJPanel

Fig. 13.18 | Drawing lines, rectangles and ovals.

g.drawLine(5, 30, 380, 30);

g.drawRect(5, 40, 90, 55);
g.fillRect(100, 40, 90, 55);

g.fillRoundRect(195, 40, 90, 55, 50, 50);
g.drawRoundRect(290, 40, 90, 55, 20, 20);

g.draw3DRect(5, 100, 90, 55, true);
g.fill3DRect(100, 100, 90, 55, false);

g.drawOval(195, 100, 90, 55);
g.fillOval(290, 100, 90, 55);

574 Chapter 13 Graphics and Java 2D

1 // Fig. 13.19: LinesRectsOvals.java
2 // Testing LinesRectsOvalsJPanel.
3 import java.awt.Color;
4 import javax.swing.JFrame;
5
6 public class LinesRectsOvals
7 {
8 // execute application
9 public static void main(String[] args)

10 {
11 // create frame for LinesRectsOvalsJPanel
12 JFrame frame =
13 new JFrame("Drawing lines, rectangles and ovals");
14 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15
16 LinesRectsOvalsJPanel linesRectsOvalsJPanel =
17 new LinesRectsOvalsJPanel();
18 linesRectsOvalsJPanel.setBackground(Color.WHITE);
19 frame.add(linesRectsOvalsJPanel);
20 frame.setSize(400, 210);
21 frame.setVisible(true);
22 }
23 } // end class LinesRectsOvals

Fig. 13.19 | Testing LinesRectsOvalsJPanel.

Fig. 13.20 | Arc width and arc height for rounded rectangles.

drawRect

drawLine

fillRect

draw3DRect

fill3DRect

fillRoundRect

drawRoundRect

drawOval

fillOval

width

(x, y)

arc height

arc width
height

13.6 Drawing Arcs 575

corner. When the arc width, arc height, width and height have the same values, the result
is a circle. If the values for width and height are the same and the values of arcWidth and
arcHeight are 0, the result is a square.

Methods draw3DRect (Fig. 13.18, line 28) and fill3DRect (line 29) take the same
arguments. The first two specify the top-left corner of the rectangle. The next two argu-
ments specify the width and height of the rectangle, respectively. The last argument deter-
mines whether the rectangle is raised (true) or lowered (false). The three-dimensional
effect of draw3DRect appears as two edges of the rectangle in the original color and two
edges in a slightly darker color. The three-dimensional effect of fill3DRect appears as two
edges of the rectangle in the original drawing color and the fill and other two edges in a
slightly darker color. Raised rectangles have the original drawing color edges at the top and
left of the rectangle. Lowered rectangles have the original drawing color edges at the
bottom and right of the rectangle. The three-dimensional effect is difficult to see in some
colors.

Methods drawOval and fillOval (lines 32–33) take the same four arguments. The
first two specify the top-left coordinate of the bounding rectangle that contains the oval.
The last two specify the width and height of the bounding rectangle, respectively.
Figure 13.21 shows an oval bounded by a rectangle. The oval touches the center of all four
sides of the bounding rectangle. (The bounding rectangle is not displayed on the screen.)

13.6 Drawing Arcs
An arc is drawn as a portion of an oval. Arc angles are measured in degrees. Arcs sweep
(i.e., move along a curve) from a starting angle through the number of degrees specified
by their arc angle. The starting angle indicates in degrees where the arc begins. The arc
angle specifies the total number of degrees through which the arc sweeps. Figure 13.22 il-
lustrates two arcs. The left set of axes shows an arc sweeping from zero degrees to approx-
imately 110 degrees. Arcs that sweep in a counterclockwise direction are measured in
positive degrees. The set of axes on the right shows an arc sweeping from zero degrees to
approximately –110 degrees. Arcs that sweep in a clockwise direction are measured in neg-
ative degrees. Note the dashed boxes around the arcs in Fig. 13.22. When drawing an arc,
we specify a bounding rectangle for an oval. The arc will sweep along part of the oval.
Graphics methods drawArc and fillArc for drawing arcs are summarized in Fig. 13.23.

Fig. 13.21 | Oval bounded by a rectangle.

(x,y)

width

height

576 Chapter 13 Graphics and Java 2D

Figures 13.24–13.25 demonstrate the arc methods of Fig. 13.23. The application
draws six arcs (three unfilled and three filled). To illustrate the bounding rectangle that
helps determine where the arc appears, the first three arcs are displayed inside a red rect-
angle that has the same x, y, width and height arguments as the arcs.

Fig. 13.22 | Positive and negative arc angles.

Method Description

public void drawArc(int x, int y, int width, int height, int startAngle,
 int arcAngle)

Draws an arc relative to the bounding rectangle’s top-left x- and y-coordi-
nates with the specified width and height. The arc segment is drawn starting
at startAngle and sweeps arcAngle degrees.

public void fillArc(int x, int y, int width, int height, int startAngle,
 int arcAngle)

Draws a filled arc (i.e., a sector) relative to the bounding rectangle’s top-left
x- and y-coordinates with the specified width and height. The arc segment
is drawn starting at startAngle and sweeps arcAngle degrees.

Fig. 13.23 | Graphics methods for drawing arcs.

1 // Fig. 13.24: ArcsJPanel.java
2 // Arcs displayed with drawArc and fillArc.
3 import java.awt.Color;
4 import java.awt.Graphics;
5 import javax.swing.JPanel;
6
7 public class ArcsJPanel extends JPanel
8 {
9 // draw rectangles and arcs

10 @Override
11 public void paintComponent(Graphics g)
12 {
13 super.paintComponent(g);
14

Fig. 13.24 | Arcs displayed with drawArc and fillArc. (Part 1 of 2.)

90º

270º

Positive angles

180º 0º

90º

270º

Negative angles

180º 0º

13.6 Drawing Arcs 577

15 // start at 0 and sweep 360 degrees
16 g.setColor(Color.RED);
17 g.drawRect(15, 35, 80, 80);
18 g.setColor(Color.BLACK);
19
20
21 // start at 0 and sweep 110 degrees
22 g.setColor(Color.RED);
23 g.drawRect(100, 35, 80, 80);
24 g.setColor(Color.BLACK);
25
26
27 // start at 0 and sweep -270 degrees
28 g.setColor(Color.RED);
29 g.drawRect(185, 35, 80, 80);
30 g.setColor(Color.BLACK);
31
32
33 // start at 0 and sweep 360 degrees
34
35
36 // start at 270 and sweep -90 degrees
37
38
39 // start at 0 and sweep -270 degrees
40
41 }
42 } // end class ArcsJPanel

1 // Fig. 13.25: DrawArcs.java
2 // Drawing arcs.
3 import javax.swing.JFrame;
4
5 public class DrawArcs
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for ArcsJPanel
11 JFrame frame = new JFrame("Drawing Arcs");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 ArcsJPanel arcsJPanel = new ArcsJPanel();
15 frame.add(arcsJPanel);
16 frame.setSize(300, 210);
17 frame.setVisible(true);
18 }
19 } // end class DrawArcs

Fig. 13.25 | Drawing arcs. (Part 1 of 2.)

Fig. 13.24 | Arcs displayed with drawArc and fillArc. (Part 2 of 2.)

g.drawArc(15, 35, 80, 80, 0, 360);

g.drawArc(100, 35, 80, 80, 0, 110);

g.drawArc(185, 35, 80, 80, 0, -270);

g.fillArc(15, 120, 80, 40, 0, 360);

g.fillArc(100, 120, 80, 40, 270, -90);

g.fillArc(185, 120, 80, 40, 0, -270);

578 Chapter 13 Graphics and Java 2D

13.7 Drawing Polygons and Polylines
Polygons are closed multisided shapes composed of straight-line segments. Polylines are se-
quences of connected points. Figure 13.26 discusses methods for drawing polygons and
polylines. Some methods require a Polygon object (package java.awt). Class Polygon’s
constructors are also described in Fig. 13.26. The application of Figs. 13.27–13.28 draws
polygons and polylines.

Method Description

Graphics methods for drawing polygons
public void drawPolygon(int[] xPoints, int[] yPoints, int points)

Draws a polygon. The x-coordinate of each point is specified in the xPoints
array and the y-coordinate of each point in the yPoints array. The last argu-
ment specifies the number of points. This method draws a closed polygon. If
the last point is different from the first, the polygon is closed by a line that
connects the last point to the first.

public void drawPolyline(int[] xPoints, int[] yPoints, int points)
Draws a sequence of connected lines. The x-coordinate of each point is spec-
ified in the xPoints array and the y-coordinate of each point in the yPoints
array. The last argument specifies the number of points. If the last point is
different from the first, the polyline is not closed.

public void drawPolygon(Polygon p)
Draws the specified polygon.

public void fillPolygon(int[] xPoints, int[] yPoints, int points)
Draws a filled polygon. The x-coordinate of each point is specified in the
xPoints array and the y-coordinate of each point in the yPoints array. The
last argument specifies the number of points. This method draws a closed
polygon. If the last point is different from the first, the polygon is closed by a
line that connects the last point to the first.

public void fillPolygon(Polygon p)
Draws the specified filled polygon. The polygon is closed.

Fig. 13.26 | Graphics methods for polygons and class Polygon methods. (Part 1 of 2.)

Fig. 13.25 | Drawing arcs. (Part 2 of 2.)

13.7 Drawing Polygons and Polylines 579

Polygon constructors and methods
public Polygon()

Constructs a new polygon object. The polygon does not contain any points.
public Polygon(int[] xValues, int[] yValues, int numberOfPoints)

Constructs a new polygon object. The polygon has numberOfPoints sides,
with each point consisting of an x-coordinate from xValues and a y-coordi-
nate from yValues.

public void addPoint(int x, int y)
Adds pairs of x- and y-coordinates to the Polygon.

1 // Fig. 13.27: PolygonsJPanel.java
2 // Drawing polygons.
3 import java.awt.Graphics;
4
5 import javax.swing.JPanel;
6
7 public class PolygonsJPanel extends JPanel
8 {
9 // draw polygons and polylines

10 @Override
11 public void paintComponent(Graphics g)
12 {
13 super.paintComponent(g);
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Fig. 13.27 | Polygons displayed with drawPolygon and fillPolygon. (Part 1 of 2.)

Method Description

Fig. 13.26 | Graphics methods for polygons and class Polygon methods. (Part 2 of 2.)

import java.awt.Polygon;

// draw polygon with Polygon object
int[] xValues = {20, 40, 50, 30, 20, 15};
int[] yValues = {50, 50, 60, 80, 80, 60};
Polygon polygon1 = new Polygon(xValues, yValues, 6);
g.drawPolygon(polygon1);

// draw polylines with two arrays
int[] xValues2 = {70, 90, 100, 80, 70, 65, 60};
int[] yValues2 = {100, 100, 110, 110, 130, 110, 90};
g.drawPolyline(xValues2, yValues2, 7);

// fill polygon with two arrays
int[] xValues3 = {120, 140, 150, 190};
int[] yValues3 = {40, 70, 80, 60};
g.fillPolygon(xValues3, yValues3, 4);

// draw filled polygon with Polygon object
Polygon polygon2 = new Polygon();
polygon2.addPoint(165, 135);
polygon2.addPoint(175, 150);
polygon2.addPoint(270, 200);

580 Chapter 13 Graphics and Java 2D

Lines 16–17 of Fig. 13.27 create two int arrays and use them to specify the points for
Polygon polygon1. The Polygon constructor call in line 18 receives array xValues, which
contains the x-coordinate of each point; array yValues, which contains the y-coordinate
of each point; and 6 (the number of points in the polygon). Line 19 displays polygon1 by
passing it as an argument to Graphics method drawPolygon.

Lines 22–23 create two int arrays and use them to specify the points for a series of
connected lines. Array xValues2 contains the x-coordinate of each point and array
yValues2 the y-coordinate of each point. Line 24 uses Graphics method drawPolyline to

36
37
38
39 }
40 } // end class PolygonsJPanel

1 // Fig. 13.28: DrawPolygons.java
2 // Drawing polygons.
3 import javax.swing.JFrame;
4
5 public class DrawPolygons
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for PolygonsJPanel
11 JFrame frame = new JFrame("Drawing Polygons");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 PolygonsJPanel polygonsJPanel = new PolygonsJPanel();
15 frame.add(polygonsJPanel);
16 frame.setSize(280, 270);
17 frame.setVisible(true);
18 }
19 } // end class DrawPolygons

Fig. 13.28 | Drawing polygons.

Fig. 13.27 | Polygons displayed with drawPolygon and fillPolygon. (Part 2 of 2.)

polygon2.addPoint(200, 220);
polygon2.addPoint(130, 180);
g.fillPolygon(polygon2);

Result of line 18

Result of line 23

Result of line 28

Result of line 37

13.8 Java 2D API 581

display the series of connected lines specified with the arguments xValues2, yValues2 and
7 (the number of points).

Lines 27–28 create two int arrays and use them to specify the points of a polygon.
Array xValues3 contains the x-coordinate of each point and array yValues3 the y-coordi-
nate of each point. Line 29 displays a polygon by passing to Graphics method fill-
Polygon the two arrays (xValues3 and yValues3) and the number of points to draw (4).

Line 32 creates Polygon polygon2 with no points. Lines 33–37 use Polygon method
addPoint to add pairs of x- and y-coordinates to the Polygon. Line 38 displays Polygon
polygon2 by passing it to Graphics method fillPolygon.

13.8 Java 2D API
The Java 2D API provides advanced two-dimensional graphics capabilities for program-
mers who require detailed and complex graphical manipulations. The API includes features
for processing line art, text and images in packages java.awt, java.awt.image, ja-
va.awt.color, java.awt.font, java.awt.geom, java.awt.print and java.awt.im-
age.renderable. The capabilities of the API are far too broad to cover in this textbook. For
an overview, visit http://docs.oracle.com/javase/7/docs/technotes/guides/2d/. In
this section, we overview several Java 2D capabilities.

Drawing with the Java 2D API is accomplished with a Graphics2D reference (package
java.awt). Graphics2D is an abstract subclass of class Graphics, so it has all the graphics
capabilities demonstrated earlier in this chapter. In fact, the actual object used to draw in
every paintComponent method is an instance of a subclass of Graphics2D that is passed to
method paintComponent and accessed via the superclass Graphics. To access Graphics2D
capabilities, we must cast the Graphics reference (g) passed to paintComponent into a
Graphics2D reference with a statement such as

The next two examples use this technique.

Lines, Rectangles, Round Rectangles, Arcs and Ellipses
This example demonstrates several Java 2D shapes from package java.awt.geom, includ-
ing Line2D.Double, Rectangle2D.Double, RoundRectangle2D.Double, Arc2D.Double
and Ellipse2D.Double. Note the syntax of each class name. Each class represents a shape
with dimensions specified as double values. There’s a separate version of each represented
with float values (e.g., Ellipse2D.Float). In each case, Double is a public static nested
class of the class specified to the left of the dot (e.g., Ellipse2D). To use the static nested
class, we simply qualify its name with the outer-class name.

In Figs. 13.29–13.30, we draw Java 2D shapes and modify their drawing characteris-
tics, such as changing line thickness, filling shapes with patterns and drawing dashed lines.
These are just a few of the many capabilities provided by Java 2D.

Common Programming Error 13.1
An ArrayIndexOutOfBoundsException is thrown if the number of points specified in the
third argument to method drawPolygon or method fillPolygon is greater than the num-
ber of elements in the arrays of coordinates that specify the polygon to display.

Graphics2D g2d = (Graphics2D) g;

http://docs.oracle.com/javase/7/docs/technotes/guides/2d/

582 Chapter 13 Graphics and Java 2D

Line 25 of Fig. 13.29 casts the Graphics reference received by paintComponent to a
Graphics2D reference and assigns it to g2d to allow access to the Java 2D features.

1 // Fig. 13.29: ShapesJPanel.java
2 // Demonstrating some Java 2D shapes.
3 import java.awt.Color;
4 import java.awt.Graphics;
5
6
7
8 import java.awt.Rectangle;
9

10
11
12
13
14
15
16 import javax.swing.JPanel;
17
18 public class ShapesJPanel extends JPanel
19 {
20 // draw shapes with Java 2D API
21 @Override
22 public void paintComponent(Graphics g)
23 {
24 super.paintComponent(g);
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 // obtain Graphics2D from buffImage and draw on it
42
43 gg.setColor(Color.YELLOW);
44 gg.fillRect(0, 0, 10, 10);
45 gg.setColor(Color.BLACK);
46 gg.drawRect(1, 1, 6, 6);
47 gg.setColor(Color.BLUE);
48 gg.fillRect(1, 1, 3, 3);
49 gg.setColor(Color.RED);

Fig. 13.29 | Demonstrating some Java 2D shapes. (Part 1 of 2.)

import java.awt.BasicStroke;
import java.awt.GradientPaint;
import java.awt.TexturePaint;

import java.awt.Graphics2D;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Rectangle2D;
import java.awt.geom.RoundRectangle2D;
import java.awt.geom.Arc2D;
import java.awt.geom.Line2D;
import java.awt.image.BufferedImage;

Graphics2D g2d = (Graphics2D) g; // cast g to Graphics2D

// draw 2D ellipse filled with a blue-yellow gradient
g2d.setPaint(new GradientPaint(5, 30, Color.BLUE, 35, 100,
 Color.YELLOW, true));
g2d.fill(new Ellipse2D.Double(5, 30, 65, 100));

// draw 2D rectangle in red
g2d.setPaint(Color.RED);
g2d.setStroke(new BasicStroke(10.0f));
g2d.draw(new Rectangle2D.Double(80, 30, 65, 100));

// draw 2D rounded rectangle with a buffered background
BufferedImage buffImage = new BufferedImage(10, 10,
 BufferedImage.TYPE_INT_RGB);

Graphics2D gg = buffImage.createGraphics();

13.8 Java 2D API 583

50 gg.fillRect(4, 4, 3, 3); // draw a filled rectangle
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68 // draw 2D line using stroke
69 float[] dashes = {10}; // specify dash pattern
70 g2d.setPaint(Color.YELLOW);
71 g2d.setStroke(new BasicStroke(4, BasicStroke.CAP_ROUND,
72 BasicStroke.JOIN_ROUND, 10, dashes, 0));
73 g2d.draw(new Line2D.Double(320, 30, 395, 150));
74 }
75 } // end class ShapesJPanel

1 // Fig. 13.30: Shapes.java
2 // Testing ShapesJPanel.
3 import javax.swing.JFrame;
4
5 public class Shapes
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for ShapesJPanel
11 JFrame frame = new JFrame("Drawing 2D shapes");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 // create ShapesJPanel
15 ShapesJPanel shapesJPanel = new ShapesJPanel();
16
17 frame.add(shapesJPanel);
18 frame.setSize(425, 200);
19 frame.setVisible(true);
20 }
21 } // end class Shapes

Fig. 13.30 | Testing ShapesJPanel. (Part 1 of 2.)

Fig. 13.29 | Demonstrating some Java 2D shapes. (Part 2 of 2.)

// paint buffImage onto the JFrame
g2d.setPaint(new TexturePaint(buffImage,
 new Rectangle(10, 10)));
g2d.fill(
 new RoundRectangle2D.Double(155, 30, 75, 100, 50, 50));

// draw 2D pie-shaped arc in white
g2d.setPaint(Color.WHITE);
g2d.setStroke(new BasicStroke(6.0f));
g2d.draw(
 new Arc2D.Double(240, 30, 75, 100, 0, 270, Arc2D.PIE));

// draw 2D lines in green and yellow
g2d.setPaint(Color.GREEN);
g2d.draw(new Line2D.Double(395, 30, 320, 150));

584 Chapter 13 Graphics and Java 2D

Ovals, Gradient Fills and Paint Objects
The first shape we draw is an oval filled with gradually changing colors. Lines 28–29 invoke
Graphics2D method setPaint to set the Paint object that determines the color for the
shape to display. A Paint object implements interface java.awt.Paint. It can be some-
thing as simple as one of the predeclared Color objects introduced in Section 13.3 (class
Color implements Paint), or it can be an instance of the Java 2D API’s GradientPaint,
SystemColor, TexturePaint, LinearGradientPaint or RadialGradientPaint classes. In
this case, we use a GradientPaint object.

Class GradientPaint helps draw a shape in gradually changing colors—called a gra-
dient. The GradientPaint constructor used here requires seven arguments. The first two
specify the starting coordinates for the gradient. The third specifies the starting Color for
the gradient. The fourth and fifth specify the ending coordinates for the gradient. The
sixth specifies the ending Color for the gradient. The last argument specifies whether the
gradient is cyclic (true) or acyclic (false). The two sets of coordinates determine the
direction of the gradient. Because the second coordinate (35, 100) is down and to the right
of the first coordinate (5, 30), the gradient goes down and to the right at an angle. Because
this gradient is cyclic (true), the color starts with blue, gradually becomes yellow, then
gradually returns to blue. If the gradient is acyclic, the color transitions from the first color
specified (e.g., blue) to the second color (e.g., yellow).

Line 30 uses Graphics2D method fill to draw a filled Shape object—an object that
implements interface Shape (package java.awt). In this case, we display an
Ellipse2D.Double object. The Ellipse2D.Double constructor receives four arguments
specifying the bounding rectangle for the ellipse to display.

Rectangles, Strokes
Next we draw a red rectangle with a thick border. Line 33 invokes setPaint to set the
Paint object to Color.RED. Line 34 uses Graphics2D method setStroke to set the char-
acteristics of the rectangle’s border (or the lines for any other shape). Method setStroke
requires as its argument an object that implements interface Stroke (package java.awt).
In this case, we use an instance of class BasicStroke. Class BasicStroke provides several
constructors to specify the width of the line, how the line ends (called the end caps), how
lines join together (called line joins) and the dash attributes of the line (if it’s a dashed
line). The constructor here specifies that the line should be 10 pixels wide.

Line 35 uses Graphics2D method draw to draw a Shape object—in this case, a
Rectangle2D.Double. The Rectangle2D.Double constructor receives arguments speci-
fying the rectangle’s upper-left x-coordinate, upper-left y-coordinate, width and height.

Fig. 13.30 | Testing ShapesJPanel. (Part 2 of 2.)

13.8 Java 2D API 585

Rounded Rectangles, BufferedImages and TexturePaint Objects
Next we draw a rounded rectangle filled with a pattern created in a BufferedImage (pack-
age java.awt.image) object. Lines 38–39 create the BufferedImage object. Class Buff-
eredImage can be used to produce images in color and grayscale. This particular
BufferedImage is 10 pixels wide and 10 pixels tall (as specified by the first two arguments
of the constructor). The third argument BufferedImage.TYPE_INT_RGB indicates that the
image is stored in color using the RGB color scheme.

To create the rounded rectangle’s fill pattern, we must first draw into the Buffered-
Image. Line 42 creates a Graphics2D object (by calling BufferedImage method create-
Graphics) that can be used to draw into the BufferedImage. Lines 43–50 use methods
setColor, fillRect and drawRect to create the pattern.

Lines 53–54 set the Paint object to a new TexturePaint (package java.awt) object.
A TexturePaint object uses the image stored in its associated BufferedImage (the first
constructor argument) as the fill texture for a filled-in shape. The second argument spec-
ifies the Rectangle area from the BufferedImage that will be replicated through the tex-
ture. In this case, the Rectangle is the same size as the BufferedImage. However, a smaller
portion of the BufferedImage can be used.

Lines 55–56 use Graphics2D method fill to draw a filled Shape object—in this case,
a RoundRectangle2D.Double. The constructor for class RoundRectangle2D.Double
receives six arguments specifying the rectangle dimensions and the arc width and arc
height used to determine the rounding of the corners.

Arcs
Next we draw a pie-shaped arc with a thick white line. Line 59 sets the Paint object to
Color.WHITE. Line 60 sets the Stroke object to a new BasicStroke for a line 6 pixels wide.
Lines 61–62 use Graphics2D method draw to draw a Shape object—in this case, an
Arc2D.Double. The Arc2D.Double constructor’s first four arguments specify the upper-
left x-coordinate, upper-left y-coordinate, width and height of the bounding rectangle for
the arc. The fifth argument specifies the start angle. The sixth argument specifies the arc
angle. The last argument specifies how the arc is closed. Constant Arc2D.PIE indicates that
the arc is closed by drawing two lines—one line from the arc’s starting point to the center
of the bounding rectangle and one line from the center of the bounding rectangle to the
ending point. Class Arc2D provides two other static constants for specifying how the arc is
closed. Constant Arc2D.CHORD draws a line from the starting point to the ending point.
Constant Arc2D.OPEN specifies that the arc should not be closed.

Lines
Finally, we draw two lines using Line2D objects—one solid and one dashed. Line 65 sets
the Paint object to Color.GREEN. Line 66 uses Graphics2D method draw to draw a Shape
object—in this case, an instance of class Line2D.Double. The Line2D.Double construc-
tor’s arguments specify the starting coordinates and ending coordinates of the line.

Line 69 declares a one-element float array containing the value 10. This array
describes the dashes in the dashed line. In this case, each dash will be 10 pixels long. To
create dashes of different lengths in a pattern, simply provide the length of each dash as an
element in the array. Line 70 sets the Paint object to Color.YELLOW. Lines 71–72 set the
Stroke object to a new BasicStroke. The line will be 4 pixels wide and will have rounded
ends (BasicStroke.CAP_ROUND). If lines join together (as in a rectangle at the corners),

586 Chapter 13 Graphics and Java 2D

their joining will be rounded (BasicStroke.JOIN_ROUND). The dashes argument specifies
the dash lengths for the line. The last argument indicates the starting index in the dashes
array for the first dash in the pattern. Line 73 then draws a line with the current Stroke.

Creating Your Own Shapes with General Paths
Next we present a general path—a shape constructed from straight lines and complex
curves. A general path is represented with an object of class GeneralPath (package ja-
va.awt.geom). The application of Figs. 13.31 and 13.32 demonstrates drawing a general
path in the shape of a five-pointed star.

1 // Fig. 13.31: Shapes2JPanel.java
2 // Demonstrating a general path.
3 import java.awt.Color;
4 import java.awt.Graphics;
5 import java.awt.Graphics2D;
6 import java.awt.geom.GeneralPath;
7 import java.security.SecureRandom;
8 import javax.swing.JPanel;
9

10 public class Shapes2JPanel extends JPanel
11 {
12 // draw general paths
13 @Override
14 public void paintComponent(Graphics g)
15 {
16 super.paintComponent(g);
17 SecureRandom random = new SecureRandom();
18
19 int[] xPoints = {55, 67, 109, 73, 83, 55, 27, 37, 1, 43};
20 int[] yPoints = {0, 36, 36, 54, 96, 72, 96, 54, 36, 36};
21
22 Graphics2D g2d = (Graphics2D) g;
23
24
25
26
27
28 // create the star--this does not draw the star
29 for (int count = 1; count < xPoints.length; count++)
30
31
32
33
34
35
36 // rotate around origin and draw stars in random colors
37 for (int count = 1; count <= 20; count++)
38 {
39
40

Fig. 13.31 | Java 2D general paths. (Part 1 of 2.)

GeneralPath star = new GeneralPath();

// set the initial coordinate of the General Path
star.moveTo(xPoints[0], yPoints[0]);

star.lineTo(xPoints[count], yPoints[count]);

star.closePath(); // close the shape

g2d.translate(150, 150); // translate the origin to (150, 150)

g2d.rotate(Math.PI / 10.0); // rotate coordinate system

13.8 Java 2D API 587

Lines 19–20 (Fig. 13.31) declare two int arrays representing the x- and y-coordinates
of the points in the star. Line 23 creates GeneralPath object star. Line 26 uses General-
Path method moveTo to specify the first point in the star. The for statement in lines 29–

41 // set random drawing color
42 g2d.setColor(new Color(random.nextInt(256),
43 random.nextInt(256), random.nextInt(256)));
44
45
46 }
47 }
48 } // end class Shapes2JPanel

1 // Fig. 13.32: Shapes2.java
2 // Demonstrating a general path.
3 import java.awt.Color;
4 import javax.swing.JFrame;
5
6 public class Shapes2
7 {
8 // execute application
9 public static void main(String[] args)

10 {
11 // create frame for Shapes2JPanel
12 JFrame frame = new JFrame("Drawing 2D Shapes");
13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14
15 Shapes2JPanel shapes2JPanel = new Shapes2JPanel();
16 frame.add(shapes2JPanel);
17 frame.setBackground(Color.WHITE);
18 frame.setSize(315, 330);
19 frame.setVisible(true);
20 }
21 } // end class Shapes2

Fig. 13.32 | Demonstrating a general path.

Fig. 13.31 | Java 2D general paths. (Part 2 of 2.)

g2d.fill(star); // draw filled star

588 Chapter 13 Graphics and Java 2D

30 uses GeneralPath method lineTo to draw a line to the next point in the star. Each
new call to lineTo draws a line from the previous point to the current point. Line 32 uses
GeneralPath method closePath to draw a line from the last point to the point specified
in the last call to moveTo. This completes the general path.

Line 34 uses Graphics2D method translate to move the drawing origin to location
(150, 150). All drawing operations now use location (150, 150) as (0, 0).

The for statement in lines 37–46 draws the star 20 times by rotating it around the
new origin point. Line 39 uses Graphics2D method rotate to rotate the next displayed
shape. The argument specifies the rotation angle in radians (with 360° = 2π radians). Line
45 uses Graphics2D method fill to draw a filled version of the star.

13.9 Wrap-Up
In this chapter, you learned how to use Java’s graphics capabilities to produce colorful
drawings. You learned how to specify the location of an object using Java’s coordinate sys-
tem, and how to draw on a window using the paintComponent method. You were intro-
duced to class Color, and you learned how to use this class to specify different colors using
their RGB components. You used the JColorChooser dialog to allow users to select colors
in a program. You then learned how to work with fonts when drawing text on a window.
You learned how to create a Font object from a font name, style and size, as well as how
to access the metrics of a font. From there, you learned how to draw various shapes on a
window, such as rectangles (regular, rounded and 3D), ovals and polygons, as well as lines
and arcs. You then used the Java 2D API to create more complex shapes and to fill them
with gradients or patterns. The chapter concluded with a discussion of general paths, used
to construct shapes from straight lines and complex curves. In the next chapter, we discuss
class String and its methods. We introduce regular expressions for pattern matching in
strings and demonstrate how to validate user input with regular expressions.

Summary
Section 13.1 Introduction
• Java’s coordinate system (p. 556) is a scheme for identifying every point (p. 567) on the screen.

• A coordinate pair (p. 556) has an x-coordinate (horizontal) and a y-coordinate (vertical).

• Coordinates are used to indicate where graphics should be displayed on a screen.

• Coordinate units are measured in pixels (p. 556). A pixel is a display monitor’s smallest unit of
resolution.

Section 13.2 Graphics Contexts and Graphics Objects
• A Java graphics context (p. 558) enables drawing on the screen.

• Class Graphics (p. 558) contains methods for drawing strings, lines, rectangles and other shapes.
Methods are also included for font manipulation and color manipulation.

• A Graphics object manages a graphics context and draws pixels on the screen that represent text
and other graphical objects, e.g., lines, ellipses, rectangles and other polygons (p. 558).

• Class Graphics is an abstract class. Each Java implementation has a Graphics subclass that pro-
vides drawing capabilities. This implementation is hidden from us by class Graphics, which sup-
plies the interface that enables us to use graphics in a platform-independent manner.

 Summary 589

• Method paintComponent can be used to draw graphics in any JComponent component.

• Method paintComponent receives a Graphics object that is passed to the method by the system
when a lightweight Swing component needs to be repainted.

• When an application executes, the application container calls method paintComponent. For
paintComponent to be called again, an event must occur.

• When a JComponent is displayed, its paintComponent method is called.

• Calling method repaint (p. 559) on a component updates the graphics drawn on that component.

Section 13.3 Color Control
• Class Color (p. 559) declares methods and constants for manipulating colors in a Java program.

• Every color is created from a red, a green and a blue component. Together these components are
called RGB values (p. 560). The RGB components specify the amount of red, green and blue in
a color, respectively. The larger the value, the greater the amount of that particular color.

• Color methods getRed, getGreen and getBlue (p. 560) return int values from 0 to 255 repre-
senting the amount of red, green and blue, respectively.

• Graphics method getColor (p. 560) returns a Color object with the current drawing color.

• Graphics method setColor (p. 560) sets the current drawing color.

• Graphics method fillRect (p. 560) draws a rectangle filled by the Graphics object’s current color.

• Graphics method drawString (p. 562) draws a String in the current color.

• The JColorChooser GUI component (p. 563) enables application users to select colors.

• JColorChooser static method showDialog (p. 564) displays a modal JColorChooser dialog.

Section 13.4 Manipulating Fonts
• Class Font (p. 566) contains methods and constants for manipulating fonts.

• Class Font’s constructor takes three arguments—the font name (p. 567), font style and font size.

• A Font’s font style can be Font.PLAIN, Font.ITALIC or Font.BOLD (each is a static field of class
Font). Font styles can be used in combination (e.g., Font.ITALIC + Font.BOLD).

• The font size is measured in points. A point is 1/72 of an inch.

• Graphics method setFont (p. 567) sets the drawing font in which text will be displayed.

• Font method getSize (p. 567) returns the font size in points.

• Font method getName (p. 567) returns the current font name as a string.

• Font method getStyle (p. 569) returns an integer value representing the current Font’s style.

• Font method getFamily (p. 569) returns the name of the font family to which the current font
belongs. The name of the font family is platform specific.

• Class FontMetrics (p. 569) contains methods for obtaining font information.

• Font metrics (p. 569) include height, descent and leading.

Section 13.5 Drawing Lines, Rectangles and Ovals
• Graphics methods fillRoundRect (p. 573) and drawRoundRect (p. 573) draw rectangles with

rounded corners.

• Graphics methods draw3DRect (p. 575) and fill3DRect (p. 575) draw three-dimensional rect-
angles.

• Graphics methods drawOval (p. 575) and fillOval (p. 575) draw ovals.

590 Chapter 13 Graphics and Java 2D

Section 13.6 Drawing Arcs
• An arc (p. 575) is drawn as a portion of an oval.

• Arcs sweep from a starting angle by the number of degrees specified by their arc angle (p. 575).

• Graphics methods drawArc (p. 575) and fillArc (p. 575) are used for drawing arcs.

Section 13.7 Drawing Polygons and Polylines
• Class Polygon contains methods for creating polygons.

• Polygons are closed multisided shapes composed of straight-line segments.

• Polylines (p. 578) are sequences of connected points.

• Graphics method drawPolyline (p. 580) displays a series of connected lines.

• Graphics methods drawPolygon (p. 580) and fillPolygon (p. 581) are used to draw polygons.

• Polygon method addPoint (p. 581) adds pairs of x- and y-coordinates to the Polygon.

Section 13.8 Java 2D API
• The Java 2D API (p. 581) provides advanced two-dimensional graphics capabilities.

• Class Graphics2D (p. 581)—a subclass of Graphics—is used for drawing with the Java 2D API.

• The Java 2D API’s classes for drawing shapes include Line2D.Double, Rectangle2D.Double,
RoundRectangle2D.Double, Arc2D.Double and Ellipse2D.Double (p. 581).

• Class GradientPaint (p. 584) helps draw a shape in gradually changing colors—called a gradient
(p. 584).

• Graphics2D method fill (p. 584) draws a filled object of any type that implements interface
Shape (p. 584).

• Class BasicStroke (p. 584) helps specify the drawing characteristics of lines.

• Graphics2D method draw (p. 584) is used to draw a Shape object.

• Classes GradientPaint (p. 584) and TexturePaint (p. 585) help specify the characteristics for
filling shapes with colors or patterns.

• A general path (p. 586) is a shape constructed from straight lines and complex curves and is rep-
resented with an object of class GeneralPath (p. 586).

• GeneralPath method moveTo (p. 587) specifies the first point in a general path.

• GeneralPath method lineTo (p. 588) draws a line to the next point in the path. Each new call
to lineTo draws a line from the previous point to the current point.

• GeneralPath method closePath (p. 588) draws a line from the last point to the point specified
in the last call to moveTo. This completes the general path.

• Graphics2D method translate (p. 588) is used to move the drawing origin to a new location.

• Graphics2D method rotate (p. 588) is used to rotate the next displayed shape.

Self-Review Exercises
13.1 Fill in the blanks in each of the following statements:

a) In Java 2D, method of class sets the characteristics of a stroke used
to draw a shape.

b) Class helps specify the fill for a shape such that the fill gradually changes from
one color to another.

c) The method of class Graphics draws a line between two points.
d) RGB is short for , and .

 Answers to Self-Review Exercises 591

e) Font sizes are measured in units called .
f) Class helps specify the fill for a shape using a pattern drawn in a BufferedImage.

13.2 State whether each of the following is true or false. If false, explain why.
a) The first two arguments of Graphics method drawOval specify the center coordinate of

the oval.
b) In the Java coordinate system, x-coordinates increase from left to right and y-coordi-

nates from top to bottom.
c) Graphics method fillPolygon draws a filled polygon in the current color.
d) Graphics method drawArc allows negative angles.
e) Graphics method getSize returns the size of the current font in centimeters.
f) Pixel coordinate (0, 0) is located at the exact center of the monitor.

13.3 Find the error(s) in each of the following and explain how to correct them. Assume that g
is a Graphics object.

a) g.setFont("SansSerif");
b) g.erase(x, y, w, h); // clear rectangle at (x, y)
c) Font f = new Font("Serif", Font.BOLDITALIC, 12);
d) g.setColor(255, 255, 0); // change color to yellow

Answers to Self-Review Exercises
13.1 a) setStroke, Graphics2D. b) GradientPaint. c) drawLine. d) red, green, blue. e) points.
f) TexturePaint.

13.2 a) False. The first two arguments specify the upper-left corner of the bounding rectangle.
b) True.
c) True.
d) True.
e) False. Font sizes are measured in points.
f) False. The coordinate (0,0) corresponds to the upper-left corner of a GUI component

on which drawing occurs.

13.3 a) The setFont method takes a Font object as an argument—not a String.
b) The Graphics class does not have an erase method. The clearRect method should be

used.
c) Font.BOLDITALIC is not a valid font style. To get a bold italic font, use Font.BOLD +

Font.ITALIC.
d) Method setColor takes a Color object as an argument, not three integers.

Exercises
13.4 Fill in the blanks in each of the following statements:

a) Class of the Java 2D API is used to draw ovals.
b) Methods draw and fill of class Graphics2D require an object of type as their

argument.
c) The three constants that specify font style are , and .
d) Graphics2D method sets the painting color for Java 2D shapes.

13.5 State whether each of the following is true or false. If false, explain why.
a) Graphics method drawPolygon automatically connects the endpoints of the polygon.
b) Graphics method drawLine draws a line between two points.
c) Graphics method fillArc uses degrees to specify the angle.
d) In the Java coordinate system, values on the y-axis increase from left to right.
e) Graphics inherits directly from class Object.

592 Chapter 13 Graphics and Java 2D

f) Graphics is an abstract class.
g) The Font class inherits directly from class Graphics.

13.6 (Concentric Circles Using Method drawArc) Write an application that draws a series of eight
concentric circles. The circles should be separated by 10 pixels. Use Graphics method drawArc.

13.7 (Concentric Circles Using Class Ellipse2D.Double) Modify your solution to Exercise 13.6
to draw the ovals by using class Ellipse2D.Double and method draw of class Graphics2D.

13.8 (Random Lines Using Class Line2D.Double) Modify your solution to Exercise 13.7 to
draw random lines in random colors and random thicknesses. Use class Line2D.Double and method
draw of class Graphics2D to draw the lines.

13.9 (Random Triangles) Write an application that displays randomly generated triangles in dif-
ferent colors. Each triangle should be filled with a different color. Use class GeneralPath and meth-
od fill of class Graphics2D to draw the triangles.

13.10 (Random Characters) Write an application that randomly draws characters in different
fonts, sizes and colors.

13.11 (Grid Using Method drawLine) Write an application that draws an 8-by-8 grid. Use
Graphics method drawLine.

13.12 (Grid Using Class Line2D.Double) Modify your solution to Exercise 13.11 to draw the
grid using instances of class Line2D.Double and method draw of class Graphics2D.

13.13 (Grid Using Method drawRect) Write an application that draws a 10-by-10 grid. Use the
Graphics method drawRect.

13.14 (Grid Using Class Rectangle2D.Double) Modify your solution to Exercise 13.13 to draw
the grid by using class Rectangle2D.Double and method draw of class Graphics2D.

13.15 (Drawing Tetrahedrons) Write an application that draws a tetrahedron (a three-dimension-
al shape with four triangular faces). Use class GeneralPath and method draw of class Graphics2D.

13.16 (Drawing Cubes) Write an application that draws a cube. Use class GeneralPath and meth-
od draw of class Graphics2D.

13.17 (Circles Using Class Ellipse2D.Double) Write an application that asks the user to input
the radius of a circle as a floating-point number and draws the circle, as well as the values of the
circle’s diameter, circumference and area. Use the value 3.14159 for π. [Note: You may also use the
predefined constant Math.PI for the value of π. This constant is more precise than the value
3.14159. Class Math is declared in the java.lang package, so you need not import it.] Use the fol-
lowing formulas (r is the radius):

diameter = 2r
circumference = 2πr
area = πr2

The user should also be prompted for a set of coordinates in addition to the radius. Then draw the
circle and display its diameter, circumference and area, using an Ellipse2D.Double object to repre-
sent the circle and method draw of class Graphics2D to display it.

13.18 (Screen Saver) Write an application that simulates a screen saver. The application should
randomly draw lines using method drawLine of class Graphics. After drawing 100 lines, the appli-
cation should clear itself and start drawing lines again. To allow the program to draw continuously,
place a call to repaint as the last line in method paintComponent. Do you notice any problems with
this on your system?

13.19 (Screen Saver Using Timer) Package javax.swing contains a class called Timer that is capa-
ble of calling method actionPerformed of interface ActionListener at a fixed time interval (speci-

 Exercises 593

fied in milliseconds). Modify your solution to Exercise 13.18 to remove the call to repaint from
method paintComponent. Declare your class to implement ActionListener. (The actionPerformed
method should simply call repaint.) Declare an instance variable of type Timer called timer in your
class. In the constructor for your class, write the following statements:

timer = new Timer(1000, this);
timer.start();

This creates an instance of class Timer that will call this object’s actionPerformed method every
1000 milliseconds (i.e., every second).

13.20 (Screen Saver for a Random Number of Lines) Modify your solution to Exercise 13.19 to
enable the user to enter the number of random lines that should be drawn before the application
clears itself and starts drawing lines again. Use a JTextField to obtain the value. The user should be
able to type a new number into the JTextField at any time during the program’s execution. Use an
inner class to perform event handling for the JTextField.

13.21 (Screen Saver with Shapes) Modify your solution to Exercise 13.20 such that it uses ran-
dom-number generation to choose different shapes to display. Use methods of class Graphics.

13.22 (Screen Saver Using the Java 2D API) Modify your solution to Exercise 13.21 to use classes
and drawing capabilities of the Java 2D API. Draw shapes like rectangles and ellipses, with randomly
generated gradients. Use class GradientPaint to generate the gradient.

13.23 (Turtle Graphics) Modify your solution to Exercise 7.21—Turtle Graphics—to add a
graphical user interface using JTextFields and JButtons. Draw lines rather than asterisks (*). When
the turtle graphics program specifies a move, translate the number of positions into a number of
pixels on the screen by multiplying the number of positions by 10 (or any value you choose). Im-
plement the drawing with Java 2D API features.

13.24 (Knight’s Tour) Produce a graphical version of the Knight’s Tour problem (Exercise 7.22,
Exercise 7.23 and Exercise 7.26). As each move is made, the appropriate cell of the chessboard
should be updated with the proper move number. If the result of the program is a full tour or a closed
tour, the program should display an appropriate message. If you like, use class Timer (see
Exercise 13.19) to help animate the Knight’s Tour.

13.25 (Tortoise and Hare) Produce a graphical version of the Tortoise and Hare simulation
(Exercise 7.28). Simulate the mountain by drawing an arc that extends from the bottom-left corner
of the window to the top-right corner. The tortoise and the hare should race up the mountain. Im-
plement the graphical output to actually print the tortoise and the hare on the arc for every move.
[Hint: Extend the length of the race from 70 to 300 to allow yourself a larger graphics area.]

13.26 (Drawing Spirals) Write an application that uses Graphics method drawPolyline to draw
a spiral similar to the one shown in Fig. 13.33.

13.27 (Pie Chart) Write a program that inputs four numbers and graphs them as a pie chart. Use
class Arc2D.Double and method fill of class Graphics2D to perform the drawing. Draw each piece
of the pie in a separate color.

13.28 (Selecting Shapes) Write an application that allows the user to select a shape from a JCombo-
Box and draws it 20 times with random locations and dimensions in method paintComponent. The
first item in the JComboBox should be the default shape that is displayed the first time paintCompo-
nent is called.

13.29 (Random Colors) Modify Exercise 13.28 to draw each of the 20 randomly sized shapes in a
randomly selected color. Use all 13 predefined Color objects in an array of Colors.

13.30 (JColorChooser Dialog) Modify Exercise 13.28 to allow the user to select the color in
which shapes should be drawn from a JColorChooser dialog.

594 Chapter 13 Graphics and Java 2D

(Optional) GUI and Graphics Case Study Exercise: Adding Java 2D
13.31 Java 2D introduces many new capabilities for creating unique and impressive graphics.
We’ll add a small subset of these features to the drawing application you created in Exercise 12.17.
In this version, you’ll enable the user to specify gradients for filling shapes and to change stroke char-
acteristics for drawing lines and outlines of shapes. The user will be able to choose which colors com-
pose the gradient and set the width and dash length of the stroke.

First, you must update the MyShape hierarchy to support Java 2D functionality. Make the fol-
lowing changes in class MyShape:

a) Change abstract method draw’s parameter type from Graphics to Graphics2D.
b) Change all variables of type Color to type Paint to enable support for gradients. [Note:

Recall that class Color implements interface Paint.]
c) Add an instance variable of type Stroke in class MyShape and a Stroke parameter in the

constructor to initialize the new instance variable. The default stroke should be an in-
stance of class BasicStroke.

Classes MyLine, MyBoundedShape, MyOval and MyRectangle should each add a Stroke parameter
to their constructors. In the draw methods, each shape should set the Paint and the Stroke before
drawing or filling a shape. Since Graphics2D is a subclass of Graphics, we can continue to use Graph-
ics methods drawLine, drawOval, fillOval, and so on to draw the shapes. When these methods are
called, they’ll draw the appropriate shape using the specified Paint and Stroke settings.

Next, you’ll update the DrawPanel to handle the Java 2D features. Change all Color variables
to Paint variables. Declare an instance variable currentStroke of type Stroke and provide a set
method for it. Update the calls to the individual shape constructors to include the Paint and
Stroke arguments. In method paintComponent, cast the Graphics reference to type Graphics2D and
use the Graphics2D reference in each call to MyShape method draw.

Next, make the new Java 2D features accessible from the GUI. Create a JPanel of GUI com-
ponents for setting the Java 2D options. Add these components at the top of the DrawFrame below
the panel that currently contains the standard shape controls (see Fig. 13.34). These GUI compo-
nents should include:

a) A checkbox to specify whether to paint using a gradient.
b) Two JButtons that each show a JColorChooser dialog to allow the user to choose the

first and second color in the gradient. (These will replace the JComboBox used for choos-
ing the color in Exercise 12.17.)

c) A text field for entering the Stroke width.
d) A text field for entering the Stroke dash length.
e) A checkbox for selecting whether to draw a dashed or solid line.

Fig. 13.33 | Spiral drawn using method drawPolyline.

 Making a Difference 595

If the user selects to draw with a gradient, set the Paint on the DrawPanel to be a gradient of
the two colors chosen by the user. The expression

new GradientPaint(0, 0, color1, 50, 50, color2, true))

creates a GradientPaint that cycles diagonally from the upper-left to the bottom-right every 50 pix-
els. Variables color1 and color2 represent the colors chosen by the user. If the user does not select to
use a gradient, then simply set the Paint on the DrawPanel to be the first Color chosen by the user.

For strokes, if the user chooses a solid line, then create the Stroke with the expression

new BasicStroke(width, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND)

where variable width is the width specified by the user in the line-width text field. If the user
chooses a dashed line, then create the Stroke with the expression

new BasicStroke(width, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,
 10, dashes, 0)

where width again is the width in the line-width field, and dashes is an array with one element
whose value is the length specified in the dash-length field. The Panel and Stroke objects should
be passed to the shape object’s constructor when the shape is created in DrawPanel.

Making a Difference
13.32 (Large-Type Displays for People with Low Vision) The accessibility of computers and the
Internet to all people, regardless of disabilities, is becoming more important as these tools play in-
creasing roles in our personal and business lives. According to a recent estimate by the World Health
Organization (www.who.int/mediacentre/factsheets/fs282/en/), 246 million people worldwide
have low vision. To learn more about low vision, check out the GUI-based low-vision simulation at
www.webaim.org/simulations/lowvision.php. People with low vision might prefer to choose a font
and/or a larger font size when reading electronic documents and web pages. Java has five built-in
“logical” fonts that are guaranteed to be available in any Java implementation, including Serif,
Sans-serif and Monospaced. Write a GUI application that provides a JTextArea in which the user
can type text. Allow the user to select Serif, Sans-serif or Monospaced from a JComboBox. Provide
a Bold JCheckBox, which, if checked, makes the text bold. Include Increase Font Size and Decrease

Font Size JButtons that allow the user to scale the size of the font up or down, respectively, by one
point at a time. Start with a font size of 18 points. For the purposes of this exercise, set the font size
on the JComboBox, JButtons and JCheckBox to 20 points so that a person with low vision will be able
to read the text on them.

Fig. 13.34 | Drawing with Java 2D.

www.who.int/mediacentre/factsheets/fs282/en/
www.webaim.org/simulations/lowvision.php

14 Strings, Characters and
Regular Expressions

The chief defect of Henry King
Was chewing little bits of string.
—Hilaire Belloc

Vigorous writing is concise. A
sentence should contain no
unnecessary words, a paragraph
no unnecessary sentences.
—William Strunk, Jr.

I have made this letter longer
than usual, because I lack the
time to make it short.
—Blaise Pascal

O b j e c t i v e s
In this chapter you’ll:

■ Create and manipulate
immutable character-string
objects of class String.

■ Create and manipulate
mutable character-string
objects of class
StringBuilder.

■ Create and manipulate
objects of class Character.

■ Break a String object into
tokens using String
method split.

■ Use regular expressions to
validate String data
entered into an application.

14.1 Introduction 597

14.1 Introduction
This chapter introduces Java’s string- and character-processing capabilities. The tech-
niques discussed here are appropriate for validating program input, displaying information
to users and other text-based manipulations. They’re also appropriate for developing text
editors, word processors, page-layout software, computerized typesetting systems and oth-
er kinds of text-processing software. We’ve presented several string-processing capabilities
in earlier chapters. This chapter discusses in detail the capabilities of classes String,
StringBuilder and Character from the java.lang package—these classes provide the
foundation for string and character manipulation in Java.

The chapter also discusses regular expressions that provide applications with the capa-
bility to validate input. The functionality is located in the String class along with classes
Matcher and Pattern located in the java.util.regex package.

14.2 Fundamentals of Characters and Strings
Characters are the fundamental building blocks of Java source programs. Every program
is composed of a sequence of characters that—when grouped together meaningfully—are
interpreted by the Java compiler as a series of instructions used to accomplish a task. A pro-
gram may contain character literals. A character literal is an integer value represented as a
character in single quotes. For example, 'z' represents the integer value of z, and '\t' rep-
resents the integer value of a tab character. The value of a character literal is the integer
value of the character in the Unicode character set. Appendix B presents the integer equiv-
alents of the characters in the ASCII character set, which is a subset of Unicode (discussed
in online Appendix H).

Recall from Section 2.2 that a string is a sequence of characters treated as a single unit.
A string may include letters, digits and various special characters, such as +, -, *, / and $.
A string is an object of class String. String literals (stored in memory as String objects)
are written as a sequence of characters in double quotation marks, as in:

14.1 Introduction
14.2 Fundamentals of Characters and Strings
14.3 Class String

14.3.1 String Constructors
14.3.2 String Methods length, charAt

and getChars
14.3.3 Comparing Strings
14.3.4 Locating Characters and Substrings in

Strings
14.3.5 Extracting Substrings from Strings
14.3.6 Concatenating Strings
14.3.7 Miscellaneous String Methods
14.3.8 String Method valueOf

14.4 Class StringBuilder
14.4.1 StringBuilder Constructors

14.4.2 StringBuilder Methods length,
capacity, setLength and
ensureCapacity

14.4.3 StringBuilder Methods charAt,
setCharAt, getChars and reverse

14.4.4 StringBuilder append Methods
14.4.5 StringBuilder Insertion and

Deletion Methods
14.5 Class Character
14.6 Tokenizing Strings
14.7 Regular Expressions, Class Pattern

and Class Matcher
14.8 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Special Section: Advanced String-Manipulation Exercises |

Special Section: Challenging String-Manipulation Projects | Making a Difference

598 Chapter 14 Strings, Characters and Regular Expressions

A string may be assigned to a String reference. The declaration

initializes String variable color to refer to a String object that contains the string "blue".

14.3 Class String
Class String is used to represent strings in Java. The next several subsections cover many
of class String’s capabilities.

14.3.1 String Constructors
Class String provides constructors for initializing String objects in a variety of ways. Four
of the constructors are demonstrated in the main method of Fig. 14.1.

"John Q. Doe" (a name)
"9999 Main Street" (a street address)
"Waltham, Massachusetts" (a city and state)
"(201) 555-1212" (a telephone number)

String color = "blue";

Performance Tip 14.1
To conserve memory, Java treats all string literals with the same contents as a single
String object that has many references to it.

1 // Fig. 14.1: StringConstructors.java
2 // String class constructors.
3
4 public class StringConstructors
5 {
6 public static void main(String[] args)
7 {
8 char[] charArray = {'b', 'i', 'r', 't', 'h', ' ', 'd', 'a', 'y'};
9 String s = new String("hello");

10
11
12
13
14
15
16
17 System.out.printf(
18 "s1 = %s%ns2 = %s%ns3 = %s%ns4 = %s%n", s1, s2, s3, s4);
19 }
20 } // end class StringConstructors

s1 =
s2 = hello
s3 = birth day
s4 = day

Fig. 14.1 | String class constructors.

// use String constructors
String s1 = new String();
String s2 = new String(s);
String s3 = new String(charArray);
String s4 = new String(charArray, 6, 3);

14.3 Class String 599

Line 12 instantiates a new String using class String’s no-argument constructor and
assigns its reference to s1. The new String object contains no characters (i.e., the empty
string, which can also be represented as "") and has a length of 0. Line 13 instantiates a
new String object using class String’s constructor that takes a String object as an argu-
ment and assigns its reference to s2. The new String object contains the same sequence
of characters as the String object s that’s passed as an argument to the constructor.

Line 14 instantiates a new String object and assigns its reference to s3 using class
String’s constructor that takes a char array as an argument. The new String object con-
tains a copy of the characters in the array.

Line 15 instantiates a new String object and assigns its reference to s4 using class
String’s constructor that takes a char array and two integers as arguments. The second
argument specifies the starting position (the offset) from which characters in the array are
accessed. Remember that the first character is at position 0. The third argument specifies
the number of characters (the count) to access in the array. The new String object is
formed from the accessed characters. If the offset or the count specified as an argument
results in accessing an element outside the bounds of the character array, a StringIndex-
OutOfBoundsException is thrown.

14.3.2 String Methods length, charAt and getChars
String methods length, charAt and getChars return the length of a String, obtain the
character at a specific location in a String and retrieve a set of characters from a String
as a char array, respectively. Figure 14.2 demonstrates each of these methods.

Performance Tip 14.2
It’s not necessary to copy an existing String object. String objects are immutable, because
class String does not provide methods that allow the contents of a String object to be
modified after it is created.

1 // Fig. 14.2: StringMiscellaneous.java
2 // This application demonstrates the length, charAt and getChars
3 // methods of the String class.
4
5 public class StringMiscellaneous
6 {
7 public static void main(String[] args)
8 {
9 String s1 = "hello there";

10 char[] charArray = new char[5];
11
12 System.out.printf("s1: %s", s1);
13
14 // test length method
15 System.out.printf("%nLength of s1: %d",);
16
17 // loop through characters in s1 with charAt and display reversed
18 System.out.printf("%nThe string reversed is: ");

Fig. 14.2 | String methods length, charAt and getChars. (Part 1 of 2.)

s1.length()

600 Chapter 14 Strings, Characters and Regular Expressions

Line 15 uses String method length to determine the number of characters in String
s1. Like arrays, strings know their own length. However, unlike arrays, you access a
String’s length via class String’s length method.

Lines 20–21 print the characters of the String s1 in reverse order (and separated by
spaces). String method charAt (line 21) returns the character at a specific position in the
String. Method charAt receives an integer argument that’s used as the index and returns
the character at that position. Like arrays, the first element of a String is at position 0.

Line 24 uses String method getChars to copy the characters of a String into a char-
acter array. The first argument is the starting index from which characters are to be copied.
The second argument is the index that’s one past the last character to be copied from the
String. The third argument is the character array into which the characters are to be
copied. The last argument is the starting index where the copied characters are placed in
the target character array. Next, lines 27–28 print the char array contents one character at
a time.

14.3.3 Comparing Strings
Chapter 19 discusses sorting and searching arrays. Frequently, the information being sort-
ed or searched consists of Strings that must be compared to place them into order or to
determine whether a string appears in an array (or other collection). Class String provides
methods for comparing strings, as demonstrated in the next two examples.

To understand what it means for one string to be greater than or less than another,
consider the process of alphabetizing a series of last names. No doubt, you’d place “Jones”
before “Smith” because the first letter of “Jones” comes before the first letter of “Smith”
in the alphabet. But the alphabet is more than just a list of 26 letters—it’s an ordered list
of characters. Each letter occurs in a specific position within the list. Z is more than just a
letter of the alphabet—it’s specifically the twenty-sixth letter of the alphabet.

19
20 for (int count = s1.length() - 1; count >= 0; count--)
21 System.out.printf("%c ",);
22
23 // copy characters from string into charArray
24
25 System.out.printf("%nThe character array is: ");
26
27 for (char character : charArray)
28 System.out.print(character);
29
30 System.out.println();
31 }
32 } // end class StringMiscellaneous

s1: hello there
Length of s1: 11
The string reversed is: e r e h t o l l e h
The character array is: hello

Fig. 14.2 | String methods length, charAt and getChars. (Part 2 of 2.)

s1.charAt(count)

s1.getChars(0, 5, charArray, 0);

14.3 Class String 601

How does the computer know that one letter “comes before” another? All characters
are represented in the computer as numeric codes (see Appendix B). When the computer
compares Strings, it actually compares the numeric codes of the characters in the Strings.

Figure 14.3 demonstrates String methods equals, equalsIgnoreCase, compareTo
and regionMatches and using the equality operator == to compare String objects.

1 // Fig. 14.3: StringCompare.java
2 // String methods equals, equalsIgnoreCase, compareTo and regionMatches.
3
4 public class StringCompare
5 {
6 public static void main(String[] args)
7 {
8 String s1 = new String("hello"); // s1 is a copy of "hello"
9 String s2 = "goodbye";

10 String s3 = "Happy Birthday";
11 String s4 = "happy birthday";
12
13 System.out.printf(
14 "s1 = %s%ns2 = %s%ns3 = %s%ns4 = %s%n%n", s1, s2, s3, s4);
15
16 // test for equality
17 if () // true
18 System.out.println("s1 equals \"hello\"");
19 else
20 System.out.println("s1 does not equal \"hello\"");
21
22 // test for equality with ==
23 if () // false; they are not the same object
24 System.out.println("s1 is the same object as \"hello\"");
25 else
26 System.out.println("s1 is not the same object as \"hello\"");
27
28 // test for equality (ignore case)
29 if () // true
30 System.out.printf("%s equals %s with case ignored%n", s3, s4);
31 else
32 System.out.println("s3 does not equal s4");
33
34 // test compareTo
35 System.out.printf(
36 "%ns1.compareTo(s2) is %d",);
37 System.out.printf(
38 "%ns2.compareTo(s1) is %d",);
39 System.out.printf(
40 "%ns1.compareTo(s1) is %d",);
41 System.out.printf(
42 "%ns3.compareTo(s4) is %d",);
43 System.out.printf(
44 "%ns4.compareTo(s3) is %d%n%n",);

Fig. 14.3 | String methods equals, equalsIgnoreCase, compareTo and regionMatches.
(Part 1 of 2.)

s1.equals("hello")

s1 == "hello"

s3.equalsIgnoreCase(s4)

s1.compareTo(s2)

s2.compareTo(s1)

s1.compareTo(s1)

s3.compareTo(s4)

s4.compareTo(s3)

602 Chapter 14 Strings, Characters and Regular Expressions

String Method equals
The condition at line 17 uses method equals to compare String s1 and the String literal
"hello" for equality. Method equals (a method of class Object overridden in String)
tests any two objects for equality—the strings contained in the two objects are identical.
The method returns true if the contents of the objects are equal, and false otherwise.
The preceding condition is true because String s1 was initialized with the string literal
"hello". Method equals uses a lexicographical comparison—it compares the integer
Unicode values (see online Appendix H for more information) that represent each charac-
ter in each String. Thus, if the String "hello" is compared to the string "HELLO", the
result is false, because the integer representation of a lowercase letter is different from that
of the corresponding uppercase letter.

45
46 // test regionMatches (case sensitive)
47 if ()
48 System.out.println("First 5 characters of s3 and s4 match");
49 else
50 System.out.println(
51 "First 5 characters of s3 and s4 do not match");
52
53 // test regionMatches (ignore case)
54 if ()
55 System.out.println(
56 "First 5 characters of s3 and s4 match with case ignored");
57 else
58 System.out.println(
59 "First 5 characters of s3 and s4 do not match");
60 }
61 } // end class StringCompare

s1 = hello
s2 = goodbye
s3 = Happy Birthday
s4 = happy birthday

s1 equals "hello"
s1 is not the same object as "hello"
Happy Birthday equals happy birthday with case ignored

s1.compareTo(s2) is 1
s2.compareTo(s1) is -1
s1.compareTo(s1) is 0
s3.compareTo(s4) is -32
s4.compareTo(s3) is 32

First 5 characters of s3 and s4 do not match
First 5 characters of s3 and s4 match with case ignored

Fig. 14.3 | String methods equals, equalsIgnoreCase, compareTo and regionMatches.
(Part 2 of 2.)

s3.regionMatches(0, s4, 0, 5)

s3.regionMatches(true, 0, s4, 0, 5)

14.3 Class String 603

Comparing Strings with the == Operator
The condition at line 23 uses the equality operator == to compare String s1 for equality
with the String literal "hello". When primitive-type values are compared with ==, the
result is true if both values are identical. When references are compared with ==, the result
is true if both references refer to the same object in memory. To compare the actual contents
(or state information) of objects for equality, a method must be invoked. In the case of
Strings, that method is equals. The preceding condition evaluates to false at line 23 be-
cause the reference s1 was initialized with the statement

which creates a new String object with a copy of string literal "hello" and assigns the new
object to variable s1. If s1 had been initialized with the statement

which directly assigns the string literal "hello" to variable s1, the condition would be
true. Remember that Java treats all string literal objects with the same contents as one
String object to which there can be many references. Thus, lines 8, 17 and 23 all refer to
the same String object "hello" in memory.

String Method equalsIgnoreCase
If you’re sorting Strings, you may compare them for equality with method equals-
IgnoreCase, which ignores whether the letters in each String are uppercase or lowercase
when performing the comparison. Thus, "hello" and "HELLO" compare as equal. Line 29
uses String method equalsIgnoreCase to compare String s3—Happy Birthday—for
equality with String s4—happy birthday. The result of this comparison is true because
the comparison ignores case.

String Method compareTo
Lines 35–44 use method compareTo to compare Strings. Method compareTo is declared
in the Comparable interface and implemented in the String class. Line 36 compares
String s1 to String s2. Method compareTo returns 0 if the Strings are equal, a negative
number if the String that invokes compareTo is less than the String that’s passed as an
argument and a positive number if the String that invokes compareTo is greater than the
String that’s passed as an argument. Method compareTo uses a lexicographical compari-
son—it compares the numeric values of corresponding characters in each String.

String Method regionMatches
The condition at line 47 uses a version of String method regionMatches to compare por-
tions of two Strings for equality. The first argument to this version of the method is the
starting index in the String that invokes the method. The second argument is a compar-

s1 = new String("hello");

s1 = "hello";

Common Programming Error 14.1
Comparing references with == can lead to logic errors, because == compares the references
to determine whether they refer to the same object, not whether two objects have the
same contents. When two separate objects that contain the same values are compared
with ==, the result will be false. When comparing objects to determine whether they have
the same contents, use method equals.

604 Chapter 14 Strings, Characters and Regular Expressions

ison String. The third argument is the starting index in the comparison String. The last
argument is the number of characters to compare between the two Strings. The method
returns true only if the specified number of characters are lexicographically equal.

Finally, the condition at line 54 uses a five-argument version of String method
regionMatches to compare portions of two Strings for equality. When the first argument
is true, the method ignores the case of the characters being compared. The remaining
arguments are identical to those described for the four-argument regionMatches method.

String Methods startsWith and endsWith
The next example (Fig. 14.4) demonstrates String methods startsWith and endsWith.
Method main creates array strings containing "started", "starting", "ended" and "end-
ing". The remainder of method main consists of three for statements that test the elements
of the array to determine whether they start with or end with a particular set of characters.

1 // Fig. 14.4: StringStartEnd.java
2 // String methods startsWith and endsWith.
3
4 public class StringStartEnd
5 {
6 public static void main(String[] args)
7 {
8 String[] strings = {"started", "starting", "ended", "ending"};
9

10 // test method startsWith
11 for (String string : strings)
12 {
13 if ()
14 System.out.printf("\"%s\" starts with \"st\"%n", string);
15 }
16
17 System.out.println();
18
19 // test method startsWith starting from position 2 of string
20 for (String string : strings)
21 {
22 if ()
23 System.out.printf(
24 "\"%s\" starts with \"art\" at position 2%n", string);
25 }
26
27 System.out.println();
28
29 // test method endsWith
30 for (String string : strings)
31 {
32 if ()
33 System.out.printf("\"%s\" ends with \"ed\"%n", string);
34 }
35 }
36 } // end class StringStartEnd

Fig. 14.4 | String methods startsWith and endsWith. (Part 1 of 2.)

string.startsWith("st")

string.startsWith("art", 2)

string.endsWith("ed")

14.3 Class String 605

Lines 11–15 use the version of method startsWith that takes a String argument.
The condition in the if statement (line 13) determines whether each String in the array
starts with the characters "st". If so, the method returns true and the application prints
that String. Otherwise, the method returns false and nothing happens.

Lines 20–25 use the startsWith method that takes a String and an integer as argu-
ments. The integer specifies the index at which the comparison should begin in the
String. The condition in the if statement (line 22) determines whether each String in
the array has the characters "art" beginning with the third character in each String. If so,
the method returns true and the application prints the String.

The third for statement (lines 30–34) uses method endsWith, which takes a String
argument. The condition at line 32 determines whether each String in the array ends with
the characters "ed". If so, the method returns true and the application prints the String.

14.3.4 Locating Characters and Substrings in Strings
Often it’s useful to search a string for a character or set of characters. For example, if you’re
creating your own word processor, you might want to provide a capability for searching
through documents. Figure 14.5 demonstrates the many versions of String methods
indexOf and lastIndexOf that search for a specified character or substring in a String.

"started" starts with "st"
"starting" starts with "st"

"started" starts with "art" at position 2
"starting" starts with "art" at position 2

"started" ends with "ed"
"ended" ends with "ed"

1 // Fig. 14.5: StringIndexMethods.java
2 // String searching methods indexOf and lastIndexOf.
3
4 public class StringIndexMethods
5 {
6 public static void main(String[] args)
7 {
8 String letters = "abcdefghijklmabcdefghijklm";
9

10 // test indexOf to locate a character in a string
11 System.out.printf(
12 "'c' is located at index %d%n",);
13 System.out.printf(
14 "'a' is located at index %d%n",);
15 System.out.printf(
16 "'$' is located at index %d%n%n",);
17

Fig. 14.5 | String-searching methods indexOf and lastIndexOf. (Part 1 of 2.)

Fig. 14.4 | String methods startsWith and endsWith. (Part 2 of 2.)

letters.indexOf('c')

letters.indexOf('a', 1)

letters.indexOf('$')

606 Chapter 14 Strings, Characters and Regular Expressions

All the searches in this example are performed on the String letters (initialized with
"abcdefghijklmabcdefghijklm"). Lines 11–16 use method indexOf to locate the first
occurrence of a character in a String. If the method finds the character, it returns the char-
acter’s index in the String—otherwise, it returns –1. There are two versions of indexOf
that search for characters in a String. The expression in line 12 uses the version of method
indexOf that takes an integer representation of the character to find. The expression at line
14 uses another version of method indexOf, which takes two integer arguments—the
character and the starting index at which the search of the String should begin.

18 // test lastIndexOf to find a character in a string
19 System.out.printf("Last 'c' is located at index %d%n",
20);
21 System.out.printf("Last 'a' is located at index %d%n",
22);
23 System.out.printf("Last '$' is located at index %d%n%n",
24);
25
26 // test indexOf to locate a substring in a string
27 System.out.printf("\"def\" is located at index %d%n",
28);
29 System.out.printf("\"def\" is located at index %d%n",
30);
31 System.out.printf("\"hello\" is located at index %d%n%n",
32);
33
34 // test lastIndexOf to find a substring in a string
35 System.out.printf("Last \"def\" is located at index %d%n",
36);
37 System.out.printf("Last \"def\" is located at index %d%n",
38);
39 System.out.printf("Last \"hello\" is located at index %d%n",
40);
41 }
42 } // end class StringIndexMethods

'c' is located at index 2
'a' is located at index 13
'$' is located at index -1

Last 'c' is located at index 15
Last 'a' is located at index 13
Last '$' is located at index -1

"def" is located at index 3
"def" is located at index 16
"hello" is located at index -1

Last "def" is located at index 16
Last "def" is located at index 16
Last "hello" is located at index -1

Fig. 14.5 | String-searching methods indexOf and lastIndexOf. (Part 2 of 2.)

letters.lastIndexOf('c')

letters.lastIndexOf('a', 25)

letters.lastIndexOf('$')

letters.indexOf("def")

letters.indexOf("def", 7)

letters.indexOf("hello")

letters.lastIndexOf("def")

letters.lastIndexOf("def", 25)

letters.lastIndexOf("hello")

14.3 Class String 607

Lines 19–24 use method lastIndexOf to locate the last occurrence of a character in a
String. The method searches from the end of the String toward the beginning. If it finds
the character, it returns the character’s index in the String—otherwise, it returns –1.
There are two versions of lastIndexOf that search for characters in a String. The expres-
sion at line 20 uses the version that takes the integer representation of the character. The
expression at line 22 uses the version that takes two integer arguments—the integer repre-
sentation of the character and the index from which to begin searching backward.

Lines 27–40 demonstrate versions of methods indexOf and lastIndexOf that each
take a String as the first argument. These versions perform identically to those described
earlier except that they search for sequences of characters (or substrings) that are specified
by their String arguments. If the substring is found, these methods return the index in
the String of the first character in the substring.

14.3.5 Extracting Substrings from Strings
Class String provides two substring methods to enable a new String object to be creat-
ed by copying part of an existing String object. Each method returns a new String object.
Both methods are demonstrated in Fig. 14.6.

The expression letters.substring(20) at line 12 uses the substring method that
takes one integer argument. The argument specifies the starting index in the original
String letters from which characters are to be copied. The substring returned contains
a copy of the characters from the starting index to the end of the String. Specifying an
index outside the bounds of the String causes a StringIndexOutOfBoundsException.

Line 15 uses the substring method that takes two integer arguments—the starting
index from which to copy characters in the original String and the index one beyond the

1 // Fig. 14.6: SubString.java
2 // String class substring methods.
3
4 public class SubString
5 {
6 public static void main(String[] args)
7 {
8 String letters = "abcdefghijklmabcdefghijklm";
9

10 // test substring methods
11 System.out.printf("Substring from index 20 to end is \"%s\"%n",
12);
13 System.out.printf("%s \"%s\"%n",
14 "Substring from index 3 up to, but not including 6 is",
15);
16 }
17 } // end class SubString

Substring from index 20 to end is "hijklm"
Substring from index 3 up to, but not including 6 is "def"

Fig. 14.6 | String class substring methods.

letters.substring(20)

letters.substring(3, 6)

608 Chapter 14 Strings, Characters and Regular Expressions

last character to copy (i.e., copy up to, but not including, that index in the String). The
substring returned contains a copy of the specified characters from the original String. An
index outside the bounds of the String causes a StringIndexOutOfBoundsException.

14.3.6 Concatenating Strings
String method concat (Fig. 14.7) concatenates two String objects (similar to using the +
operator) and returns a new String object containing the characters from both original
Strings. The expression s1.concat(s2) at line 13 forms a String by appending the char-
acters in s2 to the those in s1. The original Strings to which s1 and s2 refer are not modified.

14.3.7 Miscellaneous String Methods
Class String provides several methods that return Strings or character arrays containing
copies of an original String’s contents which are then modified. These methods—none
of which modify the String on which they’re called—are demonstrated in Fig. 14.8.

1 // Fig. 14.7: StringConcatenation.java
2 // String method concat.
3
4 public class StringConcatenation
5 {
6 public static void main(String[] args)
7 {
8 String s1 = "Happy ";
9 String s2 = "Birthday";

10
11 System.out.printf("s1 = %s%ns2 = %s%n%n",s1, s2);
12 System.out.printf(
13 "Result of s1.concat(s2) = %s%n",);
14 System.out.printf("s1 after concatenation = %s%n", s1);
15 }
16 } // end class StringConcatenation

s1 = Happy
s2 = Birthday

Result of s1.concat(s2) = Happy Birthday
s1 after concatenation = Happy

Fig. 14.7 | String method concat.

1 // Fig. 14.8: StringMiscellaneous2.java
2 // String methods replace, toLowerCase, toUpperCase, trim and toCharArray.
3
4 public class StringMiscellaneous2
5 {
6 public static void main(String[] args)
7 {

Fig. 14.8 | String methods replace, toLowerCase, toUpperCase, trim and toCharArray.
(Part 1 of 2.)

s1.concat(s2)

14.3 Class String 609

Line 16 uses String method replace to return a new String object in which every
occurrence in s1 of character 'l' (lowercase el) is replaced with character 'L'. Method
replace leaves the original String unchanged. If there are no occurrences of the first argu-
ment in the String, method replace returns the original String. An overloaded version
of method replace enables you to replace substrings rather than individual characters.

Line 19 uses String method toUpperCase to generate a new String with uppercase
letters where corresponding lowercase letters exist in s1. The method returns a new String
object containing the converted String and leaves the original String unchanged. If there
are no characters to convert, method toUpperCase returns the original String.

8 String s1 = "hello";
9 String s2 = "GOODBYE";

10 String s3 = " spaces ";
11
12 System.out.printf("s1 = %s%ns2 = %s%ns3 = %s%n%n", s1, s2, s3);
13
14 // test method replace
15 System.out.printf(
16 "Replace 'l' with 'L' in s1: %s%n%n",);
17
18 // test toLowerCase and toUpperCase
19 System.out.printf("s1.toUpperCase() = %s%n",);
20 System.out.printf("s2.toLowerCase() = %s%n%n",);
21
22 // test trim method
23 System.out.printf("s3 after trim = \"%s\"%n%n",);
24
25 // test toCharArray method
26
27 System.out.print("s1 as a character array = ");
28
29 for (char character : charArray)
30 System.out.print(character);
31
32 System.out.println();
33 }
34 } // end class StringMiscellaneous2

s1 = hello
s2 = GOODBYE
s3 = spaces

Replace 'l' with 'L' in s1: heLLo

s1.toUpperCase() = HELLO
s2.toLowerCase() = goodbye

s3 after trim = "spaces"

s1 as a character array = hello

Fig. 14.8 | String methods replace, toLowerCase, toUpperCase, trim and toCharArray.
(Part 2 of 2.)

s1.replace('l', 'L')

s1.toUpperCase()
s2.toLowerCase()

s3.trim()

char[] charArray = s1.toCharArray();

610 Chapter 14 Strings, Characters and Regular Expressions

Line 20 uses String method toLowerCase to return a new String object with lower-
case letters where corresponding uppercase letters exist in s2. The original String remains
unchanged. If there are no characters in the original String to convert, toLowerCase
returns the original String.

Line 23 uses String method trim to generate a new String object that removes all
white-space characters that appear at the beginning and/or end of the String on which
trim operates. The method returns a new String object containing the String without
leading or trailing white space. The original String remains unchanged. If there are no
white-space characters at the beginning and/or end, trim returns the original String.

Line 26 uses String method toCharArray to create a new character array containing
a copy of the characters in s1. Lines 29–30 output each char in the array.

14.3.8 String Method valueOf
As we’ve seen, every object in Java has a toString method that enables a program to obtain
the object’s string representation. Unfortunately, this technique cannot be used with prim-
itive types because they do not have methods. Class String provides static methods that
take an argument of any type and convert it to a String object. Figure 14.9 demonstrates
the String class valueOf methods.

The expression String.valueOf(charArray) at line 18 uses the character array char-
Array to create a new String object. The expression String.valueOf(charArray, 3, 3)
at line 20 uses a portion of the character array charArray to create a new String object.
The second argument specifies the starting index from which the characters are used. The
third argument specifies the number of characters to be used.

1 // Fig. 14.9: StringValueOf.java
2 // String valueOf methods.
3
4 public class StringValueOf
5 {
6 public static void main(String[] args)
7 {
8 char[] charArray = {'a', 'b', 'c', 'd', 'e', 'f'};
9 boolean booleanValue = true;

10 char characterValue = 'Z';
11 int integerValue = 7;
12
13
14 double doubleValue = 33.333; // no suffix, double is default
15 Object objectRef = "hello"; // assign string to an Object reference
16
17 System.out.printf(
18 "char array = %s%n",);
19 System.out.printf("part of char array = %s%n",
20);
21 System.out.printf(
22 "boolean = %s%n",);
23 System.out.printf(
24 "char = %s%n",);

Fig. 14.9 | String valueOf methods. (Part 1 of 2.)

long longValue = 10000000000L; // L suffix indicates long
float floatValue = 2.5f; // f indicates that 2.5 is a float

String.valueOf(charArray)

String.valueOf(charArray, 3, 3)

String.valueOf(booleanValue)

String.valueOf(characterValue)

14.4 Class StringBuilder 611

There are seven other versions of method valueOf, which take arguments of type
boolean, char, int, long, float, double and Object, respectively. These are demon-
strated in lines 21–30. The version of valueOf that takes an Object as an argument can
do so because all Objects can be converted to Strings with method toString.

[Note: Lines 12–13 use literal values 10000000000L and 2.5f as the initial values of
long variable longValue and float variable floatValue, respectively. By default, Java
treats integer literals as type int and floating-point literals as type double. Appending the
letter L to the literal 10000000000 and appending letter f to the literal 2.5 indicates to the
compiler that 10000000000 should be treated as a long and 2.5 as a float. An uppercase
L or lowercase l can be used to denote a variable of type long and an uppercase F or low-
ercase f can be used to denote a variable of type float.]

14.4 Class StringBuilder
We now discuss the features of class StringBuilder for creating and manipulating dynam-
ic string information—that is, modifiable strings. Every StringBuilder is capable of stor-
ing a number of characters specified by its capacity. If a StringBuilder’s capacity is
exceeded, the capacity expands to accommodate the additional characters.

25 System.out.printf("int = %s%n",);
26 System.out.printf("long = %s%n",);
27 System.out.printf("float = %s%n",);
28 System.out.printf(
29 "double = %s%n",);
30 System.out.printf("Object = %s",);
31 }
32 } // end class StringValueOf

char array = abcdef
part of char array = def
boolean = true
char = Z
int = 7
long = 10000000000
float = 2.5
double = 33.333
Object = hello

Performance Tip 14.3
Java can perform certain optimizations involving String objects (such as referring to one
String object from multiple variables) because it knows these objects will not change.
Strings (not StringBuilders) should be used if the data will not change.

Performance Tip 14.4
In programs that frequently perform string concatenation, or other string modifications,
it’s often more efficient to implement the modifications with class StringBuilder.

Fig. 14.9 | String valueOf methods. (Part 2 of 2.)

String.valueOf(integerValue)
String.valueOf(longValue)
String.valueOf(floatValue)

String.valueOf(doubleValue)
String.valueOf(objectRef)

612 Chapter 14 Strings, Characters and Regular Expressions

14.4.1 StringBuilder Constructors
Class StringBuilder provides four constructors. We demonstrate three of these in
Fig. 14.10. Line 8 uses the no-argument StringBuilder constructor to create a String-
Builder with no characters in it and an initial capacity of 16 characters (the default for a
StringBuilder). Line 9 uses the StringBuilder constructor that takes an integer argu-
ment to create a StringBuilder with no characters in it and the initial capacity specified
by the integer argument (i.e., 10). Line 10 uses the StringBuilder constructor that takes
a String argument to create a StringBuilder containing the characters in the String ar-
gument. The initial capacity is the number of characters in the String argument plus 16.

Lines 12–14 implicitly use the method toString of class StringBuilder to output
the StringBuilders with the printf method. In Section 14.4.4, we discuss how Java uses
StringBuilder objects to implement the + and += operators for string concatenation.

14.4.2 StringBuilder Methods length, capacity, setLength and
ensureCapacity
Class StringBuilder provides methods length and capacity to return the number of
characters currently in a StringBuilder and the number of characters that can be stored

Software Engineering Observation 14.1
StringBuilders are not thread safe. If multiple threads require access to the same
dynamic string information, use class StringBuffer in your code. Classes StringBuilder
and StringBuffer provide identical capabilities, but class StringBuffer is thread safe.
For more details on threading, see Chapter 23.

1 // Fig. 14.10: StringBuilderConstructors.java
2 // StringBuilder constructors.
3
4 public class StringBuilderConstructors
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12 System.out.printf("buffer1 = \"%s\"%n", buffer1);
13 System.out.printf("buffer2 = \"%s\"%n", buffer2);
14 System.out.printf("buffer3 = \"%s\"%n", buffer3);
15 }
16 } // end class StringBuilderConstructors

buffer1 = ""
buffer2 = ""
buffer3 = "hello"

Fig. 14.10 | StringBuilder constructors.

StringBuilder buffer1 = new StringBuilder();
StringBuilder buffer2 = new StringBuilder(10);
StringBuilder buffer3 = new StringBuilder("hello");

14.4 Class StringBuilder 613

in a StringBuilder without allocating more memory, respectively. Method ensure-
Capacity guarantees that a StringBuilder has at least the specified capacity. Method
setLength increases or decreases the length of a StringBuilder. Figure 14.11 demon-
strates these methods.

The application contains one StringBuilder called buffer. Line 8 uses the String-
Builder constructor that takes a String argument to initialize the StringBuilder with
"Hello, how are you?". Lines 10–11 print the contents, length and capacity of the
StringBuilder. Note in the output window that the capacity of the StringBuilder is ini-
tially 35. Recall that the StringBuilder constructor that takes a String argument initial-
izes the capacity to the length of the string passed as an argument plus 16.

Line 13 uses method ensureCapacity to expand the capacity of the StringBuilder
to a minimum of 75 characters. Actually, if the original capacity is less than the argument,
the method ensures a capacity that’s the greater of the number specified as an argument
and twice the original capacity plus 2. The StringBuilder’s current capacity remains
unchanged if it’s more than the specified capacity.

1 // Fig. 14.11: StringBuilderCapLen.java
2 // StringBuilder length, setLength, capacity and ensureCapacity methods.
3
4 public class StringBuilderCapLen
5 {
6 public static void main(String[] args)
7 {
8 StringBuilder buffer = new StringBuilder("Hello, how are you?");
9

10 System.out.printf("buffer = %s%nlength = %d%ncapacity = %d%n%n",
11 buffer.toString(), ,);
12
13
14 System.out.printf("New capacity = %d%n%n",);
15
16
17 System.out.printf("New length = %d%nbuffer = %s%n",
18 , buffer.toString());
19 }
20 } // end class StringBuilderCapLen

buffer = Hello, how are you?
length = 19
capacity = 35

New capacity = 75

New length = 10
buffer = Hello, how

Fig. 14.11 | StringBuilder length, setLength, capacity and ensureCapacity
methods.

buffer.length() buffer.capacity()

buffer.ensureCapacity(75);
buffer.capacity()

buffer.setLength(10));

buffer.length()

614 Chapter 14 Strings, Characters and Regular Expressions

Line 16 uses method setLength to set the length of the StringBuilder to 10. If the
specified length is less than the current number of characters in the StringBuilder, its
contents are truncated to the specified length (i.e., the characters in the StringBuilder
after the specified length are discarded). If the specified length is greater than the number
of characters currently in the StringBuilder, null characters (characters with the
numeric representation 0) are appended until the total number of characters in the
StringBuilder is equal to the specified length.

14.4.3 StringBuilder Methods charAt, setCharAt, getChars and
reverse
Class StringBuilder provides methods charAt, setCharAt, getChars and reverse to ma-
nipulate the characters in a StringBuilder (Fig. 14.12). Method charAt (line 12) takes an
integer argument and returns the character in the StringBuilder at that index. Method
getChars (line 15) copies characters from a StringBuilder into the character array passed
as an argument. This method takes four arguments—the starting index from which charac-
ters should be copied in the StringBuilder, the index one past the last character to be copied
from the StringBuilder, the character array into which the characters are to be copied and
the starting location in the character array where the first character should be placed. Method
setCharAt (lines 21 and 22) takes an integer and a character argument and sets the character
at the specified position in the StringBuilder to the character argument. Method reverse
(line 25) reverses the contents of the StringBuilder. Attempting to access a character that’s
outside the bounds of a StringBuilder results in a StringIndexOutOfBoundsException.

Performance Tip 14.5
Dynamically increasing the capacity of a StringBuilder can take a relatively long time.
Executing a large number of these operations can degrade the performance of an applica-
tion. If a StringBuilder is going to increase greatly in size, possibly multiple times, setting
its capacity high at the beginning will increase performance.

1 // Fig. 14.12: StringBuilderChars.java
2 // StringBuilder methods charAt, setCharAt, getChars and reverse.
3
4 public class StringBuilderChars
5 {
6 public static void main(String[] args)
7 {
8 StringBuilder buffer = new StringBuilder("hello there");
9

10 System.out.printf("buffer = %s%n", buffer.toString());
11 System.out.printf("Character at 0: %s%nCharacter at 4: %s%n%n",
12 ,);
13
14 char[] charArray = new char[buffer.length()];
15
16 System.out.print("The characters are: ");

Fig. 14.12 | StringBuilder methods charAt, setCharAt, getChars and reverse. (Part 1
of 2.)

buffer.charAt(0) buffer.charAt(4)

buffer.getChars(0, buffer.length(), charArray, 0);

14.4 Class StringBuilder 615

14.4.4 StringBuilder append Methods
Class StringBuilder provides overloaded append methods (Fig. 14.13) to allow values of
various types to be appended to the end of a StringBuilder. Versions are provided for
each of the primitive types and for character arrays, Strings, Objects, and more. (Remem-
ber that method toString produces a string representation of any Object.) Each method
takes its argument, converts it to a string and appends it to the StringBuilder.

17
18 for (char character : charArray)
19 System.out.print(character);
20
21
22
23 System.out.printf("%n%nbuffer = %s", buffer.toString());
24
25
26 System.out.printf("%n%nbuffer = %s%n", buffer.toString());
27 }
28 } // end class StringBuilderChars

buffer = hello there
Character at 0: h
Character at 4: o

The characters are: hello there

buffer = Hello There

buffer = erehT olleH

1 // Fig. 14.13: StringBuilderAppend.java
2 // StringBuilder append methods.
3
4 public class StringBuilderAppend
5 {
6 public static void main(String[] args)
7 {
8 Object objectRef = "hello";
9 String string = "goodbye";

10 char[] charArray = {'a', 'b', 'c', 'd', 'e', 'f'};
11 boolean booleanValue = true;
12 char characterValue = 'Z';
13 int integerValue = 7;
14 long longValue = 10000000000L;
15 float floatValue = 2.5f;
16 double doubleValue = 33.333;

Fig. 14.13 | StringBuilder append methods. (Part 1 of 2.)

Fig. 14.12 | StringBuilder methods charAt, setCharAt, getChars and reverse. (Part 2
of 2.)

buffer.setCharAt(0, 'H');
buffer.setCharAt(6, 'T');

buffer.reverse();

616 Chapter 14 Strings, Characters and Regular Expressions

The compiler can use StringBuilder and the append methods to implement the +
and += String concatenation operators. For example, assuming the declarations

the statement

17
18 StringBuilder lastBuffer = new StringBuilder("last buffer");
19 StringBuilder buffer = new StringBuilder();
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 System.out.printf("buffer contains%n%s%n", buffer.toString());
44 }
45 } // end StringBuilderAppend

buffer contains
hello
goodbye
abcdef
abc
true
Z
7
10000000000
2.5
33.333
last buffer

String string1 = "hello";
String string2 = "BC";
int value = 22;

String s = string1 + string2 + value;

Fig. 14.13 | StringBuilder append methods. (Part 2 of 2.)

buffer.append(objectRef)
 .append("%n")
 .append(string)
 .append("%n")
 .append(charArray)
 .append("%n")
 .append(charArray, 0, 3)
 .append("%n")
 .append(booleanValue)
 .append("%n")
 .append(characterValue);
 .append("%n")
 .append(integerValue)
 .append("%n")
 .append(longValue)
 .append("%n")
 .append(floatValue)
 .append("%n")
 .append(doubleValue)
 .append("%n")
 .append(lastBuffer);

14.4 Class StringBuilder 617

concatenates "hello", "BC" and 22. The concatenation can be performed as follows:

First, the preceding statement creates an empty StringBuilder, then appends to it the
strings "hello" and "BC" and the integer 22. Next, StringBuilder’s toString method
converts the StringBuilder to a String object to be assigned to String s. The statement

can be performed as follows (this may differ by compiler):

This creates an empty StringBuilder, then appends to it the current contents of s fol-
lowed by "!". Next, StringBuilder’s method toString (which must be called explicitly
here) returns the StringBuilder’s contents as a String, and the result is assigned to s.

14.4.5 StringBuilder Insertion and Deletion Methods
StringBuilder provides overloaded insert methods to insert values of various types at
any position in a StringBuilder. Versions are provided for the primitive types and for
character arrays, Strings, Objects and CharSequences. Each method takes its second ar-
gument and inserts it at the index specified by the first argument. If the first argument is
less than 0 or greater than the StringBuilder’s length, a StringIndexOutOfBounds-
Exception occurs. Class StringBuilder also provides methods delete and deleteCharAt
to delete characters at any position in a StringBuilder. Method delete takes two argu-
ments—the starting index and the index one past the end of the characters to delete. All
characters beginning at the starting index up to but not including the ending index are de-
leted. Method deleteCharAt takes one argument—the index of the character to delete.
Invalid indices cause both methods to throw a StringIndexOutOfBoundsException.
Figure 14.14 demonstrates methods insert, delete and deleteCharAt.

String s = new StringBuilder().append("hello").append("BC").
 append(22).toString();

s += "!";

s = new StringBuilder().append(s).append("!").toString();

1 // Fig. 14.14: StringBuilderInsertDelete.java
2 // StringBuilder methods insert, delete and deleteCharAt.
3
4 public class StringBuilderInsertDelete
5 {
6 public static void main(String[] args)
7 {
8 Object objectRef = "hello";
9 String string = "goodbye";

10 char[] charArray = {'a', 'b', 'c', 'd', 'e', 'f'};
11 boolean booleanValue = true;
12 char characterValue = 'K';
13 int integerValue = 7;
14 long longValue = 10000000;
15 float floatValue = 2.5f; // f suffix indicates that 2.5 is a float
16 double doubleValue = 33.333;
17

Fig. 14.14 | StringBuilder methods insert, delete and deleteCharAt. (Part 1 of 2.)

618 Chapter 14 Strings, Characters and Regular Expressions

14.5 Class Character
Java provides eight type-wrapper classes—Boolean, Character, Double, Float, Byte,
Short, Integer and Long—that enable primitive-type values to be treated as objects. In
this section, we present class Character—the type-wrapper class for primitive type char.

Most Character methods are static methods designed for convenience in processing
individual char values. These methods take at least a character argument and perform
either a test or a manipulation of the character. Class Character also contains a con-
structor that receives a char argument to initialize a Character object. Most of the
methods of class Character are presented in the next three examples. For more informa-

18 StringBuilder buffer = new StringBuilder();
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 System.out.printf(
41 "buffer after inserts:%n%s%n%n", buffer.toString());
42
43 buffer.deleteCharAt(10); // delete 5 in 2.5
44 buffer.delete(2, 6); // delete .333 in 33.333
45
46 System.out.printf(
47 "buffer after deletes:%n%s%n", buffer.toString());
48 }
49 } // end class StringBuilderInsertDelete

buffer after inserts:
33.333 2.5 10000000 7 K true def abcdef goodbye hello

buffer after deletes:
33 2. 10000000 7 K true def abcdef goodbye hello

Fig. 14.14 | StringBuilder methods insert, delete and deleteCharAt. (Part 2 of 2.)

buffer.insert(0, objectRef);
buffer.insert(0, " "); // each of these contains two spaces
buffer.insert(0, string);
buffer.insert(0, " ");
buffer.insert(0, charArray);
buffer.insert(0, " ");
buffer.insert(0, charArray, 3, 3);
buffer.insert(0, " ");
buffer.insert(0, booleanValue);
buffer.insert(0, " ");
buffer.insert(0, characterValue);
buffer.insert(0, " ");
buffer.insert(0, integerValue);
buffer.insert(0, " ");
buffer.insert(0, longValue);
buffer.insert(0, " ");
buffer.insert(0, floatValue);
buffer.insert(0, " ");
buffer.insert(0, doubleValue);

14.5 Class Character 619

tion on class Character (and all the type-wrapper classes), see the java.lang package in
the Java API documentation.

Figure 14.15 demonstrates static methods that test characters to determine whether
they’re a specific character type and the static methods that perform case conversions on
characters. You can enter any character and apply the methods to the character.

1 // Fig. 14.15: StaticCharMethods.java
2 // Character static methods for testing characters and converting case.
3 import java.util.Scanner;
4
5 public class StaticCharMethods
6 {
7 public static void main(String[] args)
8 {
9 Scanner scanner = new Scanner(System.in); // create scanner

10 System.out.println("Enter a character and press Enter");
11 String input = scanner.next();
12
13
14 // display character info
15 System.out.printf("is defined: %b%n",);
16 System.out.printf("is digit: %b%n",);
17 System.out.printf("is first character in a Java identifier: %b%n",
18);
19 System.out.printf("is part of a Java identifier: %b%n",
20);
21 System.out.printf("is letter: %b%n",);
22 System.out.printf(
23 "is letter or digit: %b%n",);
24 System.out.printf(
25 "is lower case: %b%n",);
26 System.out.printf(
27 "is upper case: %b%n",);
28 System.out.printf(
29 "to upper case: %s%n",);
30 System.out.printf(
31 "to lower case: %s%n",);
32 }
33 } // end class StaticCharMethods

Enter a character and press Enter
A
is defined: true
is digit: false
is first character in a Java identifier: true
is part of a Java identifier: true
is letter: true
is letter or digit: true
is lower case: false
is upper case: true
to upper case: A
to lower case: a

Fig. 14.15 | Character static methods for testing characters and converting case. (Part 1 of 2.)

char c = input.charAt(0); // get input character

Character.isDefined(c)
Character.isDigit(c)

Character.isJavaIdentifierStart(c)

Character.isJavaIdentifierPart(c)
Character.isLetter(c)

Character.isLetterOrDigit(c)

Character.isLowerCase(c)

Character.isUpperCase(c)

Character.toUpperCase(c)

Character.toLowerCase(c)

620 Chapter 14 Strings, Characters and Regular Expressions

Line 15 uses Character method isDefined to determine whether character c is
defined in the Unicode character set. If so, the method returns true; otherwise, it returns
false. Line 16 uses Character method isDigit to determine whether character c is a
defined Unicode digit. If so, the method returns true, and otherwise, false.

Line 18 uses Character method isJavaIdentifierStart to determine whether c is
a character that can be the first character of an identifier in Java—that is, a letter, an under-
score (_) or a dollar sign ($). If so, the method returns true, and otherwise, false. Line
20 uses Character method isJavaIdentifierPart to determine whether character c is a
character that can be used in an identifier in Java—that is, a digit, a letter, an underscore
(_) or a dollar sign ($). If so, the method returns true, and otherwise, false.

Line 21 uses Character method isLetter to determine whether character c is a letter.
If so, the method returns true, and otherwise, false. Line 23 uses Character method
isLetterOrDigit to determine whether character c is a letter or a digit. If so, the method
returns true, and otherwise, false.

Line 25 uses Character method isLowerCase to determine whether character c is a
lowercase letter. If so, the method returns true, and otherwise, false. Line 27 uses Char-
acter method isUpperCase to determine whether character c is an uppercase letter. If so,
the method returns true, and otherwise, false.

Line 29 uses Character method toUpperCase to convert the character c to its upper-
case equivalent. The method returns the converted character if the character has an upper-

Enter a character and press Enter
8
is defined: true
is digit: true
is first character in a Java identifier: false
is part of a Java identifier: true
is letter: false
is letter or digit: true
is lower case: false
is upper case: false
to upper case: 8
to lower case: 8

Enter a character and press Enter
$
is defined: true
is digit: false
is first character in a Java identifier: true
is part of a Java identifier: true
is letter: false
is letter or digit: false
is lower case: false
is upper case: false
to upper case: $
to lower case: $

Fig. 14.15 | Character static methods for testing characters and converting case. (Part 2 of 2.)

14.5 Class Character 621

case equivalent, and otherwise, the method returns its original argument. Line 31 uses
Character method toLowerCase to convert the character c to its lowercase equivalent.
The method returns the converted character if the character has a lowercase equivalent,
and otherwise, the method returns its original argument.

Figure 14.16 demonstrates static Character methods digit and forDigit, which
convert characters to digits and digits to characters, respectively, in different number sys-
tems. Common number systems include decimal (base 10), octal (base 8), hexadecimal
(base 16) and binary (base 2). The base of a number is also known as its radix. For more
information on conversions between number systems, see online Appendix J.

1 // Fig. 14.16: StaticCharMethods2.java
2 // Character class static conversion methods.
3 import java.util.Scanner;
4
5 public class StaticCharMethods2
6 {
7 // executes application
8 public static void main(String[] args)
9 {

10 Scanner scanner = new Scanner(System.in);
11
12 // get radix
13 System.out.println("Please enter a radix:");
14 int radix = scanner.nextInt();
15
16 // get user choice
17 System.out.printf("Please choose one:%n1 -- %s%n2 -- %s%n",
18 "Convert digit to character", "Convert character to digit");
19 int choice = scanner.nextInt();
20
21 // process request
22 switch (choice)
23 {
24 case 1: // convert digit to character
25 System.out.println("Enter a digit:");
26 int digit = scanner.nextInt();
27 System.out.printf("Convert digit to character: %s%n",
28);
29 break;
30
31 case 2: // convert character to digit
32 System.out.println("Enter a character:");
33 char character = scanner.next().charAt(0);
34 System.out.printf("Convert character to digit: %s%n",
35);
36 break;
37 }
38 }
39 } // end class StaticCharMethods2

Fig. 14.16 | Character class static conversion methods. (Part 1 of 2.)

Character.forDigit(digit, radix)

Character.digit(character, radix)

622 Chapter 14 Strings, Characters and Regular Expressions

Line 28 uses method forDigit to convert the integer digit into a character in the
number system specified by the integer radix (the base of the number). For example, the
decimal integer 13 in base 16 (the radix) has the character value 'd'. Lowercase and upper-
case letters represent the same value in number systems. Line 35 uses method digit to con-
vert variable character into an integer in the number system specified by the integer radix
(the base of the number). For example, the character 'A' is the base 16 (the radix) repre-
sentation of the base 10 value 10. The radix must be between 2 and 36, inclusive.

Figure 14.17 demonstrates the constructor and several instance methods of class
Character—charValue, toString and equals. Lines 7–8 instantiate two Character
objects by assigning the character constants 'A' and 'a', respectively, to the Character
variables. Java automatically converts these char literals into Character objects—a process
known as autoboxing that we discuss in more detail in Section 16.4. Line 11 uses Char-
acter method charValue to return the char value stored in Character object c1. Line 11
returns a string representation of Character object c2 using method toString. The con-
dition in line 13 uses method equals to determine whether the object c1 has the same con-
tents as the object c2 (i.e., the characters inside each object are equal).

Please enter a radix:
16
Please choose one:
1 -- Convert digit to character
2 -- Convert character to digit
2
Enter a character:
A
Convert character to digit: 10

Please enter a radix:
16
Please choose one:
1 -- Convert digit to character
2 -- Convert character to digit
1
Enter a digit:
13
Convert digit to character: d

1 // Fig. 14.17: OtherCharMethods.java
2 // Character class instance methods.
3 public class OtherCharMethods
4 {
5 public static void main(String[] args)
6 {
7
8

Fig. 14.17 | Character class instance methods. (Part 1 of 2.)

Fig. 14.16 | Character class static conversion methods. (Part 2 of 2.)

Character c1 = 'A';
Character c2 = 'a';

14.6 Tokenizing Strings 623

14.6 Tokenizing Strings
When you read a sentence, your mind breaks it into tokens—individual words and punc-
tuation marks that convey meaning to you. Compilers also perform tokenization. They
break up statements into individual pieces like keywords, identifiers, operators and other
programming-language elements. We now study class String’s split method, which
breaks a String into its component tokens. Tokens are separated from one another by de-
limiters, typically white-space characters such as space, tab, newline and carriage return.
Other characters can also be used as delimiters to separate tokens. The application in
Fig. 14.18 demonstrates String’s split method.

When the user presses the Enter key, the input sentence is stored in variable sentence.
Line 17 invokes String method split with the String argument " ", which returns an
array of Strings. The space character in the argument String is the delimiter that method
split uses to locate the tokens in the String. As you’ll learn in the next section, the argu-
ment to method split can be a regular expression for more complex tokenizing. Line 19
displays the length of the array tokens—i.e., the number of tokens in sentence. Lines 21–
22 output each token on a separate line.

9
10 System.out.printf(
11 "c1 = %s%nc2 = %s%n%n", ,);
12
13 if ()
14 System.out.println("c1 and c2 are equal%n");
15 else
16 System.out.println("c1 and c2 are not equal%n");
17 }
18 } // end class OtherCharMethods

c1 = A
c2 = a

c1 and c2 are not equal

1 // Fig. 14.18: TokenTest.java
2 // StringTokenizer object used to tokenize strings.
3 import java.util.Scanner;
4 import java.util.StringTokenizer;
5
6 public class TokenTest
7 {
8 // execute application
9 public static void main(String[] args)

10 {
11 // get sentence
12 Scanner scanner = new Scanner(System.in);

Fig. 14.18 | StringTokenizer object used to tokenize strings. (Part 1 of 2.)

Fig. 14.17 | Character class instance methods. (Part 2 of 2.)

c1.charValue() c2.toString()

c1.equals(c2)

624 Chapter 14 Strings, Characters and Regular Expressions

14.7 Regular Expressions, Class Pattern and Class
Matcher
A regular expression is a String that describes a search pattern for matching characters in
other Strings. Such expressions are useful for validating input and ensuring that data is in
a particular format. For example, a ZIP code must consist of five digits, and a last name
must contain only letters, spaces, apostrophes and hyphens. One application of regular ex-
pressions is to facilitate the construction of a compiler. Often, a large and complex regular
expression is used to validate the syntax of a program. If the program code does not match
the regular expression, the compiler knows that there’s a syntax error in the code.

Class String provides several methods for performing regular-expression operations,
the simplest of which is the matching operation. String method matches receives a
String that specifies the regular expression and matches the contents of the String object
on which it’s called to the regular expression. The method returns a boolean indicating
whether the match succeeded.

A regular expression consists of literal characters and special symbols. Figure 14.19
specifies some predefined character classes that can be used with regular expressions. A
character class is an escape sequence that represents a group of characters. A digit is any
numeric character. A word character is any letter (uppercase or lowercase), any digit or the
underscore character. A white-space character is a space, a tab, a carriage return, a newline
or a form feed. Each character class matches a single character in the String we’re
attempting to match with the regular expression.

13 System.out.println("Enter a sentence and press Enter");
14 String sentence = scanner.nextLine();
15
16 // process user sentence
17
18 System.out.printf("Number of elements: %d%nThe tokens are:%n",
19 tokens.length);
20
21
22
23 }
24 } // end class TokenTest

Enter a sentence and press Enter
This is a sentence with seven tokens
Number of elements: 7
The tokens are:
This
is
a
sentence
with
seven
tokens

Fig. 14.18 | StringTokenizer object used to tokenize strings. (Part 2 of 2.)

String[] tokens = sentence.split(" ");

for (String token : tokens)
 System.out.println(token);

14.7 Regular Expressions, Class Pattern and Class Matcher 625

Regular expressions are not limited to these predefined character classes. The expres-
sions employ various operators and other forms of notation to match complex patterns.
We examine several of these techniques in the application in Figs. 14.20 and 14.21, which
validates user input via regular expressions. [Note: This application is not designed to match
all possible valid user input.]

Character Matches Character Matches

\d any digit \D any nondigit

\w any word character \W any nonword character

\s any white-space character \S any non-whitespace
character

Fig. 14.19 | Predefined character classes.

1 // Fig. 14.20: ValidateInput.java
2 // Validating user information using regular expressions.
3
4 public class ValidateInput
5 {
6 // validate first name
7 public static boolean validateFirstName(String firstName)
8 {
9

10 }
11
12 // validate last name
13 public static boolean validateLastName(String lastName)
14 {
15
16 }
17
18 // validate address
19 public static boolean validateAddress(String address)
20 {
21
22
23 }
24
25 // validate city
26 public static boolean validateCity(String city)
27 {
28
29 }
30
31 // validate state
32 public static boolean validateState(String state)
33 {

Fig. 14.20 | Validating user information using regular expressions. (Part 1 of 2.)

return firstName.matches("[A-Z][a-zA-Z]*");

return lastName.matches("[a-zA-z]+(['-][a-zA-Z]+)*");

return address.matches(
 "\\d+\\s+([a-zA-Z]+|[a-zA-Z]+\\s[a-zA-Z]+)");

return city.matches("([a-zA-Z]+|[a-zA-Z]+\\s[a-zA-Z]+)");

626 Chapter 14 Strings, Characters and Regular Expressions

34
35 }
36
37 // validate zip
38 public static boolean validateZip(String zip)
39 {
40
41 }
42
43 // validate phone
44 public static boolean validatePhone(String phone)
45 {
46
47 }
48 } // end class ValidateInput

1 // Fig. 14.21: Validate.java
2 // Input and validate data from user using the ValidateInput class.
3 import java.util.Scanner;
4
5 public class Validate
6 {
7 public static void main(String[] args)
8 {
9 // get user input

10 Scanner scanner = new Scanner(System.in);
11 System.out.println("Please enter first name:");
12 String firstName = scanner.nextLine();
13 System.out.println("Please enter last name:");
14 String lastName = scanner.nextLine();
15 System.out.println("Please enter address:");
16 String address = scanner.nextLine();
17 System.out.println("Please enter city:");
18 String city = scanner.nextLine();
19 System.out.println("Please enter state:");
20 String state = scanner.nextLine();
21 System.out.println("Please enter zip:");
22 String zip = scanner.nextLine();
23 System.out.println("Please enter phone:");
24 String phone = scanner.nextLine();
25
26 // validate user input and display error message
27 System.out.println("%nValidate Result:");
28
29 if (!ValidateInput.validateFirstName(firstName))
30 System.out.println("Invalid first name");
31 else if (!ValidateInput.validateLastName(lastName))
32 System.out.println("Invalid last name");
33 else if (!ValidateInput.validateAddress(address))
34 System.out.println("Invalid address");

Fig. 14.21 | Input and validate data from user using the ValidateInput class. (Part 1 of 2.)

Fig. 14.20 | Validating user information using regular expressions. (Part 2 of 2.)

return state.matches("([a-zA-Z]+|[a-zA-Z]+\\s[a-zA-Z]+)");

return zip.matches("\\d{5}");

return phone.matches("[1-9]\\d{2}-[1-9]\\d{2}-\\d{4}");

14.7 Regular Expressions, Class Pattern and Class Matcher 627

Figure 14.20 validates user input. Line 9 validates the first name. To match a set of
characters that does not have a predefined character class, use square brackets, []. For
example, the pattern "[aeiou]" matches a single character that’s a vowel. Character ranges

35 else if (!ValidateInput.validateCity(city))
36 System.out.println("Invalid city");
37 else if (!ValidateInput.validateState(state))
38 System.out.println("Invalid state");
39 else if (!ValidateInput.validateZip(zip))
40 System.out.println("Invalid zip code");
41 else if (!ValidateInput.validatePhone(phone))
42 System.out.println("Invalid phone number");
43 else
44 System.out.println("Valid input. Thank you.");
45 }
46 } // end class Validate

Please enter first name:
Jane
Please enter last name:
Doe
Please enter address:
123 Some Street
Please enter city:
Some City
Please enter state:
SS
Please enter zip:
123
Please enter phone:
123-456-7890

Validate Result:
Invalid zip code

Please enter first name:
Jane
Please enter last name:
Doe
Please enter address:
123 Some Street
Please enter city:
Some City
Please enter state:
SS
Please enter zip:
12345
Please enter phone:
123-456-7890

Validate Result:
Valid input. Thank you.

Fig. 14.21 | Input and validate data from user using the ValidateInput class. (Part 2 of 2.)

628 Chapter 14 Strings, Characters and Regular Expressions

are represented by placing a dash (-) between two characters. In the example, "[A-Z]"
matches a single uppercase letter. If the first character in the brackets is "^", the expression
accepts any character other than those indicated. However, "[^Z]" is not the same as "[A-
Y]", which matches uppercase letters A–Y—"[^Z]" matches any character other than cap-
ital Z, including lowercase letters and nonletters such as the newline character. Ranges in
character classes are determined by the letters’ integer values. In this example, "[A-Za-z]"
matches all uppercase and lowercase letters. The range "[A-z]" matches all letters and also
matches those characters (such as [and \) with an integer value between uppercase Z and
lowercase a (for more information on integer values of characters see Appendix B). Like
predefined character classes, character classes delimited by square brackets match a single
character in the search object.

In line 9, the asterisk after the second character class indicates that any number of let-
ters can be matched. In general, when the regular-expression operator "*" appears in a reg-
ular expression, the application attempts to match zero or more occurrences of the
subexpression immediately preceding the "*". Operator "+" attempts to match one or
more occurrences of the subexpression immediately preceding "+". So both "A*" and "A+"
will match "AAA" or "A", but only "A*" will match an empty string.

If method validateFirstName returns true (line 29 of Fig. 14.21), the application
attempts to validate the last name (line 31) by calling validateLastName (lines 13–16 of
Fig. 14.20). The regular expression to validate the last name matches any number of letters
split by spaces, apostrophes or hyphens.

Line 33 of Fig. 14.21 calls method validateAddress (lines 19–23 of Fig. 14.20) to
validate the address. The first character class matches any digit one or more times (\\d+).
Two \ characters are used, because \ normally starts an escape sequence in a string. So \\d
in a String represents the regular-expression pattern \d. Then we match one or more
white-space characters (\\s+). The character "|" matches the expression to its left or to its
right. For example, "Hi (John|Jane)" matches both "Hi John" and "Hi Jane". The paren-
theses are used to group parts of the regular expression. In this example, the left side of |
matches a single word, and the right side matches two words separated by any amount of
white space. So the address must contain a number followed by one or two words. There-
fore, "10 Broadway" and "10 Main Street" are both valid addresses in this example. The
city (lines 26–29 of Fig. 14.20) and state (lines 32–35 of Fig. 14.20) methods also match
any word of at least one character or, alternatively, any two words of at least one character if
the words are separated by a single space, so both Waltham and West Newton would match.

Quantifiers
The asterisk (*) and plus (+) are formally called quantifiers. Figure 14.22 lists all the quan-
tifiers. We’ve already discussed how the asterisk (*) and plus (+) quantifiers work. All
quantifiers affect only the subexpression immediately preceding the quantifier. Quantifier
question mark (?) matches zero or one occurrences of the expression that it quantifies. A
set of braces containing one number ({n}) matches exactly n occurrences of the expression
it quantifies. We demonstrate this quantifier to validate the zip code in Fig. 14.20 at line
40. Including a comma after the number enclosed in braces matches at least n occurrences
of the quantified expression. The set of braces containing two numbers ({n,m}), matches
between n and m occurrences of the expression that it qualifies. Quantifiers may be applied
to patterns enclosed in parentheses to create more complex regular expressions.

14.7 Regular Expressions, Class Pattern and Class Matcher 629

All of the quantifiers are greedy. This means that they’ll match as many occurrences
as they can as long as the match is still successful. However, if any of these quantifiers is
followed by a question mark (?), the quantifier becomes reluctant (sometimes called lazy).
It then will match as few occurrences as possible as long as the match is still successful.

The zip code (line 40 in Fig. 14.20) matches a digit five times. This regular expression
uses the digit character class and a quantifier with the digit 5 between braces. The phone
number (line 46 in Fig. 14.20) matches three digits (the first one cannot be zero) followed
by a dash followed by three more digits (again the first one cannot be zero) followed by
four more digits.

String method matches checks whether an entire String conforms to a regular
expression. For example, we want to accept "Smith" as a last name, but not "9@Smith#".
If only a substring matches the regular expression, method matches returns false.

Replacing Substrings and Splitting Strings
Sometimes it’s useful to replace parts of a string or to split a string into pieces. For this
purpose, class String provides methods replaceAll, replaceFirst and split. These
methods are demonstrated in Fig. 14.23.

Quantifier Matches

* Matches zero or more occurrences of the pattern.

+ Matches one or more occurrences of the pattern.

? Matches zero or one occurrences of the pattern.

{n} Matches exactly n occurrences.

{n,} Matches at least n occurrences.

{n,m} Matches between n and m (inclusive) occurrences.

Fig. 14.22 | Quantifiers used in regular expressions.

1 // Fig. 14.23: RegexSubstitution.java
2 // String methods replaceFirst, replaceAll and split.
3 import java.util.Arrays;
4
5 public class RegexSubstitution
6 {
7 public static void main(String[] args)
8 {
9 String firstString = "This sentence ends in 5 stars *****";

10 String secondString = "1, 2, 3, 4, 5, 6, 7, 8";
11
12 System.out.printf("Original String 1: %s%n", firstString);
13
14 // replace '*' with '^'
15
16
17 System.out.printf("^ substituted for *: %s%n", firstString);

Fig. 14.23 | String methods replaceFirst, replaceAll and split. (Part 1 of 2.)

firstString = firstString.replaceAll("*", "^");

630 Chapter 14 Strings, Characters and Regular Expressions

Method replaceAll replaces text in a String with new text (the second argument)
wherever the original String matches a regular expression (the first argument). Line 15
replaces every instance of "*" in firstString with "^". The regular expression ("*")
precedes character * with two backslashes. Normally, * is a quantifier indicating that a reg-
ular expression should match any number of occurrences of a preceding pattern. However,
in line 15, we want to find all occurrences of the literal character *—to do this, we must
escape character * with character \. Escaping a special regular-expression character with \
instructs the matching engine to find the actual character. Since the expression is stored in
a Java String and \ is a special character in Java Strings, we must include an additional
\. So the Java String "*" represents the regular-expression pattern * which matches a
single * character in the search string. In line 20, every match for the regular expression
"stars" in firstString is replaced with "carets". Line 27 uses replaceAll to replace
all words in the string with "word".

18
19 // replace 'stars' with 'carets'
20
21
22 System.out.printf(
23 "\"carets\" substituted for \"stars\": %s%n", firstString);
24
25 // replace words with 'word'
26 System.out.printf("Every word replaced by \"word\": %s%n%n",
27);
28
29 System.out.printf("Original String 2: %s%n", secondString);
30
31 // replace first three digits with 'digit'
32 for (int i = 0; i < 3; i++)
33
34
35 System.out.printf(
36 "First 3 digits replaced by \"digit\" : %s%n", secondString);
37
38 System.out.print("String split at commas: ");
39
40 System.out.println();
41 }
42 } // end class RegexSubstitution

Original String 1: This sentence ends in 5 stars *****
^ substituted for *: This sentence ends in 5 stars ^^^^^
"carets" substituted for "stars": This sentence ends in 5 carets ^^^^^
Every word replaced by "word": word word word word word word ^^^^^

Original String 2: 1, 2, 3, 4, 5, 6, 7, 8
First 3 digits replaced by "digit" : digit, digit, digit, 4, 5, 6, 7, 8
String split at commas: ["digit", "digit", "digit", "4", "5", "6", "7", "8"]

Fig. 14.23 | String methods replaceFirst, replaceAll and split. (Part 2 of 2.)

firstString = firstString.replaceAll("stars", "carets");

firstString.replaceAll("\\w+", "word")

secondString = secondString.replaceFirst("\\d", "digit");

String[] results = secondString.split(",\\s*"); // split on commas
Arrays.toString(results)

14.7 Regular Expressions, Class Pattern and Class Matcher 631

Method replaceFirst (line 33) replaces the first occurrence of a pattern match. Java
Strings are immutable; therefore, method replaceFirst returns a new String in which
the appropriate characters have been replaced. This line takes the original String and
replaces it with the String returned by replaceFirst. By iterating three times we replace
the first three instances of a digit (\d) in secondString with the text "digit".

Method split divides a String into several substrings. The original is broken in any
location that matches a specified regular expression. Method split returns an array of
Strings containing the substrings between matches for the regular expression. In line 39,
we use method split to tokenize a String of comma-separated integers. The argument is
the regular expression that locates the delimiter. In this case, we use the regular expression
",\\s*" to separate the substrings wherever a comma occurs. By matching any white-
space characters, we eliminate extra spaces from the resulting substrings. The commas and
white-space characters are not returned as part of the substrings. Again, the Java String
",\\s*" represents the regular expression ,\s*. Line 40 uses Arrays method toString to
display the contents of array results in square brackets and separated by commas.

Classes Pattern and Matcher
In addition to the regular-expression capabilities of class String, Java provides other class-
es in package java.util.regex that help developers manipulate regular expressions. Class
Pattern represents a regular expression. Class Matcher contains both a regular-expression
pattern and a CharSequence in which to search for the pattern.

CharSequence (package java.lang) is an interface that allows read access to a
sequence of characters. The interface requires that the methods charAt, length, subSe-
quence and toString be declared. Both String and StringBuilder implement interface
CharSequence, so an instance of either of these classes can be used with class Matcher.

If a regular expression will be used only once, static Pattern method matches can
be used. This method takes a String that specifies the regular expression and a CharSe-
quence on which to perform the match. This method returns a boolean indicating
whether the search object (the second argument) matches the regular expression.

If a regular expression will be used more than once (in a loop, for example), it’s more
efficient to use static Pattern method compile to create a specific Pattern object for
that regular expression. This method receives a String representing the pattern and
returns a new Pattern object, which can then be used to call method matcher. This
method receives a CharSequence to search and returns a Matcher object.

Matcher provides method matches, which performs the same task as Pattern method
matches, but receives no arguments—the search pattern and search object are encapsu-
lated in the Matcher object. Class Matcher provides other methods, including find,
lookingAt, replaceFirst and replaceAll.

Figure 14.24 presents a simple example that employs regular expressions. This pro-
gram matches birthdays against a regular expression. The expression matches only birth-
days that do not occur in April and that belong to people whose names begin with "J".

Common Programming Error 14.2
A regular expression can be tested against an object of any class that implements interface
CharSequence, but the regular expression must be a String. Attempting to create a reg-
ular expression as a StringBuilder is an error.

632 Chapter 14 Strings, Characters and Regular Expressions

Lines 11–12 create a Pattern by invoking static Pattern method compile. The dot
character "." in the regular expression (line 12) matches any single character except a new-
line character. Line 20 creates the Matcher object for the compiled regular expression and
the matching sequence (string1). Lines 22–23 use a while loop to iterate through the
String. Line 22 uses Matcher method find to attempt to match a piece of the search
object to the search pattern. Each call to this method starts at the point where the last call
ended, so multiple matches can be found. Matcher method lookingAt performs the same
way, except that it always starts from the beginning of the search object and will always
find the first match if there is one.

Line 23 uses Matcher method group, which returns the String from the search object
that matches the search pattern. The String that’s returned is the one that was last
matched by a call to find or lookingAt. The output in Fig. 14.24 shows the two matches
that were found in string1.

1 // Fig. 14.24: RegexMatches.java
2 // Classes Pattern and Matcher.
3 import java.util.regex.Matcher;
4 import java.util.regex.Pattern;
5
6 public class RegexMatches
7 {
8 public static void main(String[] args)
9 {

10 // create regular expression
11
12
13
14 String string1 = "Jane's Birthday is 05-12-75\n" +
15 "Dave's Birthday is 11-04-68\n" +
16 "John's Birthday is 04-28-73\n" +
17 "Joe's Birthday is 12-17-77";
18
19 // match regular expression to string and print matches
20
21
22
23
24 }
25 } // end class RegexMatches

Jane's Birthday is 05-12-75
Joe's Birthday is 12-17-77

Fig. 14.24 | Classes Pattern and Matcher.

Common Programming Error 14.3
Method matches (from class String, Pattern or Matcher) will return true only if the en-
tire search object matches the regular expression. Methods find and lookingAt (from class
Matcher) will return true if a portion of the search object matches the regular expression.

Pattern expression =
 Pattern.compile("J.*\\d[0-35-9]-\\d\\d-\\d\\d");

Matcher matcher = expression.matcher(string1);

while (matcher.find())
 System.out.println(matcher.group());

14.8 Wrap-Up 633

Java SE 8
As you’ll see in Section 17.7, you can combine regular-expression processing with Java SE
8 lambdas and streams to implement powerful String-and-file processing applications.

14.8 Wrap-Up
In this chapter, you learned about more String methods for selecting portions of Strings
and manipulating Strings. You learned about the Character class and some of the meth-
ods it declares to handle chars. The chapter also discussed the capabilities of the String-
Builder class for creating Strings. The end of the chapter discussed regular expressions,
which provide a powerful capability to search and match portions of Strings that fit a par-
ticular pattern. In the next chapter, you’ll learn about file processing, including how per-
sistent data is stored and and retrieved.

Summary
Section 14.2 Fundamentals of Characters and Strings
• A character literal’s value (p. 597) is its integer value in Unicode (p. 597). Strings can include

letters, digits and special characters such as +, -, *, / and $. A string in Java is an object of class
String. String literals (p. 597) are often referred to as String objects and are written in a pro-
gram in double quotes.

Section 14.3 Class String
• String objects are immutable (p. 599)—after they’re created, their character contents cannot be

changed.

• String method length (p. 599) returns the number of characters in a String.

• String method charAt (p. 599) returns the character at a specific position.

• String method regionMatches (p. 601) compares portions of two strings for equality.

• String method equals tests for equality. The method returns true if the contents of the Strings
are equal, false otherwise. Method equals uses a lexicographical comparison (p. 602) for Strings.

• When primitive-type values are compared with ==, the result is true if both values are identical.
When references are compared with ==, the result is true if both refer to the same object.

• Java treats all string literals with the same contents as a single String object.

• String method equalsIgnoreCase performs a case-insensitive string comparison.

• String method compareTo uses a lexicographical comparison and returns 0 if the Strings are
equal, a negative number if the string that calls compareTo is less than the argument String and
a positive number if the string that calls compareTo is greater than than the argument String.

• String methods startsWith and endsWith (p. 604) determine whether a string starts with or
ends with the specified characters, respectively.

• String method indexOf (p. 605) locates the first occurrence of a character or a substring in a
string. String method lastIndexOf (p. 605) locates the last occurrence of a character or a sub-
string in a string.

• String method substring copies and returns part of an existing string object.

• String method concat (p. 608) concatenates two string objects and returns a new string object.

634 Chapter 14 Strings, Characters and Regular Expressions

• String method replace returns a new string object that replaces every occurrence in a String of
its first character argument with its second character argument.

• String method toUpperCase (p. 609) returns a new string with uppercase letters in the positions
where the original string had lowercase letters. String method toLowerCase (p. 610) returns a
new string with lowercase letters in the positions where the original string had uppercase letters.

• String method trim (p. 610) returns a new string object in which all white-space characters (e.g.,
spaces, newlines and tabs) have been removed from the beginning and end of a string.

• String method toCharArray (p. 610) returns a char array containing a copy of the string’s char-
acters.

• String class static method valueOf returns its argument converted to a string.

Section 14.4 Class StringBuilder
• Class StringBuilder provides constructors that enable StringBuilders to be initialized with no

characters and an initial capacity of 16 characters, with no characters and an initial capacity spec-
ified in the integer argument, or with a copy of the characters of the String argument and an
initial capacity that’s the number of characters in the String argument plus 16.

• StringBuilder method length (p. 612) returns the number of characters currently stored in a
StringBuilder. StringBuilder method capacity (p. 612) returns the number of characters that
can be stored in a StringBuilder without allocating more memory.

• StringBuilder method ensureCapacity (p. 613) ensures that a StringBuilder has at least the
specified capacity. Method setLength increases or decreases the length of a StringBuilder.

• StringBuilder method charAt (p. 614) returns the character at the specified index. Method
setCharAt (p. 614) sets the character at the specified position. StringBuilder method getChars
(p. 614) copies characters in the StringBuilder into the character array passed as an argument.

• StringBuilder’s overloaded append methods (p. 615) add primitive-type, character-array,
String, Object or CharSequence (p. 615) values to the end of a StringBuilder.

• StringBuilder’s overloaded insert (p. 617) methods insert primitive-type, character-array,
String, Object or CharSequence values at any position in a StringBuilder.

Section 14.5 Class Character
• Character method isDefined (p. 620) determines whether a character is in the Unicode charac-

ter set.

• Character method isDigit (p. 620) determines whether a character is a defined Unicode digit.

• Character method isJavaIdentifierStart (p. 620) determines whether a character can be used
as the first character of a Java identifier. Character method isJavaIdentifierPart (p. 620) de-
termines if a character can be used in an identifier.

• Character method isLetter (p. 620) determines whether a character is a letter. Character meth-
od isLetterOrDigit (p. 620) determines if a character is a letter or a digit.

• Character method isLowerCase (p. 620) determines whether a character is a lowercase letter.
Character method isUpperCase (p. 620) determines whether a character is an uppercase letter.

• Character method toUpperCase (p. 620) converts a character to its uppercase equivalent. Char-
acter method toLowerCase (p. 621) converts a character to its lowercase equivalent.

• Character method digit (p. 621) converts its character argument into an integer in the number
system specified by its integer argument radix (p. 621). Character method forDigit (p. 621)
converts its integer argument digit into a character in the number system specified by its integer
argument radix.

 Summary 635

• Character method charValue (p. 622) returns the char stored in a Character object. Character
method toString returns a String representation of a Character.

Section 14.6 Tokenizing Strings
• Class String’s split method (p. 623) tokenizes a String based on the delimiter (p. 623) speci-

fied as an argument and returns an array of Strings containing the tokens (p. 623).

Section 14.7 Regular Expressions, Class Pattern and Class Matcher
• Regular expressions (p. 624) are sequences of characters and symbols that define a set of strings.

They’re useful for validating input and ensuring that data is in a particular format.

• String method matches (p. 624) receives a string that specifies the regular expression and match-
es the contents of the String object on which it’s called to the regular expression. The method
returns a boolean indicating whether the match succeeded.

• A character class is an escape sequence that represents a group of characters. Each character class
matches a single character in the string we’re attempting to match with the regular expression.

• A word character (\w; p. 624) is any letter (uppercase or lowercase), any digit or the underscore
character.

• A white-space character (\s) is a space, a tab, a carriage return, a newline or a form feed.

• A digit (\d) is any numeric character.

• To match a set of characters that does not have a predefined character class (p. 624), use square
brackets, []. Ranges can be represented by placing a dash (-) between two characters. If the first
character in the brackets is "^", the expression accepts any character other than those indicated.

• When the regular expression operator "*" appears in a regular expression, the program attempts
to match zero or more occurrences of the subexpression immediately preceding the "*".

• Operator "+" attempts to match one or more occurrences of the subexpression preceding it.

• The character "|" allows a match of the expression to its left or to its right.

• Parentheses () are used to group parts of the regular expression.

• The asterisk (*) and plus (+) are formally called quantifiers (p. 628).

• A quantifier affects only the subexpression immediately preceding it.

• Quantifier question mark (?) matches zero or one occurrences of the expression that it quantifies.

• A set of braces containing one number ({n}) matches exactly n occurrences of the expression it
quantifies. Including a comma after the number enclosed in braces matches at least n occurrences.

• A set of braces containing two numbers ({n,m}) matches between n and m occurrences of the
expression that it qualifies.

• Quantifiers are greedy (p. 629)—they’ll match as many occurrences as they can as long as the
match is successful. If a quantifier is followed by a question mark (?), the quantifier becomes re-
luctant (p. 629), matching as few occurrences as possible as long as the match is successful.

• String method replaceAll (p. 629) replaces text in a string with new text (the second argument)
wherever the original string matches a regular expression (the first argument).

• Escaping a special regular-expression character with a \ instructs the regular-expression matching
engine to find the actual character, as opposed to what it represents in a regular expression.

• String method replaceFirst (p. 629) replaces the first occurrence of a pattern match and re-
turns a new string in which the appropriate characters have been replaced.

• String method split (p. 629) divides a string into substrings at any location that matches a spec-
ified regular expression and returns an array of the substrings.

636 Chapter 14 Strings, Characters and Regular Expressions

• Class Pattern (p. 631) represents a regular expression.

• Class Matcher (p. 631) contains a regular-expression pattern and a CharSequence in which to
search.

• CharSequence is an interface (p. 631) that allows read access to a sequence of characters. Both
String and StringBuilder implement this interface, so they can be used with class Matcher.

• If a regular expression will be used only once, static Pattern method matches (p. 631) takes a string
that specifies the regular expression and a CharSequence on which to perform the match. This
method returns a boolean indicating whether the search object matches the regular expression.

• If a regular expression will be used more than once, it’s more efficient to use static Pattern meth-
od compile (p. 631) to create a specific Pattern object for that regular expression. This method
receives a string representing the pattern and returns a new Pattern object.

• Pattern method matcher (p. 631) receives a CharSequence to search and returns a Matcher ob-
ject. Matcher method matches (p. 631) performs the same task as Pattern method matches but
without arguments.

• Matcher method find (p. 631) attempts to match a piece of the search object to the search pat-
tern. Each call to this method starts at the point where the last call ended, so multiple matches
can be found.

• Matcher method lookingAt (p. 631) performs the same as find, except that it always starts from
the beginning of the search object and will always find the first match if there is one.

• Matcher method group (p. 632) returns the string from the search object that matches the search
pattern. The string returned is the one that was last matched by a call to find or lookingAt.

Self-Review Exercises
14.1 State whether each of the following is true or false. If false, explain why.

a) When String objects are compared using ==, the result is true if the Strings contain
the same values.

b) A String can be modified after it’s created.

14.2 For each of the following, write a single statement that performs the indicated task:
a) Compare the string in s1 to the string in s2 for equality of contents.
b) Append the string s2 to the string s1, using +=.
c) Determine the length of the string in s1.

Answers to Self-Review Exercises
14.1 a) False. String objects are compared using operator == to determine whether they’re the

same object in memory.
b) False. String objects are immutable and cannot be modified after they’re created.

StringBuilder objects can be modified after they’re created.

14.2 a) s1.equals(s2)
b) s1 += s2;
c) s1.length()

Exercises
14.3 (Comparing Strings) Write an application that uses String method compareTo to compare
two strings input by the user. Output whether the first string is less than, equal to or greater than
the second.

 Exercises 637

14.4 (Comparing Portions of Strings) Write an application that uses String method region-
Matches to compare two strings input by the user. The application should input the number of char-
acters to be compared and the starting index of the comparison. The application should state
whether the strings are equal. Ignore the case of the characters when performing the comparison.

14.5 (Random Sentences) Write an application that uses random-number generation to create
sentences. Use four arrays of strings called article, noun, verb and preposition. Create a sentence
by selecting a word at random from each array in the following order: article, noun, verb, preposi-
tion, article and noun. As each word is picked, concatenate it to the previous words in the sentence.
The words should be separated by spaces. When the final sentence is output, it should start with a
capital letter and end with a period. The application should generate and display 20 sentences.

The article array should contain the articles "the", "a", "one", "some" and "any"; the noun
array should contain the nouns "boy", "girl", "dog", "town" and "car"; the verb array should con-
tain the verbs "drove", "jumped", "ran", "walked" and "skipped"; the preposition array should
contain the prepositions "to", "from", "over", "under" and "on".

14.6 (Project: Limericks) A limerick is a humorous five-line verse in which the first and second lines
rhyme with the fifth, and the third line rhymes with the fourth. Using techniques similar to those de-
veloped in Exercise 14.5, write a Java application that produces random limericks. Polishing this ap-
plication to produce good limericks is a challenging problem, but the result will be worth the effort!

14.7 (Pig Latin) Write an application that encodes English-language phrases into pig Latin. Pig
Latin is a form of coded language. There are many different ways to form pig Latin phrases. For
simplicity, use the following algorithm:

To form a pig Latin phrase from an English-language phrase, tokenize the phrase into words
with String method split. To translate each English word into a pig Latin word, place the first
letter of the English word at the end of the word and add the letters “ay.” Thus, the word “jump”
becomes “umpjay,” the word “the” becomes “hetay,” and the word “computer” becomes “omputer-
cay.” Blanks between words remain as blanks. Assume the following: The English phrase consists of
words separated by blanks, there are no punctuation marks and all words have two or more letters.
Method printLatinWord should display each word. Each token is passed to method printLatin-
Word to print the pig Latin word. Enable the user to input the sentence. Keep a running display of
all the converted sentences in a text area.

14.8 (Tokenizing Telephone Numbers) Write an application that inputs a telephone number as a
string in the form (555) 555-5555. The application should use String method split to extract the
area code as a token, the first three digits of the phone number as a token and the last four digits of
the phone number as a token. The seven digits of the phone number should be concatenated into
one string. Both the area code and the phone number should be printed. Remember that you’ll have
to change delimiter characters during the tokenization process.

14.9 (Displaying a Sentence with Its Words Reversed) Write an application that inputs a line of
text, tokenizes the line with String method split and outputs the tokens in reverse order. Use space
characters as delimiters.

14.10 (Displaying Strings in Uppercase and Lowercase) Write an application that inputs a line of
text and outputs the text twice—once in all uppercase letters and once in all lowercase letters.

14.11 (Searching Strings) Write an application that inputs a line of text and a search character and
uses String method indexOf to determine the number of occurrences of the character in the text.

14.12 (Searching Strings) Write an application based on the application in Exercise 14.11 that
inputs a line of text and uses String method indexOf to determine the total number of occurrences
of each letter of the alphabet in the text. Uppercase and lowercase letters should be counted together.
Store the totals for each letter in an array, and print the values in tabular format after the totals have
been determined.

638 Chapter 14 Strings, Characters and Regular Expressions

14.13 (Tokenizing and Comparing Strings) Write an application that reads a line of text, token-
izes the line using space characters as delimiters and outputs only those words beginning with the
letter "b".

14.14 (Tokenizing and Comparing Strings) Write an application that reads a line of text, token-
izes it using space characters as delimiters and outputs only those words ending with the letters "ED".

14.15 (Converting int Values to Characters) Write an application that inputs an integer code for
a character and displays the corresponding character. Modify this application so that it generates all
possible three-digit codes in the range from 000 to 255 and attempts to print the corresponding
characters.

14.16 (Defining Your Own String Methods) Write your own versions of String search methods
indexOf and lastIndexOf.

14.17 (Creating Three-Letter Strings from a Five-Letter Word) Write an application that reads a
five-letter word from the user and produces every possible three-letter string that can be derived
from the letters of that word. For example, the three-letter words produced from the word “bathe”
include “ate,” “bat,” “bet,” “tab,” “hat,” “the” and “tea.”

Special Section: Advanced String-Manipulation Exercises
The preceding exercises are keyed to the text and designed to test your understanding of funda-
mental string-manipulation concepts. This section includes a collection of intermediate and
advanced string-manipulation exercises. You should find these problems challenging, yet entertain-
ing. The problems vary considerably in difficulty. Some require an hour or two of application writ-
ing and implementation. Others are useful for lab assignments that might require two or three
weeks of study and implementation. Some are challenging term projects.

14.18 (Text Analysis) The availability of computers with string-manipulation capabilities has re-
sulted in some rather interesting approaches to analyzing the writings of great authors. Much atten-
tion has been focused on whether William Shakespeare ever lived. Some scholars believe there’s
substantial evidence indicating that Christopher Marlowe actually penned the masterpieces attrib-
uted to Shakespeare. Researchers have used computers to find similarities in the writings of these
two authors. This exercise examines three methods for analyzing texts with a computer.

a) Write an application that reads a line of text from the keyboard and prints a table indi-
cating the number of occurrences of each letter of the alphabet in the text. For example,
the phrase

To be, or not to be: that is the question:

contains one “a,” two “b’s,” no “c’s,” and so on.
b) Write an application that reads a line of text and prints a table indicating the number

of one-letter words, two-letter words, three-letter words, and so on, appearing in the
text. For example, Fig. 14.25 shows the counts for the phrase

Whether 'tis nobler in the mind to suffer

c) Write an application that reads a line of text and prints a table indicating the number
of occurrences of each different word in the text. The application should include the
words in the table in the same order in which they appear in the text. For example, the
lines

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer

contain the word “to” three times, the word “be” two times, the word “or” once, etc.

 Special Section: Advanced String-Manipulation Exercises 639

14.19 (Printing Dates in Various Formats) Dates are printed in several common formats. Two of
the more common formats are

04/25/1955 and April 25, 1955

Write an application that reads a date in the first format and prints it in the second format.

14.20 (Check Protection) Computers are frequently employed in check-writing systems, such as
payroll and accounts payable applications. There are many strange stories about weekly paychecks
being printed (by mistake) for amounts in excess of $1 million. Incorrect amounts are printed by
computerized check-writing systems because of human error or machine failure. Systems designers
build controls into their systems to prevent such erroneous checks from being issued.

Another serious problem is the intentional alteration of a check amount by someone who
plans to cash a check fraudulently. To prevent a dollar amount from being altered, some computer-
ized check-writing systems employ a technique called check protection. Checks designed for
imprinting by computer contain a fixed number of spaces in which the computer may print an
amount. Suppose a paycheck contains eight blank spaces in which the computer is supposed to
print the amount of a weekly paycheck. If the amount is large, then all eight of the spaces will be
filled. For example,

1,230.60 (check amount)

12345678 (position numbers)

On the other hand, if the amount is less than $1000, then several of the spaces would ordinarily be
left blank. For example,

 99.87

12345678

contains three blank spaces. If a check is printed with blank spaces, it’s easier for someone to alter
the amount. To prevent alteration, many check-writing systems insert leading asterisks to protect
the amount as follows:

***99.87

12345678

Write an application that inputs a dollar amount to be printed on a check, then prints the
amount in check-protected format with leading asterisks if necessary. Assume that nine spaces are
available for printing the amount.

Word length Occurrences

1 0
2 2
3 1
4 2 (including 'tis)
5 0
6 2
7 1

Fig. 14.25 | Word-length counts for the string
"Whether 'tis nobler in the mind to suffer".

640 Chapter 14 Strings, Characters and Regular Expressions

14.21 (Writing the Word Equivalent of a Check Amount) Continuing the discussion in
Exercise 14.20, we reiterate the importance of designing check-writing systems to prevent alteration
of check amounts. One common security method requires that the amount be written in numbers
and spelled out in words as well. Even if someone is able to alter the numerical amount of the check,
it’s extremely difficult to change the amount in words. Write an application that inputs a numeric
check amount that’s less than $1000 and writes the word equivalent of the amount. For example,
the amount 112.43 should be written as

ONE hundred TWELVE and 43/100

14.22 (Morse Code) Perhaps the most famous of all coding schemes is the Morse code, developed
by Samuel Morse in 1832 for use with the telegraph system. The Morse code assigns a series of dots
and dashes to each letter of the alphabet, each digit, and a few special characters (e.g., period, com-
ma, colon, semicolon). In sound-oriented systems, the dot represents a short sound and the dash a
long sound. Other representations of dots and dashes are used with light-oriented systems and sig-
nal-flag systems. Separation between words is indicated by a space or, simply, the absence of a dot
or dash. In a sound-oriented system, a space is indicated by a short time during which no sound is
transmitted. The international version of the Morse code appears in Fig. 14.26.

Write an application that reads an English-language phrase and encodes it into Morse code.
Also write an application that reads a phrase in Morse code and converts it into the English-lan-
guage equivalent. Use one blank between each Morse-coded letter and three blanks between each
Morse-coded word.

14.23 (Metric Conversions) Write an application that will assist the user with metric conversions.
Your application should allow the user to specify the names of the units as strings (i.e., centimeters,
liters, grams, and so on, for the metric system and inches, quarts, pounds, and so on, for the English
system) and should respond to simple questions, such as

"How many inches are in 2 meters?"
"How many liters are in 10 quarts?"

Character Code Character Code Character Code

A .- N -. Digits

B -... O --- 1 .----
C -.-. P .--. 2 ..---
D -.. Q --.- 3 ...--
E . R .-. 4-
F ..-. S ... 5
G --. T - 6 -....
H U ..- 7 --...
I .. V ...- 8 ---..
J .--- W .-- 9 ----.
K -.- X -..- 0 -----
L .-.. Y -.--
M -- Z --..

Fig. 14.26 | Letters and digits as expressed in international Morse code.

 Special Section: Challenging String-Manipulation Projects 641

Your application should recognize invalid conversions. For example, the question

"How many feet are in 5 kilograms?"

is not meaningful because "feet" is a unit of length, whereas "kilograms" is a unit of mass.

Special Section: Challenging String-Manipulation Projects
14.24 (Project: A Spelling Checker) Many popular word-processing software packages have built-
in spell checkers. In this project, you’re asked to develop your own spell-checker utility. We make
suggestions to help get you started. You should then consider adding more capabilities. Use a com-
puterized dictionary (if you have access to one) as a source of words.

Why do we type so many words with incorrect spellings? In some cases, it’s because we simply
do not know the correct spelling, so we make a best guess. In some cases, it’s because we transpose
two letters (e.g., “defualt” instead of “default”). Sometimes we double-type a letter accidentally
(e.g., “hanndy” instead of “handy”). Sometimes we type a nearby key instead of the one we
intended (e.g., “biryhday” instead of “birthday”), and so on.

Design and implement a spell-checker application in Java. Your application should maintain
an array wordList of strings. Enable the user to enter these strings. [Note: In Chapter 15, we intro-
duce file processing. With this capability, you can obtain the words for the spell checker from a
computerized dictionary stored in a file.]

Your application should ask a user to enter a word. The application should then look up that
word in the wordList array. If the word is in the array, your application should print "Word is
spelled correctly." If the word is not in the array, your application should print "Word is not
spelled correctly." Then your application should try to locate other words in wordList that
might be the word the user intended to type. For example, you can try all possible single transposi-
tions of adjacent letters to discover that the word “default” is a direct match to a word in wordList.
Of course, this implies that your application will check all other single transpositions, such as
“edfault,” “dfeault,” “deafult,” “defalut” and “defautl.” When you find a new word that matches
one in wordList, print it in a message, such as

Did you mean "default"?

Implement other tests, such as replacing each double letter with a single letter, and any other
tests you can develop to improve the value of your spell checker.

14.25 (Project: A Crossword Puzzle Generator) Most people have worked a crossword puzzle, but
few have ever attempted to generate one. Generating a crossword puzzle is suggested here as a string-
manipulation project requiring substantial sophistication and effort.

There are many issues the programmer must resolve to get even the simplest crossword-puz-
zle-generator application working. For example, how do you represent the grid of a crossword puz-
zle inside the computer? Should you use a series of strings or two-dimensional arrays?

The programmer needs a source of words (i.e., a computerized dictionary) that can be directly
referenced by the application. In what form should these words be stored to facilitate the complex
manipulations required by the application?

If you’re really ambitious, you’ll want to generate the clues portion of the puzzle, in which the
brief hints for each across word and each down word are printed. Merely printing a version of the
blank puzzle itself is not a simple problem.

Making a Difference
14.26 (Cooking with Healthier Ingredients) Obesity in America is increasing at an alarming rate.
Check the map from the Centers for Disease Control and Prevention (CDC) at www.cdc.gov/
nccdphp/dnpa/Obesity/trend/maps/index.htm, which shows obesity trends in the United States

www.cdc.gov/nccdphp/dnpa/Obesity/trend/maps/index.htm
www.cdc.gov/nccdphp/dnpa/Obesity/trend/maps/index.htm

642 Chapter 14 Strings, Characters and Regular Expressions

over the last 20 years. As obesity increases, so do occurrences of related problems (e.g., heart disease,
high blood pressure, high cholesterol, type 2 diabetes). Write a program that helps users choose
healthier ingredients when cooking, and helps those allergic to certain foods (e.g., nuts, gluten) find
substitutes. The program should read a recipe from a JTextArea and suggest healthier replacements
for some of the ingredients. For simplicity, your program should assume the recipe has no abbrevi-
ations for measures such as teaspoons, cups, and tablespoons, and uses numerical digits for quanti-
ties (e.g., 1 egg, 2 cups) rather than spelling them out (one egg, two cups). Some common
substitutions are shown in Fig. 14.27. Your program should display a warning such as, “Always con-
sult your physician before making significant changes to your diet.”

Your program should take into consideration that replacements are not always one-for-one.
For example, if a cake recipe calls for three eggs, it might reasonably use six egg whites instead.
Conversion data for measurements and substitutes can be obtained at websites such as:

chinesefood.about.com/od/recipeconversionfaqs/f/usmetricrecipes.htm
www.pioneerthinking.com/eggsub.html
www.gourmetsleuth.com/conversions.htm

Your program should consider the user’s health concerns, such as high cholesterol, high blood pres-
sure, weight loss, gluten allergy, and so on. For high cholesterol, the program should suggest substi-
tutes for eggs and dairy products; if the user wishes to lose weight, low-calorie substitutes for
ingredients such as sugar should be suggested.

14.27 (Spam Scanner) Spam (or junk e-mail) costs U.S. organizations billions of dollars a year in
spam-prevention software, equipment, network resources, bandwidth, and lost productivity.
Research online some of the most common spam e-mail messages and words, and check your own
junk e-mail folder. Create a list of 30 words and phrases commonly found in spam messages. Write
an application in which the user enters an e-mail message in a JTextArea. Then, scan the message
for each of the 30 keywords or phrases. For each occurrence of one of these within the message, add

Ingredient Substitution

1 cup sour cream 1 cup yogurt

1 cup milk 1/2 cup evaporated milk and 1/2 cup water

1 teaspoon lemon juice 1/2 teaspoon vinegar

1 cup sugar 1/2 cup honey, 1 cup molasses
or 1/4 cup agave nectar

1 cup butter 1 cup margarine or yogurt

1 cup flour 1 cup rye or rice flour

1 cup mayonnaise 1 cup cottage cheese
or 1/8 cup mayonnaise and 7/8 cup yogurt

1 egg 2 tablespoons cornstarch, arrowroot flour
or potato starch or 2 egg whites
or 1/2 of a large banana (mashed)

1 cup milk 1 cup soy milk

1/4 cup oil 1/4 cup applesauce

white bread whole-grain bread

Fig. 14.27 | Common food substitutions.

www.pioneerthinking.com/eggsub.html
www.gourmetsleuth.com/conversions.htm

 Making a Difference 643

a point to the message’s “spam score.” Next, rate the likelihood that the message is spam, based on
the number of points it received.

14.28 (SMS Language) Short Message Service (SMS) is a communications service that allows
sending text messages of 160 or fewer characters between mobile phones. With the proliferation of
mobile phone use worldwide, SMS is being used in many developing nations for political purposes
(e.g., voicing opinions and opposition), reporting news about natural disasters, and so on. For ex-
ample, check out comunica.org/radio2.0/archives/87. Since the length of SMS messages is lim-
ited, SMS Language—abbreviations of common words and phrases in mobile text messages, e-
mails, instant messages, etc.—is often used. For example, “in my opinion” is “imo” in SMS Lan-
guage. Research SMS Language online. Write a GUI application in which the user can enter a mes-
sage using SMS Language, then click a button to translate it into English (or your own language).
Also provide a mechanism to translate text written in English (or your own language) into SMS Lan-
guage. One potential problem is that one SMS abbreviation could expand into a variety of phrases.
For example, IMO (as used above) could also stand for “International Maritime Organization,” “in
memory of,” etc.

15 Files, Streams and Object
Serialization

Consciousness … does not
appear to itself chopped up in
bits. … A “river” or a “stream”
are the metaphors by which it is
most naturally described.
—William James

O b j e c t i v e s
In this chapter you’ll:

■ Create, read, write and
update files.

■ Retrieve information about
files and directories using
features of the NIO.2 APIs.

■ Learn the differences between
text files and binary files.

■ Use class Formatter to
output text to a file.

■ Use class Scanner to input
text from a file.

■ Write objects to and read
objects from a file using
object serialization, interface
Serializable and classes
ObjectOutputStream
and ObjectInputStream.

■ Use a JFileChooser dialog
to allow users to select files or
directories on disk.

15.1 Introduction 645

15.1 Introduction
Data stored in variables and arrays is temporary—it’s lost when a local variable goes out of
scope or when the program terminates. For long-term retention of data, even after the pro-
grams that create the data terminate, computers use files. You use files every day for tasks
such as writing a document or creating a spreadsheet. Computers store files on secondary
storage devices, including hard disks, flash drives, DVDs and more. Data maintained in
files is persistent data—it exists beyond the duration of program execution. In this chap-
ter, we explain how Java programs create, update and process files.

We begin with a discussion of Java’s architecture for handling files programmatically.
Next we explain that data can be stored in text files and binary files—and we cover the dif-
ferences between them. We demonstrate retrieving information about files and directories
using classes Paths and Files and interfaces Path and DirectoryStream (all from package
java.nio.file), then consider the mechanisms for writing data to and reading data from
files. We show how to create and manipulate sequential-access text files. Working with
text files allows you to quickly and easily start manipulating files. As you’ll learn, however,
it’s difficult to read data from text files back into object form. Fortunately, many object-
oriented languages (including Java) provide ways to write objects to and read objects from
files (known as object serialization and deserialization). To demonstrate this, we recreate
some of our sequential-access programs that used text files, this time by storing objects in
and retrieving objects from binary files.

15.2 Files and Streams
Java views each file as a sequential stream of bytes (Fig. 15.1).1 Every operating system
provides a mechanism to determine the end of a file, such as an end-of-file marker or a
count of the total bytes in the file that’s recorded in a system-maintained administrative
data structure. A Java program processing a stream of bytes simply receives an indication
from the operating system when it reaches the end of the stream—the program does not
need to know how the underlying platform represents files or streams. In some cases, the

15.1 Introduction
15.2 Files and Streams
15.3 Using NIO Classes and Interfaces to

Get File and Directory Information
15.4 Sequential-Access Text Files

15.4.1 Creating a Sequential-Access Text File
15.4.2 Reading Data from a Sequential-

Access Text File
15.4.3 Case Study: A Credit-Inquiry Program
15.4.4 Updating Sequential-Access Files

15.5 Object Serialization

15.5.1 Creating a Sequential-Access File
Using Object Serialization

15.5.2 Reading and Deserializing Data from a
Sequential-Access File

15.6 Opening Files with JFileChooser
15.7 (Optional) Additional java.io

Classes
15.7.1 Interfaces and Classes for Byte-Based

Input and Output
15.7.2 Interfaces and Classes for Character-

Based Input and Output
15.8 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1. Java’s NIO APIs also include classes and interfaces that implement so-called channel-based architec-
ture for high-performance I/O. These topics are beyond the scope of this book.

646 Chapter 15 Files, Streams and Object Serialization

end-of-file indication occurs as an exception. In others, the indication is a return value
from a method invoked on a stream-processing object.

Byte-Based and Character-Based Streams
File streams can be used to input and output data as bytes or characters.

• Byte-based streams output and input data in its binary format—a char is two
bytes, an int is four bytes, a double is eight bytes, etc.

• Character-based streams output and input data as a sequence of characters in
which every character is two bytes—the number of bytes for a given value de-
pends on the number of characters in that value. For example, the value
2000000000 requires 20 bytes (10 characters at two bytes per character) but the
value 7 requires only two bytes (1 character at two bytes per character).

Files created using byte-based streams are referred to as binary files, while files created us-
ing character-based streams are referred to as text files. Text files can be read by text edi-
tors, while binary files are read by programs that understand the file’s specific content and
its ordering. A numeric value in a binary file can be used in calculations, whereas the char-
acter 5 is simply a character that can be used in a string of text, as in "Sarah Miller is 15
years old".

Standard Input, Standard Output and Standard Error Streams
A Java program opens a file by creating an object and associating a stream of bytes or char-
acters with it. The object’s constructor interacts with the operating system to open the file.
Java can also associate streams with different devices. When a Java program begins execut-
ing, it creates three stream objects that are associated with devices—System.in, Sys-
tem.out and System.err. The System.in (standard input stream) object normally enables
a program to input bytes from the keyboard. Object System.out (the standard output
stream object) normally enables a program to output character data to the screen. Object
System.err (the standard error stream object) normally enables a program to output char-
acter-based error messages to the screen. Each stream can be redirected. For System.in,
this capability enables the program to read bytes from a different source. For System.out
and System.err, it enables the output to be sent to a different location, such as a file on
disk. Class System provides methods setIn, setOut and setErr to redirected the standard
input, output and error streams, respectively.

The java.io and java.nio Packages
Java programs perform stream-based processing with classes and interfaces from package
java.io and the subpackages of java.nio—Java’s New I/O APIs that were first intro-
duced in Java SE 6 and that have been enhanced since. There are also other packages
throughout the Java APIs containing classes and interfaces based on those in the java.io
and java.nio packages.

Fig. 15.1 | Java’s view of a file of n bytes.

0 1 2 3 4 5 6 7 8 9 ...

...

n-1

end-of-file marker

15.3 Using NIO Classes and Interfaces to Get File and Directory Information 647

Character-based input and output can be performed with classes Scanner and For-
matter, as you’ll see in Section 15.4. You’ve used class Scanner extensively to input data
from the keyboard. Scanner also can read data from a file. Class Formatter enables for-
matted data to be output to any text-based stream in a manner similar to method
System.out.printf. Appendix I presents the details of formatted output with printf. All
these features can be used to format text files as well. In Chapter 28, we use stream classes
to implement networking applications.

Java SE 8 Adds Another Type of Stream
Chapter 17, Java SE 8 Lambdas and Streams, introduces a new type of stream that’s used
to process collections of elements (like arrays and ArrayLists), rather than the streams of
bytes we discuss in this chapter’s file-processing examples.

15.3 Using NIO Classes and Interfaces to Get File and
Directory Information
Interfaces Path and DirectoryStream and classes Paths and Files (all from package ja-
va.nio.file) are useful for retrieving information about files and directories on disk:

• Path interface—Objects of classes that implement this interface represent the lo-
cation of a file or directory. Path objects do not open files or provide any file-pro-
cessing capabilities.

• Paths class—Provides static methods used to get a Path object representing a
file or directory location.

• Files class—Provides static methods for common file and directory manipu-
lations, such as copying files; creating and deleting files and directories; getting
information about files and directories; reading the contents of files; getting ob-
jects that allow you to manipulate the contents of files and directories; and more

• DirectoryStream interface—Objects of classes that implement this interface en-
able a program to iterate through the contents of a directory.

Creating Path Objects
You’ll use class static method get of class Paths to convert a String representing a file’s
or directory’s location into a Path object. You can then use the methods of interface Path
and class Files to determine information about the specified file or directory. We discuss
several such methods momentarily. For complete lists of their methods, visit:

Absolute vs. Relative Paths
A file or directory’s path specifies its location on disk. The path includes some or all of the
directories leading to the file or directory. An absolute path contains all directories, start-
ing with the root directory, that lead to a specific file or directory. Every file or directory
on a particular disk drive has the same root directory in its path. A relative path is “relative”
to another directory—for example, a path relative to the directory in which the application
began executing.

http://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html
http://docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html

http://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html
http://docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html

648 Chapter 15 Files, Streams and Object Serialization

Getting Path Objects from URIs
An overloaded version of Files static method get uses a URI object to locate the file or
directory. A Uniform Resource Identifier (URI) is a more general form of the Uniform
Resource Locators (URLs) that are used to locate websites. For example, the URL http:/
/www.deitel.com/ is the URL for the Deitel & Associates website. URIs for locating files
vary across operating systems. On Windows platforms, the URI

identifies the file data.txt stored in the root directory of the C: drive. On UNIX/Linux
platforms, the URI

identifies the file data.txt stored in the home directory of the user student.

Example: Getting File and Directory Information
Figure 15.2 prompts the user to enter a file or directory name, then uses classes Paths,
Path, Files and DirectoryStream to output information about that file or directory.The
program begins by prompting the user for a file or directory (line 16). Line 19 inputs the
filename or directory name and passes it to Paths static method get, which converts the
String to a Path. Line 21 invokes Files static method exists, which receives a Path
and determines whether it exists (either as a file or as a directory) on disk. If the name does
not exist, control proceeds to line 49, which displays a message containing the Path’s
String representation followed by “does not exist.” Otherwise, lines 24–45 execute:

• Path method getFileName (line 24) gets the String name of the file or directory
without any location information.

• Files static method isDirectory (line 26) receives a Path and returns a bool-
ean indicating whether that Path represents a directory on disk.

• Path method isAbsolute (line 28) returns a boolean indicating whether that
Path represents an absolute path to a file or directory.

• Files static method getLastModifiedTime (line 30) receives a Path and returns
a FileTime (package java.nio.file.attribute) indicating when the file was last
modified. The program outputs the FileTime’s default String representation.

• Files static method size (line 31) receives a Path and returns a long represent-
ing the number of bytes in the file or directory. For directories, the value returned
is platform specific.

• Path method toString (called implicitly at line 32) returns a String represent-
ing the Path.

• Path method toAbsolutePath (line 33) converts the Path on which it’s called to
an absolute path.

If the Path represents a directory (line 35), lines 40–41 use Files static method new-
DirectoryStream (lines 40–41) to get a DirectoryStream<Path> containing Path objects
for the directory’s contents. Lines 43–44 display the String representation of each Path
in the DirectoryStream<Path>. Note that DirectoryStream is a generic type like Array-
List (Section 7.16).

file://C:/data.txt

file:/home/student/data.txt

http://www.deitel.com/
http://www.deitel.com/

15.3 Using NIO Classes and Interfaces to Get File and Directory Information 649

The first output of this program demonstrates a Path for the folder containing this
chapter’s examples. The second output demonstrates a Path for this example’s source code
file. In both cases, we specified an absolute path.

1 // Fig. 15.2: FileAndDirectoryInfo.java
2 // File class used to obtain file and directory information.
3
4
5
6
7
8 import java.util.Scanner;
9

10 public class FileAndDirectoryInfo
11 {
12 public static void main(String[] args) throws IOException
13 {
14 Scanner input = new Scanner(System.in);
15
16 System.out.println("Enter file or directory name:");
17
18
19
20
21 if () // if path exists, output info about it
22 {
23 // display file (or directory) information
24 System.out.printf("%n%s exists%n",);
25 System.out.printf("%s a directory%n",
26 ? "Is" : "Is not");
27 System.out.printf("%s an absolute path%n",
28 ? "Is" : "Is not");
29 System.out.printf("Last modified: %s%n",
30);
31 System.out.printf("Size: %s%n",);
32 System.out.printf("Path: %s%n",);
33 System.out.printf("Absolute path: %s%n",);
34
35 if () // output directory listing
36 {
37 System.out.printf("%nDirectory contents:%n");
38
39
40
41
42
43
44 System.out.println(p);
45 }
46 }
47 else // not file or directory, output error message
48 {

Fig. 15.2 | File class used to obtain file and directory information. (Part 1 of 2.)

import java.io.IOException;
import java.nio.file.DirectoryStream;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

// create Path object based on user input
Path path = Paths.get(input.nextLine());

Files.exists(path)

path.getFileName()

Files.isDirectory(path)

path.isAbsolute()

Files.getLastModifiedTime(path)
Files.size(path)
path

path.toAbsolutePath()

Files.isDirectory(path)

// object for iterating through a directory's contents
DirectoryStream<Path> directoryStream =
 Files.newDirectoryStream(path);

for (Path p : directoryStream)

650 Chapter 15 Files, Streams and Object Serialization

Separator Characters
A separator character is used to separate directories and files in a path. On a Windows
computer, the separator character is a backslash (\). On a Linux or Mac OS X system, it’s
a forward slash (/). Java processes both characters identically in a path name. For example,
if we were to use the path

which employs each separator character, Java would still process the path properly.

49 System.out.printf("%s does not exist%n", path);
50 }
51 } // end main
52 } // end class FileAndDirectoryInfo

Enter file or directory name:
c:\examples\ch15

ch15 exists
Is a directory
Is an absolute path
Last modified: 2013-11-08T19:50:00.838256Z
Size: 4096
Path: c:\examples\ch15
Absolute path: c:\examples\ch15

Directory contents:
C:\examples\ch15\fig15_02
C:\examples\ch15\fig15_12_13
C:\examples\ch15\SerializationApps
C:\examples\ch15\TextFileApps

Enter file or directory name:
C:\examples\ch15\fig15_02\FileAndDirectoryInfo.java

FileAndDirectoryInfo.java exists
Is not a directory
Is an absolute path
Last modified: 2013-11-08T19:59:01.848255Z
Size: 2952
Path: C:\examples\ch15\fig15_02\FileAndDirectoryInfo.java
Absolute path: C:\examples\ch15\fig15_02\FileAndDirectoryInfo.java

Error-Prevention Tip 15.1
Once you’ve confirmed that a Path exists, it’s still possible that the methods demonstrated in
Fig. 15.2 will throw IOExceptions. For example, the file or directory represented by the
Path could be deleted from the system after the call to Files method exists and before the
other statements in lines 24–45 execute. Industrial strength file- and directory-processing
programs require extensive exception handling to recover from such possibilities.

c:\Program Files\Java\jdk1.6.0_11\demo/jfc

Fig. 15.2 | File class used to obtain file and directory information. (Part 2 of 2.)

15.4 Sequential-Access Text Files 651

15.4 Sequential-Access Text Files
Next, we create and manipulate sequential-access files in which records are stored in order by
the record-key field. We begin with text files, enabling the reader to quickly create and edit
human-readable files. We discuss creating, writing data to, reading data from and updating
sequential-access text files. We also include a credit-inquiry program that retrieves data from
a file. The programs in Sections 15.4.1–15.4.3 are all in the chapter’s TextFileApps direc-
tory so that they can manipulate the same text file, which is also stored in that directory.

15.4.1 Creating a Sequential-Access Text File
Java imposes no structure on a file—notions such as records do not exist as part of the Java lan-
guage. Therefore, you must structure files to meet the requirements of your applications.
In the following example, we see how to impose a keyed record structure on a file.

The program in this section creates a simple sequential-access file that might be used
in an accounts receivable system to keep track of the amounts owed to a company by its
credit clients. For each client, the program obtains from the user an account number and
the client’s name and balance (i.e., the amount the client owes the company for goods and
services received). Each client’s data constitutes a “record” for that client. This application
uses the account number as the record key—the file’s records will be created and main-
tained in account-number order. The program assumes that the user enters the records in
account-number order. In a comprehensive accounts receivable system (based on sequen-
tial-access files), a sorting capability would be provided so that the user could enter the
records in any order. The records would then be sorted and written to the file.

Class CreateTextFile
Class CreateTextFile (Fig. 15.3) uses a Formatter to output formatted Strings, using
the same formatting capabilities as method System.out.printf. A Formatter object can
output to various locations, such as to a command window or to a file, as we do in this
example. The Formatter object is instantiated in line 26 in method openFile (lines 22–
38). The constructor used in line 26 takes one argument—a String containing the name
of the file, including its path. If a path is not specified, as is the case here, the JVM assumes
that the file is in the directory from which the program was executed. For text files, we use
the .txt file extension. If the file does not exist, it will be created. If an existing file is
opened, its contents are truncated—all the data in the file is discarded. If no exception oc-
curs, the file is open for writing and the resulting Formatter object can be used to write
data to the file.

Good Programming Practice 15.1
When building Strings that represent path information, use File.separator to obtain
the local computer’s proper separator character rather than explicitly using / or \. This
constant is a String consisting of one character—the proper separator for the system.

Common Programming Error 15.1
Using \ as a directory separator rather than \\ in a string literal is a logic error. A single
\ indicates that the \ followed by the next character represents an escape sequence. Use \\
to insert a \ in a string literal.

652 Chapter 15 Files, Streams and Object Serialization

1 // Fig. 15.3: CreateTextFile.java
2 // Writing data to a sequential text file with class Formatter.
3
4
5
6
7
8 import java.util.Scanner;
9

10 public class CreateTextFile
11 {
12
13
14 public static void main(String[] args)
15 {
16 openFile();
17 addRecords();
18 closeFile();
19 }
20
21 // open file clients.txt
22 public static void openFile()
23 {
24 try
25 {
26
27 }
28 catch (SecurityException securityException)
29 {
30 System.err.println("Write permission denied. Terminating.");
31 System.exit(1); // terminate the program
32 }
33 catch (FileNotFoundException fileNotFoundException)
34 {
35 System.err.println("Error opening file. Terminating.");
36 System.exit(1); // terminate the program
37 }
38 }
39
40 // add records to file
41 public static void addRecords()
42 {
43 Scanner input = new Scanner(System.in);
44 System.out.printf("%s%n%s%n? ",
45 "Enter account number, first name, last name and balance.",
46 "Enter end-of-file indicator to end input.");
47
48 while (input.hasNext()) // loop until end-of-file indicator
49 {
50 try
51 {

Fig. 15.3 | Writing data to a sequential text file with class Formatter. (Part 1 of 2.)

import java.io.FileNotFoundException;
import java.lang.SecurityException;
import java.util.Formatter;
import java.util.FormatterClosedException;
import java.util.NoSuchElementException;

private static Formatter output; // outputs text to a file

output = new Formatter("clients.txt"); // open the file

15.4 Sequential-Access Text Files 653

Lines 28–32 handle the SecurityException, which occurs if the user does not have
permission to write data to the file. Lines 33–37 handle the FileNotFoundException,
which occurs if the file does not exist and a new file cannot be created. This exception may
also occur if there’s an error opening the file. In both exception handlers we call static
method System.exit and pass the value 1. This method terminates the application. An
argument of 0 to method exit indicates successful program termination. A nonzero value,
such as 1 in this example, normally indicates that an error has occurred. This value is
passed to the command window that executed the program. The argument is useful if the
program is executed from a batch file on Windows systems or a shell script on UNIX/
Linux/Mac OS X systems. Batch files and shell scripts offer a convenient way of executing
several programs in sequence. When the first program ends, the next program begins exe-
cution. It’s possible to use the argument to method exit in a batch file or shell script to
determine whether other programs should execute. For more information on batch files or
shell scripts, see your operating system’s documentation.

52 // output new record to file; assumes valid input
53
54
55 }
56 catch (FormatterClosedException formatterClosedException)
57 {
58 System.err.println("Error writing to file. Terminating.");
59 break;
60 }
61 catch (NoSuchElementException elementException)
62 {
63 System.err.println("Invalid input. Please try again.");
64 input.nextLine(); // discard input so user can try again
65 }
66
67 System.out.print("? ");
68 } // end while
69 } // end method addRecords
70
71 // close file
72 public static void closeFile()
73 {
74 if (output != null)
75
76 }
77 } // end class CreateTextFile

Enter account number, first name, last name and balance.
Enter end-of-file indicator to end input.
? 100 Bob Blue 24.98
? 200 Steve Green -345.67
? 300 Pam White 0.00
? 400 Sam Red -42.16
? 500 Sue Yellow 224.62
? ^Z

Fig. 15.3 | Writing data to a sequential text file with class Formatter. (Part 2 of 2.)

output.format("%d %s %s %.2f%n", input.nextInt(),
 input.next(), input.next(), input.nextDouble());

output.close();

654 Chapter 15 Files, Streams and Object Serialization

Method addRecords (lines 41–69) prompts the user to enter the various fields for each
record or the end-of-file key sequence when data entry is complete. Figure 15.4 lists the key
combinations for entering end-of-file for various computer systems.

Lines 44–46 prompt the user for input. Line 48 uses Scanner method hasNext to
determine whether the end-of-file key combination has been entered. The loop executes
until hasNext encounters end-of-file.

Lines 53–54 use a Scanner to read data from the user, then output the data as a record
using the Formatter. Each Scanner input method throws a NoSuchElementException
(handled in lines 61–65) if the data is in the wrong format (e.g., a String when an int is
expected) or if there’s no more data to input. The record’s information is output using
method format, which can perform identical formatting to the System.out.printf
method used extensively in earlier chapters. Method format outputs a formatted String
to the output destination of the Formatter object—the file clients.txt. The format
string "%d %s %s %.2f%n" indicates that the current record will be stored as an integer
(the account number) followed by a String (the first name), another String (the last
name) and a floating-point value (the balance). Each piece of information is separated
from the next by a space, and the double value (the balance) is output with two digits to
the right of the decimal point (as indicated by the .2 in %.2f). The data in the text file can
be viewed with a text editor or retrieved later by a program designed to read the file
(Section 15.4.2).

When lines 66–68 execute, if the Formatter object is closed, a FormatterClosedEx-
ception will be thrown. This exception is handled in lines 76–80. [Note: You can also
output data to a text file using class java.io.PrintWriter, which provides format and
printf methods for outputting formatted data.]

Lines 93–97 declare method closeFile, which closes the Formatter and the under-
lying output file. Line 96 closes the object by simply calling method close. If method
close is not called explicitly, the operating system normally will close the file when pro-
gram execution terminates—this is an example of operating-system “housekeeping.”
However, you should always explicitly close a file when it’s no longer needed.

Sample Output
The sample data for this application is shown in Fig. 15.5. In the sample output, the user
enters information for five accounts, then enters end-of-file to signal that data entry is
complete. The sample output does not show how the data records actually appear in the
file. In the next section, to verify that the file was created successfully, we present a pro-
gram that reads the file and prints its contents. Because this is a text file, you can also verify
the information simply by opening the file in a text editor.

Operating system Key combination

UNIX/Linux/Mac OS X <Enter> <Ctrl> d

Windows <Ctrl> z

Fig. 15.4 | End-of-file key combinations.

15.4 Sequential-Access Text Files 655

15.4.2 Reading Data from a Sequential-Access Text File
Data is stored in files so that it may be retrieved for processing when needed.
Section 15.4.1 demonstrated how to create a file for sequential access. This section shows
how to read data sequentially from a text file. We demonstrate how class Scanner can be
used to input data from a file rather than the keyboard. The application (Fig. 15.6) reads
records from the file "clients.txt" created by the application of Section 15.4.1 and dis-
plays the record contents. Line 13 declares a Scanner that will be used to retrieve input
from the file.

Sample data

100 Bob Blue 24.98
200 Steve Green -345.67
300 Pam White 0.00
400 Sam Red -42.16
500 Sue Yellow 224.62

Fig. 15.5 | Sample data for the program in Fig. 15.3.

1 // Fig. 15.6: ReadTextFile.java
2 // This program reads a text file and displays each record.
3 import java.io.IOException;
4 import java.lang.IllegalStateException;
5 import java.nio.file.Files;
6 import java.nio.file.Path;
7 import java.nio.file.Paths;
8 import java.util.NoSuchElementException;
9 import java.util.Scanner;

10
11 public class ReadTextFile
12 {
13
14
15 public static void main(String[] args)
16 {
17 openFile();
18 readRecords();
19 closeFile();
20 }
21
22 // open file clients.txt
23 public static void openFile()
24 {
25 try
26 {
27
28 }

Fig. 15.6 | Sequential file reading using a Scanner. (Part 1 of 2.)

private static Scanner input;

input = new Scanner(Paths.get("clients.txt"));

656 Chapter 15 Files, Streams and Object Serialization

Method openFile (lines 23–34) opens the file for reading by instantiating a Scanner
object in line 27. We pass a Path object to the constructor, which specifies that the
Scanner object will read from the file "clients.txt" located in the directory from which
the application executes. If the file cannot be found, an IOException occurs. The excep-
tion is handled in lines 29–33.

29 catch (IOException ioException)
30 {
31 System.err.println("Error opening file. Terminating.");
32 System.exit(1);
33 }
34 }
35
36 // read record from file
37 public static void readRecords()
38 {
39 System.out.printf("%-10s%-12s%-12s%10s%n", "Account",
40 "First Name", "Last Name", "Balance");
41
42 try
43 {
44 while () // while there is more to read
45 {
46 // display record contents
47
48
49 }
50 }
51 catch (NoSuchElementException elementException)
52 {
53 System.err.println("File improperly formed. Terminating.");
54 }
55 catch (IllegalStateException stateException)
56 {
57 System.err.println("Error reading from file. Terminating.");
58 }
59 } // end method readRecords
60
61 // close file and terminate application
62 public static void closeFile()
63 {
64 if (input != null)
65
66 }
67 } // end class ReadTextFile

Account First Name Last Name Balance
100 Bob Blue 24.98
200 Steve Green -345.67
300 Pam White 0.00
400 Sam Red -42.16
500 Sue Yellow 224.62

Fig. 15.6 | Sequential file reading using a Scanner. (Part 2 of 2.)

input.hasNext()

System.out.printf("%-10d%-12s%-12s%10.2f%n", input.nextInt(),
 input.next(), input.next(), input.nextDouble());

input.close();

15.4 Sequential-Access Text Files 657

Method readRecords (lines 37–59) reads and displays records from the file. Lines
39–40 display headers for the columns in the application’s output. Lines 44–49 read and
display data from the file until the end-of-file marker is reached (in which case, method
hasNext will return false at line 44). Lines 47–48 use Scanner methods nextInt, next
and nextDouble to input an int (the account number), two Strings (the first and last
names) and a double value (the balance). Each record is one line of data in the file. If the
information in the file is not properly formed (e.g., there’s a last name where there should
be a balance), a NoSuchElementException occurs when the record is input. This exception
is handled in lines 51–54. If the Scanner was closed before the data was input, an Ille-
galStateException occurs (handled in lines 55–58). Note in the format string in line 47
that the account number, first name and last name are left justified, while the balance is
right justified and output with two digits of precision. Each iteration of the loop inputs
one line of text from the text file, which represents one record. Lines 62–66 define method
closeFile, which closes the Scanner.

15.4.3 Case Study: A Credit-Inquiry Program
To retrieve data sequentially from a file, programs start from the beginning of the file and
read all the data consecutively until the desired information is found. It might be necessary
to process the file sequentially several times (from the beginning of the file) during the ex-
ecution of a program. Class Scanner does not allow repositioning to the beginning of the
file. If it’s necessary to read the file again, the program must close the file and reopen it.

The program in Figs. 15.7–15.8 allows a credit manager to obtain lists of customers
with zero balances (i.e., customers who do not owe any money), customers with credit bal-
ances (i.e., customers to whom the company owes money) and customers with debit bal-
ances (i.e., customers who owe the company money for goods and services received). A
credit balance is a negative amount, a debit balance a positive amount.

MenuOption enum
We begin by creating an enum type (Fig. 15.7) to define the different menu options the
credit manager will have—this is required if you need to provide specific values for the
enum constants. The options and their values are listed in lines 7–10.

1 // Fig. 15.7: MenuOption.java
2 // enum type for the credit-inquiry program's options.
3
4 public enum MenuOption
5 {
6 // declare contents of enum type
7 ZERO_BALANCE(1),
8 CREDIT_BALANCE(2),
9 DEBIT_BALANCE(3),

10 END(4);
11
12 private final int value; // current menu option
13

Fig. 15.7 | enum type for the credit-inquiry program’s menu options. (Part 1 of 2.)

658 Chapter 15 Files, Streams and Object Serialization

CreditInquiry Class
Figure 15.8 contains the functionality for the credit-inquiry program. The program dis-
plays a text menu and allows the credit manager to enter one of three options to obtain
credit information:

• Option 1 (ZERO_BALANCE) displays accounts with zero balances.

• Option 2 (CREDIT_BALANCE) displays accounts with credit balances.

• Option 3 (DEBIT_BALANCE) displays accounts with debit balances.

• Option 4 (END) terminates program execution.

14 // constructor
15 private MenuOption(int value)
16 {
17 this.value = value;
18 }
19 } // end enum MenuOption

1 // Fig. 15.8: CreditInquiry.java
2 // This program reads a file sequentially and displays the
3 // contents based on the type of account the user requests
4 // (credit balance, debit balance or zero balance).
5 import java.io.IOException;
6 import java.lang.IllegalStateException;
7 import java.nio.file.Paths;
8 import java.util.NoSuchElementException;
9 import java.util.Scanner;

10
11 public class CreditInquiry
12 {
13 private final static MenuOption[] choices = ;
14
15 public static void main(String[] args)
16 {
17 // get user's request (e.g., zero, credit or debit balance)
18 MenuOption accountType = getRequest();
19
20 while (accountType != MenuOption.END)
21 {
22 switch (accountType)
23 {
24 case ZERO_BALANCE:
25 System.out.printf("%nAccounts with zero balances:%n");
26 break;
27 case CREDIT_BALANCE:
28 System.out.printf("%nAccounts with credit balances:%n");
29 break;

Fig. 15.8 | Credit-inquiry program. (Part 1 of 4.)

Fig. 15.7 | enum type for the credit-inquiry program’s menu options. (Part 2 of 2.)

MenuOption.values()

15.4 Sequential-Access Text Files 659

30 case DEBIT_BALANCE:
31 System.out.printf("%nAccounts with debit balances:%n");
32 break;
33 }
34
35 readRecords(accountType);
36 accountType = getRequest(); // get user's request
37 }
38 }
39
40 // obtain request from user
41 private static MenuOption getRequest()
42 {
43 int request = 4;
44
45 // display request options
46 System.out.printf("%nEnter request%n%s%n%s%n%s%n%s%n",
47 " 1 - List accounts with zero balances",
48 " 2 - List accounts with credit balances",
49 " 3 - List accounts with debit balances",
50 " 4 - Terminate program");
51
52 try
53 {
54 Scanner input = new Scanner(System.in);
55
56 do // input user request
57 {
58 System.out.printf("%n? ");
59 request = input.nextInt();
60 } while ((request < 1) || (request > 4));
61 }
62 catch (NoSuchElementException noSuchElementException)
63 {
64 System.err.println("Invalid input. Terminating.");
65 }
66
67 return choices[request - 1]; // return enum value for option
68 }
69
70 // read records from file and display only records of appropriate type
71 private static void readRecords(MenuOption accountType)
72 {
73 // open file and process contents
74
75 {
76 while (input.hasNext()) // more data to read
77 {
78 int accountNumber = input.nextInt();
79 String firstName = input.next();
80 String lastName = input.next();
81 double balance = input.nextDouble();
82

Fig. 15.8 | Credit-inquiry program. (Part 2 of 4.)

try (Scanner input = new Scanner(Paths.get("clients.txt")))

660 Chapter 15 Files, Streams and Object Serialization

83 // if proper acount type, display record
84 if (shouldDisplay(accountType, balance))
85 System.out.printf("%-10d%-12s%-12s%10.2f%n", accountNumber,
86 firstName, lastName, balance);
87 else
88 input.nextLine(); // discard the rest of the current record
89 }
90 }
91 catch (NoSuchElementException |
92 IllegalStateException | IOException e)
93 {
94 System.err.println("Error processing file. Terminating.");
95 System.exit(1);
96 }
97 } // end method readRecords
98
99 // use record type to determine if record should be displayed
100 private static boolean shouldDisplay(
101 MenuOption accountType, double balance)
102 {
103 if ((accountType == MenuOption.CREDIT_BALANCE) && (balance < 0))
104 return true;
105 else if ((accountType == MenuOption.DEBIT_BALANCE) && (balance > 0))
106 return true;
107 else if ((accountType == MenuOption.ZERO_BALANCE) && (balance == 0))
108 return true;
109
110 return false;
111 }
112 } // end class CreditInquiry

Enter request
 1 - List accounts with zero balances
 2 - List accounts with credit balances
 3 - List accounts with debit balances
 4 - Terminate program

? 1

Accounts with zero balances:
300 Pam White 0.00

Enter request
 1 - List accounts with zero balances
 2 - List accounts with credit balances
 3 - List accounts with debit balances
 4 - Terminate program

? 2

Accounts with credit balances:
200 Steve Green -345.67
400 Sam Red -42.16

Fig. 15.8 | Credit-inquiry program. (Part 3 of 4.)

15.4 Sequential-Access Text Files 661

The record information is collected by reading through the file and determining if
each record satisfies the criteria for the selected account type. Line 18 in main calls method
getRequest (lines 41–68) to display the menu options, translates the number typed by the
user into a MenuOption and stores the result in MenuOption variable accountType. Lines
20–37 loop until the user specifies that the program should terminate. Lines 22–33 display
a header for the current set of records to be output to the screen. Line 35 calls method
readRecords (lines 71–97), which loops through the file and reads every record.

Method readRecords uses a try-with-resources statement (introduced in
Section 11.12) to create a Scanner that opens the file for reading (line 74)—recall that
try-with-resources will close its resource(s) when the try block terminates successfully or
due to an exception. The file will be opened for reading with a new Scanner object each
time readRecords is called, so that we can again read from the beginning of the file. Lines
78–81 read a record. Line 84 calls method shouldDisplay (lines 100–111) to determine
whether the current record satisfies the account type requested. If shouldDisplay returns
true, the program displays the account information. When the end-of-file marker is
reached, the loop terminates and the try-with-resources statement closes the Scanner and
the file. Once all the records have been read, control returns to main and getRequest is
again called (line 36) to retrieve the user’s next menu option.

15.4.4 Updating Sequential-Access Files
The data in many sequential files cannot be modified without the risk of destroying other
data in the file. For example, if the name “White” needs to be changed to “Worthington,”
the old name cannot simply be overwritten, because the new name requires more space.
The record for White was written to the file as

Enter request
 1 - List accounts with zero balances
 2 - List accounts with credit balances
 3 - List accounts with debit balances
 4 - Terminate program

? 3

Accounts with debit balances:
100 Bob Blue 24.98
500 Sue Yellow 224.62

Enter request
 1 - List accounts with zero balances
 2 - List accounts with credit balances
 3 - List accounts with debit balances
 4 - Terminate program

? 4

300 Pam White 0.00

Fig. 15.8 | Credit-inquiry program. (Part 4 of 4.)

662 Chapter 15 Files, Streams and Object Serialization

If the record is rewritten beginning at the same location in the file using the new name,
the record will be

The new record is larger (has more characters) than the original record. “Worthington”
would overwrite the “0.00” in the current record and the characters beyond the second
“o” in “Worthington” will overwrite the beginning of the next sequential record in the
file. The problem here is that fields in a text file—and hence records—can vary in size. For
example, 7, 14, –117, 2074 and 27383 are all ints stored in the same number of bytes (4)
internally, but they’re different-sized fields when written to a file as text. Therefore, re-
cords in a sequential-access file are not usually updated in place—instead, the entire file is
rewritten. To make the preceding name change, the records before 300 Pam White 0.00
would be copied to a new file, the new record (which can be of a different size than the
one it replaces) would be written and the records after 300 Pam White 0.00 would be cop-
ied to the new file. Rewriting the entire file is uneconomical to update just one record, but
reasonable if a substantial number of records need to be updated.

15.5 Object Serialization
In Section 15.4, we demonstrated how to write the individual fields of a record into a file
as text, and how to read those fields from a file. When the data was output to disk, certain
information was lost, such as the type of each value. For instance, if the value "3" is read
from a file, there’s no way to tell whether it came from an int, a String or a double. We
have only data, not type information, on a disk.

Sometimes we want to read an object from or write an object to a file or over a net-
work connection. Java provides object serialization for this purposes. A serialized object
is an object represented as a sequence of bytes that includes the object’s data as well as
information about the object’s type and the types of data stored in the object. After a seri-
alized object has been written into a file, it can be read from the file and deserialized—that
is, the type information and bytes that represent the object and its data can be used to rec-
reate the object in memory.

Classes ObjectInputStream and ObjectOutputStream
Classes ObjectInputStream and ObjectOutputStream (package java.io), which respec-
tively implement the ObjectInput and ObjectOutput interfaces, enable entire objects to
be read from or written to a stream (possibly a file). To use serialization with files, we ini-
tialize ObjectInputStream and ObjectOutputStream objects with stream objects that read
from and write to files. Initializing stream objects with other stream objects in this manner
is sometimes called wrapping—the new stream object being created wraps the stream ob-
ject specified as a constructor argument.

Classes ObjectInputStream and ObjectOutputStream simply read and write the
byte-based representation of objects—they don’t know where to read the bytes from or
write them to. The stream object that you pass to the ObjectInputStream constructor
supplies the bytes that the ObjectInputStream converts into objects. Similarly, the stream
object that you pass to the ObjectOutputStream constructor takes the byte-based repre-
sentation of the object that the ObjectOutputStream produces and writes the bytes to the
specified destination (e.g., a file, a network connection, etc.).

300 Pam Worthington 0.00

15.5 Object Serialization 663

Interfaces ObjectOutput and ObjectInput
The ObjectOutput interface contains method writeObject, which takes an Object as an
argument and writes its information to an OutputStream. A class that implements inter-
face ObjectOutput (such as ObjectOutputStream) declares this method and ensures that
the object being output implements interface Serializable (discussed shortly). Similarly,
the ObjectInput interface contains method readObject, which reads and returns a refer-
ence to an Object from an InputStream. After an object has been read, its reference can
be cast to the object’s actual type. As you’ll see in Chapter 28, applications that commu-
nicate via a network, such as the Internet, can also transmit objects across the network.

15.5.1 Creating a Sequential-Access File Using Object Serialization
This section and Section 15.5.2 create and manipulate sequential-access files using object
serialization. The object serialization we show here is performed with byte-based streams,
so the sequential files created and manipulated will be binary files. Recall that binary files
typically cannot be viewed in standard text editors. For this reason, we write a separate ap-
plication that knows how to read and display serialized objects. We begin by creating and
writing serialized objects to a sequential-access file. The example is similar to the one in
Section 15.4, so we focus only on the new features.

Defining Class Account
We begin by defining class Account (Fig. 15.9), which encapsulates the client record in-
formation used by the serialization examples. These examples and class Account are all lo-
cated in the SerializationApps directory with the chapter’s examples. This allows class
Account to be used by both examples, because their files are defined in the same default
package. Class Account contains private instance variables account, firstName, last-
Name and balance (lines 7–10) and set and get methods for accessing these instance vari-
ables. Though the set methods do not validate the data in this example, they should do so
in an “industrial-strength” system. Class Account implements interface Serializable
(line 5), which allows objects of this class to be serialized and deserialized with ObjectOut-
putStreams and ObjectInputStreams, respectively. Interface Serializable is a tagging
interface. Such an interface does not contain methods. A class that implements Serializ-
able is tagged as being a Serializable object. This is important, because an ObjectOut-
putStream will not output an object unless it is a Serializable object, which is the case
for any object of a class that implements Serializable.

1 // Fig. 15.9: Account.java
2 // Serializable Account class for storing records as objects.
3
4
5
6 {
7 private int account;
8 private String firstName;
9 private String lastName;

10 private double balance;
11

Fig. 15.9 | Account class for serializable objects. (Part 1 of 3.)

import java.io.Serializable;

public class Account implements Serializable

664 Chapter 15 Files, Streams and Object Serialization

12 // initializes an Account with default values
13 public Account()
14 {
15 this(0, "", "", 0.0); // call other constructor
16 }
17
18 // initializes an Account with provided values
19 public Account(int account, String firstName,
20 String lastName, double balance)
21 {
22 this.account = account;
23 this.firstName = firstName;
24 this.lastName = lastName;
25 this.balance = balance;
26 }
27
28 // set account number
29 public void setAccount(int acct)
30 {
31 this.account = account;
32 }
33
34 // get account number
35 public int getAccount()
36 {
37 return account;
38 }
39
40 // set first name
41 public void setFirstName(String firstName)
42 {
43 this.firstName = firstName;
44 }
45
46 // get first name
47 public String getFirstName()
48 {
49 return firstName;
50 }
51
52 // set last name
53 public void setLastName(String lastName)
54 {
55 this.lastName = lastName;
56 }
57
58 // get last name
59 public String getLastName()
60 {
61 return lastName;
62 }
63

Fig. 15.9 | Account class for serializable objects. (Part 2 of 3.)

15.5 Object Serialization 665

In a Serializable class, every instance variable must be Serializable. Non-Seri-
alizable instance variables must be declared transient to indicate that they should be
ignored during the serialization process. By default, all primitive-type variables are serializ-
able. For reference-type variables, you must check the class’s documentation (and possibly
its superclasses) to ensure that the type is Serializable. For example, Strings are Seri-
alizable. By default, arrays are serializable; however, in a reference-type array, the refer-
enced objects might not be. Class Account contains private data members account,
firstName, lastName and balance—all of which are Serializable. This class also pro-
vides public get and set methods for accessing the private fields.

Writing Serialized Objects to a Sequential-Access File
Now let’s discuss the code that creates the sequential-access file (Fig. 15.10). We concen-
trate only on new concepts here. To open the file, line 27 calls Files static method
newOutputStream, which receives a Path specifying the file to open and, if the file exists,
returns an OutputStream that can be used to write to the file. Existing files that are opened
for output in this manner are truncated. There is no standard filename extension for files
that store serialized objects, so we chose the .ser.

64 // set balance
65 public void setBalance(double balance)
66 {
67 this.balance = balance;
68 }
69
70 // get balance
71 public double getBalance()
72 {
73 return balance;
74 }
75 } // end class Account

1 // Fig. 15.10: CreateSequentialFile.java
2 // Writing objects sequentially to a file with class ObjectOutputStream.
3 import java.io.IOException;
4
5 import java.nio.file.Files;
6 import java.nio.file.Paths;
7 import java.util.NoSuchElementException;
8 import java.util.Scanner;
9

10 public class CreateSequentialFile
11 {
12
13

Fig. 15.10 | Sequential file created using ObjectOutputStream. (Part 1 of 3.)

Fig. 15.9 | Account class for serializable objects. (Part 3 of 3.)

import java.io.ObjectOutputStream;

private static ObjectOutputStream output; // outputs data to file

666 Chapter 15 Files, Streams and Object Serialization

14 public static void main(String[] args)
15 {
16 openFile();
17 addRecords();
18 closeFile();
19 }
20
21 // open file clients.ser
22 public static void openFile()
23 {
24 try
25 {
26
27
28 }
29 catch (IOException ioException)
30 {
31 System.err.println("Error opening file. Terminating.");
32 System.exit(1); // terminate the program
33 }
34 }
35
36 // add records to file
37 public static void addRecords()
38 {
39 Scanner input = new Scanner(System.in);
40
41 System.out.printf("%s%n%s%n? ",
42 "Enter account number, first name, last name and balance.",
43 "Enter end-of-file indicator to end input.");
44
45 while (input.hasNext()) // loop until end-of-file indicator
46 {
47 try
48 {
49 // create new record; this example assumes valid input
50 Account record = new Account(input.nextInt(),
51 input.next(), input.next(), input.nextDouble());
52
53
54
55 }
56 catch (NoSuchElementException elementException)
57 {
58 System.err.println("Invalid input. Please try again.");
59 input.nextLine(); // discard input so user can try again
60 }
61 catch (IOException ioException)
62 {
63 System.err.println("Error writing to file. Terminating.");
64 break;
65 }

Fig. 15.10 | Sequential file created using ObjectOutputStream. (Part 2 of 3.)

output = new ObjectOutputStream(
 Files.newOutputStream(Paths.get("clients.ser")));

// serialize record object into file
output.writeObject(record);

15.5 Object Serialization 667

Class OutputStream provides methods for outputting byte arrays and individual
bytes, but we wish to write objects to a file. For this reason, lines 26–27 pass the Input-
Stream to class ObjectInputStream’s constructor, which wrap the OutputStream in an
ObjectOutputStream. The ObjectOutputStream object uses the OutputStream to write
into the file the bytes that represent entire objects. Lines 26–27 might throw an IOExcep-
tion if a problem occurs while opening the file (e.g., when a file is opened for writing on
a drive with insufficient space or when a read-only file is opened for writing). If so, the
program displays an error message (lines 29–33). If no exception occurs, the file is open,
and variable output can be used to write objects to it.

This program assumes that data is input correctly and in the proper record-number
order. Method addRecords (lines 37–69) performs the write operation. Lines 50–51
create an Account object from the data entered by the user. Line 54 calls ObjectOutput-
Stream method writeObject to write the record object to the output file. Only one state-
ment is required to write the entire object.

Method closeFile (lines 72–83) calls ObjectOutputStream method close on
output to close both the ObjectOutputStream and its underlying OutputStream. The call
to method close is contained in a try block, because close throws an IOException if the
file cannot be closed properly. When using wrapped streams, closing the outermost stream
also closes the wrapped stream as well.

66
67 System.out.print("? ");
68 }
69 }
70
71 // close file and terminate application
72 public static void closeFile()
73 {
74 try
75 {
76 if (output != null)
77 output.close();
78 }
79 catch (IOException ioException)
80 {
81 System.err.println("Error closing file. Terminating.");
82 }
83 }
84 } // end class CreateSequentialFile

Enter account number, first name, last name and balance.
Enter end-of-file indicator to end input.
? 100 Bob Blue 24.98
? 200 Steve Green -345.67
? 300 Pam White 0.00
? 400 Sam Red -42.16
? 500 Sue Yellow 224.62
? ^Z

Fig. 15.10 | Sequential file created using ObjectOutputStream. (Part 3 of 3.)

668 Chapter 15 Files, Streams and Object Serialization

In the sample execution for the program in Fig. 15.10, we entered information for
five accounts—the same information shown in Fig. 15.5. The program does not show
how the data records actually appear in the file. Remember that now we’re using binary
files, which are not humanly readable. To verify that the file has been created successfully,
the next section presents a program to read the file’s contents.

15.5.2 Reading and Deserializing Data from a Sequential-Access File
The preceding section showed how to create a file for sequential access using object serial-
ization. In this section, we discuss how to read serialized data sequentially from a file.

The program in Fig. 15.11 reads records from a file created by the program in
Section 15.5.1 and displays the contents. The program opens the file for input by calling
Files static method newInputStream, which receives a Path specifying the file to open
and, if the file exists, returns an InputStream that can be used to read from the file. In
Fig. 15.10, we wrote objects to the file, using an ObjectOutputStream object. Data must
be read from the file in the same format in which it was written. Therefore, we use an
ObjectInputStream wrapped around an InputStream (lines 26–27). If no exceptions
occur when opening the file, variable input can be used to read objects from the file.

1 // Fig. 15.11: ReadSequentialFile.java
2 // Reading a file of objects sequentially with ObjectInputStream
3 // and displaying each record.
4 import java.io.EOFException;
5 import java.io.IOException;
6
7 import java.nio.file.Files;
8 import java.nio.file.Paths;
9

10 public class ReadSequentialFile
11 {
12
13
14 public static void main(String[] args)
15 {
16 openFile();
17 readRecords();
18 closeFile();
19 }
20
21 // enable user to select file to open
22 public static void openFile()
23 {
24 try // open file
25 {
26
27
28 }
29 catch (IOException ioException)
30 {

Fig. 15.11 | Reading a file of objects sequentially with ObjectInputStream and displaying
each record. (Part 1 of 3.)

import java.io.ObjectInputStream;

private static ObjectInputStream input;

input = new ObjectInputStream(
 Files.newInputStream(Paths.get("clients.ser")));

15.5 Object Serialization 669

31 System.err.println("Error opening file.");
32 System.exit(1);
33 }
34 }
35
36 // read record from file
37 public static void readRecords()
38 {
39 System.out.printf("%-10s%-12s%-12s%10s%n", "Account",
40 "First Name", "Last Name", "Balance");
41
42 try
43 {
44 while (true) // loop until there is an EOFException
45 {
46
47
48 // display record contents
49 System.out.printf("%-10d%-12s%-12s%10.2f%n",
50 record.getAccount(), record.getFirstName(),
51 record.getLastName(), record.getBalance());
52 }
53 }
54 catch (EOFException endOfFileException)
55 {
56 System.out.printf("%No more records%n");
57 }
58 catch (ClassNotFoundException classNotFoundException)
59 {
60 System.err.println("Invalid object type. Terminating.");
61 }
62 catch (IOException ioException)
63 {
64 System.err.println("Error reading from file. Terminating.");
65 }
66 } // end method readRecords
67
68 // close file and terminate application
69 public static void closeFile()
70 {
71 try
72 {
73 if (input != null)
74 input.close();
75 }
76 catch (IOException ioException)
77 {
78 System.err.println("Error closing file. Terminating.");
79 System.exit(1);
80 }
81 }
82 } // end class ReadSequentialFile

Fig. 15.11 | Reading a file of objects sequentially with ObjectInputStream and displaying
each record. (Part 2 of 3.)

Account record = (Account) input.readObject();

670 Chapter 15 Files, Streams and Object Serialization

The program reads records from the file in method readRecords (lines 37–66). Line
46 calls ObjectInputStream method readObject to read an Object from the file. To use
Account-specific methods, we downcast the returned Object to type Account. Method
readObject throws an EOFException (processed at lines 54–57) if an attempt is made to
read beyond the end of the file. Method readObject throws a ClassNotFoundException
if the class for the object being read cannot be located. This may occur if the file is accessed
on a computer that does not have the class.

15.6 Opening Files with JFileChooser
Class JFileChooser displays a dialog that enables the user to easily select files or directo-
ries. To demonstrate JFileChooser, we enhance the example in Section 15.3, as shown in
Figs. 15.12–15.13. The example now contains a graphical user interface, but still displays
the same data as before. The constructor calls method analyzePath in line 24. This meth-
od then calls method getFileOrDirectoryPath in line 31 to retrieve a Path object repre-
senting the selected file or directory.

Method getFileOrDirectoryPath (lines 71–85 of Fig. 15.12) creates a JFile-
Chooser (line 74). Lines 75–76 call method setFileSelectionMode to specify what the
user can select from the fileChooser. For this program, we use JFileChooser static
constant FILES_AND_DIRECTORIES to indicate that files and directories can be selected.
Other static constants include FILES_ONLY (the default) and DIRECTORIES_ONLY.

Line 77 calls method showOpenDialog to display the JFileChooser dialog titled Open.
Argument this specifies the JFileChooser dialog’s parent window, which determines the
position of the dialog on the screen. If null is passed, the dialog is displayed in the center
of the screen—otherwise, the dialog is centered over the application window (specified by
the argument this). A JFileChooser dialog is a modal dialog that does not allow the user
to interact with any other window in the program until the dialog is closed. The user selects
the drive, directory or filename, then clicks Open. Method showOpenDialog returns an
integer specifying which button (Open or Cancel) the user clicked to close the dialog. Line

Account First Name Last Name Balance
100 Bob Blue 24.98
200 Steve Green -345.67
300 Pam White 0.00
400 Sam Red -42.16
500 Sue Yellow 224.62

No more records

Software Engineering Observation 15.1
This section introduced object serialization and demonstrated basic serialization tech-
niques. Serialization is a deep subject with many traps and pitfalls. Before implementing
object serialization in industrial-strength applications, carefully read the online Java doc-
umentation for object serialization.

Fig. 15.11 | Reading a file of objects sequentially with ObjectInputStream and displaying
each record. (Part 3 of 3.)

15.6 Opening Files with JFileChooser 671

48 tests whether the user clicked Cancel by comparing the result with static constant
CANCEL_OPTION. If they’re equal, the program terminates. Line 84 calls JFileChooser
method getSelectedFile to retrieve a File object (package java.io) representing the file
or directory that the user selected, then calls File method toPath to return a Path object.
The program then displays information about the selected file or directory.

1 // Fig. 15.12: JFileChooserDemo.java
2 // Demonstrating JFileChooser.
3 import java.io.IOException;
4 import java.nio.file.DirectoryStream;
5 import java.nio.file.Files;
6 import java.nio.file.Path;
7 import java.nio.file.Paths;
8
9 import javax.swing.JFrame;

10 import javax.swing.JOptionPane;
11 import javax.swing.JScrollPane;
12 import javax.swing.JTextArea;
13
14 public class JFileChooserDemo extends JFrame
15 {
16 private final JTextArea outputArea; // displays file contents
17
18 // set up GUI
19 public JFileChooserDemo() throws IOException
20 {
21 super("JFileChooser Demo");
22 outputArea = new JTextArea();
23 add(new JScrollPane(outputArea)); // outputArea is scrollable
24 analyzePath(); // get Path from user and display info
25 }
26
27 // display information about file or directory user specifies
28 public void analyzePath() throws IOException
29 {
30 // get Path to user-selected file or directory
31 Path path = getFileOrDirectoryPath();
32
33 if (path != null && Files.exists(path)) // if exists, display info
34 {
35 // gather file (or directory) information
36 StringBuilder builder = new StringBuilder();
37 builder.append(String.format("%s:%n", path.getFileName()));
38 builder.append(String.format("%s a directory%n",
39 Files.isDirectory(path) ? "Is" : "Is not"));
40 builder.append(String.format("%s an absolute path%n",
41 path.isAbsolute() ? "Is" : "Is not"));
42 builder.append(String.format("Last modified: %s%n",
43 Files.getLastModifiedTime(path)));
44 builder.append(String.format("Size: %s%n", Files.size(path)));
45 builder.append(String.format("Path: %s%n", path));

Fig. 15.12 | Demonstrating JFileChooser. (Part 1 of 2.)

import javax.swing.JFileChooser;

672 Chapter 15 Files, Streams and Object Serialization

46 builder.append(String.format("Absolute path: %s%n",
47 path.toAbsolutePath()));
48
49 if (Files.isDirectory(path)) // output directory listing
50 {
51 builder.append(String.format("%nDirectory contents:%n"));
52
53 // object for iterating through a directory's contents
54 DirectoryStream<Path> directoryStream =
55 Files.newDirectoryStream(path);
56
57 for (Path p : directoryStream)
58 builder.append(String.format("%s%n", p));
59 }
60
61 outputArea.setText(builder.toString()); // display String content
62 }
63 else // Path does not exist
64 {
65 JOptionPane.showMessageDialog(this, path.getFileName() +
66 " does not exist.", "ERROR", JOptionPane.ERROR_MESSAGE);
67 }
68 } // end method analyzePath
69
70 // allow user to specify file or directory name
71 private Path getFileOrDirectoryPath()
72 {
73
74
75
76
77
78
79 // if user clicked Cancel button on dialog, return
80 if (result ==)
81 System.exit(1);
82
83 // return Path representing the selected file
84 return ;
85 }
86 } // end class JFileChooserDemo

1 // Fig. 15.13: JFileChooserTest.java
2 // Tests class JFileChooserDemo.
3 import java.io.IOException;
4 import javax.swing.JFrame;
5
6 public class JFileChooserTest
7 {

Fig. 15.13 | Testing class FileDemonstration. (Part 1 of 2.)

Fig. 15.12 | Demonstrating JFileChooser. (Part 2 of 2.)

// configure dialog allowing selection of a file or directory
JFileChooser fileChooser = new JFileChooser();
fileChooser.setFileSelectionMode(
 JFileChooser.FILES_AND_DIRECTORIES);
int result = fileChooser.showOpenDialog(this);

JFileChooser.CANCEL_OPTION

fileChooser.getSelectedFile().toPath()

15.7 (Optional) Additional java.io Classes 673

15.7 (Optional) Additional java.io Classes
This section overviews additional interfaces and classes (from package java.io).

15.7.1 Interfaces and Classes for Byte-Based Input and Output
InputStream and OutputStream are abstract classes that declare methods for performing
byte-based input and output, respectively.

Pipe Streams
Pipes are synchronized communication channels between threads. We discuss threads in
Chapter 23. Java provides PipedOutputStream (a subclass of OutputStream) and Piped-

8 public static void main(String[] args) throws IOException
9 {

10 JFileChooserDemo application = new JFileChooserDemo();
11 application.setSize(400, 400);
12 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 application.setVisible(true);
14 }
15 } // end class JFileChooserTest

Fig. 15.13 | Testing class FileDemonstration. (Part 2 of 2.)

Files and
directories are
displayed here

a) Use this dialog
to locate and
select a file or

directory
Click Open to
submit file or
directory name
to program

b) Selected file’s or
directory’s information;

if it’s a directory, the
contents of that

directory are displayed

674 Chapter 15 Files, Streams and Object Serialization

InputStream (a subclass of InputStream) to establish pipes between two threads in a pro-
gram. One thread sends data to another by writing to a PipedOutputStream. The target
thread reads information from the pipe via a PipedInputStream.

Filter Streams
A FilterInputStream filters an InputStream, and a FilterOutputStream filters an Out-
putStream. Filtering means simply that the filter stream provides additional functionality,
such as aggregating bytes into meaningful primitive-type units. FilterInputStream and
FilterOutputStream are typically used as superclasses, so some of their filtering capabili-
ties are provided by their subclasses.

A PrintStream (a subclass of FilterOutputStream) performs text output to the spec-
ified stream. Actually, we’ve been using PrintStream output throughout the text to this
point—System.out and System.err are PrintStream objects.

Data Streams
Reading data as raw bytes is fast, but crude. Usually, programs read data as aggregates of
bytes that form ints, floats, doubles and so on. Java programs can use several classes to
input and output data in aggregate form.

Interface DataInput describes methods for reading primitive types from an input
stream. Classes DataInputStream and RandomAccessFile each implement this interface
to read sets of bytes and view them as primitive-type values. Interface DataInput includes
methods such as readBoolean, readByte, readChar, readDouble, readFloat, readFully
(for byte arrays), readInt, readLong, readShort, readUnsignedByte, readUnsigned-
Short, readUTF (for reading Unicode characters encoded by Java—we discuss UTF
encoding in Appendix H) and skipBytes.

Interface DataOutput describes a set of methods for writing primitive types to an
output stream. Classes DataOutputStream (a subclass of FilterOutputStream) and Ran-
domAccessFile each implement this interface to write primitive-type values as bytes.
Interface DataOutput includes overloaded versions of method write (for a byte or for a
byte array) and methods writeBoolean, writeByte, writeBytes, writeChar, writeChars
(for Unicode Strings), writeDouble, writeFloat, writeInt, writeLong, writeShort
and writeUTF (to output text modified for Unicode).

Buffered Streams
Buffering is an I/O-performance-enhancement technique. With a BufferedOutput-
Stream (a subclass of class FilterOutputStream), each output statement does not neces-
sarily result in an actual physical transfer of data to the output device (which is a slow
operation compared to processor and main memory speeds). Rather, each output opera-
tion is directed to a region in memory called a buffer that’s large enough to hold the data
of many output operations. Then, actual transfer to the output device is performed in one
large physical output operation each time the buffer fills. The output operations directed
to the output buffer in memory are often called logical output operations. With a Buff-
eredOutputStream, a partially filled buffer can be forced out to the device at any time by
invoking the stream object’s flush method.

Using buffering can greatly increase the performance of an application. Typical I/O
operations are extremely slow compared with the speed of accessing data in computer

15.7 (Optional) Additional java.io Classes 675

memory. Buffering reduces the number of I/O operations by first combining smaller out-
puts together in memory. The number of actual physical I/O operations is small compared
with the number of I/O requests issued by the program. Thus, the program that’s using
buffering is more efficient.

With a BufferedInputStream (a subclass of class FilterInputStream), many “log-
ical” chunks of data from a file are read as one large physical input operation into a
memory buffer. As a program requests each new chunk of data, it’s taken from the buffer.
(This procedure is sometimes referred to as a logical input operation.) When the buffer is
empty, the next actual physical input operation from the input device is performed to read
in the next group of “logical” chunks of data. Thus, the number of actual physical input
operations is small compared with the number of read requests issued by the program.

Memory-Based byte Array Steams
Java stream I/O includes capabilities for inputting from byte arrays in memory and out-
putting to byte arrays in memory. A ByteArrayInputStream (a subclass of InputStream)
reads from a byte array in memory. A ByteArrayOutputStream (a subclass of Output-
Stream) outputs to a byte array in memory. One use of byte-array I/O is data validation.
A program can input an entire line at a time from the input stream into a byte array. Then
a validation routine can scrutinize the contents of the byte array and correct the data if
necessary. Finally, the program can proceed to input from the byte array, “knowing” that
the input data is in the proper format. Outputting to a byte array is a nice way to take
advantage of the powerful output-formatting capabilities of Java streams. For example,
data can be stored in a byte array, using the same formatting that will be displayed at a
later time, and the byte array can then be output to a file to preserve the formatting.

Sequencing Input from Multiple Streams
A SequenceInputStream (a subclass of InputStream) logically concatenates several Input-
Streams—the program sees the group as one continuous InputStream. When the program
reaches the end of one input stream, that stream closes, and the next stream in the se-
quence opens.

15.7.2 Interfaces and Classes for Character-Based Input and Output
In addition to the byte-based streams, Java provides the Reader and Writer abstract
classes, which are character-based streams like those you used for text-file processing in
Section 15.4. Most of the byte-based streams have corresponding character-based concrete
Reader or Writer classes.

Character-Based Buffering Readers and Writers
Classes BufferedReader (a subclass of abstract class Reader) and BufferedWriter (a
subclass of abstract class Writer) enable buffering for character-based streams. Remem-
ber that character-based streams use Unicode characters—such streams can process data
in any language that the Unicode character set represents.

Performance Tip 15.1
Buffered I/O can yield significant performance improvements over unbuffered I/O.

676 Chapter 15 Files, Streams and Object Serialization

Memory-Based char Array Readers and Writers
Classes CharArrayReader and CharArrayWriter read and write, respectively, a stream of
characters to a char array. A LineNumberReader (a subclass of BufferedReader) is a buff-
ered character stream that keeps track of the number of lines read—newlines, returns and
carriage-return–line-feed combinations increment the line count. Keeping track of line
numbers can be useful if the program needs to inform the reader of an error on a specific
line.

Character-Based File, Pipe and String Readers and Writers
An InputStream can be converted to a Reader via class InputStreamReader. Similarly, an
OutputStream can be converted to a Writer via class OutputStreamWriter. Class File-
Reader (a subclass of InputStreamReader) and class FileWriter (a subclass of Output-
StreamWriter) read characters from and write characters to a file, respectively. Class
PipedReader and class PipedWriter implement piped-character streams for transferring
data between threads. Class StringReader and StringWriter read characters from and
write characters to Strings, respectively. A PrintWriter writes characters to a stream.

15.8 Wrap-Up
In this chapter, you learned how to manipulate persistent data. We compared byte-based
and character-based streams, and introduced several classes from packages java.io and
java.nio.file. You used classes Files and Paths and interfaces Path and Directo-
ryStream to retrieve information about files and directories. You used sequential-access
file processing to manipulate records that are stored in order by the record-key field. You
learned the differences between text-file processing and object serialization, and used seri-
alization to store and retrieve entire objects. The chapter concluded with a small example
of using a JFileChooser dialog to allow users to easily select files from a GUI. The next
chapter discusses Java’s classes for manipulating collections of data—such as class Array-
List, which we introduced in Section 7.16.

Summary
Section 15.1 Introduction
• Computers use files for long-term retention of large amounts of persistent data (p. 645), even

after the programs that created the data terminate.

• Computers store files on secondary storage devices (p. 645) such as hard disks.

Section 15.2 Files and Streams
• Java views each file as a sequential stream of bytes (p. 645).

• Every operating system provides a mechanism to determine the end of a file, such as an end-of-
file marker (p. 645) or a count of the total bytes in the file.

• Byte-based streams (p. 646) represent data in binary format.

• Character-based streams (p. 646) represent data as sequences of characters.

• Files created using byte-based streams are binary files (p. 646). Files created using character-
based streams are text files (p. 646). Text files can be read by text editors, whereas binary files are
read by a program that converts the data to a human-readable format.

 Summary 677

• Java also can associate streams with different devices. Three stream objects are associated with
devices when a Java program begins executing—System.in, System.out and System.err.

Section 15.3 Using NIO Classes and Interfaces to Get File and Directory Information
• A Path (p. 647) represents the location of a file or directory. Path objects do not open files or

provide any file-processing capabilities.

• Class Paths (p. 647) is used to get a Path object representing a file or directory location.

• Class Files (p. 647) provides static methods for common file and directory manipulations, in-
cluding methods for copying files; creating and deleting files and directories; getting information
about files and directories; reading the contents of files; getting objects that allow you to manip-
ulate the contents of files and directories; and more.

• A DirectoryStream (p. 647) enables a program to iterate through the contents of a directory.

• The static method get (p. 647) of class Paths converts a String representing a file’s or directo-
ry’s location into a Path object.

• Character-based input and output can be performed with classes Scanner and Formatter.

• Class Formatter (p. 647) enables formatted data to be output to the screen or to a file in a man-
ner similar to System.out.printf.

• An absolute path (p. 647) contains all the directories, starting with the root directory (p. 647),
that lead to a specific file or directory. Every file or directory on a disk drive has the same root
directory in its path.

• A relative path (p. 647) starts from the directory in which the application began executing.

• Files static method exists (p. 648) receives a Path and determines whether it exists (either as
a file or as a directory) on disk.

• Path method getFileName (p. 648) gets the String name of a file or directory without any loca-
tion information.

• Files static method isDirectory (p. 648) receives a Path and returns a boolean indicating
whether that Path represents a directory on disk.

• Path method isAbsolute (p. 648) returns a boolean indicating whether a Path represents an ab-
solute path to a file or directory.

• Files static method getLastModifiedTime (p. 648) receives a Path and returns a FileTime
(package java.nio.file.attribute) indicating when the file was last modified.

• Files static method size (p. 648) receives a Path and returns a long representing the number
of bytes in the file or directory. For directories, the value returned is platform specific.

• Path method toString (p. 648) returns a String representation of the Path.

• Path method toAbsolutePath (p. 648) converts the Path on which it’s called to an absolute path.

• Files static method newDirectoryStream (p. 648) returns a DirectoryStream<Path> contain-
ing Path objects for a directory’s contents.

• A separator character (p. 650) is used to separate directories and files in the path.

Section 15.4 Sequential-Access Text Files
• Java imposes no structure on a file. You must structure files to meet your application’s needs.

• To retrieve data sequentially from a file, programs normally start from the beginning of the file
and read all the data consecutively until the desired information is found.

• Data in many sequential files cannot be modified without the risk of destroying other data in the
file. Records in a sequential-access file are usually updated by rewriting the entire file.

678 Chapter 15 Files, Streams and Object Serialization

Section 15.5 Object Serialization
• Java provides a mechanism called object serialization (p. 662) that enables entire objects to be

written to or read from a stream.

• A serialized object (p. 662) is represented as a sequence of bytes that includes the object’s data as
well as information about the object’s type and the types of data it stores.

• After a serialized object has been written into a file, it can be read from the file and deserialized
(p. 662) to recreate the object in memory.

• Classes ObjectInputStream (p. 662) and ObjectOutputStream (p. 662) enable entire objects to
be read from or written to a stream (possibly a file).

• Only classes that implement interface Serializable (p. 663) can be serialized and deserialized.

• The ObjectOutput interface (p. 662) contains method writeObject (p. 663), which takes an Ob-
ject as an argument and writes its information to an OutputStream. A class that implements this
interface, such as ObjectOutputStream, would ensure that the Object is Serializable.

• The ObjectInput interface (p. 662) contains method readObject (p. 663), which reads and re-
turns a reference to an Object from an InputStream. After an object has been read, its reference
can be cast to the object’s actual type.

Section 15.6 Opening Files with JFileChooser
• Class JFileChooser (p. 670) is used to display a dialog that enables users of a program to easily

select files or directories from a GUI.

Section 15.7 (Optional) Additional java.io Classes
• InputStream and OutputStream are abstract classes for performing byte-based I/O.

• Pipes (p. 673) are synchronized communication channels between threads. One thread sends
data via a PipedOutputStream (p. 673). The target thread reads information from the pipe via a
PipedInputStream (p. 673).

• A filter stream (p. 674) provides additional functionality, such as aggregating data bytes into
meaningful primitive-type units. FilterInputStream (p. 674) and FilterOutputStream are typ-
ically extended, so some of their filtering capabilities are provided by their concrete subclasses.

• A PrintStream (p. 674) performs text output. System.out and System.err are PrintStreams.

• Interface DataInput describes methods for reading primitive types from an input stream. Classes
DataInputStream (p. 674) and RandomAccessFile each implement this interface.

• Interface DataOutput describes methods for writing primitive types to an output stream. Classes
DataOutputStream (p. 674) and RandomAccessFile each implement this interface.

• Buffering is an I/O-performance-enhancement technique. Buffering reduces the number of I/O
operations by combining smaller outputs together in memory. The number of physical I/O op-
erations is much smaller than the number of I/O requests issued by the program.

• With a BufferedOutputStream (p. 674) each output operation is directed to a buffer (p. 674) large
enough to hold the data of many output operations. Transfer to the output device is performed in
one large physical output operation (p. 674) when the buffer fills. A partially filled buffer can be
forced out to the device at any time by invoking the stream object’s flush method (p. 674).

• With a BufferedInputStream (p. 675), many “logical” chunks of data from a file are read as one
large physical input operation (p. 675) into a memory buffer. As a program requests data, it’s taken
from the buffer. When the buffer is empty, the next actual physical input operation is performed.

• A ByteArrayInputStream reads from a byte array in memory. A ByteArrayOutputStream outputs
to a byte array in memory.

 Self-Review Exercises 679

• A SequenceInputStream concatenates several InputStreams. When the program reaches the end
of an input stream, that stream closes, and the next stream in the sequence opens.

• The Reader (p. 675) and Writer (p. 675) abstract classes are Unicode character-based streams.
Most byte-based streams have corresponding character-based concrete Reader or Writer classes.

• Classes BufferedReader (p. 675) and BufferedWriter (p. 675) buffer character-based streams.

• Classes CharArrayReader (p. 676) and CharArrayWriter (p. 676) manipulate char arrays.

• A LineNumberReader (p. 676) is a buffered character stream that tracks the number of lines read.

• Classes FileReader (p. 676) and FileWriter (p. 676) perform character-based file I/O.

• Class PipedReader (p. 676) and class PipedWriter (p. 676) implement piped-character streams
for transferring data between threads.

• Class StringReader (p. 676) and StringWriter (p. 676) read characters from and write charac-
ters to Strings, respectively. A PrintWriter (p. 654) writes characters to a stream.

Self-Review Exercises
15.1 Determine whether each of the following statements is true or false. If false, explain why.

a) You must explicitly create the stream objects System.in, System.out and System.err.
b) When reading data from a file using class Scanner, if you wish to read data in the file mul-

tiple times, the file must be closed and reopened to read from the beginning of the file.
c) Files static method exists receives a Path and determines whether it exists (either as

a file or as a directory) on disk
d) Binary files are human readable in a text editor.
e) An absolute path contains all the directories, starting with the root directory, that lead

to a specific file or directory.
f) Class Formatter contains method printf, which enables formatted data to be output

to the screen or to a file.

15.2 Complete the following tasks, assuming that each applies to the same program:
a) Write a statement that opens file "oldmast.txt" for input—use Scanner variable in-

OldMaster.
b) Write a statement that opens file "trans.txt" for input—use Scanner variable in-

Transaction.
c) Write a statement that opens file "newmast.txt" for output (and creation)—use for-

matter variable outNewMaster.
d) Write the statements needed to read a record from the file "oldmast.txt". Use the data

to create an object of class Account—use Scanner variable inOldMaster. Assume that
class Account is the same as the Account class in Fig. 15.9.

e) Write the statements needed to read a record from the file "trans.txt". The record is
an object of class TransactionRecord—use Scanner variable inTransaction. Assume
that class TransactionRecord contains method setAccount (which takes an int) to set
the account number and method setAmount (which takes a double) to set the amount
of the transaction.

f) Write a statement that outputs a record to the file "newmast.txt". The record is an ob-
ject of type Account—use Formatter variable outNewMaster.

15.3 Complete the following tasks, assuming that each applies to the same program:
a) Write a statement that opens file "oldmast.ser" for input—use ObjectInputStream

variable inOldMaster to wrap an InputStream object.
b) Write a statement that opens file "trans.ser" for input—use ObjectInputStream vari-

able inTransaction to wrap an InputStream object.

680 Chapter 15 Files, Streams and Object Serialization

c) Write a statement that opens file "newmast.ser" for output (and creation)—use
ObjectOutputStream variable outNewMaster to wrap an OutputStream.

d) Write a statement that reads a record from the file "oldmast.ser". The record is an
object of class Account—use ObjectInputStream variable inOldMaster. Assume class
Account is the same as the Account class in Fig. 15.9

e) Write a statement that reads a record from the file "trans.ser". The record is an object
of class TransactionRecord—use ObjectInputStream variable inTransaction.

f) Write a statement that outputs a record of type Account to the file "newmast.ser"—use
ObjectOutputStream variable outNewMaster.

Answers to Self-Review Exercises
15.1 a) False. These three streams are created for you when a Java application begins executing.
b) True. c) True. d) False. Text files are human readable in a text editor. Binary files might be hu-
man readable, but only if the bytes in the file represent ASCII characters. e) True. f) False. Class
Formatter contains method format, which enables formatted data to be output to the screen or to
a file.

15.2 a) Scanner inOldMaster = new Scanner(Paths.get("oldmast.txt"));
b) Scanner inTransaction = new Scanner(Paths.get("trans.txt"));
c) Formatter outNewMaster = new Formatter("newmast.txt");
d) Account account = new Account();

account.setAccount(inOldMaster.nextInt());
account.setFirstName(inOldMaster.next());
account.setLastName(inOldMaster.next());
account.setBalance(inOldMaster.nextDouble());

e) TransactionRecord transaction = new Transaction();
transaction.setAccount(inTransaction.nextInt());
transaction.setAmount(inTransaction.nextDouble());

f) outNewMaster.format("%d %s %s %.2f%n",
 account.getAccount(), account.getFirstName(),
 account.getLastName(), account.getBalance());

15.3 a) ObjectInputStream inOldMaster = new ObjectInputStream(
 Files.newInputStream(Paths.get("oldmast.ser")));

b) ObjectInputStream inTransaction = new ObjectInputStream(
 Files.newOutputStream(Paths.get("trans.ser")));

c) ObjectOutputStream outNewMaster = new ObjectOutputStream(
 Files.newOutputStream(Paths.get("newmast.ser")));

d) Account = (Account) inOldMaster.readObject();
e) transactionRecord = (TransactionRecord) inTransaction.readObject();
f) outNewMaster.writeObject(newAccount);

Exercises
15.4 (File Matching) Self-Review Exercise 15.2 asked you to write a series of single statements.
Actually, these statements form the core of an important type of file-processing program—namely,
a file-matching program. In commercial data processing, it’s common to have several files in each
application system. In an accounts receivable system, for example, there’s generally a master file con-
taining detailed information about each customer, such as the customer’s name, address, telephone
number, outstanding balance, credit limit, discount terms, contract arrangements and possibly a
condensed history of recent purchases and cash payments.

 Exercises 681

As transactions occur (i.e., sales are made and payments arrive in the mail), information about
them is entered into a file. At the end of each business period (a month for some companies, a
week for others, and a day in some cases), the file of transactions (called "trans.txt") is applied to
the master file (called "oldmast.txt") to update each account’s purchase and payment record.
During an update, the master file is rewritten as the file "newmast.txt", which is then used at the
end of the next business period to begin the updating process again.

File-matching programs must deal with certain problems that do not arise in single-file pro-
grams. For example, a match does not always occur. If a customer on the master file has not made
any purchases or cash payments in the current business period, no record for this customer will
appear on the transaction file. Similarly, a customer who did make some purchases or cash pay-
ments could have just moved to this community, and if so, the company may not have had a
chance to create a master record for this customer.

Write a complete file-matching accounts receivable program. Use the account number on
each file as the record key for matching purposes. Assume that each file is a sequential text file with
records stored in increasing account-number order.

a) Define class TransactionRecord. Objects of this class contain an account number and
amount for the transaction. Provide methods to modify and retrieve these values.

b) Modify class Account in Fig. 15.9 to include method combine, which takes a Transac-
tionRecord object and combines the balance of the Account object and the amount val-
ue of the TransactionRecord object.

c) Write a program to create data for testing the program. Use the sample account data in
Figs. 15.14 and 15.15. Run the program to create the files trans.txt and oldmast.txt
to be used by your file-matching program.

d) Create class FileMatch to perform the file-matching functionality. The class should
contain methods that read oldmast.txt and trans.txt. When a match occurs (i.e., re-
cords with the same account number appear in both the master file and the transaction

Master file
account number Name Balance

100 Alan Jones 348.17

300 Mary Smith 27.19

500 Sam Sharp 0.00

700 Suzy Green –14.22

Fig. 15.14 | Sample data for master file.

Transaction file
account number

Transaction
amount

100 27.14

300 62.11

400 100.56

900 82.17

Fig. 15.15 | Sample data for transaction file.

682 Chapter 15 Files, Streams and Object Serialization

file), add the dollar amount in the transaction record to the current balance in the mas-
ter record, and write the "newmast.txt" record. (Assume that purchases are indicated
by positive amounts in the transaction file and payments by negative amounts.) When
there’s a master record for a particular account, but no corresponding transaction re-
cord, merely write the master record to "newmast.txt". When there’s a transaction re-
cord, but no corresponding master record, print to a log file the message "Unmatched
transaction record for account number…" (fill in the account number from the trans-
action record). The log file should be a text file named "log.txt".

15.5 (File Matching with Multiple Transactions) It’s possible (and actually common) to have
several transaction records with the same record key. This situation occurs, for example, when a cus-
tomer makes several purchases and cash payments during a business period. Rewrite your accounts
receivable file-matching program from Exercise 15.4 to provide for the possibility of handling sev-
eral transaction records with the same record key. Modify the test data of CreateData.java to in-
clude the additional transaction records in Fig. 15.16.

15.6 (File Matching with Object Serialization) Recreate your solution for Exercise 15.5 using
object serialization. Use the statements from Exercise 15.3 as your basis for this program. You may
want to create applications to read the data stored in the .ser files—the code in Section 15.5.2 can
be modified for this purpose.

15.7 (Telephone-Number Word Generator) Standard telephone keypads contain the digits zero
through nine. The numbers two through nine each have three letters associated with them
(Fig. 15.17). Many people find it difficult to memorize phone numbers, so they use the correspon-
dence between digits and letters to develop seven-letter words that correspond to their phone num-
bers. For example, a person whose telephone number is 686-2377 might use the correspondence
indicated in Fig. 15.17 to develop the seven-letter word “NUMBERS.” Every seven-letter word cor-
responds to exactly one seven-digit telephone number. A restaurant wishing to increase its takeout
business could surely do so with the number 825-3688 (i.e., “TAKEOUT”).

Every seven-letter phone number corresponds to many different seven-letter words, but most
of these words represent unrecognizable juxtapositions of letters. It’s possible, however, that the

Account number Dollar amount

300 83.89

700 80.78

700 1.53

Fig. 15.16 | Additional transaction records.

Digit Letters Digit Letters Digit Letters

2 A B C 5 J K L 8 T U V

3 D E F 6 M N O 9 W X Y

4 G H I 7 P R S

Fig. 15.17 | Telephone keypad digits and letters.

 Making a Difference 683

owner of a barbershop would be pleased to know that the shop’s telephone number, 424-7288, cor-
responds to “HAIRCUT.” A veterinarian with the phone number 738-2273 would be pleased to
know that the number corresponds to the letters “PETCARE.” An automotive dealership would be
pleased to know that the dealership number, 639-2277, corresponds to “NEWCARS.”

Write a program that, given a seven-digit number, uses a PrintStream object to write to a file
every possible seven-letter word combination corresponding to that number. There are 2,187 (37)
such combinations. Avoid phone numbers with the digits 0 and 1.

15.8 (Student Poll) Figure 7.8 contains an array of survey responses that’s hard coded into the
program. Suppose we wish to process survey results that are stored in a file. This exercise requires
two separate programs. First, create an application that prompts the user for survey responses and
outputs each response to a file. Use a Formatter to create a file called numbers.txt. Each integer
should be written using method format. Then modify the program in Fig. 7.8 to read the survey
responses from numbers.txt. The responses should be read from the file by using a Scanner. Use
method nextInt to input one integer at a time from the file. The program should continue to read
responses until it reaches the end of the file. The results should be output to the text file "out-
put.txt".

15.9 (Adding Object Serialization to the MyShape Drawing Application) Modify Exercise 12.17
to allow the user to save a drawing into a file or load a prior drawing from a file using object serial-
ization. Add buttons Load (to read objects from a file) and Save (to write objects to a file). Use an
ObjectOutputStream to write to the file and an ObjectInputStream to read from the file. Write the
array of MyShape objects using method writeObject (class ObjectOutputStream), and read the array
using method readObject (ObjectInputStream). The object-serialization mechanism can read or
write entire arrays—it’s not necessary to manipulate each element of the array of MyShape objects
individually. It’s simply required that all the shapes be Serializable. For both the Load and Save
buttons, use a JFileChooser to allow the user to select the file in which the shapes will be stored or
from which they’ll be read. When the user first runs the program, no shapes should be displayed on
the screen. The user can display shapes by opening a previously saved file or by drawing new shapes.
Once there are shapes on the screen, users can save them to a file using the Save button.

Making a Difference
15.10 (Phishing Scanner) Phishing is a form of identity theft in which, in an e-mail, a sender pos-
ing as a trustworthy source attempts to acquire private information, such as your user names, pass-
words, credit-card numbers and social security number. Phishing e-mails claiming to be from
popular banks, credit-card companies, auction sites, social networks and online payment services
may look quite legitimate. These fraudulent messages often provide links to spoofed (fake) websites
where you’re asked to enter sensitive information.

Search online for phishing scams. Also check out the Anti-Phishing Working Group
(www.antiphishing.org), and the FBI’s Cyber Investigations website (www.fbi.gov/about-us/
investigate/cyber/cyber), where you’ll find information about the latest scams and how to pro-
tect yourself.

Create a list of 30 words, phrases and company names commonly found in phishing messages.
Assign a point value to each based on your estimate of its likeliness to be in a phishing message
(e.g., one point if it’s somewhat likely, two points if moderately likely, or three points if highly
likely). Write an application that scans a file of text for these terms and phrases. For each occur-
rence of a keyword or phrase within the text file, add the assigned point value to the total points for
that word or phrase. For each keyword or phrase found, output one line with the word or phrase,
the number of occurrences and the point total. Then show the point total for the entire message.
Does your program assign a high point total to some actual phishing e-mails you’ve received? Does
it assign a high point total to some legitimate e-mails you’ve received?

www.antiphishing.org
www.fbi.gov/about-us/investigate/cyber/cyber
www.fbi.gov/about-us/investigate/cyber/cyber

16 Generic Collections

I think this is the most
extraordinary collection of
talent, of human knowledge,
that has ever been gathered
together at the White House—
with the possible exception of
when Thomas Jefferson dined
alone.
—John F. Kennedy

O b j e c t i v e s
In this chapter you’ll:

■ Learn what collections are.

■ Use class Arrays for array
manipulations.

■ Learn the type-wrapper
classes that enable programs
to process primitive data
values as objects.

■ Use prebuilt generic data
structures from the
collections framework.

■ Use iterators to “walk
through” a collection.

■ Use persistent hash tables
manipulated with objects of
class Properties.

■ Learn about synchronization
and modifiability wrappers.

16.1 Introduction 685

16.1 Introduction
In Section 7.16, we introduced the generic ArrayList collection—a dynamically resizable
array-like data structure that stores references to objects of a type that you specify when
you create the ArrayList. In this chapter, we continue our discussion of the Java collec-
tions framework, which contains many other prebuilt generic data-structures.

Some examples of collections are your favorite songs stored on your smartphone or
media player, your contacts list, the cards you hold in a card game, the members of your
favorite sports team and the courses you take at once in school.

We discuss the collections-framework interfaces that declare the capabilities of each
collection type, various classes that implement these interfaces, methods that process col-
lection objects, and iterators that “walk through” collections.

Java SE 8
After reading Chapter 17, Java SE 8 Lambdas and Streams, you’ll be able to reimplement
many of Chapter 16’s examples in a more concise and elegant manner, and in a way that
makes them easier to parallelize to improve performance on today’s multi-core systems. In
Chapter 23, Concurrency, you’ll learn how to improve performance on multi-core sys-
tems using Java’s concurrent collections and parallel stream operations.

16.2 Collections Overview
A collection is a data structure—actually, an object—that can hold references to other ob-
jects. Usually, collections contain references to objects of any type that has the is-a rela-
tionship with the type stored in the collection. The collections-framework interfaces
declare the operations to be performed generically on various types of collections.
Figure 16.1 lists some of the collections framework interfaces. Several implementations of
these interfaces are provided within the framework. You may also provide your own im-
plementations.

16.1 Introduction
16.2 Collections Overview
16.3 Type-Wrapper Classes
16.4 Autoboxing and Auto-Unboxing
16.5 Interface Collection and Class

Collections
16.6 Lists

16.6.1 ArrayList and Iterator
16.6.2 LinkedList

16.7 Collections Methods
16.7.1 Method sort
16.7.2 Method shuffle
16.7.3 Methods reverse, fill, copy, max

and min

16.7.4 Method binarySearch
16.7.5 Methods addAll, frequency and

disjoint
16.8 Stack Class of Package java.util
16.9 ClassPriorityQueue and Interface

Queue
16.10 Sets
16.11 Maps
16.12 Properties Class
16.13 Synchronized Collections
16.14 Unmodifiable Collections
16.15 Abstract Implementations
16.16 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

686 Chapter 16 Generic Collections

Object-Based Collections
The collections framework classes and interfaces are members of package java.util. In
early Java versions, the collections framework classes stored and manipulated only Object
references, enabling you to store any object in a collection, because all classes directly or
indirectly derive from class Object. Programs normally need to process specific types of ob-
jects. As a result, the Object references obtained from a collection need to be downcast to
an appropriate type to allow the program to process the objects correctly. As we discussed
in Chapter 10, downcasting generally should be avoided.

Generic Collections
To elminate this problem, the collections framework was enhanced with the generics capa-
bilities that we introduced with generic ArrayLists in Chapter 7 and that we discuss in
more detail in Chapter 20, Generic Classes and Methods. Generics enable you to specify
the exact type that will be stored in a collection and give you the benefits of compile-time
type checking—the compiler issues error messages if you use inappropriate types in your
collections. Once you specify the type stored in a generic collection, any reference you re-
trieve from the collection will have that type. This eliminates the need for explicit type
casts that can throw ClassCastExceptions if the referenced object is not of the appropriate
type. In addition, the generic collections are backward compatible with Java code that was
written before generics were introduced.

Choosing a Collection
The documentation for each collection discusses its memory requirements and its meth-
ods’ performance characteristics for operations such as adding and removing elements,
searching for elements, sorting elements and more. Before choosing a collection, review
the online documentation for the collection category you’re considering (Set, List, Map,
Queue, etc.), then choose the implementation that best meets your application’s needs.
Chapter 19, Searching, Sorting and Big O, discusses a means for describing how hard an

Interface Description

Collection The root interface in the collections hierarchy from which interfaces Set, Queue
and List are derived.

Set A collection that does not contain duplicates.

List An ordered collection that can contain duplicate elements.

Map A collection that associates keys to values and cannot contain duplicate keys. Map
does not derive from Collection.

Queue Typically a first-in, first-out collection that models a waiting line; other orders
can be specified.

Fig. 16.1 | Some collections-framework interfaces.

Good Programming Practice 16.1
Avoid reinventing the wheel—rather than building your own data structures, use the in-
terfaces and collections from the Java collections framework, which have been carefully
tested and tuned to meet most application requirements.

16.3 Type-Wrapper Classes 687

algorithm works to perform its task—based on the number of data items to be processed.
After reading Chapter 19, you’ll better understand each collection’s performance charac-
teristics as described in the online documentation.

16.3 Type-Wrapper Classes
Each primitive type (listed in Appendix D) has a corresponding type-wrapper class (in
package java.lang). These classes are called Boolean, Byte, Character, Double, Float,
Integer, Long and Short. These enable you to manipulate primitive-type values as ob-
jects. This is important because the data structures that we reuse or develop in
Chapters 16–21 manipulate and share objects—they cannot manipulate variables of prim-
itive types. However, they can manipulate objects of the type-wrapper classes, because ev-
ery class ultimately derives from Object.

Each of the numeric type-wrapper classes—Byte, Short, Integer, Long, Float and
Double—extends class Number. Also, the type-wrapper classes are final classes, so you
cannot extend them. Primitive types do not have methods, so the methods related to a
primitive type are located in the corresponding type-wrapper class (e.g., method parseInt,
which converts a String to an int value, is located in class Integer).

16.4 Autoboxing and Auto-Unboxing
Java provides boxing and unboxing conversions that automatically convert between prim-
itive-type values and type-wrapper objects. A boxing conversion converts a value of a
primitive type to an object of the corresponding type-wrapper class. An unboxing conver-
sion converts an object of a type-wrapper class to a value of the corresponding primitive
type. These conversions are performed automatically—called autoboxing and auto-un-
boxing. Consider the following statements:

In this case, autoboxing occurs when assigning an int value (10) to integerArray[0], be-
cause integerArray stores references to Integer objects, not int values. Auto-unboxing
occurs when assigning integerArray[0] to int variable value, because variable value
stores an int value, not a reference to an Integer object. Boxing conversions also occur in
conditions, which can evaluate to primitive boolean values or Boolean objects. Many of
the examples in Chapters 16–21 use these conversions to store primitive values in and re-
trieve them from data structures.

16.5 Interface Collection and Class Collections
Interface Collection contains bulk operations (i.e., operations performed on an entire
collection) for operations such as adding, clearing and comparing objects (or elements) in a
collection. A Collection can also be converted to an array. In addition, interface Collec-
tion provides a method that returns an Iterator object, which allows a program to walk
through the collection and remove elements from it during the iteration. We discuss class
Iterator in Section 16.6.1. Other methods of interface Collection enable a program to
determine a collection’s size and whether a collection is empty.

Integer[] integerArray = new Integer[5]; // create integerArray
integerArray[0] = 10; // assign Integer 10 to integerArray[0]
int value = integerArray[0]; // get int value of Integer

688 Chapter 16 Generic Collections

Class Collections provides static methods that search, sort and perform other oper-
ations on collections. Section 16.7 discusses more about Collections methods. We also
cover Collections’ wrapper methods that enable you to treat a collection as a synchro-
nized collection (Section 16.13) or an unmodifiable collection (Section 16.14). Synchro-
nized collections are for use with multithreading (discussed in Chapter 23), which enables
programs to perform operations in parallel. When two or more threads of a program share
a collection, problems might occur. As an analogy, consider a traffic intersection. If all cars
were allowed to access the intersection at the same time, collisions might occur. For this
reason, traffic lights are provided to control access to the intersection. Similarly, we can
synchronize access to a collection to ensure that only one thread manipulates the collection
at a time. The synchronization wrapper methods of class Collections return synchro-
nized versions of collections that can be shared among threads in a program. Unmodifiable
collections are useful when clients of a class need to view a collection’s elements, but they
should not be allowed to modify the collection by adding and removing elements.

16.6 Lists
A List (sometimes called a sequence) is an ordered Collection that can contain duplicate
elements. Like array indices, List indices are zero based (i.e., the first element’s index is
zero). In addition to the methods inherited from Collection, List provides methods for
manipulating elements via their indices, manipulating a specified range of elements,
searching for elements and obtaining a ListIterator to access the elements.

Interface List is implemented by several classes, including ArrayList, LinkedList
and Vector. Autoboxing occurs when you add primitive-type values to objects of these
classes, because they store only references to objects. Classes ArrayList and Vector are
resizable-array implementations of List. Inserting an element between existing elements
of an ArrayList or Vector is an inefficient operation—all elements after the new one must
be moved out of the way, which could be an expensive operation in a collection with a
large number of elements. A LinkedList enables efficient insertion (or removal) of ele-
ments in the middle of a collection, but is much less efficient than an ArrayList for
jumping to a specific element in the collection. We discuss the architecture of linked lists
in Chapter 21.

ArrayList and Vector have nearly identical behaviors. Operations on Vectors are syn-
chronized by default, whereas those on ArrayLists are not. Also, class Vector is from Java
1.0, before the collections framework was added to Java. As such, Vector has some methods
that are not part of interface List and are not implemented in class ArrayList. For
example, Vector methods addElement and add both append an element to a Vector, but
only method add is specified in interface List and implemented by ArrayList. Unsynchro-

Software Engineering Observation 16.1
Collection is used commonly as a parameter type in methods to allow polymorphic
processing of all objects that implement interface Collection.

Software Engineering Observation 16.2
Most collection implementations provide a constructor that takes a Collection

argument, thereby allowing a new collection to be constructed containing the elements of
the specified collection.

16.6 Lists 689

nized collections provide better performance than synchronized ones. For this reason, Array-
List is typically preferred over Vector in programs that do not share a collection among
threads. Separately, the Java collections API provides synchronization wrappers
(Section 16.13) that can be used to add synchronization to the unsynchronized collections,
and several powerful synchronized collections are available in the Java concurrency APIs.

The following three subsections demonstrate the List and Collection capabilities.
Section 16.6.1 removes elements from an ArrayList with an Iterator. Section 16.6.2
uses ListIterator and several List- and LinkedList-specific methods.

16.6.1 ArrayList and Iterator
Figure 16.2 uses an ArrayList (introduced in Section 7.16) to demonstrate several capa-
bilities of interface Collection. The program places two Color arrays in ArrayLists and
uses an Iterator to remove elements in the second ArrayList collection from the first.

Performance Tip 16.1
ArrayLists behave like Vectors without synchronization and therefore execute faster
than Vectors, because ArrayLists do not have the overhead of thread synchronization.

Software Engineering Observation 16.3
LinkedLists can be used to create stacks, queues and deques (double-ended queues,
pronounced “decks”). The collections framework provides implementations of some of
these data structures.

1 // Fig. 16.2: CollectionTest.java
2 // Collection interface demonstrated via an ArrayList object.
3 import java.util.List;
4 import java.util.ArrayList;
5 import java.util.Collection;
6 import java.util.Iterator;
7
8 public class CollectionTest
9 {

10 public static void main(String[] args)
11 {
12 // add elements in colors array to list
13 String[] colors = {"MAGENTA", "RED", "WHITE", "BLUE", "CYAN"};
14
15
16 for (String color : colors)
17
18
19 // add elements in removeColors array to removeList
20 String[] removeColors = {"RED", "WHITE", "BLUE"};
21
22
23 for (String color : removeColors)
24
25

Fig. 16.2 | Collection interface demonstrated via an ArrayList object. (Part 1 of 2.)

List<String> list = new ArrayList<String>();

list.add(color); // adds color to end of list

List<String> removeList = new ArrayList<String>();

removeList.add(color);

690 Chapter 16 Generic Collections

Lines 13 and 20 declare and initialize String arrays colors and removeColors. Lines
14 and 21 create ArrayList<String> objects and assign their references to List<String>
variables list and removeList, respectively. Recall that ArrayList is a generic class, so we
can specify a type argument (String in this case) to indicate the type of the elements in each
list. Because you specify the type to store in a collection at compile time, generic collec-
tions provide compile-time type safety that allows the compiler to catch attempts to use
invalid types. For example, you cannot store Employees in a collection of Strings.

Lines 16–17 populate list with Strings stored in array colors, and lines 23–24 pop-
ulate removeList with Strings stored in array removeColors using List method add.
Lines 29–30 output each element of list. Line 29 calls List method size to get the
number of elements in the ArrayList. Line 30 uses List method get to retrieve indi-

26 // output list contents
27 System.out.println("ArrayList: ");
28
29 for (int count = 0; count < ; count++)
30 System.out.printf("%s ",);
31
32 // remove from list the colors contained in removeList
33 removeColors(list, removeList);
34
35 // output list contents
36 System.out.printf("%n%nArrayList after calling removeColors:%n");
37
38 for (String color : list)
39 System.out.printf("%s ", color);
40 }
41
42 // remove colors specified in collection2 from collection1
43 private static void removeColors(,
44)
45 {
46 // get iterator
47
48
49 // loop while collection has items
50 while ()
51 {
52
53
54 }
55 }
56 } // end class CollectionTest

ArrayList:
MAGENTA RED WHITE BLUE CYAN

ArrayList after calling removeColors:
MAGENTA CYAN

Fig. 16.2 | Collection interface demonstrated via an ArrayList object. (Part 2 of 2.)

list.size()
list.get(count)

Collection<String> collection1
Collection<String> collection2

Iterator<String> iterator = collection1.iterator();

iterator.hasNext()

if (collection2.contains(iterator.next()))
 iterator.remove(); // remove current element

16.6 Lists 691

vidual element values. Lines 29–30 also could have used the enhanced for statement
(which we’ll demonstrate with collections in other examples).

Line 33 calls method removeColors (lines 43–55), passing list and removeList as
arguments. Method removeColors deletes the Strings in removeList from the Strings
in list. Lines 38–39 print list’s elements after removeColors completes its task.

Method removeColors declares two Collection<String> parameters (lines 43–
44)—any two Collections containing Strings can be passed as arguments. The method
accesses the elements of the first Collection (collection1) via an Iterator. Line 47 calls
Collection method iterator to get an Iterator for the Collection. Interfaces Collec-
tion and Iterator are generic types. The loop-continuation condition (line 50) calls
Iterator method hasNext to determine whether there are more elements to iterate
through. Method hasNext returns true if another element exists and false otherwise.

The if condition in line 52 calls Iterator method next to obtain a reference to the
next element, then uses method contains of the second Collection (collection2) to
determine whether collection2 contains the element returned by next. If so, line 53 calls
Iterator method remove to remove the element from the Collection collection1.

Type Inference with the <> Notation
Lines 14 and 21 specify the type stored in the ArrayList (that is, String) on the left and
right sides of the initialization statements. Java SE 7 introduced type inferencing with the
<> notation—known as the diamond notation—in statements that declare and create ge-
neric type variables and objects. For example, line 14 can be written as:

In this case, Java uses the type in angle brackets on the left of the declaration (that is,
String) as the type stored in the ArrayList created on the right side of the declaration.
We’ll use this syntax for the remaining examples in this chapter.

16.6.2 LinkedList
Figure 16.3 demonstrates various operations on LinkedLists. The program creates two
LinkedLists of Strings. The elements of one List are added to the other. Then all the
Strings are converted to uppercase, and a range of elements is deleted.

Common Programming Error 16.1
If a collection is modified by one of its methods after an iterator is created for that collec-
tion, the iterator immediately becomes invalid—any operation performed with the itera-
tor fails immediate and throws a ConcurrentModificationException. For this reason,
iterators are said to be “fail fast.” Fail-fast iterators help ensure that a modifiable collec-
tion is not manipulated by two or more threads at the same time, which could corrupt the
collection. In Chapter 23, Concurrency, you’ll learn about concurrent collections (package
java.util.concurrent) that can be safely manipulated by multiple concurrent threads.

Software Engineering Observation 16.4
We refer to the ArrayLists in this example via List variables. This makes our code more
flexible and easier to modify—if we later determine that LinkedLists would be more ap-
propriate, only the lines where we created the ArrayList objects (lines 14 and 21) need
to be modified. In general, when you create a collection object, refer to that object with a
variable of the corresponding collection interface type.

List<String> list = new ArrayList<>();

692 Chapter 16 Generic Collections

1 // Fig. 16.3: ListTest.java
2 // Lists, LinkedLists and ListIterators.
3 import java.util.List;
4 import java.util.LinkedList;
5 import java.util.ListIterator;
6
7 public class ListTest
8 {
9 public static void main(String[] args)

10 {
11 // add colors elements to list1
12 String[] colors =
13 {"black", "yellow", "green", "blue", "violet", "silver"};
14 List<String> list1 = new LinkedList<>();
15
16 for (String color : colors)
17
18
19 // add colors2 elements to list2
20 String[] colors2 =
21 {"gold", "white", "brown", "blue", "gray", "silver"};
22 List<String> list2 = new LinkedList<>();
23
24 for (String color : colors2)
25
26
27
28 list2 = null; // release resources
29 printList(list1); // print list1 elements
30
31 convertToUppercaseStrings(list1); // convert to uppercase string
32 printList(list1); // print list1 elements
33
34 System.out.printf("%nDeleting elements 4 to 6...");
35 removeItems(list1, 4, 7); // remove items 4-6 from list
36 printList(list1); // print list1 elements
37 printReversedList(list1); // print list in reverse order
38 }
39
40 // output List contents
41 private static void printList()
42 {
43 System.out.printf("%nlist:%n");
44
45 for (String color : list)
46 System.out.printf("%s ", color);
47
48 System.out.println();
49 }
50
51 // locate String objects and convert to uppercase
52 private static void convertToUppercaseStrings()
53 {

Fig. 16.3 | Lists, LinkedLists and ListIterators. (Part 1 of 2.)

list1.add(color);

list2.add(color);

list1.addAll(list2); // concatenate lists

List<String> list

List<String> list

16.6 Lists 693

Lines 14 and 22 create LinkedLists list1 and list2 of type String. LinkedList is
a generic class that has one type parameter for which we specify the type argument String
in this example. Lines 16–17 and 24–25 call List method add to append elements from
arrays colors and colors2 to the ends of list1 and list2, respectively.

Line 27 calls List method addAll to append all elements of list2 to the end of list1.
Line 28 sets list2 to null, because list2 is no longer needed. Line 29 calls method
printList (lines 41–49) to output list1’s contents. Line 31 calls method
convertToUppercaseStrings (lines 52–61) to convert each String element to uppercase,
then line 32 calls printList again to display the modified Strings. Line 35 calls method

54
55
56 while ()
57 {
58
59
60 }
61 }
62
63 // obtain sublist and use clear method to delete sublist items
64 private static void removeItems(,
65 int start, int end)
66 {
67
68 }
69
70 // print reversed list
71 private static void printReversedList()
72 {
73
74
75 System.out.printf("%nReversed List:%n");
76
77 // print list in reverse order
78 while ()
79 System.out.printf("%s ",);
80 }
81 } // end class ListTest

list:
black yellow green blue violet silver gold white brown blue gray silver

list:
BLACK YELLOW GREEN BLUE VIOLET SILVER GOLD WHITE BROWN BLUE GRAY SILVER

Deleting elements 4 to 6...
list:
BLACK YELLOW GREEN BLUE WHITE BROWN BLUE GRAY SILVER

Reversed List:
SILVER GRAY BLUE BROWN WHITE BLUE GREEN YELLOW BLACK

Fig. 16.3 | Lists, LinkedLists and ListIterators. (Part 2 of 2.)

ListIterator<String> iterator = list.listIterator();

iterator.hasNext()

String color = iterator.next(); // get item
iterator.set(color.toUpperCase()); // convert to upper case

List<String> list

list.subList(start, end).clear(); // remove items

List<String> list

ListIterator<String> iterator = list.listIterator(list.size());

iterator.hasPrevious()
iterator.previous()

694 Chapter 16 Generic Collections

removeItems (lines 64–68) to remove the range of elements starting at index 4 up to, but
not including, index 7 of the list. Line 37 calls method printReversedList (lines 71–80)
to print the list in reverse order.

Method convertToUppercaseStrings
Method convertToUppercaseStrings (lines 52–61) changes lowercase String elements
in its List argument to uppercase Strings. Line 54 calls List method listIterator to
get the List’s bidirectional iterator (i.e., one that can traverse a List backward or for-
ward). ListIterator is also a generic class. In this example, the ListIterator references
String objects, because method listIterator is called on a List of Strings. Line 56 calls
method hasNext to determine whether the List contains another element. Line 58 gets the
next String in the List. Line 59 calls String method toUpperCase to get an uppercase
version of the String and calls ListIterator method set to replace the current String
to which iterator refers with the String returned by method toUpperCase. Like method
toUpperCase, String method toLowerCase returns a lowercase version of the String.

Method removeItems
Method removeItems (lines 64–68) removes a range of items from the list. Line 67 calls
List method subList to obtain a portion of the List (called a sublist). This is called a
range-view method, which enables the program to view a portion of the list. The sublist
is simply a view into the List on which subList is called. Method subList takes as argu-
ments the beginning and ending index for the sublist. The ending index is not part of the
range of the sublist. In this example, line 35 passes 4 for the beginning index and 7 for the
ending index to subList. The sublist returned is the set of elements with indices 4 through
6. Next, the program calls List method clear on the sublist to remove the elements of
the sublist from the List. Any changes made to a sublist are also made to the original List.

Method printReversedList
Method printReversedList (lines 71–80) prints the list backward. Line 73 calls List
method listIterator with the starting position as an argument (in our case, the last ele-
ment in the list) to get a bidirectional iterator for the list. List method size returns the
number of items in the List. The while condition (line 78) calls ListIterator’s hasPre-
vious method to determine whether there are more elements while traversing the list back-
ward. Line 79 calls ListIterator’s previous method to get the previous element from
the list and outputs it to the standard output stream.

Views into Collections and Arrays Method asList
Class Arrays provides static method asList to view an array (sometimes called the back-
ing array) as a List collection. A List view allows you to manipulate the array as if it were
a list. This is useful for adding the elements in an array to a collection and for sorting array
elements. The next example demonstrates how to create a LinkedList with a List view
of an array, because we cannot pass the array to a LinkedList constructor. Sorting array
elements with a List view is demonstrated in Fig. 16.7. Any modifications made through
the List view change the array, and any modifications made to the array change the List
view. The only operation permitted on the view returned by asList is set, which changes
the value of the view and the backing array. Any other attempts to change the view (such
as adding or removing elements) result in an UnsupportedOperationException.

16.6 Lists 695

Viewing Arrays as Lists and Converting Lists to Arrays
Figure 16.4 uses Arrays method asList to view an array as a List and uses List method
toArray to get an array from a LinkedList collection. The program calls method asList
to create a List view of an array, which is used to initialize a LinkedList object, then adds
a series of Strings to the LinkedList and calls method toArray to obtain an array con-
taining references to the Strings.

Line 12 constructs a LinkedList of Strings containing the elements of array colors.
Arrays method asList returns a List view of the array, then uses that to initialize the
LinkedList with its constructor that receives a Collection as an argument (a List is a
Collection). Line 14 calls LinkedList method addLast to add "red" to the end of links.
Lines 15–16 call LinkedList method add to add "pink" as the last element and "green"
as the element at index 3 (i.e., the fourth element). Method addLast (line 14) functions

1 // Fig. 16.4: UsingToArray.java
2 // Viewing arrays as Lists and converting Lists to arrays.
3 import java.util.LinkedList;
4 import java.util.Arrays;
5
6 public class UsingToArray
7 {
8 // creates a LinkedList, adds elements and converts to array
9 public static void main(String[] args)

10 {
11 String[] colors = {"black", "blue", "yellow"};
12
13
14
15
16
17
18
19
20
21
22 System.out.println("colors: ");
23
24 for (String color : colors)
25 System.out.println(color);
26 }
27 } // end class UsingToArray

colors:
cyan
black
blue
yellow
green
red
pink

Fig. 16.4 | Viewing arrays as Lists and converting Lists to arrays.

LinkedList<String> links = new LinkedList<>(Arrays.asList(colors));

links.addLast("red"); // add as last item
links.add("pink"); // add to the end
links.add(3, "green"); // add at 3rd index
links.addFirst("cyan"); // add as first item

// get LinkedList elements as an array
colors = links.toArray(new String[links.size()]);

696 Chapter 16 Generic Collections

identically to method add (line 15). Line 17 calls LinkedList method addFirst to add
"cyan" as the new first item in the LinkedList. The add operations are permitted because
they operate on the LinkedList object, not the view returned by asList. [Note: When
"cyan" is added as the first element, "green" becomes the fifth element in the
LinkedList.]

Line 20 calls the List interface’s toArray method to get a String array from links. The
array is a copy of the list’s elements—modifying the array’s contents does not modify the list.
The array passed to method toArray is of the same type that you’d like method toArray to
return. If the number of elements in that array is greater than or equal to the number of ele-
ments in the LinkedList, toArray copies the list’s elements into its array argument and
returns that array. If the LinkedList has more elements than the number of elements in the
array passed to toArray, toArray allocates a new array of the same type it receives as an argu-
ment, copies the list’s elements into the new array and returns the new array.

16.7 Collections Methods
Class Collections provides several high-performance algorithms for manipulating collec-
tion elements. The algorithms (Fig. 16.5) are implemented as static methods. The meth-
ods sort, binarySearch, reverse, shuffle, fill and copy operate on Lists. Methods
min, max, addAll, frequency and disjoint operate on Collections.

Common Programming Error 16.2
Passing an array that contains data to toArray can cause logic errors. If the number of
elements in the array is smaller than the number of elements in the list on which toArray
is called, a new array is allocated to store the list’s elements—without preserving the ar-
ray argument’s elements. If the number of elements in the array is greater than the num-
ber of elements in the list, the elements of the array (starting at index zero) are overwritten
with the list’s elements. Array elements that are not overwritten retain their values.

Method Description

sort Sorts the elements of a List.

binarySearch Locates an object in a List, using the high-performance binary search algorithm
which we introduced in Section 7.15 and discuss in detail in Section 19.4.

reverse Reverses the elements of a List.

shuffle Randomly orders a List’s elements.

fill Sets every List element to refer to a specified object.

copy Copies references from one List into another.

min Returns the smallest element in a Collection.

max Returns the largest element in a Collection.

addAll Appends all elements in an array to a Collection.

frequency Calculates how many collection elements are equal to the specified element.

disjoint Determines whether two collections have no elements in common.

Fig. 16.5 | Collections methods.

16.7 Collections Methods 697

16.7.1 Method sort
Method sort sorts the elements of a List, which must implement the Comparable inter-
face. The order is determined by the natural order of the elements’ type as implemented
by a compareTo method. For example, the natural order for numeric values is ascending
order, and the natural order for Strings is based on their lexicographical ordering
(Section 14.3). Method compareTo is declared in interface Comparable and is sometimes
called the natural comparison method. The sort call may specify as a second argument a
Comparator object that determines an alternative ordering of the elements.

Sorting in Ascending Order
Figure 16.6 uses Collections method sort to order the elements of a List in ascending
order (line 17). Method sort performs an iterative merge sort (we demonstrated a recur-
sive merge sort in Section 19.8). Line 14 creates list as a List of Strings. Lines 15 and
18 each use an implicit call to the list’s toString method to output the list contents in
the format shown in the output.

Sorting in Descending Order
Figure 16.7 sorts the same list of strings used in Fig. 16.6 in descending order. The example
introduces the Comparator interface, which is used for sorting a Collection’s elements in

Software Engineering Observation 16.5
The collections framework methods are polymorphic. That is, each can operate on objects
that implement specific interfaces, regardless of the underlying implementations.

1 // Fig. 16.6: Sort1.java
2 // Collections method sort.
3 import java.util.List;
4 import java.util.Arrays;
5 import java.util.Collections;
6
7 public class Sort1
8 {
9 public static void main(String[] args)

10 {
11 String[] suits = {"Hearts", "Diamonds", "Clubs", "Spades"};
12
13 // Create and display a list containing the suits array elements
14 List<String> list = Arrays.asList(suits);
15 System.out.printf("Unsorted array elements: %s%n", list);
16
17
18 System.out.printf("Sorted array elements: %s%n", list);
19 }
20 } // end class Sort1

Unsorted array elements: [Hearts, Diamonds, Clubs, Spades]
Sorted array elements: [Clubs, Diamonds, Hearts, Spades]

Fig. 16.6 | Collections method sort.

Collections.sort(list); // sort ArrayList

698 Chapter 16 Generic Collections

a different order. Line 18 calls Collections’s method sort to order the List in descend-
ing order. The static Collections method reverseOrder returns a Comparator object
that orders the collection’s elements in reverse order.

Sorting with a Comparator
Figure 16.8 creates a custom Comparator class, named TimeComparator, that implements
interface Comparator to compare two Time2 objects. Class Time2, declared in Fig. 8.5, rep-
resents times with hours, minutes and seconds.

1 // Fig. 16.7: Sort2.java
2 // Using a Comparator object with method sort.
3 import java.util.List;
4 import java.util.Arrays;
5 import java.util.Collections;
6
7 public class Sort2
8 {
9 public static void main(String[] args)

10 {
11 String[] suits = {"Hearts", "Diamonds", "Clubs", "Spades"};
12
13 // Create and display a list containing the suits array elements
14 List<String> list = Arrays.asList(suits); // create List
15 System.out.printf("Unsorted array elements: %s%n", list);
16
17
18
19 System.out.printf("Sorted list elements: %s%n", list);
20 }
21 } // end class Sort2

Unsorted array elements: [Hearts, Diamonds, Clubs, Spades]
Sorted list elements: [Spades, Hearts, Diamonds, Clubs]

Fig. 16.7 | Collections method sort with a Comparator object.

1 // Fig. 16.8: TimeComparator.java
2 // Custom Comparator class that compares two Time2 objects.
3 import java.util.Comparator;
4
5 public class TimeComparator implements
6 {
7 @Override
8 public int compare(,)
9 {

10 int hourDifference = time1.getHour() - time2.getHour();
11
12 if (hourDifference != 0) // test the hour first
13 return hourCompare;

Fig. 16.8 | Custom Comparator class that compares two Time2 objects. (Part 1 of 2.)

// sort in descending order using a comparator
Collections.sort(list, Collections.reverseOrder());

Comparator<Time2>

Time2 time1 Time2 time2

16.7 Collections Methods 699

Class TimeComparator implements interface Comparator, a generic type that takes
one type argument (in this case Time2). A class that implements Comparator must declare
a compare method that receives two arguments and returns a negative integer if the first
argument is less than the second, 0 if the arguments are equal or a positive integer if the first
argument is greater than the second. Method compare (lines 7–22) performs comparisons
between Time2 objects. Line 10 calculates the difference between the hours of the two
Time2 objects. If the hours are different (line 12), then we return this value. If this value is
positive, then the first hour is greater than the second and the first time is greater than the
second. If this value is negative, then the first hour is less than the second and the first time
is less than the second. If this value is zero, the hours are the same and we must test the
minutes (and maybe the seconds) to determine which time is greater.

Figure 16.9 sorts a list using the custom Comparator class TimeComparator. Line 11
creates an ArrayList of Time2 objects. Recall that both ArrayList and List are generic
types and accept a type argument that specifies the element type of the collection. Lines
13–17 create five Time2 objects and add them to this list. Line 23 calls method sort,
passing it an object of our TimeComparator class (Fig. 16.8).

14
15 int minuteDifference = time1.getMinute() - time2.getMinute();
16
17 if (minuteDifference != 0) // then test the minute
18 return minuteDifference;
19
20 int secondDifference = time1.getSecond() - time2.getSecond();
21 return secondDifference;
22 }
23 } // end class TimeComparator

1 // Fig. 16.9: Sort3.java
2 // Collections method sort with a custom Comparator object.
3 import java.util.List;
4 import java.util.ArrayList;
5 import java.util.Collections;
6
7 public class Sort3
8 {
9 public static void main(String[] args)

10 {
11 List<Time2> list = new ArrayList<>(); // create List
12
13 list.add(new Time2(6, 24, 34));
14 list.add(new Time2(18, 14, 58));
15 list.add(new Time2(6, 05, 34));
16 list.add(new Time2(12, 14, 58));
17 list.add(new Time2(6, 24, 22));
18

Fig. 16.9 | Collections method sort with a custom Comparator object. (Part 1 of 2.)

Fig. 16.8 | Custom Comparator class that compares two Time2 objects. (Part 2 of 2.)

700 Chapter 16 Generic Collections

16.7.2 Method shuffle
Method shuffle randomly orders a List’s elements. Chapter 7 presented a card shuffling
and dealing simulation that shuffled a deck of cards with a loop. Figure 16.10 uses method
shuffle to shuffle a deck of Card objects that might be used in a card-game simulator.

19 // output List elements
20 System.out.printf("Unsorted array elements:%n%s%n", list);
21
22
23 Collections.sort(list, new TimeComparator());
24
25 // output List elements
26 System.out.printf("Sorted list elements:%n%s%n", list);
27 }
28 } // end class Sort3

Unsorted array elements:
[6:24:34 AM, 6:14:58 PM, 6:05:34 AM, 12:14:58 PM, 6:24:22 AM]
Sorted list elements:
[6:05:34 AM, 6:24:22 AM, 6:24:34 AM, 12:14:58 PM, 6:14:58 PM]

1 // Fig. 16.10: DeckOfCards.java
2 // Card shuffling and dealing with Collections method shuffle.
3 import java.util.List;
4 import java.util.Arrays;
5 import java.util.Collections;
6
7 // class to represent a Card in a deck of cards
8 class Card
9 {

10 public static enum Face {Ace, Deuce, Three, Four, Five, Six,
11 Seven, Eight, Nine, Ten, Jack, Queen, King };
12 public static enum Suit {Clubs, Diamonds, Hearts, Spades};
13
14 private final Face face;
15 private final Suit suit;
16
17 // constructor
18 public Card(Face face, Suit suit)
19 {
20 this.face = face;
21 this.suit = suit;
22 }
23
24 // return face of the card
25 public Face getFace()
26 {

Fig. 16.10 | Card shuffling and dealing with Collections method shuffle. (Part 1 of 3.)

Fig. 16.9 | Collections method sort with a custom Comparator object. (Part 2 of 2.)

// sort in order using a comparator

16.7 Collections Methods 701

27 return face;
28 }
29
30 // return suit of Card
31 public Suit getSuit()
32 {
33 return suit;
34 }
35
36 // return String representation of Card
37 public String toString()
38 {
39 return String.format("%s of %s", face, suit);
40 }
41 } // end class Card
42
43 // class DeckOfCards declaration
44 public class DeckOfCards
45 {
46 private List<Card> list; // declare List that will store Cards
47
48 // set up deck of Cards and shuffle
49 public DeckOfCards()
50 {
51 Card[] deck = new Card[52];
52 int count = 0; // number of cards
53
54 // populate deck with Card objects
55 for (: Card.Suit.values())
56 {
57 for (: Card.Face.values())
58 {
59 deck[count] = new Card(face, suit);
60 ++count;
61 }
62 }
63
64
65
66 } // end DeckOfCards constructor
67
68 // output deck
69 public void printCards()
70 {
71 // display 52 cards in two columns
72 for (int i = 0; i < list.size(); i++)
73 System.out.printf("%-19s%s", list.get(i),
74 ((i + 1) % 4 == 0) ? "%n" : "");
75 }
76
77 public static void main(String[] args)
78 {

Fig. 16.10 | Card shuffling and dealing with Collections method shuffle. (Part 2 of 3.)

Card.Suit suit

Card.Face face

list = Arrays.asList(deck); // get List
Collections.shuffle(list); // shuffle deck

702 Chapter 16 Generic Collections

Class Card (lines 8–41) represents a card in a deck of cards. Each Card has a face and
a suit. Lines 10–12 declare two enum types—Face and Suit—which represent the face and
the suit of the card, respectively. Method toString (lines 37–40) returns a String con-
taining the face and suit of the Card separated by the string " of ". When an enum con-
stant is converted to a String, the constant’s identifier is used as the String
representation. Normally we would use all uppercase letters for enum constants. In this
example, we chose to use capital letters for only the first letter of each enum constant
because we want the card to be displayed with initial capital letters for the face and the suit
(e.g., "Ace of Spades").

Lines 55–62 populate the deck array with cards that have unique face and suit com-
binations. Both Face and Suit are public static enum types of class Card. To use these
enum types outside of class Card, you must qualify each enum’s type name with the name
of the class in which it resides (i.e., Card) and a dot (.) separator. Hence, lines 55 and 57
use Card.Suit and Card.Face to declare the control variables of the for statements. Recall
that method values of an enum type returns an array that contains all the constants of the
enum type. Lines 55–62 use enhanced for statements to construct 52 new Cards.

The shuffling occurs in line 65, which calls static method shuffle of class
Collections to shuffle the elements of the array. Method shuffle requires a List argu-
ment, so we must obtain a List view of the array before we can shuffle it. Line 64 invokes
static method asList of class Arrays to get a List view of the deck array.

Method printCards (lines 69–75) displays the deck of cards in four columns. In each
iteration of the loop, lines 73–74 output a card left justified in a 19-character field followed
by either a newline or an empty string based on the number of cards output so far. If the
number of cards is divisible by 4, a newline is output; otherwise, the empty string is output.

16.7.3 Methods reverse, fill, copy, max and min
Class Collections provides methods for reversing, filling and copying Lists. Collections
method reverse reverses the order of the elements in a List, and method fill overwrites

79 DeckOfCards cards = new DeckOfCards();
80 cards.printCards();
81 }
82 } // end class DeckOfCards

Deuce of Clubs Six of Spades Nine of Diamonds Ten of Hearts
Three of Diamonds Five of Clubs Deuce of Diamonds Seven of Clubs
Three of Spades Six of Diamonds King of Clubs Jack of Hearts
Ten of Spades King of Diamonds Eight of Spades Six of Hearts
Nine of Clubs Ten of Diamonds Eight of Diamonds Eight of Hearts
Ten of Clubs Five of Hearts Ace of Clubs Deuce of Hearts
Queen of Diamonds Ace of Diamonds Four of Clubs Nine of Hearts
Ace of Spades Deuce of Spades Ace of Hearts Jack of Diamonds
Seven of Diamonds Three of Hearts Four of Spades Four of Diamonds
Seven of Spades King of Hearts Seven of Hearts Five of Diamonds
Eight of Clubs Three of Clubs Queen of Clubs Queen of Spades
Six of Clubs Nine of Spades Four of Hearts Jack of Clubs
Five of Spades King of Spades Jack of Spades Queen of Hearts

Fig. 16.10 | Card shuffling and dealing with Collections method shuffle. (Part 3 of 3.)

16.7 Collections Methods 703

elements in a List with a specified value. The fill operation is useful for reinitializing a
List. Method copy takes two arguments—a destination List and a source List. Each
source List element is copied to the destination List. The destination List must be at
least as long as the source List; otherwise, an IndexOutOfBoundsException occurs. If the
destination List is longer, the elements not overwritten are unchanged.

Each method we’ve seen so far operates on Lists. Methods min and max each operate
on any Collection. Method min returns the smallest element in a Collection, and
method max returns the largest element in a Collection. Both of these methods can be
called with a Comparator object as a second argument to perform custom comparisons of
objects, such as the TimeComparator in Fig. 16.9. Figure 16.11 demonstrates methods
reverse, fill, copy, max and min.

1 // Fig. 16.11: Algorithms1.java
2 // Collections methods reverse, fill, copy, max and min.
3 import java.util.List;
4 import java.util.Arrays;
5 import java.util.Collections;
6
7 public class Algorithms1
8 {
9 public static void main(String[] args)

10 {
11 // create and display a List<Character>
12 Character[] letters = {'P', 'C', 'M'};
13 List<Character> list = Arrays.asList(letters); // get List
14 System.out.println("list contains: ");
15 output(list);
16
17 // reverse and display the List<Character>
18
19 System.out.printf("%nAfter calling reverse, list contains:%n");
20 output(list);
21
22 // create copyList from an array of 3 Characters
23 Character[] lettersCopy = new Character[3];
24 List<Character> copyList = Arrays.asList(lettersCopy);
25
26 // copy the contents of list into copyList
27
28 System.out.printf("%nAfter copying, copyList contains:%n");
29 output(copyList);
30
31 // fill list with Rs
32
33 System.out.printf("%nAfter calling fill, list contains:%n");
34 output(list);
35 }
36
37 // output List information
38 private static void output(List<Character> listRef)
39 {

Fig. 16.11 | Collections methods reverse, fill, copy, max and min. (Part 1 of 2.)

Collections.reverse(list); // reverse order the elements

Collections.copy(copyList, list);

Collections.fill(list, 'R');

704 Chapter 16 Generic Collections

Line 13 creates List<Character> variable list and initializes it with a List view of
the Character array letters. Lines 14–15 output the current contents of the List. Line
18 calls Collections method reverse to reverse the order of list. Method reverse takes
one List argument. Since list is a List view of array letters, the array’s elements are
now in reverse order. The reversed contents are output in lines 19–20. Line 27 uses Col-
lections method copy to copy list’s elements into copyList. Changes to copyList do
not change letters, because copyList is a separate List that’s not a List view of the array
letters. Method copy requires two List arguments—the destination List and the
source List. Line 32 calls Collections method fill to place the character 'R' in each
list element. Because list is a List view of the array letters, this operation changes
each element in letters to 'R'. Method fill requires a List for the first argument and
an Object for the second argument—in this case, the Object is the boxed version of the
character 'R'. Lines 45–46 call Collections methods max and min to find the largest and
the smallest element of a Collection, respectively. Recall that interface List extends
interface Collection, so a List is a Collection.

16.7.4 Method binarySearch
The high-speed binary search algorithm—which we discuss in detail in Section 19.4—is
built into the Java collections framework as a static Collections method binarySearch.
This method locates an object in a List (e.g., a LinkedList or an ArrayList). If the object
is found, its index is returned. If the object is not found, binarySearch returns a negative

40 System.out.print("The list is: ");
41
42 for (Character element : listRef)
43 System.out.printf("%s ", element);
44
45 System.out.printf("%nMax: %s",);
46 System.out.printf(" Min: %s%n",);
47 }
48 } // end class Algorithms1

list contains:
The list is: P C M
Max: P Min: C

After calling reverse, list contains:
The list is: M C P
Max: P Min: C

After copying, copyList contains:
The list is: M C P
Max: P Min: C

After calling fill, list contains:
The list is: R R R
Max: R Min: R

Fig. 16.11 | Collections methods reverse, fill, copy, max and min. (Part 2 of 2.)

Collections.max(listRef)
Collections.min(listRef)

16.7 Collections Methods 705

value. Method binarySearch determines this negative value by first calculating the inser-
tion point and making its sign negative. Then, binarySearch subtracts 1 from the inser-
tion point to obtain the return value, which guarantees that method binarySearch returns
positive numbers (>= 0) if and only if the object is found. If multiple elements in the list
match the search key, there’s no guarantee which one will be located first. Figure 16.12
uses method binarySearch to search for a series of strings in an ArrayList.

1 // Fig. 16.12: BinarySearchTest.java
2 // Collections method binarySearch.
3 import java.util.List;
4 import java.util.Arrays;
5 import java.util.Collections;
6 import java.util.ArrayList;
7
8 public class BinarySearchTest
9 {

10 public static void main(String[] args)
11 {
12 // create an ArrayList<String> from the contents of colors array
13 String[] colors = {"red", "white", "blue", "black", "yellow",
14 "purple", "tan", "pink"};
15 List<String> list =
16 new ArrayList<>(Arrays.asList(colors));
17
18
19 System.out.printf("Sorted ArrayList: %s%n", list);
20
21 // search list for various values
22 printSearchResults(list, "black"); // first item
23 printSearchResults(list, "red"); // middle item
24 printSearchResults(list, "pink"); // last item
25 printSearchResults(list, "aqua"); // below lowest
26 printSearchResults(list, "gray"); // does not exist
27 printSearchResults(list, "teal"); // does not exist
28 }
29
30 // perform search and display result
31 private static void printSearchResults(
32 List<String> list, String key)
33 {
34 int result = 0;
35
36 System.out.printf("%nSearching for: %s%n", key);
37
38
39 if (result >= 0)
40 System.out.printf("Found at index %d%n", result);
41 else
42 System.out.printf("Not Found (%d)%n",result);
43 }
44 } // end class BinarySearchTest

Fig. 16.12 | Collections method binarySearch. (Part 1 of 2.)

Collections.sort(list); // sort the ArrayList

result = Collections.binarySearch(list, key);

706 Chapter 16 Generic Collections

Lines 15–16 initialize list with an ArrayList containing a copy of the elements in
array colors. Collections method binarySearch expects its List argument’s elements to
be sorted in ascending order, so line 18 uses Collections method sort to sort the list. If the
List argument’s elements are not sorted, the result of using binarySearch is undefined. Line
19 outputs the sorted list. Lines 22–27 call method printSearchResults (lines 31–43) to
perform searches and output the results. Line 37 calls Collections method binarySearch
to search list for the specified key. Method binarySearch takes a List as the first argument
and an Object as the second argument. Lines 39–42 output the results of the search. An
overloaded version of binarySearch takes a Comparator object as its third argument, which
specifies how binarySearch should compare the search key to the List’s elements.

16.7.5 Methods addAll, frequency and disjoint
Class Collections also provides the methods addAll, frequency and disjoint. Collec-
tions method addAll takes two arguments—a Collection into which to insert the new
element(s) and an array that provides elements to be inserted. Collections method fre-
quency takes two arguments—a Collection to be searched and an Object to be searched
for in the collection. Method frequency returns the number of times that the second ar-
gument appears in the collection. Collections method disjoint takes two Collections
and returns true if they have no elements in common. Figure 16.13 demonstrates the use
of methods addAll, frequency and disjoint.

Sorted ArrayList: [black, blue, pink, purple, red, tan, white, yellow]

Searching for: black
Found at index 0

Searching for: red
Found at index 4

Searching for: pink
Found at index 2

Searching for: aqua
Not Found (-1)

Searching for: gray
Not Found (-3)

Searching for: teal
Not Found (-7)

1 // Fig. Fig. 16.13: Algorithms2.java
2 // Collections methods addAll, frequency and disjoint.
3 import java.util.ArrayList;
4 import java.util.List;
5 import java.util.Arrays;
6 import java.util.Collections;

Fig. 16.13 | Collections methods addAll, frequency and disjoint. (Part 1 of 2.)

Fig. 16.12 | Collections method binarySearch. (Part 2 of 2.)

16.7 Collections Methods 707

Line 14 initializes list1 with elements in array colors, and lines 17–19 add Strings
"black", "red" and "green" to list2. Line 27 invokes method addAll to add elements
in array colors to list2. Line 36 gets the frequency of String "red" in list2 using
method frequency. Line 41 invokes method disjoint to test whether Collections list1
and list2 have elements in common, which they do in this example.

7
8 public class Algorithms2
9 {

10 public static void main(String[] args)
11 {
12 // initialize list1 and list2
13 String[] colors = {"red", "white", "yellow", "blue"};
14 List<String> list1 = Arrays.asList(colors);
15 ArrayList<String> list2 = new ArrayList<>();
16
17 list2.add("black"); // add "black" to the end of list2
18 list2.add("red"); // add "red" to the end of list2
19 list2.add("green"); // add "green" to the end of list2
20
21 System.out.print("Before addAll, list2 contains: ");
22
23 // display elements in list2
24 for (String s : list2)
25 System.out.printf("%s ", s);
26
27
28
29 System.out.printf("%nAfter addAll, list2 contains: ");
30
31 // display elements in list2
32 for (String s : list2)
33 System.out.printf("%s ", s);
34
35
36
37
38
39
40
41
42
43 System.out.printf("list1 and list2 %s elements in common%n",
44 (disjoint ? "do not have" : "have"));
45 }
46 } // end class Algorithms2

Before addAll, list2 contains: black red green
After addAll, list2 contains: black red green red white yellow blue
Frequency of red in list2: 2
list1 and list2 have elements in common

Fig. 16.13 | Collections methods addAll, frequency and disjoint. (Part 2 of 2.)

Collections.addAll(list2, colors); // add colors Strings to list2

// get frequency of "red"
int frequency = Collections.frequency(list2, "red");
System.out.printf(
 "%nFrequency of red in list2: %d%n", frequency);

// check whether list1 and list2 have elements in common
boolean disjoint = Collections.disjoint(list1, list2);

708 Chapter 16 Generic Collections

16.8 Stack Class of Package java.util
We introduced the concept of a stack in Section 6.6 when we discussed the method-call
stack. In Chapter 21, Custom Generic Data Structures, we’ll learn how to build data struc-
tures, including linked lists, stacks, queues and trees. In a world of software reuse, rather than
building data structures as we need them, we can often take advantage of existing data struc-
tures. In this section, we investigate class Stack in the Java utilities package (java.util).

Class Stack extends class Vector to implement a stack data structure. Figure 16.14
demonstrates several Stack methods. For the details of class Stack, visit http://
docs.oracle.com/javase/7/docs/api/java/util/Stack.html.

1 // Fig. 16.14: StackTest.java
2 // Stack class of package java.util.
3
4
5
6 public class StackTest
7 {
8 public static void main(String[] args)
9 {

10
11
12 // use push method
13
14 System.out.println("Pushed 12L");
15 printStack(stack);
16
17 System.out.println("Pushed 34567");
18 printStack(stack);
19
20 System.out.println("Pushed 1.0F");
21 printStack(stack);
22
23 System.out.println("Pushed 1234.5678 ");
24 printStack(stack);
25
26 // remove items from stack
27 try
28 {
29 Number removedObject = null;
30
31 // pop elements from stack
32 while (true)
33 {
34
35 System.out.printf("Popped %s%n", removedObject);
36 printStack(stack);
37 }
38 }
39 catch (EmptyStackException emptyStackException)
40 {

Fig. 16.14 | Stack class of package java.util. (Part 1 of 2.)

import java.util.Stack;
import java.util.EmptyStackException;

Stack<Number> stack = new Stack<>(); // create a Stack

stack.push(12L); // push long value 12L

stack.push(34567); // push int value 34567

stack.push(1.0F); // push float value 1.0F

stack.push(1234.5678); // push double value 1234.5678

removedObject = stack.pop(); // use pop method

http://docs.oracle.com/javase/7/docs/api/java/util/Stack.html
http://docs.oracle.com/javase/7/docs/api/java/util/Stack.html

16.8 Stack Class of Package java.util 709

Line 10 creates an empty Stack of Numbers. Class Number (in package java.lang) is
the superclass of the type-wrapper classes for the primitive numeric types (e.g., Integer,
Double). By creating a Stack of Numbers, objects of any class that extends Number can be
pushed onto the Stack. Lines 13, 16, 19 and 22 each call Stack method push to add a
Number object to the top of the stack. Note the literals 12L (line 13) and 1.0F (line 19).
Any integer literal that has the suffix L is a long value. An integer literal without a suffix

41 emptyStackException.printStackTrace();
42 }
43 }
44
45 // display Stack contents
46 private static void printStack(Stack<Number> stack)
47 {
48 if ()
49 System.out.printf("stack is empty%n%n"); // the stack is empty
50 else // stack is not empty
51 System.out.printf("stack contains: %s (top)%n", stack);
52 }
53 } // end class StackTest

Pushed 12L
stack contains: [12] (top)
Pushed 34567
stack contains: [12, 34567] (top)
Pushed 1.0F
stack contains: [12, 34567, 1.0] (top)
Pushed 1234.5678
stack contains: [12, 34567, 1.0, 1234.5678] (top)
Popped 1234.5678
stack contains: [12, 34567, 1.0] (top)
Popped 1.0
stack contains: [12, 34567] (top)
Popped 34567
stack contains: [12] (top)
Popped 12
stack is empty

java.util.EmptyStackException
 at java.util.Stack.peek(Unknown Source)
 at java.util.Stack.pop(Unknown Source)
 at StackTest.main(StackTest.java:34)

Error-Prevention Tip 16.1
Because Stack extends Vector, all public Vector methods can be called on Stack ob-
jects, even if the methods do not represent conventional stack operations. For example,
Vector method add can be used to insert an element anywhere in a stack—an operation
that could “corrupt” the stack. When manipulating a Stack, only methods push and pop
should be used to add elements to and remove elements from the Stack, respectively. In
Section 21.5, we create a Stack class using composition so that the Stack provides in its
public interface only the capabilities that should be allowed by a Stack.

Fig. 16.14 | Stack class of package java.util. (Part 2 of 2.)

stack.isEmpty()

710 Chapter 16 Generic Collections

is an int value. Similarly, any floating-point literal that has the suffix F is a float value.
A floating-point literal without a suffix is a double value. You can learn more about
numeric literals in the Java Language Specification at http://docs.oracle.com/javase/
specs/jls/se7/html/jls-15.html#jls-15.8.1.

An infinite loop (lines 32–37) calls Stack method pop to remove the top element of
the stack. The method returns a Number reference to the removed element. If there are no
elements in the Stack, method pop throws an EmptyStackException, which terminates
the loop. Class Stack also declares method peek. This method returns the top element of
the stack without popping the element off the stack.

Method printStack (lines 46–52) displays the stack’s contents. The current top of
the stack (the last value pushed onto the stack) is the first value printed. Line 48 calls Stack
method isEmpty (inherited by Stack from class Vector) to determine whether the stack
is empty. If it’s empty, the method returns true; otherwise, false.

16.9 Class PriorityQueue and Interface Queue
Recall that a queue is a collection that represents a waiting line—typically, insertions are
made at the back of a queue and deletions are made from the front. In Section 21.6, we’ll
discuss and implement a queue data structure. In this section, we investigate Java’s Queue
interface and PriorityQueue class from package java.util. Interface Queue extends in-
terface Collection and provides additional operations for inserting, removing and inspect-
ing elements in a queue. PriorityQueue, which implements the Queue interface, orders
elements by their natural ordering as specified by Comparable elements’ compareTo meth-
od or by a Comparator object that’s supplied to the constructor.

Class PriorityQueue provides functionality that enables insertions in sorted order into
the underlying data structure and deletions from the front of the underlying data structure.
When adding elements to a PriorityQueue, the elements are inserted in priority order
such that the highest-priority element (i.e., the largest value) will be the first element
removed from the PriorityQueue.

The common PriorityQueue operations are offer to insert an element at the appro-
priate location based on priority order, poll to remove the highest-priority element of the
priority queue (i.e., the head of the queue), peek to get a reference to the highest-priority
element of the priority queue (without removing that element), clear to remove all ele-
ments in the priority queue and size to get the number of elements in the priority queue.

Figure 16.15 demonstrates the PriorityQueue class. Line 10 creates a PriorityQueue
that stores Doubles with an initial capacity of 11 elements and orders the elements according
to the object’s natural ordering (the defaults for a PriorityQueue). PriorityQueue is a
generic class. Line 10 instantiates a PriorityQueue with a type argument Double. Class
PriorityQueue provides five additional constructors. One of these takes an int and a Com-
parator object to create a PriorityQueue with the initial capacity specified by the int and
the ordering by the Comparator. Lines 13–15 use method offer to add elements to the pri-
ority queue. Method offer throws a NullPointerException if the program attempts to
add a null object to the queue. The loop in lines 20–24 uses method size to determine
whether the priority queue is empty (line 20). While there are more elements, line 22 uses
PriorityQueue method peek to retrieve the highest-priority element in the queue for output
(without actually removing it from the queue). Line 23 removes the highest-priority ele-
ment in the queue with method poll, which returns the removed element.

http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.8.1
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.8.1

16.10 Sets 711

16.10 Sets
A Set is an unordered Collection of unique elements (i.e., no duplicates). The collections
framework contains several Set implementations, including HashSet and TreeSet. Hash-
Set stores its elements in a hash table, and TreeSet stores its elements in a tree. Hash tables
are presented in Section 16.11. Trees are discussed in Section 21.7.

Figure 16.16 uses a HashSet to remove duplicate strings from a List. Recall that both
List and Collection are generic types, so line 16 creates a List that contains String
objects, and line 20 passes a Collection of Strings to method printNonDuplicates.
Method printNonDuplicates (lines 24–35) takes a Collection argument. Line 27 con-
structs a HashSet<String> from the Collection<String> argument. By definition, Sets
do not contain duplicates, so when the HashSet is constructed, it removes any duplicates in
the Collection. Lines 31–32 output elements in the Set.

1 // Fig. 16.15: PriorityQueueTest.java
2 // PriorityQueue test program.
3 import java.util.PriorityQueue;
4
5 public class PriorityQueueTest
6 {
7 public static void main(String[] args)
8 {
9

10
11
12
13
14
15
16
17 System.out.print("Polling from queue: ");
18
19 // display elements in queue
20 while (> 0)
21 {
22 System.out.printf("%.1f ",); // view top element
23 // remove top element
24 }
25 }
26 } // end class PriorityQueueTest

Polling from queue: 3.2 5.4 9.8

Fig. 16.15 | PriorityQueue test program.

1 // Fig. 16.16: SetTest.java
2 // HashSet used to remove duplicate values from array of strings.
3 import java.util.List;
4 import java.util.Arrays;

Fig. 16.16 | HashSet used to remove duplicate values from an array of strings. (Part 1 of 2.)

// queue of capacity 11
PriorityQueue<Double> queue = new PriorityQueue<>();

// insert elements to queue
queue.offer(3.2);
queue.offer(9.8);
queue.offer(5.4);

queue.size()

queue.peek()
queue.poll();

712 Chapter 16 Generic Collections

Sorted Sets
The collections framework also includes the SortedSet interface (which extends Set) for
sets that maintain their elements in sorted order—either the elements’ natural order (e.g.,
numbers are in ascending order) or an order specified by a Comparator. Class TreeSet im-
plements SortedSet. The program in Fig. 16.17 places Strings into a TreeSet. The
Strings are sorted as they’re added to the TreeSet. This example also demonstrates range-
view methods, which enable a program to view a portion of a collection.

Line 14 creates a TreeSet<String> that contains the elements of array colors, then
assigns the new TreeSet<String> to SortedSet<String> variable tree. Line 17 outputs
the initial set of strings using method printSet (lines 33–39), which we discuss momen-
tarily. Line 31 calls TreeSet method headSet to get a subset of the TreeSet in which every

5 import java.util.HashSet;
6 import java.util.Set;
7 import java.util.Collection;
8
9 public class SetTest

10 {
11 public static void main(String[] args)
12 {
13 // create and display a List<String>
14 String[] colors = {"red", "white", "blue", "green", "gray",
15 "orange", "tan", "white", "cyan", "peach", "gray", "orange"};
16
17 System.out.printf("List: %s%n", list);
18
19 // eliminate duplicates then print the unique values
20 printNonDuplicates(list);
21 }
22
23 // create a Set from a Collection to eliminate duplicates
24 private static void printNonDuplicates()
25 {
26 // create a HashSet
27
28
29 System.out.printf("%nNonduplicates are: ");
30
31 for (String value : set)
32 System.out.printf("%s ", value);
33
34 System.out.println();
35 }
36 } // end class SetTest

List: [red, white, blue, green, gray, orange, tan, white, cyan, peach, gray,
orange]

Nonduplicates are: orange green white peach gray cyan red blue tan

Fig. 16.16 | HashSet used to remove duplicate values from an array of strings. (Part 2 of 2.)

List<String> list = Arrays.asList(colors);

Collection<String> values

Set<String> set = new HashSet<>(values);

16.10 Sets 713

element is less than "orange". The view returned from headSet is then output with
printSet. If any changes are made to the subset, they’ll also be made to the original
TreeSet, because the subset returned by headSet is a view of the TreeSet.

Line 25 calls TreeSet method tailSet to get a subset in which each element is greater
than or equal to "orange", then outputs the result. Any changes made through the
tailSet view are made to the original TreeSet. Lines 28–29 call SortedSet methods
first and last to get the smallest and largest elements of the set, respectively.

Method printSet (lines 33–39) accepts a SortedSet as an argument and prints it.
Lines 35–36 print each element of the SortedSet using the enhanced for statement.

1 // Fig. 16.17: SortedSetTest.java
2 // Using SortedSets and TreeSets.
3 import java.util.Arrays;
4 import java.util.SortedSet;
5 import java.util.TreeSet;
6
7 public class SortedSetTest
8 {
9 public static void main(String[] args)

10 {
11 // create TreeSet from array colors
12 String[] colors = {"yellow", "green", "black", "tan", "grey",
13 "white", "orange", "red", "green"};
14
15
16 System.out.print("sorted set: ");
17 printSet(tree);
18
19 // get headSet based on "orange"
20 System.out.print("headSet (\"orange\"): ");
21 printSet();
22
23 // get tailSet based upon "orange"
24 System.out.print("tailSet (\"orange\"): ");
25 printSet();
26
27 // get first and last elements
28 System.out.printf("first: %s%n",);
29 System.out.printf("last : %s%n",);
30 }
31
32 // output SortedSet using enhanced for statement
33 private static void printSet(SortedSet<String> set)
34 {
35 for (String s : set)
36 System.out.printf("%s ", s);
37
38 System.out.println();
39 }
40 } // end class SortedSetTest

Fig. 16.17 | Using SortedSets and TreeSets. (Part 1 of 2.)

SortedSet<String> tree = new TreeSet<>(Arrays.asList(colors));

tree.headSet("orange")

tree.tailSet("orange")

tree.first()
tree.last()

714 Chapter 16 Generic Collections

16.11 Maps
Maps associate keys to values. The keys in a Map must be unique, but the associated values
need not be. If a Map contains both unique keys and unique values, it’s said to implement
a one-to-one mapping. If only the keys are unique, the Map is said to implement a many-
to-one mapping—many keys can map to one value.

Maps differ from Sets in that Maps contain keys and values, whereas Sets contain only
values. Three of the several classes that implement interface Map are Hashtable, HashMap
and TreeMap. Hashtables and HashMaps store elements in hash tables, and TreeMaps store
elements in trees. This section discusses hash tables and provides an example that uses a
HashMap to store key–value pairs. Interface SortedMap extends Map and maintains its keys
in sorted order—either the elements’ natural order or an order specified by a Comparator.
Class TreeMap implements SortedMap.

Map Implementation with Hash Tables
When a program creates objects, it may need to store and retrieve them efficiently. Storing
and retrieving information with arrays is efficient if some aspect of your data directly
matches a numerical key value and if the keys are unique and tightly packed. If you have
100 employees with nine-digit social security numbers and you want to store and retrieve
employee data by using the social security number as a key, the task will require an array
with over 800 million elements, because nine-digit Social Security numbers must begin
with 001–899 (excluding 666) as per the Social Security Administration’s website

This is impractical for virtually all applications that use social security numbers as keys. A
program having an array that large could achieve high performance for both storing and
retrieving employee records by simply using the social security number as the array index.

Numerous applications have this problem—namely, that either the keys are of the
wrong type (e.g., not positive integers that correspond to array subscripts) or they’re of the
right type, but sparsely spread over a huge range. What is needed is a high-speed scheme for
converting keys such as social security numbers, inventory part numbers and the like into
unique array indices. Then, when an application needs to store something, the scheme
could convert the application’s key rapidly into an index, and the record could be stored
at that slot in the array. Retrieval is accomplished the same way: Once the application has
a key for which it wants to retrieve a data record, the application simply applies the con-
version to the key—this produces the array index where the data is stored and retrieved.

The scheme we describe here is the basis of a technique called hashing. Why the
name? When we convert a key into an array index, we literally scramble the bits, forming

sorted set: black green grey orange red tan white yellow
headSet ("orange"): black green grey
tailSet ("orange"): orange red tan white yellow
first: black
last : yellow

http://www.socialsecurity.gov/employer/randomization.html

Fig. 16.17 | Using SortedSets and TreeSets. (Part 2 of 2.)

http://www.socialsecurity.gov/employer/randomization.html

16.11 Maps 715

a kind of “mishmashed,” or hashed, number. The number actually has no real significance
beyond its usefulness in storing and retrieving a particular data record.

A glitch in the scheme is called a collision—this occurs when two different keys “hash
into” the same cell (or element) in the array. We cannot store two values in the same space,
so we need to find an alternative home for all values beyond the first that hash to a partic-
ular array index. There are many schemes for doing this. One is to “hash again” (i.e., to
apply another hashing transformation to the key to provide a next candidate cell in the
array). The hashing process is designed to distribute the values throughout the table, so the
assumption is that an available cell will be found with just a few hashes.

Another scheme uses one hash to locate the first candidate cell. If that cell is occupied,
successive cells are searched in order until an available cell is found. Retrieval works the
same way: The key is hashed once to determine the initial location and check whether it
contains the desired data. If it does, the search is finished. If it does not, successive cells are
searched linearly until the desired data is found.

The most popular solution to hash-table collisions is to have each cell of the table be
a hash “bucket,” typically a linked list of all the key–value pairs that hash to that cell. This
is the solution that Java’s Hashtable and HashMap classes (from package java.util) imple-
ment. Both Hashtable and HashMap implement the Map interface. The primary differences
between them are that HashMap is unsynchronized (multiple threads should not modify a
HashMap concurrently) and allows null keys and null values.

A hash table’s load factor affects the performance of hashing schemes. The load factor
is the ratio of the number of occupied cells in the hash table to the total number of cells
in the hash table. The closer this ratio gets to 1.0, the greater the chance of collisions.

Computer science students study hashing schemes in courses called “Data Structures”
and “Algorithms.” Classes Hashtable and HashMap enable you to use hashing without
having to implement hash-table mechanisms—a classic example of reuse. This concept is
profoundly important in our study of object-oriented programming. As discussed in ear-
lier chapters, classes encapsulate and hide complexity (i.e., implementation details) and
offer user-friendly interfaces. Properly crafting classes to exhibit such behavior is one of the
most valued skills in the field of object-oriented programming. Figure 16.18 uses a
HashMap to count the number of occurrences of each word in a string.

Performance Tip 16.2
The load factor in a hash table is a classic example of a memory-space/execution-time
trade-off: By increasing the load factor, we get better memory utilization, but the program
runs slower, due to increased hashing collisions. By decreasing the load factor, we get better
program speed, because of reduced hashing collisions, but we get poorer memory utiliza-
tion, because a larger portion of the hash table remains empty.

1 // Fig. 16.18: WordTypeCount.java
2 // Program counts the number of occurrences of each word in a String.
3 import java.util.Map;
4 import java.util.HashMap;
5 import java.util.Set;
6 import java.util.TreeSet;

Fig. 16.18 | Program counts the number of occurrences of each word in a String. (Part 1 of 3.)

716 Chapter 16 Generic Collections

7 import java.util.Scanner;
8
9 public class WordTypeCount

10 {
11 public static void main(String[] args)
12 {
13
14
15
16 createMap(myMap); // create map based on user input
17 displayMap(myMap); // display map content
18 }
19
20 // create map from user input
21 private static void createMap(Map<String, Integer> map)
22 {
23 Scanner scanner = new Scanner(System.in); // create scanner
24 System.out.println("Enter a string:"); // prompt for user input
25 String input = scanner.nextLine();
26
27 // tokenize the input
28 String[] tokens = input.split(" ");
29
30 // processing input text
31 for (String token : tokens)
32 {
33 String word = token.toLowerCase(); // get lowercase word
34
35 // if the map contains the word
36 if () // is word in map
37 {
38
39
40 }
41 else
42
43 }
44 }
45
46 // display map content
47 private static void displayMap(Map<String, Integer> map)
48 {
49
50
51 // sort keys
52 TreeSet<String> sortedKeys = new TreeSet<>(keys);
53
54 System.out.printf("%nMap contains:%nKey\t\tValue%n");
55
56 // generate output for each key in map
57 for (String key : sortedKeys)
58 System.out.printf("%-10s%10s%n", key,);
59

Fig. 16.18 | Program counts the number of occurrences of each word in a String. (Part 2 of 3.)

// create HashMap to store String keys and Integer values
Map<String, Integer> myMap = new HashMap<>();

map.containsKey(word)

int count = map.get(word); // get current count
map.put(word, count + 1); // increment count

map.put(word, 1); // add new word with a count of 1 to map

Set<String> keys = map.keySet(); // get keys

map.get(key)

16.11 Maps 717

Line 14 creates an empty HashMap with a default initial capacity (16 elements) and a
default load factor (0.75)—these defaults are built into the implementation of HashMap.
When the number of occupied slots in the HashMap becomes greater than the capacity
times the load factor, the capacity is doubled automatically. HashMap is a generic class that
takes two type arguments—the type of key (i.e., String) and the type of value (i.e.,
Integer). Recall that the type arguments passed to a generic class must be reference types,
hence the second type argument is Integer, not int.

Line 16 calls method createMap (lines 21–44), which uses a Map to store the number of
occurrences of each word in the sentence. Line 25 obtains the user input, and line 28 token-
izes it. Lines 31–43 convert the next token to lowercase letters (line 33), then call Map
method containsKey (line 36) to determine whether the word is in the map (and thus has
occurred previously in the string). If the Map does not contain the word, line 42 uses Map
method put to create a new entry, with the word as the key and an Integer object con-
taining 1 as the value. Autoboxing occurs when the program passes integer 1 to method put,
because the map stores the number of occurrences as an Integer. If the word does exist in
the map, line 38 uses Map method get to obtain the key’s associated value (the count) in the
map. Line 39 increments that value and uses put to replace the key’s associated value.
Method put returns the key’s prior associated value, or null if the key was not in the map.

60 System.out.printf(
61 "%nsize: %d%nisEmpty: %b%n", ,);
62 }
63 } // end class WordTypeCount

Enter a string:
this is a sample sentence with several words this is another sample
sentence with several different words
Map contains:
Key Value
a 1
another 1
different 1
is 2
sample 2
sentence 2
several 2
this 2
with 2
words 2
size: 10
isEmpty: false

Error-Prevention Tip 16.2
Always use immutable keys with a Map. The key determines where the corresponding value
is placed. If the key has changed since the insert operation, when you subsequently attempt
to retrieve that value, it might not be found. In this chapter’s examples, we use Strings
as keys and Strings are immutable.

Fig. 16.18 | Program counts the number of occurrences of each word in a String. (Part 3 of 3.)

map.size() map.isEmpty()

718 Chapter 16 Generic Collections

Method displayMap (lines 47–62) displays all the entries in the map. It uses HashMap
method keySet (line 49) to get a set of the keys. The keys have type String in the map, so
method keySet returns a generic type Set with type parameter specified to be String.
Line 52 creates a TreeSet of the keys, in which the keys are sorted. The loop in lines 57–
58 accesses each key and its value in the map. Line 58 displays each key and its value using
format specifier %-10s to left align each key and format specifier %10s to right align each
value. The keys are displayed in ascending order. Line 61 calls Map method size to get the
number of key–value pairs in the Map. Line 61 also calls Map method isEmpty, which
returns a boolean indicating whether the Map is empty.

16.12 Properties Class
A Properties object is a persistent Hashtable that stores key–value pairs of Strings—assum-
ing that you use methods setProperty and getProperty to manipulate the table rather than
inherited Hashtable methods put and get. By “persistent,” we mean that the Properties
object can be written to an output stream (possibly a file) and read back in through an input
stream. A common use of Properties objects in prior versions of Java was to maintain ap-
plication-configuration data or user preferences for applications. [Note: The Preferences API
(package java.util.prefs) is meant to replace this particular use of class Properties but
is beyond the scope of this book. To learn more, visit http://bit.ly/JavaPreferences.]
Class Properties extends class Hashtable<Object, Object>. Figure 16.19 demonstrates
several methods of class Properties.

 Line 13 creates an empty Properties table with no default properties. Class Prop-
erties also provides an overloaded constructor that receives a reference to a Properties
object containing default property values. Lines 16 and 17 each call Properties method
setProperty to store a value for the specified key. If the key does not exist in the table,
setProperty returns null; otherwise, it returns the previous value for that key.

1 // Fig. 16.19: PropertiesTest.java
2 // Demonstrates class Properties of the java.util package.
3 import java.io.FileOutputStream;
4 import java.io.FileInputStream;
5 import java.io.IOException;
6 import java.util.Properties;
7 import java.util.Set;
8
9 public class PropertiesTest

10 {
11 public static void main(String[] args)
12 {
13
14
15
16
17
18
19 System.out.println("After setting properties");
20 listProperties(table);

Fig. 16.19 | Properties class of package java.util. (Part 1 of 3.)

Properties table = new Properties();

// set properties
table.setProperty("color", "blue");
table.setProperty("width", "200");

http://bit.ly/JavaPreferences

16.12 Properties Class 719

21
22
23
24
25 System.out.println("After replacing properties");
26 listProperties(table);
27
28 saveProperties(table);
29
30
31
32 System.out.println("After clearing properties");
33 listProperties(table);
34
35 loadProperties(table);
36
37
38
39
40 // check if value is in table
41 if (value != null)
42 System.out.printf("Property color's value is %s%n", value);
43 else
44 System.out.println("Property color is not in table");
45 }
46
47 // save properties to a file
48 private static void saveProperties(Properties props)
49 {
50 // save contents of table
51 try
52 {
53 FileOutputStream output = new FileOutputStream("props.dat");
54
55 output.close();
56 System.out.println("After saving properties");
57 listProperties(props);
58 }
59 catch (IOException ioException)
60 {
61 ioException.printStackTrace();
62 }
63 }
64
65 // load properties from a file
66 private static void loadProperties(Properties props)
67 {
68 // load contents of table
69 try
70 {
71 FileInputStream input = new FileInputStream("props.dat");
72
73 input.close();

Fig. 16.19 | Properties class of package java.util. (Part 2 of 3.)

// replace property value
table.setProperty("color", "red");

table.clear(); // empty table

// get value of property color
Object value = table.getProperty("color");

props.store(output, "Sample Properties"); // save properties

props.load(input); // load properties

720 Chapter 16 Generic Collections

Line 38 calls Properties method getProperty to locate the value associated with the
specified key. If the key is not found in this Properties object, getProperty returns null.
An overloaded version of this method receives a second argument that specifies the default
value to return if getProperty cannot locate the key.

Line 54 calls Properties method store to save the Properties object’s contents to
the OutputStream specified as the first argument (in this case, a FileOutputStream). The
second argument, a String, is a description written into the file. Properties method
list, which takes a PrintStream argument, is useful for displaying the list of properties.

74 System.out.println("After loading properties");
75 listProperties(props);
76 }
77 catch (IOException ioException)
78 {
79 ioException.printStackTrace();
80 }
81 }
82
83 // output property values
84 private static void listProperties(Properties props)
85 {
86
87
88 // output name/value pairs
89 for (Object key : keys)
90 System.out.printf(
91 "%s\t%s%n", key,);
92
93 System.out.println();
94 }
95 } // end class PropertiesTest

After setting properties
color blue
width 200

After replacing properties
color red
width 200

After saving properties
color red
width 200

After clearing properties

After loading properties
color red
width 200

Property color's value is red

Fig. 16.19 | Properties class of package java.util. (Part 3 of 3.)

Set<Object> keys = props.keySet(); // get property names

props.getProperty((String) key)

16.13 Synchronized Collections 721

Line 72 calls Properties method load to restore the contents of the Properties
object from the InputStream specified as the first argument (in this case, a FileInput-
Stream). Line 86 calls Properties method keySet to obtain a Set of the property names.
Because class Properties stores its contents as Objects, a Set of Object references is
returned. Line 91 obtains the value of a property by passing a key to method getProperty.

16.13 Synchronized Collections
In Chapter 23, we discuss multithreading. Except for Vector and Hashtable, the collec-
tions in the collections framework are unsynchronized by default, so they can operate effi-
ciently when multithreading is not required. Because they’re unsynchronized, however,
concurrent access to a Collection by multiple threads could cause indeterminate results
or fatal errors—as we demonstrate in Chapter 23. To prevent potential threading prob-
lems, synchronization wrappers are used for collections that might be accessed by multi-
ple threads. A wrapper object receives method calls, adds thread synchronization (to
prevent concurrent access to the collection) and delegates the calls to the wrapped collec-
tion object. The Collections API provides a set of static methods for wrapping collec-
tions as synchronized versions. Method headers for the synchronization wrappers are listed
in Fig. 16.20. Details about these methods are available at http://docs.oracle.com/
javase/7/docs/api/java/util/Collections.html. All these methods take a generic
type and return a synchronized view of the generic type. For example, the following code
creates a synchronized List (list2) that stores String objects:

16.14 Unmodifiable Collections
The Collections class provides a set of static methods that create unmodifiable wrap-
pers for collections. Unmodifiable wrappers throw UnsupportedOperationExceptions if
attempts are made to modify the collection. In an unmodifiable collection, the references
stored in the collection are not modifiable, but the objects they refer are modifiable unless
they belong to an immutable class like String. Headers for these methods are listed in
Fig. 16.21. Details about these methods are available at http://docs.oracle.com/
javase/7/docs/api/java/util/Collections.html. All these methods take a generic

List<String> list1 = new ArrayList<>();
List<String> list2 = Collections.synchronizedList(list1);

public static method headers

<T> Collection<T> synchronizedCollection(Collection<T> c)

<T> List<T> synchronizedList(List<T> aList)

<T> Set<T> synchronizedSet(Set<T> s)

<T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s)

<K, V> Map<K, V> synchronizedMap(Map<K, V> m)

<K, V> SortedMap<K, V> synchronizedSortedMap(SortedMap<K, V> m)

Fig. 16.20 | Synchronization wrapper methods.

http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html

722 Chapter 16 Generic Collections

type and return an unmodifiable view of the generic type. For example, the following code
creates an unmodifiable List (list2) that stores String objects:

16.15 Abstract Implementations
The collections framework provides various abstract implementations of Collection in-
terfaces from which you can quickly “flesh out” complete customized implementations.
These abstract implementations include a thin Collection implementation called an Ab-
stractCollection, a List implementation that allows array-like access to its elements
called an AbstractList, a Map implementation called an AbstractMap, a List implemen-
tation that allows sequential access (from beginning to end) to its elements called an
AbstractSequentialList, a Set implementation called an AbstractSet and a Queue im-
plementation called AbstractQueue. You can learn more about these classes at http://
docs.oracle.com/javase/7/docs/api/java/util/package-summary.html. To write a
custom implementation, you can extend the abstract implementation that best meets your
needs, implement each of the class’s abstract methods and override the class’s concrete
methods as necessary.

16.16 Wrap-Up
This chapter introduced the Java collections framework. You learned the collection hier-
archy and how to use the collections-framework interfaces to program with collections
polymorphically. You used classes ArrayList and LinkedList, which both implement the
List interface. We presented Java’s built-in interfaces and classes for manipulating stacks
and queues. You used several predefined methods for manipulating collections. You
learned how to use the Set interface and class HashSet to manipulate an unordered collec-
tion of unique values. We continued our presentation of sets with the SortedSet interface

List<String> list1 = new ArrayList<>();
List<String> list2 = Collections.unmodifiableList(list1);

Software Engineering Observation 16.6
You can use an unmodifiable wrapper to create a collection that offers read-only access to
others, while allowing read–write access to yourself. You do this simply by giving others a
reference to the unmodifiable wrapper while retaining for yourself a reference to the
original collection.

public static method headers

<T> Collection<T> unmodifiableCollection(Collection<T> c)

<T> List<T> unmodifiableList(List<T> aList)

<T> Set<T> unmodifiableSet(Set<T> s)

<T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s)

<K, V> Map<K, V> unmodifiableMap(Map<K, V> m)

<K, V> SortedMap<K, V> unmodifiableSortedMap(SortedMap<K, V> m)

Fig. 16.21 | Unmodifiable wrapper methods.

http://docs.oracle.com/javase/7/docs/api/java/util/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/util/package-summary.html

 Summary 723

and class TreeSet for manipulating a sorted collection of unique values. You then learned
about Java’s interfaces and classes for manipulating key–value pairs—Map, SortedMap,
Hashtable, HashMap and TreeMap. We discussed the specialized Properties class for ma-
nipulating key–value pairs of Strings that can be stored to a file and retrieved from a file.
Finally, we discussed the Collections class’s static methods for obtaining unmodifiable
and synchronized views of collections. For additional information on the collections
framework, visit http://docs.oracle.com/javase/7/docs/technotes/guides/col-
lections. In Chapter 17, Java SE 8 Lambdas and Streams, you’ll use Java SE 8’s new
functional programming capabilities to simplify collection operations. In Chapter 23,
Concurrency, you’ll learn how to improve performance on multi-core systems using Java’s
concurrent collections and parallel stream operations.

Summary
Section 16.1 Introduction
• The Java collections framework provides prebuilt data structures and methods to manipulate

them.

Section 16.2 Collections Overview
• A collection is an object that can hold references to other objects.

• The classes and interfaces of the collections framework are in package java.util.

Section 16.3 Type-Wrapper Classes
• Type-wrapper classes (e.g., Integer, Double, Boolean) enable programmers to manipulate prim-

itive-type values as objects (p. 687). Objects of these classes can be used in collections.

Section 16.4 Autoboxing and Auto-Unboxing
• Boxing (p. 687) converts a primitive value to an object of the corresponding type-wrapper class.

Unboxing (p. 687) converts a type-wrapper object to the corresponding primitive value.

• Java performs boxing conversions and unboxing conversions automatically.

Section 16.5 Interface Collection and Class Collections
• Interfaces Set and List extend Collection (p. 686), which contains operations for adding, clear-

ing, comparing and retaining objects in a collection, and method iterator (p. 691) to obtain a
collection’s Iterator (p. 687).

• Class Collections (p. 688) provides static methods for manipulating collections.

Section 16.6 Lists
• A List (p. 694) is an ordered Collection that can contain duplicate elements.

• Interface List is implemented by classes ArrayList, LinkedList and Vector. ArrayList (p. 688)
is a resizable-array implementation. LinkedList (p. 688) is a linkedlist implementation of a List.

• Java SE 7 supports type inferencing with the <> notation in statements that declare and create
generic type variables and objects.

• Iterator method hasNext (p. 691) determines whether a Collection contains another element.
Method next returns a reference to the next object in the Collection and advances the Iterator.

• Method subList (p. 694) returns a view into a List. Changes made to this view are also made
to the List.

http://docs.oracle.com/javase/7/docs/technotes/guides/col-lections

724 Chapter 16 Generic Collections

• Method clear (p. 694) removes elements from a List.

• Method toArray (p. 695) returns the contents of a collection as an array.

Section 16.7 Collections Methods
• Algorithms sort (p. 697), binarySearch, reverse (p. 702), shuffle (p. 700), fill (p. 702),

copy, addAll (p. 693), frequency and disjoint operate on Lists. Algorithms min and max
(p. 703) operate on Collections.

• Algorithm addAll appends all the elements in an array to a collection (p. 706), frequency
(p. 706) calculates how many elements in the collection are equal to the specified element, and
disjoint (p. 706) determines whether two collections have elements in common.

• Algorithms min and max find the smallest and largest items in a collection.

• The Comparator interface (p. 697) provides a means of sorting a Collection’s elements in an or-
der other than their natural order.

• Collections method reverseOrder (p. 698) returns a Comparator object that can be used with
sort to sort a collection’s elements in reverse order.

• Algorithm shuffle (p. 700) randomly orders the elements of a List.

• Algorithm binarySearch (p. 704) locates an Object in a sorted List.

Section 16.8 Stack Class of Package java.util
• Class Stack (p. 708) extends Vector. Stack method push (p. 709) adds its argument to the top

of the stack. Method pop (p. 710) removes the top element of the stack. Method peek returns a
reference to the top element without removing it. Stack method isEmpty (p. 710) determines
whether the stack is empty.

Section 16.9 Class PriorityQueue and Interface Queue
• Interface Queue (p. 710) extends interface Collection and provides additional operations for in-

serting, removing and inspecting elements in a queue.

• PriorityQueue (p. 710) implements interface Queue and orders elements by their natural order-
ing or by a Comparator object that’s supplied to the constructor.

• PriorityQueue method offer (p. 710) inserts an element at the appropriate location based on
priority order. Method poll (p. 710) removes the highest-priority element of the priority queue.
Method peek (peek) gets a reference to the highest-priority element of the priority queue. Meth-
od clear (p. 710) removes all elements in the priority queue. Method size (p. 710) gets the
number of elements in the priority queue.

Section 16.10 Sets
• A Set (p. 711) is an unordered Collection that contains no duplicate elements. HashSet (p. 711)

stores its elements in a hash table. TreeSet (p. 711) stores its elements in a tree.

• Interface SortedSet (p. 712) extends Set and represents a set that maintains its elements in sort-
ed order. Class TreeSet implements SortedSet.

• TreeSet method headSet (p. 712) gets a TreeSet view containing elements that are less than a
specified element. Method tailSet (p. 713) gets a TreeSet view containing elements that are
greater than or equal to a specified element. Any changes made to these views are made to the
original TreeSet.

Section 16.11 Maps
• Maps (p. 714) store key–value pairs and cannot contain duplicate keys. HashMaps (p. 714) and

Hashtables (p. 714) store elements in a hash table, and TreeMaps (p. 714) store elements in a tree.

 Self-Review Exercises 725

• HashMap takes two type arguments—the type of key and the type of value.

• HashMap method put (p. 717) adds a key–value pair to a HashMap. Method get (p. 717) locates the
value associated with the specified key. Method isEmpty (p. 718) determines if the map is empty.

• HashMap method keySet (p. 718) returns a set of the keys. Map method size (p. 718) returns the
number of key–value pairs in the Map.

• Interface SortedMap (p. 714) extends Map and represents a map that maintains its keys in sorted
order. Class TreeMap implements SortedMap.

Section 16.12 Properties Class
• A Properties object (p. 718) is a persistent subclass of Hashtable.

• The Properties no-argument constructor creates an empty Properties table. An overloaded
constructor receives a Properties object containing default property values.

• Properties method setProperty (p. 718) specifies the value associated with its key argument.
Method getProperty (p. 718) locates the value of the key specified as an argument. Method
store (p. 720) saves the contents of a Properties object to specified OutputStream. Method load
(p. 721) restores the contents of a Properties object from the specified InputStream.

Section 16.13 Synchronized Collections
• Collections from the collections framework are unsynchronized. Synchronization wrappers

(p. 721) are provided for collections that can be accessed by multiple threads simultaneously.

Section 16.14 Unmodifiable Collections
• Unmodifiable collection wrappers (p. 721) throw UnsupportedOperationExceptions (p. 694) if

attempts are made to modify the collection.

Section 16.15 Abstract Implementations
• The collections framework provides various abstract implementations of collection interfaces

from which you can quickly flesh out complete customized implementations.

Self-Review Exercises
16.1 Fill in the blanks in each of the following statements:

a) A(n) is used to iterate through a collection and can remove elements from the
collection during the iteration.

b) An element in a List can be accessed by using the element’s .
c) Assuming that myArray contains references to Double objects, occurs when the

statement "myArray[0] = 1.25;" executes.
d) Java classes and provide the capabilities of arraylike data structures

that can resize themselves dynamically.
e) If you do not specify a capacity increment, the system will the size of the Vec-

tor each time additional capacity is needed.
f) You can use a(n) to create a collection that offers only read-only access to oth-

ers while allowing read–write access to yourself.
g) Assuming that myArray contains references to Double objects, occurs when the

statement "double number = myArray[0];" executes.
h) Collections algorithm determines if two collections have elements in common.

16.2 Determine whether each statement is true or false. If false, explain why.
a) Values of primitive types may be stored directly in a collection.
b) A Set can contain duplicate values.

726 Chapter 16 Generic Collections

c) A Map can contain duplicate keys.
d) A LinkedList can contain duplicate values.
e) Collections is an interface.
f) Iterators can remove elements.
g) With hashing, as the load factor increases, the chance of collisions decreases.
h) A PriorityQueue permits null elements.

Answers to Self-Review Exercises
16.1 a) Iterator. b) index. c) autoboxing. d) ArrayList, Vector. e) double. f) unmodifiable
wrapper. g) auto-unboxing. h) disjoint.

16.2 a) False. Autoboxing occurs when adding a primitive type to a collection, which means the
primitive type is converted to its corresponding type-wrapper class.

b) False. A Set cannot contain duplicate values.
c) False. A Map cannot contain duplicate keys.
d) True.
e) False. Collections is a class; Collection is an interface.
f) True.
g) False. As the load factor increases, fewer slots are available relative to the total number

of slots, so the chance of a collision increases.
h) False. Attempting to insert a null element causes a NullPointerException.

Execises
16.3 Define each of the following terms:

a) Collection
b) Collections
c) Comparator
d) List
e) load factor
f) collision
g) space/time trade-off in hashing
h) HashMap

16.4 Explain briefly the operation of each of the following methods of class Vector:
a) add
b) set
c) remove
d) removeAllElements
e) removeElementAt
f) firstElement
g) lastElement
h) contains
i) indexOf
j) size
k) capacity

16.5 Explain why inserting additional elements into a Vector object whose current size is less
than its capacity is a relatively fast operation and why inserting additional elements into a Vector
object whose current size is at capacity is a relatively slow operation.

16.6 By extending class Vector, Java’s designers were able to create class Stack quickly. What are
the negative aspects of this use of inheritance, particularly for class Stack?

 Execises 727

16.7 Briefly answer the following questions:
a) What is the primary difference between a Set and a Map?
b) What happens when you add a primitive type (e.g., double) value to a collection?
c) Can you print all the elements in a collection without using an Iterator? If yes, how?

16.8 Explain briefly the operation of each of the following Iterator-related methods:
a) iterator
b) hasNext
c) next

16.9 Explain briefly the operation of each of the following methods of class HashMap:
a) put
b) get
c) isEmpty
d) containsKey
e) keySet

16.10 Determine whether each of the following statements is true or false. If false, explain why.
a) Elements in a Collection must be sorted in ascending order before a binarySearch may

be performed.
b) Method first gets the first element in a TreeSet.
c) A List created with Arrays method asList is resizable.

16.11 Explain the operation of each of the following methods of the Properties class:
a) load
b) store
c) getProperty
d) list

16.12 Rewrite lines 16–25 in Fig. 16.3 to be more concise by using the asList method and the
LinkedList constructor that takes a Collection argument.

16.13 (Duplicate Elimination) Write a program that reads in a series of first names and eliminates
duplicates by storing them in a Set. Allow the user to search for a first name.

16.14 (Counting Letters) Modify the program of Fig. 16.18 to count the number of occurrences
of each letter rather than of each word. For example, the string "HELLO THERE" contains two Hs, three
Es, two Ls, one O, one T and one R. Display the results.

16.15 (Color Chooser) Use a HashMap to create a reusable class for choosing one of the 13 pre-
defined colors in class Color. The names of the colors should be used as keys, and the predefined
Color objects should be used as values. Place this class in a package that can be imported into any
Java program. Use your new class in an application that allows the user to select a color and draw a
shape in that color.

16.16 (Counting Duplicate Words) Write a program that determines and prints the number of
duplicate words in a sentence. Treat uppercase and lowercase letters the same. Ignore punctuation.

16.17 (Inserting Elements in a LinkedList in Sorted Order) Write a program that inserts 25 ran-
dom integers from 0 to 100 in order into a LinkedList object. The program should sort the ele-
ments, then calculate the sum of the elements and the floating-point average of the elements.

16.18 (Copying and Reversing LinkedLists) Write a program that creates a LinkedList object of
10 characters, then creates a second LinkedList object containing a copy of the first list, but in re-
verse order.

16.19 (Prime Numbers and Prime Factors) Write a program that takes a whole number input
from a user and determines whether it’s prime. If the number is not prime, display its unique prime

728 Chapter 16 Generic Collections

factors. Remember that a prime number’s factors are only 1 and the prime number itself. Every
number that’s not prime has a unique prime factorization. For example, consider the number 54.
The prime factors of 54 are 2, 3, 3 and 3. When the values are multiplied together, the result is 54.
For the number 54, the prime factors output should be 2 and 3. Use Sets as part of your solution.

16.20 (Sorting Words with a TreeSet) Write a program that uses a String method split to to-
kenize a line of text input by the user and places each token in a TreeSet. Print the elements of the
TreeSet. [Note: This should cause the elements to be printed in ascending sorted order.]

16.21 (Changing a PriorityQueue’s Sort Order) The output of Fig. 16.15 shows that Priority-
Queue orders Double elements in ascending order. Rewrite Fig. 16.15 so that it orders Double ele-
ments in descending order (i.e., 9.8 should be the highest-priority element rather than 3.2).

17Java SE 8 Lambdas and
Streams

Oh, could I flow like thee,
and make thy stream
My great example,
as it is my theme!
—Sir John Denham

O b j e c t i v e s
In this chapter you’ll:

■ Learn what functional
programming is and how it
complements object-oriented
programming.

■ Use functional programming
to simplify programming
tasks you’ve performed with
other techniques.

■ Write lambda expressions
that implement functional
interfaces.

■ Learn what streams are and
how stream pipelines are
formed from stream sources,
intermediate operations and
terminal operations.

■ Perform operations on
IntStreams, including
forEach, count, min, max,
sum, average, reduce,
filter and sorted.

■ Perform operations on
Streams, including filter,
map, sorted, collect,
forEach, findFirst,
distinct, mapToDouble
and reduce.

■ Create streams representing
ranges of int values and
random int values.

730 Chapter 17 Java SE 8 Lambdas and Streams

17.1 Introduction
The way you think about Java programming is about to change profoundly. Prior to Java
SE 8, Java supported three programming paradigms—procedural programming, object-ori-
ented programming and generic programming. Java SE 8 adds functional programming. The
new language and library capabilities that support this paradigm were added to Java as part
of Project Lambda:

In this chapter, we’ll define functional programming and show how to use it to write
programs faster, more concisely and with fewer bugs than programs written with previous
techniques. In Chapter 23, Concurrency, you’ll see that functional programs are easier to
parallelize (i.e., perform multiple operations simultaneously) so that your programs can
take advantage of multi-core architectures to enhance performance. Before reading this
chapter, you should review Section 10.10, which introduced Java SE 8’s new interface fea-

17.1 Introduction
17.2 Functional Programming

Technologies Overview
17.2.1 Functional Interfaces
17.2.2 Lambda Expressions
17.2.3 Streams

17.3 IntStream Operations
17.3.1 Creating an IntStream and

Displaying Its Values with the
forEach Terminal Operation

17.3.2 Terminal Operations count, min,
max, sum and average

17.3.3 Terminal Operation reduce
17.3.4 Intermediate Operations: Filtering and

Sorting IntStream Values
17.3.5 Intermediate Operation: Mapping
17.3.6 Creating Streams of ints with

IntStream Methods range and
rangeClosed

17.4 Stream<Integer> Manipulations
17.4.1 Creating a Stream<Integer>
17.4.2 Sorting a Stream and Collecting the

Results
17.4.3 Filtering a Stream and Storing the

Results for Later Use
17.4.4 Filtering and Sorting a Stream and

Collecting the Results
17.4.5 Sorting Previously Collected Results

17.5 Stream<String> Manipulations
17.5.1 Mapping Strings to Uppercase

Using a Method Reference

17.5.2 Filtering Strings Then Sorting Them
in Case-Insensitive Ascending Order

17.5.3 Filtering Strings Then Sorting Them
in Case-Insensitive Descending Order

17.6 Stream<Employee> Manipulations
17.6.1 Creating and Displaying a

List<Employee>
17.6.2 Filtering Employees with Salaries in a

Specified Range
17.6.3 Sorting Employees By Multiple Fields
17.6.4 Mapping Employees to Unique Last

Name Strings
17.6.5 Grouping Employees By Department
17.6.6 Counting the Number of Employees

in Each Department
17.6.7 Summing and Averaging Employee

Salaries
17.7 Creating a Stream<String> from a

File
17.8 Generating Streams of Random

Values
17.9 Lambda Event Handlers

17.10 Additional Notes on Java SE 8
Interfaces

17.11 Java SE 8 and Functional
Programming Resources

17.12 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

http://openjdk.java.net/projects/lambda

http://openjdk.java.net/projects/lambda

17.2 Functional Programming Technologies Overview 731

tures (the ability to include default and static methods) and discussed the concept of
functional interfaces.

This chapter presents many examples of functional programming, often showing sim-
pler ways to implement tasks that you programmed in earlier chapters (Fig. 17.1)

17.2 Functional Programming Technologies Overview
In the preceding chapters, you learned various procedural, object-oriented and generic
programming techniques. Though you often used Java library classes and interfaces to per-
form various tasks, you typically determine what you want to accomplish in a task then
specify precisely how to accomplish it. For example, let’s assume that what you’d like to
accomplish is to sum the elements of an array named values (the data source). You might
use the following code:

This loop specifies how we’d like to add each array element’s value to the sum—with a for
repetition statement that processes each element one at a time, adding each element’s value
to the sum. This iteration technique is known as external iteration (because you specify
how to iterate, not the library) and requires you to access the elements sequentially from

Pre-Java-SE-8 topics Corresponding Java SE 8 discussions and examples

Chapter 7, Arrays and ArrayLists Sections 17.3–17.4 introduce basic lambda and streams capabili-
ties that process one-dimensional arrays.

Chapter 10, Object-Oriented
Programming: Polymorphism
and Interfaces

Section 10.10 introduced the new Java SE 8 interface features
(default methods, static methods and the concept of func-
tional interfaces) that support functional programming.

Chapter 12, GUI Components:
Part 1

Section 17.9 shows how to use a lambda to implement a Swing
event-listener functional interface.

Chapter 14, Strings, Characters
and Regular Expressions

Section 17.5 shows how to use lambdas and streams to process
collections of String objects.

Chapter 15, Files, Streams and
Object Serialization

Section 17.7 shows how to use lambdas and streams to process
lines of text from a file.

Chapter 22, GUI Components:
Part 2

Discusses using lambdas to implement Swing event-listener
functional interfaces.

Chapter 23, Concurrency Shows that functional programs are easier to parallelize so that they
can take advantage of multi-core architectures to enhance perfor-
mance. Demonstrates parallel stream processing. Shows that
Arrays method parallelSort improves performance on multi-
core architectures when sorting large arrays.

Chapter 25, JavaFX GUI: Part 1 Discusses using lambdas to implement JavaFX event-listener
functional interfaces.

Fig. 17.1 | Java SE 8 lambdas and streams discussions and examples.

int sum = 0;
for (int counter = 0; counter < values.length; counter++)
 sum += values[counter];

732 Chapter 17 Java SE 8 Lambdas and Streams

beginning to end in a single thread of execution. To perform the preceding task, you also
create two variables (sum and counter) that are mutated repeatedly—that is, their values
change—while the task is performed. You performed many similar array and collection
tasks, such as displaying the elements of an array, summarizing the faces of a die that was
rolled 6,000,000 times, calculating the average of an array’s elements and more.

External Iteration Is Error Prone
Most Java programmers are comfortable with external iteration. However, there are several
opportunities for error. For example, you could initialize variable sum incorrectly, initialize
control variable counter incorrectly, use the wrong loop-continuation condition, increment
control variable counter incorrectly or incorrectly add each value in the array to the sum.

Internal Iteration
In functional programming, you specify what you want to accomplish in a task, but not
how to accomplish it. As you’ll see in this chapter, to sum a numeric data source’s elements
(such as those in an array or collection), you can use new Java SE 8 library capabilities that
allow you to say, “Here’s a data source, give me the sum of its elements.” You do not need
to specify how to iterate through the elements or declare and use any mutable variables.
This is known as internal iteration, because the library determines how to access all the
elements to perform the task. With internal iteration, you can easily tell the library that
you want to perform this task with parallel processing to take advantage of your computer’s
multi-core architecture—this can significantly improve the task’s performance. As you’ll
learn in Chapter 23, it’s hard to create parallel tasks that operate correctly if those tasks
modify a program’s state information (that is, its variable values). So the functional pro-
gramming capabilities that you’ll learn here focus on immutability—not modifying the
data source being processed or any other program state.

17.2.1 Functional Interfaces
Section 10.10 introduced Java SE 8’s new interface features—default methods and
static methods—and discussed the concept of a functional interface—an interface that
contains exactly one abstract method (and may also contain default and static meth-
ods). Such interfaces are also known as single abstract method (SAM) interfaces. Functional
interfaces are used extensively in functional programming, because they act as an object-
oriented model for a function.

Functional Interfaces in Package java.util.function
Package java.util.function contains several functional interfaces. Figure 17.2 shows
the six basic generic functional interfaces. Throughout the table, T and R are generic type
names that represent the type of the object on which the functional interface operates and
the return type of a method, respectively. There are many other functional interfaces in
package java.util.function that are specialized versions of those in Fig. 17.2. Most are
for use with int, long and double primitive values, but there are also generic customiza-
tions of Consumer, Function and Predicate for binary operations—that is, methods that
take two arguments.

17.2 Functional Programming Technologies Overview 733

17.2.2 Lambda Expressions
Functional programming is accomplished with lambda expressions. A lambda expression
represents an anonymous method—a shorthand notation for implementing a functional in-
terface, similar to an anonymous inner class (Section 12.11). The type of a lambda expres-
sion is the type of the functional interface that the lambda expression implements. Lambda
expressions can be used anywhere functional interfaces are expected. From this point for-
ward, we’ll refer to lambda expressions simply as lambdas. We show basic lambda syntax
in this section and discuss additional lambda features as we use them throughout this and
later chapters.

Lambda Syntax
A lambda consists of a parameter list followed by the arrow token (->) and a body, as in:

The following lambda receives two ints and returns their sum:

In this case, the body is a statement block that may contain one or more statements enclosed
in curly braces. There are several variations of this syntax. For example, the parameter
types usually may be omitted, as in:

Interface Description

BinaryOperator<T> Contains method apply that takes two T arguments, performs an operation
on them (such as a calculation) and returns a value of type T. You’ll see several
examples of BinaryOperators starting in Section 17.3.

Consumer<T> Contains method accept that takes a T argument and returns void. Performs
a task with it’s T argument, such as outputting the object, invoking a method
of the object, etc. You’ll see several examples of Consumers starting in
Section 17.3.

Function<T,R> Contains method apply that takes a T argument and returns a value of type
R. Calls a method on the T argument and returns that method’s result. You’ll
see several examples of Functions starting in Section 17.5.

Predicate<T> Contains method test that takes a T argument and returns a boolean. Tests
whether the T argument satisfies a condition. You’ll see several examples of
Predicates starting in Section 17.3.

Supplier<T> Contains method get that takes no arguments and produces a value of type
T. Often used to create a collection object in which a stream operation’s
results are placed. You’ll see several examples of Suppliers starting in
Section 17.7.

UnaryOperator<T> Contains method get that takes no arguments and returns a value of type T.
You’ll see several examples of UnaryOperators starting in Section 17.3.

Fig. 17.2 | The six basic generic functional interfaces in package java.util.function.

(parameterList) -> {statements}

(int x, int y) -> {return x + y;}

(x, y) -> {return x + y;}

734 Chapter 17 Java SE 8 Lambdas and Streams

in which case, the compiler determines the parameter and return types by the lambda’s
context—we’ll say more about this later.

When the body contains only one expression, the return keyword and curly braces
may be omitted, as in:

in this case, the expression’s value is implicitly returned. When the parameter list contains
only one parameter, the parentheses may be omitted, as in:

To define a lambda with an empty parameter list, specify the parameter list as empty
parentheses to the left of the arrow token (->), as in:

In addition, to the preceding lambda syntax, there are specialized shorthand forms of
lambdas that are known as method references, which we introduce in Section 17.5.1.

17.2.3 Streams
Java SE 8 introduces the concept of streams, which are similar to the iterators you learned
in Chapter 16. Streams are objects of classes that implement interface Stream (from the
package java.util.stream) or one of the specialized stream interfacess for processing col-
lections of int, long or double values (which we introduce in Section 17.3). Together
with lambdas, streams enable you to perform tasks on collections of elements—often from
an array or collection object.

Stream Pipelines
Streams move elements through a sequence of processing steps—known as a stream pipe-
line—that begins with a data source (such as an array or collection), performs various in-
termediate operations on the data source’s elements and ends with a terminal operation. A
stream pipeline is formed by chaining method calls. Unlike collections, streams do not have
their own storage—once a stream is processed, it cannot be reused, because it does not
maintain a copy of the original data source.

Intermediate and Terminal Operations
An intermediate operation specifies tasks to perform on the stream’s elements and always
results in a new stream. Intermediate operations are lazy—they aren’t performed until a
terminal operation is invoked. This allows library developers to optimize stream-process-
ing performance. For example, if you have a collection of 1,000,000 Person objects and
you’re looking for the first one with the last name "Jones", stream processing can termi-
nate as soon as the first such Person object is found.

A terminal operation initiates processing of a stream pipeline’s intermediate opera-
tions and produces a result. Terminal operations are eager—they perform the requested
operation when they are called. We say more about lazy and eager operations as we
encounter them throughout the chapter and you’ll see how lazy operations can improve
performance. Figure 17.3 shows some common intermediate operations. Figure 17.4
shows some common terminal operations.

(x, y) -> x + y

value -> System.out.printf("%d ", value)

() -> System.out.println("Welcome to lambdas!")

17.2 Functional Programming Technologies Overview 735

Stream in File Processing vs. Stream in Functional Programming
Throughout this chapter, we use the term stream in the context of functional program-
ming—this is not the same concept as the I/O streams we discussed in Chapter 15, Files,

Intermediate Stream operations

filter Results in a stream containing only the elements that satisfy a condition.

distinct Results in a stream containing only the unique elements.

limit Results in a stream with the specified number of elements from the beginning
of the original stream.

map Results in a stream in which each element of the original stream is mapped to
a new value (possibly of a different type)—e.g., mapping numeric values to
the squares of the numeric values. The new stream has the same number of
elements as the original stream.

sorted Results in a stream in which the elements are in sorted order. The new stream
has the same number of elements as the original stream.

Fig. 17.3 | Common intermediate Stream operations.

Terminal Stream operations

forEach Performs processing on every element in a stream (e.g., display each element).

Reduction operations—Take all values in the stream and return a single value
average Calculates the average of the elements in a numeric stream.

count Returns the number of elements in the stream.

max Locates the largest value in a numeric stream.

min Locates the smallest value in a numeric stream.

reduce Reduces the elements of a collection to a single value using an associative accumu-
lation function (e.g., a lambda that adds two elements).

Mutable reduction operations—Create a container (such as a collection or StringBuilder)
collect Creates a new collection of elements containing the results of the stream’s prior

operations.

toArray Creates an array containing the results of the stream’s prior operations.

Search operations
findFirst Finds the first stream element based on the prior intermediate operations; immedi-

ately terminates processing of the stream pipeline once such an element is found.

findAny Finds any stream element based on the prior intermediate operations; immediately
terminates processing of the stream pipeline once such an element is found.

anyMatch Determines whether any stream elements match a specified condition; immedi-
ately terminates processing of the stream pipeline if an element matches.

allMatch Determines whether all of the elements in the stream match a specified condition.

Fig. 17.4 | Common terminal Stream operations.

736 Chapter 17 Java SE 8 Lambdas and Streams

Streams and Object Serialization, in which a program reads a stream of bytes from a file
or outputs a stream of bytes to a file. As you’ll see in Section 17.7, you also can use func-
tional programming to manipulate the contents of a file.

17.3 IntStream Operations
[This section demonstrates how lambdas and streams can be used to simplify programming
tasks that you learned in Chapter 7, Arrays and ArrayLists.]
Figure 17.5 demonstrates operations on an IntStream (package java.util.stream)—a
specialized stream for manipulating int values. The techniques shown in this example also
apply to LongStreams and DoubleStreams for long and double values, respectively.

1 // Fig. 17.5: IntStreamOperations.java
2 // Demonstrating IntStream operations.
3 import java.util.Arrays;
4
5
6 public class IntStreamOperations
7 {
8 public static void main(String[] args)
9 {

10 int[] values = {3, 10, 6, 1, 4, 8, 2, 5, 9, 7};
11
12 // display original values
13 System.out.print("Original values: ");
14
15
16 System.out.println();
17
18 // count, min, max, sum and average of the values
19 System.out.printf("%nCount: %d%n",);
20 System.out.printf("Min: %d%n",
21);
22 System.out.printf("Max: %d%n",
23);
24 System.out.printf("Sum: %d%n",);
25 System.out.printf("Average: %.2f%n",
26);
27
28 // sum of values with reduce method
29 System.out.printf("%nSum via reduce method: %d%n",
30
31);
32
33 // sum of squares of values with reduce method
34 System.out.printf("Sum of squares via reduce method: %d%n",
35
36);

Fig. 17.5 | Demonstrating IntStream operations. (Part 1 of 2.)

import java.util.stream.IntStream;

IntStream.of(values)
 .forEach(value -> System.out.printf("%d ", value));

IntStream.of(values).count()

IntStream.of(values).min().getAsInt()

IntStream.of(values).max().getAsInt()
IntStream.of(values).sum()

IntStream.of(values).average().getAsDouble()

IntStream.of(values)
 .reduce(0, (x, y) -> x + y)

IntStream.of(values)
 .reduce(0, (x, y) -> x + y * y)

17.3 IntStream Operations 737

37
38 // product of values with reduce method
39 System.out.printf("Product via reduce method: %d%n",
40
41);
42
43 // even values displayed in sorted order
44 System.out.printf("%nEven values displayed in sorted order: ");
45
46
47
48
49 System.out.println();
50
51 // odd values multiplied by 10 and displayed in sorted order
52 System.out.printf(
53 "Odd values multiplied by 10 displayed in sorted order: ");
54
55
56
57
58
59 System.out.println();
60
61 // sum range of integers from 1 to 10, exlusive
62 System.out.printf("%nSum of integers from 1 to 9: %d%n",
63);
64
65 // sum range of integers from 1 to 10, inclusive
66 System.out.printf("Sum of integers from 1 to 10: %d%n",
67);
68 }
69 } // end class IntStreamOperations

Original values: 3 10 6 1 4 8 2 5 9 7

Count: 10
Min: 1
Max: 10
Sum: 55
Average: 5.50

Sum via reduce method: 55
Sum of squares via reduce method: 385
Product via reduce method: 3628800

Even values displayed in sorted order: 2 4 6 8 10
Odd values multiplied by 10 displayed in sorted order: 10 30 50 70 90

Sum of integers from 1 to 9: 45
Sum of integers from 1 to 10: 55

Fig. 17.5 | Demonstrating IntStream operations. (Part 2 of 2.)

IntStream.of(values)
 .reduce(1, (x, y) -> x * y)

IntStream.of(values)
 .filter(value -> value % 2 == 0)
 .sorted()
 .forEach(value -> System.out.printf("%d ", value));

IntStream.of(values)
 .filter(value -> value % 2 != 0)
 .map(value -> value * 10)
 .sorted()
 .forEach(value -> System.out.printf("%d ", value));

IntStream.range(1, 10).sum()

IntStream.rangeClosed(1, 10).sum()

738 Chapter 17 Java SE 8 Lambdas and Streams

17.3.1 Creating an IntStream and Displaying Its Values with the
forEach Terminal Operation
IntStream static method of (line 14) receives an int array as an argument and returns
an IntStream for processing the array’s values. Once you create a stream, you can chain
together multiple method calls to create a stream pipeline. The statement in lines 14–15
creates an IntStream for the values array, then uses IntStream method forEach (a
terminal operation) to perform a task on each stream element. Method forEach receives
as its argument an object that implements the IntConsumer functional interface (package
java.util.function)—this is an int-specific version of the generic Consumer functional
interface. This interface’s accept method receives one int value and performs a task with
it—in this case, displaying the value and a space. Prior to Java SE 8, you’d typically imple-
ment interface IntConsumer using an anonymous inner class like:

but in Java SE 8, you simply write the lambda

The accept method’s parameter name (value) becomes the lambda’s parameter, and the
accept method’s body statement becomes the lambda expression’s body. As you can see,
the lambda syntax is clearer and more concise than the anonymous inner class.

Type Inference and a Lambda’s Target Type
The Java compiler can usually infer the types of a lambda’s parameters and the type re-
turned by a lambda from the context in which the lambda is used. This is determined by
the lambda’s target type—the functional interface type that is expected where the lambda
appears in the code. In line 15, the target type is IntConsumer. In this case, the lambda
parameter’s type is inferred to be int, because interface IntConsumer’s accept method ex-
pects to receive an int. You can explicitly declare the parameter’s type, as in:

When doing so, the lambda’s parameter list must be enclosed in parentheses. We generally
let the compiler infer the lambda parameter’s type in our examples.

final Local Variables, Effectively final Local Variables and Capturing Lambdas
Prior to Java SE 8, when implementing an anonymous inner class, you could use local vari-
ables from the enclosing method (known as the lexical scope), but you were required to
declare those local variables final. Lambdas may also use final local variables. In Java SE
8, anonymous inner classes and lambdas can also use effectively final local variables—that
is, local variables that are not modified after they’re initially declared and initialized. A lamb-
da that refers to a local variable in the enclosing lexical scope is known as a capturing lamb-
da. The compiler captures the local variable’s value and ensures that the value can be used
when the lambda eventually executes, which may be after its lexical scope no longer exists.

new IntConsumer()
{
 public void accept(int value)
 {
 System.out.printf("%d ", value);
 }
}

value -> System.out.printf("%d ", value)

(int value) -> System.out.printf("%d ", value)

17.3 IntStream Operations 739

Using this in a Lambda That Appears in an Instance Method
As in an anonymous inner class, a lambda can use the outer class’s this reference. In an
an anonymous inner class, you must use the syntax OuterClassName.this—otherwise, the
this reference would refer to the object of the anonymous inner class. In a lambda, you refer
to the object of the outer class, simply as this.

Parameter and Variable Names in a Lambda
The parameter names and variable names that you use in lambdas cannot be the same as as
any other local variables in the lambda’s lexical scope; otherwise, a compilation error occurs.

17.3.2 Terminal Operations count, min, max, sum and average
Class IntStream provides various terminal operations for common stream reductions on
streams of int values. Terminal operations are eager—they immediately process the items
in the stream. Common reduction operations for IntStreams include:

• count (line 19) returns the number of elements in the stream.

• min (line 21) returns the smallest int in the stream.

• max (line 23) returns the largest int in the stream.

• sum (line 24) returns the sum of all the ints in the stream.

• average (line 26) returns an OptionalDouble (package java.util) containing
the average of the ints in the stream as a value of type double. For any stream,
it’s possible that there are no elements in the stream. Returning OptionalDouble
enables method average to return the average if the stream contains at least one
element. In this example, we know the stream has 10 elements, so we call class
OptionalDouble’s getAsDouble method to obtain the average. If there were no
elements, the OptionalDouble would not contain the average and getAsDouble
would throw a NoSuchElementException. To prevent this exception, you can in-
stead call method orElse, which returns the OptionalDouble’s value if there is
one, or the value you pass to orElse, otherwise.

Class IntStream also provides method summaryStatistics that performs the count, min,
max, sum and average operations in one pass of an IntStream’s elements and returns the
results as an IntSummaryStatistics object (package java.util). This provides a signifi-
cant performance boost over reprocessing an IntStream repeatedly for each individual op-
eration. This object has methods for obtaining each result and a toString method that
summarizes all the results. For example, the statement:

produces:

for the array values in Fig. 17.5.

17.3.3 Terminal Operation reduce
You can define your own reductions for an IntStream by calling its reduce method as
shown in lines 29–31 of Fig. 17.5. Each of the terminal operations in Section 17.3.2 is a

System.out.println(IntStream.of(values).summaryStatistics());

IntSummaryStatistics{count=10, sum=55, min=1, average=5.500000,
max=10}

740 Chapter 17 Java SE 8 Lambdas and Streams

specialized implementation of reduce. For example, line 31 shows how to sum an Int-
Steam’s values using reduce, rather than sum. The first argument (0) is a value that helps
you begin the reduction operation and the second argument is an object that implements
the IntBinaryOperator functional interface (package java.util.function). The lambda:

implements the interface’s applyAsInt method, which receives two int values (represent-
ing the left and right operands of a binary operator) and performs a calculation with the
values—in this case, adding the values. A lambda with two or more parameters must en-
close them in parentheses. Evaluation of the reduction proceeds as follows:

• On the first call to reduce, lambda parameter x’s value is the identity value (0)
and lambda parameter y’s value is the first int in the stream (3), producing the
sum 3 (0 + 3).

• On the next call to reduce, lambda parameter x’s value is the result of the first
calculation (3) and lambda parameter y’s value is the second int in the stream
(10), producing the sum 13 (3 + 10).

• On the next call to reduce, lambda parameter x’s value is the result of the previ-
ous calculation (13) and lambda parameter y’s value is the third int in the stream
(6), producing the sum 19 (13 + 6).

This process continues producing a running total of the IntSteam’s values until they’ve all
been used, at which point the final sum is returned.

Method reduce’s Identity Value Argument
Method reduce’s first argument is formally called an identity value—a value that, when
combined with any stream element using the IntBinaryOperator produces that element’s
original value. For example, when summing the elements, the identity value is 0 (any int
value added to 0 results in the original value) and when getting the product of the elements
the identity value is 1 (any int value multiplied by 1 results in the original value).

Summing the Squares of the Values with Method reduce
Lines 34–36 of Fig. 17.5 use method reduce to calculate the sums of the squares of the
IntSteam’s values. The lambda in this case, adds the square of the current value to the run-
ning total. Evaluation of the reduction proceeds as follows:

• On the first call to reduce, lambda parameter x’s value is the identity value (0)
and lambda parameter y’s value is the first int in the stream (3), producing the
value 9 (0 + 32).

• On the next call to reduce, lambda parameter x’s value is the result of the first
calculation (9) and lambda parameter y’s value is the second int in the stream
(10), producing the sum 109 (9 + 102).

• On the next call to reduce, lambda parameter x’s value is the result of the previ-
ous calculation (109) and lambda parameter y’s value is the third int in the
stream (6), producing the sum 145 (109 + 62).

This process continues producing a running total of the squares of the IntSteam’s values
until they’ve all been used, at which point the final sum is returned.

(x, y) -> x + y

17.3 IntStream Operations 741

Calculating the Product of the Values with Method reduce
Lines 39–41 of Fig. 17.5 use method reduce to calculate the product of the IntSteam’s
values. In this case, the lambda multiplies its two arguments. Because we’re producing a
product, we begin with the identity value 1 in this case. Evaluation of the reduction pro-
ceeds as follows:

• On the first call to reduce, lambda parameter x’s value is the identity value (1)
and lambda parameter y’s value is the first int in the stream (3), producing the
value 3 (1 * 3).

• On the next call to reduce, lambda parameter x’s value is the result of the first
calculation (3) and lambda parameter y’s value is the second int in the stream
(10), producing the sum 30 (3 * 10).

• On the next call to reduce, lambda parameter x’s value is the result of the previ-
ous calculation (30) and lambda parameter y’s value is the third int in the stream
(6), producing the sum 180 (30 * 6).

This process continues producing a running product of the IntSteam’s values until they’ve
all been used, at which point the final product is returned.

17.3.4 Intermediate Operations: Filtering and Sorting IntStream
Values
Lines 45–48 of Fig. 17.5 create a stream pipeline that locates the even integers in an Int-
Stream, sorts them in ascending order and displays each value followed by a space.

Intermediate Operation filter
You filter elements to produce a stream of intermediate results that match a condition—
known as a predicate. IntStream method filter (line 46) receives an object that imple-
ments the IntPredicate functional interface (package java.util.function). The lamb-
da in line 46:

implements the interface’s test method, which receives an int and returns a boolean indi-
cating whether the int satisfies the predicate—in this case, the IntPredicate returns true
if the value it receives is divisible by 2. Calls to filter and other intermediate streams are
lazy—they aren’t evaluated until a terminal operation (which is eager) is performed—and pro-
duce new streams of elements. In lines 45–48, this occurs when forEach is called (line 48).

Intermediate Operation sorted
IntStream method sorted orders the elements of the stream into ascending order. Like
filter, sorted is a lazy operation; however, when the sorting is eventually performed, all
prior intermediate operations in the stream pipeline must be complete so that method
sorted knows which elements to sort.

Processing the Stream Pipeline and Stateless vs. Stateful Intermediate Operations
When forEach is called, the stream pipeline is processed. Line 46 produces an intermedi-
ate IntStream containing only the even integers, then line 47 sorts them and line 48 dis-
plays each element.

value -> value % 2 == 0

742 Chapter 17 Java SE 8 Lambdas and Streams

Method filter is a stateless intermediate operation—it does not require any infor-
mation about other elements in the stream in order to test whether the current element
satisfies the predicate. Similarly method map (discussed shortly) is a stateless intermediate
operation. Method sorted is a stateful intermediate operation that requires information
about all of the other elements in the stream in order to sort them. Similarly method dis-
tinct is a stateful intermediate operation. The online documentation for each interme-
diate stream operation specifies whether it is a stateless or stateful operation.

Other Methods of the IntPredicate Functional Interface
Interface IntPredicate also contains three default methods:

• and—performs a logical AND with short-circuit evaluation (Section 5.9) between
the IntPredicate on which it’s called and the IntPredicate it receives as an ar-
gument.

• negate—reverses the boolean value of the IntPredicate on which it’s called.

• or—performs a logical OR with short-circuit evaluation between the IntPredi-
cate on which it’s called and the IntPredicate it receives as an argument.

Composing Lambda Expressions
You can use these methods and IntPredicate objects to compose more complex condi-
tions. For example, consider the following two IntPredicates:

To locate all the even integers greater than 5, you could replace the lambda in line 46 with
the IntPredicate

17.3.5 Intermediate Operation: Mapping
Lines 54–58 of Fig. 17.5 create a stream pipeline that locates the odd integers in an Int-
Stream, multiplies each odd integer by 10, sorts the values in ascending order and displays
each value followed by a space.

Intermediate Operation map
The new feature here is the mapping operation that takes each value and multiplies it by
10. Mapping is an intermediate operation that transforms a stream’s elements to new values
and produces a stream containing the resulting elements. Sometimes these are of different
types from the original stream’s elements.

IntStream method map (line 56) receives an object that implements the IntUnary-
Operator functional interface (package java.util.function). The lambda in line 55:

implements the interface’s applyAsInt method, which receives an int and maps it to a
new int value. Calls to map are lazy. Method map is a stateless stream operation.

IntPredicate even = value -> value % 2 == 0;
IntPredicate greaterThan5 = value -> value > 5;

even.and(greaterThan5)

value -> value * 10

17.4 Stream<Integer> Manipulations 743

Processing the Stream Pipeline
When forEach is called (line 58), the stream pipeline is processed. First, line 55 produces
an intermediate IntStream containing only the odd values. Next, line 56 multiplies each
odd integer by 10. Then, line 57 sorts the values and line 58 displays each element.

17.3.6 Creating Streams of ints with IntStream Methods range and
rangeClosed
If you need an ordered sequence of int values, you can create an IntStream containing such
values with IntStream methods range (line 63 of Fig. 17.5) and rangeClosed (line 67).
Both methods take two int arguments representing the range of values. Method range
produces a sequence of values from its first argument up to, but not including its second
argument. Method rangeClosed produces a sequence of values including both of its argu-
ments. Lines 63 and 67 demonstrate these methods for producing sequences of int values
from 1–9 and 1–10, respectively. For the complete list of IntStream methods, visit:

17.4 Stream<Integer> Manipulations
[This section demonstrates how lambdas and streams can be used to simplify programming
tasks that you learned in Chapter 7, Arrays and ArrayLists.]
Just as class IntStream’s method of can create an IntStream from an array of ints, class
Array’s stream method can be used to create a Stream from an array of objects.
Figure 17.6 performs filtering and sorting on a Stream<Integer>, using the same tech-
niques you learned in Section 17.3. The program also shows how to collect the results of a
stream pipeline’s operations into a new collection that you can process in subsequent state-
ments. Throughout this example, we use the Integer array values (line 12) that’s initial-
ized with int values—the compiler boxes each int into an Integer object. Line 15 displays
the contents of values before we perform any stream processing.

http://download.java.net/jdk8/docs/api/java/util/stream/
 IntStream.html

1 // Fig. 17.6: ArraysAndStreams.java
2 // Demonstrating lambdas and streams with an array of Integers.
3 import java.util.Arrays;
4 i
5 import java.util.List;
6
7
8 public class ArraysAndStreams
9 {

10 public static void main(String[] args)
11 {
12 Integer[] values = {2, 9, 5, 0, 3, 7, 1, 4, 8, 6};
13
14 // display original values
15 System.out.printf("Original values: %s%n", Arrays.asList(values));

Fig. 17.6 | Demonstrating lambdas and streams with an array of Integers. (Part 1 of 2.)

mport java.util.Comparator;

import java.util.stream.Collectors;

http://download.java.net/jdk8/docs/api/java/util/stream/IntStream.html
http://download.java.net/jdk8/docs/api/java/util/stream/IntStream.html

744 Chapter 17 Java SE 8 Lambdas and Streams

17.4.1 Creating a Stream<Integer>
When you pass an array of objects to class Arrays’s static method stream, the method
returns a Stream of the appropriate type—e.g., line 19 produces a Stream<Integer> from
an Integer array. Interface Stream (package java.util.stream) is a generic interface for
performing stream operations on any non-primitive type. The types of objects that are pro-
cessed are determined by the Stream’s source.

Class Arrays also provides overloaded versions of method stream for creating Int-
Streams, LongStreams and DoubleStreams from entire int, long and double arrays or
from ranges of elements in the arrays. The specialized IntStream, LongStream and Dou-
bleStream classes provide various methods for common operations on numerical streams,
as you learned in Section 17.3.

16
17 // sort values in ascending order with streams
18 System.out.printf("Sorted values: %s%n",
19
20
21);
22
23 // values greater than 4
24
25
26
27
28 System.out.printf("Values greater than 4: %s%n", greaterThan4);
29
30 // filter values greater than 4 then sort the results
31 System.out.printf("Sorted values greater than 4: %s%n",
32
33
34
35);
36
37 // greaterThan4 List sorted with streams
38 System.out.printf(
39 "Values greater than 4 (ascending with streams): %s%n",
40
41
42);
43 }
44 } // end class ArraysAndStreams

Original values: [2, 9, 5, 0, 3, 7, 1, 4, 8, 6]
Sorted values: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Values greater than 4: [9, 5, 7, 8, 6]
Sorted values greater than 4: [5, 6, 7, 8, 9]
Values greater than 4 (ascending with streams): [5, 6, 7, 8, 9]

Fig. 17.6 | Demonstrating lambdas and streams with an array of Integers. (Part 2 of 2.)

Arrays.stream(values)
 .sorted()
 .collect(Collectors.toList())

List<Integer> greaterThan4 =
 Arrays.stream(values)
 .filter(value -> value > 4)
 .collect(Collectors.toList());

Arrays.stream(values)
 .filter(value -> value > 4)
 .sorted()
 .collect(Collectors.toList())

greaterThan4.stream()
 .sorted()
 .collect(Collectors.toList())

17.4 Stream<Integer> Manipulations 745

17.4.2 Sorting a Stream and Collecting the Results
In Section 7.15, you learned how to sort arrays with the sort and parallelSort static
methods of class Arrays. You’ll often sort the results of stream operations, so in lines 18–
21 we’ll sort the values array using stream techniques and display the sorted values. First,
line 19 creates a Stream<Integer> from values. Next, line 20 calls Stream method sort-
ed which sort the elements—this results in an intermediate Stream<Integers> with the
values in ascending order.

To display the sorted results, we could output each value using Stream terminal oper-
ation forEach (as in line 15 of Fig. 17.5). However, when processing streams, you often
create new collections containing the results so that you can perform additional operations
on them. To create a collection, you can use Stream method collect (Fig. 17.6, line 21),
which is a terminal operation. As the stream pipeline is processed, method collect performs
a mutable reduction operation that places the results into an object which subsequently can
be modified—often a collection, such as a List, Map or Set. The version of method collect
in line 21 receives as it’s argument an object that implements interface Collector (package
java.util.stream), which specifies how to perform the mutable reduction. Class Collec-
tors (package java.util.stream) provides static methods that return predefined Col-
lector implementations. For example, Collectors method toList (line 21) transforms
the Stream<Integer> into a List<Integer> collection. In lines 18–21, the resulting
List<Integer> is then displayed with an implicit call to its toString method.

We demonstrate another version of method collect in Section 17.6. For more
details on class Collectors, visit:

17.4.3 Filtering a Stream and Storing the Results for Later Use
Lines 24–27 of Fig. 17.6 create a Stream<Integer>, call Stream method filter (which
receives a Predicate) to locate all the values greater than 4 and collect the results into a
List<Integer>. Like IntPredicate (Section 17.3.4), functional interface Predicate has
a test method that returns a boolean indicating whether the argument satisfies a condi-
tion, as well as methods and, negate and or.

We assign the stream pipeline’s resulting List<Integer> to variable greaterThan4,
which is used in line 28 to display the values greater than 4 and used again in lines 40–42
to perform additional operations on only the values greater than 4.

17.4.4 Filtering and Sorting a Stream and Collecting the Results
Lines 31–35 display the values greater than 4 in sorted order. First, line 32 creates a
Stream<Integer>. Then line 33 filters the elements to locate all the values greater than
4. Next, line 34 indicates that we’d like the results sorted. Finally, line 35 collects the
results into a List<Integer>, which is then displayed as a String.

17.4.5 Sorting Previously Collected Results
Lines 40–42 use the greaterThan4 collection that was created in lines 24–27 to show ad-
ditional processing on a collection containing the results of a prior stream pipeline. In this

http://download.java.net/jdk8/docs/api/java/util/stream/
 Collectors.html

http://download.java.net/jdk8/docs/api/java/util/stream/Collectors.html
http://download.java.net/jdk8/docs/api/java/util/stream/Collectors.html

746 Chapter 17 Java SE 8 Lambdas and Streams

case, we use streams to sort the values in greaterThan4, collect the results into a new
List<Integers> and display the sorted values.

17.5 Stream<String> Manipulations
[This section demonstrates how lambdas and streams can be used to simplify programming
tasks that you learned in Chapter 14, Strings, Characters and Regular Expressions.]
Figure 17.7 performs some of the same stream operations you learned in Sections 17.3–
17.4 but on a Stream<String>. In addition, we demonstrate case-insensitive sorting and
sorting in descending order. Throughout this example, we use the String array strings
(lines 11–12) that’s initialized with color names—some with an initial uppercase letter.
Line 15 displays the contents of strings before we perform any stream processing.

1 // Fig. 17.7: ArraysAndStreams2.java
2 // Demonstrating lambdas and streams with an array of Strings.
3 import java.util.Arrays;
4 import java.util.Comparator;
5
6
7 public class ArraysAndStreams2
8 {
9 public static void main(String[] args)

10 {
11 String[] strings =
12 {"Red", "orange", "Yellow", "green", "Blue", "indigo", "Violet"};
13
14 // display original strings
15 System.out.printf("Original strings: %s%n", Arrays.asList(strings));
16
17 // strings in uppercase
18 System.out.printf("strings in uppercase: %s%n",
19 Arrays.stream(strings)
20
21 .collect(Collectors.toList()));
22
23 // strings less than "n" (case insensitive) sorted ascending
24 System.out.printf("strings greater than m sorted ascending: %s%n",
25 Arrays.stream(strings)
26 .filter(s -> s.compareToIgnoreCase("n") < 0)
27
28 .collect(Collectors.toList()));
29
30 // strings less than "n" (case insensitive) sorted descending
31 System.out.printf("strings greater than m sorted descending: %s%n",
32 Arrays.stream(strings)
33 .filter(s -> s.compareToIgnoreCase("n") < 0)
34
35 .collect(Collectors.toList()));
36 }
37 } // end class ArraysAndStreams2

Fig. 17.7 | Demonstrating lambdas and streams with an array of Strings. (Part 1 of 2.)

import java.util.stream.Collectors;

.map(String::toUpperCase)

.sorted(String.CASE_INSENSITIVE_ORDER)

.sorted(String.CASE_INSENSITIVE_ORDER.reversed())

17.5 Stream<String> Manipulations 747

17.5.1 Mapping Strings to Uppercase Using a Method Reference
Lines 18–21 display the Strings in uppercase letters. To do so, line 19 creates a
Stream<String> from the array strings, then line 20 calls Stream method map to map
each String to its uppercase version by calling String instance method toUpperCase.
String::toUpperCase is known as a method reference and is a shorthand notation for a
lambda expression—in this case, for a lambda expression like:

or

String::toUpperCase is a method reference for String instance method toUpperCase.
Figure 17.8 shows the four method reference types.

Stream method map receives as an argument an object that implements the functional
interface Function—the instance method reference String::toUpperCase is treated as a
lambda that implements interface Function. This interface’s apply method receives one
parameter and returns a result—in this case, method apply receives a String and returns
the uppercase version of the String. Line 21 collects the results into a List<String> that
we output as a String.

Original strings: [Red, orange, Yellow, green, Blue, indigo, Violet]
strings in uppercase: [RED, ORANGE, YELLOW, GREEN, BLUE, INDIGO, VIOLET]
strings greater than m sorted ascending: [orange, Red, Violet, Yellow]
strings greater than m sorted descending: [Yellow, Violet, Red, orange]

(String s) -> {return s.toUpperCase();}

s -> s.toUpperCase()

Lambda Description

String::toUpperCase Method reference for an instance method of a class. Creates a one-
parameter lambda that invokes the instance method on the lambda’s
argument and returns the method’s result. Used in Fig. 17.7.

System.out::println Method reference for an instance method that should be called on a spe-
cific object. Creates a one-parameter lambda that invokes the instance
method on the specified object—passing the lambda’s argument to the
instance method—and returns the method’s result. Used in Fig. 17.10.

Math::sqrt Method reference for a static method of a class. Creates a one-parame-
ter lambda in which the lambda’s argument is passed to the specified a
static method and the lambda returns the method’s result.

TreeMap::new Constructor reference. Creates a lambda that invokes the no-argument
constructor of the specified class to create and initialize a new object of
that class. Used in Fig. 17.17.

Fig. 17.8 | Types of method references.

Fig. 17.7 | Demonstrating lambdas and streams with an array of Strings. (Part 2 of 2.)

748 Chapter 17 Java SE 8 Lambdas and Streams

17.5.2 Filtering Strings Then Sorting Them in Case-Insensitive
Ascending Order
Lines 24–28 filter and sort the Strings. Line 25 creates a Stream<String> from the array
strings, then line 26 calls Stream method filter to locate all the Strings that are greater
than "m", using a case-insensitive comparison in the Predicate lambda. Line 27 sorts the
results and line 28 collects them into a List<String> that we output as a String. In this
case, line 27 invokes the version of Stream method sorted that receives a Comparator as
an argument. As you learned in Section 16.7.1, a Comparator defines a compare method
that returns a negative value if the first value being compared is less than the second, 0 if
they’re equal and a positive value if the first value is greater than the second. By default,
method sorted uses the natural order for the type—for Strings, the natural order is case
sensitive, which means that "Z" is less than "a". Passing the predefined Comparator
String.CASE_INSENSITIVE_ORDER performs a case-insensitive sort.

17.5.3 Filtering Strings Then Sorting Them in Case-Insensitive
Descending Order
Lines 31–35 perform the same tasks as lines 24–28, but sort the Strings in descending order.
Functional interface Comparator contains default method reversed, which reverses an ex-
isting Comparator’s ordering. When applied to String.CASE_INSENSITIVE_ORDER, the
Strings are sorted in descending order.

17.6 Stream<Employee> Manipulations
The example in Figs. 17.9–17.16 demonstrates various lambda and stream capabilities using
a Stream<Employee>. Class Employee (Fig. 17.9) represents an employee with a first name,
last name, salary and department and provides methods for manipulating these values. In ad-
dition, the class provides a getName method (lines 69–72) that returns the combined first and
last name as a String, and a toString method (lines 75–80) that returns a formatted String
containing the employee’s first name, last name, salary and department.

1 // Fig. 17.9: Employee.java
2 // Employee class.
3 public class Employee
4 {
5 private String firstName;
6 private String lastName;
7 private double salary;
8 private String department;
9

10 // constructor
11 public Employee(String firstName, String lastName,
12 double salary, String department)
13 {
14 this.firstName = firstName;
15 this.lastName = lastName;

Fig. 17.9 | Employee class for use in Figs. 17.10–17.16. (Part 1 of 3.)

17.6 Stream<Employee> Manipulations 749

16 this.salary = salary;
17 this.department = department;
18 }
19
20 // set firstName
21 public void setFirstName(String firstName)
22 {
23 this.firstName = firstName;
24 }
25
26 // get firstName
27 public String getFirstName()
28 {
29 return firstName;
30 }
31
32 // set lastName
33 public void setLastName(String lastName)
34 {
35 this.lastName = lastName;
36 }
37
38 // get lastName
39 public String getLastName()
40 {
41 return lastName;
42 }
43
44 // set salary
45 public void setSalary(double salary)
46 {
47 this.salary = salary;
48 }
49
50 // get salary
51 public double getSalary()
52 {
53 return salary;
54 }
55
56 // set department
57 public void setDepartment(String department)
58 {
59 this.department = department;
60 }
61
62 // get department
63 public String getDepartment()
64 {
65 return department;
66 }
67

Fig. 17.9 | Employee class for use in Figs. 17.10–17.16. (Part 2 of 3.)

750 Chapter 17 Java SE 8 Lambdas and Streams

17.6.1 Creating and Displaying a List<Employee>
Class ProcessingEmployees (Figs. 17.10–17.16) is split into several figures so we can
show you the lambda and streams operations with their corresponding outputs.
Figure 17.10 creates an array of Employees (lines 17–24) and gets its List view (line 27).

68 // return Employee's first and last name combined
69 public String getName()
70 {
71 return String.format("%s %s", getFirstName(), getLastName());
72 }
73
74 // return a String containing the Employee's information
75 @Override
76 public String toString()
77 {
78 return String.format("%-8s %-8s %8.2f %s",
79 getFirstName(), getLastName(), getSalary(), getDepartment());
80 } // end method toString
81 } // end class Employee

1 // Fig. 17.10: ProcessingEmployees.java
2 // Processing streams of Employee objects.
3 import java.util.Arrays;
4 import java.util.Comparator;
5 import java.util.List;
6
7
8
9

10
11
12 public class ProcessingEmployees
13 {
14 public static void main(String[] args)
15 {
16 // initialize array of Employees
17 Employee[] employees = {
18 new Employee("Jason", "Red", 5000, "IT"),
19 new Employee("Ashley", "Green", 7600, "IT"),
20 new Employee("Matthew", "Indigo", 3587.5, "Sales"),
21 new Employee("James", "Indigo", 4700.77, "Marketing"),
22 new Employee("Luke", "Indigo", 6200, "IT"),
23 new Employee("Jason", "Blue", 3200, "Sales"),
24 new Employee("Wendy", "Brown", 4236.4, "Marketing")};
25
26 // get List view of the Employees
27 List<Employee> list = Arrays.asList(employees);

Fig. 17.10 | Creating an array of Employees, converting it to a List and displaying the List.
(Part 1 of 2.)

Fig. 17.9 | Employee class for use in Figs. 17.10–17.16. (Part 3 of 3.)

import java.util.Map;
import java.util.TreeMap;
import java.util.function.Function;
import java.util.function.Predicate;
import java.util.stream.Collectors;

17.6 Stream<Employee> Manipulations 751

 Line 31 creates a Stream<Employee>, then uses Stream method forEach to display each
Employee’s String representation. The instance method reference System.out::println is
converted by the compiler into an object that implements the Consumer functional interface.
This interface’s accept method receives one argument and returns void. In this example, the
accept method passes each Employee to the System.out object’s println instance method,
which implicitly calls class Employee’s toString method to get the String representation.
The output at the end of Fig. 17.10 shows the results of displaying all the Employees.

17.6.2 Filtering Employees with Salaries in a Specified Range
Figure 17.11 demonstrates filtering Employees with an object that implements the func-
tional interface Predicate<Employee>, which is defined with a lambda in lines 34–35.
Defining lambdas in this manner enables you to reuse them multiple times, as we do in
lines 42 and 49. Lines 41–44 output the Employees with salaries in the range 4000–6000
sorted by salary as follows:

• Line 41 creates a Stream<Employee> from the List<Employee>.

• Line 42 filters the stream using the Predicate named fourToSixThousand.

• Line 43 sorts by salary the Employees that remain in the stream. To specify a Com-
parator for salaries, we use the Comparator interface’s static method compar-
ing. The method reference Employee::getSalary that’s passed as an argument
is converted by the compiler into an object that implements the Function inter-
face. This Function is used to extract a value from an object in the stream for use
in comparisons. Method comparing returns a Comparator object that calls get-
Salary on each of two Employee objects, then returns a negative value if the first
Employee’s salary is less than the second, 0 if they’re equal and a positive value if
the first Employee’s salary is greater than the second.

• Finally, line 44 performs the terminal forEach operation that processes the
stream pipeline and outputs the Employees sorted by salary.

28
29 // display all Employees
30 System.out.println("Complete Employee list:");
31
32

Complete Employee list:
Jason Red 5000.00 IT
Ashley Green 7600.00 IT
Matthew Indigo 3587.50 Sales
James Indigo 4700.77 Marketing
Luke Indigo 6200.00 IT
Jason Blue 3200.00 Sales
Wendy Brown 4236.40 Marketing

Fig. 17.10 | Creating an array of Employees, converting it to a List and displaying the List.
(Part 2 of 2.)

list.stream().forEach(System.out::println);

752 Chapter 17 Java SE 8 Lambdas and Streams

Short-Circuit Stream Pipeline Processing
In Section 5.9, you studied short-circuit evaluation with the logical AND (&&) and logical
OR (||) operators. One of the nice performance features of lazy evaluation is the ability
to perform short circuit evaluation—that is, to stop processing the stream pipeline as soon
as the desired result is available. Line 50 demonstrates Stream method findFirst—a
short-circuiting terminal operation that processes the stream pipeline and terminates pro-
cessing as soon as the first object from the stream pipeline is found. Based on the original
list of Employees, the processing of the stream in lines 48–51—which filters Employees
with salaries in the range $4000–$6000—proceeds as follows: The Predicate fourTo-
SixThousand is applied to the first Employee (Jason Red). His salary ($5000.00) is in the
range $4000–$6000, so the Predicate returns true and processing of the stream termi-
nates immediately, having processed only one of the eight objects in the stream. Method
findFirst then returns an Optional (in this case, an Optional<Employee>) containing
the object that was found, if any. The call to Optional method get (line 51) returns the
matching Employee object in this example. Even if the stream contained millions of Em-
ployee objects, the filter operation would be performed only until a match is found.

17.6.3 Sorting Employees By Multiple Fields
Figure 17.12 shows how to use streams to sort objects by multiple fields. In this example,
we sort Employees by last name, then, for Employees with the same last name, we also sort

33 // Predicate that returns true for salaries in the range $4000-$6000
34
35
36
37 // Display Employees with salaries in the range $4000-$6000
38 // sorted into ascending order by salary
39 System.out.printf(
40 "%nEmployees earning $4000-$6000 per month sorted by salary:%n");
41
42
43
44
45
46 // Display first Employee with salary in the range $4000-$6000
47 System.out.printf("%nFirst employee who earns $4000-$6000:%n%s%n",
48 list.stream()
49 .filter(fourToSixThousand)
50
51);
52

Employees earning $4000-$6000 per month sorted by salary:
Wendy Brown 4236.40 Marketing
James Indigo 4700.77 Marketing
Jason Red 5000.00 IT
First employee who earns $4000-$6000:
Jason Red 5000.00 IT

Fig. 17.11 | Filtering Employees with salaries in the range $4000–$6000.

Predicate<Employee> fourToSixThousand =
 e -> (e.getSalary() >= 4000 && e.getSalary() <= 6000);

list.stream()
 .filter(fourToSixThousand)
 .sorted(Comparator.comparing(Employee::getSalary))
 .forEach(System.out::println);

.findFirst()

.get()

17.6 Stream<Employee> Manipulations 753

them by first name. To do so, we begin by creating two Functions that each receive an
Employee and return a String:

• byFirstName (line 54) is assigned a method reference for Employee instance
method getFirstName

• byLastName (line 55) is assigned a method reference for Employee instance meth-
od getLastName

Next, we use these Functions to create a Comparator (lastThenFirst; lines 58–59) that
first compares two Employees by last name, then compares them by first name. We use
Comparator method comparing to create a Comparator that calls Function byLastName
on an Employee to get its last name. On the resulting Comparator, we call Comparator
method thenComparing to create a Comparator that first compares Employees by last name
and, if the last names are equal, then compares them by first name. Lines 64–65 use this
new lastThenFirst Comparator to sort the Employees in ascending order, then display the
results. We reuse the Comparator in lines 71–73, but call its reversed method to indicate
that the Employees should be sorted in descending order by last name, then first name.

53 // Functions for getting first and last names from an Employee
54
55
56
57 // Comparator for comparing Employees by first name then last name
58
59
60
61 // sort employees by last name, then first name
62 System.out.printf(
63 "%nEmployees in ascending order by last name then first:%n");
64 list.stream()
65
66 .forEach(System.out::println);
67
68 // sort employees in descending order by last name, then first name
69 System.out.printf(
70 "%nEmployees in descending order by last name then first:%n");
71 list.stream()
72 .sorted()
73 .forEach(System.out::println);
74

Employees in ascending order by last name then first:
Jason Blue 3200.00 Sales
Wendy Brown 4236.40 Marketing
Ashley Green 7600.00 IT
James Indigo 4700.77 Marketing
Luke Indigo 6200.00 IT
Matthew Indigo 3587.50 Sales
Jason Red 5000.00 IT

Fig. 17.12 | Sorting Employees by last name then first name. (Part 1 of 2.)

Function<Employee, String> byFirstName = Employee::getFirstName;
Function<Employee, String> byLastName = Employee::getLastName;

Comparator<Employee> lastThenFirst =
 Comparator.comparing(byLastName).thenComparing(byFirstName);

.sorted(lastThenFirst)

lastThenFirst.reversed()

754 Chapter 17 Java SE 8 Lambdas and Streams

17.6.4 Mapping Employees to Unique Last Name Strings
You previously used map operations to perform calculations on int values and to convert
Strings to uppercase letters. In both cases, the resulting streams contained values of the same
types as the original streams. Figure 17.13 shows how to map objects of one type (Employee)
to objects of a different type (String). Lines 77–81 perform the following tasks:

• Line 77 creates a Stream<Employee>.

• Line 78 maps the Employees to their last names using the instance method refer-
ence Employee::getName as method map’s Function argument. The result is a
Stream<String>.

• Line 79 calls Stream method distinct on the Stream<String> to eliminate any
duplicate String objects in a Stream<String>.

• Line 80 sorts the unique last names.

• Finally, line 81 performs a terminal forEach operation that processes the stream
pipeline and outputs the unique last names in sorted order.

Lines 86–89 sort the Employees by last name then first name, then map the Employees to
Strings with Employee instance method getName (line 88) and display the sorted names
in a terminal forEach operation.

Employees in descending order by last name then first:
Jason Red 5000.00 IT
Matthew Indigo 3587.50 Sales
Luke Indigo 6200.00 IT
James Indigo 4700.77 Marketing
Ashley Green 7600.00 IT
Wendy Brown 4236.40 Marketing
Jason Blue 3200.00 Sales

75 // display unique employee last names sorted
76 System.out.printf("%nUnique employee last names:%n");
77 list.stream()
78
79
80 .sorted()
81 .forEach(System.out::println);
82
83 // display only first and last names
84 System.out.printf(
85 "%nEmployee names in order by last name then first name:%n");
86 list.stream()
87 .sorted(lastThenFirst)
88
89 .forEach(System.out::println);
90

Fig. 17.13 | Mapping Employee objects to last names and whole names. (Part 1 of 2.)

Fig. 17.12 | Sorting Employees by last name then first name. (Part 2 of 2.)

.map(Employee::getLastName)

.distinct()

.map(Employee::getName)

17.6 Stream<Employee> Manipulations 755

17.6.5 Grouping Employees By Department
Figure 17.14 uses Stream method collect (line 95) to group Employees by department.
Method collect’s argument is a Collector that specifies how to summarize the data into
a useful form. In this case, we use the Collector returned by Collectors static method
groupingBy, which receives a Function that classifies the objects in the stream—the values
returned by this function are used as the keys in a Map. The corresponding values, by de-
fault, are Lists containing the stream elements in a given category. When method col-
lect is used with this Collector, the result is a Map<String, List<Employee>> in which
each String key is a department and each List<Employee> contains the Employees in that
department. We assign this Map to variable groupedByDepartment, which is used in lines
96–103 to display the Employees grouped by department. Map method forEach performs
an operation on each of the Map’s key–value pairs. The argument to the method is an ob-
ject that implements functional interface BiConsumer. This interface’s accept method has
two parameters. For Maps, the first parameter represents the key and the second represents
the corresponding value.

Unique employee last names:
Blue
Brown
Green
Indigo
Red

Employee names in order by last name then first name:
Jason Blue
Wendy Brown
Ashley Green
James Indigo
Luke Indigo
Matthew Indigo
Jason Red

91 // group Employees by department
92 System.out.printf("%nEmployees by department:%n");
93
94
95
96 groupedByDepartment.forEach(
97
98
99
100
101
102
103);
104

Fig. 17.14 | Grouping Employees by department. (Part 1 of 2.)

Fig. 17.13 | Mapping Employee objects to last names and whole names. (Part 2 of 2.)

Map<String, List<Employee>> groupedByDepartment =
 list.stream()
 .collect(Collectors.groupingBy(Employee::getDepartment));

(department, employeesInDepartment) ->
{
 System.out.println(department);
 employeesInDepartment.forEach(
 employee -> System.out.printf(" %s%n", employee));
}

756 Chapter 17 Java SE 8 Lambdas and Streams

17.6.6 Counting the Number of Employees in Each Department
Figure 17.15 once again demonstrates Stream method collect and Collectors static
method groupingBy, but in this case we count the number of Employees in each depart-
ment. Lines 107–110 produce a Map<String, Long> in which each String key is a depart-
ment name and the corresponding Long value is the number of Employees in that
department. In this case, we use a version of Collectors static method groupingBy that
receives two arguments—the first is a Function that classifies the objects in the stream and
the second is another Collector (known as the downstream Collector). In this case, we
use a call to Collectors static method counting as the second argument. This method
returns a Collector that counts the number of objects in a given classification, rather than
collecting them into a List. Lines 111–113 then output the key–value pairs from the re-
sulting Map<String, Long>.

17.6.7 Summing and Averaging Employee Salaries
Figure 17.16 demonstrates Stream method mapToDouble (lines 119, 126 and 132), which
maps objects to double values and returns a DoubleStream. In this case, we map Employee

Employees by department:
Sales
 Matthew Indigo 3587.50 Sales
 Jason Blue 3200.00 Sales
IT
 Jason Red 5000.00 IT
 Ashley Green 7600.00 IT
 Luke Indigo 6200.00 IT
Marketing
 James Indigo 4700.77 Marketing
 Wendy Brown 4236.40 Marketing

105 // count number of Employees in each department
106 System.out.printf("%nCount of Employees by department:%n");
107
108
109
110
111 employeeCountByDepartment.forEach(
112 (department, count) -> System.out.printf(
113 "%s has %d employee(s)%n", department, count));
114

Count of Employees by department:
IT has 3 employee(s)
Marketing has 2 employee(s)
Sales has 2 employee(s)

Fig. 17.15 | Counting the number of Employees in each department.

Fig. 17.14 | Grouping Employees by department. (Part 2 of 2.)

Map<String, Long> employeeCountByDepartment =
 list.stream()
 .collect(Collectors.groupingBy(Employee::getDepartment,
 Collectors.counting()));

17.6 Stream<Employee> Manipulations 757

objects to their salaries so that we can calculate the sum and average. Method mapToDouble
receives an object that implements the functional interface ToDoubleFunction (package
java.util.function). This interface’s applyAsDouble method invokes an instance meth-
od on an object and returns a double value. Lines 119, 126 and 132 each pass to
mapToDouble the Employee instance method reference Employee::getSalary, which re-
turns the current Employee’s salary as a double. The compiler converts this method refer-
ence into an object that implements the functional interface ToDoubleFunction.

Lines 118–120 create a Stream<Employee>, map it to a DoubleStream, then invoke
DoubleStream method sum to calculate the sum of the Employees’ salaries. Lines 125–127
also sum the Employees’ salaries, but do so using DoubleStream method reduce rather
than sum—we introduced method reduce in Section 17.3 with IntStreams. Finally, lines
131–134 calculate the average of the Employees’ salaries using DoubleStream method
average, which returns an OptionalDouble in case the DoubleStream does not contain
any elements. In this case, we know the stream has elements, so we simply call method
OptionalDouble method getAsDouble to get the result. Recall that you can also use
method orElse to specify a value that should be used if the average method was called on
an empty DoubleStream, and thus could not calculate the average.

115 // sum of Employee salaries with DoubleStream sum method
116 System.out.printf(
117 "%nSum of Employees' salaries (via sum method): %.2f%n",
118 list.stream()
119
120 .sum());
121
122 // calculate sum of Employee salaries with Stream reduce method
123 System.out.printf(
124 "Sum of Employees' salaries (via reduce method): %.2f%n",
125 list.stream()
126 .mapToDouble(Employee::getSalary)
127);
128
129 // average of Employee salaries with DoubleStream average method
130 System.out.printf("Average of Employees' salaries: %.2f%n",
131 list.stream()
132 .mapToDouble(Employee::getSalary)
133
134 .getAsDouble());
135 } // end main
136 } // end class ProcessingEmployees

Sum of Employees' salaries (via sum method): 34524.67
Sum of Employees' salaries (via reduce method): 34525.67
Average of Employees' salaries: 4932.10

Fig. 17.16 | Summing and averaging Employee salaries.

.mapToDouble(Employee::getSalary)

.reduce(0, (value1, value2) -> value1 + value2)

.average()

758 Chapter 17 Java SE 8 Lambdas and Streams

17.7 Creating a Stream<String> from a File
Figure 17.17 uses lambdas and streams to summarize the number of occurrences of each
word in a file then display a summary of the words in alphabetical order grouped by start-
ing letter. This is commonly called a concordance (http://en.wikipedia.org/wiki/
Concordance_(publishing)). Concordances are often used to analyze published works.
For example, concordances of William Shakespeare’s and Christopher Marlowe’s works
have been used to question whether they are the same person. Figure 17.18 shows the pro-
gram’s output. Line 16 of Fig. 17.17creates a regular expression Pattern that we’ll use to
split lines of text into their individual words. This Pattern represents one or more consec-
utive white-space characters. (We introduced regular expressions in Section 14.7.)

1 // Fig. 17.17: StreamOfLines.java
2 // Counting word occurrences in a text file.
3 import java.io.IOException;
4 import java.nio.file.Files;
5 import java.nio.file.Paths;
6 import java.util.Map;
7 import java.util.TreeMap;
8 import java.util.regex.Pattern;
9 import java.util.stream.Collectors;

10
11 public class StreamOfLines
12 {
13 public static void main(String[] args) throws IOException
14 {
15 // Regex that matches one or more consecutive whitespace characters
16 Pattern pattern = Pattern.compile("\\s+");
17
18 // count occurrences of each word in a Stream<String> sorted by word
19
20
21
22
23
24
25
26 // display the words grouped by starting letter
27
28
29
30
31
32
33
34
35
36
37
38 }
39 } // end class StreamOfLines

Fig. 17.17 | Counting word occurrences in a text file.

Map<String, Long> wordCounts =
 Files.lines(Paths.get("Chapter2Paragraph.txt"))
 .map(line -> line.replaceAll("(?!')\\p{P}", ""))
 .flatMap(line -> pattern.splitAsStream(line))
 .collect(Collectors.groupingBy(String::toLowerCase,
 TreeMap::new, Collectors.counting()));

wordCounts.entrySet()
 .stream()
 .collect(
 Collectors.groupingBy(entry -> entry.getKey().charAt(0),
 TreeMap::new, Collectors.toList()))
 .forEach((letter, wordList) ->
 {
 System.out.printf("%n%C%n", letter);
 wordList.stream().forEach(word -> System.out.printf(
 "%13s: %d%n", word.getKey(), word.getValue()));
 });

http://en.wikipedia.org/wiki/Concordance_(publishing)
http://en.wikipedia.org/wiki/Concordance_(publishing)

17.7 Creating a Stream<String> from a File 759

Summarizing the Occurrences of Each Word in the File
Lines 19–24 summarize contents of the text file "Chapter2Paragraph.txt" (which is lo-
cated in the folder with the example) into a Map<String, Long> in which each String key
is a word in the file and the corresponding Long value is the number of occurrences of that
word. The statement performs the following tasks:

• Line 20 uses Files method lines to create a Stream<String> for reading the
lines of text from a file. Class Files (package java.nio.file) is one of many
classes throughout the Java APIs that have been enhanced to support Streams.

• Line 21 uses Stream method map to remove all the punctuation, except apostro-
phes, in the lines of text. The lambda argument represents a Function that in-
vokes String method replaceAll on its String argument. This method receives
two arguments—the first is a regular expression String to match and the second
is a String with which every match is replaced. In the regular expression,

A
 a: 2
 and: 3
 application: 2
 arithmetic: 1

B
 begin: 1

C
 calculates: 1
 calculations: 1
 chapter: 1
 chapters: 1
 commandline: 1
 compares: 1
 comparison: 1
 compile: 1
 computer: 1
D
 decisions: 1
 demonstrates: 1
 display: 1
 displays: 2

E
 example: 1
 examples: 1

F
 for: 1
 from: 1

H
 how: 2

I
 inputs: 1
 instruct: 1
 introduces: 1

J
 java: 1
 jdk: 1

L
 last: 1
 later: 1
 learn: 1

M
 make: 1
 messages: 2

N
 numbers: 2

O
 obtains: 1
 of: 1
 on: 1
 output: 1

P
 perform: 1
 present: 1
 program: 1
 programming: 1
 programs: 2

R
 result: 1
 results: 2
 run: 1

S
 save: 1
 screen: 1
 show: 1
 sum: 1

T
 that: 3
 the: 7
 their: 2
 then: 2
 this: 2
 to: 4
 tools: 1
 two: 2

U
 use: 2
 user: 1

W
 we: 2
 with: 1

Y
 you'll: 2

Fig. 17.18 | Output for the program of Fig. 17.17 arranged in three columns.

760 Chapter 17 Java SE 8 Lambdas and Streams

"(?!')" indicates that the rest of the regular expression should ignore apostro-
phes (such as in a contraction, like "you'll") and "\\p{P}" matches any punc-
tuation character. For any match, the call to replaceAll removes the
punctuation by replacing it with an empty String. The result of line 21 is an in-
termediate Stream<String> containing the lines without punctuation.

• Line 22 uses Stream method flatMap to break each line of text into its separate
words. Method flatMap receives a Function that maps an object into a stream of
elements. In this case, the object is a String containing words and the result is
another intermediate Stream<String> for the individual words. The lambda in
line 22 passes the String representing a line of text to Pattern method split-
AsStream (new in Java SE 8), which uses the regular expression specified in the
Pattern (line 16) to tokenize the String into its individual words.

• Lines 23–24 use Stream method collect to count the frequency of each word
and place the words and their counts into the TreeMap<String, Long>. Here, we
use a version of Collectors method groupingBy that receives three arguments—
a classifier, a Map factory and a downstream Collector. The classifier is a Func-
tion that returns objects for use as keys in the resulting Map—the method refer-
ence String::toLowerCase converts each word in the Stream<String> to
lowercase. The Map factory is an object that implements interface Supplier and
returns a new Map collection—the constructor reference TreeMap::new returns a
TreeMap that maintains its keys in sorted order. Collectors.counting() is the
downstream Collector that determines the number of occurrences of each key
in the stream.

Displaying the Summary Grouped by Starting Letter
Next, lines 27–37 group the key–value pairs in the Map wordCounts by the keys’ first letter.
This produces a new Map in which each key is a Character and the corresponding value is
a List of the key–value pairs in wordCounts in which the key starts with the Character.
The statement performs the following tasks:

• First we need to get a Stream for processing the key–value pairs in wordCounts.
Interface Map does not contain any methods that return Streams. So, line 27 calls
Map method entrySet on wordCounts to get a Set of Map.Entry objects that each
contain one key–value pair from wordCounts. This produces an object of type
Set<Map.Entry<String, Long>>.

• Line 28 calls Set method stream to get a Stream<Map.Entry<String, Long>>.

• Lines 29–31 call Stream method collect with three arguments—a classifier, a
Map factory and a downstream Collector. The classifier Function in this case
gets the key from the Map.Entry then uses String method charAt to get the key’s
first character—this becomes a Character key in the resulting Map. Once again,
we use the constructor reference TreeMap::new as the Map factory to create a
TreeMap that maintains its keys in sorted order. The downstream Collector
(Collectors.toList()) places the Map.Entry objects into a List collection. The
result of collect is a Map<Character, List<Map.Entry<String, Long>>>.

17.8 Generating Streams of Random Values 761

• Finally, to display the summary of the words and their counts by letter (i.e., the
concordance), lines 32–37 pass a lambda to Map method forEach. The lambda (a
BiConsumer) receives two parameters—letter and wordList represent the
Character key and the List value, respectively, for each key–value pair in the Map
produced by the preceding collect operation. The body of this lambda has two
statements, so it must be enclosed in curly braces. The statement in line 34 dis-
plays the Character key on its own line. The statement in lines 35–36 gets a
Stream<Map.Entry<String, Long>> from the wordList, then calls Stream meth-
od forEach to display the key and value from each Map.Entry object.

17.8 Generating Streams of Random Values
In Fig. 6.7, we demonstrated rolling a six-sided die 6,000,000 times and summarizing the
frequencies of each face using external iteration (a for loop) and a switch statement that
determined which counter to increment. We then displayed the results using separate
statements that performed external iteration. In Fig. 7.7, we reimplemented Fig. 6.7, re-
placing the entire switch statement with a single statement that incremented counters in
an array—that version of rolling the die still used external iteration to produce and sum-
marize 6,000,000 random rolls and to display the final results. Both prior versions of this
example, used mutable variables to control the external iteration and to summarize the re-
sults. Figure 17.19 reimplements those programs with a single statement that does it all, us-
ing lambdas, streams, internal iteration and no mutable variables to roll the die 6,000,000
times, calculate the frequencies and display the results.

1 // Fig. 17.19: RandomIntStream.java
2 // Rolling a die 6,000,000 times with streams
3 import java.security.SecureRandom;
4 import java.util.Map;
5 import java.util.function.Function;
6 import java.util.stream.IntStream;
7 import java.util.stream.Collectors;
8
9 public class RandomIntStream

10 {
11 public static void main(String[] args)
12 {
13 SecureRandom random = new SecureRandom();
14
15 // roll a die 6,000,000 times and summarize the results
16 System.out.printf("%-6s%s%n", "Face", "Frequency");
17 random.ints(6_000_000, 1, 7)
18
19 .collect(Collectors.groupingBy(,
20 Collectors.counting()))
21 .forEach((face, frequency) ->
22 System.out.printf("%-6d%d%n", face, frequency));
23 }
24 } // end class RandomIntStream

Fig. 17.19 | Rolling a die 6,000,000 times with streams. (Part 1 of 2.)

.boxed()
Function.identity()

762 Chapter 17 Java SE 8 Lambdas and Streams

Creating an IntStream of Random Values
In Java SE 8, class SecureRandom has overloaded methods ints, longs and doubles, which
it inherits from class Random (package java.util). These methods return IntStream, Long-
Stream and DoubleStream, respectively, that represent streams of random numbers. Each
method has four overloads. We describe the ints overloads here—methods longs and dou-
bles perform the same tasks for streams of long and double values, respectively:

• ints()—creates an IntStream for an infinite stream of random ints. An infinite
stream has an unknown number of elements—you use a short-circuiting terminal
operation to complete processing on an infinite stream. We’ll use an infinite
stream in Chapter 23 to find prime numbers with the Sieve of Eratosthenes.

• ints(long)—creates an IntStream with the specified number of random ints.

• ints(int, int)—creates an IntStream for an infinite stream of random int val-
ues in the range starting with the first argument and up to, but not including, the
second argument.

• ints(long, int, int)—creates an IntStream with the specified number of ran-
dom int values in the range starting with the first argument and up to, but not
including, the second argument.

Line 17 uses the last overloaded version of ints to create an IntStream of 6,000,000 ran-
dom integer values in the range 1–6.

Converting an IntStream to a Stream<Integer>
We summarize the roll frequencies in this example by collecting them into a Map<Integer,
Long> in which each Integer key is a side of the die and each Long value is the frequency of
that side. Unfortunately, Java does not allow primitive values in collections, so to summarize
the results in a Map, we must first convert the IntStream to a Stream<Integer>. We do this
by calling IntStream method boxed.

Summarizing the Die Frequencies
Lines 19–20 call Stream method collect to summarize the results into a Map<Integer,
Long>. The first argument to Collectors method groupingBy (line 19) calls static
method identity from interface Function, which creates a Function that simply returns
its argument. This allows the actual random values to be used as the Map’s keys. The second
argument to method groupingBy counts the number of occurrences of each key.

Displaying the Results
Lines 21–22 call the resulting Map’s forEach method to display the summary of the results.
This method receives an object that implements the BiConsumer functional interface as an

Face Frequency
1 999339
2 999937
3 1000302
4 999323
5 1000183
6 1000916

Fig. 17.19 | Rolling a die 6,000,000 times with streams. (Part 2 of 2.)

17.9 Lambda Event Handlers 763

argument. Recall that for Maps, the first parameter represents the key and the second rep-
resents the corresponding value. The lambda in lines 21–22 uses parameter face as the key
and frequency as the value, and displays the face and frequency.

17.9 Lambda Event Handlers
In Section 12.11, you learned how to implement an event handler using an anonymous
inner class. Some event-listener interfaces—such as ActionListener and ItemListener—
are functional interfaces. For such interfaces, you can implement event handlers with
lambdas. For example, the following statement from Fig. 12.21:

which registers an event handler for a JComboBox can be implemented more concisely as

For a simple event handler like this one, a lambda significantly reduces the amount of code
you need to write.

17.10 Additional Notes on Java SE 8 Interfaces
Java SE 8 Interfaces Allow Inheritance of Method Implementations
Functional interfaces must contain only one abstract method, but may also contain
default methods and static methods that are fully implemented in the interface decla-
rations. For example, the Function interface—which is used extensively in functional pro-
gramming—has methods apply (abstract), compose (default), andThen (default) and
identity (static).

When a class implements an interface with default methods and does not override
them, the class inherits the default methods’ implementations. An interface’s designer
can now evolve an interface by adding new default and static methods without
breaking existing code that implements the interface. For example, interface Comparator
(Section 16.7.1) now contains many default and static methods, but older classes that
implement this interface will still compile and operate properly in Java SE 8.

If one class inherits the same default method from two unrelated interfaces, the class
must override that method; otherwise, the compiler will not know which method to use,
so it will generate a compilation error.

imagesJComboBox.addItemListener(
 new ItemListener() // anonymous inner class
 {
 // handle JComboBox event
 @Override
 public void itemStateChanged(ItemEvent event)
 {
 // determine whether item selected
 if (event.getStateChange() == ItemEvent.SELECTED)
 label.setIcon(icons[
 imagesJComboBox.getSelectedIndex()]);
 }
 } // end anonymous inner class
); // end call to addItemListener

imagesJComboBox.addItemListener(event -> {
 if (event.getStateChange() == ItemEvent.SELECTED)
 label.setIcon(icons[imagesJComboBox.getSelectedIndex()]);
});

764 Chapter 17 Java SE 8 Lambdas and Streams

Java SE 8: @FunctionalInterface Annotation
You can create your own functional interfaces by ensuring that each contains only one
abstract method and zero or more default or static methods. Though not required,
you can declare that an interface is a functional interface by preceding it with the @Func-
tionalInterface annotation. The compiler will then ensure that the interface contains
only one abstract method; otherwise, it’ll generate a compilation error.

17.11 Java SE 8 and Functional Programming Resources
Check out the book’s web page at

for links to the online Deitel Resource Centers that we built as we were writing Java How
to Program, 10/e.

17.12 Wrap-Up
In this chapter, you learned about Java SE 8’s new functional programming capabilities.
We presented many examples, often showing simpler ways to implement tasks that you
programmed in earlier chapters.

We overviewed the key functional programming technologies—functional interfaces,
lambdas and streams. You learned how to process elements in an IntStream—a stream of
int values. You created an IntStream from an array of ints, then used intermediate and
terminal stream operations to create and process a stream pipeline that produced a result.
You used lambdas to create anonymous methods that implemented functional interfaces.

We showed how to use a forEach terminal operation to perform an operation on each
stream element. We used reduction operations to count the number of stream elements,
determine the minimum and maximum values, and sum and average the values. You also
learned how to use method reduce to create your own reduction operations.

You used intermediate operations to filter elements that matched a predicate and map
elements to new values—in each case, these operations produced intermediate streams on
which you could perform additional processing. You also learned how to sort elements in
ascending and descending order and how to sort objects by multiple fields.

We demonstrated how to store the results of a stream pipeline into a collection for
later use. To do so, you took advantage of various prededined Collector implementations
provided by class Collectors. You also learned how to use a Collector to group elements
into categories.

You learned that various Java SE 8 classes have been enhanced to support functional
programming. You then used Files method lines to get a Stream<String> that read
lines of text from a file and used SecureRandom method ints to get an IntStream of
random values. You also learned how to convert an IntStream into a Stream<Integer>
(via method boxed) so that you could use Stream method collect to summarize the fre-
quencies of the Integer values and store the results in a Map.

Next, you learned how to implement an event-handling functional interface using a
lambda. Finally, we presented some additional information about Java SE 8 interfaces and
streams. In the next chapter, we discuss recursive programming in which methods call
themselves either directly or indirectly.

http://www.deitel.com/books/jhtp10

http://www.deitel.com/books/jhtp10

 Summary 765

Summary
Section 17.1 Introduction
• Prior to Java SE 8, Java supported three programming paradigms—procedural programming, ob-

ject-oriented programming and generic programming. Java SE 8 adds functional programming.

• The new language and library capabilities that support functional programming were added to
Java as part of Project Lambda.

Section 17.2 Functional Programming Technologies Overview
• Prior to functional programming, you typically determined what you wanted to accomplish,

then specified the precise steps to accomplish that task.

• Using a loop to iterate over a collection of elements is known as external iteration (p. 731) and
requires accessing the elements sequentially. Such iteration also requires mutable variables.

• In functional programming (p. 732), you specify what you want to accomplish in a task, but not
how to accomplish it.

• Letting the library determine how to iterate over a collection of elements is known as internal
iteration (p. 732). Internal iteration is easier to parallelize.

• Functional programming focuses on immutability (p. 732)—not modifying the data source be-
ing processed or any other program state.

Section 17.2.1 Functional Interfaces
• Functional interfaces are also known as single abstract method (SAM) interfaces.

• Package java.util.function contains six basic functional interfaces BinaryOperator, Consumer,
Function, Predicate, Supplier and UnaryOperator.

• There are many specialized versions of the six basic functional interfaces for use with int, long
and double primitive values. There are also generic customizations of Consumer, Function and
Predicate for binary operations—that is, methods that take two arguments.

Section 17.2.2 Lambda Expressions
• A lambda expression (p. 733) represents an anonymous method—a shorthand notation for im-

plementing a functional interface.

• The type of a lambda is the type of the functional interface that the lambda implements.

• Lambda expressions can be used anywhere functional interfaces are expected.

• A lambda consists of a parameter list followed by the arrow token (->, p. 733) and a body, as in:

(parameterList) -> {statements}

For example, the following lambda receives two ints and returns their sum:

(int x, int y) -> {return x + y;}

This lambda’s body is a statement block that may contain one or more statements enclosed in
curly braces.

• A lambda’s parameter types may be omitted, as in:

(x, y) -> {return x + y;}

in which case, the parameter and return types are determined by the lambda’s context.

• A lambda with a one-expression body can be written as:

(x, y) -> x + y

In this case, the expression’s value is implicitly returned.

766 Chapter 17 Java SE 8 Lambdas and Streams

• When the parameter list contains only one parameter, the parentheses may be omitted, as in:

value -> System.out.printf("%d ", value)

• A lambda with an empty parameter list is defined with () to the left of the arrow token (->), as in:

() -> System.out.println("Welcome to lambdas!")

• There are also specialized shorthand forms of lambdas that are known as method references.

Section 17.2.3 Streams
• Streams (p. 734) are objects that implement interface Stream (from the package java.util.stream)

and enable you to perform functional programming tasks. There are also specialized stream inter-
faces for processing int, long or double values.

• Streams move elements through a sequence of processing steps—known as a stream pipeline—
that begins with a data source, performs various intermediate operations on the data source’s ele-
ments and ends with a terminal operation. A stream pipeline is formed by chaining method calls.

• Unlike collections, streams do not have their own storage—once a stream is processed, it cannot
be reused, because it does not maintain a copy of the original data source.

• An intermediate operation (p. 734) specifies tasks to perform on the stream’s elements and al-
ways results in a new stream.

• Intermediate operations are lazy (p. 734)—they aren’t performed until a terminal operation is
invoked. This allows library developers to optimize stream-processing performance.

• A terminal operation (p. 734) initiates processing of a stream pipeline’s intermediate operations
and produces a result. Terminal operations are eager (p. 734)—they perform the requested op-
eration when they are called.

Section 17.3 IntStream Operations
• An IntStream (package java.util.stream) is a specialized stream for manipulating int values.

Section 17.3.1 Creating an IntStream and Displaying Its Values with the forEach
Terminal Operation
• IntStream static method of (p. 738) receives an int array as an argument and returns an Int-

Stream for processing the array’s values.

• IntStream method forEach (a terminal operation; p. 738) receives as its argument an object that
implements the IntConsumer functional interface (package java.util.function). This inter-
face’s accept method receives one int value and performs a task with it.

• The Java compiler can infer the types of a lambda’s parameters and the type returned by a lambda
from the context in which the lambda is used. This is determined by the lambda’s target type
(p. 738)—the functional interface type that is expected where the lambda appears in the code.

• Lambdas may use final local variables or effectively final (p. 738) local variables.

• A lambda that refers to a local variable in the enclosing lexical scope is known as a capturing lambda.

• A lambda can use the outer class’s this reference without qualifying it with the outer class’s name.

• The parameter names and variable names that you use in lambdas cannot be the same as any oth-
er local variables in the lambda’s lexical scope; otherwise, a compilation error occurs.

Section 17.3.2 Terminal Operations count, min, max, sum and average
• Class IntStream provides terminal operations for common stream reductions—count (p. 739)

returns the number of elements, min returns the smallest int, max returns the largest int, sum re-
turns the sum of all the ints and average returns an OptionalDouble (package java.util) con-
taining the average of the ints as a value of type double.

 Summary 767

• Class OptionalDouble’s getAsDouble method returns the double in the object or throws a
NoSuchElementException. To prevent this exception, you can call method orElse, which returns
the OptionalDouble’s value if there is one, or the value you pass to orElse, otherwise.

• IntStream method summaryStatistics performs the count, min, max, sum and average opera-
tions in one pass of an IntStream’s elements and returns the results as an IntSummaryStatistics
object (package java.util).

Section 17.3.3 Terminal Operation reduce
• You can define your own reductions for an IntStream by calling its reduce method. The first

argument is a value that helps you begin the reduction operation and the second argument is an
object that implements the IntBinaryOperator (p. 740) functional interface.

• Method reduce’s first argument is formally called an identity value (p. 740)—a value that, when com-
bined with any stream element using the IntBinaryOperator produces that element’s original value.

Section 17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values
• You filter elements to produce a stream of intermediate results that match a predicate. IntStream

method filter (p. 741) receives an object that implements the IntPredicate functional inter-
face (package java.util.function).

• IntStream method sorted (a lazy operation) orders the elements of the stream into ascending
order (by default). All prior intermediate operations in the stream pipeline must be complete so
that method sorted knows which elements to sort.

• Method filter a stateless intermediate operation—it does not require any information about
other elements in the stream in order to test whether the current element satisfies the predicate.

• Method sorted is a stateful intermediate operation that requires information about all of the oth-
er elements in the stream in order to sort them.

• Interface IntPredicate’s default method and (p. 741) performs a logical AND operation with short-
circuit evaluation between the IntPredicate on which it’s called and its IntPredicate argument.

• Interface IntPredicate’s default method negate (p. 741) reverses the boolean value of the Int-
Predicate on which it’s called.

• Interface IntPredicate default method or (p. 741) performs a logical OR operation with short-
circuit evaluation between the IntPredicate on which it’s called and its IntPredicate argument.

• You can use the interface IntPredicate default methods to compose more complex conditions.

Section 17.3.5 Intermediate Operation: Mapping
• Mapping is an intermediate operation that transforms a stream’s elements to new values and pro-

duces a stream containing the resulting (possibly different type) elements.

• IntStream method map (a stateless intermediate operation; p. 742) receives an object that imple-
ments the IntUnaryOperator functional interface (package java.util.function).

Section 17.3.6 Creating Streams of ints with IntStream Methods range and
rangeClosed

• IntStream methods range (p. 743) and rangeClosed each produce an ordered sequence of int
values. Both methods take two int arguments representing the range of values. Method range
produces a sequence of values from its first argument up to, but not including, its second argu-
ment. Method rangeClosed produces a sequence of values including both of its arguments.

Section 17.4 Stream<Integer> Manipulations
• Class Array’s stream method is used to create a Stream from an array of objects.

768 Chapter 17 Java SE 8 Lambdas and Streams

Section 17.4.1 Creating a Stream<Integer>
• Interface Stream (package java.util.stream; p. 744) is a generic interface for performing stream

operations on objects. The types of objects that are processed are determined by the Stream’s source.

• Class Arrays provides overloaded stream methods for creating IntStreams, LongStreams and
DoubleStreams from int, long and double arrays or from ranges of elements in the arrays.

Section 17.4.2 Sorting a Stream and Collecting the Results
• Stream method sorted (p. 745) sorts a stream’s elements into ascending order by default.

• To create a collection containing a stream pipeline’s results, you can use Stream method collect
(a terminal operation). As the stream pipeline is processed, method collect performs a mutable
reduction operation that places the results into an object, such as a List, Map or Set.

• Method collect with one argument receives an object that implements interface Collector
(package java.util.stream), which specifies how to perform the mutable reduction.

• Class Collectors (package java.util.stream) provides static methods that return predefined
Collector implementations.

• Collectors method toList transforms a Stream<T> into a List<T> collection.

Section 17.4.3 Filtering a Stream and Storing the Results for Later Use
• Stream method filter (p. 745) receives a Predicate and results in a stream of objects that match

the Predicate. Predicate method test returns a boolean indicating whether the argument sat-
isfies a condition. Interface Predicate also has methods and, negate and or.

Section 17.4.5 Sorting Previously Collected Results
• Once you place the results of a stream pipeline into a collection, you can create a new stream

from the collection for performing additional stream operations on the prior results.

Section 17.5.1 Mapping Strings to Uppercase Using a Method Reference
• Stream method map (p. 747) maps each element to a new value and produces a new stream with

the same number of elements as the original stream.

• A method reference (p. 747) is a shorthand notation for a lambda expression.

• ClassName::instanceMethodName represents a method reference for an instance method of a
class. Creates a one-parameter lambda that invokes the instance method on the lambda’s argu-
ment and returns the method’s result.

• objectName::instanceMethodName represents a method reference for an instance method that
should be called on a specific object. Creates a one-parameter lambda that invokes the instance
method on the specified object—passing the lambda’s argument to the instance method—and
returns the method’s result.

• ClassName::staticMethodName represents a method reference for a static method of a class.
Creates a one-parameter lambda in which the lambda’s argument is passed to the specified a
static method and the lambda returns the method’s result.

• ClassName::new represents a constructor reference. Creates a lambda that invokes the no-argu-
ment constructor of the specified class to create and initialize a new object of that class.

Section 17.5.2 Filtering Strings Then Sorting Them in Case-Insensitive Ascending
Order
• Stream method sorted (p. 748) can receive a Comparator as an argument to specify how to com-

pare stream elements for sorting.

• By default, method sorted uses the natural order for the stream’s element type.

 Summary 769

• For Strings, the natural order is case sensitive, which means that "Z" is less than "a". Passing the
predefined Comparator String.CASE_INSENSITIVE_ORDER performs a case-insensitive sort.

Section 17.5.3 Filtering Strings Then Sorting Them in Case-Insensitive Descending
Order
• Functional interface Comparator’s default method reversed (p. 748) reverses an existing Com-

parator’s ordering.

Section 17.6.1 Creating and Displaying a List<Employee>
• When the instance method reference System.out::println is passed to Stream method forEach,

it’s converted by the compiler into an object that implements the Consumer functional interface.
This interface’s accept method receives one argument and returns void. In this case, the accept
method passes the argument to the System.out object’s println instance method.

Section 17.6.2 Filtering Employees with Salaries in a Specified Range
• To reuse a lambda, you can assign it to a variable of the appropriate functional interface type.

• The Comparator interface’s static method comparing (p. 753) receives a Function that’s used to
extract a value from an object in the stream for use in comparisons and returns a Comparator object.

• A nice performance feature of lazy evaluation is the ability to perform short circuit evaluation—
that is, to stop processing the stream pipeline as soon as the desired result is available.

• Stream method findFirst is a short-circuiting terminal operation that processes the stream pipe-
line and terminates processing as soon as the first object from the stream pipeline is found. The
method returns an Optional containing the object that was found, if any.

Section 17.6.3 Sorting Employees By Multiple Fields
• To sort objects by two fields, you create a Comparator that uses two Functions. First you call Com-

parator method comparing to create a Comparator with the first Function. On the resulting Com-
parator, you call method thenComparing with the second Function. The resulting Comparator
compares objects using the first Function then, for objects that are equal, compares them by the
second Function.

Section 17.6.4 Mapping Employees to Unique Last Name Strings
• You can map objects in a stream to different types to produce another stream with the same num-

ber of elements as the original stream.

• Stream method distinct (p. 754) eliminates duplicate objects in a stream.

Section 17.6.5 Grouping Employees By Department
• Collectors static method groupingBy (p. 755) with one argument receives a Function that clas-

sifies objects in the stream—the values returned by this function are used as the keys in a Map. The
corresponding values, by default, are Lists containing the stream elements in a given category.

• Map method forEach performs an operation on each key–value pair. The method receives an ob-
ject that implements functional interface BiConsumer. This interface’s accept method has two
parameters. For Maps, the first represents the key and the second the corresponding value.

Section 17.6.6 Counting the Number of Employees in Each Department
• Collectors static method groupingBy with two arguments receives a Function that classifies

the objects in the stream and another Collector (known as the downstream Collector; p. 756).

• Collectors static method counting returns a Collector that counts the number of objects in
a given classification, rather than collecting them into a List.

770 Chapter 17 Java SE 8 Lambdas and Streams

Section 17.6.7 Summing and Averaging Employee Salaries
• Stream method mapToDouble (p. 756) maps objects to double values and returns a DoubleStream.

The method receives an object that implements the functional interface ToDoubleFunction
(package java.util.function). This interface’s applyAsDouble method invokes an instance
method on an object and returns a double value.

Section 17.7 Creating a Stream<String> from a File
• Files method lines creates a Stream<String> for reading the lines of text from a file.

• Stream method flatMap (p. 760) receives a Function that maps an object into a stream—e.g., a
line of text into words.

• Pattern method splitAsStream (p. 760) uses a regular expression to tokenize a String.

• Collectors method groupingBy with three arguments receives a classifier, a Map factory and a
downstream Collector. The classifier is a Function that returns objects which are used as keys in
the resulting Map. The Map factory is an object that implements interface Supplier and returns a new
Map collection. The downstream Collector determines how to collect each group’s elements.

• Map method entrySet returns a Set of Map.Entry objects containing the Map’s key–value pairs.

• Set method stream returns a stream for processing the Set’s elements.

Section 17.8 Generating Streams of Random Values
• Class SecureRandom’s methods ints (p. 762), longs and doubles (inherited from class Random)

return IntStream, LongStream and DoubleStream, respectively, for streams of random numbers.

• Method ints with no arguments creates an IntStream for an infinite stream (p. 762) of random
int values. An infinite stream is a stream with an unknown number of elements—you use a
short-circuiting terminal operation to complete processing on an infinite stream.

• Method ints with a long argument creates an IntStream with the specified number of random
int values.

• Method ints with two int arguments creates an IntStream for an infinite stream of random int
values in the range starting with the first argument and up to, but not including, the second.

• Method ints with a long and two int arguments creates an IntStream with the specified number
of random int values in the range starting with the first argument and up to, but not including,
the second.

• To convert an IntStream to a Stream<Integer> call IntStream method boxed.

• Function static method identity creates a Function that simply returns its argument.

Section 17.9 Lambda Event Handlers
• Some event-listener interfaces are functional interfaces (p. 763). For such interfaces, you can im-

plement event handlers with lambdas. For a simple event handler, a lambda significantly reduces
the amount of code you need to write.

Section 17.10 Additional Notes on Java SE 8 Interfaces
• Functional interfaces must contain only one abstract method, but may also contain default

methods and static methods that are fully implemented in the interface declarations.

• When a class implements an interface with default methods and does not override them, the
class inherits the default methods’ implementations. An interface’s designer can now evolve an
interface by adding new default and static methods without breaking existing code that im-
plements the interface.

 Self-Review Exercises 771

• If one class inherits the same default method from two interfaces, the class must override that
method; otherwise, the compiler will generate a compilation error.

• You can create your own functional interfaces by ensuring that each contains only one abstract
method and zero or more default or static methods.

• You can declare that an interface is a functional interface by preceding it with the @Functional-
Interface annotation. The compiler will then ensure that the interface contains only one
abstract method; otherwise, it’ll generate a compilation error.

Self-Review Exercises
17.1 Fill in the blanks in each of the following statements:

a) Lambda expressions implement .
b) Functional programs are easier to (i.e., perform multiple operations simulta-

neously) so that your programs can take advantage of multi-core architectures to en-
hance performance.

c) With iteration the library determines how to access all the elements in a col-
lection to perform a task.

d) The functional interface contains method apply that takes two T arguments,
performs an operation on them (such as a calculation) and returns a value of type T.

e) The functional interface contains method test that takes a T argument and
returns a boolean, and tests whether the T argument satisfies a condition.

f) A(n) represents an anonymous method—a shorthand notation for imple-
menting a functional interface.

g) Intermediate stream operations are —they aren’t performed until a terminal
operation is invoked.

h) The terminal stream operation performs processing on every element in a
stream.

i) lambdas use local variables from the enclosing lexical scope.
j) A performance feature of lazy evaluation is the ability to perform evaluation—

that is, to stop processing the stream pipeline as soon as the desired result is available.
k) For Maps, a BiConsumer’s first parameter represents the and its second repre-

sents the corresponding .

17.2 State whether each of the following is true or false. If false, explain why.
a) Lambda expressions can be used anywhere functional interfaces are expected.
b) Terminal operations are lazy—they perform the requested operation when they are

called.
c) Method reduce’s first argument is formally called an identity value—a value that, when

combined with a stream element using the IntBinaryOperator produces the stream el-
ement’s original value. For example, when summing the elements, the identity value is
1 and when getting the product of the elements the identity value is 0.

d) Stream method findFirst is a short-circuiting terminal operation that processes the
stream pipeline but terminates processing as soon as an object is found.

e) Stream method flatMap receives a Function that maps a stream into an object. For ex-
ample, the object could be a String containing words and the result could be another
intermediate Stream<String> for the individual words.

f) When a class implements an interface with default methods and overrides them, the
class inherits the default methods’ implementations. An interface’s designer can now
evolve an interface by adding new default and static methods without breaking ex-
isting code that implements the interface.

772 Chapter 17 Java SE 8 Lambdas and Streams

17.3 Write a lambda or method reference for each of the following tasks:
a) Write a lambda that can be used in place of the following anonymous inner class:

 new IntConsumer()
 {
 public void accept(int value)
 {
 System.out.printf("%d ", value);
 }
 }

b) Write a method reference that can be used in place of the following lambda:

 (String s) -> {return s.toUpperCase();}

c) Write a no-argument lambda that implicitly returns the String "Welcome to lambdas!".
d) Write a method reference for Math method sqrt.
e) Create a one-parameter lambda that returns the cube of its argument.

Answers to Self-Review Exercises
17.1 a) functional interfaces. b) parallelize. c) internal. d) BinaryOperator<T>. e) Predicate<T>.
f) lambda expression. g) lazy. h) forEach. i) Capturing. j) short circuit. k) key, value.

17.2 a) True. b) False. Terminal operations are eager—they perform the requested operation
when they are called. c) False. When summing the elements, the identity value is 0 and when getting
the product of the elements the identity value is 1. d) True. e) False. Stream method flatMap re-
ceives a Function that maps an object into a stream. f) False. Should say: “…does not override them,
…” instead of “overrides them.”

17.3 a) value -> System.out.printf("%d ", value)
b) String::toUpperCase
c) () -> "Welcome to lambdas!"
d) Math::sqrt
e) value -> value * value * value

Exercises
17.4 Fill in the blanks in each of the following statements:

a) Stream are formed from stream sources, intermediate operations and terminal
operations.

b) The following code uses the technique of iteration:

 int sum = 0;

 for (int counter = 0; counter < values.length; counter++)
 sum += values[counter];

c) Functional programming capabilities focus on —not modifying the data
source being processed or any other program state.

d) The functional interface contains method accept that takes a T argument and
returns void; accept performs a task with its T argument, such as outputting the object,
invoking a method of the object, etc.

e) The functional interface contains method get that takes no arguments and
produces a value of type T—this is often used to create a collection object in which a
stream operation’s results are placed.

 Exercises 773

f) Streams are objects that implement interface Stream and enable you to perform func-
tional programming tasks on of elements.

g) The intermediate stream operation results in a stream containing only the el-
ements that satisfy a condition.

h) place the results of processing a stream pipeline into a collection such as a
List, Set or Map.

i) Calls to filter and other intermediate streams are lazy—they aren’t evaluated until an
eager operation is performed.

j) Pattern method (new in Java SE 8) uses a regular expression to tokenize a
String.

k) Functional interfaces must contain only one method, but may also contain
 methods and static methods that are fully implemented in the interface dec-

larations.

17.5 State whether each of the following is true or false. If false, explain why.
a) An intermediate operation specifies tasks to perform on the stream’s elements; this is

efficient because it avoids creating a new stream.
b) Reduction operations take all values in the stream and turn them into a new stream.
c) If you need an ordered sequence of int values, you can create an IntStream containing

such values with IntStream methods range and rangeClosed. Both methods take two
int arguments representing the range of values. Method rangeClosed produces a se-
quence of values from its first argument up to, but not including, its second argument.
Method range produces a sequence of values including both of its arguments.

d) Class Files (package java.nio.file) is one of many classes throughout the Java APIs
that have been enhanced to support Streams.

e) Interface Map does not contain any methods that return Streams.
f) The Function functional interface—which is used extensively in functional program-

ming—has methods apply (abstract), compose (abstract), andThen (default) and
identity (static).

g) If one class inherits the same default method from two interfaces, the class must over-
ride that method; otherwise, the compiler does not know which method to use, so it
generates a compilation error.

17.6 Write a lambda or method reference for each of the following tasks:
a) Write a lambda expression that receives two double parameters a and b and returns their

product. Use the lambda form that explicitly lists the type of each parameter.
b) Rewrite the lambda expression in Part (a) using the lambda form that does not list the

type of each parameter.
c) Rewrite the lambda expression in Part (b) using the lambda form that implicitly returns

the value of the lambda’s body expression.
d) Write a no-argument lambda that implicitly returns the string "Welcome to lambdas!".
e) Write a constructor reference for class ArrayList.
f) Reimplement the following statement using a lambda as the event handler:

 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 JOptionPane.showMessageDialog(ParentFrame.this,
 "JButton event handler");
 }
 }
);

774 Chapter 17 Java SE 8 Lambdas and Streams

17.7 Assuming that list is a List<Integer>, explain in detail the stream pipeline:

 list.stream()
 .filter(value -> value % 2 != 0)
 .sum()

17.8 Assuming that random is a SecureRandom object, explain in detail the stream pipeline:

 random.ints(1000000, 1, 3)
 .boxed()
 .collect(Collectors.groupingBy(Function.identity(),
 Collectors.counting()))
 .forEach((side, frequency) ->
 System.out.printf("%-6d%d%n", side, frequency));

17.9 (Summarizing the Characters in a File) Modify the program of Fig. 17.17 to summarize
the number of occurrences of every character in the file.

17.10 (Summarizing the File Types in a Directory) Section 15.3 demonstrated how to get infor-
mation about files and directories on disk. In addition, you used a DirectoryStream to display the
contents of a directory. Interface DirectoryStream now contains default method entries, which
returns a Stream. Use the techniques from Section 15.3, DirectoryStream method entries, lamb-
das and streams to summarize the types of files in a specified directory.

17.11 (Manipulating a Stream<Invoice>) Use the class Invoice provided in the exercises folder
with this chapter’s examples to create an array of Invoice objects. Use the sample data shown in
Fig. 17.20. Class Invoice includes four properties—a PartNumber (type int), a PartDescription
(type String), a Quantity of the item being purchased (type int) and a Price (type double). Per-
form the following queries on the array of Invoice objects and display the results:

a) Use lambdas and streams to sort the Invoice objects by PartDescription, then display
the results.

b) Use lambdas and streams to sort the Invoice objects by Price, then display the results.
c) Use lambdas and streams to map each Invoice to its PartDescription and Quantity,

sort the results by Quantity, then display the results.
d) Use lambdas and streams to map each Invoice to its PartDescription and the value of

the Invoice (i.e., Quantity * Price). Order the results by Invoice value.
e) Modify Part (d) to select the Invoice values in the range $200 to $500.

17.12 (Duplicate Word Removal) Write a program that inputs a sentence from the user (assume
no punctuation), then determines and displays the unique words in alphabetical order. Treat up-
percase and lowercase letters the same.

Part number Part description Quantity Price

83 Electric sander 7 57.98
24 Power saw 18 99.99
 7 Sledge hammer 11 21.50
77 Hammer 76 11.99
39 Lawn mower 3 79.50
68 Screwdriver 106 6.99
56 Jig saw 21 11.00
 3 Wrench 34 7.50

Fig. 17.20 | Sample data for Exercise 17.11.

 Exercises 775

17.13 (Sorting Letters and Removing Duplicates) Write a program that inserts 30 random letters
into a List<Character>. Perform the following operations and display your results:

a) Sort the List in ascending order.
b) Sort the List in descending order.
c) Display the List in ascending order with duplicates removed.

17.14 (Mapping Then Reducing An IntStream for Parallelization) The lambda you pass to a
stream’s reduce method should be associative—that is, regardless of the order in which its subexpres-
sions are evaluated, the result should be the same. The lambda expression in lines 34–36 of Fig. 17.5
is not associative. If you were to use parallel streams (Chapter 23, Concurrency) with that lambda,
you might get incorrect results for the sum of the squares, depending on the order in which the sub-
expressions are evaluated. The proper way to implement lines 34–36 would be first to map each int
value to the square of that value, then to reduce the stream to the sum of the squares. Modify
Fig. 17.5 to implement lines 34–36 in this manner.

18 Recursion

O! thou hast damnable
iteration, and art indeed able to
corrupt a saint.
—William Shakespeare

It’s a poor sort of memory that
only works backwards.
—Lewis Carroll

Life can only be understood
backwards; but it must be lived
forwards.
—Soren Kierkegaard

O b j e c t i v e s
In this chapter you’ll:

■ Learn the concept of
recursion.

■ Write and use recursive
methods.

■ Determine the base case and
recursion step in a recursive
algorithm.

■ Learn how recursive method
calls are handled by the
system.

■ Learn the differences between
recursion and iteration, and
when to use each.

■ Learn what fractals are and
how to draw them using
recursion.

■ Learn what recursive
backtracking is and why it’s
an effective problem-solving
technique.

18.1 Introduction 777

18.1 Introduction
The programs we’ve discussed so far are generally structured as methods that call one an-
other in a hierarchical manner. For some problems, it’s useful to have a method call itself.
A method that does so is known as a recursive method. A recursive method can call itself
either directly or indirectly through another method. Recursion is an important topic dis-
cussed at length in upper-level computer science courses. In this chapter, we consider re-
cursion conceptually, then present several programs containing recursive methods.
Figure 18.1 summarizes the recursion examples and exercises in this book.

18.1 Introduction
18.2 Recursion Concepts
18.3 Example Using Recursion: Factorials
18.4 Reimplementing Class

FactorialCalculator Using
Class BigInteger

18.5 Example Using Recursion: Fibonacci
Series

18.6 Recursion and the Method-Call Stack

18.7 Recursion vs. Iteration
18.8 Towers of Hanoi
18.9 Fractals

18.9.1 Koch Curve Fractal
18.9.2 (Optional) Case Study: Lo Feather

Fractal
18.10 Recursive Backtracking
18.11 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Chapter Recursion examples and exercises in this book

18 Factorial Method (Figs. 18.3 and 18.4)
Fibonacci Method (Fig. 18.5)
Towers of Hanoi (Fig. 18.11)
Fractals (Figs. 18.18 and 18.19)
What Does This Code Do? (Exercise 18.7, Exercise 18.12 and Exercise 18.13)
Find the Error in the Following Code (Exercise 18.8)
Raising an Integer to an Integer Power (Exercise 18.9)
Visualizing Recursion (Exercise 18.10)
Greatest Common Divisor (Exercise 18.11)
Determine Whether a String Is a Palindrome (Exercise 18.14)
Eight Queens (Exercise 18.15)
Print an Array (Exercise 18.16)
Print an Array Backward (Exercise 18.17)
Minimum Value in an Array (Exercise 18.18)
Star Fractal (Exercise 18.19)
Maze Traversal Using Recursive Backtracking (Exercise 18.20)
Generating Mazes Randomly (Exercise 18.21)
Mazes of Any Size (Exercise 18.22)
Time to Calculate a Fibonacci Number (Exercise 18.23)

Fig. 18.1 | Summary of the recursion examples and exercises in this text. (Part 1 of 2.)

778 Chapter 18 Recursion

18.2 Recursion Concepts
Recursive problem-solving approaches have a number of elements in common. When a
recursive method is called to solve a problem, it actually is capable of solving only the sim-
plest case(s), or base case(s). If the method is called with a base case, it returns a result. If
the method is called with a more complex problem, it divides the problem into two con-
ceptual pieces—a piece that the method knows how to do and a piece that it does not
know how to do. To make recursion feasible, the latter piece must resemble the original
problem, but be a slightly simpler or smaller version of it. Because this new problem re-
sembles the original problem, the method calls a fresh copy of itself to work on the smaller
problem—this is referred to as a recursive call and is also called the recursion step. The
recursion step normally includes a return statement, because its result will be combined
with the portion of the problem the method knew how to solve to form a result that will
be passed back to the original caller. This concept of separating the problem into two
smaller portions is a form of the divide-and-conquer approach introduced in Chapter 6.

The recursion step executes while the original method call is still active (i.e., it has not
finished executing). It can result in many more recursive calls as the method divides each
new subproblem into two conceptual pieces. For the recursion to eventually terminate,
each time the method calls itself with a simpler version of the original problem, the
sequence of smaller and smaller problems must converge on a base case. When the method
recognizes the base case, it returns a result to the previous copy of the method. A sequence
of returns ensues until the original method call returns the final result to the caller. We’ll
illustrate this process with a concrete example in Section 18.3.

A recursive method may call another method, which may in turn make a call back to
the recursive method. This is known as an indirect recursive call or indirect recursion. For
example, method A calls method B, which makes a call back to method A. This is still recur-
sion, because the second call to method A is made while the first call to method A is
active—that is, the first call to method A has not yet finished executing (because it’s
waiting on method B to return a result to it) and has not returned to method A’s original
caller.

19 Merge Sort (Fig. 19.6)
Linear Search (Exercise 19.8)
Binary Search (Exercise 19.9)
Quicksort (Exercise 19.10)

21 Binary-Tree Insert (Fig. 21.17)
Preorder Traversal of a Binary Tree (Fig. 21.17)
Inorder Traversal of a Binary Tree (Fig. 21.17)
Postorder Traversal of a Binary Tree (Fig. 21.17)
Print a Linked List Backward (Exercise 21.20)
Search a Linked List (Exercise 21.21)

Chapter Recursion examples and exercises in this book

Fig. 18.1 | Summary of the recursion examples and exercises in this text. (Part 2 of 2.)

18.3 Example Using Recursion: Factorials 779

To better understand the concept of recursion, let’s look at an example that’s quite
familiar to computer users—the recursive definition of a file system directory on a com-
puter. A computer normally stores related files in a directory. A directory can be empty,
can contain files and/or can contain other directories (usually referred to as subdirectories).
Each of these subdirectories, in turn, may also contain both files and directories. If we
want to list each file in a directory (including all the files in the directory’s subdirectories),
we need to create a method that first lists the initial directory’s files, then makes recursive
calls to list the files in each of that directory’s subdirectories. The base case occurs when a
directory is reached that does not contain any subdirectories. At this point, all the files in
the original directory have been listed and no further recursion is necessary.

18.3 Example Using Recursion: Factorials
Let’s write a recursive program to perform a popular mathematical calculation. Consider
the factorial of a positive integer n, written n! (pronounced “n factorial”), which is the
product

with 1! equal to 1 and 0! defined to be 1. For example, 5! is the product 5 · 4 · 3 · 2 · 1,
which is equal to 120.

The factorial of integer number (where number ≥ 0) can be calculated iteratively (non-
recursively) using a for statement as follows:

A recursive declaration of the factorial calculation for integers greater than 1 is arrived
at by observing the following relationship:

For example, 5! is clearly equal to 5 · 4!, as shown by the following equations:

The evaluation of 5! would proceed as shown in Fig. 18.2. Figure 18.2(a) shows how
the succession of recursive calls proceeds until 1! (the base case) is evaluated to be 1, which
terminates the recursion. Figure 18.2(b) shows the values returned from each recursive call
to its caller until the final value is calculated and returned.

Figure 18.3 uses recursion to calculate and print the factorials of the integers 0
through 21. The recursive method factorial (lines 7–13) first tests to determine whether
a terminating condition (line 9) is true. If number is less than or equal to 1 (the base case),
factorial returns 1, no further recursion is necessary and the method returns. (A precon-
dition of calling method factorial in this example is that its argument must be non-neg-
ative.) If number is greater than 1, line 12 expresses the problem as the product of number
and a recursive call to factorial evaluating the factorial of number - 1, which is a slightly
smaller problem than the original calculation, factorial(number).

n · (n – 1) · (n – 2) · … · 1

factorial = 1;
for (int counter = number; counter >= 1; counter--)
 factorial *= counter;

n! = n · (n – 1)!

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

780 Chapter 18 Recursion

Fig. 18.2 | Recursive evaluation of 5!.

1 // Fig. 18.3: FactorialCalculator.java
2 // Recursive factorial method.
3
4 public class FactorialCalculator
5 {
6
7
8
9

10
11
12
13
14
15 // output factorials for values 0-21
16 public static void main(String[] args)
17 {
18 // calculate the factorials of 0 through 21
19 for (int counter = 0; counter <= 21; counter++)
20 System.out.printf("%d! = %d%n", counter,);
21 }
22 } // end class FactorialCalculator

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120

Fig. 18.3 | Recursive factorial method. (Part 1 of 2.)

(a) Sequence of recursive calls

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

(b) Values returned from each recursive call

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

3! = 3 * 2 = 6 is returned

2! = 2 * 1 = 2 is returned

1 returned

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

// recursive method factorial (assumes its parameter is >= 0)
public static long factorial(long number)
{
 if (number <= 1) // test for base case
 return 1; // base cases: 0! = 1 and 1! = 1
 else // recursion step
 return number * factorial(number - 1);
}

factorial(counter)

18.4 FactorialCalculator Using Class BigInteger 781

Method main (lines 16–21) displays the factorials of 0–21. The call to the factorial
method occurs in line 20. Method factorial receives a parameter of type long and
returns a result of type long. The program’s output shows that factorial values become
large quickly. We use type long (which can represent relatively large integers) so the pro-
gram can calculate factorials greater than 12!. Unfortunately, the factorial method pro-
duces large values so quickly that we exceed the largest long value when we attempt to
calculate 21!, as you can see in the last line of the program’s output.

Due to the limitations of integral types, float or double variables may ultimately be
needed to calculate factorials of larger numbers. This points to a weakness in some pro-
gramming languages—namely, that they aren’t easily extended with new types to handle
unique application requirements. As we saw in Chapter 9, Java is an extensible language
that allows us to create arbitrarily large integers if we wish. In fact, package java.math pro-
vides classes BigInteger and BigDecimal explicitly for arbitrary precision calculations that
cannot be performed with primitive types. You can learn more about these classes at

18.4 Reimplementing Class FactorialCalculator
Using Class BigInteger
Figure 18.4 reimplements class FactorialCalculator using BigInteger variables. To
demonstrate larger values than what long variables can store, we calculate the factorials of
the numbers 0–50. Line 3 imports class BigInteger from package java.math. The new
factorial method (lines 8–15) receives a BigInteger as an argument and returns a
BigInteger.

...
12! = 479001600
...
20! = 2432902008176640000
21! = -4249290049419214848

Common Programming Error 18.1
Either omitting the base case or writing the recursion step incorrectly so that it does not
converge on the base case can cause a logic error known as infinite recursion, where re-
cursive calls are continuously made until memory is exhausted or the method-call stack
overflows. This error is analogous to the problem of an infinite loop in an iterative (non-
recursive) solution.

docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html
docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

1 // Fig. 18.4: FactorialCalculator.java
2 // Recursive factorial method.
3
4

Fig. 18.4 | Factorial calculations with a recursive method. (Part 1 of 2.)

Fig. 18.3 | Recursive factorial method. (Part 2 of 2.)

12! causes overflow for int variables

21! causes overflow for long variables

import java.math.BigInteger;

782 Chapter 18 Recursion

Since BigInteger is not a primitive type, we can’t use the arithmetic, relational and
equality operators with BigIntegers; instead, we must use BigInteger methods to
perform these tasks. Line 10 tests for the base case using BigInteger method compareTo.
This method compares the BigInteger number that calls the method to the method’s
BigInteger argument. The method returns -1 if the BigInteger that calls the method is
less than the argument, 0 if they’re equal or 1 if the BigInteger that calls the method is
greater than the argument. Line 10 compares the BigInteger number with the BigInteger
constant ONE, which represents the integer value 1. If compareTo returns -1 or 0, then
number is less than or equal to 1 (the base case) and the method returns the constant
BigInteger.ONE. Otherwise, lines 13–14 perform the recursion step using BigInteger
methods multiply and subtract to implement the calculations required to multiply
number by the factorial of number - 1. The program’s output shows that BigInteger han-
dles the large values produced by the factorial calculation.

5 public class FactorialCalculator
6 {
7
8
9

10
11
12
13
14
15
16
17 // output factorials for values 0-50
18 public static void main(String[] args)
19 {
20 // calculate the factorials of 0 through 50
21 for (int counter = 0; counter <= 50; counter++)
22 System.out.printf("%d! = %d%n", counter,
23);
24 }
25 } // end class FactorialCalculator

0! = 1
1! = 1
2! = 2
3! = 6
...
21! = 51090942171709440000
22! = 1124000727777607680000
...
47! = 258623241511168180642964355153611979969197632389120000000000
48! = 12413915592536072670862289047373375038521486354677760000000000
49! = 608281864034267560872252163321295376887552831379210240000000000
50! = 30414093201713378043612608166064768844377641568960512000000000000

Fig. 18.4 | Factorial calculations with a recursive method. (Part 2 of 2.)

// recursive method factorial (assumes its parameter is >= 0)
public static BigInteger factorial(BigInteger number)
{
 if (number.compareTo(BigInteger.ONE) <= 0) // test base case
 return BigInteger.ONE; // base cases: 0! = 1 and 1! = 1
 else // recursion step
 return number.multiply(
 factorial(number.subtract(BigInteger.ONE)));
}

factorial(BigInteger.valueOf(counter))

21! and larger values no longer cause overflow

18.5 Example Using Recursion: Fibonacci Series 783

18.5 Example Using Recursion: Fibonacci Series
The Fibonacci series,

begins with 0 and 1 and has the property that each subsequent Fibonacci number is the
sum of the previous two. This series occurs in nature and describes a form of spiral. The
ratio of successive Fibonacci numbers converges on a constant value of 1.618…, a number
that has been called the golden ratio or the golden mean. Humans tend to find the golden
mean aesthetically pleasing. Architects often design windows, rooms and buildings whose
length and width are in the ratio of the golden mean. Postcards are often designed with a
golden-mean length-to-width ratio.

The Fibonacci series may be defined recursively as follows:

There are two base cases for the Fibonacci calculation: fibonacci(0) is defined to be 0, and
fibonacci(1) to be 1. The program in Fig. 18.5 calculates the ith Fibonacci number re-
cursively, using method fibonacci (lines 10–18). Method main (lines 21–26) tests fibo-
nacci, displaying the Fibonacci values of 0–40. The variable counter created in the for
header (line 23) indicates which Fibonacci number to calculate for each iteration of the
loop. Fibonacci numbers tend to become large quickly (though not as quickly as factori-
als). Therefore, we use type BigInteger as the parameter type and the return type of meth-
od fibonacci.

0, 1, 1, 2, 3, 5, 8, 13, 21, …

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)

1 // Fig. 18.5: FibonacciCalculator.java
2 // Recursive fibonacci method.
3 import java.math.BigInteger;
4
5 public class FibonacciCalculator
6 {
7 private static BigInteger TWO = BigInteger.valueOf(2);
8
9

10
11
12
13
14
15
16
17
18
19
20 // displays the fibonacci values from 0-40
21 public static void main(String[] args)
22 {

Fig. 18.5 | Recursive fibonacci method. (Part 1 of 2.)

// recursive declaration of method fibonacci
public static BigInteger fibonacci(BigInteger number)
{
 if (number.equals(BigInteger.ZERO) ||
 number.equals(BigInteger.ONE)) // base cases
 return number;
 else // recursion step
 return fibonacci(number.subtract(BigInteger.ONE)).add(
 fibonacci(number.subtract(TWO)));
}

784 Chapter 18 Recursion

The call to method fibonacci (line 25) from main is not a recursive call, but all sub-
sequent calls to fibonacci performed from lines 16–17 of Fig. 18.5 are recursive, because
at that point the calls are initiated by method fibonacci itself. Each time fibonacci is
called, it immediately tests for the base cases—number equal to 0 or number equal to 1 (lines
12–13). We use BigInteger constants ZERO and ONE to represent the values 0 and 1,
respectively. If the condition in lines 12–13 is true, fibonacci simply returns number,
because fibonacci(0) is 0 and fibonacci(1) is 1. Interestingly, if number is greater than
1, the recursion step generates two recursive calls (lines 16–17), each for a slightly smaller
problem than the original call to fibonacci. Lines 16–17 use BigInteger methods add
and subtract to help implement the recursive step. We also use a constant of type
BigInteger named TWO that we defined at line 7.

Analyzing the Calls to Method Fibonacci
Figure 18.6 shows how method fibonacci evaluates fibonacci(3). At the bottom of the
figure we’re left with the values 1, 0 and 1—the results of evaluating the base cases. The
first two return values (from left to right), 1 and 0, are returned as the values for the calls
fibonacci(1) and fibonacci(0). The sum 1 plus 0 is returned as the value of fibonac-
ci(2). This is added to the result (1) of the call to fibonacci(1), producing the value 2.
This final value is then returned as the value of fibonacci(3).

Figure 18.6 raises some interesting issues about the order in which Java compilers eval-
uate the operands of operators. This order is different from that in which operators are
applied to their operands—namely, the order dictated by the rules of operator precedence.
From Figure 18.6, it appears that while fibonacci(3) is being evaluated, two recursive
calls will be made—fibonacci(2) and fibonacci(1). But in what order will they be

23 for (int counter = 0; counter <= 40; counter++)
24 System.out.printf("Fibonacci of %d is: %d%n", counter,
25);
26 }
27 } // end class FibonacciCalculator

Fibonacci of 0 is: 0
Fibonacci of 1 is: 1
Fibonacci of 2 is: 1
Fibonacci of 3 is: 2
Fibonacci of 4 is: 3
Fibonacci of 5 is: 5
Fibonacci of 6 is: 8
Fibonacci of 7 is: 13
Fibonacci of 8 is: 21
Fibonacci of 9 is: 34
Fibonacci of 10 is: 55
...
Fibonacci of 37 is: 24157817
Fibonacci of 38 is: 39088169
Fibonacci of 39 is: 63245986
Fibonacci of 40 is: 102334155

Fig. 18.5 | Recursive fibonacci method. (Part 2 of 2.)

fibonacci(BigInteger.valueOf(counter))

18.5 Example Using Recursion: Fibonacci Series 785

made? The Java language specifies that the order of evaluation of the operands is from left to
right. Thus, the call fibonacci(2) is made first and the call fibonacci(1) second.

A word of caution is in order about recursive programs like the one we use here to
generate Fibonacci numbers. Each invocation of the fibonacci method that does not
match one of the base cases (0 or 1) results in two more recursive calls to the fibonacci
method. Hence, this set of recursive calls rapidly gets out of hand. Calculating the Fibo-
nacci value of 20 with the program in Fig. 18.5 requires 21,891 calls to the fibonacci
method; calculating the Fibonacci value of 30 requires 2,692,537 calls! As you try to cal-
culate larger Fibonacci values, you’ll notice that each consecutive Fibonacci number you
use the application to calculate results in a substantial increase in calculation time and in
the number of calls to the fibonacci method. For example, the Fibonacci value of 31
requires 4,356,617 calls, and the Fibonacci value of 32 requires 7,049,155 calls! As you
can see, the number of calls to fibonacci increases quickly—1,664,080 additional calls
between Fibonacci values of 30 and 31 and 2,692,538 additional calls between Fibonacci
values of 31 and 32! The difference in the number of calls made between Fibonacci values
of 31 and 32 is more than 1.5 times the difference in the number of calls for Fibonacci
values between 30 and 31. Problems of this nature can humble even the world’s most pow-
erful computers. [Note: In the field of complexity theory, computer scientists study how
hard algorithms work to complete their tasks. Complexity issues are discussed in detail in
the upper-level computer science curriculum course generally called “Algorithms.” We
introduce various complexity issues in Chapter 19, Searching, Sorting and Big O.] In this
chapter’s exercises, you’ll be asked to enhance the Fibonacci program of Fig. 18.5 so that
it calculates the approximate amount of time required to perform the calculation. For this
purpose, you’ll call static System method currentTimeMillis, which takes no argu-
ments and returns the computer’s current time in milliseconds.

Fig. 18.6 | Set of recursive calls for fibonacci(3).

Performance Tip 18.1
Avoid Fibonacci-style recursive programs, because they result in an exponential “explo-
sion” of method calls.

+

fibonacci(3)

fibonacci(2) fibonacci(1)return +

fibonacci(1) fibonacci(0) return 1

return 0return 1

return

786 Chapter 18 Recursion

18.6 Recursion and the Method-Call Stack
In Chapter 6, the stack data structure was introduced in the context of understanding how
Java performs method calls. We discussed both the method-call stack and stack frames. In
this section, we’ll use these concepts to demonstrate how the program-execution stack
handles recursive method calls.

Let’s begin by returning to the Fibonacci example—specifically, calling method fibo-
nacci with the value 3, as in Fig. 18.6. To show the order in which the method calls’ stack
frames are placed on the stack, we’ve lettered the method calls in Fig. 18.7.

When the first method call (A) is made, a stack frame containing the value of the local
variable number (3, in this case) is pushed onto the program-execution stack. This stack,
including the stack frame for method call A, is illustrated in part (a) of Fig. 18.8. [Note:
We use a simplified stack here. An actual program-execution stack and its stack frames
would be more complex than in Fig. 18.8, containing such information as where the
method call is to return to when it has completed execution.]

Fig. 18.7 | Method calls made within the call fibonacci(3).

Fig. 18.8 | Method calls on the program-execution stack.

fibonacci(3)A

fibonacci(2)B fibonacci(1)E

fibonacci(1)C fibonacci(0)D

return 0return 1

return 1

Top of Stack

(d)

Method call: E
 number = 1

Method call: A
 number = 3

Top of Stack

(c)

Method call: D
 number = 0

Method call: B
 number = 2

Method call: A
 number = 3

Top of Stack

(b)

Method call: C
 number = 1

Method call: B
 number = 2

Method call: A
 number = 3

Top of Stack

(a)

Method call: A
 number = 3

18.7 Recursion vs. Iteration 787

Within method call A, method calls B and E are made. The original method call has
not yet completed, so its stack frame remains on the stack. The first method call to be
made from within A is method call B, so the stack frame for method call B is pushed onto
the stack on top of the one for method call A. Method call B must execute and complete
before method call E is made. Within method call B, method calls C and D will be made.
Method call C is made first, and its stack frame is pushed onto the stack [part (b) of
Fig. 18.8]. Method call B has not yet finished, and its stack frame is still on the method-
call stack. When method call C executes, it makes no further method calls, but simply
returns the value 1. When this method returns, its stack frame is popped off the top of the
stack. The method call at the top of the stack is now B, which continues to execute by per-
forming method call D. The stack frame for method call D is pushed onto the stack [part
(c) of Fig. 18.8]. Method call D completes without making any more method calls and
returns the value 0. The stack frame for this method call is then popped off the stack. Now,
both method calls made from within method call B have returned. Method call B continues
to execute, returning the value 1. Method call B completes, and its stack frame is popped
off the stack. At this point, the stack frame for method call A is at the top of the stack and
the method continues its execution. This method makes method call E, whose stack frame
is now pushed onto the stack [part (d) of Fig. 18.8]. Method call E completes and returns
the value 1. The stack frame for this method call is popped off the stack, and once again
method call A continues to execute. At this point, method call A will not be making any
other method calls and can finish its execution, returning the value 2 to A’s caller (fibo-
nacci(3) = 2). A’s stack frame is popped off the stack. The executing method is always the
one whose stack frame is at the top of the stack, and the stack frame for that method con-
tains the values of its local variables.

18.7 Recursion vs. Iteration
We’ve studied methods factorial and fibonacci, which can easily be implemented ei-
ther recursively or iteratively. In this section, we compare the two approaches and discuss
why you might choose one approach over the other in a particular situation.

Both iteration and recursion are based on a control statement: Iteration uses a repetition
statement (e.g., for, while or do…while), whereas recursion uses a selection statement
(e.g., if, if…else or switch). Both iteration and recursion involve repetition: Iteration
explicitly uses a repetition statement, whereas recursion achieves repetition through
repeated method calls. Iteration and recursion each involve a termination test: Iteration ter-
minates when the loop-continuation condition fails, whereas recursion terminates when a
base case is reached. Iteration with counter-controlled repetition and recursion both grad-
ually approach termination: Iteration keeps modifying a counter until the counter assumes
a value that makes the loop-continuation condition fail, whereas recursion keeps pro-
ducing smaller versions of the original problem until the base case is reached. Both itera-
tion and recursion can occur infinitely: An infinite loop occurs with iteration if the loop-
continuation test never becomes false, whereas infinite recursion occurs if the recursion
step does not reduce the problem each time in a manner that converges on the base case,
or if the base case is not tested.

To illustrate the differences between iteration and recursion, let’s examine an iterative
solution to the factorial problem (Fig. 18.9). A repetition statement is used (lines 12–13)
rather than the selection statement of the recursive solution (lines 9–12 of Fig. 18.3). Both

788 Chapter 18 Recursion

solutions use a termination test. In the recursive solution (Fig. 18.3), line 9 tests for the base
case. In the iterative solution, line 12 of Fig. 18.9 tests the loop-continuation condition—if
the test fails, the loop terminates. Finally, instead of producing smaller versions of the orig-
inal problem, the iterative solution uses a counter that is modified until the loop-continua-
tion condition becomes false.

Recursion has many negatives. It repeatedly invokes the mechanism, and consequently
the overhead, of method calls. This repetition can be expensive in terms of both processor
time and memory space. Each recursive call causes another copy of the method (actually,
only the method’s variables, stored in the stack frame) to be created—this set of copies can
consume considerable memory space. Since iteration occurs within a method, repeated
method calls and extra memory assignment are avoided.

1 // Fig. 18.9: FactorialCalculator.java
2 // Iterative factorial method.
3
4 public class FactorialCalculator
5 {
6 // recursive declaration of method factorial
7 public long factorial(long number)
8 {
9 long result = 1;

10
11 // iterative declaration of method factorial
12
13
14
15 return result;
16 }
17
18 // output factorials for values 0-10
19 public static void main(String[] args)
20 {
21 // calculate the factorials of 0 through 10
22 for (int counter = 0; counter <= 10; counter++)
23 System.out.printf("%d! = %d%n", counter, factorial(counter));
24 }
25 } // end class FactorialCalculator

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

Fig. 18.9 | Iterative factorial method.

for (long i = number; i >= 1; i--)
 result *= i;

18.8 Towers of Hanoi 789

18.8 Towers of Hanoi
Earlier in this chapter we studied methods that can be easily implemented both recursively
and iteratively. Now, we present a problem whose recursive solution demonstrates the el-
egance of recursion, and whose iterative solution may not be as apparent.

The Towers of Hanoi is one of the classic problems every budding computer scientist
must grapple with. Legend has it that in a temple in the Far East, priests are attempting to
move a stack of golden disks from one diamond peg to another (Fig. 18.10). The initial
stack has 64 disks threaded onto one peg and arranged from bottom to top by decreasing
size. The priests are attempting to move the stack from one peg to another under the con-
straints that exactly one disk is moved at a time and at no time may a larger disk be placed
above a smaller disk. Three pegs are provided, one being used for temporarily holding
disks. Supposedly, the world will end when the priests complete their task, so there’s little
incentive for us to facilitate their efforts.

Let’s assume that the priests are attempting to move the disks from peg 1 to peg 3. We
wish to develop an algorithm that prints the precise sequence of peg-to-peg disk transfers.

Software Engineering Observation 18.1
Any problem that can be solved recursively can also be solved iteratively. A recursive
approach is normally preferred over an iterative approach when the recursive approach more
naturally mirrors the problem and results in a program that is easier to understand and
debug. A recursive approach can often be implemented with fewer lines of code. Another
reason to choose a recursive approach is that an iterative one might not be apparent.

Performance Tip 18.2
Avoid using recursion in situations requiring high performance. Recursive calls take time
and consume additional memory.

Common Programming Error 18.2
Accidentally having a nonrecursive method call itself either directly or indirectly through
another method can cause infinite recursion.

Fig. 18.10 | Towers of Hanoi for the case with four disks.

peg 1 peg 2 peg 3

790 Chapter 18 Recursion

If we try to find an iterative solution, we’ll likely find ourselves hopelessly “knotted
up” in managing the disks. Instead, attacking this problem recursively quickly yields a
solution. Moving n disks can be viewed in terms of moving only n – 1 disks (hence the
recursion) as follows:

1. Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.

2. Move the last disk (the largest) from peg 1 to peg 3.

3. Move n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.

The process ends when the last task involves moving n = 1 disk (i.e., the base case).
This task is accomplished by moving the disk, without using a temporary holding area.

In Fig. 18.11, method solveTowers (lines 6–25) solves the Towers of Hanoi, given
the total number of disks (in this case 3), the starting peg, the ending peg, and the tempo-
rary holding peg as parameters. The base case (lines 10–14) occurs when only one disk
needs to be moved from the starting peg to the ending peg. In the recursion step (lines 18–
24), line 18 moves disks - 1 disks from the first peg (sourcePeg) to the temporary
holding peg (tempPeg). When all but one of the disks have been moved to the temporary
peg, line 21 moves the largest disk from the start peg to the destination peg. Line 24 fin-
ishes the rest of the moves by calling the method solveTowers to recursively move disks -
1 disks from the temporary peg (tempPeg) to the destination peg (destinationPeg), this

time using the first peg (sourcePeg) as the temporary peg. Line 35 in main calls the recur-
sive solveTowers method, which outputs the steps to the command prompt.

1 // Fig. 18.11: TowersOfHanoi.java
2 // Towers of Hanoi solution with a recursive method.
3 public class TowersOfHanoi
4 {
5 // recursively move disks between towers
6
7
8 {
9 // base case -- only one disk to move

10 if (disks == 1)
11 {
12 System.out.printf("%n%d --> %d", sourcePeg, destinationPeg);
13 return;
14 }
15
16 // recursion step -- move (disk - 1) disks from sourcePeg
17 // to tempPeg using destinationPeg
18
19
20 // move last disk from sourcePeg to destinationPeg
21 System.out.printf("%n%d --> %d", sourcePeg, destinationPeg);
22
23 // move (disks - 1) disks from tempPeg to destinationPeg
24
25 }
26

Fig. 18.11 | Towers of Hanoi solution with a recursive method. (Part 1 of 2.)

public static void solveTowers(int disks, int sourcePeg,
 int destinationPeg, int tempPeg)

solveTowers(disks - 1, sourcePeg, tempPeg, destinationPeg);

solveTowers(disks - 1, tempPeg, destinationPeg, sourcePeg);

18.9 Fractals 791

18.9 Fractals
A fractal is a geometric figure that can be generated from a pattern repeated recursively
(Fig. 18.12). The figure is modified by recursively applying the pattern to each segment of
the original figure. Although such figures had been studied before the 20th century, it was
the mathematician Benoit Mandelbrot who in the 1970s introduced the term “fractal,”
along with the specifics of how a fractal is created and the practical applications of fractals.
Mandelbrot’s fractal geometry provides mathematical models for many complex forms
found in nature, such as mountains, clouds and coastlines. Fractals have many uses in
mathematics and science. They can be used to better understand systems or patterns that
appear in nature (e.g., ecosystems), in the human body (e.g., in the folds of the brain), or
in the universe (e.g., galaxy clusters). Not all fractals resemble objects in nature. Drawing
fractals has become a popular art form. Fractals have a self-similar property—when sub-
divided into parts, each resembles a reduced-size copy of the whole. Many fractals yield an
exact copy of the original when a portion of the fractal is magnified—such a fractal is said
to be strictly self-similar.

18.9.1 Koch Curve Fractal
As an example, let’s look at the strictly self-similar Koch Curve fractal (Fig. 18.12). It’s
formed by removing the middle third of each line in the drawing and replacing it with two
lines that form a point, such that if the middle third of the original line remained, an equi-
lateral triangle would be formed. Formulas for creating fractals often involve removing all
or part of the previous fractal image. This pattern has already been determined for this
fractal—we focus here on how to use those formulas in a recursive solution.

27 public static void main(String[] args)
28 {
29 int startPeg = 1; // value 1 used to indicate startPeg in output
30 int endPeg = 3; // value 3 used to indicate endPeg in output
31 int tempPeg = 2; // value 2 used to indicate tempPeg in output
32 int totalDisks = 3; // number of disks
33
34 // initial nonrecursive call: move all disks.
35 solveTowers(totalDisks, startPeg, endPeg, tempPeg);
36 }
37 } // end class TowersOfHanoi

1 --> 3
1 --> 2
3 --> 2
1 --> 3
2 --> 1
2 --> 3
1 --> 3

Fig. 18.11 | Towers of Hanoi solution with a recursive method. (Part 2 of 2.)

792 Chapter 18 Recursion

We start with a straight line (Fig. 18.12(a)) and apply the pattern, creating a triangle
from the middle third (Fig. 18.12(b)). We then apply the pattern again to each straight
line, resulting in Fig. 18.12(c). Each time the pattern is applied, we say that the fractal is
at a new level, or depth (sometimes the term order is also used). Fractals can be displayed
at many levels—for instance, a fractal at level 3 has had three iterations of the pattern
applied (Fig. 18.12(d)). After only a few iterations, this fractal begins to look like a portion
of a snowflake (Fig. 18.12(e and f)). Since this is a strictly self-similar fractal, each portion
of it contains an exact copy of the fractal. In Fig. 18.12(f), for example, we’ve highlighted
a portion of the fractal with a dashed box. If the image in this box were increased in size,
it would look exactly like the entire fractal of part (f).

A similar fractal, the Koch Snowflake, is similar to the Koch Curve but begins with a
triangle rather than a line. The same pattern is applied to each side of the triangle, resulting
in an image that looks like an enclosed snowflake. For simplicity, we’ve chosen to focus
on the Koch Curve.

18.9.2 (Optional) Case Study: Lo Feather Fractal
We now demonstrate the use of recursion to draw fractals by writing a program to create a
strictly self-similar fractal. We call this the “Lo feather fractal,” named for Sin Han Lo, a De-
itel & Associates colleague who created it. The fractal will eventually resemble one-half of a
feather (see the outputs in Fig. 18.19). The base case, or fractal level of 0, begins as a line
between two points, A and B (Fig. 18.13). To create the next higher level, we find the mid-
point (C) of the line. To calculate the location of point C, use the following formula:

Fig. 18.12 | Koch Curve fractal.

xC = (xA + xB) / 2;
yC = (yA + yB) / 2;

(a) Level 0 (b) Level 1

(c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5

18.9 Fractals 793

[Note: The x and y to the left of each letter refer to the x-coordinate and y-coordinate of
that point, respectively. For instance, xA refers to the x-coordinate of point A, while yC re-
fers to the y-coordinate of point C. In our diagrams we denote the point by its letter, fol-
lowed by two numbers representing the x- and y-coordinates.]

To create this fractal, we also must find a point D that lies left of segment AC and cre-
ates an isosceles right triangle ADC. To calculate point D’s location, use the following for-
mulas:

We now move from level 0 to level 1 as follows: First, add points C and D (as in
Fig. 18.14). Then, remove the original line and add segments DA, DC and DB. The
remaining lines will curve at an angle, causing our fractal to look like a feather. For the
next level of the fractal, this algorithm is repeated on each of the three lines in level 1. For
each line, the formulas above are applied, where the former point D is now considered to
be point A, while the other end of each line is considered to be point B. Figure 18.15 con-
tains the line from level 0 (now a dashed line) and the three added lines from level 1.
We’ve changed point D to be point A, and the original points A, C and B to B1, B2 and B3,
respectively. The preceding formulas have been used to find the new points C and D on
each line. These points are also numbered 1–3 to keep track of which point is associated
with each line. The points C1 and D1, for instance, represent points C and D associated
with the line formed from points A to B1. To achieve level 2, the three lines in Fig. 18.15
are removed and replaced with new lines from the C and D points just added. Figure 18.16
shows the new lines (the lines from level 2 are shown as dashed lines for your conve-
nience). Figure 18.17 shows level 2 without the dashed lines from level 1. Once this pro-
cess has been repeated several times, the fractal created will begin to look like one-half of
a feather, as shown in the output of Fig. 18.19. We’ll present the code for this application
shortly.

Fig. 18.13 | “Lo feather fractal” at level 0.

xD = xA + (xC - xA) / 2 - (yC - yA) / 2;
yD = yA + (yC - yA) / 2 + (xC - xA) / 2;

Origin (0, 0)

A (6, 5) B (30, 5)

794 Chapter 18 Recursion

Fig. 18.14 | Determining points C and D for level 1 of the “Lo feather fractal.”

Fig. 18.15 | “Lo feather fractal” at level 1, with C and D points determined for level 2. [Note:
The fractal at level 0 is included as a dashed line as a reminder of where the line was located in
relation to the current fractal.]

Fig. 18.16 | “Lo feather fractal” at level 2, with dashed lines from level 1 provided.

Origin (0, 0)

A (6, 5)

D (12, 11)

C (18, 5) B (30, 5)

D3 (18, 14)

D2 (15, 11)

C2 (15, 8)

Origin (0, 0)

C3 (21, 8)C1 (9, 8)

A (12, 11)

D1 (12, 8)

B2 (18, 5) B3 (30, 5)B1 (6, 5)

Origin (0, 0)

18.9 Fractals 795

The application in Fig. 18.18 defines the user interface for drawing this fractal (shown
at the end of Fig. 18.19). The interface consists of three buttons—one for the user to change
the color of the fractal, one to increase the level of recursion and one to decrease the level of
recursion. A JLabel keeps track of the current level of recursion, which is modified by calling
method setLevel, to be discussed shortly. Lines 15–16 specify constants WIDTH and HEIGHT
to be 400 and 480, respectively, for the size of the JFrame. The user triggers an ActionEvent
by clicking the Color button. The event handler for this button is registered in lines 37–54.
The method actionPerformed displays a JColorChooser. This dialog returns the selected
Color object or blue (if the user presses Cancel or closes the dialog without pressing OK). Line
51 calls the setColor method in class FractalJPanel to update the color.

Fig. 18.17 | “Lo feather fractal” at level 2.

1 // Fig. 18.18: Fractal.java
2 // Fractal user interface.
3 import java.awt.Color;
4 import java.awt.FlowLayout;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.ActionListener;
7 import javax.swing.JFrame;
8 import javax.swing.JButton;
9 import javax.swing.JLabel;

10 import javax.swing.JPanel;
11 import javax.swing.JColorChooser;
12
13 public class Fractal extends JFrame
14 {
15 private static final int WIDTH = 400; // define width of GUI
16 private static final int HEIGHT = 480; // define height of GUI
17 private static final int MIN_LEVEL = 0;
18 private static final int MAX_LEVEL = 15;
19
20 // set up GUI
21 public Fractal()
22 {

Fig. 18.18 | Fractal user interface. (Part 1 of 3.)

Origin (0, 0)

796 Chapter 18 Recursion

23 super("Fractal");
24
25 // set up levelJLabel to add to controlJPanel
26 final JLabel levelJLabel = new JLabel("Level: 0");
27
28 final FractalJPanel drawSpace = new FractalJPanel(0);
29
30 // set up control panel
31 final JPanel controlJPanel = new JPanel();
32 controlJPanel.setLayout(new FlowLayout());
33
34 // set up color button and register listener
35 final JButton changeColorJButton = new JButton("Color");
36 controlJPanel.add(changeColorJButton);
37 changeColorJButton.addActionListener(
38 new ActionListener() // anonymous inner class
39 {
40 // process changeColorJButton event
41 @Override
42 public void actionPerformed(ActionEvent event)
43 {
44 Color color = JColorChooser.showDialog(
45 Fractal.this, "Choose a color", Color.BLUE);
46
47 // set default color, if no color is returned
48 if (color == null)
49 color = Color.BLUE;
50
51 drawSpace.setColor(color);
52 }
53 } // end anonymous inner class
54); // end addActionListener
55
56 // set up decrease level button to add to control panel and
57 // register listener
58 final JButton decreaseLevelJButton = new JButton("Decrease Level");
59 controlJPanel.add(decreaseLevelJButton);
60 decreaseLevelJButton.addActionListener(
61 new ActionListener() // anonymous inner class
62 {
63 // process decreaseLevelJButton event
64 @Override
65 public void actionPerformed(ActionEvent event)
66 {
67
68
69
70 // modify level if possible
71 if ((level >= MIN_LEVEL)) &&
72 (level <= MAX_LEVEL))
73 {
74

Fig. 18.18 | Fractal user interface. (Part 2 of 3.)

int level = drawSpace.getLevel();
--level;

levelJLabel.setText("Level: " + level);

18.9 Fractals 797

75
76
77 }
78 }
79 } // end anonymous inner class
80); // end addActionListener
81
82 // set up increase level button to add to control panel
83 // and register listener
84 final JButton increaseLevelJButton = new JButton("Increase Level");
85 controlJPanel.add(increaseLevelJButton);
86 increaseLevelJButton.addActionListener(
87 new ActionListener() // anonymous inner class
88 {
89 // process increaseLevelJButton event
90 @Override
91 public void actionPerformed(ActionEvent event)
92 {
93
94
95
96 // modify level if possible
97 if ((level >= MIN_LEVEL)) &&
98 (level <= MAX_LEVEL))
99 {
100
101
102
103 }
104 }
105 } // end anonymous inner class
106); // end addActionListener
107
108 controlJPanel.add(levelJLabel);
109
110 // create mainJPanel to contain controlJPanel and drawSpace
111 final JPanel mainJPanel = new JPanel();
112 mainJPanel.add(controlJPanel);
113 mainJPanel.add(drawSpace);
114
115 add(mainJPanel); // add JPanel to JFrame
116
117 setSize(WIDTH, HEIGHT); // set size of JFrame
118 setVisible(true); // display JFrame
119 } // end Fractal constructor
120
121 public static void main(String[] args)
122 {
123 Fractal demo = new Fractal();
124 demo.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
125 }
126 } // end class Fractal

Fig. 18.18 | Fractal user interface. (Part 3 of 3.)

drawSpace.setLevel(level);
repaint();

int level = drawSpace.getLevel();
++level;

levelJLabel.setText("Level: " + level);
drawSpace.setLevel(level);
repaint();

798 Chapter 18 Recursion

The Decrease Level button’s event handler is registered in lines 60–80. Method
actionPerformed retrieves the current level of recursion and decrements it by 1 (lines 67–
68). Lines 71–72 ensure that the level is greater than or equal to MIN_LEVEL and less than
or equal to MAX_LEVEL—the fractal is not defined for recursion levels less than MIN_LEVEL
and you can’t see the additional detail above MAX_LEVEL. You can go up to any desired
level, but around level 10 and higher, the fractal rendering becomes slow due to the details
to be drawn. Lines 74–76 reset the level label to reflect the change—the new level is set
and the repaint method is called to update the image to show the fractal at the new level.

The Increase Level JButton works like the Decrease Level JButton, but the level is
incremented rather than decremented to show more details of the fractal (lines 93–94).
When the application is first executed, the level will be set to 0, which will display a blue
line between two points that were specified in the FractalJPanel class.

Class FractalJPanel (Fig. 18.19) specifies the drawing JPanel’s dimensions as 400
by 400 (lines 13–14). The FractalJPanel constructor (lines 18–24) takes the current level
as a parameter and assigns it to its instance variable level. Instance variable color is set
to blue by default. Lines 22–23 change the JPanel’s background color to white (so the
fractal is easy to see), and set the drawing FractalJPanel’s dimensions.

1 // Fig. 18.19: FractalJPanel.java
2 // Drawing the "Lo feather fractal" using recursion.
3 import java.awt.Graphics;
4 import java.awt.Color;
5 import java.awt.Dimension;
6 import javax.swing.JPanel;
7
8 public class FractalJPanel extends JPanel
9 {

10 private Color color; // stores color used to draw fractal
11 private int level; // stores current level of fractal
12
13 private static final int WIDTH = 400; // defines width of JPanel
14 private static final int HEIGHT = 400; // defines height of JPanel
15
16 // set the initial fractal level to the value specified
17 // and set up JPanel specifications
18 public FractalJPanel(int currentLevel)
19 {
20 color = Color.BLUE; // initialize drawing color to blue
21 level = currentLevel; // set initial fractal level
22 setBackground(Color.WHITE);
23 setPreferredSize(new Dimension(WIDTH, HEIGHT));
24 }
25
26
27
28
29

Fig. 18.19 | Drawing the “Lo feather fractal” using recursion. (Part 1 of 4.)

// draw fractal recursively
public void drawFractal(int level, int xA, int yA, int xB,
 int yB, Graphics g)
{

18.9 Fractals 799

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 // start drawing the fractal
53 @Override
54 public void paintComponent(Graphics g)
55 {
56 super.paintComponent(g);
57
58 // draw fractal pattern
59 g.setColor(color);
60
61 }
62
63 // set the drawing color to c
64 public void setColor(Color c)
65 {
66 color = c;
67 }
68
69 // set the new level of recursion
70 public void setLevel(int currentLevel)
71 {
72 level = currentLevel;
73 }
74
75 // returns level of recursion
76 public int getLevel()
77 {
78 return level;
79 }
80 } // end class FractalJPanel

Fig. 18.19 | Drawing the “Lo feather fractal” using recursion. (Part 2 of 4.)

 // base case: draw a line connecting two given points
 if (level == 0)
 g.drawLine(xA, yA, xB, yB);
 else // recursion step: determine new points, draw next level
 {
 // calculate midpoint between (xA, yA) and (xB, yB)
 int xC = (xA + xB) / 2;
 int yC = (yA + yB) / 2;

 // calculate the fourth point (xD, yD) which forms an
 // isosceles right triangle between (xA, yA) and (xC, yC)
 // where the right angle is at (xD, yD)
 int xD = xA + (xC - xA) / 2 - (yC - yA) / 2;
 int yD = yA + (yC - yA) / 2 + (xC - xA) / 2;

 // recursively draw the Fractal
 drawFractal(level - 1, xD, yD, xA, yA, g);
 drawFractal(level - 1, xD, yD, xC, yC, g);
 drawFractal(level - 1, xD, yD, xB, yB, g);
 }
}

drawFractal(level, 100, 90, 290, 200, g);

800 Chapter 18 Recursion

Fig. 18.19 | Drawing the “Lo feather fractal” using recursion. (Part 3 of 4.)

18.10 Recursive Backtracking 801

Lines 27–50 define the recursive method that creates the fractal. This method takes
six parameters: the level, four integers that specify the x- and y-coordinates of two points,
and the Graphics object g. The base case for this method (line 31) occurs when level
equals 0, at which time a line will be drawn between the two points given as parameters.
Lines 36–43 calculate (xC, yC), the midpoint between (xA, yA) and (xB, yB), and (xD, yD),
the point that creates a right isosceles triangle with (xA, yA) and (xC, yC). Lines 46–48 make
three recursive calls on three different sets of points.

In method paintComponent, line 60 makes the first call to method drawFractal to
start the drawing. This method call is not recursive, but all subsequent calls to draw-
Fractal performed from the body of drawFractal are. Since the lines will not be drawn
until the base case is reached, the distance between two points decreases on each recursive
call. As the level of recursion increases, the fractal becomes smoother and more detailed.
The shape of this fractal stabilizes as the level approaches 11. Fractals will stabilize at dif-
ferent levels based on their shape and size.

The output of Fig. 18.19 shows the development of the fractal from levels 0 to 6. The
last image shows the defining shape of the fractal at level 11. If we focus on one of the arms
of this fractal, it will be identical to the whole image. This property defines the fractal to
be strictly self-similar.

18.10 Recursive Backtracking
Our recursive methods all have a similar architecture—if the base case is reached, return a
result; if not, make one or more recursive calls. This section explores a more complex re-
cursive technique that finds a path through a maze, returning true if there’s a possible so-
lution. The solution involves moving through the maze one step at a time, where moves
can be made by going down, right, up or left (diagonal moves are not permitted). From
the current location in the maze (starting with the entry point), the following steps are tak-
en: For each possible direction, the move is made in that direction and a recursive call is
made to solve the remainder of the maze from the new location. When a dead end is

Fig. 18.19 | Drawing the “Lo feather fractal” using recursion. (Part 4 of 4.)

802 Chapter 18 Recursion

reached (i.e., we cannot take any more steps forward without hitting a wall), we back up
to the previous location and try to go in a different direction. If no other direction can be
taken, we back up again. This process continues until we find a point in the maze where
a move can be made in another direction. Once such a location is found, we move in the
new direction and continue with another recursive call to solve the rest of the maze.

To back up to the previous location in the maze, our recursive method simply returns
false, moving up the method-call chain to the previous recursive call (which references the
previous location in the maze). Using recursion to return to an earlier decision point is
known as recursive backtracking. If one set of recursive calls does not result in a solution
to the problem, the program backs up to the previous decision point and makes a different
decision, often resulting in another set of recursive calls. In this example, the previous deci-
sion point is the previous location in the maze, and the decision to be made is the direction
that the next move should take. One direction has led to a dead end, so the search con-
tinues with a different direction. The recursive backtracking solution to the maze problem
uses recursion to return only partway up the method-call chain, then try a different direc-
tion. If the backtracking reaches the entry location of the maze and the paths in all direc-
tions have been attempted, the maze does not have a solution.

The exercises ask you to implement recursive backtracking solutions to the maze
problem (Exercises 18.20–18.22) and the Eight Queens problem (Exercise 18.15), which
attempts to find a way to place eight queens on an empty chessboard so that no queen is
“attacking” any other (i.e., no two queens are in the same row, in the same column or
along the same diagonal).

18.11 Wrap-Up
In this chapter, you learned how to create recursive methods—i.e., methods that call
themselves. You learned that recursive methods typically divide a problem into two con-
ceptual pieces—a piece that the method knows how to do (the base case) and a piece that
the method does not know how to do (the recursion step). The recursion step is a slightly
smaller version of the original problem and is performed by a recursive method call. You
saw some popular recursion examples, including calculating factorials and producing val-
ues in the Fibonacci series. You then learned how recursion works “under the hood,” in-
cluding the order in which recursive method calls are pushed on or popped off the
program-execution stack. Next, you compared recursive and iterative approaches. You
learned how to use recursion to solve more complex problems—the Towers of Hanoi and
displaying fractals. The chapter concluded with an introduction to recursive backtracking,
a technique for solving problems that involves backing up through recursive calls to try
different possible solutions. In the next chapter, you’ll learn numerous techniques for sort-
ing lists of data and searching for an item in a list of data, and you’ll explore the circum-
stances under which each searching and sorting technique should be used.

Summary
Section 18.1 Introduction
• A recursive method (p. 777) calls itself directly or indirectly through another method.

 Summary 803

Section 18.2 Recursion Concepts
• When a recursive method is called (p. 778) to solve a problem, it can solve only the simplest

case(s), or base case(s). If called with a base case (p. 778), the method returns a result.

• If a recursive method is called with a more complex problem than a base case, it typically divides
the problem into two conceptual pieces—a piece that the method knows how to do and a piece
that it does not know how to do.

• To make recursion feasible, the piece that the method does not know how to do must resemble
the original problem, but be a slightly simpler or smaller version of it. Because this new problem
resembles the original problem, the method calls a fresh copy of itself to work on the smaller
problem—this is called the recursion step (p. 778).

• For recursion to eventually terminate, each time a method calls itself with a simpler version of
the original problem, the sequence of smaller and smaller problems must converge on a base case.
When, the method recognizes the base case, it returns a result to the previous copy of the method.

• A recursive call may be a call to another method, which in turn makes a call back to the original
method. Such a process still results in a recursive call to the original method. This is known as
an indirect recursive call or indirect recursion (p. 778).

Section 18.3 Example Using Recursion: Factorials
• Either omitting the base case or writing the recursion step incorrectly so that it does not converge

on the base case can cause infinite recursion (p. 781), eventually exhausting memory. This error
is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.

Section 18.5 Example Using Recursion: Fibonacci Series
• The Fibonacci series (p. 783) begins with 0 and 1 and has the property that each subsequent Fi-

bonacci number is the sum of the preceding two.

• The ratio of successive Fibonacci numbers converges on a constant value of 1.618…, a number
that has been called the golden ratio or the golden mean (p. 783).

• Some recursive solutions, such as Fibonacci, result in an “explosion” of method calls.

Section 18.6 Recursion and the Method-Call Stack
• The executing method is always the one whose stack frame is at the top of the stack, and the stack

frame for that method contains the values of its local variables.

Section 18.7 Recursion vs. Iteration
• Both iteration and recursion are based on a control statement: Iteration uses a repetition state-

ment, recursion a selection statement.

• Both iteration and recursion involve repetition: Iteration explicitly uses a repetition statement,
whereas recursion achieves repetition through repeated method calls.

• Iteration and recursion each involve a termination test: Iteration terminates when the loop-con-
tinuation condition fails, recursion when a base case is recognized.

• Iteration with counter-controlled repetition and recursion each gradually approach termination:
Iteration keeps modifying a counter until the counter assumes a value that makes the loop-con-
tinuation condition fail, whereas recursion keeps producing simpler versions of the original prob-
lem until the base case is reached.

• Both iteration and recursion can occur infinitely: An infinite loop occurs with iteration if the
loop-continuation test never becomes false, whereas infinite recursion occurs if the recursion step
does not reduce the problem each time in a manner that converges on the base case.

804 Chapter 18 Recursion

• Recursion repeatedly invokes the mechanism, and consequently the overhead, of method calls.

• Any problem that can be solved recursively can also be solved iteratively.

• A recursive approach is normally preferred over an iterative approach when it more naturally mir-
rors the problem and results in a program that is easier to understand and debug.

• A recursive approach can often be implemented with few lines of code, but a corresponding it-
erative approach might take a large amount of code. Another reason to choose a recursive solu-
tion is that an iterative solution might not be apparent.

Section 18.9 Fractals
• A fractal (p. 791) is a geometric figure that is generated from a pattern repeated recursively an

infinite number of times.

• Fractals have a self-similar property (p. 791)—subparts are reduced-size copies of the whole.

Section 18.10 Recursive Backtracking
• In recursive backtracking (p. 802), if one set of recursive calls does not result in a solution to the

problem, the program backs up to the previous decision point and makes a different decision,
often resulting in another set of recursive calls.

Self-Review Exercises
18.1 State whether each of the following is true or false. If false, explain why.

a) A method that calls itself indirectly is not an example of recursion.
b) Recursion can be efficient in computation because of reduced memory-space usage.
c) When a recursive method is called to solve a problem, it actually is capable of solving

only the simplest case(s), or base case(s).
d) To make recursion feasible, the recursion step in a recursive solution must resemble the

original problem, but be a slightly larger version of it.

18.2 A is needed to terminate recursion.
a) recursion step
b) break statement
c) void return type
d) base case

18.3 The first call to invoke a recursive method is .
a) not recursive
b) recursive
c) the recursion step
d) none of the above

18.4 Each time a fractal’s pattern is applied, the fractal is said to be at a new .
a) width
b) height
c) level
d) volume

18.5 Iteration and recursion each involve a .
a) repetition statement
b) termination test
c) counter variable
d) none of the above

 Answers to Self-Review Exercises 805

18.6 Fill in the blanks in each of the following statements:
a) The ratio of successive Fibonacci numbers converges on a constant value of 1.618…, a

number that has been called the or the .
b) Iteration normally uses a repetition statement, whereas recursion normally uses a(n)

 statement.
c) Fractals have a(n) property—when subdivided into parts, each is a reduced-

size copy of the whole.

Answers to Self-Review Exercises
18.1 a) False. A method that calls itself in this manner is an example of indirect recursion.
b) False. Recursion can be inefficient in computation because of multiple method calls and memo-
ry-space usage. c) True. d) False. To make recursion feasible, the recursion step in a recursive solu-
tion must resemble the original problem, but be a slightly smaller version of it.

18.2 d

18.3 a

18.4 c

18.5 b

18.6 a) golden ratio, golden mean. b) selection. c) self-similar.

Exercises
18.7 What does the following code do?

18.8 Find the error(s) in the following recursive method, and explain how to correct it (them).
This method should find the sum of the values from 0 to n.

18.9 (Recursive power Method) Write a recursive method power(base, exponent) that, when
called, returns

base exponent

For example, power(3,4) = 3 * 3 * 3 * 3. Assume that exponent is an integer greater than or equal
to 1. Hint: The recursion step should use the relationship

1 public int mystery(int a, int b)
2 {
3 if (b == 1)
4 return a;
5 else
6 return a + mystery(a, b - 1);
7 }

1 public int sum(int n)
2 {
3 if (n == 0)
4 return 0;
5 else
6 return n + sum(n);
7 }

806 Chapter 18 Recursion

base exponent = base · base exponent – 1

and the terminating condition occurs when exponent is equal to 1, because

base1 = base

Incorporate this method into a program that enables the user to enter the base and exponent.

18.10 (Visualizing Recursion) It’s interesting to watch recursion “in action.” Modify the factorial
method in Fig. 18.3 to print its local variable and recursive-call parameter. For each recursive call,
display the outputs on a separate line and add a level of indentation. Do your utmost to make the
outputs clear, interesting and meaningful. Your goal here is to design and implement an output for-
mat that makes it easier to understand recursion. You may want to add such display capabilities to
other recursion examples and exercises throughout the text.

18.11 (Greatest Common Divisor) The greatest common divisor of integers x and y is the largest
integer that evenly divides into both x and y. Write a recursive method gcd that returns the greatest
common divisor of x and y. The gcd of x and y is defined recursively as follows: If y is equal to 0,
then gcd(x, y) is x; otherwise, gcd(x, y) is gcd(y, x % y), where % is the remainder operator. Use
this method to replace the one you wrote in the application of Exercise 6.27.

18.12 What does the following program do?

18.13 What does the following program do?

1 // Exercise 18.12 Solution: MysteryClass.java
2 public class MysteryClass
3 {
4 public static int mystery(int[] array2, int size)
5 {
6 if (size == 1)
7 return array2[0];
8 else
9 return array2[size - 1] + mystery(array2, size - 1);

10 }
11
12 public static void main(String[] args)
13 {
14 int[] array = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
15
16 int result = mystery(array, array.length);
17 System.out.printf("Result is: %d%n", result);
18 } // end method main
19 } // end class MysteryClass

1 // Exercise 18.13 Solution: SomeClass.java
2 public class SomeClass
3 {
4 public static String someMethod(int[] array2, int x)
5 {
6 if (x < array2.length)
7 return String.format(
8 "%s%d ", someMethod(array2, x + 1), array2[x]);
9 else

10 return "";
11 }
12

 Exercises 807

18.14 (Palindromes) A palindrome is a string that is spelled the same way forward and backward.
Some examples of palindromes are “radar,” “able was i ere i saw elba” and (if spaces are ignored) “a
man a plan a canal panama.” Write a recursive method testPalindrome that returns boolean value
true if the string stored in the array is a palindrome and false otherwise. The method should ignore
spaces and punctuation in the string.

18.15 (Eight Queens) A puzzler for chess buffs is the Eight Queens problem, which asks: Is it pos-
sible to place eight queens on an empty chessboard so that no queen is “attacking” any other (i.e.,
no two queens are in the same row, in the same column or along the same diagonal)? For instance,
if a queen is placed in the upper-left corner of the board, no other queens could be placed in any of
the marked squares shown in Fig. 18.20. Solve the problem recursively. [Hint: Your solution should
begin with the first column and look for a location in that column where a queen can be placed—
initially, place the queen in the first row. The solution should then recursively search the remaining
columns. In the first few columns, there will be several locations where a queen may be placed. Take
the first available location. If a column is reached with no possible location for a queen, the program
should return to the previous column, and move the queen in that column to a new row. This con-
tinuous backing up and trying new alternatives is an example of recursive backtracking.]

18.16 (Print an Array) Write a recursive method printArray that displays all the elements in an
array of integers, separated by spaces.

18.17 (Print an Array Backward) Write a recursive method stringReverse that takes a character
array containing a string as an argument and prints the string backward. [Hint: Use String method
toCharArray, which takes no arguments, to get a char array containing the characters in the String.]

18.18 (Find the Minimum Value in an Array) Write a recursive method recursiveMinimum that
determines the smallest element in an array of integers. The method should return when it receives
an array of one element.

18.19 (Fractals) Repeat the fractal pattern in Section 18.9 to form a star. Begin with five lines (see
Fig. 18.21) instead of one, where each line is a different arm of the star. Apply the “Lo feather frac-
tal” pattern to each arm of the star.

13 public static void main(String[] args)
14 {
15 int[] array = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
16 String results = someMethod(array, 0);
17 System.out.println(results);
18 }
19 } // end class SomeClass

Fig. 18.20 | Squares eliminated by placing a queen in the upper-left corner of a chessboard.

* *****

* *

* *

* *

* *

* *

*

*

*

*

*

*

808 Chapter 18 Recursion

18.20 (Maze Traversal Using Recursive Backtracking) The grid of #s and dots (.) in Fig. 18.22 is
a two-dimensional array representation of a maze. The #s represent the walls of the maze, and the
dots represent locations in the possible paths through the maze. A move can be made only to a lo-
cation in the array that contains a dot.

Write a recursive method (mazeTraversal) to walk through mazes like the one in Fig. 18.22.
The method should receive as arguments a 12-by-12 character array representing the maze and the
current location in the maze (the first time this method is called, the current location should be the
entry point of the maze). As mazeTraversal attempts to locate the exit, it should place the charac-
ter x in each square in the path. There’s a simple algorithm for walking through a maze that guar-
antees finding the exit (assuming there’s an exit). If there’s no exit, you’ll arrive at the starting
location again. The algorithm is as follows: From the current location in the maze, try to move one
space in any of the possible directions (down, right, up or left). If it’s possible to move in at least
one direction, call mazeTraversal recursively, passing the new spot on the maze as the current spot.

Fig. 18.21 | Sample outputs for Exercise 18.19.

Fig. 18.22 | Two-dimensional array representation of a maze.

#
. . . #
. . # . # . # # # # . #
. # # .
. . . . # # # . # . .
. # . # . # .
. . # . # . # . # .
. # . # . # . # .
. # .
. # # # .
. # . . .
#

 Exercises 809

If it’s not possible to go in any direction, “back up” to a previous location in the maze and try a new
direction for that location (this is an example of recursive backtracking). Program the method to
display the maze after each move so the user can watch as the maze is solved. The final output of
the maze should display only the path needed to solve the maze—if going in a particular direction
results in a dead end, the x’s going in that direction should not be displayed. [Hint: To display only
the final path, it may be helpful to mark off spots that result in a dead end with another character
(such as '0').]

18.21 (Generating Mazes Randomly) Write a method mazeGenerator that takes as an argument a
two-dimensional 12-by-12 character array and randomly produces a maze. The method should also
provide the starting and ending locations of the maze. Test your method mazeTraversal from
Exercise 18.20, using several randomly generated mazes.

18.22 (Mazes of Any Size) Generalize methods mazeTraversal and mazeGenerator of
Exercise 18.20 and Exercise 18.21 to process mazes of any width and height.

18.23 (Time to Calculate Fibonacci Numbers) Enhance the Fibonacci program of Fig. 18.5 so
that it calculates the approximate amount of time required to perform the calculation and the num-
ber of calls made to the recursive method. For this purpose, call static System method current-
TimeMillis, which takes no arguments and returns the computer’s current time in milliseconds.
Call this method twice—once before and once after the call to fibonacci. Save each value and cal-
culate the difference in the times to determine how many milliseconds were required to perform the
calculation. Then, add a variable to the FibonacciCalculator class, and use this variable to deter-
mine the number of calls made to method fibonacci. Display your results.

19 Searching, Sorting and Big O

With sobs and tears
he sorted out
Those of the largest size …
—Lewis Carroll

Attempt the end, and never
stand to doubt;
Nothing’s so hard, but search
will find it out.
—Robert Herrick

’Tis in my memory lock’d,
And you yourself shall keep the
key of it.
—William Shakespeare

It is an immutable law in
business that words are words,
explanations are explanations,
promises are promises — but
only performance is reality.
—Harold S. Green

O b j e c t i v e s
In this chapter you’ll:

■ Search for a given value in an
array using linear search and
binary search.

■ Sort arrays using the iterative
selection and insertion sort
algorithms.

■ Sort arrays using the recursive
merge sort algorithm.

■ Determine the efficiency of
searching and sorting
algorithms.

■ Introduce Big O notation for
comparing the efficiency of
algorithms.

19.1 Introduction 811

19.1 Introduction
Searching data involves determining whether a value (referred to as the search key) is pres-
ent in the data and, if so, finding its location. Two popular search algorithms are the sim-
ple linear search and the faster but more complex binary search. Sorting places data in
ascending or descending order, based on one or more sort keys. A list of names could be
sorted alphabetically, bank accounts could be sorted by account number, employee payroll
records could be sorted by social security number, and so on. This chapter introduces two
simple sorting algorithms, the selection sort and the insertion sort, along with the more
efficient but more complex merge sort. Figure 19.1 summarizes the searching and sorting
algorithms discussed in the examples and exercises of this book.

19.1 Introduction
19.2 Linear Search
19.3 Big O Notation

19.3.1 O(1) Algorithms
19.3.2 O(n) Algorithms
19.3.3 O(n2) Algorithms
19.3.4 Big O of the Linear Search

19.4 Binary Search
19.4.1 Binary Search Implementation
19.4.2 Efficiency of the Binary Search

19.5 Sorting Algorithms
19.6 Selection Sort

19.6.1 Selection Sort Implementation
19.6.2 Efficiency of the Selection Sort

19.7 Insertion Sort
19.7.1 Insertion Sort Implementation
19.7.2 Efficiency of the Insertion Sort

19.8 Merge Sort
19.8.1 Merge Sort Implementation
19.8.2 Efficiency of the Merge Sort

19.9 Big O Summary for This Chapter’s
Searching and Sorting Algorithms

19.10 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Software Engineering Observation 19.1
In apps that require searching and sorting, use the pre-defined capabilities of the Java
Collections API (Chapter 16). The techniques presented in this chapter are provided to
introduce students to the concepts behind searching and sorting algorithms—upper-level
computer science courses typically discuss such algorithms in detail.

Chapter Algorithm Location

Searching Algorithms:

16 binarySearch method of class
Collections

Fig. 16.12

19 Linear search
Binary search
Recursive linear search
Recursive binary search

Section 19.2
Section 19.4
Exercise 19.8
Exercise 19.9

Fig. 19.1 | Searching and sorting algorithms covered in this text. (Part 1 of 2.)

812 Chapter 19 Searching, Sorting and Big O

19.2 Linear Search
Looking up a phone number, finding a website via a search engine and checking the def-
inition of a word in a dictionary all involve searching large amounts of data. This section
and Section 19.4 discuss two common search algorithms—one that’s easy to program yet
relatively inefficient (linear search) and one that’s relatively efficient but more complex to
program (binary search).

Linear Search Algorithm
The linear search algorithm searches each element in an array sequentially. If the search
key does not match an element in the array, the algorithm tests each element, and when
the end of the array is reached, informs the user that the search key is not present. If the
search key is in the array, the algorithm tests each element until it finds one that matches
the search key and returns the index of that element.

As an example, consider an array containing the following values

and a program that’s searching for 51. Using the linear search algorithm, the program first
checks whether 34 matches the search key. It does not, so the algorithm checks whether
56 matches the search key. The program continues moving through the array sequentially,
testing 2, then 10, then 77. When the program tests 51, which matches the search key, the
program returns the index 5, which is the location of 51 in the array. If, after checking
every array element, the program determines that the search key does not match any ele-
ment in the array, it returns a sentinel value (e.g., -1).

Linear Search Implementation
Class LinearSearchTest (Fig. 19.2) contains static method linearSearch for perform-
ing searches of an int array and main for testing linearSearch.

21 Linear search of a List
Binary tree search

Exercise 21.21
Exercise 21.23

Sorting Algorithms:

16 sort method of class Collections
SortedSet collection

Figs. 16.6–16.9
Fig. 16.17

19 Selection sort
Insertion sort
Recursive merge sort
Bubble sort
Bucket sort
Recursive quicksort

Section 19.6
Section 19.7
Section 19.8
Exercises 19.5 and 19.6
Exercise 19.7
Exercise 19.10

21 Binary tree sort Section 21.7

34 56 2 10 77 51 93 30 5 52

Chapter Algorithm Location

Fig. 19.1 | Searching and sorting algorithms covered in this text. (Part 2 of 2.)

19.2 Linear Search 813

1 // Fig. 19.2: LinearSearchTest.java
2 // Sequentially searching an array for an item.
3 import java.security.SecureRandom;
4 import java.util.Arrays;
5 import java.util.Scanner;
6
7 public class LinearSearchTest
8 {
9

10
11
12
13
14
15
16
17
18
19
20 public static void main(String[] args)
21 {
22 Scanner input = new Scanner(System.in);
23 SecureRandom generator = new SecureRandom();
24
25 int[] data = new int[10]; // create array
26
27 for (int i = 0; i < data.length; i++) // populate array
28 data[i] = 10 + generator.nextInt(90);
29
30 System.out.printf("%s%n%n",); // display array
31
32 // get input from user
33 System.out.print("Please enter an integer value (-1 to quit): ");
34 int searchInt = input.nextInt();
35
36 // repeatedly input an integer; -1 terminates the program
37 while (searchInt != -1)
38 {
39 int position = ; // perform search
40
41 if (position == -1) // not found
42 System.out.printf("%d was not found%n%n", searchInt);
43 else // found
44 System.out.printf("%d was found in position %d%n%n",
45 searchInt, position);
46
47 // get input from user
48 System.out.print("Please enter an integer value (-1 to quit): ");
49 searchInt = input.nextInt();
50 }
51 } // end main
52 } // end class LinearSearchTest

Fig. 19.2 | Sequentially searching an array for an item. (Part 1 of 2.)

// perform a linear search on the data
public static int linearSearch(int data[], int searchKey)
{
 // loop through array sequentially
 for (int index = 0; index < data.length; index++)
 if (data[index] == searchKey)
 return index; // return index of integer

 return -1; // integer was not found
} // end method linearSearch

Arrays.toString(data)

linearSearch(data, searchInt)

814 Chapter 19 Searching, Sorting and Big O

Method linearSearch
Method linearSearch (lines 10–18) performs the linear search. The method receives as
parameters the array to search (data) and the searchKey. Lines 13–15 loop through the
elements in the array data. Line 14 compares each with searchKey. If the values are equal,
line 15 returns the index of the element. If there are duplicate values in the array, linear
search returns the index of the first element in the array that matches the search key. If the
loop ends without finding the value, line 17 returns -1.

Method main
Method main (line 20–51) allows the user to search an array. Lines 25–28 create an array
of 10 ints and populate it with random ints from 10–99. Then, line 30 displays the array’s
contents using Arrays static method toString, which returns a String representation
of the array with the elements in square brackets ([and]) and separated by commas.

Lines 33–34 prompt the user for and store the search key. Line 39 calls method lin-
earSearch to determine whether searchInt is in the array data. If it’s not, linearSearch
returns -1 and the program notifies the user (lines 41–42). If searchInt is in the array,
linearSearch returns the position of the element, which the program outputs in lines 44–
45. Lines 48–49 get the next search key from the user.

19.3 Big O Notation
Searching algorithms all accomplish the same goal—finding an element (or elements) that
matches a given search key, if such an element does, in fact, exist. There are, however, a
number of things that differentiate search algorithms from one another. The major differ-
ence is the amount of effort they require to complete the search. One way to describe this effort
is with Big O notation, which indicates how hard an algorithm may have to work to solve
a problem. For searching and sorting algorithms, this depends particularly on how many
data elements there are. In this chapter, we use Big O to describe the worst-case run times
for various searching and sorting algorithms.

19.3.1 O(1) Algorithms
Suppose an algorithm is designed to test whether the first element of an array is equal to
the second. If the array has 10 elements, this algorithm requires one comparison. If the
array has 1000 elements, it still requires one comparison. In fact, the algorithm is com-
pletely independent of the number of elements in the array. This algorithm is said to have

[59, 97, 34, 90, 79, 56, 24, 51, 30, 69]

Please enter an integer value (-1 to quit): 79
79 was found in position 4

Please enter an integer value (-1 to quit): 61
61 was not found

Please enter an integer value (-1 to quit): 51
51 was found in position 7

Please enter an integer value (-1 to quit): -1

Fig. 19.2 | Sequentially searching an array for an item. (Part 2 of 2.)

19.3 Big O Notation 815

a constant run time, which is represented in Big O notation as O(1) and pronounced as
“order one.” An algorithm that’s O(1) does not necessarily require only one comparison.
O(1) just means that the number of comparisons is constant—it does not grow as the size
of the array increases. An algorithm that tests whether the first element of an array is equal
to any of the next three elements is still O(1) even though it requires three comparisons.

19.3.2 O(n) Algorithms
An algorithm that tests whether the first array element is equal to any of the other array
elements will require at most n – 1 comparisons, where n is the number of array elements.
If the array has 10 elements, this algorithm requires up to nine comparisons. If the array
has 1000 elements, it requires up to 999 comparisons. As n grows larger, the n part of the
expression “dominates,” and subtracting one becomes inconsequential. Big O is designed
to highlight these dominant terms and ignore terms that become unimportant as n grows.
For this reason, an algorithm that requires a total of n – 1 comparisons (such as the one
we described earlier) is said to be O(n). An O(n) algorithm is referred to as having a linear
run time. O(n) is often pronounced “on the order of n” or simply “order n.”

19.3.3 O(n2) Algorithms
Now suppose you have an algorithm that tests whether any element of an array is dupli-
cated elsewhere in the array. The first element must be compared with every other element
in the array. The second element must be compared with every other element except the
first (it was already compared to the first). The third element must be compared with every
other element except the first two. In the end, this algorithm will end up making (n – 1)
+ (n – 2) + … + 2 + 1 or n2/2 – n/2 comparisons. As n increases, the n2 term dominates
and the n term becomes inconsequential. Again, Big O notation highlights the n2 term,
leaving n/2. But, as we’ll soon see, constant factors are omitted in Big O notation.

Big O is concerned with how an algorithm’s run time grows in relation to the number
of items processed. Suppose an algorithm requires n2 comparisons. With four elements,
the algorithm requires 16 comparisons; with eight elements, 64 comparisons. With this
algorithm, doubling the number of elements quadruples the number of comparisons. Con-
sider a similar algorithm requiring n2/2 comparisons. With four elements, the algorithm
requires eight comparisons; with eight elements, 32 comparisons. Again, doubling the
number of elements quadruples the number of comparisons. Both of these algorithms grow
as the square of n, so Big O ignores the constant and both algorithms are considered to be
O(n2), which is referred to as quadratic run time and pronounced “on the order of n-
squared” or more simply “order n-squared.”

When n is small, O(n2) algorithms (running on today’s computers) will not noticeably
affect performance. But as n grows, you’ll start to notice the performance degradation. An
O(n2) algorithm running on a million-element array would require a trillion “operations”
(where each could actually require several machine instructions to execute). This could
take several hours. A billion-element array would require a quintillion operations, a
number so large that the algorithm could take decades! O(n2) algorithms, unfortunately,
are easy to write, as you’ll see in this chapter. You’ll also see algorithms with more favorable
Big O measures. These efficient algorithms often take a bit more cleverness and work to
create, but their superior performance can be well worth the extra effort, especially as n
gets large and as algorithms are combined into larger programs.

816 Chapter 19 Searching, Sorting and Big O

19.3.4 Big O of the Linear Search
The linear search algorithm runs in O(n) time. The worst case in this algorithm is that ev-
ery element must be checked to determine whether the search item exists in the array. If
the size of the array is doubled, the number of comparisons that the algorithm must per-
form is also doubled. Linear search can provide outstanding performance if the element
matching the search key happens to be at or near the front of the array. But we seek algo-
rithms that perform well, on average, across all searches, including those where the ele-
ment matching the search key is near the end of the array.

 Linear search is easy to program, but it can be slow compared to other search algo-
rithms. If a program needs to perform many searches on large arrays, it’s better to imple-
ment a more efficient algorithm, such as the binary search, which we present next.

19.4 Binary Search
The binary search algorithm is more efficient than linear search, but it requires that the
array be sorted. The first iteration of this algorithm tests the middle element in the array.
If this matches the search key, the algorithm ends. Assuming the array is sorted in ascend-
ing order, then if the search key is less than the middle element, it cannot match any ele-
ment in the second half of the array and the algorithm continues with only the first half
of the array (i.e., the first element up to, but not including, the middle element). If the
search key is greater than the middle element, it cannot match any element in the first half
of the array and the algorithm continues with only the second half (i.e., the element after
the middle element through the last element). Each iteration tests the middle value of the
remaining portion of the array. If the search key does not match the element, the algo-
rithm eliminates half of the remaining elements. The algorithm ends by either finding an
element that matches the search key or reducing the subarray to zero size.

Example
As an example consider the sorted 15-element array

and a search key of 65. A program implementing the binary search algorithm would first
check whether 51 is the search key (because 51 is the middle element of the array). The
search key (65) is larger than 51, so 51 is ignored along with the first half of the array (all
elements smaller than 51), leaving

Next, the algorithm checks whether 81 (the middle element of the remainder of the
array) matches the search key. The search key (65) is smaller than 81, so 81 is discarded
along with the elements larger than 81. After just two tests, the algorithm has narrowed
the number of values to check to only three (56, 65 and 77). It then checks 65 (which
indeed matches the search key) and returns the index of the array element containing 65.

Performance Tip 19.1
Sometimes the simplest algorithms perform poorly. Their virtue is that they’re easy to pro-
gram, test and debug. Sometimes more complex algorithms are required to realize maxi-
mum performance.

2 3 5 10 27 30 34 51 56 65 77 81 82 93 99

56 65 77 81 82 93 99

19.4 Binary Search 817

This algorithm required just three comparisons to determine whether the search key
matched an element of the array. Using a linear search algorithm would have required 10
comparisons. [Note: In this example, we’ve chosen to use an array with 15 elements so that
there will always be an obvious middle element in the array. With an even number of ele-
ments, the middle of the array lies between two elements. We implement the algorithm to
choose the higher of those two elements.]

19.4.1 Binary Search Implementation
Class BinarySearchTest (Fig. 19.3) contains:

• static method binarySearch to search an int array for a specified key

• static method remainingElements to display the remaining elements in the ar-
ray being searched, and

• main to test method binarySearch.

The main method (lines 57–90) is nearly identical to main in Fig. 19.2. In this program,
we create a 15-element array (line 62) and line 67 calls the Arrays class’s static method
sort to sort the array data’s elements in an array in ascending order (by default). Recall
that the binary search algorithm will work only on a sorted array. The first line of output
from this program shows the sorted array of ints. When the user instructs the program to
search for 18, the program first tests the middle element, which is 57 (as indicated by *).
The search key is less than 57, so the program eliminates the second half of the array and
tests the middle element from the first half. The search key is smaller than 36, so the pro-
gram eliminates the second half of the array, leaving only three elements. Finally, the pro-
gram checks 18 (which matches the search key) and returns the index 1.

1 // Fig. 19.3: BinarySearchTest.java
2 // Use binary search to locate an item in an array.
3 import java.security.SecureRandom;
4 import java.util.Arrays;
5 import java.util.Scanner;
6
7 public class BinarySearchTest
8 {
9 // perform a binary search on the data

10
11 {
12
13
14
15 int location = -1; // return value; -1 if not found
16
17
18 {
19 // print remaining elements of array
20 System.out.print(remainingElements(data, low, high));
21

Fig. 19.3 | Use binary search to locate an item in an array (the * in the output marks the middle
element). (Part 1 of 3.)

public static int binarySearch(int[] data, int key)

int low = 0; // low end of the search area
int high = data.length - 1; // high end of the search area
int middle = (low + high + 1) / 2; // middle element

do // loop to search for element

818 Chapter 19 Searching, Sorting and Big O

22 // output spaces for alignment
23 for (int i = 0; i < middle; i++)
24 System.out.print(" ");
25 System.out.println(" * "); // indicate current middle
26
27
28
29
30
31
32
33
34
35
36
37
38 return location; // return location of search key
39 } // end method binarySearch
40
41 // method to output certain values in array
42 private static String remainingElements(int[] data, int low, int high)
43 {
44 StringBuilder temporary = new StringBuilder();
45
46 // append spaces for alignment
47 for (int i = 0; i < low; i++)
48 temporary.append(" ");
49
50 // append elements left in array
51 for (int i = low; i <= high; i++)
52 temporary.append(data[i] + " ");
53
54 return String.format("%s%n", temporary);
55 } // end method remainingElements
56
57 public static void main(String[] args)
58 {
59 Scanner input = new Scanner(System.in);
60 SecureRandom generator = new SecureRandom();
61
62 int[] data = new int[15]; // create array
63
64 for (int i = 0; i < data.length; i++) // populate array
65 data[i] = 10 + generator.nextInt(90);
66
67
68 System.out.printf("%s%n%n",); // display array
69
70 // get input from user
71 System.out.print("Please enter an integer value (-1 to quit): ");
72 int searchInt = input.nextInt();
73

Fig. 19.3 | Use binary search to locate an item in an array (the * in the output marks the middle
element). (Part 2 of 3.)

// if the element is found at the middle
if (key == data[middle])
 location = middle; // location is the current middle
else if (key < data[middle]) // middle element is too high
 high = middle - 1; // eliminate the higher half
else // middle element is too low
 low = middle + 1; // eliminate the lower half

 middle = (low + high + 1) / 2; // recalculate the middle
} while ((low <= high) && (location == -1));

Arrays.sort(data); // binarySearch requires sorted array
Arrays.toString(data)

19.4 Binary Search 819

74 // repeatedly input an integer; -1 terminates the program
75 while (searchInt != -1)
76 {
77 // perform search
78 int location = binarySearch(data, searchInt);
79
80 if (location == -1) // not found
81 System.out.printf("%d was not found%n%n", searchInt);
82 else // found
83 System.out.printf("%d was found in position %d%n%n",
84 searchInt, location);
85
86 // get input from user
87 System.out.print("Please enter an integer value (-1 to quit): ");
88 searchInt = input.nextInt();
89 }
90 } // end main
91 } // end class BinarySearchTest

[13, 18, 29, 36, 42, 47, 56, 57, 63, 68, 80, 81, 82, 88, 88]

Please enter an integer value (-1 to quit): 18
13 18 29 36 42 47 56 57 63 68 80 81 82 88 88
 *
13 18 29 36 42 47 56
 *
13 18 29
 *
18 was found in position 1

Please enter an integer value (-1 to quit): 82
13 18 29 36 42 47 56 57 63 68 80 81 82 88 88
 *
 63 68 80 81 82 88 88
 *
 82 88 88
 *
 82
 *
82 was found in position 12

Please enter an integer value (-1 to quit): 69
13 18 29 36 42 47 56 57 63 68 80 81 82 88 88
 *
 63 68 80 81 82 88 88
 *
 63 68 80
 *
 80
 *
69 was not found

Please enter an integer value (-1 to quit): -1

Fig. 19.3 | Use binary search to locate an item in an array (the * in the output marks the middle
element). (Part 3 of 3.)

820 Chapter 19 Searching, Sorting and Big O

Lines 10–39 declare method binarySearch, which receives as parameters the array to
search (data) and the search key (key). Lines 12–14 calculate the low end index, high end
index and middle index of the portion of the array that the program is currently searching.
At the beginning of the method, the low end is 0, the high end is the length of the array
minus 1 and the middle is the average of these two values. Line 15 initializes the location
of the element to -1—the value that will be returned if the key is not found. Lines 17–36
loop until low is greater than high (this occurs when the key is not found) or location
does not equal -1 (indicating that the key was found). Line 28 tests whether the value in
the middle element is equal to the key. If so, line 29 assigns middle to location, the loop
terminates and location is returned to the caller. Each iteration of the loop tests a single
value (line 28) and eliminates half of the remaining values in the array (line 31 or 33) if the
value is not the key.

19.4.2 Efficiency of the Binary Search
In the worst-case scenario, searching a sorted array of 1023 elements takes only 10 compar-
isons when using a binary search. Repeatedly dividing 1023 by 2 (because after each com-
parison we can eliminate half the array) and rounding down (because we also remove the
middle element) yields the values 511, 255, 127, 63, 31, 15, 7, 3, 1 and 0. The number
1023 (210 – 1) is divided by 2 only 10 times to get the value 0, which indicates that there
are no more elements to test. Dividing by 2 is equivalent to one comparison in the binary
search algorithm. Thus, an array of 1,048,575 (220 – 1) elements takes a maximum of 20
comparisons to find the key, and an array of over one billion elements takes a maximum of
30 comparisons to find the key. This is a tremendous improvement in performance over
the linear search. For a one-billion-element array, this is a difference between an average
of 500 million comparisons for the linear search and a maximum of only 30 comparisons
for the binary search! The maximum number of comparisons needed for the binary search
of any sorted array is the exponent of the first power of 2 greater than the number of
elements in the array, which is represented as log2 n. All logarithms grow at roughly the
same rate, so in big O notation the base can be omitted. This results in a big O of O(log
n) for a binary search, which is also known as logarithmic run time and pronounced as
“order log n.”

19.5 Sorting Algorithms
Sorting data (i.e., placing the data into some particular order, such as ascending or de-
scending) is one of the most important computing applications. A bank sorts all checks by
account number so that it can prepare individual bank statements at the end of each
month. Telephone companies sort their lists of accounts by last name and, further, by first
name to make it easy to find phone numbers. Virtually every organization must sort some
data, and often massive amounts of it. Sorting data is an intriguing, computer-intensive
problem that has attracted intense research efforts.

An important item to understand about sorting is that the end result—the sorted
array—will be the same no matter which algorithm you use to sort the array. The choice
of algorithm affects only the run time and memory use of the program. The rest of this
chapter introduces three common sorting algorithms. The first two—selection sort and
insertion sort—are easy to program but inefficient. The last algorithm—merge sort—is

19.6 Selection Sort 821

much faster than selection sort and insertion sort but harder to program. We focus on
sorting arrays of primitive-type data, namely ints. It’s possible to sort arrays of class objects
as well, as we demonstrated in Section 16.7.1 by using the built-in sorting capabilities of
the Collections API.

19.6 Selection Sort
Selection sort is a simple, but inefficient, sorting algorithm. If you’re sorting in increasing
order, its first iteration selects the smallest element in the array and swaps it with the first
element. The second iteration selects the second-smallest item (which is the smallest item
of the remaining elements) and swaps it with the second element. The algorithm continues
until the last iteration selects the second-largest element and swaps it with the second-to-
last index, leaving the largest element in the last index. After the ith iteration, the smallest
i items of the array will be sorted into increasing order in the first i elements of the array.

As an example, consider the array

A program that implements selection sort first determines the smallest element (4) of this
array, which is contained in index 2. The program swaps 4 with 34, resulting in

The program then determines the smallest value of the remaining elements (all elements
except 4), which is 5, contained in index 8. The program swaps 5 with 56, resulting in

On the third iteration, the program determines the next smallest value (10) and swaps it
with 34.

The process continues until the array is fully sorted.

After the first iteration, the smallest element is in the first position. After the second iter-
ation, the two smallest elements are in order in the first two positions. After the third it-
eration, the three smallest elements are in order in the first three positions.

19.6.1 Selection Sort Implementation
Class SelectionSortTest (Fig. 19.4) contains:

• static method selectionSort to sort an int array using the selection sort algo-
rithm

• static method swap to swap the values of two array elements

• static method printPass to display the array contents after each pass, and

• main to test method selectionSort.

As in the searching examples, main (lines 57–72) creates an array of ints named data and
populates it with random ints in the range 10–99. Line 68 tests method selectionSort.

34 56 4 10 77 51 93 30 5 52

4 56 34 10 77 51 93 30 5 52

4 5 34 10 77 51 93 30 56 52

4 5 10 34 77 51 93 30 56 52

4 5 10 30 34 51 52 56 77 93

822 Chapter 19 Searching, Sorting and Big O

1 // Fig. 19.4: SelectionSortTest.java
2 // Sorting an array with selection sort.
3 import java.security.SecureRandom;
4 import java.util.Arrays;
5
6 public class SelectionSortTest
7 {
8 // sort array using selection sort
9

10 {
11 // loop over data.length - 1 elements
12 for (int i = 0; i < data.length - 1; i++)
13 {
14 int smallest = i; // first index of remaining array
15
16 // loop to find index of smallest element
17 for (int index = i + 1; index < data.length; index++)
18 if (data[index] < data[smallest])
19 smallest = index;
20
21
22 printPass(i + 1, smallest); // output pass of algorithm
23 }
24 } // end method selectionSort
25
26 // helper method to swap values in two elements
27
28 {
29 int temporary = data[first]; // store first in temporary
30 data[first] = data[second]; // replace first with second
31 data[second] = temporary; // put temporary in second
32 }
33
34 // print a pass of the algorithm
35 private static void printPass(int[] data, int pass, int index)
36 {
37 System.out.printf("after pass %2d: ", pass);
38
39 // output elements till selected item
40 for (int i = 0; i < index; i++)
41 System.out.printf("%d ", data[i]);
42
43 System.out.printf("%d* ", data[index]); // indicate swap
44
45 // finish outputting array
46 for (int i = index + 1; i < data.length; i++)
47 System.out.printf("%d ", data[i]);
48
49 System.out.printf("%n "); // for alignment
50
51 // indicate amount of array that’s sorted
52 for (int j = 0; j < pass; j++)
53 System.out.print("-- ");

Fig. 19.4 | Sorting an array with selection sort. (Part 1 of 2.)

public static void selectionSort(int[] data)

swap(data, i, smallest); // swap smallest element into position

private static void swap(int[] data, int first, int second)

19.6 Selection Sort 823

Methods selectionSort and swap
Lines 9–24 declare the selectionSort method. Lines 12–23 loop data.length - 1 times.
Line 14 declares and initializes (to the current index i) the variable smallest, which stores
the index of the smallest element in the remaining array. Lines 17–19 loop over the re-
maining elements in the array. For each of these elements, line 18 compares its value to
the value of the smallest element. If the current element is smaller than the smallest ele-
ment, line 19 assigns the current element’s index to smallest. When this loop finishes,

54 System.out.println();
55 }
56
57 public static void main(String[] args)
58 {
59 SecureRandom generator = new SecureRandom();
60
61 int[] data = new int[10]; // create array
62
63 for (int i = 0; i < data.length; i++) // populate array
64 data[i] = 10 + generator.nextInt(90);
65
66 System.out.printf("Unsorted array:%n%s%n%n",
67 Arrays.toString(data)); // display array
68
69
70 System.out.printf("Sorted array:%n%s%n%n",
71 Arrays.toString(data)); // display array
72 }
73 } // end class SelectionSortTest

Unsorted array:
[40, 60, 59, 46, 98, 82, 23, 51, 31, 36]

after pass 1: 23 60 59 46 98 82 40* 51 31 36
 --
after pass 2: 23 31 59 46 98 82 40 51 60* 36
 -- --
after pass 3: 23 31 36 46 98 82 40 51 60 59*
 -- -- --
after pass 4: 23 31 36 40 98 82 46* 51 60 59
 -- -- -- --
after pass 5: 23 31 36 40 46 82 98* 51 60 59
 -- -- -- -- --
after pass 6: 23 31 36 40 46 51 98 82* 60 59
 -- -- -- -- -- --
after pass 7: 23 31 36 40 46 51 59 82 60 98*
 -- -- -- -- -- -- --
after pass 8: 23 31 36 40 46 51 59 60 82* 98
 -- -- -- -- -- -- -- --
after pass 9: 23 31 36 40 46 51 59 60 82* 98
 -- -- -- -- -- -- -- -- --
Sorted array:
[23, 31, 36, 40, 46, 51, 59, 60, 82, 98]

Fig. 19.4 | Sorting an array with selection sort. (Part 2 of 2.)

selectionSort(data); // sort array

824 Chapter 19 Searching, Sorting and Big O

smallest will contain the index of the smallest element in the remaining array. Line 21
calls method swap (lines 27–32) to place the smallest remaining element in the next or-
dered spot in the array.

Methods printPass
The output of method printPass uses dashes (lines 52–53) to indicate the portion of the
array that’s sorted after each pass. An asterisk is placed next to the position of the element
that was swapped with the smallest element on that pass. On each pass, the element next
to the asterisk (specified at line 43) and the element above the rightmost set of dashes were
swapped.

19.6.2 Efficiency of the Selection Sort
The selection sort algorithm runs in O(n2) time. Method selectionSort (lines 9–24)
contains two for loops. The outer one (lines 12–23) iterates over the first n – 1 elements
in the array, swapping the smallest remaining item into its sorted position. The inner loop
(lines 17–19) iterates over each item in the remaining array, searching for the smallest el-
ement. This loop executes n – 1 times during the first iteration of the outer loop, n – 2
times during the second iteration, then n – 3, …, 3, 2, 1. This inner loop will iterate a total
of n(n – 1)/2 or (n2 – n)/2. In Big O notation, smaller terms drop out and constants are
ignored, leaving a Big O of O(n2).

19.7 Insertion Sort
Insertion sort is another simple, but inefficient, sorting algorithm. The first iteration of this
algorithm takes the second element in the array and, if it’s less than the first element, swaps
it with the first element. The second iteration looks at the third element and inserts it into
the correct position with respect to the first two, so all three elements are in order. At the
ith iteration of this algorithm, the first i elements in the original array will be sorted.

Consider as an example the following array, which is identical to the one used in the
discussions of selection sort and merge sort.

A program that implements the insertion sort algorithm will first look at the first two ele-
ments of the array, 34 and 56. These are already in order, so the program continues. (If
they were out of order, the program would swap them.)

In the next iteration, the program looks at the third value, 4. This value is less than
56, so the program stores 4 in a temporary variable and moves 56 one element to the right.
The program then checks and determines that 4 is less than 34, so it moves 34 one element
to the right. The program has now reached the beginning of the array, so it places 4 in the
zeroth element. The array now is

In the next iteration, the program stores 10 in a temporary variable. Then it compares 10
to 56 and moves 56 one element to the right because it’s larger than 10. The program then
compares 10 to 34, moving 34 right one element. When the program compares 10 to 4,
it observes that 10 is larger than 4 and places 10 in element 1. The array now is

34 56 4 10 77 51 93 30 5 52

4 34 56 10 77 51 93 30 5 52

4 10 34 56 77 51 93 30 5 52

19.7 Insertion Sort 825

Using this algorithm, at the ith iteration, the first i elements of the original array are sorted,
but they may not be in their final locations—smaller values may be located later in the array.

19.7.1 Insertion Sort Implementation
Class InsertionSortTest (Fig. 19.5) contains:

• static method insertionSort to sort ints using the insertion sort algorithm

• static method printPass to display the array contents after each pass, and

• main to test method insertionSort.

Method main (lines 53–68) is identical to main in Fig. 19.4 except that line 64 calls method
insertionSort.

1 // Fig. 19.5: InsertionSortTest.java
2 // Sorting an array with insertion sort.
3 import java.security.SecureRandom;
4 import java.util.Arrays;
5
6 public class InsertionSortTest
7 {
8 // sort array using insertion sort
9

10 {
11 // loop over data.length - 1 elements
12
13 {
14
15
16
17
18
19
20
21
22
23
24
25
26 printPass(data, next, moveItem); // output pass of algorithm
27 }
28 }
29
30 // print a pass of the algorithm
31 public static void printPass(int[] data, int pass, int index)
32 {
33 System.out.printf("after pass %2d: ", pass);
34
35 // output elements till swapped item
36 for (int i = 0; i < index; i++)
37 System.out.printf("%d ", data[i]);

Fig. 19.5 | Sorting an array with insertion sort. (Part 1 of 3.)

public static void insertionSort(int[] data)

for (int next = 1; next < data.length; next++)

int insert = data[next]; // value to insert
int moveItem = next; // location to place element

// search for place to put current element
while (moveItem > 0 && data[moveItem - 1] > insert)
{
 // shift element right one slot
 data[moveItem] = data[moveItem - 1];
 moveItem--;
}

data[moveItem] = insert; // place inserted element

826 Chapter 19 Searching, Sorting and Big O

38
39 System.out.printf("%d* ", data[index]); // indicate swap
40
41 // finish outputting array
42 for (int i = index + 1; i < data.length; i++)
43 System.out.printf("%d ", data[i]);
44
45 System.out.printf("%n "); // for alignment
46
47 // indicate amount of array that’s sorted
48 for(int i = 0; i <= pass; i++)
49 System.out.print("-- ");
50 System.out.println();
51 }
52
53 public static void main(String[] args)
54 {
55 SecureRandom generator = new SecureRandom();
56
57 int[] data = new int[10]; // create array
58
59 for (int i = 0; i < data.length; i++) // populate array
60 data[i] = 10 + generator.nextInt(90);
61
62 System.out.printf("Unsorted array:%n%s%n%n",
63 Arrays.toString(data)); // display array
64
65
66 System.out.printf("Sorted array:%n%s%n%n",
67 Arrays.toString(data)); // display array
68 }
69 } // end class InsertionSortTest

Unsorted array:
[34, 96, 12, 87, 40, 80, 16, 50, 30, 45]

after pass 1: 34 96* 12 87 40 80 16 50 30 45
 -- --
after pass 2: 12* 34 96 87 40 80 16 50 30 45
 -- -- --
after pass 3: 12 34 87* 96 40 80 16 50 30 45
 -- -- -- --
after pass 4: 12 34 40* 87 96 80 16 50 30 45
 -- -- -- -- --
after pass 5: 12 34 40 80* 87 96 16 50 30 45
 -- -- -- -- -- --
after pass 6: 12 16* 34 40 80 87 96 50 30 45
 -- -- -- -- -- -- --
after pass 7: 12 16 34 40 50* 80 87 96 30 45
 -- -- -- -- -- -- -- --
after pass 8: 12 16 30* 34 40 50 80 87 96 45
 -- -- -- -- -- -- -- -- --

Fig. 19.5 | Sorting an array with insertion sort. (Part 2 of 3.)

insertionSort(data); // sort array

19.8 Merge Sort 827

Method insertionSort
Lines 9–28 declare the insertionSort method. Lines 12–27 loop over data.length - 1
items in the array. In each iteration, line 14 declares and initializes variable insert, which
holds the value of the element that will be inserted into the sorted portion of the array.
Line 15 declares and initializes the variable moveItem, which keeps track of where to insert
the element. Lines 18–23 loop to locate the correct position where the element should be
inserted. The loop will terminate either when the program reaches the front of the array
or when it reaches an element that’s less than the value to be inserted. Line 21 moves an
element to the right in the array, and line 22 decrements the position at which to insert
the next element. After the loop ends, line 25 inserts the element into place.

Method printPass
The output of method printPass (lines 31–51) uses dashes to indicate the portion of the
array that’s sorted after each pass. An asterisk is placed next to the element that was insert-
ed into place on that pass.

19.7.2 Efficiency of the Insertion Sort
The insertion sort algorithm also runs in O(n2) time. Like selection sort, the implementa-
tion of insertion sort (lines 9–28) contains two loops. The for loop (lines 12–27) iterates
data.length - 1 times, inserting an element into the appropriate position in the elements
sorted so far. For the purposes of this application, data.length - 1 is equivalent to n – 1
(as data.length is the size of the array). The while loop (lines 18–23) iterates over the
preceding elements in the array. In the worst case, this while loop will require n – 1 com-
parisons. Each individual loop runs in O(n) time. In Big O notation, nested loops mean
that you must multiply the number of comparisons. For each iteration of an outer loop,
there will be a certain number of iterations of the inner loop. In this algorithm, for each
O(n) iterations of the outer loop, there will be O(n) iterations of the inner loop. Multiply-
ing these values results in a Big O of O(n2).

19.8 Merge Sort
Merge sort is an efficient sorting algorithm but is conceptually more complex than selection
sort and insertion sort. The merge sort algorithm sorts an array by splitting it into two
equal-sized subarrays, sorting each subarray, then merging them into one larger array. With
an odd number of elements, the algorithm creates the two subarrays such that one has one
more element than the other.

The implementation of merge sort in this example is recursive. The base case is an
array with one element, which is, of course, sorted, so the merge sort immediately returns
in this case. The recursion step splits the array into two approximately equal pieces, recur-
sively sorts them, then merges the two sorted arrays into one larger, sorted array.

after pass 9: 12 16 30 34 40 45* 50 80 87 96
 -- -- -- -- -- -- -- -- -- --
Sorted array:
[12, 16, 30, 34, 40, 45, 50, 80, 87, 96]

Fig. 19.5 | Sorting an array with insertion sort. (Part 3 of 3.)

828 Chapter 19 Searching, Sorting and Big O

Suppose the algorithm has already merged smaller arrays to create sorted arrays A:

and B:

Merge sort combines these two arrays into one larger, sorted array. The smallest element
in A is 4 (located in the zeroth index of A). The smallest element in B is 5 (located in the
zeroth index of B). In order to determine the smallest element in the larger array, the al-
gorithm compares 4 and 5. The value from A is smaller, so 4 becomes the first element in
the merged array. The algorithm continues by comparing 10 (the second element in A) to
5 (the first element in B). The value from B is smaller, so 5 becomes the second element
in the larger array. The algorithm continues by comparing 10 to 30, with 10 becoming
the third element in the array, and so on.

19.8.1 Merge Sort Implementation
Figure 19.6 declares the MergeSortTest class, which contains:

• static method mergeSort to initiate the sorting of an int array using the merge
sort algorithm

• static method sortArray to perform the recursive merge sort algorithm—this
is called by method mergeSort

• static method merge to merge two sorted subarrays into a single sorted subarray

• static method subarrayString to get a subarray’s String representation for
output purposes, and

• main to test method mergeSort.

Method main (lines 101–116) is identical to main in Figs. 19.4–19.5 except that line 112
calls method mergeSort. The output from this program displays the splits and merges per-
formed by merge sort, showing the progress of the sort at each step of the algorithm. It’s
well worth your time to step through these outputs to fully understand this elegant sorting
algorithm.

4 10 34 56 77

5 30 51 52 93

1 // Fig. 19.6: MergeSortTest.java
2 // Sorting an array with merge sort.
3 import java.security.SecureRandom;
4 import java.util.Arrays;
5
6 public class MergeSortTest
7 {
8 // calls recursive split method to begin merge sorting
9 public static void mergeSort(int[] data)

10 {
11 sortArray(data, 0, data.length - 1); // sort entire array
12 } // end method sort
13

Fig. 19.6 | Sorting an array with merge sort. (Part 1 of 5.)

19.8 Merge Sort 829

14 // splits array, sorts subarrays and merges subarrays into sorted array
15 private static void sortArray(int[] data, int low, int high)
16 {
17 // test base case; size of array equals 1
18 if ((high - low) >= 1) // if not base case
19 {
20 int middle1 = (low + high) / 2; // calculate middle of array
21 int middle2 = middle1 + 1; // calculate next element over
22
23 // output split step
24 System.out.printf("split: %s%n",
25 subarrayString(data, low, high));
26 System.out.printf(" %s%n",
27 subarrayString(data, low, middle1));
28 System.out.printf(" %s%n%n",
29 subarrayString(data, middle2, high));
30
31 // split array in half; sort each half (recursive calls)
32 sortArray(data, low, middle1); // first half of array
33 sortArray(data, middle2, high); // second half of array
34
35 // merge two sorted arrays after split calls return
36 merge (data, low, middle1, middle2, high);
37 } // end if
38 } // end method sortArray
39
40 // merge two sorted subarrays into one sorted subarray
41 private static void merge(int[] data, int left, int middle1,
42 int middle2, int right)
43 {
44 int leftIndex = left; // index into left subarray
45 int rightIndex = middle2; // index into right subarray
46 int combinedIndex = left; // index into temporary working array
47 int[] combined = new int[data.length]; // working array
48
49 // output two subarrays before merging
50 System.out.printf("merge: %s%n",
51 subarrayString(data, left, middle1));
52 System.out.printf(" %s%n",
53 subarrayString(data, middle2, right));
54
55 // merge arrays until reaching end of either
56 while (leftIndex <= middle1 && rightIndex <= right)
57 {
58 // place smaller of two current elements into result
59 // and move to next space in arrays
60 if (data[leftIndex] <= data[rightIndex])
61 combined[combinedIndex++] = data[leftIndex++];
62 else
63 combined[combinedIndex++] = data[rightIndex++];
64 }
65

Fig. 19.6 | Sorting an array with merge sort. (Part 2 of 5.)

830 Chapter 19 Searching, Sorting and Big O

66 // if left array is empty
67 if (leftIndex == middle2)
68 // copy in rest of right array
69 while (rightIndex <= right)
70 combined[combinedIndex++] = data[rightIndex++];
71 else // right array is empty
72 // copy in rest of left array
73 while (leftIndex <= middle1)
74 combined[combinedIndex++] = data[leftIndex++];
75
76 // copy values back into original array
77 for (int i = left; i <= right; i++)
78 data[i] = combined[i];
79
80 // output merged array
81 System.out.printf(" %s%n%n",
82 subarrayString(data, left, right));
83 } // end method merge
84
85 // method to output certain values in array
86 private static String subarrayString(int[] data, int low, int high)
87 {
88 StringBuilder temporary = new StringBuilder();
89
90 // output spaces for alignment
91 for (int i = 0; i < low; i++)
92 temporary.append(" ");
93
94 // output elements left in array
95 for (int i = low; i <= high; i++)
96 temporary.append(" " + data[i]);
97
98 return temporary.toString();
99 }
100
101 public static void main(String[] args)
102 {
103 SecureRandom generator = new SecureRandom();
104
105 int[] data = new int[10]; // create array
106
107 for (int i = 0; i < data.length; i++) // populate array
108 data[i] = 10 + generator.nextInt(90);
109
110 System.out.printf("Unsorted array:%n%s%n%n",
111 Arrays.toString(data)); // display array
112
113
114 System.out.printf("Sorted array:%n%s%n%n",
115 Arrays.toString(data)); // display array
116 }
117 } // end class MergeSortTest

Fig. 19.6 | Sorting an array with merge sort. (Part 3 of 5.)

mergeSort(data); // sort array

19.8 Merge Sort 831

Unsorted array:
[75, 56, 85, 90, 49, 26, 12, 48, 40, 47]

split: 75 56 85 90 49 26 12 48 40 47
 75 56 85 90 49
 26 12 48 40 47

split: 75 56 85 90 49
 75 56 85
 90 49

split: 75 56 85
 75 56
 85

split: 75 56
 75
 56

merge: 75
 56
 56 75

merge: 56 75
 85
 56 75 85

split: 90 49
 90
 49

merge: 90
 49
 49 90

merge: 56 75 85
 49 90
 49 56 75 85 90

split: 26 12 48 40 47
 26 12 48
 40 47

split: 26 12 48
 26 12
 48

split: 26 12
 26
 12

merge: 26
 12
 12 26

merge: 12 26
 48
 12 26 48

split: 40 47
 40
 47

Fig. 19.6 | Sorting an array with merge sort. (Part 4 of 5.)

832 Chapter 19 Searching, Sorting and Big O

Method mergeSort
Lines 9–12 of Fig. 19.6 declare the mergeSort method. Line 11 calls method sortArray
with 0 and data.length - 1 as the arguments—corresponding to the beginning and end-
ing indices, respectively, of the array to be sorted. These values tell method sortArray to
operate on the entire array.

Method sortArray
Recursive method sortArray (lines 15–38) performs the recursive merge sort algorithm.
Line 18 tests the base case. If the size of the array is 1, the array is already sorted, so the
method returns immediately. If the size of the array is greater than 1, the method splits the
array in two, recursively calls method sortArray to sort the two subarrays, then merges
them. Line 32 recursively calls method sortArray on the first half of the array, and line
33 recursively calls method sortArray on the second half. When these two method calls
return, each half of the array has been sorted. Line 36 calls method merge (lines 41–83)
on the two halves of the array to combine the two sorted arrays into one larger sorted array.

Method merge
Lines 41–83 declare method merge. Lines 56–64 in merge loop until the end of either sub-
array is reached. Line 60 tests which element at the beginning of the arrays is smaller. If
the element in the left array is smaller, line 61 places it in position in the combined array.
If the element in the right array is smaller, line 63 places it in position in the combined
array. When the while loop completes, one entire subarray has been placed in the com-
bined array, but the other subarray still contains data. Line 67 tests whether the left array
has reached the end. If so, lines 69–70 fill the combined array with the elements of the
right array. If the left array has not reached the end, then the right array must have reached
the end, and lines 73–74 fill the combined array with the elements of the left array. Finally,
lines 77–78 copy the combined array into the original array.

19.8.2 Efficiency of the Merge Sort
Merge sort is far more efficient than insertion or selection sort. Consider the first (non-
recursive) call to sortArray. This results in two recursive calls to sortArray with subarrays
each approximately half the original array’s size, and a single call to merge, which requires, at
worst, n – 1 comparisons to fill the original array, which is O(n). (Recall that each array ele-
ment can be chosen by comparing one element from each subarray.) The two calls to sort-

merge: 40
 47
 40 47
merge: 12 26 48
 40 47
 12 26 40 47 48
merge: 49 56 75 85 90
 12 26 40 47 48
 12 26 40 47 48 49 56 75 85 90
Sorted array:
[12, 26, 40, 47, 48, 49, 56, 75, 85, 90]

Fig. 19.6 | Sorting an array with merge sort. (Part 5 of 5.)

19.9 Big O Summary for This Chapter’s Searching and Sorting Algorithms 833

Array result in four more recursive sortArray calls, each with a subarray approximately a
quarter of the original array’s size, along with two calls to merge that each require, at worst,
n/2 – 1 comparisons, for a total number of comparisons of O(n). This process continues,
each sortArray call generating two additional sortArray calls and a merge call, until the al-
gorithm has split the array into one-element subarrays. At each level, O(n) comparisons are
required to merge the subarrays. Each level splits the the arrays in half, so doubling the array
size requires one more level. Quadrupling the array size requires two more levels. This pat-
tern is logarithmic and results in log2 n levels. This results in a total efficiency of O(n log n).

19.9 Big O Summary for This Chapter’s Searching and
Sorting Algorithms
Figure 19.7 summarizes the searching and sorting algorithms covered in this chapter with
the Big O for each. Figure 19.8 lists the Big O values we’ve covered in this chapter along
with a number of values for n to highlight the differences in the growth rates.

Algorithm Location Big O

Searching Algorithms:
Linear search Section 19.2 O(n)
Binary search Section 19.4 O(log n)
Recursive linear search Exercise 19.8 O(n)
Recursive binary search Exercise 19.9 O(log n)

Sorting Algorithms:
Selection sort Section 19.6 O(n2)
Insertion sort Section 19.7 O(n2)
Merge sort Section 19.8 O(n log n)
Bubble sort Exercises 19.5 and 19.6 O(n2)

Fig. 19.7 | Searching and sorting algorithms with Big O values.

n = O(log n) O(n) O(n log n) O(n2)

1 0 1 0 1
2 1 2 2 4
3 1 3 3 9
4 1 4 4 16
5 1 5 5 25
10 1 10 10 100
100 2 100 200 10,000
1000 3 1000 3000 106

1,000,000 6 1,000,000 6,000,000 1012

1,000,000,000 9 1,000,000,000 9,000,000,000 1018

Fig. 19.8 | Number of comparisons for common Big O notations.

834 Chapter 19 Searching, Sorting and Big O

19.10 Wrap-Up
This chapter introduced searching and sorting. We discussed two searching algorithms—lin-
ear search and binary search—and three sorting algorithms—selection sort, insertion sort
and merge sort. We introduced Big O notation, which helps you analyze the efficiency of an
algorithm. The next two chapters continue our discussion of dynamic data structures that
can grow or shrink at execution time. Chapter 20 demonstrates how to use Java’s generics
capabilities to implement generic methods and classes. Chapter 21 discusses the details of
implementing generic data structures. Each of the algorithms in this chapter is “single
threaded”—in Chapter 23, Concurrency, we’ll discuss multithreading and how it can help
you program for better performance on today’s multi-core systems.

Summary
Section 19.1 Introduction
• Searching (p. 811) involves determining if a search key is in the data and, if so, finding its location.

• Sorting (p. 811) involves arranging data into order.

Section 19.2 Linear Search
• The linear search algorithm (p. 812) searches each element in the array sequentially until it finds

the correct element, or until it reaches the end of the array without finding the element.

Section 19.3 Big O Notation
• A major difference among searching algorithms is the amount of effort they require.

• Big O notation (p. 814) describes an algorithm’s efficiency in terms of the work required to solve
a problem. For searching and sorting algorithms typically it depends on the number of elements
in the data.

• An algorithm that’s O(1) does not necessarily require only one comparison (p. 815). It just
means that the number of comparisons does not grow as the size of the array increases.

• An O(n) algorithm is referred to as having a linear run time (p. 815).

• Big O highlights dominant factors and ignores terms that become unimportant with high n values.

• Big O notation is concerned with the growth rate of algorithm run times, so constants are ignored.

• The linear search algorithm runs in O(n) time.

• The worst case in linear search is that every element must be checked to determine whether the
search key (p. 816) exists, which occurs if the search key is the last array element or is not present.

Section 19.4 Binary Search
• Binary search (p. 816) is more efficient than linear search, but it requires that the array be sorted.

• The first iteration of binary search tests the middle element in the array. If this is the search key,
the algorithm returns its location. If the search key is less than the middle element, the search
continues with the first half of the array. If the search key is greater than the middle element, the
search continues with the second half of the array. Each iteration tests the middle value of the
remaining array and, if the element is not found, eliminates half of the remaining elements.

• Binary search is a more efficient searching algorithm than linear search because each comparison
eliminates from consideration half of the elements in the array.

 Self-Review Exercises 835

• Binary search runs in O(log n) time because each step removes half of the remaining elements;
this is also known as logarithmic run time (p. 820).

• If the array size is doubled, binary search requires only one extra comparison.

Section 19.6 Selection Sort
• Selection sort (p. 821) is a simple, but inefficient, sorting algorithm.

• The sort begins by selecting the smallest item and swaps it with the first element. The second iter-
ation selects the second-smallest item (which is the smallest remaining item) and swaps it with the
second element. The sort continues until the last iteration selects the second-largest element and
swaps it with the second-to-last element, leaving the largest element in the last index. At the ith
iteration of selection sort, the smallest i items of the whole array are sorted into the first i indices.

• The selection sort algorithm runs in O(n2) time (p. 824).

Section 19.7 Insertion Sort
• The first iteration of insertion sort (p. 824) takes the second element in the array and, if it’s less

than the first element, swaps it with the first element. The second iteration looks at the third
element and inserts it in the correct position with respect to the first two elements. After the ith
iteration of insertion sort, the first i elements in the original array are sorted.

• The insertion sort algorithm runs in O(n2) time (p. 827).

Section 19.8 Merge Sort
• Merge sort (p. 827) is a sorting algorithm that’s faster, but more complex to implement, than se-

lection sort and insertion sort. The merge sort algorithm sorts an array by splitting it into two equal-
sized subarrays, sorting each subarray recursively and merging the subarrays into one larger array.

• Merge sort’s base case is an array with one element. A one-element array is already sorted, so
merge sort immediately returns when it’s called with a one-element array. The merge part of
merge sort takes two sorted arrays and combines them into one larger sorted array.

• Merge sort performs the merge by looking at the first element in each array, which is also the
smallest element in the array. Merge sort takes the smallest of these and places it in the first ele-
ment of the larger array. If there are still elements in the subarray, merge sort looks at the second
of these (which is now the smallest element remaining) and compares it to the first element in
the other subarray. Merge sort continues this process until the larger array is filled.

• In the worst case, the first call to merge sort has to make O(n) comparisons to fill the n slots in
the final array.

• The merging portion of the merge sort algorithm is performed on two subarrays, each of approx-
imately size n/2. Creating each of these subarrays requires n /2 – 1 comparisons for each subarray,
or O(n) comparisons total. This pattern continues as each level works on twice as many arrays,
but each is half the size of the previous array.

• Similar to binary search, this halving results in log n levels for a total efficiency of O(n log n) (p. 833).

Self-Review Exercises
19.1 Fill in the blanks in each of the following statements:

a) A selection sort application would take approximately times as long to run
on a 128-element array as on a 32-element array.

b) The efficiency of merge sort is .

19.2 What key aspect of both the binary search and the merge sort accounts for the logarithmic
portion of their respective Big Os?

836 Chapter 19 Searching, Sorting and Big O

19.3 In what sense is the insertion sort superior to the merge sort? In what sense is the merge sort
superior to the insertion sort?

19.4 In the text, we say that after the merge sort splits the array into two subarrays, it then sorts
these two subarrays and merges them. Why might someone be puzzled by our statement that “it
then sorts these two subarrays”?

Answers to Self-Review Exercises
19.1 a) 16, because an O(n2) algorithm takes 16 times as long to sort four times as much infor-
mation. b) O(n log n).

19.2 Both of these algorithms incorporate “halving”—somehow reducing something by half.
The binary search eliminates from consideration one-half of the array after each comparison. The
merge sort splits the array in half each time it’s called.

19.3 The insertion sort is easier to understand and to program than the merge sort. The merge
sort is far more efficient [O(n log n)] than the insertion sort [O(n2)].

19.4 In a sense, it does not really sort these two subarrays. It simply keeps splitting the original
array in half until it provides a one-element subarray, which is, of course, sorted. It then builds up
the original two subarrays by merging these one-element arrays to form larger subarrays, which are
then merged, and so on.

Exercises
19.5 (Bubble Sort) Implement bubble sort—another simple yet inefficient sorting technique. It’s
called bubble sort or sinking sort because smaller values gradually “bubble” their way to the top of
the array (i.e., toward the first element) like air bubbles rising in water, while the larger values sink
to the bottom (end) of the array. The technique uses nested loops to make several passes through
the array. Each pass compares successive pairs of elements. If a pair is in increasing order (or the
values are equal), the bubble sort leaves the values as they are. If a pair is in decreasing order, the
bubble sort swaps their values in the array. The first pass compares the first two elements of the array
and swaps their values if necessary. It then compares the second and third elements in the array. The
end of this pass compares the last two elements in the array and swaps them if necessary. After one
pass, the largest element will be in the last index. After two passes, the largest two elements will be
in the last two indices. Explain why bubble sort is an O(n2) algorithm.

19.6 (Enhanced Bubble Sort) Make the following simple modifications to improve the perfor-
mance of the bubble sort you developed in Exercise 19.5:

a) After the first pass, the largest number is guaranteed to be in the highest-numbered array
element; after the second pass, the two highest numbers are “in place”; and so on. In-
stead of making nine comparisons on every pass for a ten-element array, modify the
bubble sort to make eight comparisons on the second pass, seven on the third pass, and
so on.

b) The data in the array may already be in proper or near-proper order, so why make nine
passes if fewer will suffice? Modify the sort to check at the end of each pass whether any
swaps have been made. If there were none, the data must already be sorted, so the pro-
gram should terminate. If swaps have been made, at least one more pass is needed.

19.7 (Bucket Sort) A bucket sort begins with a one-dimensional array of positive integers to be
sorted and a two-dimensional array of integers with rows indexed from 0 to 9 and columns indexed
from 0 to n – 1, where n is the number of values to be sorted. Each row of the two-dimensional array

 Exercises 837

is referred to as a bucket. Write a class named BucketSort containing a method called sort that op-
erates as follows:

a) Place each value of the one-dimensional array into a row of the bucket array, based on
the value’s “ones” (rightmost) digit. For example, 97 is placed in row 7, 3 is placed in
row 3 and 100 is placed in row 0. This procedure is called a distribution pass.

b) Loop through the bucket array row by row, and copy the values back to the original ar-
ray. This procedure is called a gathering pass. The new order of the preceding values in
the one-dimensional array is 100, 3 and 97.

c) Repeat this process for each subsequent digit position (tens, hundreds, thousands, etc.).
On the second (tens digit) pass, 100 is placed in row 0, 3 is placed in row 0 (because 3
has no tens digit) and 97 is placed in row 9. After the gathering pass, the order of the
values in the one-dimensional array is 100, 3 and 97. On the third (hundreds digit)
pass, 100 is placed in row 1, 3 is placed in row 0 and 97 is placed in row 0 (after the 3).
After this last gathering pass, the original array is in sorted order.

The two-dimensional array of buckets is 10 times the length of the integer array
being sorted. This sorting technique provides better performance than a bubble sort,
but requires much more memory—the bubble sort requires space for only one addi-
tional element of data. This comparison is an example of the space/time trade-off: The
bucket sort uses more memory than the bubble sort, but performs better. This version
of the bucket sort requires copying all the data back to the original array on each pass.
Another possibility is to create a second two-dimensional bucket array and repeatedly
swap the data between the two bucket arrays.

19.8 (Recursive Linear Search) Modify Fig. 19.2 to use recursive method recursiveLin-
earSearch to perform a linear search of the array. The method should receive the search key and
starting index as arguments. If the search key is found, return its index in the array; otherwise, return
–1. Each call to the recursive method should check one index in the array.

19.9 (Recursive Binary Search) Modify Fig. 19.3 to use recursive method recursiveBinary-
Search to perform a binary search of the array. The method should receive the search key, starting
index and ending index as arguments. If the search key is found, return its index in the array. If the
search key is not found, return –1.

19.10 (Quicksort) The recursive sorting technique called quicksort uses the following basic algo-
rithm for a one-dimensional array of values:

a) Partitioning Step: Take the first element of the unsorted array and determine its final lo-
cation in the sorted array (i.e., all values to the left of the element in the array are less
than the element, and all values to the right of the element in the array are greater than
the element—we show how to do this below). We now have one element in its proper
location and two unsorted subarrays.

b) Recursive Step: Perform Step 1 on each unsorted subarray. Each time Step 1 is performed
on a subarray, another element is placed in its final location of the sorted array, and two
unsorted subarrays are created. When a subarray consists of one element, that element
is in its final location (because a one-element array is already sorted).

The basic algorithm seems simple enough, but how do we determine the final posi-
tion of the first element of each subarray? As an example, consider the following set of
values (the element in bold is the partitioning element—it will be placed in its final
location in the sorted array):

37 2 6 4 89 8 10 12 68 45

Starting from the rightmost element of the array, compare each element with 37 until
an element less than 37 is found; then swap 37 and that element. The first element less
than 37 is 12, so 37 and 12 are swapped. The new array is

838 Chapter 19 Searching, Sorting and Big O

12 2 6 4 89 8 10 37 68 45

Element 12 is in italics to indicate that it was just swapped with 37.
Starting from the left of the array, but beginning with the element after 12, com-

pare each element with 37 until an element greater than 37 is found—then swap 37
and that element. The first element greater than 37 is 89, so 37 and 89 are swapped.
The new array is

12 2 6 4 37 8 10 89 68 45

Starting from the right, but beginning with the element before 89, compare each ele-
ment with 37 until an element less than 37 is found—then swap 37 and that element.
The first element less than 37 is 10, so 37 and 10 are swapped. The new array is

12 2 6 4 10 8 37 89 68 45

Starting from the left, but beginning with the element after 10, compare each element
with 37 until an element greater than 37 is found—then swap 37 and that element.
There are no more elements greater than 37, so when we compare 37 with itself, we
know that 37 has been placed in its final location in the sorted array. Every value to the
left of 37 is smaller than it, and every value to the right of 37 is larger than it.

Once the partition has been applied on the previous array, there are two unsorted
subarrays. The subarray with values less than 37 contains 12, 2, 6, 4, 10 and 8. The
subarray with values greater than 37 contains 89, 68 and 45. The sort continues recur-
sively, with both subarrays being partitioned in the same manner as the original array.

Based on the preceding discussion, write recursive method quickSortHelper to
sort a one-dimensional integer array. The method should receive as arguments a start-
ing index and an ending index on the original array being sorted.

20Generic Classes and
Methods

…our special individuality, as
distinguished from our generic
humanity.
—Oliver Wendell Holmes, Sr.

Born under one law, to another
bound.
—Lord Brooke

O b j e c t i v e s
In this chapter you’ll:

■ Create generic methods that
perform identical tasks on
arguments of different types.

■ Create a generic Stack class
that can be used to store
objects of any class or
interface type.

■ Undestand compile-time
translation of generic
methods and classes.

■ Understand how to overload
generic methods with
nongeneric methods or other
generic methods.

■ Understand raw types.

■ Use wildcards when precise
type information about a
parameter is not required in
the method body.

840 Chapter 20 Generic Classes and Methods

20.1 Introduction
You’ve used existing generic methods and classes in Chapters 7 and 16. In this chapter,
you’ll learn how to write your own.

It would be nice if we could write a single sort method to sort the elements in an
Integer array, a String array or an array of any type that supports ordering (i.e., its ele-
ments can be compared). It would also be nice if we could write a single Stack class that
could be used as a Stack of integers, a Stack of floating-point numbers, a Stack of Strings
or a Stack of any other type. It would be even nicer if we could detect type mismatches at
compile time—known as compile-time type safety. For example, if a Stack should store
only integers, an attempt to push a String onto that Stack should issue a compilation error.
This chapter discusses generics—specifically generic methods and generic classes—which
provide the means to create the type-safe general models mentioned above.

20.2 Motivation for Generic Methods
Overloaded methods are often used to perform similar operations on different types of
data. To motivate generic methods, let’s begin with an example (Fig. 20.1) containing
overloaded printArray methods (lines 22–29, 32–39 and 42–49) that print the String
representations of the elements of an Integer array, a Double array and a Character array,
respectively. We could have used arrays of primitive types int, double and char. We’re
using arrays of the type-wrapper classes to set up our generic method example, because only
reference types can be used to specify generic types in generic methods and classes.

20.1 Introduction
20.2 Motivation for Generic Methods
20.3 Generic Methods: Implementation

and Compile-Time Translation
20.4 Additional Compile-Time Translation

Issues: Methods That Use a Type
Parameter as the Return Type

20.5 Overloading Generic Methods
20.6 Generic Classes
20.7 Raw Types
20.8 Wildcards in Methods That Accept

Type Parameters
20.9 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1 // Fig. 20.1: OverloadedMethods.java
2 // Printing array elements using overloaded methods.
3
4 public class OverloadedMethods
5 {
6 public static void main(String[] args)
7 {
8 // create arrays of Integer, Double and Character
9 Integer[] integerArray = {1, 2, 3, 4, 5, 6};

10 Double[] doubleArray = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7};
11 Character[] characterArray = {'H', 'E', 'L', 'L', 'O'};

Fig. 20.1 | Printing array elements using overloaded methods. (Part 1 of 2.)

20.2 Motivation for Generic Methods 841

The program begins by declaring and initializing three arrays—six-element Integer
array integerArray (line 9), seven-element Double array doubleArray (line 10) and five-
element Character array characterArray (line 11). Then lines 13–18 display the con-
tents of each array.

12
13 System.out.printf("Array integerArray contains:%n");
14
15 System.out.printf("%nArray doubleArray contains:%n");
16
17 System.out.printg("%nArray characterArray contains:%n");
18
19 }
20
21 // method printArray to print Integer array
22
23 {
24 // display array elements
25 for (element : inputArray)
26 System.out.printf("%s ", element);
27
28 System.out.println();
29 }
30
31 // method printArray to print Double array
32
33 {
34 // display array elements
35 for (element : inputArray)
36 System.out.printf("%s ", element);
37
38 System.out.println();
39 }
40
41 // method printArray to print Character array
42
43 {
44 // display array elements
45 for (element : inputArray)
46 System.out.printf("%s ", element);
47
48 System.out.println();
49 }
50 } // end class OverloadedMethods

Array integerArray contains:
1 2 3 4 5 6
Array doubleArray contains:
1.1 2.2 3.3 4.4 5.5 6.6 7.7
Array characterArray contains:
H E L L O

Fig. 20.1 | Printing array elements using overloaded methods. (Part 2 of 2.)

printArray(integerArray); // pass an Integer array

printArray(doubleArray); // pass a Double array

printArray(characterArray); // pass a Character array

public static void printArray(Integer[] inputArray)

Integer

public static void printArray(Double[] inputArray)

Double

public static void printArray(Character[] inputArray)

Character

842 Chapter 20 Generic Classes and Methods

When the compiler encounters a method call, it attempts to locate a method declara-
tion with the same name and with parameters that match the argument types in the call.
In this example, each printArray call matches one of the printArray method declara-
tions. For example, line 14 calls printArray with integerArray as its argument. The
compiler determines the argument’s type (i.e., Integer[]) and attempts to locate a print-
Array method that specifies an Integer[] parameter (lines 22–29), then sets up a call to
that method. Similarly, when the compiler encounters the call at line 16, it determines the
argument’s type (i.e., Double[]), then attempts to locate a printArray method that spec-
ifies a Double[] parameter (lines 32–39), then sets up a call to that method. Finally, when
the compiler encounters the call at line 18, it determines the argument’s type (i.e., Char-
acter[]), then attempts to locate a printArray method that specifies a Character[]
parameter (lines 42–49), then sets up a call to that method.

Common Features in the Overloaded printArray Methods
Study each printArray method. The array element type appears in each method’s header
(lines 22, 32 and 42) and for-statement header (lines 25, 35 and 45). If we were to replace
the element types in each method with a generic name—T by convention—then all three
methods would look like the one in Fig. 20.2. It appears that if we can replace the array
element type in each of the three methods with a single generic type, then we should be able
to declare one printArray method that can display the String representations of the ele-
ments of any array that contains objects. The method in Fig. 20.2 is similar to the generic
printArray method declaration you’ll see in Section 20.3. The one shown here will not
compile—we use this simply to show that the three printArray methods of Fig. 20.1 are
identical except for the types they process.

20.3 Generic Methods: Implementation and Compile-
Time Translation
If the operations performed by several overloaded methods are identical for each argument
type, the overloaded methods can be more conveniently coded using a generic method.
You can write a single generic method declaration that can be called with arguments of
different types. Based on the types of the arguments passed to the generic method, the
compiler handles each method call appropriately. At compilation time, the compiler en-
sures the type safety of your code, preventing many runtime errors.

Figure 20.3 reimplements Fig. 20.1 using a generic printArray method (lines 22–29
of Fig. 20.3). The printArray calls in lines 14, 16 and 18 are identical to those of

1 public static void printArray([] inputArray)
2 {
3 // display array elements
4 for (element : inputArray)
5 System.out.printf("%s ", element);
6
7 System.out.println();
8 }

Fig. 20.2 | printArray method in which actual type names are replaced with a generic type
name (in this case T).

T

T

20.3 Generic Methods: Implementation and Compile-Time Translation 843

Fig. 20.1 (lines 14, 16 and 18) and the outputs of the two applications are identical. This
demonstrates the expressive power of generics.

Type Parameter Section of a Generic Method
Line 22 begins method printArray’s declaration. All generic method declarations have a
type-parameter section (<T> in this example) delimited by angle brackets that precedes
the method’s return type. Each type-parameter section contains one or more type param-
eters, separated by commas. A type parameter, also known as a type variable, is an identi-
fier that specifies a generic type name. The type parameters can be used to declare the
return type, parameter types and local variable types in a generic method declaration, and

1 // Fig. 20.3: GenericMethodTest.java
2 // Printing array elements using generic method printArray.
3
4 public class GenericMethodTest
5 {
6 public static void main(String[] args)
7 {
8 // create arrays of Integer, Double and Character
9 Integer[] intArray = {1, 2, 3, 4, 5};

10 Double[] doubleArray = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7};
11 Character[] charArray = {'H', 'E', 'L', 'L', 'O'};
12
13 System.out.printf("Array integerArray contains:%n");
14
15 System.out.printf("%nArray doubleArray contains:%n");
16
17 System.out.printf("%nArray characterArray contains:%n");
18
19 }
20
21
22
23 {
24
25
26
27
28 System.out.println();
29 }
30 } // end class GenericMethodTest

Array integerArray contains:
1 2 3 4 5 6

Array doubleArray contains:
1.1 2.2 3.3 4.4 5.5 6.6 7.7

Array characterArray contains:
H E L L O

Fig. 20.3 | Printing array elements using generic method printArray.

printArray(integerArray); // pass an Integer array

printArray(doubleArray); // pass a Double array

printArray(characterArray); // pass a Character array

// generic method printArray
public static <T> void printArray(T[] inputArray)

// display array elements
for (T element : inputArray)
 System.out.printf("%s ", element);

844 Chapter 20 Generic Classes and Methods

they act as placeholders for the types of the arguments passed to the generic method, which
are known as actual type arguments. A generic method’s body is declared like that of any
other method. Type parameters can represent only reference types—not primitive types (like
int, double and char). Note, too, that the type-parameter names throughout the method
declaration must match those declared in the type-parameter section. For example, line 25
declares element as type T, which matches the type parameter (T) declared in line 22. Also,
a type parameter can be declared only once in the type-parameter section but can appear
more than once in the method’s parameter list. For example, the type-parameter name T
appears twice in the following method’s parameter list:

Type-parameter names need not be unique among different generic methods. In method
printArray, T appears in the same two locations where the overloaded printArray meth-
ods of Fig. 20.1 specified Integer, Double or Character as the array element type. The
remainder of printArray is identical to the versions presented in Fig. 20.1.

Testing the Generic printArray Method
As in Fig. 20.1, the program in Fig. 20.3 begins by declaring and initializing six-element
Integer array integerArray (line 9), seven-element Double array doubleArray (line 10)
and five-element Character array characterArray (line 11). Then each array is output by
calling printArray (lines 14, 16 and 18)—once with argument integerArray, once with
argument doubleArray and once with argument characterArray.

When the compiler encounters line 14, it first determines argument integerArray’s
type (i.e., Integer[]) and attempts to locate a method named printArray that specifies a
single Integer[] parameter. There’s no such method in this example. Next, the compiler
determines whether there’s a generic method named printArray that specifies a single
array parameter and uses a type parameter to represent the array element type. The com-
piler determines that printArray (lines 22–29) is a match and sets up a call to the method.
The same process is repeated for the calls to method printArray at lines 16 and 18.

In addition to setting up the method calls, the compiler also determines whether the
operations in the method body can be applied to elements of the type stored in the array

public static <T> T maximum(T value1, T value2)

Good Programming Practice 20.1
The letters T (for “type”), E (for “element”), K (for “key”) and V (for “value”) are commonly
used as type parameters. For other common ones, see http://docs.oracle.com/javase/
tutorial/java/generics/types.html.

Common Programming Error 20.1
If the compiler cannot match a method call to a nongeneric or a generic method declara-
tion, a compilation error occurs.

Common Programming Error 20.2
If the compiler doesn’t find a method declaration that matches a method call exactly, but
does find two or more methods that can satisfy the method call, a compilation error occurs.
For the complete details of resolving calls to overloaded and generic methods, see http://
docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.12.

http://docs.oracle.com/javase/tutorial/java/generics/types.html
http://docs.oracle.com/javase/tutorial/java/generics/types.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.12
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.12

20.4 Methods That Use a Type Parameter as the Return Type 845

argument. The only operation performed on the array elements in this example is to
output their String representation. Line 26 performs an implicit toString call on every
element. To work with generics, every element of the array must be an object of a class or inter-
face type. Since all objects have a toString method, the compiler is satisfied that line 26
performs a valid operation for any object in printArray’s array argument. The toString
methods of classes Integer, Double and Character return the String representation of
the underlying int, double or char value, respectively.

Erasure at Compilation Time
When the compiler translates generic method printArray into Java bytecodes, it removes
the type-parameter section and replaces the type parameters with actual types. This process is
known as erasure. By default all generic types are replaced with type Object. So the com-
piled version of method printArray appears as shown in Fig. 20.4—there’s only one copy
of this code, which is used for all printArray calls in the example. This is quite different
from similar mechanisms in other programming languages, such as C++’s templates, in
which a separate copy of the source code is generated and compiled for every type passed as
an argument to the method. As you’ll see in Section 20.4, the translation and compilation
of generics is a bit more involved than what we’ve discussed in this section.

By declaring printArray as a generic method in Fig. 20.3, we eliminated the need for
the overloaded methods of Fig. 20.1 and created a reusable method that can output the
String representations of the elements in any array that contains objects. However, this
particular example could have simply declared the printArray method as shown in
Fig. 20.4, using an Object array as the parameter. This would have yielded the same
results, because any Object can be output as a String. In a generic method, the benefits
become more apparent when you place restrictions on the type parameters, as we demon-
strate in the next section.

20.4 Additional Compile-Time Translation Issues:
Methods That Use a Type Parameter as the Return Type
Let’s consider a generic method in which type parameters are used in the return type and in
the parameter list (Fig. 20.5). The application uses a generic method maximum to determine
and return the largest of its three arguments of the same type. Unfortunately, the relational
operator > cannot be used with reference types. However, it’s possible to compare two objects
of the same class if that class implements the generic interface Comparable<T> (from package
java.lang). All the type-wrapper classes for primitive types implement this interface.

1 public static void printArray([] inputArray)
2 {
3 // display array elements
4 for (element : inputArray)
5 System.out.printf("%s ", element);
6
7 System.out.println();
8 }

Fig. 20.4 | Generic method printArray after the compiler performs erasure.

Object

Object

846 Chapter 20 Generic Classes and Methods

Generic interfaces enable you to specify, with a single interface declaration, a set of related
types. Comparable<T> objects have a compareTo method. For example, if we have two In-
teger objects, integer1 and integer2, they can be compared with the expression:

When you declare a class that implements Comparable<T>, you must implement method
compareTo such that it compares the contents of two objects of that class and returns the
comparison results. As specified in interface Comparable<T>’s documentation, compareTo
must return 0 if the objects are equal, a negative integer if object1 is less than object2 or
a positive integer if object1 is greater than object2. For example, class Integer’s compa-
reTo method compares the int values stored in two Integer objects. A benefit of imple-
menting interface Comparable<T> is that Comparable<T> objects can be used with the
sorting and searching methods of class Collections (package java.util). We discussed
those methods in Chapter 16. In this example, we’ll use method compareTo in method
maximum to help determine the largest value.

integer1.compareTo(integer2)

1 // Fig. 20.5: MaximumTest.java
2 // Generic method maximum returns the largest of three objects.
3
4 public class MaximumTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.printf("Maximum of %d, %d and %d is %d%n%n", 3, 4, 5,
9 maximum(3, 4, 5));

10 System.out.printf("Maximum of %.1f, %.1f and %.1f is %.1f%n%n",
11 6.6, 8.8, 7.7, maximum(6.6, 8.8, 7.7));
12 System.out.printf("Maximum of %s, %s and %s is %s%n", "pear",
13 "apple", "orange", maximum("pear", "apple", "orange"));
14 }
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 } // end class MaximumTest

Maximum of 3, 4 and 5 is 5

Maximum of 6.6, 8.8 and 7.7 is 8.8

Maximum of pear, apple and orange is pear

Fig. 20.5 | Generic method maximum with an upper bound on its type parameter.

// determines the largest of three Comparable objects
public static <T extends Comparable<T>> T maximum(T x, T y, T z)
{
 T max = x; // assume x is initially the largest

 if (y.compareTo(max) > 0)
 max = y; // y is the largest so far

 if (z.compareTo(max) > 0)
 max = z; // z is the largest

 return max; // returns the largest object
}

20.4 Methods That Use a Type Parameter as the Return Type 847

Generic Method maximum and Specifying a Type Parameter’s Upper Bound
Generic method maximum (lines 17–28) uses type parameter T as the return type of the
method (line 17), as the type of method parameters x, y and z (line 17), and as the type
of local variable max (line 19). The type-parameter section specifies that T extends
Comparable<T>—only objects of classes that implement interface Comparable<T> can be
used with this method. Comparable<T> is known as the type parameter’s upper bound. By
default, Object is the upper bound, meaning that an object of any type can be used. Type-
parameter declarations that bound the parameter always use keyword extends regardless
of whether the type parameter extends a class or implements an interface. The upper
bound may be a comma-separated list that contains zero or one class and zero or more in-
terfaces.

Method maximum’s type parameter is more restrictive than the one specified for print-
Array in Fig. 20.3, which was able to output arrays containing any type of object. The
Comparable<T> restriction is important, because not all objects can be compared. How-
ever, Comparable<T> objects are guaranteed to have a compareTo method.

Method maximum uses the same algorithm that we used in Section 6.4 to determine
the largest of its three arguments. The method assumes that its first argument (x) is the
largest and assigns it to local variable max (line 19). Next, the if statement at lines 21–22
determines whether y is greater than max. The condition invokes y’s compareTo method
with the expression y.compareTo(max), which returns a negative integer, 0 or a positive
integer, to determine y’s relationship to max. If the return value of the compareTo is greater
than 0, then y is greater and is assigned to variable max. Similarly, the if statement at lines
24–25 determines whether z is greater than max. If so, line 25 assigns z to max. Then line
27 returns max to the caller.

Calling Method maximum
In main (lines 6–14), line 9 calls maximum with the integers 3, 4 and 5. When the compiler
encounters this call, it first looks for a maximum method that takes three arguments of type
int. There’s no such method, so the compiler looks for a generic method that can be used
and finds generic method maximum. However, recall that the arguments to a generic meth-
od must be of a reference type. So the compiler autoboxes the three int values as Integer
objects and specifies that the three Integer objects will be passed to maximum. Class Inte-
ger (package java.lang) implements the Comparable<Integer> interface such that meth-
od compareTo compares the int values in two Integer objects. Therefore, Integers are
valid arguments to method maximum. When the Integer representing the maximum is re-
turned, we attempt to output it with the %d format specifier, which outputs an int prim-
itive-type value. So maximum’s return value is output as an int value.

A similar process occurs for the three double arguments passed to maximum in line 11.
Each double is autoboxed as a Double object and passed to maximum. Again, this is allowed
because class Double (package java.lang) implements the Comparable<Double> interface.
The Double returned by maximum is output with the format specifier %.1f, which outputs
a double primitive-type value. So maximum’s return value is auto-unboxed and output as a
double. The call to maximum in line 13 receives three Strings, which are also Compa-
rable<String> objects. We intentionally placed the largest value in a different position in
each method call (lines 9, 11 and 13) to show that the generic method always finds the
maximum value, regardless of its position in the argument list.

848 Chapter 20 Generic Classes and Methods

Erasure and the Upper Bound of a Type Parameter
When the compiler translates method maximum into bytecodes, it uses erasure to replace the
type parameters with actual types. In Fig. 20.3, all generic types were replaced with type Ob-
ject. Actually, all type parameters are replaced with the upper bound of the type parameter,
which is specified in the type-parameter section. Figure 20.6 simulates the erasure of method
maximum’s types by showing the method’s source code after the type-parameter section is
removed and type parameter T is replaced with the upper bound, Comparable, throughout
the method declaration. The erasure of Comparable<T> is simply Comparable.

After erasure, method maximum specifies that it returns type Comparable. However,
the calling method does not expect to receive a Comparable. It expects to receive an object
of the same type that was passed to maximum as an argument—Integer, Double or String
in this example. When the compiler replaces the type-parameter information with the
upper-bound type in the method declaration, it also inserts explicit cast operations in front
of each method call to ensure that the returned value is of the type expected by the caller.
Thus, the call to maximum in line 9 (Fig. 20.5) is preceded by an Integer cast, as in

the call to maximum in line 11 is preceded by a Double cast, as in

and the call to maximum in line 13 is preceded by a String cast, as in

In each case, the type of the cast for the return value is inferred from the types of the meth-
od arguments in the particular method call, because, according to the method declaration,
the return type and the argument types match. Without generics, you’d be responsible for
implementing the cast operation.

20.5 Overloading Generic Methods
A generic method may be overloaded like any other method. A class can provide two or more
generic methods that specify the same method name but different method parameters. For
example, generic method printArray of Fig. 20.3 could be overloaded with another

1 public static maximum(x, y, z)
2 {
3 max = x; // assume x is initially the largest
4
5 if (y.compareTo(max) > 0)
6 max = y; // y is the largest so far
7
8 if (z.compareTo(max) > 0)
9 max = z; // z is the largest

10
11 return max; // returns the largest object
12 }

Fig. 20.6 | Generic method maximum after erasure is performed by the compiler.

(Integer) maximum(3, 4, 5)

(Double) maximum(6.6, 8.8, 7.7)

(String) maximum("pear", "apple", "orange")

Comparable Comparable Comparable Comparable

Comparable

20.6 Generic Classes 849

printArray generic method with the additional parameters lowSubscript and highSub-
script to specify the portion of the array to output (see Exercise 20.5).

A generic method can also be overloaded by nongeneric methods. When the compiler
encounters a method call, it searches for the method declaration that best matches the
method name and the argument types specified in the call—an error occurs if two or more
overloaded methods both could be considered best matches. For example, generic method
printArray of Fig. 20.3 could be overloaded with a version that’s specific to Strings,
which outputs the Strings in neat, tabular format (see Exercise 20.6).

20.6 Generic Classes
The concept of a data structure, such as a stack, can be understood independently of the el-
ement type it manipulates. Generic classes provide a means for describing the concept of a
stack (or any other class) in a type-independent manner. We can then instantiate type-specific
objects of the generic class. Generics provide a nice opportunity for software reusability.

Once you have a generic class, you can use a simple, concise notation to indicate the
type(s) that should be used in place of the class’s type parameter(s). At compilation time,
the compiler ensures the type safety of your code and uses the erasure techniques described
in Sections 20.3–20.4 to enable your client code to interact with the generic class.

One generic Stack class, for example, could be the basis for creating many logical
Stack classes (e.g., “Stack of Double,” “Stack of Integer,” “Stack of Character,” “Stack
of Employee”). These classes are known as parameterized classes or parameterized types
because they accept one or more type parameters. Recall that type parameters represent
only reference types, which means the Stack generic class cannot be instantiated with prim-
itive types. However, we can instantiate a Stack that stores objects of Java’s type-wrapper
classes and allow Java to use autoboxing to convert the primitive values into objects. Recall
that autoboxing occurs when a value of a primitive type (e.g., int) is pushed onto a Stack
that contains wrapper-class objects (e.g., Integer). Auto-unboxing occurs when an object
of the wrapper class is popped off the Stack and assigned to a primitive-type variable.

Implementing a Generic Stack Class
Figure 20.7 declares a generic Stack class for demonstration purposes—the java.util
package already contains a generic Stack class. A generic class declaration looks like a non-
generic one, but the class name is followed by a type-parameter section (line 5). In this case,
type parameter T represents the element type the Stack will manipulate. As with generic
methods, the type-parameter section of a generic class can have one or more type param-
eters separated by commas. (You’ll create a generic class with two type parameters in
Exercise 20.8.) Type parameter T is used throughout the Stack class declaration to repre-
sent the element type. This example implements a Stack as an ArrayList.

Class Stack declares variable elements as an ArrayList<T> (line 7). This ArrayList
will store the Stack’s elements. As you know, an ArrayList can grow dynamically, so
objects of our Stack class can also grow dynamically. The Stack class’s no-argument con-
structor (lines 10–13) invokes the one-argument constructor (lines 16–20) to create a
Stack in which the underlying ArrayList has a capacity of 10 elements. The one-argu-
ment constructor can also be called directly to create a Stack with a specified initial
capacity. Line 18 validates the constructor’s argument. Line 19 creates the ArrayList of
the specified capacity (or 10 if the capacity was invalid).

850 Chapter 20 Generic Classes and Methods

Method push (lines 23–26) uses ArrayList method add to append the pushed item
to the end of the ArrayList elements. The last element in the ArrayList represents the
top of the stack.

Method pop (lines 29–36) first determines whether an attempt is being made to pop
an element from an empty Stack. If so, line 32 throws an EmptyStackException (declared
in Fig. 20.8). Otherwise, line 35 in Fig. 20.7 returns the top element of the Stack by
removing the last element in the underlying ArrayList.

Class EmptyStackException (Fig. 20.8) provides a no-argument constructor and a
one-argument constructor. The no-argument constructor sets the default error message,
and the one-argument constructor sets a custom error message.

As with generic methods, when a generic class is compiled, the compiler performs era-
sure on the class’s type parameters and replaces them with their upper bounds. For class

1 // Fig. 20.7: Stack.java
2 // Stack generic class declaration.
3 import java.util.ArrayList;
4
5 public class Stack<T>
6 {
7
8
9 // no-argument constructor creates a stack of the default size

10 public Stack()
11 {
12 this(10); // default stack size
13 }
14
15 // constructor creates a stack of the specified number of elements
16 public Stack(int capacity)
17 {
18 int initCapacity = capacity > 0 ? capacity : 10; // validate
19
20 }
21
22 // push element onto stack
23
24 {
25
26 }
27
28 // return the top element if not empty; else throw EmptyStackException
29 public T pop()
30 {
31 if (elements.isEmpty()) // if stack is empty
32 throw new EmptyStackException("Stack is empty, cannot pop");
33
34 // remove and return top element of Stack
35 return elements.remove(elements.size() - 1);
36 }
37 } // end class Stack<T>

Fig. 20.7 | Stack generic class declaration.

private final ArrayList<T> elements; // ArrayList stores stack elements

elements = new ArrayList<T>(initCapacity); // create ArrayList

public void push(T pushValue)

elements.add(pushValue); // place pushValue on Stack

20.6 Generic Classes 851

Stack (Fig. 20.7), no upper bound is specified, so the default upper bound, Object, is
used. The scope of a generic class’s type parameter is the entire class. However, type
parameters cannot be used in a class’s static variable declarations.

Testing the Generic Stack Class of Fig. 20.7
Now, let’s consider the application (Fig. 20.9) that uses the Stack generic class (Fig. 20.7).
Lines 12–13 in Fig. 20.9 create and initialize variables of type Stack<Double> (pro-
nounced “Stack of Double”) and Stack<Integer> (pronounced “Stack of Integer”). The
types Double and Integer are known as the Stack’s type arguments. The compiler uses
them to replace the type parameters so that it can perform type checking and insert cast
operations as necessary. We’ll discuss the cast operations in more detail shortly. Lines 12–
13 instantiate doubleStack with a capacity of 5 and integerStack with a capacity of 10
(the default). Lines 16–17 and 20–21 call methods testPushDouble (lines 25–36),
testPopDouble (lines 39–59), testPushInteger (lines 62–73) and testPopInteger
(lines 76–96), respectively, to demonstrate the two Stacks in this example.

1 // Fig. 20.8: EmptyStackException.java
2 // EmptyStackException class declaration.
3 public class EmptyStackException extends RuntimeException
4 {
5 // no-argument constructor
6 public EmptyStackException()
7 {
8 this("Stack is empty");
9 }

10
11 // one-argument constructor
12 public EmptyStackException(String message)
13 {
14 super(message);
15 }
16 } // end class EmptyStackException

Fig. 20.8 | EmptyStackException class declaration.

1 // Fig. 20.9: StackTest.java
2 // Stack generic class test program.
3
4 public class StackTest
5 {
6 public static void main(String[] args)
7 {
8 double[] doubleElements = {1.1, 2.2, 3.3, 4.4, 5.5};
9 int[] integerElements = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

10
11
12
13
14

Fig. 20.9 | Stack generic class test program. (Part 1 of 3.)

// Create a Stack<Double> and a Stack<Integer>
Stack<Double> doubleStack = new Stack<>(5);
Stack<Integer> integerStack = new Stack<>();

852 Chapter 20 Generic Classes and Methods

15 // push elements of doubleElements onto doubleStack
16 testPushDouble(doubleStack, doubleElements);
17 testPopDouble(doubleStack); // pop from doubleStack
18
19 // push elements of integerElements onto integerStack
20 testPushInteger(integerStack, integerElements);
21 testPopInteger(integerStack); // pop from integerStack
22 }
23
24 // test push method with double stack
25 private static void testPushDouble(
26 Stack<Double> stack, double[] values)
27 {
28 System.out.printf("%nPushing elements onto doubleStack%n");
29
30 // push elements to Stack
31 for (double value : values)
32 {
33 System.out.printf("%.1f ", value);
34
35 }
36 }
37
38 // test pop method with double stack
39 private static void testPopDouble(Stack<Double> stack)
40 {
41 // pop elements from stack
42 try
43 {
44 System.out.printf("%nPopping elements from doubleStack%n");
45 double popValue; // store element removed from stack
46
47 // remove all elements from Stack
48 while (true)
49 {
50
51 System.out.printf("%.1f ", popValue);
52 }
53 }
54 catch(EmptyStackException emptyStackException)
55 {
56 System.err.println();
57 emptyStackException.printStackTrace();
58 }
59 }
60
61 // test push method with integer stack
62 private static void testPushInteger(
63 Stack<Integer> stack, int[] values)
64 {
65 System.out.printf("%nPushing elements onto integerStack%n");
66

Fig. 20.9 | Stack generic class test program. (Part 2 of 3.)

stack.push(value); // push onto doubleStack

popValue = stack.pop(); // pop from doubleStack

20.6 Generic Classes 853

Methods testPushDouble and testPopDouble
Method testPushDouble (lines 25–36) invokes method push (line 34) to place the double
values 1.1, 2.2, 3.3, 4.4 and 5.5 from array doubleElements onto doubleStack. Autobox-

67 // push elements to Stack
68 for (int value : values)
69 {
70 System.out.printf("%d ", value);
71
72 }
73 }
74
75 // test pop method with integer stack
76 private static void testPopInteger(Stack<Integer> stack)
77 {
78 // pop elements from stack
79 try
80 {
81 System.out.printf("%nPopping elements from integerStack%n");
82 int popValue; // store element removed from stack
83
84 // remove all elements from Stack
85 while (true)
86 {
87
88 System.out.printf("%d ", popValue);
89 }
90 }
91 catch(EmptyStackException emptyStackException)
92 {
93 System.err.println();
94 emptyStackException.printStackTrace();
95 }
96 }
97 } // end class StackTest

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5
Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
EmptyStackException: Stack is empty, cannot pop
 at Stack.pop(Stack.java:32)
 at StackTest.testPopDouble(StackTest.java:50)
 at StackTest.main(StackTest.java:17)

Pushing elements onto integerStack
1 2 3 4 5 6 7 8 9 10
Popping elements from integerStack
10 9 8 7 6 5 4 3 2 1
EmptyStackException: Stack is empty, cannot pop
 at Stack.pop(Stack.java:32)
 at StackTest.testPopInteger(StackTest.java:87)
 at StackTest.main(StackTest.java:21)

Fig. 20.9 | Stack generic class test program. (Part 3 of 3.)

stack.push(value); // push onto integerStack

popValue = stack.pop(); // pop from intStack

854 Chapter 20 Generic Classes and Methods

ing occurs in line 34 when the program tries to push a primitive double value onto the
doubleStack, which stores only references to Double objects.

Method testPopDouble (lines 39–59) invokes Stack method pop (line 50) in an
infinite loop (lines 48–52) to remove all the values from the stack. The output shows that
the values indeed pop off in last-in, first-out order (the defining characteristic of stacks).
When the loop attempts to pop a sixth value, the doubleStack is empty, so pop throws
an EmptyStackException, which causes the program to proceed to the catch block (lines
54–58). The stack trace indicates the exception that occurred and shows that method pop
generated the exception at line 32 of the file Stack.java (Fig. 20.7). The trace also shows
that pop was called by StackTest method testPopDouble at line 50 (Fig. 20.9) of Stack-
Test.java and that method testPopDouble was called from method main at line 17 of
StackTest.java. This information enables you to determine the methods that were on
the method-call stack at the time that the exception occurred. Because the program
catches the exception, the exception is considered to have been handled and the program
can continue executing.

Auto-unboxing occurs in line 50 when the program assigns the Double object popped
from the stack to a double primitive variable. Recall from Section 20.4 that the compiler
inserts casts to ensure that the proper types are returned from generic methods. After era-
sure, Stack method pop returns type Object, but the client code in testPopDouble expects
to receive a double when method pop returns. So the compiler inserts a Double cast, as in

The value assigned to popValue will be unboxed from the Double object returned by pop.

Methods testPushInteger and testPopInteger
Method testPushInteger (lines 62–73) invokes Stack method push to place values onto
integerStack until it’s full. Method testPopInteger (lines 76–96) invokes Stack meth-
od pop to remove values from integerStack. Once again, the values are popped in last-
in, first-out order. During erasure, the compiler recognizes that the client code in method
testPopInteger expects to receive an int when method pop returns. So the compiler in-
serts an Integer cast, as in

The value assigned to popValue will be unboxed from the Integer object returned by pop.

Creating Generic Methods to Test Class Stack<T>
The code in methods testPushDouble and testPushInteger is almost identical for push-
ing values onto a Stack<Double> or a Stack<Integer>, respectively, and the code in
methods testPopDouble and testPopInteger is almost identical for popping values from
a Stack<Double> or a Stack<Integer>, respectively. This presents another opportunity to
use generic methods. Figure 20.10 declares generic method testPush (lines 24–35) to per-
form the same tasks as testPushDouble and testPushInteger in Fig. 20.9—that is, push
values onto a Stack<T>. Similarly, generic method testPop (Fig. 20.10, lines 38–58) per-
forms the same tasks as testPopDouble and testPopInteger in Fig. 20.9—that is, pop
values off a Stack<T>. The output of Fig. 20.10 precisely matches that of Fig. 20.9.

popValue = (Double) stack.pop();

popValue = (Integer) stack.pop();

20.6 Generic Classes 855

1 // Fig. 20.10: StackTest2.java
2 // Passing generic Stack objects to generic methods.
3 public class StackTest2
4 {
5 public static void main(String[] args)
6 {
7 [] doubleElements = {1.1, 2.2, 3.3, 4.4, 5.5};
8 [] integerElements = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
9

10 // Create a Stack<Double> and a Stack<Integer>
11 Stack<Double> doubleStack = new Stack<>(5);
12 Stack<Integer> integerStack = new Stack<>();
13
14
15
16
17
18
19
20
21 }
22
23 // generic method testPush pushes elements onto a Stack
24
25
26 {
27 System.out.printf("%nPushing elements onto %s%n", name);
28
29 // push elements onto Stack
30 for ()
31 {
32 System.out.printf("%s ", element);
33 stack.push(element); // push element onto stack
34 }
35 }
36
37 // generic method testPop pops elements from a Stack
38
39 {
40 // pop elements from stack
41 try
42 {
43 System.out.printf("%nPopping elements from %s%n", name);
44
45
46 // remove all elements from Stack
47 while (true)
48 {
49 popValue = stack.pop();
50 System.out.printf("%s ", popValue);
51 }
52 }

Fig. 20.10 | Passing generic Stack objects to generic methods. (Part 1 of 2.)

Double
Integer

// push elements of doubleElements onto doubleStack
testPush("doubleStack", doubleStack, doubleElements);
testPop("doubleStack", doubleStack); // pop from doubleStack

// push elements of integerElements onto integerStack
testPush("integerStack", integerStack, integerElements);
testPop("integerStack", integerStack); // pop from integerStack

public static <T> void testPush(String name , Stack<T> stack,
 T[] elements)

T element : elements

public static <T> void testPop(String name, Stack<T> stack)

T popValue; // store element removed from stack

856 Chapter 20 Generic Classes and Methods

Lines 11–12 create the Stack<Double> and Stack<Integer> objects, respectively.
Lines 15–16 and 19–20 invoke generic methods testPush and testPop to test the Stack
objects. Because type parameters can represent only reference types, to be able to pass arrays
doubleElements and integerElements to generic method testPush, the arrays declared in
lines 7–8 must be declared with the wrapper types Double and Integer. When these arrays
are initialized with primitive values, the compiler autoboxes each primitive value.

Generic method testPush (lines 24–35) uses type parameter T (specified at line 24)
to represent the data type stored in the Stack<T>. The generic method takes three argu-
ments—a String that represents the name of the Stack<T> object for output purposes, a
reference to an object of type Stack<T> and an array of type T—the type of elements that
will be pushed onto Stack<T>. The compiler enforces consistency between the type of the
Stack and the elements that will be pushed onto the Stack when push is invoked, which
is the real value of the generic method call. Generic method testPop (lines 38–58) takes
two arguments—a String that represents the name of the Stack<T> object for output pur-
poses and a reference to an object of type Stack<T>.

20.7 Raw Types
The test programs for generic class Stack in Section 20.6 instantiate Stacks with type ar-
guments Double and Integer. It’s also possible to instantiate generic class Stack without
specifying a type argument, as follows:

53 catch(EmptyStackException emptyStackException)
54 {
55 System.out.println();
56 emptyStackException.printStackTrace();
57 }
58 }
59 } // end class StackTest2

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5
Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
EmptyStackException: Stack is empty, cannot pop
 at Stack.pop(Stack.java:32)
 at StackTest2.testPop(StackTest2.java:50)
 at StackTest2.main(StackTest2.java:17)

Pushing elements onto integerStack
1 2 3 4 5 6 7 8 9 10
Popping elements from integerStack
10 9 8 7 6 5 4 3 2 1
EmptyStackException: Stack is empty, cannot pop
 at Stack.pop(Stack.java:32)
 at StackTest2.testPop(StackTest2.java:50)
 at StackTest2.main(StackTest2.java:21

Stack objectStack = new Stack(5); // no type argument specified

Fig. 20.10 | Passing generic Stack objects to generic methods. (Part 2 of 2.)

20.7 Raw Types 857

In this case, the objectStack has a raw type—the compiler implicitly uses type Object
throughout the generic class for each type argument. Thus the preceding statement creates a
Stack that can store objects of any type. This is important for backward compatibility with
prior Java versions. For example, the data structures of the Java Collections Framework
(Chapter 16) all stored references to Objects, but are now implemented as generic types.

A raw-type Stack variable can be assigned a Stack that specifies a type argument, such
as a Stack<Double> object, as follows:

because type Double is a subclass of Object. This assignment is allowed because the ele-
ments in a Stack<Double> (i.e., Double objects) are certainly objects—class Double is an
indirect subclass of Object.

Similarly, a Stack variable that specifies a type argument in its declaration can be
assigned a raw-type Stack object, as in:

Although this assignment is permitted, it’s unsafe, because a Stack of raw type might store
types other than Integer. In this case, the compiler issues a warning message which indi-
cates the unsafe assignment.

Using Raw Types with Generic Class Stack
The test program of Fig. 20.11 uses the notion of raw type. Line 11 instantiates generic class
Stack with raw type, which indicates that rawTypeStack1 can hold objects of any type. Line
14 assigns a Stack<Double> to variable rawTypeStack2, which is declared as a Stack of raw
type. Line 17 assigns a Stack of raw type to Stack<Integer> variable, which is legal but
causes the compiler to issue a warning message (Fig. 20.12) indicating a potentially unsafe as-
signment—again, this occurs because a Stack of raw type might store types other than Inte-
ger. Also, the calls to generic methods testPush and testPop in lines 19–22 result in
compiler warning messages (Fig. 20.12). These occur because rawTypeStack1 and
rawTypeStack2 are declared as Stacks of raw type, but methods testPush and testPop each
expect a second argument that is a Stack with a specific type argument. The warnings indi-
cate that the compiler cannot guarantee the types manipulated by the stacks to be the correct
types, since we did not supply a variable declared with a type argument. Methods testPush
(Fig. 20.11, lines 28–39) and testPop (lines 42–62) are the same as in Fig. 20.10.

Stack rawTypeStack2 = new Stack<Double>(5);

 Stack<Integer> integerStack = new Stack(10);

1 // Fig. 20.11: RawTypeTest.java
2 // Raw type test program.
3 public class RawTypeTest
4 {
5 public static void main(String[] args)
6 {
7 Double[] doubleElements = {1.1, 2.2, 3.3, 4.4, 5.5};
8 Integer[] integerElements = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
9

10
11

Fig. 20.11 | Raw-type test program. (Part 1 of 3.)

// Stack of raw types assigned to Stack of raw types variable
Stack rawTypeStack1 = new Stack(5);

858 Chapter 20 Generic Classes and Methods

12
13
14
15
16
17
18
19 testPush("rawTypeStack1", rawTypeStack1, doubleElements);
20 testPop("rawTypeStack1", rawTypeStack1);
21 testPush("rawTypeStack2", rawTypeStack2, doubleElements);
22 testPop("rawTypeStack2", rawTypeStack2);
23 testPush("integerStack", integerStack, integerElements);
24 testPop("integerStack", integerStack);
25 }
26
27 // generic method pushes elements onto stack
28 public static <T> void testPush(String name, Stack<T> stack,
29 T[] elements)
30 {
31 System.out.printf("%nPushing elements onto %s%n", name);
32
33 // push elements onto Stack
34 for (T element : elements)
35 {
36 System.out.printf("%s ", element);
37 stack.push(element); // push element onto stack
38 }
39 }
40
41 // generic method testPop pops elements from stack
42 public static <T> void testPop(String name, Stack<T> stack)
43 {
44 // pop elements from stack
45 try
46 {
47 System.out.printf("%nPopping elements from %s%n", name);
48 T popValue; // store element removed from stack
49
50 // remove elements from Stack
51 while (true)
52 {
53 popValue = stack.pop(); // pop from stack
54 System.out.printf("%s ", popValue);
55 }
56 } // end try
57 catch(EmptyStackException emptyStackException)
58 {
59 System.out.println();
60 emptyStackException.printStackTrace();
61 }
62 }
63 } // end class RawTypeTest

Fig. 20.11 | Raw-type test program. (Part 2 of 3.)

// Stack<Double> assigned to Stack of raw types variable
Stack rawTypeStack2 = new Stack<Double>(5);

// Stack of raw types assigned to Stack<Integer> variable
Stack<Integer> integerStack = new Stack(10);

20.7 Raw Types 859

Compiler Warnings
Figure 20.12 shows the warning messages generated by the compiler when the file Raw-
TypeTest.java (Fig. 20.11) is compiled with the -Xlint:unchecked option, which pro-
vides more information about potentially unsafe operations in code that uses generics. The
first warning in Fig. 20.11 is generated for line 17, which assigned a raw-type Stack to a
Stack<Integer> variable—the compiler cannot ensure that all objects in the Stack will be
Integer objects. The next warning occurs at line 19. The compiler determines method
testPush’s type argument from the Double array passed as the third argument, because
the second method argument is a raw-type Stack variable. In this case, Double is the type
argument, so the compiler expects a Stack<Double> as the second argument. The warning
occurs because the compiler cannot ensure that a raw-type Stack contains only Doubles.
The warning at line 21 occurs for the same reason, even though the actual Stack that
rawTypeStack2 references is a Stack<Double>. The compiler cannot guarantee that the
variable will always refer to the same Stack object, so it must use the variable’s declared
type to perform all type checking. Lines 20 and 22 each generate warnings because method
testPop expects as an argument a Stack for which a type argument has been specified.
However, in each call to testPop, we pass a raw-type Stack variable. Thus, the compiler
indicates a warning because it cannot check the types used in the body of the method. In
general, you should avoid using raw types.

Pushing elements onto rawTypeStack1
1.1 2.2 3.3 4.4 5.5
Popping elements from rawTypeStack1
5.5 4.4 3.3 2.2 1.1
EmptyStackException: Stack is empty, cannot pop
 at Stack.pop(Stack.java:32)
 at RawTypeTest.testPop(RawTypeTest.java:53)
 at RawTypeTest.main(RawTypeTest.java:20)

Pushing elements onto rawTypeStack2
1.1 2.2 3.3 4.4 5.5
Popping elements from rawTypeStack2
5.5 4.4 3.3 2.2 1.1
EmptyStackException: Stack is empty, cannot pop
 at Stack.pop(Stack.java:32)
 at RawTypeTest.testPop(RawTypeTest.java:53)
 at RawTypeTest.main(RawTypeTest.java:22)

Pushing elements onto integerStack
1 2 3 4 5 6 7 8 9 10
Popping elements from integerStack
10 9 8 7 6 5 4 3 2 1
EmptyStackException: Stack is empty, cannot pop
 at Stack.pop(Stack.java:32)
 at RawTypeTest.testPop(RawTypeTest.java:53)
 at RawTypeTest.main(RawTypeTest.java:24)

Fig. 20.11 | Raw-type test program. (Part 3 of 3.)

860 Chapter 20 Generic Classes and Methods

20.8 Wildcards in Methods That Accept Type
Parameters
In this section, we introduce a powerful generics concept known as wildcards. Let’s con-
sider an example that motivates wildcards. Suppose that you’d like to implement a generic
method sum that totals the numbers in a collection, such as an ArrayList. You’d begin by

RawTypeTest.java:17: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<java.lang.Integer>
 Stack<Integer> integerStack = new Stack(10);
 ^
RawTypeTest.java:19: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<java.lang.Double>
 testPush("rawTypeStack1", rawTypeStack1, doubleElements);
 ^
RawTypeTest.java:19: warning: [unchecked] unchecked method invocation:
<T>testPush(java.lang.String,Stack<T>,T[]) in RawTypeTest is applied to
(java.lang.String,Stack,java.lang.Double[])
 testPush("rawTypeStack1", rawTypeStack1, doubleElements);
 ^
RawTypeTest.java:20: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<T>
 testPop("rawTypeStack1", rawTypeStack1);
 ^
RawTypeTest.java:20: warning: [unchecked] unchecked method invocation:
<T>testPop(java.lang.String,Stack<T>) in RawTypeTest is applied to
(java.lang.String,Stack)
 testPop("rawTypeStack1", rawTypeStack1);
 ^
RawTypeTest.java:21: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<java.lang.Double>
 testPush("rawTypeStack2", rawTypeStack2, doubleElements);
 ^
RawTypeTest.java:21: warning: [unchecked] unchecked method invocation:
<T>testPush(java.lang.String,Stack<T>,T[]) in RawTypeTest is applied to
(java.lang.String,Stack,java.lang.Double[])
 testPush("rawTypeStack2", rawTypeStack2, doubleElements);
 ^
RawTypeTest.java:22: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<T>
 testPop("rawTypeStack2", rawTypeStack2);
 ^
RawTypeTest.java:22: warning: [unchecked] unchecked method invocation:
<T>testPop(java.lang.String,Stack<T>) in RawTypeTest is applied to
(java.lang.String,Stack)
 testPop("rawTypeStack2", rawTypeStack2);
 ^
9 warnings

Fig. 20.12 | Warning messages from the compiler.

20.8 Wildcards in Methods That Accept Type Parameters 861

inserting the numbers in the collection. Because generic classes can be used only with class
or interface types, the numbers would be autoboxed as objects of the type-wrapper classes.
For example, any int value would be autoboxed as an Integer object, and any double val-
ue would be autoboxed as a Double object. We’d like to be able to total all the numbers in
the ArrayList regardless of their type. For this reason, we’ll declare the ArrayList with
the type argument Number, which is the superclass of both Integer and Double. In addi-
tion, method sum will receive a parameter of type ArrayList<Number> and total its ele-
ments. Figure 20.13 demonstrates totaling the elements of an ArrayList of Numbers.

Line 11 declares and initializes an array of Numbers. Because the initializers are prim-
itive values, Java autoboxes each primitive value as an object of its corresponding wrapper
type. The int values 1 and 3 are autoboxed as Integer objects, and the double values 2.4

1 // Fig. 20.13: TotalNumbers.java
2 // Totaling the numbers in an ArrayList<Number>.
3 import java.util.ArrayList;
4
5 public class TotalNumbers
6 {
7 public static void main(String[] args)
8 {
9 // create, initialize and output ArrayList of Numbers containing

10 // both Integers and Doubles, then display total of the elements
11
12
13
14 for (Number element : numbers)
15
16
17 System.out.printf("numberList contains: %s%n",);
18 System.out.printf("Total of the elements in numberList: %.1f%n",
19);
20 }
21
22 // calculate total of ArrayList elements
23 public static double sum(list)
24 {
25 double total = 0; // initialize total
26
27 // calculate sum
28
29
30
31 return total;
32 }
33 } // end class TotalNumbers

numberList contains: [1, 2.4, 3, 4.1]
Total of the elements in numberList: 10.5

Fig. 20.13 | Totaling the numbers in an ArrayList<Number>.

Number[] numbers = {1, 2.4, 3, 4.1}; // Integers and Doubles
ArrayList<Number> numberList = new ArrayList<>();

numberList.add(element); // place each number in numberList

numberList

sum(numberList)

ArrayList<Number>

for (Number element : list)
 total += element.doubleValue();

862 Chapter 20 Generic Classes and Methods

and 4.1 are autoboxed as Double objects. Line 12 declares and creates an ArrayList object
that stores Numbers and assigns it to variable numberList.

Lines 14–15 traverse array numbers and place each element in numberList. Line 17
outputs the contents of the ArrayList as a String. This statement implicitly invokes the
ArrayList’s toString method, which returns a String of the form "[elements]" in which
elements is a comma-separated list of the elements’ String representations. Lines 18–19
display the sum of the elements that is returned by the call to method sum.

Method sum (lines 23–32) receives an ArrayList of Numbers and calculates the total
of the Numbers in the collection. The method uses double values to perform the calcula-
tions and returns the result as a double. Lines 28–29 use the enhanced for statement,
which is designed to work with both arrays and the collections of the Collections Frame-
work, to total the elements of the ArrayList. The for statement assigns each Number in
the ArrayList to variable element, then uses Number method doubleValue to obtain the
Number’s underlying primitive value as a double value. The result is added to total. When
the loop terminates, the method returns the total.

Implementing Method sum With a Wildcard Type Argument in Its Parameter
Recall that the purpose of method sum in Fig. 20.13 was to total any type of Numbers stored
in an ArrayList. We created an ArrayList of Numbers that contained both Integer and
Double objects. The output of Fig. 20.13 demonstrates that method sum worked properly.
Given that method sum can total the elements of an ArrayList of Numbers, you might ex-
pect that the method would also work for ArrayLists that contain elements of only one
numeric type, such as ArrayList<Integer>. So we modified class TotalNumbers to create
an ArrayList of Integers and pass it to method sum. When we compile the program, the
compiler issues the following error message:

Although Number is the superclass of Integer, the compiler doesn’t consider the type Array-
List<Number> to be a superclass of ArrayList<Integer>. If it were, then every operation we
could perform on ArrayList<Number> would also work on an ArrayList<Integer>. Con-
sider the fact that you can add a Double object to an ArrayList<Number> because a Double
is a Number, but you cannot add a Double object to an ArrayList<Integer> because a Dou-
ble is not an Integer. Thus, the subtype relationship does not hold.

How do we create a more flexible version of the sum method that can total the elements
of any ArrayList containing elements of any subclass of Number? This is where wildcard
type arguments are important. Wildcards enable you to specify method parameters, return
values, variables or fields, and so on, that act as supertypes or subtypes of parameterized types.
In Fig. 20.14, method sum’s parameter is declared in line 50 with the type:

A wildcard type argument is denoted by a question mark (?), which by itself represents an
“unknown type.” In this case, the wildcard extends class Number, which means that the wild-
card has an upper bound of Number. Thus, the unknown-type argument must be either Num-
ber or a subclass of Number. With the parameter type shown here, method sum can receive
an ArrayList argument that contains any type of Number, such as ArrayList<Integer> (line
20), ArrayList<Double> (line 33) or ArrayList<Number> (line 46).

sum(java.util.ArrayList<java.lang.Number>) in TotalNumbersErrors
cannot be applied to (java.util.ArrayList<java.lang.Integer>)

ArrayList<? extends Number>

20.8 Wildcards in Methods That Accept Type Parameters 863

1 // Fig. 20.14: WildcardTest.java
2 // Wildcard test program.
3 import java.util.ArrayList;
4
5 public class WildcardTest
6 {
7 public static void main(String[] args)
8 {
9 // create, initialize and output ArrayList of Integers, then

10 // display total of the elements
11 Integer[] integers = {1, 2, 3, 4, 5};
12
13
14 // insert elements in integerList
15 for (Integer element : integers)
16 integerList.add(element);
17
18 System.out.printf("integerList contains: %s%n", integerList);
19 System.out.printf("Total of the elements in integerList: %.0f%n%n",
20);
21
22 // create, initialize and output ArrayList of Doubles, then
23 // display total of the elements
24 Double[] doubles = {1.1, 3.3, 5.5};
25
26
27 // insert elements in doubleList
28 for (Double element : doubles)
29 doubleList.add(element);
30
31 System.out.printf("doubleList contains: %s%n", doubleList);
32 System.out.printf("Total of the elements in doubleList: %.1f%n%n",
33);
34
35 // create, initialize and output ArrayList of Numbers containing
36 // both Integers and Doubles, then display total of the elements
37 Number[] numbers = {1, 2.4, 3, 4.1}; // Integers and Doubles
38
39
40 // insert elements in numberList
41 for (Number element : numbers)
42 numberList.add(element);
43
44 System.out.printf("numberList contains: %s%n", numberList);
45 System.out.printf("Total of the elements in numberList: %.1f%n",
46);
47 } // end main
48
49 // total the elements; using a wildcard in the ArrayList parameter
50 public static double sum(list)
51 {
52 double total = 0; // initialize total
53

Fig. 20.14 | Wildcard test program. (Part 1 of 2.)

ArrayList<Integer> integerList = new ArrayList<>();

sum(integerList)

ArrayList<Double> doubleList = new ArrayList<>();

sum(doubleList)

ArrayList<Number> numberList = new ArrayList<>();

sum(numberList)

ArrayList<? extends Number>

864 Chapter 20 Generic Classes and Methods

Lines 11–20 create and initialize an ArrayList<Integer>, output its elements and
total them by calling method sum (line 20). Lines 24–33 perform the same operations for
an ArrayList<Double>. Lines 37–46 perform the same operations for an Array-
List<Number> that contains Integers and Doubles.

In method sum (lines 50–59), although the ArrayList argument’s element types are
not directly known by the method, they’re known to be at least of type Number, because
the wildcard was specified with the upper bound Number. For this reason line 56 is allowed,
because all Number objects have a doubleValue method.

Although wildcards provide flexibility when passing parameterized types to a method,
they also have some disadvantages. Because the wildcard (?) in the method’s header (line
50) does not specify a type-parameter name, you cannot use it as a type name throughout
the method’s body (i.e., you cannot replace Number with ? in line 55). You could, however,
declare method sum as follows:

which allows the method to receive an ArrayList that contains elements of any Number
subclass. You could then use the type parameter T throughout the method body.

If the wildcard is specified without an upper bound, then only the methods of type
Object can be invoked on values of the wildcard type. Also, methods that use wildcards in
their parameter’s type arguments cannot be used to add elements to a collection referenced
by the parameter.

20.9 Wrap-Up
This chapter introduced generics. You learned how to declare generic methods and classes
with type parameters specified in type-parameter sections. You also learned how to specify

54 // calculate sum
55 for (Number element : list)
56 total += element.doubleValue();
57
58 return total;
59 }
60 } // end class WildcardTest

integerList contains: [1, 2, 3, 4, 5]
Total of the elements in integerList: 15

doubleList contains: [1.1, 3.3, 5.5]
Total of the elements in doubleList: 9.9

numberList contains: [1, 2.4, 3, 4.1]
Total of the elements in numberList: 10.5

public static <T extends Number> double sum(ArrayList<T> list)

Common Programming Error 20.3
Using a wildcard in a method’s type-parameter section or using a wildcard as an explicit
type of a variable in the method body is a syntax error.

Fig. 20.14 | Wildcard test program. (Part 2 of 2.)

 Summary 865

the upper bound for a type parameter and how the Java compiler uses erasure and casts to
support multiple types with generic methods and classes. We discussed how backward
compatibility is achieved via raw types. You also learned how to use wildcards in a generic
method or a generic class.

In Chapter 21, you’ll learn how to implement your own custom dynamic data struc-
tures that can grow or shrink at execution time. In particular, you’ll implement these data
structures using the generics capabilities you learned in this chapter.

Summary
Section 20.1 Introduction
• Generic methods enable you to specify, with one method declaration, a set of related methods.

• Generic classes and interfaces enable you to specify sets of related types.

Section 20.2 Motivation for Generic Methods
• Overloaded methods are often used to perform similar operations on different types of data.

• When the compiler encounters a method call, it attempts to locate a method declaration with a
name and parameters that are compatible with the argument types in the method call.

Section 20.3 Generic Methods: Implementation and Compile-Time Translation
• If the operations performed by several overloaded methods are identical for each argument type,

they can be more compactly and conveniently coded using a generic method. A single generic
method declaration can be called with arguments of different data types. Based on the types of
the arguments passed to a generic method, the compiler handles each method call appropriately.

• All generic method declarations have a type-parameter section (p. 843) delimited by angle brack-
ets (< and >) that precedes the method’s return type (p. 843).

• A type-parameter section contains one or more type parameters separated by commas.

• A type parameter (p. 843) is an identifier that specifies a generic type name. Type parameters can
be used as the return type, parameter types and local variable types in a generic method declara-
tion, and they act as placeholders for the types of the arguments passed to the generic method,
which are known as actual type arguments (p. 844). Type parameters can represent only refer-
ence types.

• Type-parameter names used throughout a method declaration must match those declared in the
type-parameter section. A type-parameter name can be declared only once in the type-parameter
section but can appear more than once in the method’s parameter list.

• When the compiler encounters a method call, it determines the argument types and attempts to
locate a method with the same name and parameters that match the argument types. If there’s
no such method, the compiler searches for methods with the same name and compatible param-
eters and for matching generic methods.

• Objects of a class that implements generic interface Comparable (Comparable) can be compared
with method compareTo (p. 846), which returns 0 if the objects are equal, a negative integer if
the first object is less than the second or a positive integer if the first object is greater than the
second.

• All the type-wrapper classes for primitive types implement Comparable.

• Comparable objects can be used with the sorting and searching methods of class Collections.

866 Chapter 20 Generic Classes and Methods

Section 20.4 Additional Compile-Time Translation Issues: Methods That Use a Type
Parameter as the Return Type
• When a generic method is compiled, the compiler performs erasure (p. 848) to remove the type-

parameter section and replace the type parameters with actual types. By default each type param-
eter is replaced with its upper bound (p. 848), which is Object unless specified otherwise.

• When erasure is performed on a method that returns a type variable (p. 848), explicit casts are
inserted in front of each method call to ensure that the returned value has the type expected by
the caller.

Section 20.5 Overloading Generic Methods
• A generic method may be overloaded with other generic methods or with nongeneric methods.

Section 20.6 Generic Classes
• Generic classes provide a means for describing a class in a type-independent manner. We can

then instantiate type-specific objects of the generic class.

• A generic class declaration looks like a nongeneric class declaration, except that the class name is
followed by a type-parameter section. The type-parameter section of a generic class can have one
or more type parameters separated by commas.

• When a generic class is compiled, the compiler performs erasure on the class’s type parameters
and replaces them with their upper bounds.

• Type parameters cannot be used in a class’s static declarations.

• When instantiating an object of a generic class, the types specified in angle brackets after the class
name are known as type arguments (p. 851). The compiler uses them to replace the type param-
eters so that it can perform type checking and insert cast operations as necessary.

Section 20.7 Raw Types
• It’s possible to instantiate a generic class without specifying a type argument. In this case, the new

object of the class is said to have a raw type (p. 857)—the compiler implicitly uses type Object
(or the type parameter’s upper bound) throughout the generic class for each type argument.

Section 20.8 Wildcards in Methods That Accept Type Parameters
• Class Number is the superclass of both Integer and Double.

• Number method doubleValue (p. 862) obtains the Number’s underlying primitive value as a double
value.

• Wildcard type arguments enable you to specify method parameters, return values, variables, and
so on, that act as supertypes of parameterized types. A wildcard-type argument is denoted by ?
(p. 862), which represents an “unknown type.” A wildcard can also have an upper bound.

• Because a wildcard (?) is not a type-parameter name, you cannot use it as a type name throughout
a method’s body.

• If a wildcard is specified without an upper bound, then only the methods of type Object can be
invoked on values of the wildcard type.

• Methods that use wildcards as type arguments (p. 862) cannot be used to add elements to a col-
lection referenced by the parameter.

Self-Review Exercises
20.1 State whether each of the following is true or false. If false, explain why.

a) A generic method cannot have the same method name as a nongeneric method.

 Answers to Self-Review Exercises 867

b) All generic method declarations have a type-parameter section that immediately pre-
cedes the method name.

c) A generic method can be overloaded by another generic method with the same method
name but different method parameters.

d) A type parameter can be declared only once in the type-parameter section but can ap-
pear more than once in the method’s parameter list.

e) Type-parameter names among different generic methods must be unique.
f) The scope of a generic class’s type parameter is the entire class except its static mem-

bers.

20.2 Fill in the blanks in each of the following:
a) and enable you to specify, with a single method declaration, a set of

related methods, or with a single class declaration, a set of related types, respectively.
b) A type-parameter section is delimited by .
c) A generic method’s can be used to specify the method’s argument types, to

specify the method’s return type and to declare variables within the method.
d) The statement "Stack objectStack = new Stack();" indicates that objectStack stores

.
e) In a generic class declaration, the class name is followed by a(n) .
f) The syntax specifies that the upper bound of a wildcard is type T.

Answers to Self-Review Exercises
20.1 a) False. Generic and nongeneric methods can have the same method name. A generic
method can overload another generic method with the same method name but different method
parameters. A generic method also can be overloaded by providing nongeneric methods with the
same method name and number of arguments. b) False. All generic method declarations have a
type-parameter section that immediately precedes the method’s return type. c) True. d) True.
e) False. Type-parameter names among different generic methods need not be unique. f) True.

20.2 a) Generic methods, generic classes. b) angle brackets (< and >). c) type parameters. d) a
raw type. e) type-parameter section. f) ? extends T.

Exercises
20.3 (Explain Notation) Explain the use of the following notation in a Java program:

public class Array<T> { }

20.4 (Generic Method selectionSort) Write a generic method selectionSort based on the
sort program of Fig. 19.4. Write a test program that inputs, sorts and outputs an Integer array and
a Float array. [Hint: Use <T extends Comparable<T>> in the type-parameter section for method se-
lectionSort, so that you can use method compareTo to compare the objects of the type that T rep-
resents.]

20.5 (Overloaded Generic Method printArray) Overload generic method printArray of
Fig. 20.3 so that it takes two additional integer arguments, lowSubscript and highSubscript. A call
to this method prints only the designated portion of the array. Validate lowSubscript and highSub-
script. If either is out of range, the overloaded printArray method should throw an InvalidSub-
scriptException; otherwise, printArray should return the number of elements printed. Then
modify main to exercise both versions of printArray on arrays integerArray, doubleArray and
characterArray. Test all capabilities of both versions of printArray.

868 Chapter 20 Generic Classes and Methods

20.6 (Overloading a Generic Method with a Nongeneric Method)) Overload generic method
printArray of Fig. 20.3 with a nongeneric version that specifically prints an array of Strings in neat,
tabular format, as shown in the sample output that follows:

20.7 (Generic isEqualTo Method) Write a simple generic version of method isEqualTo that
compares its two arguments with the equals method and returns true if they’re equal and false
otherwise. Use this generic method in a program that calls isEqualTo with a variety of built-in types,
such as Object or Integer. What result do you get when you attempt to run this program?

20.8 (Generic Class Pair) Write a generic class Pair which has two type parameters—F and S—
each representing the type of the first and second element of the pair, respectively. Add get and set
methods for the first and second elements of the pair. [Hint: The class header should be public
class Pair<F, S>.]

20.9 (Overloading Generic Methods) How can generic methods be overloaded?

20.10 (Overload Resolution) The compiler performs a matching process to determine which
method to call when a method is invoked. Under what circumstances does an attempt to make a
match result in a compile-time error?

20.11 (What Does this Statement Do?) Explain why a Java program might use the statement

ArrayList<Employee> workerList = new ArrayList<>();

Array stringArray contains:
one two three four
five six seven eight

21Custom Generic Data
Structures

Much that I bound,
I could not free;
Much that I freed
returned to me.
—Lee Wilson Dodd

There is always room at the top.
—Daniel Webster

I think that I shall never see
A poem lovely as a tree.
—Joyce Kilmer

O b j e c t i v e s
In this chapter you’ll learn:

■ To form linked data structures
using references, self-
referential classes, recursion
and generics.

■ To create and manipulate
dynamic data structures,
such as linked lists, queues,
stacks and binary trees.

■ Various important
applications of linked data
structures.

■ How to create reusable data
structures with classes,
inheritance and composition.

■ To organize classes in
packages to promote reuse.

870 Chapter 21 Custom Generic Data Structures

21.1 Introduction
This chapter shows how to build dynamic data structures that grow and shrink at execu-
tion time. Linked lists are collections of data items “linked up in a chain”—insertions and
deletions can be made anywhere in a linked list. Stacks are important in compilers and op-
erating systems; insertions and deletions are made only at one end of a stack—its top.
Queues represent waiting lines; insertions are made at the back (also referred to as the tail)
of a queue and deletions are made from the front (also referred to as the head). Binary trees
facilitate high-speed searching and sorting of data, eliminating duplicate data items effi-
ciently, representing file-system directories, compiling expressions into machine language
and many other interesting applications.

We discuss each of these major data-structure types and implement programs that
create and manipulate them. We use classes, inheritance and composition to create them
for reusability and maintainability. We also explain how to organize classes into your own
packages to promote reuse. We include this chapter for computer-science and computer-
engineering students who need to know how to build linked data structures.

Optional Online “Building Your Own Compiler” Project
If you feel ambitious, you might want to attempt the major project described in the special
section entitled Building Your Own Compiler, which we’ve posted online at http://
www.deitel.com/books/jhtp10. You’ve been using a Java compiler to translate your Java
programs to bytecodes so that you could execute these programs. In this project, you’ll ac-
tually build your own compiler. It will read statements written in a simple, yet powerful
high-level language similar to early versions of the popular language BASIC and translate
these statements into Simpletron Machine Language (SML) instructions—SML is the lan-
guage you learned in the Chapter 7 special section, Building Your Own Computer. Your
Simpletron Simulator program will then execute the SML program produced by your
compiler! Implementing this project by using an object-oriented approach will give you
an opportunity to exercise most of what you’ve learned in this book. The special section
carefully walks you through the specifications of the high-level language and describes the

21.1 Introduction
21.2 Self-Referential Classes
21.3 Dynamic Memory Allocation
21.4 Linked Lists

21.4.1 Singly Linked Lists
21.4.2 Implementing a Generic List Class
21.4.3 Generic Classes ListNode and List
21.4.4 Class ListTest
21.4.5 List Method insertAtFront

21.4.6 List Method insertAtBack
21.4.7 List Method removeFromFront
21.4.8 List Method removeFromBack
21.4.9 List Method print

21.4.10 Creating Your Own Packages
21.5 Stacks
21.6 Queues
21.7 Trees
21.8 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Special Section: Building Your Own Compiler

Software Engineering Observation 21.1
The vast majority of software developers should use the predefined generic collection classes
that we discussed in Chapter 16, rather than developing customized linked data structures.

http://www.deitel.com/books/jhtp10
http://www.deitel.com/books/jhtp10

21.2 Self-Referential Classes 871

algorithms you’ll need to convert each high-level language statement into machine-lan-
guage instructions. If you enjoy being challenged, you might attempt the enhancements
to both the compiler and the Simpletron Simulator suggested in the exercises.

21.2 Self-Referential Classes
A self-referential class contains an instance variable that refers to another object of the
same class type. For example, the generic Node class declaration

has two private instance variables—data (of the generic type T) and Node<T> variable
nextNode. Variable nextNode references a Node<T> object, an object of the same class being
declared here—hence the term “self-referential class.” Field nextNode is a link—it “links”
an object of type Node<T> to another object of the same type. Type Node<T> also has five
methods: a constructor that receives a value to initialize data, a setData method to set the
value of data, a getData method to return the value of data, a setNext method to set the
value of nextNode and a getNext method to return a reference to the next node.

Programs can link self-referential objects together to form such useful data structures
as lists, queues, stacks and trees. Figure 21.1 illustrates two self-referential objects linked
together to form a list. A backslash—representing a null reference—is placed in the link
member of the second self-referential object to indicate that the link does not refer to
another object. The backslash is illustrative; it does not correspond to the backslash char-
acter in Java. By convention, in code we use the null reference to indicate the end of a
data structure.

21.3 Dynamic Memory Allocation
Creating and maintaining dynamic data structures requires dynamic memory alloca-
tion—allowing a program to obtain more memory space at execution time to hold new
nodes and to release space no longer needed. Remember that Java does not require you to
explicitly release dynamically allocated memory. Rather, Java performs automatic garbage
collection of objects that are no longer referenced in a program.

The limit for dynamic memory allocation can be as large as the amount of available
physical memory in the computer or the amount of available disk space in a virtual-

class Node<T>
{
 private T data;
 private Node<T> nextNode; // reference to next linked node
 public Node(T data) { /* constructor body */ }
 public void setData(T data) { /* method body */ }
 public T getData() { /* method body */ }
 public void setNext(Node<T> next) { /* method body */ }
 public Node<T> getNext() { /* method body */ }
}

Fig. 21.1 | Self-referential-class objects linked together.

15 10

872 Chapter 21 Custom Generic Data Structures

memory system. Often the limits are much smaller, because the computer’s available
memory must be shared among many applications.

The declaration and class-instance-creation expression

allocates a Node<Integer> object and returns a reference to it, which is assigned to node-
ToAdd. If insufficient memory is available, the preceding expression throws an OutOfMemory-
Error. The sections that follow discuss lists, stacks, queues and trees—all of which use
dynamic memory allocation and self-referential classes to create dynamic data structures.

21.4 Linked Lists
A linked list is a linear collection (i.e., a sequence) of self-referential-class objects, called
nodes, connected by reference links—hence, the term “linked” list. Typically, a program
accesses a linked list via a reference to its first node. The program accesses each subsequent
node via the link reference stored in the previous node. By convention, the link reference
in the last node of the list is set to null to indicate “end of list.” Data is stored in and re-
moved from linked lists dynamically—the program creates and deletes nodes as necessary.
Stacks and queues are also linear data structures and, as we’ll see, are constrained versions
of linked lists. Trees are nonlinear data structures.

Lists of data can be stored in conventional Java arrays, but linked lists provide several
advantages. A linked list is appropriate when the number of data elements to be repre-
sented in the data structure is unpredictable. Linked lists are dynamic, so the length of a list
can increase or decrease as necessary, whereas the size of a conventional Java array cannot
be altered—it’s fixed when the program creates the array. [Of course, ArrayLists can grow
and shrink.] Conventional arrays can become full. Linked lists become full only when the
system has insufficient memory to satisfy dynamic storage allocation requests. Package
java.util contains class LinkedList (discussed in Chapter 16) for implementing and
manipulating linked lists that grow and shrink during program execution.

Linked lists can be maintained in sorted order simply by inserting each new element
at the proper point in the list. (It does, of course, take time to locate the proper insertion
point.) Existing list elements do not need to be moved.

21.4.1 Singly Linked Lists
Linked list nodes normally are not stored contiguously in memory. Rather, they’re logically
contiguous. Figure 21.2 illustrates a linked list with several nodes. This diagram presents
a singly linked list—each node contains one reference to the next node in the list. Often,

// 10 is nodeToAdd’s data
Node<Integer> nodeToAdd = new Node<Integer>(10);

Performance Tip 21.1
Insertion into a linked list is fast—only two references have to be modified (after locating
the insertion point). All existing node objects remain at their current locations in memory.

Performance Tip 21.2
Insertion and deletion in a sorted array can be time consuming—all the elements follow-
ing the inserted or deleted element must be shifted appropriately.

21.4 Linked Lists 873

linked lists are implemented as doubly linked lists—each node contains a reference to the
next node in the list and a reference to the preceding one.

21.4.2 Implementing a Generic List Class
The program of Figs. 21.3–21.5 uses an object of our generic List class to manipulate a
list of miscellaneous objects. The program consists of four classes—ListNode (Fig. 21.3,
lines 6–37), List (Fig. 21.3, lines 40–147), EmptyListException (Fig. 21.4) and List-
Test (Fig. 21.5). Encapsulated in each List object is a linked list of ListNode objects.

[Note: The List, ListNode and EmptyListException classes are placed in the package
com.deitel.datastructures, so that they can be reused throughout this chapter. In
Section 21.4.10, we discuss the package statement (line 3 of Figs. 21.3 and 21.4), and
show how to compile and run programs that use classes in your own packages.]

Performance Tip 21.3
The elements of an array are contiguous in memory. This allows immediate access to any
array element, because its address can be calculated directly as its offset from the beginning
of the array. Linked lists do not afford such immediate access—an element can be accessed
only by traversing the list from the front (or the back in a doubly linked list).

Fig. 21.2 | Linked-list graphical representation.

1 // Fig. 21.3: List.java
2 // ListNode and List class declarations.
3
4
5 // class to represent one node in a list
6
7 {
8 // package access members; List can access these directly
9 T data; // data for this node

10
11
12 // constructor creates a ListNode that refers to object
13 ListNode(T object)
14 {
15 this(object, null);
16 }
17

Fig. 21.3 | ListNode and List class declarations. (Part 1 of 4.)

H D Q

firstNode lastNode

...

package com.deitel.datastructures;

class ListNode<T>

ListNode<T> nextNode; // reference to the next node in the list

874 Chapter 21 Custom Generic Data Structures

18 // constructor creates ListNode that refers to the specified
19 // object and to the next ListNode
20 ListNode(T object, ListNode<T> node)
21 {
22 data = object;
23 nextNode = node;
24 }
25
26 // return reference to data in node
27 T getData()
28 {
29 return data;
30 }
31
32 // return reference to next node in list
33 ListNode<T> getNext()
34 {
35 return nextNode;
36 }
37 } // end class ListNode<T>
38
39 // class List definition
40
41 {
42
43
44 private String name; // string like "list" used in printing
45
46 // constructor creates empty List with "list" as the name
47 public List()
48 {
49 this("list");
50 }
51
52 // constructor creates an empty List with a name
53 public List(String listName)
54 {
55 name = listName;
56 firstNode = lastNode = null;
57 }
58
59 // insert item at front of List
60
61 {
62 if (isEmpty()) // firstNode and lastNode refer to same object
63 firstNode = lastNode = new ListNode<T>(insertItem);
64 else // firstNode refers to new node
65 firstNode = new ListNode<T>(insertItem, firstNode);
66 }
67
68 // insert item at end of List
69
70 {

Fig. 21.3 | ListNode and List class declarations. (Part 2 of 4.)

public class List<T>

private ListNode<T> firstNode;
private ListNode<T> lastNode;

public void insertAtFront(T insertItem)

public void insertAtBack(T insertItem)

21.4 Linked Lists 875

71 if (isEmpty()) // firstNode and lastNode refer to same object
72 firstNode = lastNode = new ListNode<T>(insertItem);
73 else // lastNode's nextNode refers to new node
74 lastNode = lastNode.nextNode = new ListNode<T>(insertItem);
75 }
76
77 // remove first node from List
78
79 {
80 if (isEmpty()) // throw exception if List is empty
81 throw new EmptyListException(name);
82
83 T removedItem = firstNode.data; // retrieve data being removed
84
85 // update references firstNode and lastNode
86 if (firstNode == lastNode)
87 firstNode = lastNode = null;
88 else
89 firstNode = firstNode.nextNode;
90
91 return removedItem; // return removed node data
92 }
93
94 // remove last node from List
95
96 {
97 if (isEmpty()) // throw exception if List is empty
98 throw new EmptyListException(name);
99
100 T removedItem = lastNode.data; // retrieve data being removed
101
102 // update references firstNode and lastNode
103 if (firstNode == lastNode)
104 firstNode = lastNode = null;
105 else // locate new last node
106 {
107 ListNode<T> current = firstNode;
108
109 // loop while current node does not refer to lastNode
110 while (current.nextNode != lastNode)
111 current = current.nextNode;
112
113 lastNode = current; // current is new lastNode
114 current.nextNode = null;
115 }
116
117 return removedItem; // return removed node data
118 }
119

Fig. 21.3 | ListNode and List class declarations. (Part 3 of 4.)

public T removeFromFront() throws EmptyListException

public T removeFromBack() throws EmptyListException

876 Chapter 21 Custom Generic Data Structures

120 // determine whether list is empty
121
122 {
123 return firstNode == null; // return true if list is empty
124 }
125
126 // output list contents
127
128 {
129 if (isEmpty())
130 {
131 System.out.printf("Empty %s%n", name);
132 return;
133 }
134
135 System.out.printf("The %s is: ", name);
136 ListNode<T> current = firstNode;
137
138 // while not at end of list, output current node's data
139 while (current != null)
140 {
141 System.out.printf("%s ", current.data);
142 current = current.nextNode;
143 }
144
145 System.out.println();
146 }
147 } // end class List<T>

1 // Fig. 21.4: EmptyListException.java
2 // Class EmptyListException declaration.
3 package com.deitel.datastructures;
4
5 public class EmptyListException extends RuntimeException
6 {
7 // constructor
8 public EmptyListException()
9 {

10 this("List"); // call other EmptyListException constructor
11 }
12
13 // constructor
14 public EmptyListException(String name)
15 {
16 super(name + " is empty"); // call superclass constructor
17 }
18 } // end class EmptyListException

Fig. 21.4 | Class EmptyListException declaration.

Fig. 21.3 | ListNode and List class declarations. (Part 4 of 4.)

public boolean isEmpty()

public void print()

21.4 Linked Lists 877

1 // Fig. 21.5: ListTest.java
2 // ListTest class to demonstrate List capabilities.
3 import com.deitel.datastructures.List;
4 import com.deitel.datastructures.EmptyListException;
5
6 public class ListTest
7 {
8 public static void main(String[] args)
9 {

10
11
12
13
14
15
16
17
18
19
20
21
22 // remove objects from list; print after each removal
23 try
24 {
25
26 System.out.printf("%n%d removed%n", removedItem);
27 list.print();
28
29
30 System.out.printf("%n%d removed%n", removedItem);
31 list.print();
32
33
34 System.out.printf("%n%d removed%n", removedItem);
35 list.print();
36
37
38 System.out.printf("%n%d removed%n", removedItem);
39 list.print();
40 }
41 catch (EmptyListException emptyListException)
42 {
43 emptyListException.printStackTrace();
44 }
45 }
46 } // end class ListTest

The list is: -1
The list is: 0 -1
The list is: 0 -1 1
The list is: 0 -1 1 5

Fig. 21.5 | ListTest class to demonstrate List capabilities. (Part 1 of 2.)

List<Integer> list = new List<>();

// insert integers in list
list.insertAtFront(-1);
list.print();
list.insertAtFront(0);
list.print();
list.insertAtBack(1);
list.print();
list.insertAtBack(5);
list.print();

int removedItem = list.removeFromFront();

removedItem = list.removeFromFront();

removedItem = list.removeFromBack();

removedItem = list.removeFromBack();

878 Chapter 21 Custom Generic Data Structures

21.4.3 Generic Classes ListNode and List
Generic class ListNode (Fig. 21.3, lines 6–37) declares package-access fields data and
nextNode. The data field is a reference of type T, so its type will be determined when the
client code creates the corresponding List object. Variable nextNode stores a reference to
the next ListNode object in the linked list (or null if the node is the last one in the list).

Lines 42–43 of class List (Fig. 21.3, lines 40–47) declare references to the first and
last ListNodes in a List (firstNode and lastNode, respectively). The constructors (lines
47–50 and 53–57) initialize both references to null. The most important methods of class
List are insertAtFront (lines 60–66), insertAtBack (lines 69–75), removeFromFront
(lines 78–92) and removeFromBack (lines 95–118). Method isEmpty (lines 121–124) is a
predicate method that determines whether the list is empty (i.e., the reference to the first
node of the list is null). Predicate methods typically test a condition and do not modify
the object on which they’re called. If the list is empty, method isEmpty returns true; oth-
erwise, it returns false. Method print (lines 127–146) displays the list’s contents. We
discuss class List’s methods in more detail after we discuss class ListTest.

21.4.4 Class ListTest
Method main of class ListTest (Fig. 21.5) creates a List<Integer> object (line 10), then
inserts objects at the beginning of the list using method insertAtFront, inserts objects at
the end of the list using method insertAtBack, deletes objects from the front of the list
using method removeFromFront and deletes objects from the end of the list using method
removeFromBack. After each insert and remove operation, ListTest calls List method
print to display the current list contents. If an attempt is made to remove an item from
an empty list, an EmptyListException (Fig. 21.4) is thrown, so the method calls to re-
moveFromFront and removeFromBack are placed in a try block that’s followed by an ap-
propriate exception handler. Notice in lines 13, 15, 17 and 19 (Fig. 21.5) that the
application passes literal primitive int values to methods insertAtFront and insertAt-
Back. Each of these methods was declared with a parameter of the generic type T
(Fig. 21.3, lines 60 and 69). Since this example manipulates a List<Integer>, the type T
represents the type-wrapper class Integer. In this case, the JVM autoboxes each literal val-
ue in an Integer object, and that object is actually inserted into the list.

21.4.5 List Method insertAtFront
Now we discuss each method of class List (Fig. 21.3) in detail and provide diagrams
showing the reference manipulations performed by methods insertAtFront, insertAt-

0 removed
The list is: -1 1 5
-1 removed
The list is: 1 5
5 removed
The list is: 1
1 removed
Empty list

Fig. 21.5 | ListTest class to demonstrate List capabilities. (Part 2 of 2.)

21.4 Linked Lists 879

Back, removeFromFront and removeFromBack. Method insertAtFront (lines 60–66 of
Fig. 21.3) places a new node at the front of the list. The steps are:

1. Call isEmpty to determine whether the list is empty (line 62).

2. If the list is empty, assign to firstNode and lastNode the new ListNode that was
initialized with insertItem (line 63). (Recall that assignment operators evaluate
right to left.) The ListNode constructor at lines 13–16 calls the ListNode con-
structor at lines 20–24 to set instance variable data to refer to the insertItem
passed as an argument and to set reference nextNode to null, because this is the
first and last node in the list.

3. If the list is not empty, the new node is “linked” into the list by setting firstNode
to a new ListNode object and initializing that object with insertItem and
firstNode (line 65). When the ListNode constructor (lines 20–24) executes, it
sets instance variable data to refer to the insertItem passed as an argument and
performs the insertion by setting the nextNode reference of the new node to the
ListNode passed as an argument, which previously was the first node.

In Fig. 21.6, part (a) shows a list and a new node during the insertAtFront operation
and before the program links the new node into the list. The dotted arrows in part (b) illus-
trate Step 3 of the insertAtFront operation that enables the node containing 12 to
become the new first node in the list.

21.4.6 List Method insertAtBack
Method insertAtBack (lines 69–75 of Fig. 21.3) places a new node at the back of the list.
The steps are:

1. Call isEmpty to determine whether the list is empty (line 71).

2. If the list is empty, assign to firstNode and lastNode the new ListNode that was
initialized with insertItem (line 72). The ListNode constructor at lines 13–16

Fig. 21.6 | Graphical representation of operation insertAtFront.

7 11

firstNode(a)

(b)

12

new ListNode

7 11

firstNode

12

new ListNode

880 Chapter 21 Custom Generic Data Structures

calls the constructor at lines 20–24 to set instance variable data to refer to the
insertItem passed as an argument and to set reference nextNode to null.

3. If the list is not empty, line 74 links the new node into the list by assigning to
lastNode and lastNode.nextNode the reference to the new ListNode that was
initialized with insertItem. ListNode’s constructor (lines 13–16) sets instance
variable data to refer to the insertItem passed as an argument and sets reference
nextNode to null, because this is the last node in the list.

In Fig. 21.7, part (a) shows a list and a new node during the insertAtBack operation
and before linking the new node into the list. The dotted arrows in part (b) illustrate Step
3 of method insertAtBack, which adds the new node to the end of a list that’s not empty.

21.4.7 List Method removeFromFront
Method removeFromFront (lines 78–92 of Fig. 21.3) removes the first node of the list and
returns a reference to the removed data. If the list is empty when the program calls this
method, the method throws an EmptyListException (lines 80–81). Otherwise, the meth-
od returns a reference to the removed data. The steps are:

1. Assign firstNode.data (the data being removed) to removedItem (line 83).

2. If firstNode and lastNode refer to the same object (line 86), the list has only one
element at this time. So, the method sets firstNode and lastNode to null (line
87) to remove the node from the list (leaving the list empty).

3. If the list has more than one node, then the method leaves reference lastNode as
is and assigns the value of firstNode.nextNode to firstNode (line 89). Thus,
firstNode references the node that was previously the second node in the list.

4. Return the removedItem reference (line 91).

In Fig. 21.8, part (a) illustrates the list before the removal operation. The dashed lines
and arrows in part (b) show the reference manipulations.

Fig. 21.7 | Graphical representation of operation insertAtBack.

12 7 11 5

lastNode new Listnode

12 7 11 5

lastNode new Listnode

(a) firstNode

(b) firstNode

21.4 Linked Lists 881

21.4.8 List Method removeFromBack
Method removeFromBack (lines 95–118 of Fig. 21.3) removes the last node of a list and
returns a reference to the removed data. The method throws an EmptyListException
(lines 97–98) if the list is empty when the program calls this method. The steps are:

1. Assign lastNode.data (the data being removed) to removedItem (line 100).

2. If the firstNode and lastNode refer to the same object (line 103), the list has
only one element at this time. So, line 104 sets firstNode and lastNode to null
to remove that node from the list (leaving the list empty).

3. If the list has more than one node, create the ListNode reference current and as-
sign it firstNode (line 107).

4. Now “walk the list” with current until it references the node before the last node.
The while loop (lines 110–111) assigns current.nextNode to current as long as
current.nextNode (the next node in the list) is not lastNode.

5. After locating the second-to-last node, assign current to lastNode (line 113) to
update which node is last in the list.

6. Set the current.nextNode to null (line 114) to remove the last node from the
list and terminate the list at the current node.

7. Return the removedItem reference (line 117).

In Fig. 21.9, part (a) illustrates the list before the removal operation. The dashed lines
and arrows in part (b) show the reference manipulations. [We limited the List insertion

Fig. 21.8 | Graphical representation of operation removeFromFront.

12 7 11 5

lastNode

12 7 11 5

removeItem

lastNode

(a) firstNode

(b) firstNode

882 Chapter 21 Custom Generic Data Structures

and removal operations to the front and the back of the list. In Exercise 21.26, you’ll
enhance the List class to enable insertions and deletions anywhere in the List.]

21.4.9 List Method print
Method print (lines 127–146 of Fig. 21.3) first determines whether the list is empty (lines
129–133). If so, print displays a message indicating that the list is empty and returns control
to the calling method. Otherwise, print outputs the list’s data. Line 136 creates ListNode
current and initializes it with firstNode. While current is not null, there are more items
in the list. Therefore, line 141 outputs a string representation of current.data. Line 142
moves to the next node in the list by assigning the value of reference current.nextNode to
current. This printing algorithm is identical for linked lists, stacks and queues.

21.4.10 Creating Your Own Packages
As you know, the Java API types (classes, interfaces and enums) are organized in packages that
group related types. Packages facilitate software reuse by enabling programs to import exist-
ing classes, rather than copying them into the folders of each program that uses them. Pro-
grammers use packages to organize program components, especially in large programs. For
example, you might have one package containing the types that make up your program’s
graphical user interface, another for the types that manage your application’s data and an-
other for the types that communicate with servers over a network. In addition, packages help
you specify unique names for every type you declare, which (as we’ll discuss) helps prevent
class-name conflicts. This section introduces how to create and use your own packages.
Much of what we discuss here is handled for you by IDEs such as NetBeans, Eclipse and In-
telliJ IDEA. We focus on creating and using packages with the JDK’s command-line tools.

Fig. 21.9 | Graphical representation of operation removeFromBack.

12 7 11 5

lastNode

12 7 11 5

removeItem

current lastNode

(a) firstNode

(b) firstNode

21.4 Linked Lists 883

Steps for Declaring a Reusable Class
Before a class can be imported into multiple programs, it must be placed in a package to
make it reusable. The steps for creating a reusable class are:

1. Declare one or more public types (classes, interfaces and enums). Only public
types can be reused outside the package in which they’re declared.

2. Choose a unique package name and add a package declaration to the source-code
file for each reusable type that should be part of the package.

3. Compile the types so that they’re placed in the appropriate package directory.

4. Import the reusable types into a program and use them.

We’ll now discuss each of these steps in more detail.

Step 1: Creating public Types for Reuse
For Step 1, you declare the types that will be placed in the package, including both the re-
usable types and any supporting types. In Fig. 21.3, class List is public, so it’s reusable
outside its package. Class ListNode, however, is not public, so it can be used only by class
List and any other types declared in the same package. In Fig. 21.4, class EmptyListEx-
ception is public, so it, too, is reusable. If a source-code file contains more than one type,
all types in the file are placed in the same package when the file is compiled.

Step 2: Adding the package Statements
For Step 2, you provide a package declaration containing the package’s name. All source-
code files containing types that should be part of the same package must contain the same
package declaration. Figures 21.3 and 21.4 each contain:

indicating that all the types declared in those files—ListNode and List in Fig. 21.3 and
EmptyListException in Fig. 21.4—are part of the com.deitel.datastructures package.

Each Java source-code file may contain only one package declaration, and it must pre-
cede all other declarations and statements. If no package statement is provided in a Java
source-code file, the types declared in that file are placed in the so-called default package
and are accessible only to other classes in the default package that are located in the same
directory. All prior programs in this book have used this default package.

Package Naming Conventions
A package name’s parts are separated by dots (.), and there typically are two or more parts.
To ensure unique package names, you typically begin the name with your institution’s or
company’s Internet domain name in reverse order—e.g., our domain name is deitel.com,
so we begin our package names with com.deitel. For the domain name yourcollege.edu,
you’d begin the package name with edu.yourcollege.

After the reversed domain name, you can specify additional parts in a package name.
If you’re part of a university with many schools or company with many divisions, you might
use the school or division name as the next part of the package name. Similarly, if the types
are for a specific project, you might include the project name as part of the package name.
We chose datastructures as the next part in our package name to indicate that classes
ListNode, List and EmptyListException are from this data structures chapter.

package com.deitel.datastructures;

884 Chapter 21 Custom Generic Data Structures

Fully Qualified Names
The package name is part of the fully qualified type name, so the name of class List is
actually com.deitel.datastructures.List. You can use this fully qualified name in your
programs, or you can import the class and use its simple name (the class name by itself—
List) in the program. If another package also contains a List class, the fully qualified class
names can be used to distinguish between the classes in the program and prevent a name
conflict (also called a name collision).

Step 3: Compiling Packaged Types
Step 3 is to compile the class so that it’s stored in the appropriate package. When a Java
file containing a package declaration is compiled, the resulting class file is placed in a di-
rectory specified by the declaration. Classes in the package com.deitel.datastructures
are placed in the directory

The names in the package declaration specify the exact location of the package’s classes.
The javac command-line option -d causes the compiler to create the directories

based on the package declaration. The option also specifies where the top-level directory
in the package name should be placed on your system—you may specify a relative or com-
plete path to this location. For example, the command

specifies that the first directory in our package name (com) should be placed in the current
directory. The period (.) after -d in the preceding command represents the current direc-
tory on the Windows, UNIX, Linux and Mac OS X operating systems (and several others
as well). Similarly, the command

specifies that the first directory in our package name (com) should be placed in the parent
directory—we did this for all the reusable classes in this chapter. Once you compile with
the -d option, the package’s datastructures directory contains the files ListNode.class,
List.class and EmptyListException.class.

Step 4: Importing Types from Your Package
Once types are compiled into a package, they can be imported (Step 4). Class ListTest
(Fig. 21.5) is in the default package because its .java file does not contain a package dec-
laration. Because class ListTest is in a different package from List and EmptyListExcep-
tion, you must either import these classes so that class ListTest can use them (lines 3–4
of Fig. 21.5) or you must fully qualify the names List and EmptyListException every-
where they’re used throughout class ListTest. For example, line 10 of Fig. 21.5 could
have been written as:

com
 deitel
 datastructures

javac -d . List.java EmptyListException.java

javac -d .. List.java EmptyListException.java

com.deitel.datastructures.List<Integer> list =
 new com.deitel.datastructures.List<>();

21.4 Linked Lists 885

Single-Type-Import vs. Type-Import-On-Demand Declarations
Lines 3–4 of Fig. 21.5 are single-type-import declarations—they each specify one class to
import. When a source-code file uses multiple classes from a package, you can import those
classes with a a type-import-on-demand declaration of the form

which uses an asterisk (*) at its end to inform the compiler that all public classes from the
packagename package can be used in the file containing the import. Only those classes that
are used are loaded at execution time. The preceding import allows you to use the simple
name of any type from the packagename package. Throughout this book, we provide
single-type-import declarations as a form of documentation to show you specifically which
types are used in each program.

Specifying the Classpath When Compiling a Program
When compiling ListTest, javac must locate the .class files for classes List and Emp-
tyListException to ensure that class ListTest uses them correctly. The compiler uses a
special object called a class loader to locate the classes it needs. The class loader begins by
searching the standard Java classes that are bundled with the JDK. Then it searches for op-
tional packages. Java provides an extension mechanism that enables new (optional) pack-
ages to be added to Java for development and execution purposes. If the class is not found
in the standard Java classes or in the extension classes, the class loader searches the class-
path—a list of directories or archive files containing reusable types. Each directory or ar-
chive file is separated from the next by a directory separator—a semicolon (;) on Windows
or a colon (:) on UNIX/Linux/Mac OS X. Archive files are individual files that contain di-
rectories of other files, typically in a compressed format. For example, the standard classes
used by your programs are contained in the archive file rt.jar, which is installed with the
JDK. Archive files normally end with the .jar or .zip file-name extensions.

By default, the classpath consists only of the current directory. However, the classpath
can be modified by

1. providing the -classpath listOfDirectories option to the javac compiler or

2. setting the CLASSPATH environment variable (a special variable that you define
and the operating system maintains so that programs can search for classes in the
specified locations).

If you compile ListTest.java without specifying the -classpath option, as in

the class loader assumes that the additional package(s) used by the ListTest program are
in the current directory. As we mentioned, we placed our package in the parent directory so

import packagename.*;

Common Programming Error 21.1
Using the import declaration import java.*; causes a compilation error. You must spec-
ify the full package name from which you want to import classes.

Error-Prevention Tip 21.1
Using single-type-import declarations helps avoid naming conflicts by importing only the
types you actually use in your code.

javac ListTest.java

886 Chapter 21 Custom Generic Data Structures

that it could be used by other programs in this chapter. To compile ListTest.java, use
the command

on Windows or the command

on UNIX/Linux/Mac OS X. The . in the classpath enables the class loader to locate List-
Test in the current directry. The .. enables the class loader to locate the contents of pack-
age com.deitel.datastructures in the parent directory.

Specifying the Classpath When Executing a Program
When you execute a program, the JVM must be able to locate the .class files for the pro-
gram’s classes. Like the compiler, the java command uses a class loader that searches the
standard classes and extension classes first, then searches the classpath (the current direc-
tory by default). The classpath can be specified explicitly by using the same techniques dis-
cussed for the compiler. As with the compiler, it’s better to specify an individual program’s
classpath via command-line JVM options. You can specify the classpath in the java com-
mand via the -classpath or -cp command-line options, followed by a list of directories
or archive files. Again, if classes must be loaded from the current directory, be sure to in-
clude a dot (.) in the classpath to specify the current directory. To execute the ListTest
program, use the following command:

You’ll need to use similar javac and java commands for each of this chapter’s remaining
examples. For more information on the classpath, visit docs.oracle.com/javase/7/
docs/technotes/tools/index.html#general.

21.5 Stacks
A stack is a constrained version of a list—new nodes can be added to and removed from a
stack only at the top. For this reason, a stack is referred to as a last-in, first-out (LIFO) data

javac -classpath .;.. ListTest.java

javac -classpath .:.. ListTest.java

Common Programming Error 21.2
Specifying an explicit classpath eliminates the current directory from the classpath. This
prevents classes in the current directory (including packages in the current directory) from
loading properly. If classes must be loaded from the current directory, include a dot (.) in
the classpath to specify the current directory.

Software Engineering Observation 21.2
In general, it’s a better practice to use the -classpath option of the compiler, rather than
the CLASSPATH environment variable, to specify the classpath for a program. This enables
each program to have its own classpath.

Error-Prevention Tip 21.2
Specifying the classpath with the CLASSPATH environment variable can cause subtle and
difficult-to-locate errors in programs that use different versions of the same package.

java -classpath .:.. ListTest

21.5 Stacks 887

structure. The link member in the bottom node is set to null to indicate the bottom of
the stack. A stack is not required to be implemented as a linked list—it can also be imple-
mented using an array.

The primary methods for manipulating a stack are push and pop, which add a new
node to the top of the stack and remove a node from the top of the stack, respectively.
Method pop also returns the data from the popped node.

Stacks have many interesting applications. For example, when a program calls a
method, the called method must know how to return to its caller, so the return address of
the calling method is pushed onto the program-execution stack (discussed in Section 6.6).
If a series of method calls occurs, the successive return addresses are pushed onto the stack
in last-in, first-out order so that each method can return to its caller. Stacks support recur-
sive method calls in the same manner as they do conventional nonrecursive method calls.

The program-execution stack also contains the memory for local variables on each
invocation of a method during a program’s execution. When the method returns to its
caller, the memory for that method’s local variables is popped off the stack, and those vari-
ables are no longer known to the program. If the local variable is a reference and the object
to which it referred has no other variables referring to it, the object can be garbage col-
lected.

Compilers use stacks to evaluate arithmetic expressions and generate machine-lan-
guage code to process them. The exercises in this chapter explore several applications of
stacks, including using them to develop a complete working compiler. Also, package
java.util contains class Stack (see Chapter 16) for implementing and manipulating
stacks that can grow and shrink during program execution.

In this section, we take advantage of the close relationship between lists and stacks to
implement a stack class by reusing the List<T> class of Fig. 21.3. We demonstrate two dif-
ferent forms of reusability. First, we implement the stack class by extending class List.
Then we implement an identically performing stack class through composition by
including a reference to a List object as a private instance variable. The list, stack and
queue data structures in this chapter are implemented to store references to objects of any
type to encourage further reusability.

Stack Class That Inherits from List<T>
Figures 21.10 and 21.11 create and manipulate a stack class that extends the List<T> class
of Fig. 21.3. We want the stack to have methods push, pop, isEmpty and print. Essential-
ly, these are the List<T> methods insertAtFront, removeFromFront, isEmpty and print.
Of course, class List<T> contains other methods (such as insertAtBack and removeFrom-
Back) that we would rather not make accessible through the public interface to the stack
class. It’s important to remember that all methods in List<T>’s public interface class also
are public methods of the subclass StackInheritance<T> (Fig. 21.10). Each method of
StackInheritance<T> calls the appropriate List<T> method—for example, method push
calls insertAtFront and method pop calls removeFromFront. StackInheritance<T> cli-
ents can call methods isEmpty and print because they’re inherited from List<T>. Class
StackInheritance<T> is declared in package com.deitel.datastructures (line 3) for re-
use. StackInheritance<T> does not import List<T>—the classes are in the same package.

Class StackInheritanceTest’s method main (Fig. 21.11) creates an object of class
StackInheritance<T> called stack (line 10). The program pushes integers onto the stack
(lines 13, 15, 17 and 19). Autoboxing is used here to insert Integer objects into the data

888 Chapter 21 Custom Generic Data Structures

structure. Lines 27–32 pop the objects from the stack in an infinite while loop. If method
pop is invoked on an empty stack, the method throws an EmptyListException. In this
case, the program displays the exception’s stack trace, which shows the methods on the
program-execution stack at the time the exception occurred. The program uses method
print (inherited from List) to output the contents of the stack.

1 // Fig. 21.10: StackInheritance.java
2 // StackInheritance extends class List.
3 package com.deitel.datastructures;
4
5 public class StackInheritance<T>
6 {
7 // constructor
8 public StackInheritance()
9 {

10 super("stack");
11 }
12
13 // add object to stack
14
15 {
16
17 }
18
19 // remove object from stack
20
21 {
22
23 }
24 } // end class StackInheritance

Fig. 21.10 | StackInheritance extends class List.

1 // Fig. 21.11: StackInheritanceTest.java
2 // Stack manipulation program.
3 import com.deitel.datastructures.StackInheritance;
4 import com.deitel.datastructures.EmptyListException;
5
6 public class StackInheritanceTest
7 {
8 public static void main(String[] args)
9 {

10
11
12
13
14
15
16
17

Fig. 21.11 | Stack manipulation program. (Part 1 of 2.)

extends List<T>

public void push(T object)

insertAtFront(object);

public T pop() throws EmptyListException

return removeFromFront();

StackInheritance<Integer> stack = new StackInheritance<>();

// use push method
stack.push(-1);
stack.print();
stack.push(0);
stack.print();
stack.push(1);

21.5 Stacks 889

Forming a Stack Class Via Composition Rather Than Inheritance
A better way to implement a stack class is by reusing a list class through composition.
Figure 21.12 uses a private List<T> (line 7) in class StackComposition<T>’s declaration.
Composition enables us to hide the List<T> methods that should not be in our stack’s
public interface. We provide public interface methods that use only the required
List<T> methods. Implementing each stack method as a call to a List<T> method is called

18
19
20
21
22 // remove items from stack
23 try
24 {
25 int removedItem;
26
27 while (true)
28 {
29
30 System.out.printf("%n%d popped%n", removedItem);
31
32 }
33 }
34 catch (EmptyListException emptyListException)
35 {
36 emptyListException.printStackTrace();
37 }
38 }
39 } // end class StackInheritanceTest

The stack is: -1
The stack is: 0 -1

The stack is: 1 0 -1
The stack is: 5 1 0 -1

5 popped
The stack is: 1 0 -1

1 popped
The stack is: 0 -1

0 popped
The stack is: -1

-1 popped
Empty stack
com.deitel.datastructures.EmptyListException: stack is empty
 at com.deitel.datastructures.List.removeFromFront(List.java:81)
 at com.deitel.datastructures.StackInheritance.pop(
 StackInheritance.java:22)
 at StackInheritanceTest.main(StackInheritanceTest.java:29)

Fig. 21.11 | Stack manipulation program. (Part 2 of 2.)

stack.print();
stack.push(5);
stack.print();

removedItem = stack.pop(); // use pop method

stack.print();

890 Chapter 21 Custom Generic Data Structures

delegation—the stack method invoked delegates the call to the appropriate List<T>
method. In particular, StackComposition<T> delegates calls to List<T> methods insert-
AtFront, removeFromFront, isEmpty and print. In this example, we do not show class
StackCompositionTest, because the only difference is that we change the type of the stack
from StackInheritance to StackComposition (lines 3 and 10 of Fig. 21.11).

21.6 Queues
Another commonly used data structure is the queue. A queue is similar to a checkout line
in a supermarket—the cashier services the person at the beginning of the line first. Other
customers enter the line only at the end and wait for service. Queue nodes are removed only
from the head (or front) of the queue and are inserted only at the tail (or end). For this reason,

1 // Fig. 21.12: StackComposition.java
2 // StackComposition uses a composed List object.
3 package com.deitel.datastructures;
4
5 public class StackComposition<T>
6 {
7
8
9 // constructor

10
11 {
12
13 }
14
15 // add object to stack
16
17 {
18
19 }
20
21 // remove object from stack
22
23 {
24
25 }
26
27 // determine if stack is empty
28
29 {
30
31 }
32
33 // output stack contents
34
35 {
36
37 }
38 } // end class StackComposition

Fig. 21.12 | StackComposition uses a composed List object.

private List<T> stackList;

public StackComposition()

stackList = new List<T>("stack");

public void push(T object)

stackList.insertAtFront(object);

public T pop() throws EmptyListException

return stackList.removeFromFront();

public boolean isEmpty()

return stackList.isEmpty();

public void print()

stackList.print();

21.6 Queues 891

a queue is a first-in, first-out (FIFO) data structure. The insert and remove operations are
known as enqueue and dequeue.

Queues have many uses in computer systems. Each CPU in a computer can service
only one application at a time. Each application requiring processor time is placed in a
queue. The application at the front of the queue is the next to receive service. Each appli-
cation gradually advances to the front as the applications before it receive service.

Queues are also used to support print spooling. For example, a single printer might
be shared by all users of a network. Many users can send print jobs to the printer, even
when the printer is already busy. These print jobs are placed in a queue until the printer
becomes available. A program called a spooler manages the queue to ensure that, as each
print job completes, the next one is sent to the printer.

Information packets also wait in queues in computer networks. Each time a packet
arrives at a network node, it must be routed to the next node along the path to the packet’s
final destination. The routing node routes one packet at a time, so additional packets are
enqueued until the router can route them.

A file server in a computer network handles file-access requests from many clients
throughout the network. Servers have a limited capacity to service requests from clients.
When that capacity is exceeded, client requests wait in queues.

Figure 21.13 creates a Queue<T> class that contains a List<T> (Fig. 21.3) object and
provides methods enqueue, dequeue, isEmpty and print. Class List<T> contains some
methods (e.g., insertAtFront and removeFromBack) that we’d rather not make accessible
through Queue<T>’s public interface. Using composition enables us to hide class
List<T>’s other public methods from clients of class Queue<T>. Each Queue<T> method
calls an appropriate List<T> method—method enqueue calls List<T> method insertAt-
Back, method dequeue calls List<T> method removeFromFront, method isEmpty calls
List<T> method isEmpty and method print calls List<T> method print. For reuse, class
Queue<T> is declared in package com.deitel.datastructures.

1 // Fig. 21.13: Queue.java
2 // Queue uses class List.
3 package com.deitel.datastructures;
4
5 public class Queue
6 {
7
8
9 // constructor

10 public Queue()
11 {
12
13 }
14
15 // add object to queue
16
17 {
18
19 }

Fig. 21.13 | Queue uses class List. (Part 1 of 2.)

private List<T> queueList;

queueList = new List<T>("queue");

public void enqueue(T object)

queueList.insertAtBack(object);

892 Chapter 21 Custom Generic Data Structures

Class QueueTest’s (Fig. 21.14) main method creates and initializes Queue<T> variable
queue (line 10). Lines 13, 15, 17 and 19 enqueue four integers, taking advantage of auto-
boxing to insert Integer objects into the queue. Lines 27–32 use an infinite loop to
dequeue the objects in first-in, first-out order. When the queue is empty, method dequeue
throws an EmptyListException, and the program displays the exception’s stack trace.

20
21 // remove object from queue
22
23 {
24
25 }
26
27 // determine if queue is empty
28
29 {
30
31 }
32
33 // output queue contents
34
35 {
36
37 }
38 } // end class Queue

1 // Fig. 21.14: QueueTest.java
2 // Class QueueTest.
3 import com.deitel.datastructures.Queue;
4 import com.deitel.datastructures.EmptyListException;
5
6 public class QueueTest
7 {
8 public static void main(String[] args)
9 {

10
11
12
13
14
15
16
17
18
19
20
21

Fig. 21.14 | Queue processing program. (Part 1 of 2.)

Fig. 21.13 | Queue uses class List. (Part 2 of 2.)

public T dequeue() throws EmptyListException

return queueList.removeFromFront();

public boolean isEmpty()

return queueList.isEmpty();

public void print()

queueList.print();

Queue<Integer> queue = new Queue<>();

// use enqueue method
queue.enqueue(-1);
queue.print();
queue.enqueue(0);
queue.print();
queue.enqueue(1);
queue.print();
queue.enqueue(5);
queue.print();

21.7 Trees 893

21.7 Trees
Lists, stacks and queues are linear data structures (i.e., sequences). A tree is a nonlinear, two-
dimensional data structure with special properties. Tree nodes contain two or more links.
This section discusses binary trees (Fig. 21.15)—trees whose nodes each contain two links
(one or both of which may be null). The root node is the first node in a tree. Each link in
the root node refers to a child. The left child is the first node in the left subtree (also known
as the root node of the left subtree), and the right child is the first node in the right subtree
(also known as the root node of the right subtree). The children of a specific node are called
siblings. A node with no children is called a leaf node. Computer scientists normally draw
trees from the root node down—the opposite of the way most trees grow in nature.

22 // remove objects from queue
23 try
24 {
25 int removedItem;
26
27 while (true)
28 {
29
30 System.out.printf("%n%d dequeued%n", removedItem);
31
32 }
33 }
34 catch (EmptyListException emptyListException)
35 {
36 emptyListException.printStackTrace();
37 }
38 }
39 } // end class QueueTest

The queue is: -1
The queue is: -1 0
The queue is: -1 0 1
The queue is: -1 0 1 5

-1 dequeued
The queue is: 0 1 5

0 dequeued
The queue is: 1 5

1 dequeued
The queue is: 5

5 dequeued
Empty queue
com.deitel.datastructures.EmptyListException: queue is empty
 at com.deitel.datastructures.List.removeFromFront(List.java:81)
 at com.deitel.datastructures.Queue.dequeue(Queue.java:24)
 at QueueTest.main(QueueTest.java:29)

Fig. 21.14 | Queue processing program. (Part 2 of 2.)

removedItem = queue.dequeue(); // use dequeue method

queue.print();

894 Chapter 21 Custom Generic Data Structures

In our example, we create a special binary tree called a binary search tree. A binary
search tree (with no duplicate node values) has the characteristic that the values in any left
subtree are less than the value in that subtree’s parent node, and the values in any right
subtree are greater than the value in that subtree’s parent node. Figure 21.16 illustrates a
binary search tree with 12 integer values. The shape of the binary search tree that corre-
sponds to a set of data can vary, depending on the order in which the values are inserted
into the tree.

Figures 21.17 and 21.18 create a generic binary search tree class and use it to manip-
ulate a tree of integers. The application in Fig. 21.18 traverses the tree (i.e., walks through
all its nodes) three ways—using recursive inorder, preorder and postorder traversals (trees
are almost always processed recursively). The program generates 10 random numbers and
inserts each into the tree. Class Tree<T> is declared in package com.deitel.datastruc-
tures for reuse.

Fig. 21.15 | Binary tree graphical representation.

Fig. 21.16 | Binary search tree containing 12 values.

1 // Fig. 21.17: Tree.java
2 // TreeNode and Tree class declarations for a binary search tree.
3 package com.deitel.datastructures;
4

Fig. 21.17 | TreeNode and Tree class declarations for a binary search tree. (Part 1 of 4.)

B

DA

C

47

25

11 43 65 93

77

7 17 31 44 68

21.7 Trees 895

5 // class TreeNode definition
6
7 {
8 // package access members
9

10 T data; // node value
11
12
13 // constructor initializes data and makes this a leaf node
14 public TreeNode(T nodeData)
15 {
16 data = nodeData;
17 leftNode = rightNode = null; // node has no children
18 }
19
20 // locate insertion point and insert new node; ignore duplicate values
21
22 {
23 // insert in left subtree
24 if (insertValue.compareTo(data) < 0)
25 {
26 // insert new TreeNode
27 if (leftNode == null)
28 leftNode = new TreeNode<T>(insertValue);
29 else // continue traversing left subtree recursively
30 leftNode.insert(insertValue);
31 }
32 // insert in right subtree
33 else if (insertValue.compareTo(data) > 0)
34 {
35 // insert new TreeNode
36 if (rightNode == null)
37 rightNode = new TreeNode<T>(insertValue);
38 else // continue traversing right subtree recursively
39 rightNode.insert(insertValue);
40 }
41 }
42 } // end class TreeNode
43
44 // class Tree definition
45
46 {
47
48
49 // constructor initializes an empty Tree of integers
50 public Tree()
51 {
52 root = null;
53 }
54
55 // insert a new node in the binary search tree
56
57 {

Fig. 21.17 | TreeNode and Tree class declarations for a binary search tree. (Part 2 of 4.)

class TreeNode<T extends Comparable<T>>

TreeNode<T> leftNode;

TreeNode<T> rightNode;

public void insert(T insertValue)

public class Tree<T extends Comparable<T>>

private TreeNode<T> root;

public void insertNode(T insertValue)

896 Chapter 21 Custom Generic Data Structures

58 if (root == null)
59
60 else
61
62 }
63
64 // begin preorder traversal
65
66 {
67 preorderHelper(root);
68 }
69
70 // recursive method to perform preorder traversal
71
72 {
73 if (node == null)
74 return;
75
76 System.out.printf("%s ", node.data); // output node data
77
78
79 }
80
81 // begin inorder traversal
82
83 {
84 inorderHelper(root);
85 }
86
87 // recursive method to perform inorder traversal
88
89 {
90 if (node == null)
91 return;
92
93
94 System.out.printf("%s ", node.data); // output node data
95
96 }
97
98 // begin postorder traversal
99
100 {
101 postorderHelper(root);
102 }
103
104 // recursive method to perform postorder traversal
105
106 {
107 if (node == null)
108 return;
109

Fig. 21.17 | TreeNode and Tree class declarations for a binary search tree. (Part 3 of 4.)

root = new TreeNode<T>(insertValue); // create root node

root.insert(insertValue); // call the insert method

public void preorderTraversal()

private void preorderHelper(TreeNode<T> node)

preorderHelper(node.leftNode); // traverse left subtree
preorderHelper(node.rightNode); // traverse right subtree

public void inorderTraversal()

private void inorderHelper(TreeNode<T> node)

inorderHelper(node.leftNode); // traverse left subtree

inorderHelper(node.rightNode); // traverse right subtree

public void postorderTraversal()

private void postorderHelper(TreeNode<T> node)

21.7 Trees 897

110
111
112 System.out.printf("%s ", node.data); // output node data
113 }
114 } // end class Tree

1 // Fig. 21.18: TreeTest.java
2 // Binary tree test program.
3 import java.security.SecureRandom;
4 import com.deitel.datastructures.Tree;
5
6 public class TreeTest
7 {
8 public static void main(String[] args)
9 {

10
11 SecureRandom randomNumber = new SecureRandom();
12
13 System.out.println("Inserting the following values: ");
14
15 // insert 10 random integers from 0-99 in tree
16 for (int i = 1; i <= 10; i++)
17 {
18 int value = randomNumber.nextInt(100);
19 System.out.printf("%d ", value);
20
21 }
22
23 System.out.printf("%n%nPreorder traversal%n");
24
25
26 System.out.printf("%n%nInorder traversal%n");
27
28
29 System.out.printf("%n%nPostorder traversal%n");
30
31 System.out.println();
32 }
33 } // end class TreeTest

Inserting the following values:
49 64 14 34 85 64 46 14 37 55

Preorder traversal
49 14 34 46 37 64 55 85

Inorder traversal
14 34 37 46 49 55 64 85

Postorder traversal
37 46 34 14 55 85 64 49

Fig. 21.18 | Binary tree test program.

Fig. 21.17 | TreeNode and Tree class declarations for a binary search tree. (Part 4 of 4.)

postorderHelper(node.leftNode); // traverse left subtree
postorderHelper(node.rightNode); // traverse right subtree

Tree<Integer> tree = new Tree<Integer>();

tree.insertNode(value);

tree.preorderTraversal();

tree.inorderTraversal();

tree.postorderTraversal();

898 Chapter 21 Custom Generic Data Structures

Let’s walk through the binary tree program. Method main of class TreeTest
(Fig. 21.18) begins by instantiating an empty Tree<T> object and assigning its reference
to variable tree (line 10). Lines 16–21 randomly generate 10 integers, each of which is
inserted into the binary tree by calling method insertNode (line 20). The program then
performs preorder, inorder and postorder traversals (these will be explained shortly) of
tree (lines 24, 27 and 30, respectively).

Overview of Class Tree
Class Tree (Fig. 21.17, lines 45–114) requires its type argument to implement interface
Comparable, so that each value inserted in the tree can be compared with the existing values
to find the insertion point. The class has private field root (line 47)—a TreeNode refer-
ence to the root node of the tree. Tree’s constructor (lines 50–53) initializes root to null
to indicate that the tree is empty. The class contains method insertNode (lines 56–62) to
insert a new node in the tree and methods preorderTraversal (lines 65–68), inorder-
Traversal (lines 82–85) and postorderTraversal (lines 99–102) to begin traversals of
the tree. Each of these methods calls a recursive utility method to perform the traversal op-
erations on the internal representation of the tree.

Tree Method insertNode
Class Tree’s method insertNode (lines 56–62) first determines whether the tree is empty.
If so, line 59 allocates a new TreeNode, initializes the node with the value being inserted
in the tree and assigns the new node to reference root. If the tree is not empty, line 61 calls
TreeNode method insert (lines 21–41). This method uses recursion to determine the lo-
cation for the new node in the tree and inserts the node at that location. A node can be
inserted only as a leaf node in a binary search tree.

TreeNode Method insert
TreeNode method insert compares the value to insert with the data value in the root
node. If the insert value is less than the root node data (line 24), the program determines
whether the left subtree is empty (line 27). If so, line 28 allocates a new TreeNode, initial-
izes it with the value being inserted and assigns the new node to reference leftNode. Oth-
erwise, line 30 recursively calls insert for the left subtree to insert the value into the left
subtree. If the insert value is greater than the root node data (line 33), the program deter-
mines whether the right subtree is empty (line 36). If so, line 37 allocates a new TreeNode,
initializes it with the value being inserted and assigns the new node to reference right-
Node. Otherwise, line 39 recursively calls insert for the right subtree to insert the value in
the right subtree. If the insertValue is already in the tree, it’s simply ignored.

Tree Methods inorderTraversal, preorderTraversal and postorderTraversal
Methods inorderTraversal, preorderTraversal and postorderTraversal call Tree
helper methods inorderHelper (lines 88–96), preorderHelper (lines 71–79) and post-
orderHelper (lines 105–113), respectively, to traverse the tree and print the node values.
The helper methods in class Tree enable you to start a traversal without having to pass the
root node to the method. Reference root is an implementation detail that a programmer
should not be able to access. Methods inorderTraversal, preorderTraversal and
postorderTraversal simply take the private root reference and pass it to the appropriate
helper method to initiate a traversal of the tree. The base case for each helper method de-
termines whether the reference it receives is null and, if so, returns immediately.

21.7 Trees 899

Method inorderHelper (lines 88–96) defines the steps for an inorder traversal:

1. Traverse the left subtree with a call to inorderHelper (line 93).

2. Process the value in the node (line 94).

3. Traverse the right subtree with a call to inorderHelper (line 95).

The inorder traversal does not process the value in a node until the values in that node’s left sub-
tree are processed. The inorder traversal of the tree in Fig. 21.19 is

The inorder traversal of a binary search tree prints the node values in ascending order.
The process of creating a binary search tree actually sorts the data; thus, it’s called the
binary tree sort.

Method preorderHelper (lines 71–79) defines the steps for a preorder traversal:

1. Process the value in the node (line 76).

2. Traverse the left subtree with a call to preorderHelper (line 77).

3. Traverse the right subtree with a call to preorderHelper (line 78).

The preorder traversal processes the value in each node as the node is visited. After processing
the value in a particular node, it processes the values in the left subtree, then processes the
values in the right subtree. The preorder traversal of the tree in Fig. 21.19 is

Method postorderHelper (lines 105–113) defines the steps for a postorder traversal:

1. Traverse the left subtree with a call to postorderHelper (line 110).

2. Traverse the right subtree with a call to postorderHelper (line 111).

3. Process the value in the node (line 112).

The postorder traversal processes the value in each node after the values of all that node’s children
are processed. The postorderTraversal of the tree in Fig. 21.19 is

The binary search tree facilitates duplicate elimination. While building a tree, the
insertion operation recognizes attempts to insert a duplicate value, because a duplicate fol-
lows the same “go left” or “go right” decisions on each comparison as the original value
did. Thus, the insertion operation eventually compares the duplicate with a node con-
taining the same value. At this point, the insertion operation can decide to discard the
duplicate value (as we do in this example).

6 13 17 27 33 42 48

Fig. 21.19 | Binary search tree with seven values.

27 13 6 17 42 33 48

6 17 13 33 48 42 27

27

13

6 17 33 48

42

900 Chapter 21 Custom Generic Data Structures

Searching a binary tree for a value that matches a key value is fast, especially for tightly
packed (or balanced) trees. In a tightly packed tree, each level contains about twice as
many elements as the previous level. Figure 21.19 is a tightly packed binary tree. A tightly
packed binary search tree with n elements has log2n levels. Thus, at most log2n compari-
sons are required either to find a match or to determine that no match exists. Searching a
(tightly packed) 1000-element binary search tree requires at most 10 comparisons, because
210 > 1000. Searching a (tightly packed) 1,000,000-element binary search tree requires at
most 20 comparisons, because 220 > 1,000,000.

The chapter exercises present algorithms for several other binary tree operations, such
as deleting an item from a binary tree, printing a binary tree in a two-dimensional tree
format and performing a level-order traversal of a binary tree. The level-order traversal
visits the nodes of the tree row by row, starting at the root node level. On each level of the
tree, a level-order traversal visits the nodes from left to right. Other binary tree exercises
include allowing a binary search tree to contain duplicate values, inserting string values in
a binary tree and determining how many levels are contained in a binary tree.

21.8 Wrap-Up
This chapter completes our presentation of data structures. We began in Chapter 16 with
an introduction to the built-in collections of the Java Collections Framework and contin-
ued in Chapter 20 by showing you how to implement generic methods and collections. In
this chapter, you learned to build generic dynamic data structures that grow and shrink at
execution time. You learned that linked lists are collections of data items that are “linked
up in a chain.” You also saw that an application can perform insertions and deletions at
the beginning and end of a linked list. You learned that the stack and queue data structures
are constrained versions of lists. For stacks, you saw that insertions and deletions are made
only at the top. For queues that represent waiting lines, you saw that insertions are made
at the tail and deletions are made from the head. You also learned the binary tree data
structure. You saw a binary search tree that facilitated high-speed searching and sorting of
data and eliminating duplicate data items efficiently. Throughout the chapter, you learned
how to create and package these data structures for reusability and maintainability.

In the next chapter, you’ll continue your study of Swing GUI concepts, building on the
techniques you learned in Chapter 12. In Chapter 25, we’ll introduce JavaFX GUI and
include in-depth treatments of JavaFX GUI, graphics and multimedia in the online chapters.

Summary
Section 21.1 Introduction
• Dynamic data structures (p. 870) can grow and shrink at execution time.

• Linked lists (p. 870) are collections of data items “linked up in a chain”—insertions and dele-
tions can be made anywhere in a linked list.

• Stacks (p. 870) are important in compilers and operating systems—insertions and deletions are
made only at the top (p. 870) of a stack.

• In a queue, insertions are made at the tail (p. 870) and deletions are made from the head (p. 870).

• Binary trees (p. 870) facilitate high-speed searching and sorting, eliminating duplicate data items
efficiently, representing file-system directories and compiling expressions into machine language.

 Summary 901

Section 21.2 Self-Referential Classes
• A self-referential class (p. 871) contains a reference that refers to another object of the same class

type. Self-referential objects can be linked together to form dynamic data structures.

Section 21.3 Dynamic Memory Allocation
• The limit for dynamic memory allocation (p. 871) can be as large as the available physical mem-

ory in the computer or the available disk space in a virtual-memory system. Often the limits are
much smaller, because the computer’s available memory must be shared among many users.

• If no memory is available, an OutOfMemoryError is thrown.

Section 21.4 Linked Lists
• A linked list is accessed via a reference to the first node of the list. Each subsequent node is ac-

cessed via the link-reference member stored in the previous node.

• By convention, the link reference in the last node of a list is set to null to mark the end of the list.

• A node can contain data of any type, including objects of other classes.

• A linked list is appropriate when the number of data elements to be stored is unpredictable.
Linked lists are dynamic, so the length of a list can increase or decrease as necessary.

• The size of a “conventional” Java array cannot be altered—it’s fixed at creation time.

• List nodes normally are not stored in contiguous memory. Rather, they’re logically contiguous.

• Packages help manage program components and facilitate software reuse.

• Packages provide a convention for unique type names that helps prevent naming conflicts (p. 884).

• Before a type can be imported into multiple programs, it must be placed in a package. There can
be only one package declaration (p. 883) in each Java source-code file, and it must precede all
other declarations and statements in the file.

• Every package name should start with your Internet domain name in reverse order. After the do-
main name is reversed, you can choose any other names you want for your package.

• When compiling types in a package, the javac command-line option -d (p. 884) specifies where to
store the package and causes the compiler to create the package’s directories if they do not exist.

• The package name is part of the fully qualified type name (p. 884).

• A single-type-import declaration (p. 885) specifies one class to import. A type-import-on-demand
declaration (p. 885) imports only the classes that the program uses from a particular package.

• The compiler uses a class loader (p. 885) to locate the classes it needs in the classpath. The classpath
consists of a list of directories or archive files, each separated by a directory separator (p. 885).

• The classpath for the compiler and JVM can be specified by providing the -classpath option
(p. 886) to the javac or java command, or by setting the CLASSPATH environment variable. If
classes must be loaded from the current directory, include a dot (.) in the classpath.

Section 21.5 Stacks
• A stack is a last-in, first-out (LIFO) data structure (p. 886). The primary methods used to ma-

nipulate a stack are push (p. 887) and pop (p. 887), which add a new node to the stack’s top and
remove a node from the top, respectively. Method pop returns the removed node’s data.

• When a method call is made, the called method must know how to return to its caller, so the
return address is pushed onto the program-execution stack. If a series of method calls occurs, the
successive return values are pushed onto the stack in last-in, first-out order.

• The program-execution stack contains the space created for local variables on each invocation of
a method. When the method returns to its caller, the space for that method’s local variables is
popped off the stack, and those variables are no longer available to the program.

902 Chapter 21 Custom Generic Data Structures

• Stacks are used by compilers to evaluate arithmetic expressions and generate machine-language
code to process the expressions.

• The technique of implementing each stack method as a call to a List method is called delega-
tion—the stack method invoked delegates (p. 890) the call to the appropriate List method.

Section 21.6 Queues
• A queue (p. 890) is similar to a checkout line in a supermarket—the first person in line is serviced

first, and other customers enter the line only at the end and wait to be serviced.

• Queue nodes are removed only from the head (p. 890) of the queue and are inserted only at the
tail. For this reason, a queue is referred to as a first-in, first-out FIFOaaaa data structure.

• The insert and remove operations for a queue are known as enqueue (p. 891) and dequeue (p. 891).

• Queues have many uses in computer systems. Most computers have only a single processor, so
only one application at a time can be serviced. Entries for the other applications are placed in a
queue. The entry at the front of the queue is the next to receive service. Each entry gradually ad-
vances to the front of the queue as applications receive service.

Section 21.7 Trees
• A tree is a nonlinear, two-dimensional data structure. Tree nodes contain two or more links.

• A binary tree (p. 893) is a tree whose nodes all contain two links. The root node (p. 893) is the
first node in a tree.

• Each link in the root node refers to a child (p. 893). The left child (p. 893) is the first node in
the left subtree (p. 893), and the right child (p. 893) is the first node in the right subtree (p. 893).

• The children of a node are called siblings (p. 893). A node with no children is a leaf node (p. 893).

• In a binary search tree (p. 894) with no duplicate values, the values in any left subtree are less than
the value in the subtree’s parent node, and the values in any right subtree are greater than the value
in the subtree’s parent node. A node can be inserted only as a leaf node in a binary search tree.

• An inorder traversal (p. 894) of a binary search tree processes the node values in ascending order.

• In a preorder traversal (p. 894), the value in each node is processed as the node is visited. Then
the values in the left subtree are processed, then the values in the right subtree.

• In a postorder traversal (p. 894), the value in each node is processed after the values of its children.

• The binary search tree facilitates duplicate elimination (p. 899). As the tree is created, attempts to
insert a duplicate value are recognized, because a duplicate follows the same “go left” or “go right”
decisions on each comparison as the original value did. Thus, the duplicate eventually is compared
with a node containing the same value. The duplicate value can be discarded at this point.

• In a tightly packed tree (p. 900), each level contains about twice as many elements as the previous
one. So a tightly packed binary search tree with n elements has log2 n levels, and thus at most log2

n comparisons would have to be made either to find a match or to determine that no match ex-
ists. Searching a (tightly packed) 1000-element binary search tree requires at most 10 compari-
sons, because 210 > 1000. Searching a (tightly packed) 1,000,000-element binary search tree
requires at most 20 comparisons, because 220 > 1,000,000.

Self-Review Exercises
21.1 Fill in the blanks in each of the following statements:

a) A self- class is used to form dynamic data structures that can grow and shrink
at execution time.

 Self-Review Exercises 903

b) A(n) is a constrained version of a linked list in which nodes can be inserted
and deleted only from the start of the list.

c) A method that does not alter a linked list, but simply looks at it to determine whether
it’s empty, is referred to as a(n) method.

d) A queue is referred to as a(n) data structure because the first nodes inserted
are the first ones removed.

e) The reference to the next node in a linked list is referred to as a(n) .
f) Automatically reclaiming dynamically allocated memory in Java is called .
g) A(n) is a constrained version of a linked list in which nodes can be inserted

only at the end of the list and deleted only from the start of the list.
h) A(n) is a nonlinear, two-dimensional data structure that contains nodes with

two or more links.
i) A stack is referred to as a(n) data structure because the last node inserted is the

first node removed.
j) The nodes of a(n) tree contain two link members.
k) The first node of a tree is the node.
l) Each link in a tree node refers to a(n) or of that node.
m) A tree node that has no children is called a(n) node.
n) The three traversal algorithms we mentioned in the text for binary search trees are

, and .
o) When compiling types in a package, the javac command-line option specifies

where to store the package and causes the compiler to create the package’s directories if
they do not exist.

p) The compiler uses a(n) to locate the classes it needs in the classpath.
q) The classpath for the compiler and JVM can be specified with the option to

the javac or java command, or by setting the environment variable.
r) There can be only one in a Java source-code file, and it must precede all other

declarations and statements in the file.

21.2 What are the differences between a linked list and a stack?

21.3 What are the differences between a stack and a queue?

21.4 Comment on how each of the following entities or concepts contributes to the reusability
of data structures:

a) classes
b) inheritance
c) composition

21.5 Provide the inorder, preorder and postorder traversals of the binary search tree of
Fig. 21.20.

Fig. 21.20 | Binary search tree with 15 nodes.

49

28

18 40 71 97

83

11 19 32 44 69 72 92 99

904 Chapter 21 Custom Generic Data Structures

Answers to Self-Review Exercises
21.1 a) referential. b) stack. c) predicate. d) first-in, first-out (FIFO). e) link. f) garbage col-
lection. g) queue. h) tree i) last-in, first-out (LIFO). j) binary. k) root. l) child or subtree.
m) leaf. n) inorder, preorder, postorder. o) -d. p) class loader. q) -classpath, CLASSPATH. r) package
declaration.

21.2 It’s possible to insert a node anywhere in a linked list and remove a node from anywhere in
a linked list. Nodes in a stack may be inserted only at the top of the stack and removed only from
the top.

21.3 A queue is a FIFO data structure that has references to both its head and its tail, so that
nodes may be inserted at the tail and deleted from the head. A stack is a LIFO data structure that
has a single reference to the stack’s top, where both insertion and deletion of nodes are performed.

21.4 a) Classes allow us to create as many data structure objects as we wish.
b) Inheritance enables a subclass to reuse the functionality from a superclass. Public and

protected superclass methods can be accessed through a subclass to eliminate duplicate
logic.

c) Composition enables a class to reuse code by storing a reference to an instance of an-
other class in a field. Public methods of the instance can be called by methods in the
class that contains the reference.

21.5 The inorder traversal is

11 18 19 28 32 40 44 49 69 71 72 83 92 97 99

The preorder traversal is

49 28 18 11 19 40 32 44 83 71 69 72 97 92 99

The postorder traversal is

11 19 18 32 44 40 28 69 72 71 92 99 97 83 49

Exercises
21.6 (Concatenating Lists) Write a program that concatenates two linked list objects of charac-
ters. Class ListConcatenate should include a static method concatenate that takes references to
both list objects as arguments and concatenates the second list to the first list.

21.7 (Inserting into an Ordered List) Write a program that inserts 25 random integers from 0 to
100 in order into a linked-list object. For this exercise, you’ll need to modify the List<T> class
(Fig. 21.3) to maintain an ordered list. Name the new version of the class SortedList.

21.8 (Merging Ordered Lists) Modify the SortedList class from Exercise 21.7 to include a merge
method that can merge the SortedList it receives as an argument with the SortedList that calls the
method. Write an application to test method merge.

21.9 (Copying a List Backward) Write a static method reverseCopy that receives a List<T> as
an argument and returns a copy of that List<T> with its elements reversed. Test this method in an
application.

21.10 (Printing a Sentence in Reverse Using a Stack) Write a program that inputs a line of text
and uses a stack to display the words of the line in reverse order.

21.11 (Palindrome Tester) Write a program that uses a stack to determine whether a string is a
palindrome (i.e., the string is spelled identically backward and forward). The program should ignore
spaces and punctuation.

 Exercises 905

21.12 (Infix-to-Postfix Converter) Stacks are used by compilers to help in the process of evaluating
expressions and generating machine-language code. In this and the next exercise, we investigate how
compilers evaluate arithmetic expressions consisting only of constants, operators and parentheses.

Humans generally write expressions like 3 + 4 and 7 / 9 in which the operator (+ or / here) is
written between its operands—this is called infix notation. Computers “prefer” postfix notation, in
which the operator is written to the right of its two operands. The preceding infix expressions
would appear in postfix notation as 3 4 + and 7 9 /, respectively.

To evaluate a complex infix expression, a compiler would first convert the expression to post-
fix notation and evaluate the postfix version. Each of these algorithms requires only a single left-to-
right pass of the expression. Each algorithm uses a stack object in support of its operation, but each
uses the stack for a different purpose.

In this exercise, you’ll write a Java version of the infix-to-postfix conversion algorithm. In the
next exercise, you’ll write a Java version of the postfix expression evaluation algorithm. In a later
exercise, you’ll discover that code you write in this exercise can help you implement a complete
working compiler.

Write class InfixToPostfixConverter to convert an ordinary infix arithmetic expression
(assume a valid expression is entered) with single-digit integers such as

(6 + 2) * 5 - 8 / 4

to a postfix expression. The postfix version (no parentheses are needed) of the this infix expression is

6 2 + 5 * 8 4 / -

The program should read the expression into StringBuffer infix and use one of the stack classes
implemented in this chapter to help create the postfix expression in StringBuffer postfix. The
algorithm for creating a postfix expression is as follows:

a) Push a left parenthesis '(' onto the stack.
b) Append a right parenthesis ')' to the end of infix.
c) While the stack is not empty, read infix from left to right and do the following:

If the current character in infix is a digit, append it to postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator:

Pop operators (if there are any) at the top of the stack while they have equal
or higher precedence than the current operator, and append the popped
operators to postfix.

Push the current character in infix onto the stack.
If the current character in infix is a right parenthesis:

Pop operators from the top of the stack and append them to postfix until
a left parenthesis is at the top of the stack.

Pop (and discard) the left parenthesis from the stack.
The following arithmetic operations are allowed in an expression:

+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% remainder

The stack should be maintained with stack nodes that each contain an instance variable and a
reference to the next stack node. Some methods you may want to provide are as follows:

a) Method convertToPostfix, which converts the infix expression to postfix notation.
b) Method isOperator, which determines whether c is an operator.

906 Chapter 21 Custom Generic Data Structures

c) Method precedence, which determines whether the precedence of operator1 (from the
infix expression) is less than, equal to or greater than that of operator2 (from the stack).
The method returns true if operator1 has lower precedence than operator2. Other-
wise, false is returned.

d) Method peek (this should be added to the stack class), which returns the top value of
the stack without popping the stack.

21.13 (Postfix Evaluator) Write class PostfixEvaluator that evaluates a postfix expression such as

6 2 + 5 * 8 4 / -

The program should read a postfix expression consisting of digits and operators into a StringBuf-
fer. Using modified versions of the stack methods implemented earlier in this chapter, the pro-
gram should scan the expression and evaluate it (assume it’s valid). The algorithm is as follows:

a) Append a right parenthesis ')' to the end of the postfix expression. When the right-
parenthesis character is encountered, no further processing is necessary.

b) Until the right parenthesis is encountered, read the expression from left to right.
If the current character is a digit, do the following:

Push its integer value onto the stack (the integer value of a digit character is its
value in the Unicode character set minus the value of '0' in Unicode).

Otherwise, if the current character is an operator:
Pop the two top elements of the stack into variables x and y.
Calculate y operator x.
Push the result of the calculation onto the stack.

c) When the right parenthesis is encountered in the expression, pop the top value of the
stack. This is the result of the postfix expression.

[Note: In b) above (based on the sample expression at the beginning of this exercise), if the operator
is '/', the top of the stack is 4 and the next element in the stack is 40, then pop 4 into x, pop 40
into y, evaluate 40 / 4 and push the result, 10, back on the stack. This note also applies to operator
'-'.] The arithmetic operations allowed in an expression are: + (addition), - (subtraction), * (mul-
tiplication), / (division), ^ (exponentiation) and % (remainder).

The stack should be maintained with one of the stack classes introduced in this chapter. You
may want to provide the following methods:

a) Method evaluatePostfixExpression, which evaluates the postfix expression.
b) Method calculate, which evaluates the expression op1 operator op2.

21.14 (Postfix Evaluator Modification) Modify the postfix evaluator program of Exercise 21.13
so that it can process integer operands larger than 9.

21.15 (Supermarket Simulation) Write a program that simulates a checkout line at a supermarket.
The line is a queue object. Customers (i.e., customer objects) arrive in random integer intervals of
from 1 to 4 minutes. Also, each customer is serviced in random integer intervals of from 1 to 4 min-
utes. Obviously, the rates need to be balanced. If the average arrival rate is larger than the average
service rate, the queue will grow infinitely. Even with “balanced” rates, randomness can still cause
long lines. Run the supermarket simulation for a 12-hour day (720 minutes), using the following
algorithm:

a) Choose a random integer between 1 and 4 to determine the minute at which the first
customer arrives.

b) At the first customer’s arrival time, do the following:
Determine customer’s service time (random integer from 1 to 4).
Begin servicing the customer.
Schedule arrival time of next customer (random integer 1 to 4 added to the current time).

 Exercises 907

c) For each simulated minute of the day, consider the following:
If the next customer arrives, proceed as follows:

Say so.
Enqueue the customer.
Schedule the arrival time of the next customer.

If service was completed for the last customer, do the following:
Say so.
Dequeue next customer to be serviced.
Determine customer’s service completion time (random integer from 1 to 4

added to the current time).

Now run your simulation for 720 minutes and answer each of the following:
a) What is the maximum number of customers in the queue at any time?
b) What is the longest wait any one customer experiences?
c) What happens if the arrival interval is changed from 1 to 4 minutes to 1 to 3 minutes?

21.16 (Allowing Duplicates in a Binary Tree) Modify Figs. 21.17 and 21.18 to allow the binary
tree to contain duplicates.

21.17 (Processing a Binary Search Tree of Strings) Write a program based on the program of
Figs. 21.17 and 21.18 that inputs a line of text, tokenizes it into separate words, inserts the words
in a binary search tree and prints the inorder, preorder and postorder traversals of the tree.

21.18 (Duplicate Elimination) In this chapter, we saw that duplicate elimination is straightfor-
ward when creating a binary search tree. Describe how you’d perform duplicate elimination when
using only a one-dimensional array. Compare the performance of array-based duplicate elimination
with the performance of binary-search-tree-based duplicate elimination.

21.19 (Depth of a Binary Tree) Modify Figs. 21.17 and 21.18 so the Tree class provides a method
getDepth that determines how many levels are in the tree. Test the method in an application that
inserts 20 random integers in a Tree.

21.20 (Recursively Print a List Backward) Modify the List<T> class of Fig. 21.3 to include meth-
od printListBackward that recursively outputs the items in a linked-list object in reverse order.
Write a test program that creates a list of integers and prints the list in reverse order.

21.21 (Recursively Search a List) Modify the List<T> class of Fig. 21.3 to include method search
that recursively searches a linked-list object for a specified value. The method should return a refer-
ence to the value if it’s found; otherwise, it should return null. Use your method in a test program
that creates a list of integers. The program should prompt the user for a value to locate in the list.

21.22 (Binary Tree Delete) In this exercise, we discuss deleting items from binary search trees. The
deletion algorithm is not as straightforward as the insertion algorithm. Three cases are encountered
when deleting an item—the item is contained in a leaf node (i.e., it has no children), or in a node
that has one child or in a node that has two children.

If the item to be deleted is contained in a leaf node, the node is deleted and the reference in
the parent node is set to null.

If the item to be deleted is contained in a node with one child, the reference in the parent
node is set to reference the child node and the node containing the data item is deleted. This causes
the child node to take the place of the deleted node in the tree.

The last case is the most difficult. When a node with two children is deleted, another node in
the tree must take its place. However, the reference in the parent node cannot simply be assigned to
reference one of the children of the node to be deleted. In most cases, the resulting binary search

908 Chapter 21 Custom Generic Data Structures

tree would not embody the following characteristic of binary search trees (with no duplicate val-
ues): The values in any left subtree are less than the value in the parent node, and the values in any right
subtree are greater than the value in the parent node.

Which node is used as a replacement node to maintain this characteristic? It’s either the node
containing the largest value in the tree less than the value in the node being deleted, or the node
containing the smallest value in the tree greater than the value in the node being deleted. Let’s con-
sider the node with the smaller value. In a binary search tree, the largest value less than a parent’s
value is located in the left subtree of the parent node and is guaranteed to be contained in the right-
most node of the subtree. This node is located by walking down the left subtree to the right until
the reference to the right child of the current node is null. We’re now referencing the replacement
node, which is either a leaf node or a node with one child to its left. If the replacement node is a
leaf node, the steps to perform the deletion are as follows:

a) Store the reference to the node to be deleted in a temporary reference variable.
b) Set the reference in the parent of the node being deleted to reference the replacement

node.
c) Set the reference in the parent of the replacement node to null.
d) Set the reference to the right subtree in the replacement node to reference the right sub-

tree of the node to be deleted.
e) Set the reference to the left subtree in the replacement node to reference the left subtree

of the node to be deleted.
The deletion steps for a replacement node with a left child are similar to those for a replace-

ment node with no children, but the algorithm also must move the child into the replacement
node’s position in the tree. If the replacement node is a node with a left child, the steps to perform
the deletion are as follows:

a) Store the reference to the node to be deleted in a temporary reference variable.
b) Set the reference in the parent of the node being deleted to refer to the replacement

node.
c) Set the reference in the parent of the replacement node to reference the left child of the

replacement node.
d) Set the reference to the right subtree in the replacement node to reference the right sub-

tree of the node to be deleted.
e) Set the reference to the left subtree in the replacement node to reference the left subtree

of the node to be deleted.
Write method deleteNode, which takes as its argument the value to delete. Method delete-

Node should locate in the tree the node containing the value to delete and use the algorithms dis-
cussed here to delete the node. If the value is not found in the tree, the method should display a
message saying so. Modify the program of Figs. 21.17 and 21.18 to use this method. After deleting
an item, call the methods inorderTraversal, preorderTraversal and postorderTraversal to con-
firm that the delete operation was performed correctly.

21.23 (Binary Tree Search) Modify class Tree of Fig. 21.17 to include method contains, which
attempts to locate a specified value in a binary-search-tree object. The method should take as an ar-
gument a search key to locate. If the node containing the search key is found, the method should
return a reference to that node’s data; otherwise, it should return null.

21.24 (Level-Order Binary Tree Traversal) The program of Figs. 21.17 and 21.18 illustrated
three recursive methods of traversing a binary tree—inorder, preorder and postorder traversals. This
exercise presents the level-order traversal of a binary tree, in which the node values are printed level
by level, starting at the root node level. The nodes on each level are printed from left to right. The
level-order traversal is not a recursive algorithm. It uses a queue object to control the output of the
nodes. The algorithm is as follows:

a) Insert the root node in the queue.

 Exercises 909

b) While there are nodes left in the queue, do the following:
Get the next node in the queue.
Print the node’s value.
If the reference to the left child of the node is not null:

Insert the left child node in the queue.
If the reference to the right child of the node is not null:

Insert the right child node in the queue.
Write method levelOrder to perform a level-order traversal of a binary tree object. Modify

the program of Figs. 21.17 and 21.18 to use this method. [Note: You’ll also need to use the queue-
processing methods of Fig. 21.13 in this program.]

21.25 (Printing Trees) Modify class Tree of Fig. 21.17 to include a recursive outputTree method
to display a binary tree object. The method should output the tree row by row, with the top of the
tree at the left of the screen and the bottom of the tree toward the right. Each row is output verti-
cally. For example, the binary tree illustrated in Fig. 21.20 is output as shown in Fig. 21.21.

The rightmost leaf node appears at the top of the output in the rightmost column and the
root node appears at the left of the output. Each column starts five spaces to the right of the pre-
ceding column. Method outputTree should receive an argument totalSpaces representing the
number of spaces preceding the value to be output. (This variable should start at zero so that the
root node is output at the left of the screen.) The method uses a modified inorder traversal to out-
put the tree—it starts at the rightmost node in the tree and works back to the left. The algorithm is
as follows:

While the reference to the current node is not null, perform the following:
Recursively call outputTree with the right subtree of the current node and

totalSpaces + 5.
Use a for statement to count from 1 to totalSpaces and output spaces.
Output the value in the current node.
Set the reference to the current node to refer to the left subtree of the current node.
Increment totalSpaces by 5.

21.26 (Insert/Delete Anywhere in a Linked List) Our linked-list class allowed insertions and dele-
tions at only the front and the back of the linked list. These capabilities were convenient for us when
we used inheritance or composition to produce a stack class and a queue class with minimal code
simply by reusing the list class. Linked lists are normally more general than those we provided. Mod-
ify the linked-list class we developed in this chapter to handle insertions and deletions anywhere in
the list. Create diagrams comparable to Figs. 21.6 (insertAtFront), 21.7 (insertAtBack), 21.8

99
97

92
83

72
71

69
49

44
40

32
28

19
18

11

Fig. 21.21 | Sample output of recursive method outputTree.

910 Chapter 21 Custom Generic Data Structures

(removeFromFront) and 21.9 (removeFromBack) that show how to insert a new node in the middle
of a linked list and how to remove an existing node from the middle of a linked list.

21.27 (Lists and Queues without Tail References) Our linked-list implementation (Fig. 21.3) used
both a firstNode and a lastNode. The lastNode was useful for the insertAtBack and removeFrom-
Back methods of the List class. The insertAtBack method corresponds to the enqueue method of
the Queue class. Rewrite the List class so that it does not use a lastNode. Thus, any operations on
the tail of a list must begin searching the list from the front. Does this affect our implementation of
the Queue class (Fig. 21.13)?

21.28 (Performance of Binary Tree Sorting and Searching) One problem with the binary tree sort
is that the order in which the data is inserted affects the shape of the tree—for the same collection
of data, different orderings can yield binary trees of dramatically different shapes. The performance
of the binary tree sorting and searching algorithms is sensitive to the shape of the binary tree. What
shape would a binary tree have if its data were inserted in increasing order? in decreasing order?
What shape should the tree have to achieve maximal searching performance?

21.29 (Indexed Lists) As presented in the text, linked lists must be searched sequentially. For large
lists, this can result in poor performance. A common technique for improving list-searching perfor-
mance is to create and maintain an index to the list. An index is a set of references to key places in
the list. For example, an application that searches a large list of names could improve performance
by creating an index with 26 entries—one for each letter of the alphabet. A search operation for a
last name beginning with ‘Y’ would then first search the index to determine where the ‘Y’ entries
began, then “jump into” the list at that point and search linearly until the desired name was found.
This would be much faster than searching the linked list from the beginning. Use the List class of
Fig. 21.3 as the basis of an IndexedList class. Write a program that demonstrates the operation of
indexed lists. Be sure to include methods insertInIndexedList, searchIndexedList and delete-
FromIndexedList.

21.30 (Queue Class that Inherits from a List Class) In Section 21.5, we created a stack class from
class List with inheritance (Fig. 21.10) and with composition (Fig. 21.12). In Section 21.6 we cre-
ated a queue class from class List with composition (Fig. 21.13). Create a queue class by inheriting
from class List. What are the differences between this class and the one we created with composi-
tion?

Special Section: Building Your Own Compiler
In Exercises 7.36–7.38, we introduced Simpletron Machine Language (SML), and you imple-
mented a Simpletron computer simulator to execute SML programs. In Exercises 21.31–21.35, we
build a compiler that converts programs written in a high-level programming language to SML.
This section “ties” together the entire programming process. You’ll write programs in this new
high-level language, compile them on the compiler you build and run them on the simulator you
built in Exercise 7.37. You should make every effort to implement your compiler in an object-ori-
ented manner. [Note: Due to the size of the descriptions for Exercises 21.31–21.35, we’ve posted
them in a PDF document located at www.deitel.com/books/jhtp10/.]

www.deitel.com/books/jhtp10/

22GUI Components: Part 2

...the force of events wakes
slumberous talents.
—Edward Hoagland

You and I would see more
interesting photography if they
would stop worrying, and
instead, apply horse-sense to the
problem of recording the look
and feel of their own era.
—Jessie Tarbox Beals

O b j e c t i v e s
In this chapter you’ll:

■ Create and manipulate
sliders, menus, pop-up
menus and windows.

■ Programatically change the
look-and-feel of a GUI, using
Swing’s pluggable look-and-
feel.

■ Create a multiple-document
interface with
JDesktopPane and
JInternalFrame.

■ Use additional layout
managers BoxLayout and
GridBagLayout.

912 Chapter 22 GUI Components: Part 2

22.1 Introduction
In this chapter, we continue our study of Swing GUIs. We discuss additional components
and layout managers and lay the groundwork for building more complex GUIs. We begin
with sliders for selecting from a range of integer values, then discuss additional details of
windows. Next, you’ll use menus to organize an application’s commands.

The look-and-feel of a Swing GUI can be uniform across all platforms on which a Java
program executes, or the GUI can be customized by using Swing’s pluggable look-and-
feel (PLAF). We provide an example that illustrates how to change between Swing’s
default metal look-and-feel (which looks and behaves the same across platforms), the
Nimbus look-and-feel (introduced in Chapter 12), a look-and-feel that simulates Motif (a
UNIX look-and-feel) and one that simulates the Microsoft Windows look-and-feel.

Many of today’s applications use a multiple-document interface (MDI)—a main
window (often called the parent window) containing other windows (often called child
windows) to manage several open documents in parallel. For example, many e-mail pro-
grams allow you to have several e-mail windows open at the same time so that you can
compose or read multiple e-mail messages. We demonstrate Swing’s classes for creating
multiple-document interfaces. Finally, you’ll learn about additional layout managers for
organizing graphical user interfaces. We use several more Swing GUI components in later
chapters as they’re needed.

Swing is now considered a legacy technology. For GUIs, graphics and multimedia in
new Java apps, you should use the features presented in this book’s JavaFX chapters.

Java SE 8: Implementing Event Listeners with Lambdas
Throughout this chapter, we use anonymous inner classes and nested classes to implement
event handlers so that the examples can compile and execute with both Java SE 7 and Java
SE 8. In many of the examples, you could implement the functional event-listener inter-
faces with Java SE 8 lambdas (as demonstrated in Section 17.9).

22.2 JSlider
JSliders enable a user to select from a range of integer values. Class JSlider inherits from
JComponent. Figure 22.1 shows a horizontal JSlider with tick marks and the thumb that
allows a user to select a value. JSliders can be customized to display major tick marks,
minor tick marks and labels for the tick marks. They also support snap-to ticks, which
cause the thumb, when positioned between two tick marks, to snap to the closest one.

22.1 Introduction
22.2 JSlider
22.3 Understanding Windows in Java
22.4 Using Menus with Frames
22.5 JPopupMenu
22.6 Pluggable Look-and-Feel

22.7 JDesktopPane and JInternalFrame
22.8 JTabbedPane
22.9 BoxLayout Layout Manager

22.10 GridBagLayout Layout Manager
22.11 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

22.2 JSlider 913

Most Swing GUI components support mouse and keyboard interactions—e.g., if a
JSlider has the focus (i.e., it’s the currently selected GUI component in the user inter-
face), pressing the left arrow key or right arrow key causes the JSlider’s thumb to decrease
or increase by 1, respectively. The down arrow key and up arrow key also cause the thumb
to decrease or increase by 1 tick, respectively. The PgDn (page down) key and PgUp (page
up) key cause the thumb to decrease or increase by block increments of one-tenth of the
range of values, respectively. The Home key moves the thumb to the minimum value of the
JSlider, and the End key moves the thumb to the maximum value of the JSlider.

JSliders have either a horizontal or a vertical orientation. For a horizontal JSlider,
the minimum value is at the left end and the maximum is at the right end. For a vertical
JSlider, the minimum value is at the bottom and the maximum is at the top. The min-
imum and maximum value positions on a JSlider can be reversed by invoking JSlider
method setInverted with boolean argument true. The relative position of the thumb
indicates the current value of the JSlider.

The program in Figs. 22.2–22.4 allows the user to size a circle drawn on a subclass of
JPanel called OvalPanel (Fig. 22.2). The user specifies the circle’s diameter with a hori-
zontal JSlider. Class OvalPanel knows how to draw a circle on itself, using its own
instance variable diameter to determine the diameter of the circle—the diameter is used
as the width and height of the bounding box in which the circle is displayed. The diameter
value is set when the user interacts with the JSlider. The event handler calls method set-
Diameter in class OvalPanel to set the diameter and calls repaint to draw the new circle.
The repaint call results in a call to OvalPanel’s paintComponent method.

Fig. 22.1 | JSlider component with horizontal orientation.

1 // Fig. 22.2: OvalPanel.java
2 // A customized JPanel class.
3 import java.awt.Graphics;
4 import java.awt.Dimension;
5 import javax.swing.JPanel;
6
7 public class OvalPanel extends JPanel
8 {
9 private int diameter = 10; // default diameter

10
11 // draw an oval of the specified diameter
12 @Override
13 public void paintComponent(Graphics g)
14 {
15 super.paintComponent(g);
16 g.fillOval(10, 10, diameter, diameter);
17 }
18

Fig. 22.2 | JPanel subclass for drawing circles of a specified diameter. (Part 1 of 2.)

Tick markThumb

914 Chapter 22 GUI Components: Part 2

19 // validate and set diameter, then repaint
20 public void setDiameter(int newDiameter)
21 {
22 // if diameter invalid, default to 10
23 diameter = (newDiameter >= 0 ? newDiameter : 10);
24 repaint(); // repaint panel
25 }
26
27 // used by layout manager to determine preferred size
28 public Dimension getPreferredSize()
29 {
30 return new Dimension(200, 200);
31 }
32
33
34
35
36
37
38 } // end class OvalPanel

1 // Fig. 22.3: SliderFrame.java
2 // Using JSliders to size an oval.
3 import java.awt.BorderLayout;
4 import java.awt.Color;
5 import javax.swing.JFrame;
6
7 import javax.swing.SwingConstants;
8
9

10
11 public class SliderFrame extends JFrame
12 {
13
14 private final OvalPanel myPanel; // panel to draw circle
15
16 // no-argument constructor
17 public SliderFrame()
18 {
19 super("Slider Demo");
20
21 myPanel = new OvalPanel(); // create panel to draw circle
22 myPanel.setBackground(Color.YELLOW);
23
24
25
26
27
28
29

Fig. 22.3 | JSlider value used to determine the diameter of a circle. (Part 1 of 2.)

Fig. 22.2 | JPanel subclass for drawing circles of a specified diameter. (Part 2 of 2.)

// used by layout manager to determine minimum size
public Dimension getMinimumSize()
{
 return getPreferredSize();
}

import javax.swing.JSlider;

import javax.swing.event.ChangeListener;
import javax.swing.event.ChangeEvent;

private final JSlider diameterJSlider; // slider to select diameter

// set up JSlider to control diameter value
diameterJSlider =
 new JSlider(SwingConstants.HORIZONTAL, 0, 200, 10);
diameterJSlider.setMajorTickSpacing(10); // create tick every 10
diameterJSlider.setPaintTicks(true); // paint ticks on slider

22.2 JSlider 915

Class OvalPanel (Fig. 22.2) contains a paintComponent method (lines 12–17) that
draws a filled oval (a circle in this example), a setDiameter method (lines 20–25) that
changes the circle’s diameter and repaints the OvalPanel, a getPreferredSize method

30
31
32
33
34
35
36
37
38
39
40
41
42
43 add(diameterJSlider, BorderLayout.SOUTH);
44 add(myPanel, BorderLayout.CENTER);
45 }
46 } // end class SliderFrame

1 // Fig. 22.4: SliderDemo.java
2 // Testing SliderFrame.
3 import javax.swing.JFrame;
4
5 public class SliderDemo
6 {
7 public static void main(String[] args)
8 {
9 SliderFrame sliderFrame = new SliderFrame();

10 sliderFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 sliderFrame.setSize(220, 270);
12 sliderFrame.setVisible(true);
13 }
14 } // end class SliderDemo

Fig. 22.4 | Test class for SliderFrame.

Fig. 22.3 | JSlider value used to determine the diameter of a circle. (Part 2 of 2.)

// register JSlider event listener
diameterJSlider.addChangeListener(
 new ChangeListener() // anonymous inner class
 {
 // handle change in slider value
 @Override
 public void stateChanged(ChangeEvent e)
 {
 myPanel.setDiameter(diameterJSlider.getValue());
 }
 }
);

a) Initial GUI with
default circle

b) GUI after the user
moves the

JSlider’s thumb to
the right

916 Chapter 22 GUI Components: Part 2

(lines 28–31) that returns the preferred width and height of an OvalPanel and a getMin-
imumSize method (lines 34–37) that returns an OvalPanel’s minimum width and height.
Methods getPreferredSize and getMinimumSize are used by some layout managers to
determine the size of a component.

Class SliderFrame (Fig. 22.3) creates the JSlider that controls the diameter of the
circle. Class SliderFrame’s constructor (lines 17–45) creates OvalPanel object myPanel
(line 21) and sets its background color (line 22). Lines 25–26 create JSlider object diam-
eterJSlider to control the diameter of the circle drawn on the OvalPanel. The JSlider
constructor takes four arguments. The first specifies the orientation of diameterJSlider,
which is HORIZONTAL (a constant in interface SwingConstants). The second and third
arguments indicate the minimum and maximum integer values in the range of values for
this JSlider. The last argument indicates that the initial value of the JSlider (i.e., where
the thumb is displayed) should be 10.

Lines 27–28 customize the appearance of the JSlider. Method setMajorTick-
Spacing indicates that each major tick mark represents 10 values in the range of values
supported by the JSlider. Method setPaintTicks with a true argument indicates that
the tick marks should be displayed (they aren’t displayed by default). For other methods
that are used to customize a JSlider’s appearance, see the JSlider online documentation
(docs.oracle.com/javase/7/docs/api/javax/swing/JSlider.html).

JSliders generate ChangeEvents (package javax.swing.event) in response to user
interactions. An object of a class that implements interface ChangeListener (package
javax.swing.event) and declares method stateChanged can respond to ChangeEvents.
Lines 31–41 register a ChangeListener to handle diameterJSlider’s events. When
method stateChanged (lines 35–39) is called in response to a user interaction, line 38 calls
myPanel’s setDiameter method and passes the current value of the JSlider as an argu-
ment. JSlider method getValue returns the current thumb position.

22.3 Understanding Windows in Java
A JFrame is a window with a title bar and a border. Class JFrame is a subclass of Frame
(package java.awt), which is a subclass of Window (package java.awt). As such, JFrame is
one of the heavyweight Swing GUI components. When you display a window from a Java
program, the window is provided by the local platform’s windowing toolkit, and therefore
the window will look like every other window displayed on that platform. When a Java
application executes on a Macintosh and displays a window, the window’s title bar and
borders will look like those of other Macintosh applications. When a Java application ex-
ecutes on a Microsoft Windows system and displays a window, the window’s title bar and
borders will look like those of other Microsoft Windows applications. And when a Java
application executes on a UNIX platform and displays a window, the window’s title bar
and borders will look like those of other UNIX applications on that platform.

Returning Window Resources to the System
By default, when the user closes a JFrame window, it’s hidden (i.e., removed from the
screen), but you can control this with JFrame method setDefaultCloseOperation. Inter-
face WindowConstants (package javax.swing), which class JFrame implements, declares
three constants—DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE and HIDE_ON_CLOSE (the de-
fault)—for use with this method. Some platforms allow only a limited number of windows

22.4 Using Menus with Frames 917

to be displayed on the screen. Thus, a window is a valuable resource that should be given
back to the system when it’s no longer needed. Class Window (an indirect superclass of
JFrame) declares method dispose for this purpose. When a Window is no longer needed in
an application, you should explicitly dispose of it. This can be done by calling the Window’s
dispose method or by calling method setDefaultCloseOperation with the argument
WindowConstants.DISPOSE_ON_CLOSE. Terminating an application also returns window
resources to the system. Using DO_NOTHING_ON_CLOSE indicates that the program will de-
termine what to do when the user attempts to close the window. For example, the program
might want to ask whether to save a file’s changes before closing a window.

Displaying and Positioning Windows
By default, a window is not displayed on the screen until the program invokes the win-
dow’s setVisible method (inherited from class java.awt.Component) with a true argu-
ment. A window’s size should be set with a call to method setSize (inherited from class
java.awt.Component). The position of a window when it appears on the screen is speci-
fied with method setLocation (inherited from class java.awt.Component).

Window Events
When the user manipulates the window, this action generates window events. Event lis-
teners are registered for window events with Window method addWindowListener. The
WindowListener interface provides seven window-event-handling methods—window-
Activated (called when the user makes a window the active window), windowClosed
(called after the window is closed), windowClosing (called when the user initiates closing
of the window), windowDeactivated (called when the user makes another window the ac-
tive window), windowDeiconified (called when the user restores a minimized window),
windowIconified (called when the user minimizes a window) and windowOpened (called
when a program first displays a window on the screen).

22.4 Using Menus with Frames
Menus are an integral part of GUIs. They allow the user to perform actions without un-
necessarily cluttering a GUI with extra components. In Swing GUIs, menus can be at-
tached only to objects of the classes that provide method setJMenuBar. Two such classes
are JFrame and JApplet. The classes used to declare menus are JMenuBar, JMenu, JMenu-
Item, JCheckBoxMenuItem and class JRadioButtonMenuItem.

Overview of Several Menu-Related Components
Class JMenuBar (a subclass of JComponent) contains the methods necessary to manage a
menu bar, which is a container for menus. Class JMenu (a subclass of javax.swing.JMenu-
Item) contains the methods necessary for managing menus. Menus contain menu items
and are added to menu bars or to other menus as submenus. When a menu is clicked, it
expands to show its list of menu items.

Look-and-Feel Observation 22.1
Menus simplify GUIs because components can be hidden within them. These components
will be visible only when the user looks for them by selecting the menu.

918 Chapter 22 GUI Components: Part 2

Class JMenuItem (a subclass of javax.swing.AbstractButton) contains the methods
necessary to manage menu items. A menu item is a GUI component inside a menu that,
when selected, causes an action event. A menu item can be used to initiate an action, or it
can be a submenu that provides more menu items from which the user can select. Sub-
menus are useful for grouping related menu items in a menu.

Class JCheckBoxMenuItem (a subclass of javax.swing.JMenuItem) contains the
methods necessary to manage menu items that can be toggled on or off. When a JCheck-
BoxMenuItem is selected, a check appears to the left of the menu item. When the JCheck-
BoxMenuItem is selected again, the check is removed.

Class JRadioButtonMenuItem (a subclass of javax.swing.JMenuItem) contains the
methods necessary to manage menu items that can be toggled on or off like JCheckBox-
MenuItems. When multiple JRadioButtonMenuItems are maintained as part of a Button-
Group, only one item in the group can be selected at a given time. When a
JRadioButtonMenuItem is selected, a filled circle appears to the left of the menu item.
When another JRadioButtonMenuItem is selected, the filled circle of the previously
selected menu item is removed.

Using Menus in an Application
Figures 22.5–22.6 demonstrate various menu items and how to specify special characters
called mnemonics that can provide quick access to a menu or menu item from the key-
board. Mnemonics can be used with all subclasses of javax.swing.AbstractButton. Class
MenuFrame (Fig. 22.5) creates the GUI and handles the menu-item events. Most of the
code in this application appears in the class’s constructor (lines 34–151).

1 // Fig. 22.5: MenuFrame.java
2 // Demonstrating menus.
3 import java.awt.Color;
4 import java.awt.Font;
5 import java.awt.BorderLayout;
6 import java.awt.event.ActionListener;
7 import java.awt.event.ActionEvent;
8 import java.awt.event.ItemListener;
9 import java.awt.event.ItemEvent;

10 import javax.swing.JFrame;
11
12
13 import javax.swing.JOptionPane;
14 import javax.swing.JLabel;
15 import javax.swing.SwingConstants;
16 import javax.swing.ButtonGroup;
17
18
19
20
21 public class MenuFrame extends JFrame
22 {
23 private final Color[] colorValues =
24 {Color.BLACK, Color.BLUE, Color.RED, Color.GREEN};

Fig. 22.5 | JMenus and mnemonics. (Part 1 of 5.)

import javax.swing.JRadioButtonMenuItem;
import javax.swing.JCheckBoxMenuItem;

import javax.swing.JMenu;
import javax.swing.JMenuItem;
import javax.swing.JMenuBar;

22.4 Using Menus with Frames 919

25
26
27
28 private final JLabel displayJLabel; // displays sample text
29 private final ButtonGroup fontButtonGroup; // manages font menu items
30 private final ButtonGroup colorButtonGroup; // manages color menu items
31 private int style; // used to create style for font
32
33 // no-argument constructor set up GUI
34 public MenuFrame()
35 {
36 super("Using JMenus");
37
38
39
40
41 // create About... menu item
42
43
44
45 aboutItem.addActionListener(
46 new ActionListener() // anonymous inner class
47 {
48 // display message dialog when user selects About...
49 @Override
50 public void actionPerformed(ActionEvent event)
51 {
52 JOptionPane.showMessageDialog(MenuFrame.this,
53 "This is an example\nof using menus",
54 "About", JOptionPane.PLAIN_MESSAGE);
55 }
56 }
57);
58
59
60
61
62 exitItem.addActionListener(
63 new ActionListener() // anonymous inner class
64 {
65 // terminate application when user clicks exitItem
66 @Override
67 public void actionPerformed(ActionEvent event)
68 {
69 System.exit(0); // exit application
70 }
71 }
72);
73
74
75
76
77

Fig. 22.5 | JMenus and mnemonics. (Part 2 of 5.)

private final JRadioButtonMenuItem[] colorItems; // color menu items
private final JRadioButtonMenuItem[] fonts; // font menu items
private final JCheckBoxMenuItem[] styleItems; // font style menu items

JMenu fileMenu = new JMenu("File"); // create file menu
fileMenu.setMnemonic('F'); // set mnemonic to F

JMenuItem aboutItem = new JMenuItem("About...");
aboutItem.setMnemonic('A'); // set mnemonic to A
fileMenu.add(aboutItem); // add about item to file menu

JMenuItem exitItem = new JMenuItem("Exit"); // create exit item
exitItem.setMnemonic('x'); // set mnemonic to x
fileMenu.add(exitItem); // add exit item to file menu

JMenuBar bar = new JMenuBar(); // create menu bar
setJMenuBar(bar); // add menu bar to application
bar.add(fileMenu); // add file menu to menu bar

920 Chapter 22 GUI Components: Part 2

78
79
80
81 // array listing string colors
82 String[] colors = { "Black", "Blue", "Red", "Green" };
83
84
85
86
87 // create radio button menu items for colors
88
89
90 ItemHandler itemHandler = new ItemHandler(); // handler for colors
91
92 // create color radio button menu items
93 for (int count = 0; count < colors.length; count++)
94 {
95
96
97
98
99 colorItems[count].addActionListener(itemHandler);
100 }
101
102
103
104
105
106
107 // array listing font names
108 String[] fontNames = { "Serif", "Monospaced", "SansSerif" };
109
110
111
112 // create radio button menu items for font names
113
114
115
116 // create Font radio button menu items
117 for (int count = 0; count < fonts.length; count++)
118 {
119
120
121
122 fonts[count].addActionListener(itemHandler); // add handler
123 }
124
125
126
127
128 String[] styleNames = { "Bold", "Italic" }; // names of styles
129
130 StyleHandler styleHandler = new StyleHandler(); // style handler

Fig. 22.5 | JMenus and mnemonics. (Part 3 of 5.)

JMenu formatMenu = new JMenu("Format"); // create format menu
formatMenu.setMnemonic('r'); // set mnemonic to r

JMenu colorMenu = new JMenu("Color"); // create color menu
colorMenu.setMnemonic('C'); // set mnemonic to C

colorItems = new JRadioButtonMenuItem[colors.length];
colorButtonGroup = new ButtonGroup(); // manages colors

colorItems[count] =
 new JRadioButtonMenuItem(colors[count]); // create item
colorMenu.add(colorItems[count]); // add item to color menu
colorButtonGroup.add(colorItems[count]); // add to group

colorItems[0].setSelected(true); // select first Color item

formatMenu.add(colorMenu); // add color menu to format menu
formatMenu.addSeparator(); // add separator in menu

JMenu fontMenu = new JMenu("Font"); // create font menu
fontMenu.setMnemonic('n'); // set mnemonic to n

fonts = new JRadioButtonMenuItem[fontNames.length];
fontButtonGroup = new ButtonGroup(); // manages font names

fonts[count] = new JRadioButtonMenuItem(fontNames[count]);
fontMenu.add(fonts[count]); // add font to font menu
fontButtonGroup.add(fonts[count]); // add to button group

fonts[0].setSelected(true); // select first Font menu item
fontMenu.addSeparator(); // add separator bar to font menu

styleItems = new JCheckBoxMenuItem[styleNames.length];

22.4 Using Menus with Frames 921

131
132 // create style checkbox menu items
133 for (int count = 0; count < styleNames.length; count++)
134 {
135
136
137
138 styleItems[count].addItemListener(styleHandler); // handler
139 }
140
141
142
143
144 // set up label to display text
145 displayJLabel = new JLabel("Sample Text", SwingConstants.CENTER);
146 displayJLabel.setForeground(colorValues[0]);
147 displayJLabel.setFont(new Font("Serif", Font.PLAIN, 72));
148
149 getContentPane().setBackground(Color.CYAN); // set background
150 add(displayJLabel, BorderLayout.CENTER); // add displayJLabel
151 } // end MenuFrame constructor
152
153 // inner class to handle action events from menu items
154 private class ItemHandler implements ActionListener
155 {
156 // process color and font selections
157 @Override
158 public void actionPerformed(ActionEvent event)
159 {
160 // process color selection
161 for (int count = 0; count < colorItems.length; count++)
162 {
163 if (colorItems[count].isSelected())
164 {
165 displayJLabel.setForeground(colorValues[count]);
166 break;
167 }
168 }
169
170 // process font selection
171 for (int count = 0; count < fonts.length; count++)
172 {
173 if (event.getSource() == fonts[count])
174 {
175 displayJLabel.setFont(
176 new Font(fonts[count].getText(), style, 72));
177 }
178 }
179
180 repaint(); // redraw application
181 }
182 } // end class ItemHandler
183

Fig. 22.5 | JMenus and mnemonics. (Part 4 of 5.)

styleItems[count] =
 new JCheckBoxMenuItem(styleNames[count]); // for style
fontMenu.add(styleItems[count]); // add to font menu

formatMenu.add(fontMenu); // add Font menu to Format menu
bar.add(formatMenu); // add Format menu to menu bar

922 Chapter 22 GUI Components: Part 2

184 // inner class to handle item events from checkbox menu items
185 private class StyleHandler implements ItemListener
186 {
187 // process font style selections
188 @Override
189 public void itemStateChanged(ItemEvent e)
190 {
191 String name = displayJLabel.getFont().getName(); // current Font
192 Font font; // new font based on user selections
193
194 // determine which items are checked and create Font
195 if (styleItems[0].isSelected() &&
196 styleItems[1].isSelected())
197 font = new Font(name, Font.BOLD + Font.ITALIC, 72);
198 else if (styleItems[0].isSelected())
199 font = new Font(name, Font.BOLD, 72);
200 else if (styleItems[1].isSelected())
201 font = new Font(name, Font.ITALIC, 72);
202 else
203 font = new Font(name, Font.PLAIN, 72);
204
205 displayJLabel.setFont(font);
206 repaint(); // redraw application
207 }
208 }
209 } // end class MenuFrame

1 // Fig. 22.6: MenuTest.java
2 // Testing MenuFrame.
3 import javax.swing.JFrame;
4
5 public class MenuTest
6 {
7 public static void main(String[] args)
8 {
9 MenuFrame menuFrame = new MenuFrame();

10 menuFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 menuFrame.setSize(500, 200);
12 menuFrame.setVisible(true);
13 }
14 } // end class MenuTest

Fig. 22.6 | Test class for MenuFrame. (Part 1 of 2.)

Fig. 22.5 | JMenus and mnemonics. (Part 5 of 5.)

Menu barMnemonic
characters

Menu

22.4 Using Menus with Frames 923

Setting Up the File Menu
Lines 38–76 set up the File menu and attach it to the menu bar. The File menu contains an
About… menu item that displays a message dialog when the menu item is selected and an
Exit menu item that can be selected to terminate the application. Line 38 creates a JMenu and
passes to the constructor the string "File" as the name of the menu. Line 39 uses JMenu
method setMnemonic (inherited from class AbstractButton) to indicate that F is the mne-
monic for this menu. Pressing the Alt key and the letter F opens the menu, just as clicking
the menu name with the mouse would. In the GUI, the mnemonic character in the menu’s
name is displayed with an underline. (See the screen captures in Fig. 22.6.)

Lines 42–43 create JMenuItem aboutItem with the text “About...” and set its mne-
monic to the letter A. This menu item is added to fileMenu at line 44 with JMenu method
add. To access the About... menu item through the keyboard, press the Alt key and letter
F to open the File menu, then press A to select the About... menu item. Lines 46–56 create
an ActionListener to process aboutItem’s action event. Lines 52–54 display a message
dialog box. In most prior uses of showMessageDialog, the first argument was null. The
purpose of the first argument is to specify the parent window that helps determine where
the dialog box will be displayed. If the parent window is specified as null, the dialog box
appears in the center of the screen. Otherwise, it appears centered over the specified parent
window. In this example, the program specifies the parent window with Menu-
Frame.this—the this reference of the MenuFrame object. When using the this reference
in an inner class, specifying this by itself refers to the inner-class object. To reference the
outer-class object’s this reference, qualify this with the outer-class name and a dot (.).

Recall that dialog boxes are typically modal. A modal dialog box does not allow any
other window in the application to be accessed until the dialog box is dismissed. The dia-
logs displayed with class JOptionPane are modal dialogs. Class JDialog can be used to
create your own modal or nonmodal dialogs.

Look-and-Feel Observation 22.2
Mnemonics provide quick access to menu commands and button commands through the
keyboard.

Look-and-Feel Observation 22.3
Different mnemonics should be used for each button or menu item. Normally, the first letter
in the label on the menu item or button is used as the mnemonic. If several buttons or menu
items start with the same letter, choose the next most prominent letter in the name (e.g., x is
commonly chosen for an Exit button or menu item). Mnemonics are case insensitive.

Fig. 22.6 | Test class for MenuFrame. (Part 2 of 2.)

Expanded
submenu

Separator
line

Menu items

924 Chapter 22 GUI Components: Part 2

Lines 59–72 create menu item exitItem, set its mnemonic to x, add it to fileMenu
and register an ActionListener that terminates the program when the user selects exit-
Item. Lines 74–76 create the JMenuBar, attach it to the window with JFrame method set-
JMenuBar and use JMenuBar method add to attach the fileMenu to the JMenuBar.

Setting Up the Format Menu
Lines 78–79 create the formatMenu and set its mnemonic to r. F is not used because that’s
the File menu’s mnemonic. Lines 84–85 create colorMenu (this will be a submenu in Format)
and set its mnemonic to C. Line 88 creates JRadioButtonMenuItem array colorItems, which
refers to the menu items in colorMenu. Line 89 creates ButtonGroup colorButtonGroup,
which ensures that only one of the Color submenu items is selected at a time. Line 90 creates
an instance of inner class ItemHandler (declared at lines 154–181) that responds to selec-
tions from the Color and Font submenus (discussed shortly). The loop at lines 93–100 creates
each JRadioButtonMenuItem in array colorItems, adds each menu item to colorMenu and
to colorButtonGroup and registers the ActionListener for each menu item.

Line 102 invokes AbstractButton method setSelected to select the first element in
array colorItems. Line 104 adds colorMenu as a submenu of formatMenu. Line 105
invokes JMenu method addSeparator to add a horizontal separator line to the menu.

Lines 108–126 create the Font submenu and several JRadioButtonMenuItems and select
the first element of JRadioButtonMenuItem array fonts. Line 129 creates a JCheckBoxMenu-
Item array to represent the menu items for specifying bold and italic styles for the fonts. Line
130 creates an instance of inner class StyleHandler (declared at lines 185–208) to respond
to the JCheckBoxMenuItem events. The for statement at lines 133–139 creates each JCheck-
BoxMenuItem, adds it to fontMenu and registers its ItemListener. Line 141 adds fontMenu
as a submenu of formatMenu. Line 142 adds the formatMenu to bar (the menu bar).

Creating the Rest of the GUI and Defining the Event Handlers
Lines 145–147 create a JLabel for which the Format menu items control the font, font
color and font style. The initial foreground color is set to the first element of array color-
Values (Color.BLACK) by invoking JComponent method setForeground. The initial font
is set to Serif with PLAIN style and 72-point size. Line 149 sets the background color of

Look-and-Feel Observation 22.4
Menus appear left to right in the order they’re added to a JMenuBar.

Look-and-Feel Observation 22.5
A submenu is created by adding a menu as a menu item in another menu.

Look-and-Feel Observation 22.6
Separators can be added to a menu to group menu items logically.

Look-and-Feel Observation 22.7
Any JComponent can be added to a JMenu or to a JMenuBar.

22.5 JPopupMenu 925

the window’s content pane to cyan, and line 150 attaches the JLabel to the CENTER of the
content pane’s BorderLayout.

ItemHandler method actionPerformed (lines 157–181) uses two for statements to
determine which font or color menu item generated the event and sets the font or color of
the JLabel displayLabel, respectively. The if condition at line 163 uses Abstract-
Button method isSelected to determine the selected JRadioButtonMenuItem. The if
condition at line 173 invokes the event object’s getSource method to get a reference to
the JRadioButtonMenuItem that generated the event. Line 176 invokes AbstractButton
method getText to obtain the name of the font from the menu item.

StyleHandler method itemStateChanged (lines 188–207) is called if the user selects
a JCheckBoxMenuItem in the fontMenu. Lines 195–203 determine which JCheckBoxMenu-
Items are selected and use their combined state to determine the new font style.

22.5 JPopupMenu
Applications often provide context-sensitive pop-up menus for several reasons—they can
be convenient, there might not be a menu bar and the options they display can be specific
to individual on-screen components. In Swing, such menus are created with class JPopup-
Menu (a subclass of JComponent). These menus provide options that are specific to the
component for which the popup trigger event occurred—on most systems, when the user
presses and releases the right mouse button.

The application in Figs. 22.7–22.8 creates a JPopupMenu that allows the user to select
one of three colors and change the background color of the window. When the user clicks
the right mouse button on the PopupFrame window’s background, a JPopupMenu con-
taining colors appears. If the user clicks a JRadioButtonMenuItem for a color, ItemHandler
method actionPerformed changes the background color of the window’s content pane.

Line 25 of the PopupFrame constructor (Fig. 22.7, lines 21–70) creates an instance of
class ItemHandler (declared in lines 73–89) that will process the item events from the
menu items in the pop-up menu. Line 29 creates the JPopupMenu. The for statement
(lines 33–39) creates a JRadioButtonMenuItem object (line 35), adds it to popupMenu (line
36), adds it to ButtonGroup colorGroup (line 37) to maintain one selected JRadioBut-
tonMenuItem at a time and registers its ActionListener (line 38). Line 41 sets the initial
background to white by invoking method setBackground.

Look-and-Feel Observation 22.8
The pop-up trigger event is platform specific. On most platforms that use a mouse with
multiple buttons, the pop-up trigger event occurs when the user clicks the right mouse but-
ton on a component that supports a pop-up menu.

1 // Fig. 22.7: PopupFrame.java
2 // Demonstrating JPopupMenus.
3 import java.awt.Color;
4 import java.awt.event.MouseAdapter;
5 import java.awt.event.MouseEvent;
6 import java.awt.event.ActionListener;

Fig. 22.7 | JPopupMenu for selecting colors. (Part 1 of 3.)

926 Chapter 22 GUI Components: Part 2

7 import java.awt.event.ActionEvent;
8 import javax.swing.JFrame;
9 import javax.swing.JRadioButtonMenuItem;

10 import javax.swing.JPopupMenu;
11 import javax.swing.ButtonGroup;
12
13 public class PopupFrame extends JFrame
14 {
15 private final JRadioButtonMenuItem[] items; // holds items for colors
16 private final Color[] colorValues =
17 { Color.BLUE, Color.YELLOW, Color.RED }; // colors to be used
18
19
20 // no-argument constructor sets up GUI
21 public PopupFrame()
22 {
23 super("Using JPopupMenus");
24
25 ItemHandler handler = new ItemHandler(); // handler for menu items
26 String[] colors = { "Blue", "Yellow", "Red" };
27
28 ButtonGroup colorGroup = new ButtonGroup(); // manages color items
29
30 items = new JRadioButtonMenuItem[colors.length];
31
32 // construct menu item, add to pop-up menu, enable event handling
33 for (int count = 0; count < items.length; count++)
34 {
35 items[count] = new JRadioButtonMenuItem(colors[count]);
36
37 colorGroup.add(items[count]); // add item to button group
38 items[count].addActionListener(handler); // add handler
39 }
40
41 setBackground(Color.WHITE);
42
43 // declare a MouseListener for the window to display pop-up menu
44 addMouseListener(
45 new MouseAdapter() // anonymous inner class
46 {
47 // handle mouse press event
48 @Override
49 public void mousePressed(MouseEvent event)
50 {
51 checkForTriggerEvent(event);
52 }
53
54 // handle mouse release event
55 @Override
56 public void mouseReleased(MouseEvent event)
57 {
58 checkForTriggerEvent(event);
59 }

Fig. 22.7 | JPopupMenu for selecting colors. (Part 2 of 3.)

private final JPopupMenu popupMenu; // allows user to select color

popupMenu = new JPopupMenu(); // create pop-up menu

popupMenu.add(items[count]); // add item to pop-up menu

22.5 JPopupMenu 927

60
61 // determine whether event should trigger pop-up menu
62 private void checkForTriggerEvent(MouseEvent event)
63 {
64
65
66
67 }
68 }
69);
70 } // end PopupFrame constructor
71
72 // private inner class to handle menu item events
73 private class ItemHandler implements ActionListener
74 {
75 // process menu item selections
76 @Override
77 public void actionPerformed(ActionEvent event)
78 {
79 // determine which menu item was selected
80 for (int i = 0; i < items.length; i++)
81 {
82 if (event.getSource() == items[i])
83 {
84 getContentPane().setBackground(colorValues[i]);
85 return;
86 }
87 }
88 }
89 } // end private inner class ItemHandler
90 } // end class PopupFrame

1 // Fig. 22.8: PopupTest.java
2 // Testing PopupFrame.
3 import javax.swing.JFrame;
4
5 public class PopupTest
6 {
7 public static void main(String[] args)
8 {
9 PopupFrame popupFrame = new PopupFrame();

10 popupFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 popupFrame.setSize(300, 200);
12 popupFrame.setVisible(true);
13 }
14 } // end class PopupTest

Fig. 22.8 | Test class for PopupFrame. (Part 1 of 2.)

Fig. 22.7 | JPopupMenu for selecting colors. (Part 3 of 3.)

if (event.isPopupTrigger())
 popupMenu.show(
 event.getComponent(), event.getX(), event.getY());

928 Chapter 22 GUI Components: Part 2

Lines 44–69 register a MouseListener to handle the mouse events of the application
window. Methods mousePressed (lines 48–52) and mouseReleased (lines 55–59) check
for the pop-up trigger event. Each method calls private utility method checkForTrigger-
Event (lines 62–67) to determine whether the pop-up trigger event occurred. If it did,
MouseEvent method isPopupTrigger returns true, and JPopupMenu method show dis-
plays the JPopupMenu. The first argument to method show specifies the origin component,
whose position helps determine where the JPopupMenu will appear on the screen. The last
two arguments are the x-y coordinates (measured from the origin component’s upper-left
corner) at which the JPopupMenu is to appear.

When the user selects a menu item from the pop-up menu, class ItemHandler’s
method actionPerformed (lines 76–88) determines which JRadioButtonMenuItem the
user selected and sets the background color of the window’s content pane.

22.6 Pluggable Look-and-Feel
A program that uses Java’s AWT GUI components (package java.awt) takes on the look-
and-feel of the platform on which the program executes. A Java application running on a
Mac OS X looks like other Mac OS X applications, one running on Microsoft Windows
looks like other Windows applications, and one running on a Linux platform looks like
other applications on that Linux platform. This is sometimes desirable, because it allows
users of the application on each platform to use GUI components with which they’re al-
ready familiar. However, it also introduces interesting portability issues.

Look-and-Feel Observation 22.9
Displaying a JPopupMenu for the pop-up trigger event of multiple GUI components re-
quires registering mouse-event handlers for each of those GUI components.

Portability Tip 22.1
GUI components often look different on different platforms (fonts, font sizes, component
borders, etc.) and might require different amounts of space to display. This could change
their layout and alignments.

Portability Tip 22.2
GUI components on different platforms have might different default functionality—e.g.,
not all platforms allow a button with the focus to be “pressed” with the space bar.

Fig. 22.8 | Test class for PopupFrame. (Part 2 of 2.)

22.6 Pluggable Look-and-Feel 929

Swing’s lightweight GUI components eliminate many of these issues by providing
uniform functionality across platforms and by defining a uniform cross-platform look-
and-feel. Section 12.2 introduced the Nimbus look-and-feel. Earlier versions of Java used
the metal look-and-feel, which is still the default. Swing also provides the flexibility to cus-
tomize the look-and-feel to appear as a Microsoft Windows-style look-and-feel (only on
Windows systems), a Motif-style (UNIX) look-and-feel (across all platforms) or a Macin-
tosh look-and-feel (only on Mac systems).

Figures 22.9–22.10 demonstrate a way to change the look-and-feel of a Swing GUI.
It creates several GUI components, so you can see the change in their look-and-feel at the
same time. The output windows show the Metal, Nimbus, CDE/Motif, Windows and
Windows Classic look-and-feels that are available on Windows systems. The installed
look-and-feels will vary by platform.

We’ve covered the GUI components and event-handling concepts in this example
previously, so we focus here on the mechanism for changing the look-and-feel. Class
UIManager (package javax.swing) contains nested class LookAndFeelInfo (a public
static class) that maintains information about a look-and-feel. Line 20 (Fig. 22.9)
declares an array of type UIManager.LookAndFeelInfo (note the syntax used to identify
the static inner class LookAndFeelInfo). Line 34 uses UIManager static method get-
InstalledLookAndFeels to get the array of UIManager.LookAndFeelInfo objects that
describe each look-and-feel available on your system.

Performance Tip 22.1
Each look-and-feel is represented by a Java class. UIManager method getInstalled-
LookAndFeels does not load each class. Rather, it provides the names of the available look-
and-feel classes so that a choice can be made (presumably once at program start-up). This
reduces the overhead of having to load all the look-and-feel classes even if the program will
not use some of them.

1 // Fig. 22.9: LookAndFeelFrame.java
2 // Changing the look-and-feel.
3 import java.awt.GridLayout;
4 import java.awt.BorderLayout;
5 import java.awt.event.ItemListener;
6 import java.awt.event.ItemEvent;
7 import javax.swing.JFrame;
8
9 import javax.swing.JRadioButton;

10 import javax.swing.ButtonGroup;
11 import javax.swing.JButton;
12 import javax.swing.JLabel;
13 import javax.swing.JComboBox;
14 import javax.swing.JPanel;
15 import javax.swing.SwingConstants;
16
17
18 public class LookAndFeelFrame extends JFrame
19 {

Fig. 22.9 | Look-and-feel of a Swing-based GUI. (Part 1 of 3.)

import javax.swing.UIManager;

import javax.swing.SwingUtilities;

930 Chapter 22 GUI Components: Part 2

20 private final UIManager.LookAndFeelInfo[] looks;
21 private final String[] lookNames; // look-and-feel names
22 private final JRadioButton[] radio; // for selecting look-and-feel
23 private final ButtonGroup group; // group for radio buttons
24 private final JButton button; // displays look of button
25 private final JLabel label; // displays look of label
26 private final JComboBox<String> comboBox; // displays look of combo box
27
28 // set up GUI
29 public LookAndFeelFrame()
30 {
31 super("Look and Feel Demo");
32
33
34
35 lookNames = new String[looks.length];
36
37 // get names of installed look-and-feels
38 for (int i = 0; i < looks.length; i++)
39 lookNames[i] = looks[i].getName();
40
41 JPanel northPanel = new JPanel();
42 northPanel.setLayout(new GridLayout(3, 1, 0, 5));
43
44 label = new JLabel("This is a " + lookNames[0] + " look-and-feel",
45 SwingConstants.CENTER);
46 northPanel.add(label);
47
48 button = new JButton("JButton");
49 northPanel.add(button);
50
51 comboBox = new JComboBox<String>(lookNames);
52 northPanel.add(comboBox);
53
54 // create array for radio buttons
55 radio = new JRadioButton[looks.length];
56
57 JPanel southPanel = new JPanel();
58
59 // use a GridLayout with 3 buttons in each row
60 int rows = (int) Math.ceil(radio.length / 3.0);
61 southPanel.setLayout(new GridLayout(rows, 3));
62
63 group = new ButtonGroup(); // button group for look-and-feels
64 ItemHandler handler = new ItemHandler(); // look-and-feel handler
65
66 for (int count = 0; count < radio.length; count++)
67 {
68 radio[count] = new JRadioButton(lookNames[count]);
69 radio[count].addItemListener(handler); // add handler
70 group.add(radio[count]); // add radio button to group
71 southPanel.add(radio[count]); // add radio button to panel
72 }

Fig. 22.9 | Look-and-feel of a Swing-based GUI. (Part 2 of 3.)

// get installed look-and-feel information
looks = UIManager.getInstalledLookAndFeels();

22.6 Pluggable Look-and-Feel 931

73
74 add(northPanel, BorderLayout.NORTH); // add north panel
75 add(southPanel, BorderLayout.SOUTH); // add south panel
76
77 radio[0].setSelected(true); // set default selection
78 } // end LookAndFeelFrame constructor
79
80 // use UIManager to change look-and-feel of GUI
81 private void changeTheLookAndFeel(int value)
82 {
83 try // change look-and-feel
84 {
85
86
87
88
89
90 }
91 catch (Exception exception)
92 {
93 exception.printStackTrace();
94 }
95 }
96
97 // private inner class to handle radio button events
98 private class ItemHandler implements ItemListener
99 {
100 // process user's look-and-feel selection
101 @Override
102 public void itemStateChanged(ItemEvent event)
103 {
104 for (int count = 0; count < radio.length; count++)
105 {
106 if (radio[count].isSelected())
107 {
108 label.setText(String.format(
109 "This is a %s look-and-feel", lookNames[count]));
110 comboBox.setSelectedIndex(count); // set combobox index
111 changeTheLookAndFeel(count); // change look-and-feel
112 }
113 }
114 }
115 } // end private inner class ItemHandler
116 } // end class LookAndFeelFrame

1 // Fig. 22.10: LookAndFeelDemo.java
2 // Changing the look-and-feel.
3 import javax.swing.JFrame;
4

Fig. 22.10 | Test class for LookAndFeelFrame. (Part 1 of 2.)

Fig. 22.9 | Look-and-feel of a Swing-based GUI. (Part 3 of 3.)

// set look-and-feel for this application
UIManager.setLookAndFeel(looks[value].getClassName());

// update components in this application
SwingUtilities.updateComponentTreeUI(this);

932 Chapter 22 GUI Components: Part 2

Our utility method changeTheLookAndFeel (lines 81–95) is called by the event handler
for the JRadioButtons at the bottom of the user interface. The event handler (declared in
private inner class ItemHandler at lines 98–115) passes an integer representing the element
in array looks that should be used to change the look-and-feel. Line 86 invokes static
method setLookAndFeel of UIManager to change the look-and-feel. The getClassName
method of class UIManager.LookAndFeelInfo determines the name of the look-and-feel
class that corresponds to the UIManager.LookAndFeelInfo object. If the look-and-feel is not
already loaded, it will be loaded as part of the call to setLookAndFeel. Line 89 invokes the
static method updateComponentTreeUI of class SwingUtilities (package javax.swing)
to change the look-and-feel of every GUI component attached to its argument (this
instance of our application class LookAndFeelFrame) to the new look-and-feel.

5 public class LookAndFeelDemo
6 {
7 public static void main(String[] args)
8 {
9 LookAndFeelFrame lookAndFeelFrame = new LookAndFeelFrame();

10 lookAndFeelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 lookAndFeelFrame.setSize(400, 220);
12 lookAndFeelFrame.setVisible(true);
13 }
14 } // end class LookAndFeelDemo

Fig. 22.10 | Test class for LookAndFeelFrame. (Part 2 of 2.)

22.7 JDesktopPane and JInternalFrame 933

22.7 JDesktopPane and JInternalFrame
A multiple-document interface (MDI) is a main window (called the parent window) con-
taining other windows (called child windows) and is often used to manage several open doc-
uments. For example, many e-mail programs allow you to have several windows open at the
same time, so you can compose or read multiple e-mail messages simultaneously. Similarly,
many word processors allow the user to open multiple documents in separate windows with-
in a main window, making it possible to switch between them without having to close one
to open another. The application in Figs. 22.11–22.12 demonstrates Swing’s JDesktopPane
and JInternalFrame classes for implementing multiple-document interfaces.

1 // Fig. 22.11: DesktopFrame.java
2 // Demonstrating JDesktopPane.
3 import java.awt.BorderLayout;
4 import java.awt.Dimension;
5 import java.awt.Graphics;
6 import java.awt.event.ActionListener;
7 import java.awt.event.ActionEvent;
8 import java.util.Random;
9 import javax.swing.JFrame;

10
11 import javax.swing.JMenuBar;
12 import javax.swing.JMenu;
13 import javax.swing.JMenuItem;
14
15 import javax.swing.JPanel;
16 import javax.swing.ImageIcon;
17
18 public class DesktopFrame extends JFrame
19 {
20
21
22 // set up GUI
23 public DesktopFrame()
24 {
25 super("Using a JDesktopPane");
26
27 JMenuBar bar = new JMenuBar();
28 JMenu addMenu = new JMenu("Add");
29 JMenuItem newFrame = new JMenuItem("Internal Frame");
30
31 addMenu.add(newFrame); // add new frame item to Add menu
32 bar.add(addMenu); // add Add menu to menu bar
33 setJMenuBar(bar); // set menu bar for this application
34
35
36
37
38 // set up listener for newFrame menu item
39 newFrame.addActionListener(

Fig. 22.11 | Multiple-document interface. (Part 1 of 2.)

import javax.swing.JDesktopPane;

import javax.swing.JInternalFrame;

private final JDesktopPane theDesktop;

theDesktop = new JDesktopPane();
add(theDesktop); // add desktop pane to frame

934 Chapter 22 GUI Components: Part 2

40 new ActionListener() // anonymous inner class
41 {
42 // display new internal window
43 @Override
44 public void actionPerformed(ActionEvent event)
45 {
46 // create internal frame
47
48
49
50 MyJPanel panel = new MyJPanel();
51 frame.add(panel, BorderLayout.CENTER);
52 frame.pack(); // set internal frame to size of contents
53
54
55
56 }
57 }
58);
59 } // end DesktopFrame constructor
60 } // end class DesktopFrame
61
62 // class to display an ImageIcon on a panel
63 class MyJPanel extends JPanel
64 {
65 private static final SecureRandom generator = new SecureRandom();
66
67 private final static String[] images = { "yellowflowers.png",
68 "purpleflowers.png", "redflowers.png", "redflowers2.png",
69 "lavenderflowers.png" };
70
71 // load image
72 public MyJPanel()
73 {
74 int randomNumber = generator.nextInt(images.length);
75
76 }
77
78 // display imageIcon on panel
79 @Override
80 public void paintComponent(Graphics g)
81 {
82 super.paintComponent(g);
83
84 }
85
86 // return image dimensions
87 public Dimension getPreferredSize()
88 {
89
90
91 }
92 } // end class MyJPanel

Fig. 22.11 | Multiple-document interface. (Part 2 of 2.)

JInternalFrame frame = new JInternalFrame(
 "Internal Frame", true, true, true, true);

theDesktop.add(frame); // attach internal frame
frame.setVisible(true); // show internal frame

private final ImageIcon picture; // image to be displayed

picture = new ImageIcon(images[randomNumber]); // set icon

picture.paintIcon(this, g, 0, 0); // display icon

return new Dimension(picture.getIconWidth(),
 picture.getIconHeight());

22.7 JDesktopPane and JInternalFrame 935

Lines 27–33 create a JMenuBar, a JMenu and a JMenuItem, add the JMenuItem to the
JMenu, add the JMenu to the JMenuBar and set the JMenuBar for the application window.
When the user selects the JMenuItem newFrame, the application creates and displays a new
JInternalFrame object containing an image.

Line 35 assigns JDesktopPane (package javax.swing) variable theDesktop a new
JDesktopPane object that will be used to manage the JInternalFrame child windows.
Line 36 adds the JDesktopPane to the JFrame. By default, the JDesktopPane is added to
the center of the content pane’s BorderLayout, so the JDesktopPane expands to fill the
entire application window.

1 // Fig. 22.12: DesktopTest.java
2 // Demonstrating JDesktopPane.
3 import javax.swing.JFrame;
4
5 public class DesktopTest
6 {
7 public static void main(String[] args)
8 {
9 DesktopFrame desktopFrame = new DesktopFrame();

10 desktopFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 desktopFrame.setSize(600, 480);
12 desktopFrame.setVisible(true);
13 }
14 } // end class DesktopTest

Fig. 22.12 | Test class for DeskTopFrame. (Part 1 of 2.)

Internal frames Minimize Maximize Close

Minimized internal frames Position the mouse over any corner of a child window to resize
the window (if resizing is allowed)

936 Chapter 22 GUI Components: Part 2

Lines 39–58 register an ActionListener to handle the event when the user selects the
newFrame menu item. When the event occurs, method actionPerformed (lines 43–56)
creates a JInternalFrame object in lines 47–48. The JInternalFrame constructor used
here takes five arguments—a String for the title bar of the internal window, a boolean
indicating whether the internal frame can be resized by the user, a boolean indicating
whether the internal frame can be closed by the user, a boolean indicating whether the
internal frame can be maximized by the user and a boolean indicating whether the internal
frame can be minimized by the user. For each of the boolean arguments, a true value indi-
cates that the operation should be allowed (as is the case here).

As with JFrames and JApplets, a JInternalFrame has a content pane to which GUI
components can be attached. Line 50 creates an instance of our class MyJPanel (declared
at lines 63–91) that is added to the JInternalFrame at line 51.

Line 52 uses JInternalFrame method pack to set the size of the child window.
Method pack uses the preferred sizes of the components to determine the window’s size.
Class MyJPanel declares method getPreferredSize (lines 87–91) to specify the panel’s
preferred size for use by the pack method. Line 54 adds the JInternalFrame to the JDesk-
topPane, and line 55 displays the JInternalFrame.

Classes JInternalFrame and JDesktopPane provide many methods for managing
child windows. See the JInternalFrame and JDesktopPane online API documentation
for complete lists of these methods:

22.8 JTabbedPane
A JTabbedPane arranges GUI components into layers, of which only one is visible at a
time. Users access each layer via a tab—similar to folders in a file cabinet. When the user
clicks a tab, the appropriate layer is displayed. The tabs appear at the top by default but
also can be positioned at the left, right or bottom of the JTabbedPane. Any component

docs.oracle.com/javase/7/docs/api/javax/swing/JInternalFrame.html
docs.oracle.com/javase/7/docs/api/javax/swing/JDesktopPane.html

Fig. 22.12 | Test class for DeskTopFrame. (Part 2 of 2.)

Maximized
internal frame

22.8 JTabbedPane 937

can be placed on a tab. If the component is a container, such as a panel, it can use any
layout manager to lay out several components on the tab. Class JTabbedPane is a subclass
of JComponent. The application in Figs. 22.13–22.14 creates one tabbed pane with three
tabs. Each tab displays one of the JPanels—panel1, panel2 or panel3.

1 // Fig. 22.13: JTabbedPaneFrame.java
2 // Demonstrating JTabbedPane.
3 import java.awt.BorderLayout;
4 import java.awt.Color;
5 import javax.swing.JFrame;
6
7 import javax.swing.JLabel;
8 import javax.swing.JPanel;
9 import javax.swing.JButton;

10 import javax.swing.SwingConstants;
11
12 public class JTabbedPaneFrame extends JFrame
13 {
14 // set up GUI
15 public JTabbedPaneFrame()
16 {
17 super("JTabbedPane Demo ");
18
19
20
21 // set up pane11 and add it to JTabbedPane
22 JLabel label1 = new JLabel("panel one", SwingConstants.CENTER);
23 JPanel panel1 = new JPanel();
24 panel1.add(label1);
25
26
27 // set up panel2 and add it to JTabbedPane
28 JLabel label2 = new JLabel("panel two", SwingConstants.CENTER);
29 JPanel panel2 = new JPanel();
30 panel2.setBackground(Color.YELLOW);
31 panel2.add(label2);
32
33
34 // set up panel3 and add it to JTabbedPane
35 JLabel label3 = new JLabel("panel three");
36 JPanel panel3 = new JPanel();
37 panel3.setLayout(new BorderLayout());
38 panel3.add(new JButton("North"), BorderLayout.NORTH);
39 panel3.add(new JButton("West"), BorderLayout.WEST);
40 panel3.add(new JButton("East"), BorderLayout.EAST);
41 panel3.add(new JButton("South"), BorderLayout.SOUTH);
42 panel3.add(label3, BorderLayout.CENTER);
43
44
45 add(tabbedPane); // add JTabbedPane to frame
46 }
47 } // end class JTabbedPaneFrame

Fig. 22.13 | JTabbedPane used to organize GUI components.

import javax.swing.JTabbedPane;

JTabbedPane tabbedPane = new JTabbedPane(); // create JTabbedPane

tabbedPane.addTab("Tab One", null, panel1, "First Panel");

tabbedPane.addTab("Tab Two", null, panel2, "Second Panel");

tabbedPane.addTab("Tab Three", null, panel3, "Third Panel");

938 Chapter 22 GUI Components: Part 2

The constructor (lines 15–46) builds the GUI. Line 19 creates an empty JTabbedPane
with default settings—that is, tabs across the top. If the tabs do not fit on one line, they’ll
wrap to form additional lines of tabs. Next the constructor creates the JPanels panel1,
panel2 and panel3 and their GUI components. As we set up each panel, we add it to
tabbedPane, using JTabbedPane method addTab with four arguments. The first argument
is a String that specifies the title of the tab. The second argument is an Icon reference that
specifies an icon to display on the tab. If the Icon is a null reference, no image is displayed.
The third argument is a Component reference that represents the GUI component to dis-
play when the user clicks the tab. The last argument is a String that specifies the tool tip
for the tab. For example, line 25 adds JPanel panel1 to tabbedPane with title "Tab One"
and the tool tip "First Panel". JPanels panel2 and panel3 are added to tabbedPane at
lines 32 and 43. To view a tab, click it with the mouse or use the arrow keys to cycle
through the tabs.

22.9 BoxLayout Layout Manager
In Chapter 12, we introduced three layout managers—FlowLayout, BorderLayout and
GridLayout. This section and Section 22.10 present two additional layout managers
(summarized in Fig. 22.15). We discuss them in the examples that follow.

1 // Fig. 22.14: JTabbedPaneDemo.java
2 // Demonstrating JTabbedPane.
3 import javax.swing.JFrame;
4
5 public class JTabbedPaneDemo
6 {
7 public static void main(String[] args)
8 {
9 JTabbedPaneFrame tabbedPaneFrame = new JTabbedPaneFrame();

10 tabbedPaneFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 tabbedPaneFrame.setSize(250, 200);
12 tabbedPaneFrame.setVisible(true);
13 }
14 } // end class JTabbedPaneDemo

Fig. 22.14 | Test class for JTabbedPaneFrame.

22.9 BoxLayout Layout Manager 939

The BoxLayout layout manager (in package javax.swing) arranges GUI components
horizontally along a container’s x-axis or vertically along its y-axis. The application in
Figs. 22.16–22.17 demonstrate BoxLayout and the container class Box that uses Box-
Layout as its default layout manager.

Layout manager Description

BoxLayout Allows GUI components to be arranged left-to-right or top-to-bottom in a
container. Class Box declares a container that uses BoxLayout and provides
static methods to create a Box with a horizontal or vertical BoxLayout.

GridBagLayout Similar to GridLayout, but the components can vary in size and can be
added in any order.

Fig. 22.15 | Additional layout managers.

1 // Fig. 22.16: BoxLayoutFrame.java
2 // Demonstrating BoxLayout.
3 import java.awt.Dimension;
4 import javax.swing.JFrame;
5 import javax.swing.Box;
6 import javax.swing.JButton;
7
8 import javax.swing.JPanel;
9 import javax.swing.JTabbedPane;

10
11 public class BoxLayoutFrame extends JFrame
12 {
13 // set up GUI
14 public BoxLayoutFrame()
15 {
16 super("Demonstrating BoxLayout");
17
18 // create Box containers with BoxLayout
19
20
21
22
23
24 final int SIZE = 3; // number of buttons on each Box
25
26 // add buttons to Box horizontal1
27 for (int count = 0; count < SIZE; count++)
28
29
30 // create strut and add buttons to Box vertical1
31 for (int count = 0; count < SIZE; count++)
32 {
33
34
35 }

Fig. 22.16 | BoxLayout layout manager. (Part 1 of 2.)

import javax.swing.BoxLayout;

Box horizontal1 = Box.createHorizontalBox();
Box vertical1 = Box.createVerticalBox();
Box horizontal2 = Box.createHorizontalBox();
Box vertical2 = Box.createVerticalBox();

horizontal1.add(new JButton("Button " + count));

vertical1.add(Box.createVerticalStrut(25));
vertical1.add(new JButton("Button " + count));

940 Chapter 22 GUI Components: Part 2

36
37 // create horizontal glue and add buttons to Box horizontal2
38 for (int count = 0; count < SIZE; count++)
39 {
40
41
42 }
43
44 // create rigid area and add buttons to Box vertical2
45 for (int count = 0; count < SIZE; count++)
46 {
47
48
49 }
50
51 // create vertical glue and add buttons to panel
52 JPanel panel = new JPanel();
53 panel.setLayout ();
54
55 for (int count = 0; count < SIZE; count++)
56 {
57
58
59 }
60
61 // create a JTabbedPane
62
63
64
65 // place each container on tabbed pane
66 tabs.addTab("Horizontal Box", horizontal1);
67 tabs.addTab("Vertical Box with Struts", vertical1);
68 tabs.addTab("Horizontal Box with Glue", horizontal2);
69 tabs.addTab("Vertical Box with Rigid Areas", vertical2);
70 tabs.addTab("Vertical Box with Glue", panel);
71
72 add(tabs); // place tabbed pane on frame
73 } // end BoxLayoutFrame constructor
74 } // end class BoxLayoutFrame

1 // Fig. 22.17: BoxLayoutDemo.java
2 // Demonstrating BoxLayout.
3 import javax.swing.JFrame;
4
5 public class BoxLayoutDemo
6 {
7 public static void main(String[] args)
8 {
9 BoxLayoutFrame boxLayoutFrame = new BoxLayoutFrame();

Fig. 22.17 | Test class for BoxLayoutFrame. (Part 1 of 2.)

Fig. 22.16 | BoxLayout layout manager. (Part 2 of 2.)

horizontal2.add(Box.createHorizontalGlue());
horizontal2.add(new JButton("Button " + count));

vertical2.add(Box.createRigidArea(new Dimension(12, 8)));
vertical2.add(new JButton("Button " + count));

new BoxLayout(panel, BoxLayout.Y_AXIS)

panel.add(Box.createGlue());
panel.add(new JButton("Button " + count));

JTabbedPane tabs = new JTabbedPane(
 JTabbedPane.TOP, JTabbedPane.SCROLL_TAB_LAYOUT);

22.9 BoxLayout Layout Manager 941

Creating Box Containers
Lines 19–22 create Box containers. References horizontal1 and horizontal2 are initial-
ized with static Box method createHorizontalBox, which returns a Box container with
a horizontal BoxLayout in which GUI components are arranged left-to-right. Variables
vertical1 and vertical2 are initialized with static Box method createVerticalBox,
which returns references to Box containers with a vertical BoxLayout in which GUI com-
ponents are arranged top-to-bottom.

Struts
The loop at lines 27–28 adds three JButtons to horizontal1. The for statement at lines
31–35 adds three JButtons to vertical1. Before adding each button, line 33 adds a ver-
tical strut to the container with static Box method createVerticalStrut. A vertical
strut is an invisible GUI component that has a fixed pixel height and is used to guarantee
a fixed amount of space between GUI components. The int argument to method create-
VerticalStrut determines the height of the strut in pixels. When the container is resized,
the distance between GUI components separated by struts does not change. Class Box also
declares method createHorizontalStrut for horizontal BoxLayouts.

10 boxLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 boxLayoutFrame.setSize(400, 220);
12 boxLayoutFrame.setVisible(true);
13 }
14 } // end class BoxLayoutDemo

Fig. 22.17 | Test class for BoxLayoutFrame. (Part 2 of 2.)

Arrows for cycling
through tabs

942 Chapter 22 GUI Components: Part 2

Glue
The for statement at lines 38–42 adds three JButtons to horizontal2. Before adding each
button, line 40 adds horizontal glue to the container with static Box method create-
HorizontalGlue. Horizontal glue is an invisible GUI component that can be used be-
tween fixed-size GUI components to occupy additional space. Normally, extra space
appears to the right of the last horizontal GUI component or below the last vertical one in
a BoxLayout. Glue allows the extra space to be placed between GUI components. When
the container is resized, components separated by glue components remain the same size,
but the glue stretches or contracts to occupy the space between them. Class Box also de-
clares method createVerticalGlue for vertical BoxLayouts.

Rigid Areas
The for statement at lines 45–49 adds three JButtons to vertical2. Before each button
is added, line 47 adds a rigid area to the container with static Box method create-
RigidArea. A rigid area is an invisible GUI component that always has a fixed pixel width
and height. The argument to method createRigidArea is a Dimension object that speci-
fies the area’s width and height.

Setting a BoxLayout for a Container
Lines 52–53 create a JPanel object and set its layout to a BoxLayout in the conventional
manner, using Container method setLayout. The BoxLayout constructor receives a ref-
erence to the container for which it controls the layout and a constant indicating whether
the layout is horizontal (BoxLayout.X_AXIS) or vertical (BoxLayout.Y_AXIS).

Adding Glue and JButtons
The for statement at lines 55–59 adds three JButtons to panel. Before adding each but-
ton, line 57 adds a glue component to the container with static Box method create-
Glue. This component expands or contracts based on the size of the Box.

Creating the JTabbedPane
Lines 62–63 create a JTabbedPane to display the five containers in this program. The ar-
gument JTabbedPane.TOP sent to the constructor indicates that the tabs should appear at
the top of the JTabbedPane. The argument JTabbedPane.SCROLL_TAB_LAYOUT specifies
that the tabs should wrap to a new line if there are too many to fit on one line.

Attaching the Box Containers and JPanel to the JTabbedPane
The Box containers and the JPanel are attached to the JTabbedPane at lines 66–70. Try
executing the application. When the window appears, resize the window to see how the
glue components, strut components and rigid area affect the layout on each tab.

22.10 GridBagLayout Layout Manager
One of the most powerful predefined layout managers is GridBagLayout (in package ja-
va.awt). This layout is similar to GridLayout in that it arranges components in a grid, but
it’s more flexible. The components can vary in size (i.e., they can occupy multiple rows
and columns) and can be added in any order.

The first step in using GridBagLayout is determining the appearance of the GUI. For
this step you need only a piece of paper. Draw the GUI, then draw a grid over it, dividing

22.10 GridBagLayout Layout Manager 943

the components into rows and columns. The initial row and column numbers should be
0, so that the GridBagLayout layout manager can use the row and column numbers to
properly place the components in the grid. Figure 22.18 demonstrates drawing the lines
for the rows and columns over a GUI.

GridBagConstraints

A GridBagConstraints object describes how a component is placed in a GridBagLayout.
Several GridBagConstraints fields are summarized in Fig. 22.19.

GridBagConstraints Field anchor
GridBagConstraints field anchor specifies the relative position of the component in an
area that it does not fill. The variable anchor is assigned one of the following GridBagCon-
straints constants: NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST,
NORTHWEST or CENTER. The default value is CENTER.

Fig. 22.18 | Designing a GUI that will use GridBagLayout.

Field Description

anchor Specifies the relative position (NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH,
SOUTHWEST, WEST, NORTHWEST, CENTER) of the component in an area that it
does not fill.

fill Resizes the component in the specified direction (NONE, HORIZONTAL, VER-
TICAL, BOTH) when the display area is larger than the component.

gridx The column in which the component will be placed.

gridy The row in which the component will be placed.

gridwidth The number of columns the component occupies.

gridheight The number of rows the component occupies.

weightx The amount of extra space to allocate horizontally. The grid slot can
become wider when extra space is available.

weighty The amount of extra space to allocate vertically. The grid slot can become
taller when extra space is available.

Fig. 22.19 | GridBagConstraints fields.

Row

Column
0 1 2

0

1

2

3

944 Chapter 22 GUI Components: Part 2

GridBagConstraints Field fill
GridBagConstraints field fill defines how the component grows if the area in which it
can be displayed is larger than the component. The variable fill is assigned one of the
following GridBagConstraints constants: NONE, VERTICAL, HORIZONTAL or BOTH. The de-
fault value is NONE, which indicates that the component will not grow in either direction.
VERTICAL indicates that it will grow vertically. HORIZONTAL indicates that it will grow hor-
izontally. BOTH indicates that it will grow in both directions.

GridBagConstraints Fields gridx and gridy
Variables gridx and gridy specify where the upper-left corner of the component is placed
in the grid. Variable gridx corresponds to the column, and variable gridy corresponds to
the row. In Fig. 22.18, the JComboBox (displaying “Iron”) has a gridx value of 1 and a
gridy value of 2.

GridBagConstraints Field gridwidth
Variable gridwidth specifies the number of columns a component occupies. The JCombo-
Box occupies two columns. Variable gridheight specifies the number of rows a compo-
nent occupies. The JTextArea on the left side of Fig. 22.18 occupies three rows.

GridBagConstraints Field weightx
Variable weightx specifies how to distribute extra horizontal space to grid slots in a Grid-
BagLayout when the container is resized. A zero value indicates that the grid slot does not
grow horizontally on its own. However, if the component spans a column containing a
component with nonzero weightx value, the component with zero weightx value will
grow horizontally in the same proportion as the other component(s) in that column. This
is because each component must be maintained in the same row and column in which it
was originally placed.

GridBagConstraints Field weighty
Variable weighty specifies how to distribute extra vertical space to grid slots in a Grid-
BagLayout when the container is resized. A zero value indicates that the grid slot does not
grow vertically on its own. However, if the component spans a row containing a compo-
nent with nonzero weighty value, the component with zero weighty value grows vertically
in the same proportion as the other component(s) in the same row.

Effects of weightx and weighty
In Fig. 22.18, the effects of weighty and weightx cannot easily be seen until the container
is resized and additional space becomes available. Components with larger weight values
occupy more of the additional space than those with smaller weight values.

Components should be given nonzero positive weight values—otherwise they’ll
“huddle” together in the middle of the container. Figure 22.20 shows the GUI of
Fig. 22.18 with all weights set to zero.

Demonstrating GridBagLayout
The application in Figs. 22.21–22.22 uses the GridBagLayout layout manager to arrange
the components of the GUI in Fig. 22.18. The application does nothing except demon-
strate how to use GridBagLayout.

22.10 GridBagLayout Layout Manager 945

Fig. 22.20 | GridBagLayout with the weights set to zero.

1 // Fig. 22.21: GridBagFrame.java
2 // Demonstrating GridBagLayout.
3
4
5 import java.awt.Component;
6 import javax.swing.JFrame;
7 import javax.swing.JTextArea;
8 import javax.swing.JTextField;
9 import javax.swing.JButton;

10 import javax.swing.JComboBox;
11
12 public class GridBagFrame extends JFrame
13 {
14
15
16
17 // set up GUI
18 public GridBagFrame()
19 {
20 super("GridBagLayout");
21
22
23
24
25 // create GUI components
26 JTextArea textArea1 = new JTextArea("TextArea1", 5, 10);
27 JTextArea textArea2 = new JTextArea("TextArea2", 2, 2);
28
29 String[] names = { "Iron", "Steel", "Brass" };
30 JComboBox<String> comboBox = new JComboBox<String>(names);
31
32 JTextField textField = new JTextField("TextField");
33 JButton button1 = new JButton("Button 1");
34 JButton button2 = new JButton("Button 2");
35 JButton button3 = new JButton("Button 3");
36
37 // weightx and weighty for textArea1 are both 0: the default
38 // anchor for all components is CENTER: the default
39
40

Fig. 22.21 | GridBagLayout layout manager. (Part 1 of 2.)

import java.awt.GridBagLayout;
import java.awt.GridBagConstraints;

private final GridBagLayout layout; // layout of this frame
private final GridBagConstraints constraints; // layout's constraints

layout = new GridBagLayout();
setLayout(layout); // set frame layout
constraints = new GridBagConstraints(); // instantiate constraints

constraints.fill = GridBagConstraints.BOTH;
addComponent(textArea1, 0, 0, 1, 3);

946 Chapter 22 GUI Components: Part 2

41
42 // weightx and weighty for button1 are both 0: the default
43
44
45
46 // weightx and weighty for comboBox are both 0: the default
47 // fill is HORIZONTAL
48
49
50 // button2
51
52
53
54
55
56 // fill is BOTH for button3
57
58
59
60
61 // weightx and weighty for textField are both 0, fill is BOTH
62
63
64 // weightx and weighty for textArea2 are both 0, fill is BOTH
65
66 } // end GridBagFrame constructor
67
68 // method to set constraints on
69 private void addComponent(Component component,
70 int row, int column, int width, int height)
71 {
72
73
74
75
76
77
78 }
79 } // end class GridBagFrame

1 // Fig. 22.22: GridBagDemo.java
2 // Demonstrating GridBagLayout.
3 import javax.swing.JFrame;
4
5 public class GridBagDemo
6 {
7 public static void main(String[] args)
8 {
9 GridBagFrame gridBagFrame = new GridBagFrame();

Fig. 22.22 | Test class for GridBagFrame. (Part 1 of 2.)

Fig. 22.21 | GridBagLayout layout manager. (Part 2 of 2.)

constraints.fill = GridBagConstraints.HORIZONTAL;
addComponent(button1, 0, 1, 2, 1);

addComponent(comboBox, 2, 1, 2, 1);

constraints.weightx = 1000; // can grow wider
constraints.weighty = 1; // can grow taller
constraints.fill = GridBagConstraints.BOTH;
addComponent(button2, 1, 1, 1, 1);

constraints.weightx = 0;
constraints.weighty = 0;
addComponent(button3, 1, 2, 1, 1);

addComponent(textField, 3, 0, 2, 1);

addComponent(textArea2, 3, 2, 1, 1);

constraints.gridx = column;
constraints.gridy = row;
constraints.gridwidth = width;
constraints.gridheight = height;
layout.setConstraints(component, constraints); // set constraints
add(component); // add component

22.10 GridBagLayout Layout Manager 947

GUI Overview
The GUI contains three JButtons, two JTextAreas, a JComboBox and a JTextField. The
layout manager is GridBagLayout. Lines 21–22 create the GridBagLayout object and set
the layout manager for the JFrame to layout. Line 23 creates the GridBagConstraints
object used to determine the location and size of each component in the grid. Lines 26–
35 create each GUI component that will be added to the content pane.

JTextArea textArea1
Lines 39–40 configure JTextArea textArea1 and add it to the content pane. The values
for weightx and weighty values are not specified in constraints, so each has the value
zero by default. Thus, the JTextArea will not resize itself even if space is available. How-
ever, it spans multiple rows, so the vertical size is subject to the weighty values of JButtons
button2 and button3. When either button is resized vertically based on its weighty value,
the JTextArea is also resized.

Line 39 sets variable fill in constraints to GridBagConstraints.BOTH, causing the
JTextArea to always fill its entire allocated area in the grid. An anchor value is not speci-
fied in constraints, so the default CENTER is used. We do not use variable anchor in this

10 gridBagFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 gridBagFrame.setSize(300, 150);
12 gridBagFrame.setVisible(true);
13 }
14 } // end class GridBagDemo

Fig. 22.22 | Test class for GridBagFrame. (Part 2 of 2.)

948 Chapter 22 GUI Components: Part 2

application, so all the components will use the default. Line 40 calls our utility method
addComponent (declared at lines 69–78). The JTextArea object, the row, the column, the
number of columns to span and the number of rows to span are passed as arguments.

JButton button1
JButton button1 is the next component added (lines 43–44). By default, the weightx and
weighty values are still zero. The fill variable is set to HORIZONTAL—the component will
always fill its area in the horizontal direction. The vertical direction is not filled. The
weighty value is zero, so the button will become taller only if another component in the
same row has a nonzero weighty value. JButton button1 is located at row 0, column 1.
One row and two columns are occupied.

JComboBox comboBox
JComboBox comboBox is the next component added (line 48). By default, the weightx and
weighty values are zero, and the fill variable is set to HORIZONTAL. The JComboBox button
will grow only in the horizontal direction. The weightx, weighty and fill variables retain
the values set in constraints until they’re changed. The JComboBox button is placed at
row 2, column 1. One row and two columns are occupied.

JButton button2
JButton button2 is the next component added (lines 51–54). It’s given a weightx value
of 1000 and a weighty value of 1. The area occupied by the button is capable of growing
in the vertical and horizontal directions. The fill variable is set to BOTH, which specifies
that the button will always fill the entire area. When the window is resized, button2 will
grow. The button is placed at row 1, column 1. One row and one column are occupied.

JButton button3
JButton button3 is added next (lines 57–59). Both the weightx value and weighty value
are set to zero, and the value of fill is BOTH. JButton button3 will grow if the window is
resized—it’s affected by the weight values of button2. The weightx value for button2 is
much larger than that for button3. When resizing occurs, button2 will occupy a larger
percentage of the new space. The button is placed at row 1, column 2. One row and one
column are occupied.

JTextField textField and JTextArea textArea2
Both the JTextField textField (line 62) and JTextArea textArea2 (line 65) have a
weightx value of 0 and a weighty value of 0. The value of fill is BOTH. The JTextField
is placed at row 3, column 0, and the JTextArea at row 3, column 2. The JTextField oc-
cupies one row and two columns, the JTextArea one row and one column.

Method addComponent
Method addComponent’s parameters are a Component reference component and integers
row, column, width and height. Lines 72–73 set the GridBagConstraints variables gridx
and gridy. The gridx variable is assigned the column in which the Component will be
placed, and the gridy value is assigned the row in which the Component will be placed.
Lines 74–75 set the GridBagConstraints variables gridwidth and gridheight. The
gridwidth variable specifies the number of columns the Component will span in the grid,

22.10 GridBagLayout Layout Manager 949

and the gridheight variable specifies the number of rows the Component will span in the
grid. Line 76 sets the GridBagConstraints for a component in the GridBagLayout. Meth-
od setConstraints of class GridBagLayout takes a Component argument and a GridBag-
Constraints argument. Line 77 adds the component to the JFrame.

When you execute this application, try resizing the window to see how the constraints
for each GUI component affect its position and size in the window.

GridBagConstraints Constants RELATIVE and REMAINDER
Instead of gridx and gridy, a variation of GridBagLayout uses GridBagConstraints con-
stants RELATIVE and REMAINDER. RELATIVE specifies that the next-to-last component in a
particular row should be placed to the right of the previous component in the row.
REMAINDER specifies that a component is the last component in a row. Any component that
is not the second-to-last or last component on a row must specify values for GridbagCon-
straints variables gridwidth and gridheight. The application in Figs. 22.23–22.24 ar-
ranges components in GridBagLayout, using these constants.

1 // Fig. 22.23: GridBagFrame2.java
2 // Demonstrating GridBagLayout constants.
3 import java.awt.GridBagLayout;
4 import java.awt.GridBagConstraints;
5 import java.awt.Component;
6 import javax.swing.JFrame;
7 import javax.swing.JComboBox;
8 import javax.swing.JTextField;
9 import javax.swing.JList;

10 import javax.swing.JButton;
11
12 public class GridBagFrame2 extends JFrame
13 {
14 private final GridBagLayout layout; // layout of this frame
15
16
17 // set up GUI
18 public GridBagFrame2()
19 {
20 super("GridBagLayout");
21
22
23 constraints = new GridBagConstraints(); // instantiate constraints
24
25 // create GUI components
26 String[] metals = { "Copper", "Aluminum", "Silver" };
27 JComboBox comboBox = new JComboBox(metals);
28
29 JTextField textField = new JTextField("TextField");
30
31 String[] fonts = { "Serif", "Monospaced" };
32 JList list = new JList(fonts);
33

Fig. 22.23 | GridBagConstraints constants RELATIVE and REMAINDER. (Part 1 of 2.)

private final GridBagConstraints constraints; // layout's constraints

layout = new GridBagLayout();
setLayout(layout); // set frame layout

950 Chapter 22 GUI Components: Part 2

34 String[] names = { "zero", "one", "two", "three", "four" };
35 JButton[] buttons = new JButton[names.length];
36
37 for (int count = 0; count < buttons.length; count++)
38 buttons[count] = new JButton(names[count]);
39
40 // define GUI component constraints for textField
41
42
43
44
45
46
47 // buttons[0] -- weightx and weighty are 1: fill is BOTH
48
49
50
51 // buttons[1] -- weightx and weighty are 1: fill is BOTH
52
53
54
55 // buttons[2] -- weightx and weighty are 1: fill is BOTH
56
57
58
59 // comboBox -- weightx is 1: fill is BOTH
60
61
62
63
64 // buttons[3] -- weightx is 1: fill is BOTH
65
66
67
68
69 // buttons[4] -- weightx and weighty are 1: fill is BOTH
70
71
72
73 // list -- weightx and weighty are 1: fill is BOTH
74
75
76 } // end GridBagFrame2 constructor
77
78 // add a component to the container
79 private void addComponent(Component component)
80 {
81
82
83 }
84 } // end class GridBagFrame2

Fig. 22.23 | GridBagConstraints constants RELATIVE and REMAINDER. (Part 2 of 2.)

constraints.weightx = 1;
constraints.weighty = 1;
constraints.fill = GridBagConstraints.BOTH;
constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(textField);

constraints.gridwidth = 1;
addComponent(buttons[0]);

constraints.gridwidth = GridBagConstraints.RELATIVE;
addComponent(buttons[1]);

constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(buttons[2]);

constraints.weighty = 0;
constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(comboBox);

constraints.weighty = 1;
constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(buttons[3]);

constraints.gridwidth = GridBagConstraints.RELATIVE;
addComponent(buttons[4]);

constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(list);

layout.setConstraints(component, constraints);
add(component); // add component

22.10 GridBagLayout Layout Manager 951

Setting the JFrame’s Layout to a GridBagLayout
Lines 21–22 create a GridBagLayout and use it to set the JFrame’s layout manager. The
components that are placed in GridBagLayout are created in lines 27–38—they are a
JComboBox, a JTextField, a JList and five JButtons.

Configuring the JTextField
The JTextField is added first (lines 41–45). The weightx and weighty values are set to
1. The fill variable is set to BOTH. Line 44 specifies that the JTextField is the last com-
ponent on the line. The JTextField is added to the content pane with a call to our utility
method addComponent (declared at lines 79–83). Method addComponent takes a Compo-
nent argument and uses GridBagLayout method setConstraints to set the constraints
for the Component. Method add attaches the component to the content pane.

Configuring JButton buttons[0]
JButton buttons[0] (lines 48–49) has weightx and weighty values of 1. The fill vari-
able is BOTH. Because buttons[0] is not one of the last two components on the row, it’s
given a gridwidth of 1 and so will occupy one column. The JButton is added to the con-
tent pane with a call to utility method addComponent.

1 // Fig. 22.24: GridBagDemo2.java
2 // Demonstrating GridBagLayout constants.
3 import javax.swing.JFrame;
4
5 public class GridBagDemo2
6 {
7 public static void main(String[] args)
8 {
9 GridBagFrame2 gridBagFrame = new GridBagFrame2();

10 gridBagFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 gridBagFrame.setSize(300, 200);
12 gridBagFrame.setVisible(true);
13 }
14 } // end class GridBagDemo2

Fig. 22.24 | Test class for GridBagDemo2.

952 Chapter 22 GUI Components: Part 2

Configuring JButton buttons[1]
JButton buttons[1] (lines 52–53) has weightx and weighty values of 1. The fill vari-
able is BOTH. Line 52 specifies that the JButton is to be placed relative to the previous com-
ponent. The Button is added to the JFrame with a call to addComponent.

Configuring JButton buttons[2]
JButton buttons[2] (lines 56–57) has weightx and weighty values of 1. The fill vari-
able is BOTH. This JButton is the last component on the line, so REMAINDER is used. The
JButton is added to the content pane with a call to addComponent.

Configuring JComboBox
The JComboBox (lines 60–62) has a weightx of 1 and a weighty of 0. The JComboBox will
not grow vertically. The JComboBox is the only component on the line, so REMAINDER is
used. The JComboBox is added to the content pane with a call to addComponent.

Configuring JButton buttons[3]
JButton buttons[3] (lines 65–67) has weightx and weighty values of 1. The fill vari-
able is BOTH. This JButton is the only component on the line, so REMAINDER is used. The
JButton is added to the content pane with a call to addComponent.

Configuring JButton buttons[4]
JButton buttons[4] (lines 70–71) has weightx and weighty values of 1. The fill vari-
able is BOTH. This JButton is the next-to-last component on the line, so RELATIVE is used.
The JButton is added to the content pane with a call to addComponent.

Configuring JList
The JList (lines 74–75) has weightx and weighty values of 1. The fill variable is BOTH.
The JList is added to the content pane with a call to addComponent.

22.11 Wrap-Up
This chapter completes our introduction to GUIs. In this chapter, we discussed additional
GUI topics, such as menus, sliders, pop-up menus, multiple-document interfaces, tabbed
panes and Java’s pluggable look-and-feel. All these components can be added to existing
applications to make them easier to use and understand. We also presented additional lay-
out managers for organizing and sizing GUI components. In the next chapter, you’ll learn
about multithreading, which allows you to specify that an application should perform
multiple tasks at once.

Summary
Section 22.2 JSlider

• JSliders (p. 912) enable you to select from a range of integer values. They can display major and
minor tick marks, and labels for the tick marks (p. 912). They also support snap-to ticks (p. 912)—
positioning the thumb (p. 912) between two tick marks snaps it to the closest tick mark.

• JSliders have either horizontal or vertical orientation. For a horizontal JSlider, the minimum
value is at the extreme left and the maximum value at the extreme right. For a vertical JSlider,

 Summary 953

the minimum value is at the extreme bottom and the maximum value at the extreme top. The
position of the thumb indicates the current value of the JSlider. Method getValue (p. 916) of
class JSlider returns the current thumb position.

• JSlider method setMajorTickSpacing () sets the spacing for tick marks on a JSlider. Method
setPaintTicks (p. 916) with a true argument indicates that the tick marks should be displayed.

• JSliders generate ChangeEvents when the user interacts with a JSlider. A ChangeListener
(p. 916) declares method stateChanged (p. 916) that can respond to ChangeEvents.

Section 22.3 Understanding Windows in Java
• A window’s (p. 916) events can be handled by a WindowListener (p. 917), which provides seven

window-event-handling methods—windowActivated, windowClosed, windowClosing, window-
Deactivated, windowDeiconified, windowIconified and windowOpened.

Section 22.4 Using Menus with Frames
• Menus neatly organize commands in a GUI. In Swing GUIs, menus can be attached only to ob-

jects of classes with method setJMenuBar (p. 917).

• A JMenuBar (p. 917) is a container for menus. A JMenuItem appears in a menu. A JMenu (p. 917)
contains menu items and can be added to a JMenuBar or to other JMenus as submenus.

• When a menu is clicked, it expands to show its list of menu items.

• When a JCheckBoxMenuItem (p. 918) is selected, a check appears to the left of the menu item.
When the JCheckBoxMenuItem is selected again, the check is removed.

• In a ButtonGroup, only one JRadioButtonMenuItem (p. 918) can be selected at a time.

• AbstractButton method setMnemonic (p. 923) specifies the mnemonic (p. 918) for a button.
Mnemonic characters are normally displayed with an underline.

• A modal dialog box (p. 923) does not allow access to any other window in the application until
the dialog is dismissed. The dialogs displayed with class JOptionPane are modal dialogs. Class
JDialog (p. 923) can be used to create your own modal or nonmodal dialogs.

Section 22.5 JPopupMenu

• Context-sensitive pop-up menus (p. 925) are created with class JPopupMenu. The pop-up trigger
event occurs normally when the user presses and releases the right mouse button. MouseEvent
method isPopupTrigger (p. 928) returns true if the pop-up trigger event occurred.

• JPopupMenu method show (p. 928) displays a JPopupMenu. The first argument specifies the origin
component, which helps determine where the JPopupMenu will appear. The last two arguments are
the coordinates from the origin component’s upper-left corner, at which the JPopupMenu appears.

Section 22.6 Pluggable Look-and-Feel
• Class UIManager.LookAndFeelInfo (p. 929) maintains information about a look-and-feel.

• UIManager (p. 929) static method getInstalledLookAndFeels (p. 929) returns an array of
UIManager.LookAndFeelInfo objects that describe the available look-and-feels.

• UIManager static method setLookAndFeel (p. 932) changes the look-and-feel. SwingUtilities
(p. 932) static method updateComponentTreeUI (p. 932) changes the look-and-feel of every
component attached to its Component argument to the new look-and-feel.

Section 22.7 JDesktopPane and JInternalFrame
• Many of today’s applications use a multiple-document interface (MDI; p. 933) to manage sev-

eral open documents that are being processed in parallel. Swing’s JDesktopPane (p. 933) and
JInternalFrame (p. 933) classes provide support for creating multiple-document interfaces.

954 Chapter 22 GUI Components: Part 2

Section 22.8 JTabbedPane

• A JTabbedPane (p. 936) arranges GUI components into layers, of which only one is visible at a
time. Users access each layer by clicking its tab.

Section 22.9 BoxLayout Layout Manager
• BoxLayout)p. 939) arranges GUI components left-to-right or top-to-bottom in a container.

• Class Box represents a container with BoxLayout as its default layout manager and provides stat-
ic methods to create a Box with a horizontal or vertical BoxLayout.

Section 22.10 GridBagLayout Layout Manager
• GridBagLayout (p. 942) is similar to GridLayout, but each component size can vary.

• A GridBagConstraints object (p. 943) specifies how a component is placed in a GridBagLayout.

Self-Review Exercises
22.1 Fill in the blanks in each of the following statements:

a) The class is used to create a menu object.
b) The method of class JMenu places a separator bar in a menu.
c) JSlider events are handled by the method of interface .
d) The GridBagConstraints instance variable is set to CENTER by default.

22.2 State whether each of the following is true or false. If false, explain why.
a) When the programmer creates a JFrame, a minimum of one menu must be created and

added to the JFrame.
b) The variable fill belongs to the GridBagLayout class.
c) Drawing on a GUI component is performed with respect to the (0, 0) upper-left corner

coordinate of the component.
d) The default layout for a Box is BoxLayout.

22.3 Find the error(s) in each of the following and explain how to correct the error(s).
a) JMenubar b;
b) mySlider = JSlider(1000, 222, 100, 450);
c) gbc.fill = GridBagConstraints.NORTHWEST; // set fill
d) // override to paint on a customized Swing component

public void paintcomponent(Graphics g)
{
 g.drawString("HELLO", 50, 50);
}

e) // create a JFrame and display it
JFrame f = new JFrame("A Window");
f.setVisible(true);

Answers to Self-Review Exercises
22.1 a) JMenu. b) addSeparator. c) stateChanged, ChangeListener. d) anchor.

22.2 a) False. A JFrame does not require any menus.
b) False. The variable fill belongs to the GridBagConstraints class.
c) True.
d) True.

22.3 a) JMenubar should be JMenuBar.

 Exercises 955

b) The first argument to the constructor should be SwingConstants.HORIZONTAL or Swing-
Constants.VERTICAL, and the keyword new must be used after the = operator. Also, the
minimum value should be less than the maximum and the initial value should be in range.

c) The constant should be either BOTH, HORIZONTAL, VERTICAL or NONE.
d) paintcomponent should be paintComponent, and the method should call super.paint-

Component(g) as its first statement.
e) The JFrame’s setSize method must also be called to establish the size of the window.

Exercises
22.4 (Fill-in-the-Blanks) Fill in the blanks in each of the following statements:

a) A JMenuItem that is a JMenu is called a(n) .
b) Method attaches a JMenuBar to a JFrame.
c) Container class has a default BoxLayout.
d) A(n) manages a set of child windows declared with class JInternalFrame.

22.5 (True or False) State whether each of the following is true or false. If false, explain why.
a) Menus require a JMenuBar object so they can be attached to a JFrame.
b) BoxLayout is the default layout manager for a JFrame.
c) JApplets can contain menus.

22.6 (Find the Code Errors) Find the error(s) in each of the following. Explain how to correct
the error(s).

a) x.add(new JMenuItem("Submenu Color")); // create submenu
b) container.setLayout(new GridbagLayout());

22.7 (Display a Circle and Its Attributes) Write a program that displays a circle of random size
and calculates and displays the area, radius, diameter and circumference. Use the following equa-
tions: diameter = 2 × radius, area = π × radius2, circumference = 2 × π × radius. Use the constant
Math.PI for pi (π). All drawing should be done on a subclass of JPanel, and the results of the calcu-
lations should be displayed in a read-only JTextArea.

22.8 (Using a JSlider) Enhance the program in Exercise 22.7 by allowing the user to alter the
radius with a JSlider. The program should work for all radii in the range from 100 to 200. As the
radius changes, the diameter, area and circumference should be updated and displayed. The initial
radius should be 150. Use the equations from Exercise 22.7. All drawing should be done on a sub-
class of JPanel, and the results of the calculations should be displayed in a read-only JTextArea.

22.9 (Varying weightx and weighty) Explore the effects of varying the weightx and weighty
values of the program in Fig. 22.21. What happens when a slot has a nonzero weight but is not al-
lowed to fill the whole area (i.e., the fill value is not BOTH)?

22.10 (Synchronizing a JSlider and a JTextField) Write a program that uses the paintCompo-
nent method to draw the current value of a JSlider on a subclass of JPanel. In addition, provide a
JTextField where a specific value can be entered. The JTextField should display the current value
of the JSlider at all times. Changing the value in the JTextField should also update the JSlider.
A JLabel should be used to identify the JTextField. The JSlider methods setValue and getValue
should be used. [Note: The setValue method is a public method that does not return a value and
takes one integer argument, the JSlider value, which determines the position of the thumb.]

22.11 (Creating a Color Chooser) Declare a subclass of JPanel called MyColorChooser that pro-
vides three JSlider objects and three JTextField objects. Each JSlider represents the values from
0 to 255 for the red, green and blue parts of a color. Use these values as the arguments to the Color
constructor to create a new Color object. Display the current value of each JSlider in the corre-

956 Chapter 22 GUI Components: Part 2

sponding JTextField. When the user changes the value of the JSlider, the JTextField should be
changed accordingly. Use your new GUI component as part of an application that displays the cur-
rent Color value by drawing a filled rectangle.

22.12 (Creating a Color Chooser: Modification) Modify the MyColorChooser class of Exercise 22.11
to allow the user to enter an integer value into a JTextField to set the red, green or blue value. When
the user presses Enter in the JTextField, the corresponding JSlider should be set to the appropriate
value.

22.13 (Creating a Color Chooser: Modification) Modify the application in Exercise 22.12 to draw
the current color as a rectangle on an instance of a subclass of JPanel which provides its own paint-
Component method to draw the rectangle and provides set methods to set the red, green and blue
values for the current color. When any set method is invoked, the drawing panel should automati-
cally repaint itself.

22.14 (Drawing Application) Modify the application in Exercise 22.13 to allow the user to drag
the mouse across the drawing panel (a subclass of JPanel) to draw a shape in the current color. En-
able the user to choose what shape to draw.

22.15 (Drawing Application Modification) Modify the application in Exercise 22.14 to allow the
user to terminate the application by clicking the close box on the window that is displayed and by
selecting Exit from a File menu. Use the techniques shown in Fig. 22.5.

22.16 (Complete Drawing Application) Using the techniques developed in this chapter and
Chapter 12, create a complete drawing application. The program should use the GUI components
from Chapter 12 and this chapter to enable the user to select the shape, color and fill characteristics.
Each shape should be stored in an array of MyShape objects, where MyShape is the superclass in your
hierarchy of shape classes. Use a JDesktopPane and JInternalFrames to allow the user to create mul-
tiple separate drawings in separate child windows. Create the user interface as a separate child win-
dow containing all the GUI components that allow the user to determine the characteristics of the
shape to be drawn. The user can then click in any JInternalFrame to draw the shape.

23Concurrency

The most general definition of
beauty…Multeity in Unity.
—Samuel Taylor Coleridge

Do not block the way of inquiry.
—Charles Sanders Peirce

Learn to labor and to wait.
—Henry Wadsworth Longfellow

O b j e c t i v e s
In this chapter you’ll:

■ Understand concurrency,
parallelism and
multithreading.

■ Learn the thread life cycle.
■ Use ExecutorService to

launch concurrent threads
that execute Runnables.

■ Use synchronized
methods to coordinate access
to shared mutable data.

■ Understand producer/
consumer relationships.

■ Use SwingWorker to
update Swing GUIs in a
thread-safe manner.

■ Compare the performance of
Arrays methods sort and
parallelSort on a multi-
core system.

■ Use parallel streams for better
performance on multi-core
systems.

■ Use CompletableFutures
to execute long calculations
asynchronously and get the
results in the future.

958 Chapter 23 Concurrency

23.1 Introduction
[Note: Sections marked “Advanced” are intended for readers who wish a deeper treatment of con-
currency and may be skipped by readers preferring only basic coverage.] It would be nice if we
could focus our attention on performing only one task at a time and doing it well. That’s
usually difficult to do in a complex world in which there’s so much going on at once. This
chapter presents Java’s capabilities for developing programs that create and manage multiple
tasks. As we’ll demonstrate, this can greatly improve program performance.

When we say that two tasks are operating concurrently, we mean that they’re both
making progress at once. Until recently, most computers had only a single processor. Oper-
ating systems on such computers execute tasks concurrently by rapidly switching between
them, doing a small portion of each before moving on to the next, so that all tasks keep
progressing. For example, it’s common for personal computers to compile a program, send
a file to a printer, receive electronic mail messages over a network and more, concurrently.
Since its inception, Java has supported concurrency.

When we say that two tasks are operating in parallel, we mean that they’re executing
simultaneously. In this sense, parallelism is a subset of concurrency. The human body per-
forms a great variety of operations in parallel. Respiration, blood circulation, digestion,
thinking and walking, for example, can occur in parallel, as can all the senses—sight,
hearing, touch, smell and taste. It’s believed that this parallelism is possible because the

23.1 Introduction
23.2 Thread States and Life Cycle

23.2.1 New and Runnable States
23.2.2 Waiting State
23.2.3 Timed Waiting State
23.2.4 Blocked State
23.2.5 Terminated State
23.2.6 Operating-System View of the

Runnable State
23.2.7 Thread Priorities and Thread

Scheduling
23.2.8 Indefinite Postponement and

Deadlock
23.3 Creating and Executing Threads with

the Executor Framework
23.4 Thread Synchronization

23.4.1 Immutable Data
23.4.2 Monitors
23.4.3 Unsynchronized Mutable Data

Sharing
23.4.4 Synchronized Mutable Data

Sharing—Making Operations Atomic
23.5 Producer/Consumer Relationship

without Synchronization
23.6 Producer/Consumer Relationship:

ArrayBlockingQueue

23.7 (Advanced) Producer/Consumer
Relationship with synchronized,
wait, notify and notifyAll

23.8 (Advanced) Producer/Consumer
Relationship: Bounded Buffers

23.9 (Advanced) Producer/Consumer
Relationship: The Lock and
Condition Interfaces

23.10 Concurrent Collections
23.11 Multithreading with GUI:

SwingWorker
23.11.1 Performing Computations in a

Worker Thread: Fibonacci Numbers
23.11.2 Processing Intermediate Results: Sieve

of Eratosthenes
23.12 sort/parallelSort Timings with

the Java SE 8 Date/Time API
23.13 Java SE 8: Sequential vs. Parallel

Streams
23.14 (Advanced) Interfaces Callable

and Future
23.15 (Advanced) Fork/Join Framework
23.16 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

23.1 Introduction 959

human brain is thought to contain billions of “processors.” Today’s multi-core computers
have multiple processors that can perform tasks in parallel.

Java Concurrency
Java makes concurrency available to you through the language and APIs. Java programs
can have multiple threads of execution, where each thread has its own method-call stack
and program counter, allowing it to execute concurrently with other threads while sharing
with them application-wide resources such as memory and file handles. This capability is
called multithreading.

Concurrent Programming Uses
We’ll discuss many applications of concurrent programming. For example, when stream-
ing an audio or video over the Internet, the user may not want to wait until the entire au-
dio or video downloads before starting the playback. To solve this problem, multiple
threads can be used—one to download the audio or video (later in the chapter we’ll refer
to this as a producer), and another to play it (later in the chapter we’ll refer to this as a con-
sumer). These activities proceed concurrently. To avoid choppy playback, the threads are
synchronized (that is, their actions are coordinated) so that the player thread doesn’t begin
until there’s a sufficient amount of the audio or video in memory to keep the player thread
busy. Producer and consumer threads share memory—we’ll show how to coordinate these
threads to ensure correct execution. The Java Virtual Machine (JVM) creates threads to
run programs and threads to perform housekeeping tasks such as garbage collection.

Concurrent Programming Is Difficult
Writing multithreaded programs can be tricky. Although the human mind can perform
functions concurrently, people find it difficult to jump between parallel trains of thought.
To see why multithreaded programs can be difficult to write and understand, try the fol-
lowing experiment: Open three books to page 1, and try reading the books concurrently.
Read a few words from the first book, then a few from the second, then a few from the
third, then loop back and read the next few words from the first book, and so on. After
this experiment, you’ll appreciate many of the challenges of multithreading—switching
between the books, reading briefly, remembering your place in each book, moving the
book you’re reading closer so that you can see it and pushing the books you’re not reading
aside—and, amid all this chaos, trying to comprehend the content of the books!

Use the Prebuilt Classes of the Concurrency APIs Whenever Possible
Programming concurrent applications is difficult and error prone. If you must use synchro-
nization in a program, follow these guidelines:

1. The vast majority of programmers should use existing collection classes and interfaces
from the concurrency APIs that manage synchronization for you—such as the Array-

Performance Tip 23.1
A problem with single-threaded applications that can lead to poor responsiveness is that
lengthy activities must complete before others can begin. In a multithreaded application,
threads can be distributed across multiple cores (if available) so that multiple tasks execute
in parallel and the application can operate more efficiently. Multithreading can also increase
performance on single-processor systems—when one thread cannot proceed (because, for ex-
ample, it’s waiting for the result of an I/O operation), another can use the processor.

960 Chapter 23 Concurrency

BlockingQueue class (an implementation of interface BlockingQueue) we discuss in
Section 23.6. Two other concurrency API classes that you’ll use frequently are
LinkedBlockingQueue and ConcurrentHashMap (each summarized in Fig. 23.22).
The concurrency API classes are written by experts, have been thoroughly tested
and debugged, operate efficiently and help you avoid common traps and pitfalls.
Section 23.10 overviews Java’s pre-built concurrent collections.

2. For advanced programmers who want to control synchronization, use the syn-
chronized keyword and Object methods wait, notify and notifyAll, which
we discuss in the optional Section 23.7.

3. Only the most advanced programmers should use Locks and Conditions, which we
introduce in the optional Section 23.9, and classes like LinkedTransferQueue—an
implementation of interface TransferQueue—which we summarize in Fig. 23.22.

You might want to read our discussions of the more advanced features in items 2 and 3
above, even though you most likely will not use them. We explain these because:

• They provide a solid basis for understanding how concurrent applications syn-
chronize access to shared memory.

• By showing you the complexity involved in using these low-level features, we
hope to impress upon you the message: Use the simpler prebuilt concurrency capa-
bilities whenever possible.

23.2 Thread States and Life Cycle
At any time, a thread is said to be in one of several thread states—illustrated in the UML
state diagram in Fig. 23.1. Several of the terms in the diagram are defined in later sections.
We include this discussion to help you understand what’s going on “under the hood” in a
Java multithreaded environment. Java hides most of this detail from you, greatly simplify-
ing the task of developing multithreaded applications.

Fig. 23.1 | Thread life-cycle UML state diagram.

task
com

pletes

acquire lock
i
n
t
e
r
r
u
p
t

I/O
 com

pletesw
a
i
t

s
l
e
e
pno

ti
fy

no
ti
fy
Al
l

wa
it

in
te

rv
al

ex
pi

re
s

n
o
t
i
f
y

n
o
t
i
f
y
A
l
l

runnable

program starts
the thread

new

issue I/O request

enter synchronized

statement

timed waitingwaiting terminated blocked

23.2 Thread States and Life Cycle 961

23.2.1 New and Runnable States
A new thread begins its life cycle in the new state. It remains in this state until the program
starts the thread, which places it in the runnable state. A thread in the runnable state is
considered to be executing its task.

23.2.2 Waiting State
Sometimes a runnable thread transitions to the waiting state while it waits for another
thread to perform a task. A waiting thread transitions back to the runnable state only when
another thread notifies it to continue executing.

23.2.3 Timed Waiting State
A runnable thread can enter the timed waiting state for a specified interval of time. It tran-
sitions back to the runnable state when that time interval expires or when the event it’s
waiting for occurs. Timed waiting threads and waiting threads cannot use a processor, even
if one is available. A runnable thread can transition to the timed waiting state if it provides
an optional wait interval when it’s waiting for another thread to perform a task. Such a
thread returns to the runnable state when it’s notified by another thread or when the timed
interval expires—whichever comes first. Another way to place a thread in the timed waiting
state is to put a runnable thread to sleep—a sleeping thread remains in the timed waiting
state for a designated period of time (called a sleep interval), after which it returns to the
runnable state. Threads sleep when they momentarily do not have work to perform. For
example, a word processor may contain a thread that periodically backs up (i.e., writes a
copy of) the current document to disk for recovery purposes. If the thread did not sleep
between successive backups, it would require a loop in which it continually tested whether
it should write a copy of the document to disk. This loop would consume processor time
without performing productive work, thus reducing system performance. In this case, it’s
more efficient for the thread to specify a sleep interval (equal to the period between suc-
cessive backups) and enter the timed waiting state. This thread is returned to the runnable
state when its sleep interval expires, at which point it writes a copy of the document to disk
and reenters the timed waiting state.

23.2.4 Blocked State
A runnable thread transitions to the blocked state when it attempts to perform a task that
cannot be completed immediately and it must temporarily wait until that task completes.
For example, when a thread issues an input/output request, the operating system blocks
the thread from executing until that I/O request completes—at that point, the blocked
thread transitions to the runnable state, so it can resume execution. A blocked thread can-
not use a processor, even if one is available.

23.2.5 Terminated State
A runnable thread enters the terminated state (sometimes called the dead state) when it
successfully completes its task or otherwise terminates (perhaps due to an error). In the
UML state diagram of Fig. 23.1, the terminated state is followed by the UML final state
(the bull’s-eye symbol) to indicate the end of the state transitions.

962 Chapter 23 Concurrency

23.2.6 Operating-System View of the Runnable State
At the operating system level, Java’s runnable state typically encompasses two separate states
(Fig. 23.2). The operating system hides these states from the Java Virtual Machine (JVM),
which sees only the runnable state. When a thread first transitions to the runnable state from
the new state, it’s in the ready state. A ready thread enters the running state (i.e., begins ex-
ecuting) when the operating system assigns it to a processor—also known as dispatching
the thread. In most operating systems, each thread is given a small amount of processor
time—called a quantum or timeslice—with which to perform its task. Deciding how large
the quantum should be is a key topic in operating systems courses. When its quantum ex-
pires, the thread returns to the ready state, and the operating system assigns another thread
to the processor. Transitions between the ready and running states are handled solely by the
operating system. The JVM does not “see” the transitions—it simply views the thread as
being runnable and leaves it up to the operating system to transition the thread between
ready and running. The process that an operating system uses to determine which thread to
dispatch is called thread scheduling and is dependent on thread priorities.

23.2.7 Thread Priorities and Thread Scheduling
Every Java thread has a thread priority that helps determine the order in which threads are
scheduled. Each new thread inherits the priority of the thread that created it. Informally,
higher-priority threads are more important to a program and should be allocated processor
time before lower-priority threads. Nevertheless, thread priorities cannot guarantee the order
in which threads execute.

It’s recommended that you do not explicitly create and use Thread objects to implement con-
currency, but rather use the Executor interface (which is described in Section 23.3). The Thread
class does contain some useful static methods, which you will use later in the chapter.

Most operating systems support timeslicing, which enables threads of equal priority
to share a processor. Without timeslicing, each thread in a set of equal-priority threads
runs to completion (unless it leaves the runnable state and enters the waiting or timed
waiting state, or gets interrupted by a higher-priority thread) before other threads of equal
priority get a chance to execute. With timeslicing, even if a thread has not finished exe-
cuting when its quantum expires, the processor is taken away from the thread and given
to the next thread of equal priority, if one is available.

An operating system’s thread scheduler determines which thread runs next. One simple
thread-scheduler implementation keeps the highest-priority thread running at all times
and, if there’s more than one highest-priority thread, ensures that all such threads execute
for a quantum each in round-robin fashion. This process continues until all threads run
to completion.

Fig. 23.2 | Operating system’s internal view of Java’s runnable state.

running

runnable

quantum expires

operating system
dispatches a thread

ready

23.3 Creating and Executing Threads with the Executor Framework 963

23.2.8 Indefinite Postponement and Deadlock
When a higher-priority thread enters the ready state, the operating system generally preempts
the currently running thread (an operation known as preemptive scheduling). Depending
on the operating system, a steady influx of higher-priority threads could postpone—possibly
indefinitely—the execution of lower-priority threads. Such indefinite postponement is
sometimes referred to more colorfully as starvation. Operating systems employ a technique
called aging to prevent starvation—as a thread waits in the ready state, the operating system
gradually increases the thread’s priority to ensure that the thread will eventually run.

Another problem related to indefinite postponement is called deadlock. This occurs
when a waiting thread (let’s call this thread1) cannot proceed because it’s waiting (either
directly or indirectly) for another thread (let’s call this thread2) to proceed, while simulta-
neously thread2 cannot proceed because it’s waiting (either directly or indirectly) for
thread1 to proceed. The two threads are waiting for each other, so the actions that would
enable each thread to continue execution can never occur.

23.3 Creating and Executing Threads with the Executor
Framework
This section demonstrates how to perform concurrent tasks in an application by using
Executors and Runnable objects.

Creating Concurrent Tasks with the Runnable Interface
You implement the Runnable interface (of package java.lang) to specify a task that can
execute concurrently with other tasks. The Runnable interface declares the single method
run, which contains the code that defines the task that a Runnable object should perform.

Executing Runnable Objects with an Executor
To allow a Runnable to perform its task, you must execute it. An Executor object executes
Runnables. It does this by creating and managing a group of threads called a thread pool.
When an Executor begins executing a Runnable, the Executor calls the Runnable object’s
run method, which executes in the new thread.

The Executor interface declares a single method named execute which accepts a Run-
nable as an argument. The Executor assigns every Runnable passed to its execute method
to one of the available threads in the thread pool. If there are no available threads, the
Executor creates a new thread or waits for a thread to become available and assigns that
thread the Runnable that was passed to method execute.

Software Engineering Observation 23.1
Java provides higher-level concurrency utilities to hide much of this complexity and make
multithreaded programming less error prone. Thread priorities are used behind the scenes
to interact with the operating system, but most programmers who use Java multithreading
will not be concerned with setting and adjusting thread priorities.

Portability Tip 23.1
Thread scheduling is platform dependent—the behavior of a multithreaded program
could vary across different Java implementations.

964 Chapter 23 Concurrency

Using an Executor has many advantages over creating threads yourself. Executors can
reuse existing threads to eliminate the overhead of creating a new thread for each task and
can improve performance by optimizing the number of threads to ensure that the processor
stays busy, without creating so many threads that the application runs out of resources.

Using Class Executors to Obtain an ExecutorService
The ExecutorService interface (of package java.util.concurrent) extends Executor
and declares various methods for managing the life cycle of an Executor. You obtain an
ExecutorService object by calling one of the static methods declared in class Executors
(of package java.util.concurrent). We use interface ExecutorService and a method of
class Executors in our example, which executes three tasks.

Implementing the Runnable Interface
Class PrintTask (Fig. 23.3) implements Runnable (line 5), so that multiple PrintTasks can
execute concurrently. Variable sleepTime (line 8) stores a random integer value from 0 to
5 seconds created in the PrintTask constructor (line 17). Each thread running a Print-
Task sleeps for the amount of time specified by sleepTime, then outputs its task’s name
and a message indicating that it’s done sleeping.

Software Engineering Observation 23.2
Though it’s possible to create threads explicitly, it’s recommended that you use the
Executor interface to manage the execution of Runnable objects.

1 // Fig. 23.3: PrintTask.java
2 // PrintTask class sleeps for a random time from 0 to 5 seconds
3 import java.security.SecureRandom;
4
5 public class PrintTask
6 {
7 private static final SecureRandom generator = new SecureRandom();
8 private final int sleepTime; // random sleep time for thread
9 private final String taskName;

10
11 // constructor
12 public PrintTask(String taskName)
13 {
14 this.taskName = taskName;
15
16 // pick random sleep time between 0 and 5 seconds
17 sleepTime = generator.nextInt(5000); // milliseconds
18 }
19
20 // method run contains the code that a thread will execute
21
22 {
23 try // put thread to sleep for sleepTime amount of time
24 {
25 System.out.printf("%s going to sleep for %d milliseconds.%n",
26 taskName, sleepTime);

Fig. 23.3 | PrintTask class sleeps for a random time from 0 to 5 seconds. (Part 1 of 2.)

implements Runnable

public void run()

23.3 Creating and Executing Threads with the Executor Framework 965

A PrintTask executes when a thread calls the PrintTask’s run method. Lines 25–26
display a message indicating the name of the currently executing task and that the task is
going to sleep for sleepTime milliseconds. Line 27 invokes static method sleep of class
Thread to place the thread in the timed waiting state for the specified amount of time. At
this point, the thread loses the processor, and the system allows another thread to execute.
When the thread awakens, it reenters the runnable state. When the PrintTask is assigned
to a processor again, line 36 outputs a message indicating that the task is done sleeping,
then method run terminates. The catch at lines 29–33 is required because method sleep
might throw a checked exception of type InterruptedException if a sleeping thread’s
interrupt method is called.

Let the Thread Handle InterruptedExceptions
It’s considered good practice to let the executing thread handle InterruptedExceptions.
Normally, you’d do this by declaring that method run throws the exception, rather than
catching the exception. However, recall from Chapter 11 that when you override a meth-
od, the throws may contain only the same exception types or a subset of the exception
types declared in the original method’s throws clause. Runnable method run does not have
a throws clause in its original declaration, so we cannot provide one in line 21. To ensure
that the executing thread receives the InterruptedException, line 32 first obtains a ref-
erence to the currently executing Thread by calling static method currentThread, then
uses that Thread’s interrupt method to deliver the InterruptedException to the current
thread.1

Using the ExecutorService to Manage Threads that Execute PrintTasks
Figure 23.4 uses an ExecutorService object to manage threads that execute PrintTasks
(as defined in Fig. 23.3). Lines 11–13 create and name three PrintTasks to execute. Line
18 uses Executors method newCachedThreadPool to obtain an ExecutorService that’s
capable of creating new threads as they’re needed by the application. These threads are
used by ExecutorService to execute the Runnables.

27
28 }
29 catch (InterruptedException exception)
30 {
31 exception.printStackTrace();
32 Thread.currentThread().interrupt(); // re-interrupt the thread
33 }
34
35 // print task name
36 System.out.printf("%s done sleeping%n", taskName);
37 }
38 } // end class PrintTask

1. For detailed information on handling thread interruptions, see Chapter 7 of Java Concurrency in
Practice by Brian Goetz, et al., Addison-Wesley Professional, 2006.

Fig. 23.3 | PrintTask class sleeps for a random time from 0 to 5 seconds. (Part 2 of 2.)

Thread.sleep(sleepTime); // put thread to sleep

966 Chapter 23 Concurrency

1 // Fig. 23.4: TaskExecutor.java
2 // Using an ExecutorService to execute Runnables.
3 import java.util.concurrent.Executors;
4 import java.util.concurrent.ExecutorService;
5
6 public class TaskExecutor
7 {
8 public static void main(String[] args)
9 {

10 // create and name each runnable
11 PrintTask task1 = new PrintTask("task1");
12 PrintTask task2 = new PrintTask("task2");
13 PrintTask task3 = new PrintTask("task3");
14
15 System.out.println("Starting Executor");
16
17 // create ExecutorService to manage threads
18
19
20 // start the three PrintTasks
21
22
23
24
25 // shut down ExecutorService--it decides when to shut down threads
26
27
28 System.out.printf("Tasks started, main ends.%n%n");
29 }
30 } // end class TaskExecutor

Starting Executor
Tasks started, main ends

task1 going to sleep for 4806 milliseconds
task2 going to sleep for 2513 milliseconds
task3 going to sleep for 1132 milliseconds
task3 done sleeping
task2 done sleeping
task1 done sleeping

Starting Executor
task1 going to sleep for 3161 milliseconds.
task3 going to sleep for 532 milliseconds.
task2 going to sleep for 3440 milliseconds.
Tasks started, main ends.

task3 done sleeping
task1 done sleeping
task2 done sleeping

Fig. 23.4 | Using an ExecutorService to execute Runnables.

ExecutorService executorService = Executors.newCachedThreadPool();

executorService.execute(task1); // start task1
executorService.execute(task2); // start task2
executorService.execute(task3); // start task3

executorService.shutdown();

23.4 Thread Synchronization 967

Lines 21–23 each invoke the ExecutorService’s execute method, which executes its
Runnable argument (in this case a PrintTask) some time in the future. The specified task
may execute in one of the threads in the ExecutorService’s thread pool, in a new thread
created to execute it, or in the thread that called the execute method—the ExecutorSer-
vice manages these details. Method execute returns immediately from each invocation—
the program does not wait for each PrintTask to finish. Line 26 calls ExecutorService
method shutdown, which notifies the ExecutorService to stop accepting new tasks, but con-
tinues executing tasks that have already been submitted. Once all of the previously submitted
Runnables have completed, the ExecutorService terminates. Line 28 outputs a message
indicating that the tasks were started and the main thread is finishing its execution.

Main Thread
The code in main executes in the main thread, which is created by the JVM. The code in
the run method of PrintTask (lines 21–37 of Fig. 23.3) executes whenever the Executor
starts each PrintTask—again, this is sometime after they’re passed to the ExecutorSer-
vice’s execute method (Fig. 23.4, lines 21–23). When main terminates, the program it-
self continues running because there are still tasks that must finish executing. The program
will not terminate until these tasks complete.

Sample Outputs
The sample outputs show each task’s name and sleep time as the thread goes to sleep. The
thread with the shortest sleep time in most cases awakens first, indicates that it’s done sleep-
ing and terminates. In Section 23.8, we discuss multithreading issues that could prevent
the thread with the shortest sleep time from awakening first. In the first output, the main
thread terminates before any of the PrintTasks output their names and sleep times. This
shows that the main thread runs to completion before any of the PrintTasks gets a chance
to run. In the second output, all of the PrintTasks output their names and sleep times
before the main thread terminates. This shows that the PrintTasks started executing before
the main thread terminated. Also, notice in the second example output, task3 goes to
sleep before task2 last, even though we passed task2 to the ExecutorService’s execute
method before task3. This illustrates the fact that we cannot predict the order in which the
tasks will start executing, even if we know the order in which they were created and started.

Waiting for Previously Scheduled Tasks to Terminate
After scheduling tasks to execute, you’ll typically want to wait for the tasks to complete—for
example, so that you can use the tasks’ results. After calling method shutdown, you can call
ExecutorService method awaitTermination to wait for scheduled tasks to complete. We
demonstrate this in Fig. 23.7. We purposely did not call awaitTermination in Fig. 23.4
to demonstrate that a program can continue executing after the main thread terminates.

23.4 Thread Synchronization
When multiple threads share an object and it’s modified by one or more of them, indeter-
minate results may occur (as we’ll see in the examples) unless access to the shared object is
managed properly. If one thread is in the process of updating a shared object and another
thread also tries to update it, it’s uncertain which thread’s update takes effect. Similarly, if
one thread is in the process of updating a shared object and another thread tries to read it,
it’s uncertain whether the reading thread will see the old value or the new one. In such

968 Chapter 23 Concurrency

cases, the program’s behavior cannot be trusted—sometimes the program will produce the
correct results, and sometimes it won’t, and there won’t be any indication that the shared
object was manipulated incorrectly.

The problem can be solved by giving only one thread at a time exclusive access to code
that accesses the shared object. During that time, other threads desiring to access the object
are kept waiting. When the thread with exclusive access finishes accessing the object, one of
the waiting threads is allowed to proceed. This process, called thread synchronization, coor-
dinates access to shared data by multiple concurrent threads. By synchronizing threads in this
manner, you can ensure that each thread accessing a shared object excludes all other threads
from doing so simultaneously—this is called mutual exclusion.

23.4.1 Immutable Data
Actually, thread synchronization is necessary only for shared mutable data, i.e., data that
may change during its lifetime. With shared immutable data that will not change, it’s not
possible for a thread to see old or incorrect values as a result of another thread’s manipu-
lation of that data.

When you share immutable data across threads, declare the corresponding data fields
final to indicate that the values of the variables will not change after they’re initialized.
This prevents accidental modification of the shared data, which could compromise thread
safety. Labeling object references as final indicates that the reference will not change, but it
does not guarantee that the referenced object is immutable—this depends entirely on the object’s
properties. However, it’s still good practice to mark references that will not change as
final.

23.4.2 Monitors
A common way to perform synchronization is to use Java’s built-in monitors. Every object
has a monitor and a monitor lock (or intrinsic lock). The monitor ensures that its object’s
monitor lock is held by a maximum of only one thread at any time. Monitors and monitor
locks can thus be used to enforce mutual exclusion. If an operation requires the executing
thread to hold a lock while the operation is performed, a thread must acquire the lock before
proceeding with the operation. Other threads attempting to perform an operation that re-
quires the same lock will be blocked until the first thread releases the lock, at which point
the blocked threads may attempt to acquire the lock and proceed with the operation.

To specify that a thread must hold a monitor lock to execute a block of code, the code
should be placed in a synchronized statement. Such code is said to be guarded by the
monitor lock; a thread must acquire the lock to execute the guarded statements. The mon-
itor allows only one thread at a time to execute statements within synchronized state-
ments that lock on the same object, as only one thread at a time can hold the monitor lock.
The synchronized statements are declared using the synchronized keyword:

Software Engineering Observation 23.3
Always declare data fields that you do not expect to change as final. Primitive variables that
are declared as final can safely be shared across threads. An object reference that’s declared
as final ensures that the object it refers to will be fully constructed and initialized before it’s
used by the program, and prevents the reference from pointing to another object.

23.4 Thread Synchronization 969

where object is the object whose monitor lock will be acquired; object is normally this if
it’s the object in which the synchronized statement appears. If several synchronized
statements in different threads are trying to execute on an object at the same time, only
one of them may be active on the object—all the other threads attempting to enter a syn-
chronized statement on the same object are placed in the blocked state.

When a synchronized statement finishes executing, the object’s monitor lock is
released and one of the blocked threads attempting to enter a synchronized statement can
be allowed to acquire the lock to proceed. Java also allows synchronized methods. Before
executing, a synchronized instance method must acquire the lock on the object that’s
used to call the method. Similarly, a static synchronized method must acquire the lock
on the class that’s used to call the method.

23.4.3 Unsynchronized Mutable Data Sharing
First, we illustrate the dangers of sharing an object across threads without proper synchro-
nization. In this example (Figs. 23.5–23.7), two Runnables maintain references to a single
integer array. Each Runnable writes three values to the array, then terminates. This may
seem harmless, but we’ll see that it can result in errors if the array is manipulated without
synchronization.

Class SimpleArray
A SimpleArray object (Fig. 23.5) will be shared across multiple threads. SimpleArray will
enable those threads to place int values into array (declared at line 9). Line 10 initializes
variable writeIndex, which will be used to determine the array element that should be
written to next. The constructor (lines 13–16) creates an integer array of the desired size.

synchronized (object)
{
 statements
}

Software Engineering Observation 23.4
Using a synchronized block to enforce mutual exclusion is an example of the design
pattern known as the Java Monitor Pattern (see section 4.2.1 of Java Concurrency in
Practice by Brian Goetz, et al., Addison-Wesley Professional, 2006).

1 // Fig. 23.5: SimpleArray.java
2 // Class that manages an integer array to be shared by multiple threads.
3 import java.security.SecureRandom;
4 import java.util.Arrays;
5
6 public class SimpleArray // CAUTION: NOT THREAD SAFE!
7 {
8 private static final SecureRandom generator = new SecureRandom();
9 private final int[] array; // the shared integer array

10 private int writeIndex = 0; // shared index of next element to write
11

Fig. 23.5 | Class that manages an integer array to be shared by multiple threads. (Caution: The
example of Figs. 23.5–23.7 is not thread safe.) (Part 1 of 2.)

970 Chapter 23 Concurrency

Method add (lines 19–40) allows new values to be inserted at the end of the array.
Line 21 stores the current writeIndex value. Line 26 puts the thread that invokes add to
sleep for a random interval from 0 to 499 milliseconds. This is done to make the problems
associated with unsynchronized access to shared mutable data more obvious. After the thread
is done sleeping, line 34 inserts the value passed to add into the array at the element spec-
ified by position. Lines 35–36 output a message indicating the executing thread’s name,
the value that was inserted in the array and where it was inserted. The expression
Thread.currentThread().getName() (line 36) first obtains a reference to the currently
executing Thread, then uses that Thread’s getName method to obtain its name. Line 38
increments writeIndex so that the next call to add will insert a value in the array’s next
element. Lines 43–46 override method toString to create a String representation of the
array’s contents.

12 // construct a SimpleArray of a given size
13 public SimpleArray(int size)
14 {
15 array = new int[size];
16 }
17
18 // add a value to the shared array
19 public void add(int value)
20 {
21
22
23 try
24 {
25 // put thread to sleep for 0-499 milliseconds
26 Thread.sleep(generator.nextInt(500));
27 }
28 catch (InterruptedException ex)
29 {
30 Thread.currentThread().interrupt(); // re-interrupt the thread
31 }
32
33
34
35 System.out.printf("%s wrote %2d to element %d.%n",
36 Thread.currentThread().getName(), value, position);
37
38
39 System.out.printf("Next write index: %d%n", writeIndex);
40 }
41
42 // used for outputting the contents of the shared integer array
43 public String toString()
44 {
45 return Arrays.toString(array);
46 }
47 } // end class SimpleArray

Fig. 23.5 | Class that manages an integer array to be shared by multiple threads. (Caution: The
example of Figs. 23.5–23.7 is not thread safe.) (Part 2 of 2.)

int position = writeIndex; // store the write index

// put value in the appropriate element
array[position] = value;

++writeIndex; // increment index of element to be written next

23.4 Thread Synchronization 971

Class ArrayWriter
Class ArrayWriter (Fig. 23.6) implements the interface Runnable to define a task for in-
serting values in a SimpleArray object. The constructor (lines 10–14) takes two argu-
ments—an integer value, which is the first value this task will insert in the SimpleArray
object, and a reference to the SimpleArray object. Line 20 invokes method add on the
SimpleArray object. The task completes after three consecutive integers beginning with
startValue are inserted in the SimpleArray object.

Class SharedArrayTest
Class SharedArrayTest (Fig. 23.7) executes two ArrayWriter tasks that add values to a
single SimpleArray object. Line 12 constructs a six-element SimpleArray object. Lines
15–16 create two new ArrayWriter tasks, one that places the values 1–3 in the Simple-
Array object, and one that places the values 11–13. Lines 19–21 create an ExecutorSer-
vice and execute the two ArrayWriters. Line 23 invokes the ExecutorService’s
shutDown method to prevent additional tasks from starting and to enable the application to
terminate when the currently executing tasks complete execution.

1 // Fig. 23.6: ArrayWriter.java
2 // Adds integers to an array shared with other Runnables
3 import java.lang.Runnable;
4
5 public class ArrayWriter implements Runnable
6 {
7 private final SimpleArray sharedSimpleArray;
8 private final int startValue;
9

10 public ArrayWriter(int value, SimpleArray array)
11 {
12 startValue = value;
13 sharedSimpleArray = array;
14 }
15
16 public void run()
17 {
18 for (int i = startValue; i < startValue + 3; i++)
19 {
20 sharedSimpleArray.add(i); // add an element to the shared array
21 }
22 }
23 } // end class ArrayWriter

Fig. 23.6 | Adds integers to an array shared with other Runnables. (Caution: The example of
Figs. 23.5–23.7 is not thread safe.)

1 // Fig. 23.7: SharedArrayTest.java
2 // Executing two Runnables to add elements to a shared SimpleArray.
3 import java.util.concurrent.Executors;

Fig. 23.7 | Executing two Runnables to add elements to a shared array. (Caution: The example
of Figs. 23.5–23.7 is not thread safe.) (Part 1 of 3.)

972 Chapter 23 Concurrency

4 import java.util.concurrent.ExecutorService;
5 import java.util.concurrent.TimeUnit;
6
7 public class SharedArrayTest
8 {
9 public static void main(String[] arg)

10 {
11 // construct the shared object
12 SimpleArray sharedSimpleArray = new SimpleArray(6);
13
14 // create two tasks to write to the shared SimpleArray
15 ArrayWriter writer1 = new ArrayWriter(1, sharedSimpleArray);
16 ArrayWriter writer2 = new ArrayWriter(11, sharedSimpleArray);
17
18 // execute the tasks with an ExecutorService
19 ExecutorService executorService = Executors.newCachedThreadPool();
20 executorService.execute(writer1);
21 executorService.execute(writer2);
22
23 executorService.shutdown();
24
25 try
26 {
27 // wait 1 minute for both writers to finish executing
28
29
30
31 if (tasksEnded)
32 {
33 System.out.printf("%nContents of SimpleArray:%n");
34 System.out.println(sharedSimpleArray); // print contents
35 }
36 else
37 System.out.println(
38 "Timed out while waiting for tasks to finish.");
39 }
40 catch (InterruptedException ex)
41 {
42 ex.printStackTrace();
43 }
44 } // end main
45 } // end class SharedArrayTest

Next write index: 1
pool-1-thread-1 wrote 2 to element 1.
Next write index: 2
pool-1-thread-1 wrote 3 to element 2.
Next write index: 3

Next write index: 4

Fig. 23.7 | Executing two Runnables to add elements to a shared array. (Caution: The example
of Figs. 23.5–23.7 is not thread safe.) (Part 2 of 3.)

boolean tasksEnded =
 executorService.awaitTermination(1, TimeUnit.MINUTES);

pool-1-thread-1 wrote 1 to element 0.

First pool-1-thread-1 wrote the value
1 to element 0. Later pool-1-thread-2
wrote the value 11 to element 0, thus
overwriting the previously stored value.

pool-1-thread-2 wrote 11 to element 0.

23.4 Thread Synchronization 973

ExecutorService Method awaitTermination
Recall that ExecutorService method shutdown returns immediately. Thus any code that
appears after the call to ExecutorService method shutdown in line 23 will continue exe-
cuting as long as the main thread is still assigned to a processor. We’d like to output the Sim-
pleArray object to show you the results after the threads complete their tasks. So, we need
the program to wait for the threads to complete before main outputs the SimpleArray ob-
ject’s contents. Interface ExecutorService provides the awaitTermination method for
this purpose. This method returns control to its caller either when all tasks executing in
the ExecutorService complete or when the specified timeout elapses. If all tasks are com-
pleted before awaitTermination times out, this method returns true; otherwise it returns
false. The two arguments to awaitTermination represent a timeout value and a unit of
measure specified with a constant from class TimeUnit (in this case, TimeUnit.MINUTES).

Method awaitTermination throws an InterruptedException if the calling thread is
interrupted while waiting for other threads to terminate. Because we catch this exception
in the application’s main method, there’s no need to re-interrupt the main thread as this
program will terminate as soon as main terminates.

In this example, if both tasks complete before awaitTermination times out, line 34
displays the SimpleArray object’s contents. Otherwise, lines 37–38 display a message indi-
cating that the tasks did not finish executing before awaitTermination timed out.

Sample Program Output
Figure 23.7’s output shows the problems (highlighted in the output) that can be caused by
failure to synchronize access to shared mutable data. The value 1 was written to element 0, then
overwritten later by the value 11. Also, when writeIndex was incremented to 3, nothing was
written to that element, as indicated by the 0 in that element of the printed array.

Recall that we added calls to Thread method sleep between operations on the shared
mutable data to emphasize the unpredictability of thread scheduling and increase the likeli-
hood of producing erroneous output. Even if these operations were allowed to proceed at
their normal pace, you could still see errors in the program’s output. However, modern
processors can handle the simple operations of the SimpleArray method add so quickly
that you might not see the errors caused by the two threads executing this method concur-
rently, even if you tested the program dozens of times. One of the challenges of multi-
threaded programming is spotting the errors—they may occur so infrequently and unpredictably
that a broken program does not produce incorrect results during testing, creating the illusion that
the program is correct. This is all the more reason to use predefined collections that handle
the synchronization for you.

pool-1-thread-2 wrote 12 to element 4.
Next write index: 5
pool-1-thread-2 wrote 13 to element 5.
Next write index: 6

Contents of SimpleArray:
[11, 2, 3, 0, 12, 13]

Fig. 23.7 | Executing two Runnables to add elements to a shared array. (Caution: The example
of Figs. 23.5–23.7 is not thread safe.) (Part 3 of 3.)

974 Chapter 23 Concurrency

23.4.4 Synchronized Mutable Data Sharing—Making Operations
Atomic
The output errors of Fig. 23.7 can be attributed to the fact that the shared object, Simple-
Array, is not thread safe—SimpleArray is susceptible to errors if it’s accessed concurrently
by multiple threads. The problem lies in method add, which stores the value of writeIndex,
places a new value in that element, then increments writeIndex. Such a method would
present no problem in a single-threaded program. However, if one thread obtains the value
of writeIndex, there’s no guarantee that another thread cannot come along and increment
writeIndex before the first thread has had a chance to place a value in the array. If this hap-
pens, the first thread will be writing to the array based on a stale value of writeIndex—a
value that’s no longer valid. Another possibility is that one thread might obtain the value
of writeIndex after another thread adds an element to the array but before writeIndex is
incremented. In this case, too, the first thread would write to the array based on an invalid
value for writeIndex.

SimpleArray is not thread safe because it allows any number of threads to read and modify
shared mutable data concurrently, which can cause errors. To make SimpleArray thread safe,
we must ensure that no two threads can access its shared mutable data at the same time.
While one thread is in the process of storing writeIndex, adding a value to the array, and
incrementing writeIndex, no other thread may read or change the value of writeIndex or
modify the contents of the array at any point during these three operations. In other words,
we want these three operations—storing writeIndex, writing to the array, incrementing
writeIndex—to be an atomic operation, which cannot be divided into smaller subopera-
tions. (As you’ll see in later examples, read operations on shared mutable data should also be
atomic.) We can simulate atomicity by ensuring that only one thread carries out the three
operations at a time. Any other threads that need to perform the operation must wait until
the first thread has finished the add operation in its entirety.

Atomicity can be achieved using the synchronized keyword. By placing our three
suboperations in a synchronized statement or synchronized method, we allow only one
thread at a time to acquire the lock and perform the operations. When that thread has
completed all of the operations in the synchronized block and releases the lock, another
thread may acquire the lock and begin executing the operations. This ensures that a thread
executing the operations will see the actual values of the shared mutable data and that these
values will not change unexpectedly in the middle of the operations as a result of another thread’s
modifying them.

Class SimpleArray with Synchronization
Figure 23.8 displays class SimpleArray with the proper synchronization. Notice that it’s
identical to the SimpleArray class of Fig. 23.5, except that add is now a synchronized
method (line 20). So, only one thread at a time can execute this method. We reuse classes
ArrayWriter (Fig. 23.6) and SharedArrayTest (Fig. 23.7) from the previous example.

Software Engineering Observation 23.5
Place all accesses to mutable data that may be shared by multiple threads inside
synchronized statements or synchronized methods that synchronize on the same lock.
When performing multiple operations on shared mutable data, hold the lock for the
entirety of the operation to ensure that the operation is effectively atomic.

23.4 Thread Synchronization 975

1 // Fig. 23.8: SimpleArray.java
2 // Class that manages an integer array to be shared by multiple
3 // threads with synchronization.
4 import java.security.SecureRandom;
5 import java.util.Arrays;
6
7 public class SimpleArray
8 {
9 private static final SecureRandom generator = new SecureRandom();

10 private final int[] array; // the shared integer array
11 private int writeIndex = 0; // index of next element to be written
12
13 // construct a SimpleArray of a given size
14 public SimpleArray(int size)
15 {
16 array = new int[size];
17 }
18
19 // add a value to the shared array
20
21 {
22 int position = writeIndex; // store the write index
23
24 try
25 {
26 // in real applications, you shouldn't sleep while holding a lock
27 Thread.sleep(generator.nextInt(500)); // for demo only
28 }
29 catch (InterruptedException ex)
30 {
31 Thread.currentThread().interrupt();
32 }
33
34 // put value in the appropriate element
35 array[position] = value;
36 System.out.printf("%s wrote %2d to element %d.%n",
37 Thread.currentThread().getName(), value, position);
38
39 ++writeIndex; // increment index of element to be written next
40 System.out.printf("Next write index: %d%n", writeIndex);
41 }
42
43 // used for outputting the contents of the shared integer array
44 public synchronized String toString()
45 {
46 return Arrays.toString(array);
47 }
48 } // end class SimpleArray

Fig. 23.8 | Class that manages an integer array to be shared by multiple threads with
synchronization. (Part 1 of 2.)

public synchronized void add(int value)

976 Chapter 23 Concurrency

Line 20 declares method add as synchronized, making all of the operations in this
method behave as a single, atomic operation. Line 22 performs the first suboperation—
storing the value of writeIndex. Line 35 defines the second suboperation, writing an ele-
ment to the element at the index position. Line 39 increments writeIndex. When the
method finishes executing at line 41, the executing thread implicitly releases the Simple-
Array lock, making it possible for another thread to begin executing the add method.

In the synchronized add method, we print messages to the console indicating the
progress of threads as they execute this method, in addition to performing the actual oper-
ations required to insert a value in the array. We do this so that the messages will be printed
in the correct order, allowing us to see whether the method is properly synchronized by
comparing these outputs with those of the previous, unsynchronized example. We con-
tinue to output messages from synchronized blocks in later examples for demonstration
purposes only; typically, however, I/O should not be performed in synchronized blocks,
because it’s important to minimize the amount of time that an object is “locked.” [Note:
Line 27 in this example calls Thread method sleep (for demo purposes only) to empha-
size the unpredictability of thread scheduling. You should never call sleep while
holding a lock in a real application.]

23.5 Producer/Consumer Relationship without
Synchronization
In a producer/consumer relationship, the producer portion of an application generates
data and stores it in a shared object, and the consumer portion of the application reads data

pool-1-thread-1 wrote 1 to element 0.
Next write index: 1
pool-1-thread-2 wrote 11 to element 1.
Next write index: 2
pool-1-thread-2 wrote 12 to element 2.
Next write index: 3
pool-1-thread-2 wrote 13 to element 3.
Next write index: 4
pool-1-thread-1 wrote 2 to element 4.
Next write index: 5
pool-1-thread-1 wrote 3 to element 5.
Next write index: 6

Contents of SimpleArray:
[1, 11, 12, 13, 2, 3]

Performance Tip 23.2
Keep the duration of synchronized statements as short as possible while maintaining the
needed synchronization. This minimizes the wait time for blocked threads. Avoid per-
forming I/O, lengthy calculations and operations that do not require synchronization
while holding a lock.

Fig. 23.8 | Class that manages an integer array to be shared by multiple threads with
synchronization. (Part 2 of 2.)

23.5 Producer/Consumer Relationship without Synchronization 977

from the shared object. The producer/consumer relationship separates the task of identify-
ing work to be done from the tasks involved in actually carrying out the work.

Examples of Producer/Consumer Relationship
One example of a common producer/consumer relationship is print spooling. Although
a printer might not be available when you want to print from an application (i.e., the pro-
ducer), you can still “complete” the print task, as the data is temporarily placed on disk
until the printer becomes available. Similarly, when the printer (i.e., a consumer) is avail-
able, it doesn’t have to wait until a current user wants to print. The spooled print jobs can
be printed as soon as the printer becomes available. Another example of the producer/con-
sumer relationship is an application that copies data onto DVDs by placing data in a fixed-
size buffer, which is emptied as the DVD drive “burns” the data onto the DVD.

Synchronization and State Dependence
In a multithreaded producer/consumer relationship, a producer thread generates data and
places it in a shared object called a buffer. A consumer thread reads data from the buffer.
This relationship requires synchronization to ensure that values are produced and con-
sumed properly. All operations on mutable data that’s shared by multiple threads (e.g., the
data in the buffer) must be guarded with a lock to prevent corruption, as discussed in
Section 23.4. Operations on the buffer data shared by a producer and consumer thread are
also state dependent—the operations should proceed only if the buffer is in the correct
state. If the buffer is in a not-full state, the producer may produce; if the buffer is in a not-
empty state, the consumer may consume. All operations that access the buffer must use syn-
chronization to ensure that data is written to the buffer or read from the buffer only if the
buffer is in the proper state. If the producer attempting to put the next data into the buffer
determines that it’s full, the producer thread must wait until there’s space to write a new
value. If a consumer thread finds the buffer empty or finds that the previous data has al-
ready been read, the consumer must also wait for new data to become available. Other ex-
amples of state dependence are that you can’t drive your car if its gas tank is empty and
you can’t put more gas into the tank if it’s already full.

Logic Errors from Lack of Synchronization
Consider how logic errors can arise if we do not synchronize access among multiple
threads manipulating shared mutable data. Our next example (Figs. 23.9–23.13) imple-
ments a producer/consumer relationship without the proper synchronization. A producer
thread writes the numbers 1 through 10 into a shared buffer—a single memory location
shared between two threads (a single int variable called buffer in line 6 of Fig. 23.12 in
this example). The consumer thread reads this data from the shared buffer and displays the
data. The program’s output shows the values that the producer writes (produces) into the
shared buffer and the values that the consumer reads (consumes) from the shared buffer.

Each value the producer thread writes to the shared buffer must be consumed exactly
once by the consumer thread. However, the threads in this example are not synchronized.
Therefore, data can be lost or garbled if the producer places new data into the shared buffer
before the consumer reads the previous data. Also, data can be incorrectly duplicated if the
consumer consumes data again before the producer produces the next value. To show
these possibilities, the consumer thread in the following example keeps a total of all the
values it reads. The producer thread produces values from 1 through 10. If the consumer

978 Chapter 23 Concurrency

reads each value produced once and only once, the total will be 55. However, if you exe-
cute this program several times, you’ll see that the total is not always 55 (as shown in the
outputs in Fig. 23.13). To emphasize the point, the producer and consumer threads in the
example each sleep for random intervals of up to three seconds between performing their
tasks. Thus, we do not know when the producer thread will attempt to write a new value,
or when the consumer thread will attempt to read a value.

Interface Buffer
The program consists of interface Buffer (Fig. 23.9) and classes Producer (Fig. 23.10),
Consumer (Fig. 23.11), UnsynchronizedBuffer (Fig. 23.12) and SharedBufferTest
(Fig. 23.13). Interface Buffer (Fig. 23.9) declares methods blockingPut (line 6) and
blockingGet (line 9) that a Buffer (such as UnsynchronizedBuffer) must implement to
enable the Producer thread to place a value in the Buffer and the Consumer thread to re-
trieve a value from the Buffer, respectively. In subsequent examples, methods blocking-
Put and blockingGet will call methods that throw InterruptedExceptions—typically
this indicates that a method temporarily could be blocked from performing a task. We de-
clare each method with a throws clause here so that we don’t have to modify this interface
for the later examples.

Class Producer
Class Producer (Fig. 23.10) implements the Runnable interface, allowing it to be executed
as a task in a separate thread. The constructor (lines 11–14) initializes the Buffer reference
sharedLocation with an object created in main (line 15 of Fig. 23.13) and passed to the con-
structor. As we’ll see, this is an UnsynchronizedBuffer object that implements interface
Buffer without synchronizing access to the shared object. The Producer thread in this program
executes the tasks specified in the method run (Fig. 23.10, lines 17–39). Each iteration of
the loop (lines 21–35) invokes Thread method sleep (line 25) to place the Producer thread
into the timed waiting state for a random time interval between 0 and 3 seconds. When the
thread awakens, line 26 passes the value of control variable count to the Buffer object’s
blockingPut method to set the shared buffer’s value. Lines 27–28 keep a total of all the val-
ues produced so far and output that value. When the loop completes, lines 36–37 display a
message indicating that the Producer has finished producing data and is terminating. Next,
method run terminates, which indicates that the Producer completed its task. Any method
called from a Runnable’s run method (e.g., Buffer method blockingPut) executes as part

1 // Fig. 23.9: Buffer.java
2 // Buffer interface specifies methods called by Producer and Consumer.
3 public interface Buffer
4 {
5 // place int value into Buffer
6 public void blockingPut(int value) throws InterruptedException;
7
8 // return int value from Buffer
9 public int blockingGet() throws InterruptedException;

10 } // end interface Buffer

Fig. 23.9 | Buffer interface specifies methods called by Producer and Consumer. (Caution:
The example of Figs. 23.9–23.13 is not thread safe.)

23.5 Producer/Consumer Relationship without Synchronization 979

of that task’s thread of execution. This fact becomes important in Sections 23.6–23.8 when
we add synchronization to the producer/consumer relationship.

Class Consumer
Class Consumer (Fig. 23.11) also implements interface Runnable, allowing the Consumer
to execute concurrently with the Producer. Lines 11–14 initialize Buffer reference
sharedLocation with an object that implements the Buffer interface (created in main,
Fig. 23.13) and passed to the constructor as the parameter shared. As we’ll see, this is the
same UnsynchronizedBuffer object that’s used to initialize the Producer object—thus,

1 // Fig. 23.10: Producer.java
2 // Producer with a run method that inserts the values 1 to 10 in buffer.
3 import java.security.SecureRandom;
4
5
6 {
7 private static final SecureRandom generator = new SecureRandom();
8 private final Buffer sharedLocation; // reference to shared object
9

10 // constructor
11 public Producer(Buffer sharedLocation)
12 {
13 this.sharedLocation = sharedLocation;
14 }
15
16
17
18 {
19 int sum = 0;
20
21 for (int count = 1; count <= 10; count++)
22 {
23 try // sleep 0 to 3 seconds, then place value in Buffer
24 {
25
26
27 sum += count; // increment sum of values
28 System.out.printf("\t%2d%n", sum);
29 }
30 catch (InterruptedException exception)
31 {
32 Thread.currentThread().interrupt();
33 }
34 }
35
36 System.out.printf(
37 "Producer done producing%nTerminating Producer%n");
38 }
39 } // end class Producer

Fig. 23.10 | Producer with a run method that inserts the values 1 to 10 in buffer. (Caution:
The example of Figs. 23.9–23.13 is not thread safe.)

public class Producer implements Runnable

// store values from 1 to 10 in sharedLocation
public void run()

Thread.sleep(generator.nextInt(3000)); // random sleep
sharedLocation.blockingPut(count); // set value in buffer

980 Chapter 23 Concurrency

the two threads share the same object. The Consumer thread in this program performs the
tasks specified in method run (lines 17–39). Lines 21–34 iterate 10 times. Each iteration
invokes Thread method sleep (line 26) to put the Consumer thread into the timed waiting
state for up to 3 seconds. Next, line 27 uses the Buffer’s blockingGet method to retrieve
the value in the shared buffer, then adds the value to variable sum. Line 28 displays the
total of all the values consumed so far. When the loop completes, lines 36–37 display a
line indicating the sum of the consumed values. Then method run terminates, which in-
dicates that the Consumer completed its task. Once both threads enter the terminated state,
the program ends.

1 // Fig. 23.11: Consumer.java
2 // Consumer with a run method that loops, reading 10 values from buffer.
3 import java.security.SecureRandom;
4
5
6 {
7 private static final SecureRandom generator = new SecureRandom();
8 private final Buffer sharedLocation; // reference to shared object
9

10 // constructor
11 public Consumer(Buffer sharedLocation)
12 {
13 this.sharedLocation = sharedLocation;
14 }
15
16
17
18 {
19 int sum = 0;
20
21 for (int count = 1; count <= 10; count++)
22 {
23 // sleep 0 to 3 seconds, read value from buffer and add to sum
24 try
25 {
26
27
28 System.out.printf("\t\t\t%2d%n", sum);
29 }
30 catch (InterruptedException exception)
31 {
32 Thread.currentThread().interrupt();
33 }
34 }
35
36 System.out.printf("%n%s %d%n%s%n",
37 "Consumer read values totaling", sum, "Terminating Consumer");
38 }
39 } // end class Consumer

Fig. 23.11 | Consumer with a run method that loops, reading 10 values from buffer. (Caution:
The example of Figs. 23.9–23.13 is not thread safe.)

public class Consumer implements Runnable

// read sharedLocation's value 10 times and sum the values
public void run()

Thread.sleep(generator.nextInt(3000));
sum += sharedLocation.blockingGet();

23.5 Producer/Consumer Relationship without Synchronization 981

We Call Thread Method sleep Only for Demonstration Purposes
We call method sleep in method run of the Producer and Consumer classes to emphasize
the fact that, in multithreaded applications, it’s unpredictable when each thread will perform
its task and for how long it will perform the task when it has a processor. Normally, these
thread scheduling issues are beyond the control of the Java developer. In this program, our
thread’s tasks are quite simple—the Producer writes the values 1 to 10 to the buffer, and
the Consumer reads 10 values from the buffer and adds each value to variable sum. Without
the sleep method call, and if the Producer executes first, given today’s phenomenally fast
processors, the Producer would likely complete its task before the Consumer got a chance
to execute. If the Consumer executed first, it would likely consume garbage data ten times,
then terminate before the Producer could produce the first real value.

Class UnsynchronizedBuffer Does Not Synchronize Access to the Buffer
Class UnsynchronizedBuffer (Fig. 23.12) implements interface Buffer (line 4), but does
not synchronize access to the buffer’s state—we purposely do this to demonstrate the prob-
lems that occur when multiple threads access shared mutable data in without synchroniza-
tion. Line 6 declares instance variable buffer and initializes it to –1. This value is used to
demonstrate the case in which the Consumer attempts to consume a value before the Pro-
ducer ever places a value in buffer. Again, methods blockingPut (lines 9–13) and block-
ingGet (lines 16–20) do not synchronize access to the buffer instance variable. Method
blockingPut simply assigns its argument to buffer (line 12), and method blockingGet
simply returns the value of buffer (line 19). As you’ll see in Fig. 23.13, Unsynchronized-
Buffer object is shared between the Producer and the Consumer.

1 // Fig. 23.12: UnsynchronizedBuffer.java
2 // UnsynchronizedBuffer maintains the shared integer that is accessed by
3 // a producer thread and a consumer thread.
4 public class UnsynchronizedBuffer implements Buffer
5 {
6
7
8 // place value into buffer
9 public void blockingPut(int value) throws InterruptedException

10 {
11 System.out.printf("Producer writes\t%2d", value);
12
13 }
14
15 // return value from buffer
16 public int blockingGet() throws InterruptedException
17 {
18 System.out.printf("Consumer reads\t%2d", buffer);
19
20 }
21 } // end class UnsynchronizedBuffer

Fig. 23.12 | UnsynchronizedBuffer maintains the shared integer that is accessed by a producer
thread and a consumer thread. (Caution: The example of Fig. 23.9–Fig. 23.13 is not thread safe.)

private int buffer = -1; // shared by producer and consumer threads

buffer = value;

return buffer;

982 Chapter 23 Concurrency

Class SharedBufferTest
In class SharedBufferTest (Fig. 23.13), line 12 creates an ExecutorService to execute
the Producer and Consumer Runnables. Line 15 creates an UnsynchronizedBuffer and as-
signs it to Buffer variable sharedLocation. This object stores the data that the Producer
and Consumer threads will share. Lines 24–25 create and execute the Producer and Con-
sumer. The Producer and Consumer constructors are each passed the same Buffer object
(sharedLocation), so each object refers to the same Buffer. These lines also implicitly
launch the threads and call each Runnable’s run method. Finally, line 27 calls method
shutdown so that the application can terminate when the threads executing the Producer
and Consumer complete their tasks and line 28 waits for the scheduled tasks to complete.
When main terminates (line 29), the main thread of execution enters the terminated state.

1 // Fig. 23.13: SharedBufferTest.java
2 // Application with two threads manipulating an unsynchronized buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;
5 import java.util.concurrent.TimeUnit;
6
7 public class SharedBufferTest
8 {
9 public static void main(String[] args) throws InterruptedException

10 {
11 // create new thread pool with two threads
12 ExecutorService executorService = Executors.newCachedThreadPool();
13
14
15
16
17 System.out.println(
18 "Action\t\tValue\tSum of Produced\tSum of Consumed");
19 System.out.printf(
20 "------\t\t-----\t---------------\t---------------%n%n");
21
22 // execute the Producer and Consumer, giving each
23 // access to the sharedLocation
24
25
26
27 executorService.shutdown(); // terminate app when tasks complete
28 executorService.awaitTermination(1, TimeUnit.MINUTES);
29 }
30 } // end class SharedBufferTest

Action Value Sum of Produced Sum of Consumed
------ ----- --------------- ---------------

Producer writes 1 1

Fig. 23.13 | Application with two threads manipulating an unsynchronized buffer. (Caution:
The example of Figs. 23.9–23.13 is not thread safe.) (Part 1 of 2.)

// create UnsynchronizedBuffer to store ints
Buffer sharedLocation = new UnsynchronizedBuffer();

executorService.execute(new Producer(sharedLocation));
executorService.execute(new Consumer(sharedLocation));

Producer writes 2 3 1 is lost
2 is lostProducer writes 3 6

23.5 Producer/Consumer Relationship without Synchronization 983

Consumer reads 3 3
Producer writes 4 10
Consumer reads 4 7
Producer writes 5 15

Consumer reads 7 14

Producer writes 8 36
Consumer reads 8 29

Producer writes 9 45

Producer done producing
Terminating Producer
Consumer reads 10 47

Consumer read values totaling 77
Terminating Consumer

Action Value Sum of Produced Sum of Consumed
------ ----- --------------- ---------------

Producer writes 1 1
Consumer reads 1 0

Producer writes 2 3
Consumer reads 2 6
Producer writes 3 6
Consumer reads 3 9
Producer writes 4 10
Consumer reads 4 13
Producer writes 5 15

Consumer reads 6 19

Consumer read values totaling 19
Terminating Consumer

Producer done producing
Terminating Producer

Fig. 23.13 | Application with two threads manipulating an unsynchronized buffer. (Caution:
The example of Figs. 23.9–23.13 is not thread safe.) (Part 2 of 2.)

5 is lost
6 is lost

7 read again

8 read again

9 is lost

10 read again
10 read again
10 read again

Producer writes 6 21
Producer writes 7 28

Consumer reads 7 21

Consumer reads 8 37

Producer writes 10 55

Consumer reads 10 57
Consumer reads 10 67
Consumer reads 10 77

Consumer reads -1 -1 reads -1 bad data

1 read again
1 read again
1 read again
1 read again

10 never read

5 is lost

7 never read
8 never read
9 never read

Consumer reads 1 1
Consumer reads 1 2
Consumer reads 1 3
Consumer reads 1 4

Producer writes 6 21

Producer writes 7 28
Producer writes 8 36
Producer writes 9 45
Producer writes 10 55

984 Chapter 23 Concurrency

Recall from this example’s overview that the Producer should execute first and every
value produced by the Producer should be consumed exactly once by the Consumer. How-
ever, when you study the first output of Fig. 23.13, notice that the Producer writes the
values 1, 2 and 3 before the Consumer reads its first value (3). Therefore, the values 1 and 2
are lost. Later, the values 5, 6 and 9 are lost, while 7 and 8 are read twice and 10 is read four
times. So the first output produces an incorrect total of 77, instead of the correct total of
55. In the second output, the Consumer reads the value -1 before the Producer ever writes
a value. The Consumer reads the value 1 five times before the Producer writes the value 2.
Meanwhile, the values 5, 7, 8, 9 and 10 are all lost—the last four because the Consumer ter-
minates before the Producer. An incorrect consumer total of 19 is displayed. (Lines in the
output where the Producer or Consumer has acted out of order are highlighted.)

To solve the problems of lost and duplicated data, Section 23.6 presents an example in
which we use an ArrayBlockingQueue (from package java.util.concurrent) to syn-
chronize access to the shared object, guaranteeing that each and every value will be pro-
cessed once and only once.

23.6 Producer/Consumer Relationship:
ArrayBlockingQueue
The best way to synchronize producer and consumer threads is to use classes from Java’s
java.util.concurrent package that encapsulate the synchronization for you. Java includes
the class ArrayBlockingQueue—a fully implemented, thread-safe buffer class that imple-
ments interface BlockingQueue. This interface extends the Queue interface discussed in
Chapter 16 and declares methods put and take, the blocking equivalents of Queue meth-
ods offer and poll, respectively. Method put places an element at the end of the Block-
ingQueue, waiting if the queue is full. Method take removes an element from the head of
the BlockingQueue, waiting if the queue is empty. These methods make class Array-
BlockingQueue a good choice for implementing a shared buffer. Because method put
blocks until there’s room in the buffer to write data, and method take blocks until there’s
new data to read, the producer must produce a value first, the consumer correctly con-
sumes only after the producer writes a value and the producer correctly produces the next
value (after the first) only after the consumer reads the previous (or first) value. Array-
BlockingQueue stores the shared mutable data in an array, the size of which is specified as
an ArrayBlockingQueue constructor argument. Once created, an ArrayBlockingQueue is
fixed in size and will not expand to accommodate extra elements.

Class BlockingBuffer
Figures 23.14–23.15 demonstrate a Producer and a Consumer accessing an ArrayBlock-
ingQueue. Class BlockingBuffer (Fig. 23.14) uses an ArrayBlockingQueue object that
stores an Integer (line 7). Line 11 creates the ArrayBlockingQueue and passes 1 to the
constructor so that the object holds a single value to mimic the UnsynchronizedBuffer
example in Fig. 23.12. Lines 7 and 11 (Fig. 23.14) use generics, which we discussed in

Error-Prevention Tip 23.1
Access to a shared object by concurrent threads must be controlled carefully or a program
may produce incorrect results.

23.6 Producer/Consumer Relationship: ArrayBlockingQueue 985

Chapters 16–20. We discuss multiple-element buffers in Section 23.8. Because our Block-
ingBuffer class uses the thread-safe ArrayBlockingQueue class to manage all of its shared
state (the shared buffer in this case), BlockingBuffer is itself thread safe, even though we
have not implemented the synchronization ourselves.

BlockingBuffer implements interface Buffer (Fig. 23.9) and uses classes Producer
(Fig. 23.10 modified to remove line 28) and Consumer (Fig. 23.11 modified to remove
line 28) from the example in Section 23.5. This approach demonstrates encapsulated syn-
chronization—the threads accessing the shared object are unaware that their buffer accesses are
now synchronized. The synchronization is handled entirely in the blockingPut and block-
ingGet methods of BlockingBuffer by calling the synchronized ArrayBlockingQueue
methods put and take, respectively. Thus, the Producer and Consumer Runnables are
properly synchronized simply by calling the shared object’s blockingPut and block-
ingGet methods.

Line 17 in method blockingPut (Fig. 23.14, lines 15–20) calls the ArrayBlocking-
Queue object’s put method. This method call blocks if necessary until there’s room in the
buffer to place the value. Method blockingGet (lines 23–30) calls the ArrayBlocking-

1 // Fig. 23.14: BlockingBuffer.java
2 // Creating a synchronized buffer using an ArrayBlockingQueue.
3 import java.util.concurrent.ArrayBlockingQueue;
4
5 public class BlockingBuffer implements Buffer
6 {
7
8
9 public BlockingBuffer()

10 {
11
12 }
13
14 // place value into buffer
15 public void blockingPut(int value) throws InterruptedException
16 {
17
18 System.out.printf("%s%2d\t%s%d%n", "Producer writes ", value,
19 "Buffer cells occupied: ", buffer.size());
20 }
21
22 // return value from buffer
23 public int blockingGet() throws InterruptedException
24 {
25
26 System.out.printf("%s %2d\t%s%d%n", "Consumer reads ",
27 readValue, "Buffer cells occupied: ", buffer.size());
28
29 return readValue;
30 }
31 } // end class BlockingBuffer

Fig. 23.14 | Creating a synchronized buffer using an ArrayBlockingQueue.

private final ArrayBlockingQueue<Integer> buffer; // shared buffer

buffer = new ArrayBlockingQueue<Integer>(1);

buffer.put(value); // place value in buffer

int readValue = buffer.take(); // remove value from buffer

986 Chapter 23 Concurrency

Queue object’s take method (line 25). This method call blocks if necessary until there’s an
element in the buffer to remove. Lines 18–19 and 26–27 use the ArrayBlockingQueue
object’s size method to display the total number of elements currently in the Array-
BlockingQueue.

Class BlockingBufferTest
Class BlockingBufferTest (Fig. 23.15) contains the main method that launches the ap-
plication. Line 13 creates an ExecutorService, and line 16 creates a BlockingBuffer ob-
ject and assigns its reference to the Buffer variable sharedLocation. Lines 18–19 execute
the Producer and Consumer Runnables. Line 21 calls method shutdown to end the appli-
cation when the threads finish executing the Producer and Consumer tasks and line 22
waits for the scheduled tasks to complete.

1 // Fig. 23.15: BlockingBufferTest.java
2 // Two threads manipulating a blocking buffer that properly
3 // implements the producer/consumer relationship.
4 import java.util.concurrent.ExecutorService;
5 import java.util.concurrent.Executors;
6 import java.util.concurrent.TimeUnit;
7
8 public class BlockingBufferTest
9 {

10 public static void main(String[] args) throws InterruptedException
11 {
12 // create new thread pool with two threads
13 ExecutorService executorService = Executors.newCachedThreadPool();
14
15
16
17
18
19
20
21 executorService.shutdown();
22 executorService.awaitTermination(1, TimeUnit.MINUTES);
23 }
24 } // end class BlockingBufferTest

Producer writes 1 Buffer cells occupied: 1
Consumer reads 1 Buffer cells occupied: 0
Producer writes 2 Buffer cells occupied: 1
Consumer reads 2 Buffer cells occupied: 0
Producer writes 3 Buffer cells occupied: 1
Consumer reads 3 Buffer cells occupied: 0
Producer writes 4 Buffer cells occupied: 1
Consumer reads 4 Buffer cells occupied: 0
Producer writes 5 Buffer cells occupied: 1
Consumer reads 5 Buffer cells occupied: 0
Producer writes 6 Buffer cells occupied: 1

Fig. 23.15 | Two threads manipulating a blocking buffer that properly implements the
producer/consumer relationship. (Part 1 of 2.)

// create BlockingBuffer to store ints
Buffer sharedLocation = new BlockingBuffer();

executorService.execute(new Producer(sharedLocation));
executorService.execute(new Consumer(sharedLocation));

23.7 synchronized, wait, notify and notifyAll 987

While methods put and take of ArrayBlockingQueue are properly synchronized,
BlockingBuffer methods blockingPut and blockingGet (Fig. 23.14) are not declared to
be synchronized. Thus, the statements performed in method blockingPut—the put oper-
ation (line 17) and the output (lines 18–19)—are not atomic; nor are the statements in
method blockingGet—the take operation (line 25) and the output (lines 26–27). So
there’s no guarantee that each output will occur immediately after the corresponding put
or take operation, and the outputs may appear out of order. Even if they do, the Array-
BlockingQueue object is properly synchronizing access to the data, as evidenced by the fact
that the sum of values read by the consumer is always correct.

23.7 (Advanced) Producer/Consumer Relationship with
synchronized, wait, notify and notifyAll
[Note: This section is intended for advanced programmers who want to control synchro-
nization.2] The previous example showed how multiple threads can share a single-element
buffer in a thread-safe manner by using the ArrayBlockingQueue class that encapsulates
the synchronization necessary to protect the shared mutable data. For educational purpos-
es, we now explain how you can implement a shared buffer yourself using the synchro-
nized keyword and methods of class Object. Using an ArrayBlockingQueue generally
results in more-maintainable, better-performing code.

After identifying the shared mutable data and the synchronization policy (i.e., associ-
ating the data with a lock that guards it), the next step in synchronizing access to the buffer
is to implement methods blockingGet and blockingPut as synchronized methods. This
requires that a thread obtain the monitor lock on the Buffer object before attempting to
access the buffer data, but it does not automatically ensure that threads proceed with an
operation only if the buffer is in the proper state. We need a way to allow our threads to
wait, depending on whether certain conditions are true. In the case of placing a new item
in the buffer, the condition that allows the operation to proceed is that the buffer is not full.

Consumer reads 6 Buffer cells occupied: 0
Producer writes 7 Buffer cells occupied: 1
Consumer reads 7 Buffer cells occupied: 0
Producer writes 8 Buffer cells occupied: 1
Consumer reads 8 Buffer cells occupied: 0
Producer writes 9 Buffer cells occupied: 1
Consumer reads 9 Buffer cells occupied: 0
Producer writes 10 Buffer cells occupied: 1
Producer done producing
Terminating Producer
Consumer reads 10 Buffer cells occupied: 0
Consumer read values totaling 55
Terminating Consumer

2. For detailed information on wait, notify and notifyAll, see Chapter 14 of Java Concurrency in
Practice by Brian Goetz, et al., Addison-Wesley Professional, 2006.

Fig. 23.15 | Two threads manipulating a blocking buffer that properly implements the
producer/consumer relationship. (Part 2 of 2.)

988 Chapter 23 Concurrency

In the case of fetching an item from the buffer, the condition that allows the operation to
proceed is that the buffer is not empty. If the condition in question is true, the operation
may proceed; if it’s false, the thread must wait until it becomes true. When a thread is
waiting on a condition, it’s removed from contention for the processor and placed into the
waiting state and the lock it holds is released.

Methods wait, notify and notifyAll
Object methods wait, notify and notifyAll can be used with conditions to make threads
wait when they cannot perform their tasks. If a thread obtains the monitor lock on an object,
then determines that it cannot continue with its task on that object until some condition is
satisfied, the thread can call Object method wait on the synchronized object; this releases
the monitor lock on the object, and the thread waits in the waiting state while the other
threads try to enter the object’s synchronized statement(s) or method(s). When a thread
executing a synchronized statement (or method) completes or satisfies the condition on
which another thread may be waiting, it can call Object method notify on the synchro-
nized object to allow a waiting thread to transition to the runnable state again. At this
point, the thread that was transitioned from the waiting state to the runnable state can at-
tempt to reacquire the monitor lock on the object. Even if the thread is able to reacquire the
monitor lock, it still might not be able to perform its task at this time—in which case the
thread will reenter the waiting state and implicitly release the monitor lock. If a thread calls
notifyAll on the synchronized object, then all the threads waiting for the monitor lock
become eligible to reacquire the lock (that is, they all transition to the runnable state).

Remember that only one thread at a time can obtain the monitor lock on the object—
other threads that attempt to acquire the same monitor lock will be blocked until the mon-
itor lock becomes available again (i.e., until no other thread is executing in a synchronized
statement on that object).

Figures 23.16 and 23.17 demonstrate a Producer and a Consumer accessing a shared
buffer with synchronization. In this case, the Producer always produces a value first, the
Consumer correctly consumes only after the Producer produces a value and the Producer
correctly produces the next value only after the Consumer consumes the previous (or first)
value. We reuse interface Buffer and classes Producer and Consumer from the example in
Section 23.5, except that line 28 is removed from class Producer and class Consumer.

Class SynchronizedBuffer
The synchronization is handled in class SynchronizedBuffer’s blockingPut and blocking-
Get methods (Fig. 23.16), which implements interface Buffer (line 4). Thus, the Producer’s
and Consumer’s run methods simply call the shared object’s synchronized blockingPut and

Common Programming Error 23.1
It’s an error if a thread issues a wait, a notify or a notifyAll on an object without hav-
ing acquired a lock for it. This causes an IllegalMonitorStateException.

Error-Prevention Tip 23.2
It’s a good practice to use notifyAll to notify waiting threads to become runnable. Doing
so avoids the possibility that your program would forget about waiting threads, which
would otherwise starve.

23.7 synchronized, wait, notify and notifyAll 989

blockingGet methods. Again, we output messages from this class’s synchronized methods
for demonstration purposes only—I/O should not be performed in synchronized blocks, be-
cause it’s important to minimize the amount of time that an object is “locked.”

1 // Fig. 23.16: SynchronizedBuffer.java
2 // Synchronizing access to shared mutable data using Object
3 // methods wait and notifyAll.
4 public class SynchronizedBuffer implements Buffer
5 {
6 private int buffer = -1; // shared by producer and consumer threads
7 private boolean occupied = false;
8
9 // place value into buffer

10
11
12 {
13 // while there are no empty locations, place thread in waiting state
14
15 {
16 // output thread information and buffer information, then wait
17 System.out.println("Producer tries to write."); // for demo only
18 displayState("Buffer full. Producer waits."); // for demo only
19
20 }
21
22
23
24
25
26
27
28 displayState("Producer writes " + buffer); // for demo only
29
30
31 } // end method blockingPut; releases lock on SynchronizedBuffer
32
33 // return value from buffer
34
35 {
36 // while no data to read, place thread in waiting state
37 while (!occupied)
38 {
39 // output thread information and buffer information, then wait
40 System.out.println("Consumer tries to read."); // for demo only
41 displayState("Buffer empty. Consumer waits."); // for demo only
42
43 }
44
45
46
47

Fig. 23.16 | Synchronizing access to shared mutable data using Object methods wait and
notifyAll. (Part 1 of 2.)

public synchronized void blockingPut(int value)
 throws InterruptedException

while (occupied)

wait();

buffer = value; // set new buffer value

// indicate producer cannot store another value
// until consumer retrieves current buffer value
occupied = true;

notifyAll(); // tell waiting thread(s) to enter runnable state

public synchronized int blockingGet() throws InterruptedException

wait();

// indicate that producer can store another value
// because consumer just retrieved buffer value
occupied = false;

990 Chapter 23 Concurrency

Fields and Methods of Class SynchronizedBuffer
Class SynchronizedBuffer contains fields buffer (line 6) and occupied (line 7)—you
must synchronize access to both fields to ensure that class SynchronizedBuffer is thread
safe. Methods blockingPut (lines 10–31) and blockingGet (lines 34–54) are declared as
synchronized—only one thread can call either of these methods at a time on a particular
SynchronizedBuffer object. Field occupied is used to determine whether it’s the Produc-
er’s or the Consumer’s turn to perform a task. This field is used in conditional expressions
in both the blockingPut and blockingGet methods. If occupied is false, then buffer is
empty, so the Consumer cannot read the value of buffer, but the Producer can place a val-
ue into buffer. If occupied is true, the Consumer can read a value from buffer, but the
Producer cannot place a value into buffer.

Method blockingPut and the Producer Thread
When the Producer thread’s run method invokes synchronized method blockingPut,
the thread implicitly attempts to acquire the SynchronizedBuffer object’s monitor lock.
If the monitor lock is available, the Producer thread implicitly acquires the lock. Then the
loop at lines 14–20 first determines whether occupied is true. If so, buffer is full and we
want to wait until the buffer is empty, so line 17 outputs a message indicating that the
Producer thread is trying to write a value, and line 18 invokes method displayState
(lines 57–61) to output another message indicating that buffer is full and that the Pro-
ducer thread is waiting until there’s space. Line 19 invokes method wait (inherited from
Object by SynchronizedBuffer) to place the thread that called method blockingPut (i.e.,
the Producer thread) in the waiting state for the SynchronizedBuffer object. The call to
wait causes the calling thread to implicitly release the lock on the SynchronizedBuffer ob-
ject. This is important because the thread cannot currently perform its task and because
other threads (in this case, the Consumer) should be allowed to access the object to allow
the condition (occupied) to change. Now another thread can attempt to acquire the Syn-
chronizedBuffer object’s lock and invoke the object’s blockingPut or blockingGet
method.

48
49 displayState("Consumer reads " + buffer); // for demo only
50
51
52
53 return buffer;
54 } // end method blockingGet; releases lock on SynchronizedBuffer
55
56 // display current operation and buffer state; for demo only
57 private void displayState(String operation)
58 {
59 System.out.printf("%-40s%d\t\t%b%n%n", operation, buffer,
60 occupied);
61 }
62 } // end class SynchronizedBuffer

Fig. 23.16 | Synchronizing access to shared mutable data using Object methods wait and
notifyAll. (Part 2 of 2.)

notifyAll(); // tell waiting thread(s) to enter runnable state

synchronized

23.7 synchronized, wait, notify and notifyAll 991

The Producer thread remains in the waiting state until another thread notifies the
Producer that it may proceed—at which point the Producer returns to the runnable state
and attempts to implicitly reacquire the lock on the SynchronizedBuffer object. If the
lock is available, the Producer thread reacquires it, and method blockingPut continues
executing with the next statement after the wait call. Because wait is called in a loop, the
loop-continuation condition is tested again to determine whether the thread can proceed.
If not, then wait is invoked again—otherwise, method blockingPut continues with the
next statement after the loop.

Line 22 in method blockingPut assigns the value to the buffer. Line 26 sets occu-
pied to true to indicate that the buffer now contains a value (i.e., a consumer can read
the value, but a Producer cannot yet put another value there). Line 28 invokes method
displayState to output a message indicating that the Producer is writing a new value into
the buffer. Line 30 invokes method notifyAll (inherited from Object). If any threads
are waiting on the SynchronizedBuffer object’s monitor lock, those threads enter the
runnable state and can now attempt to reacquire the lock. Method notifyAll returns
immediately, and method blockingPut then returns to the caller (i.e., the Producer’s run
method). When method blockingPut returns, it implicitly releases the monitor lock on the
SynchronizedBuffer object.

Method blockingGet and the Consumer Thread
Methods blockingGet and blockingPut are implemented similarly. When the Consumer
thread’s run method invokes synchronized method blockingGet, the thread attempts to
acquire the monitor lock on the SynchronizedBuffer object. If the lock is available, the
Consumer thread acquires it. Then the while loop at lines 37–43 determines whether oc-
cupied is false. If so, the buffer is empty, so line 40 outputs a message indicating that the
Consumer thread is trying to read a value, and line 41 invokes method displayState to
output a message indicating that the buffer is empty and that the Consumer thread is wait-
ing. Line 42 invokes method wait to place the thread that called method blockingGet
(i.e., the Consumer) in the waiting state for the SynchronizedBuffer object. Again, the call
to wait causes the calling thread to implicitly release the lock on the SynchronizedBuffer
object, so another thread can attempt to acquire the SynchronizedBuffer object’s lock
and invoke the object’s blockingPut or blockingGet method. If the lock on the Synchro-
nizedBuffer is not available (e.g., if the Producer has not yet returned from method
blockingPut), the Consumer is blocked until the lock becomes available.

The Consumer thread remains in the waiting state until it’s notified by another thread
that it may proceed—at which point the Consumer thread returns to the runnable state and
attempts to implicitly reacquire the lock on the SynchronizedBuffer object. If the lock is
available, the Consumer reacquires it, and method blockingGet continues executing with
the next statement after wait. Because wait is called in a loop, the loop-continuation con-
dition is tested again to determine whether the thread can proceed with its execution. If
not, wait is invoked again—otherwise, method blockingGet continues with the next
statement after the loop. Line 47 sets occupied to false to indicate that buffer is now
empty (i.e., a Consumer cannot read the value, but a Producer can place another value in
buffer), line 49 calls method displayState to indicate that the consumer is reading and
line 51 invokes method notifyAll. If any threads are in the waiting state for the lock on
this SynchronizedBuffer object, they enter the runnable state and can now attempt to

992 Chapter 23 Concurrency

reacquire the lock. Method notifyAll returns immediately, then method blockingGet
returns the value of buffer to its caller. When method blockingGet returns, the lock on
the SynchronizedBuffer object is implicitly released.

Method displayState Is Also synchronized
Notice that method displayState is a synchronized method. This is important because
it, too, reads the SynchronizedBuffer’s shared mutable data. Though only one thread at
a time may acquire a given object’s lock, one thread may acquire the same object’s lock
multiple times—this is known as a reentrant lock and enables one synchronized method
to invoke another on the same object.

Testing Class SynchronizedBuffer
Class SharedBufferTest2 (Fig. 23.17) is similar to class SharedBufferTest (Fig. 23.13).
SharedBufferTest2 contains method main (Fig. 23.17, lines 9–26), which launches the
application. Line 12 creates an ExecutorService to run the Producer and Consumer tasks.
Line 15 creates a SynchronizedBuffer object and assigns its reference to Buffer variable
sharedLocation. This object stores the data that will be shared between the Producer and
Consumer. Lines 17–18 display the column heads for the output. Lines 21–22 execute a
Producer and a Consumer. Finally, line 24 calls method shutdown to end the application
when the Producer and Consumer complete their tasks and line 25 waits for the scheduled
tasks to complete. When method main ends (line 26), the main thread of execution termi-
nates.

Error-Prevention Tip 23.3
Always invoke method wait in a loop that tests the condition the task is waiting on. It’s
possible that a thread will reenter the runnable state (via a timed wait or another thread
calling notifyAll) before the condition is satisfied. Testing the condition again ensures
that the thread will not erroneously execute if it was notified early.

1 // Fig. 23.17: SharedBufferTest2.java
2 // Two threads correctly manipulating a synchronized buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;
5 import java.util.concurrent.TimeUnit;
6
7 public class SharedBufferTest2
8 {
9 public static void main(String[] args) throws InterruptedException

10 {
11 // create a newCachedThreadPool
12 ExecutorService executorService = Executors.newCachedThreadPool();
13
14
15
16
17 System.out.printf("%-40s%s\t\t%s%n%-40s%s%n%n", "Operation",
18 "Buffer", "Occupied", "---------", "------\t\t--------");
19

Fig. 23.17 | Two threads correctly manipulating a synchronized buffer. (Part 1 of 3.)

// create SynchronizedBuffer to store ints
Buffer sharedLocation = new SynchronizedBuffer();

23.7 synchronized, wait, notify and notifyAll 993

20 // execute the Producer and Consumer tasks
21
22
23
24 executorService.shutdown();
25 executorService.awaitTermination(1, TimeUnit.MINUTES);
26 }
27 } // end class SharedBufferTest2

Operation Buffer Occupied
--------- ------ --------

Consumer tries to read.
 -1 false

Producer writes 1 1 true

Consumer reads 1 1 false

Consumer tries to read.
 1 false

Producer writes 2 2 true

Consumer reads 2 2 false

Producer writes 3 3 true

Consumer reads 3 3 false

Producer writes 4 4 true

Producer tries to write.
 4 true

Consumer reads 4 4 false

Producer writes 5 5 true

Consumer reads 5 5 false

Producer writes 6 6 true

Producer tries to write.
 6 true

Consumer reads 6 6 false

Producer writes 7 7 true

Producer tries to write.
 7 true

Consumer reads 7 7 false

Producer writes 8 8 true

Consumer reads 8 8 false

Consumer tries to read.
 8 false

Fig. 23.17 | Two threads correctly manipulating a synchronized buffer. (Part 2 of 3.)

executorService.execute(new Producer(sharedLocation));
executorService.execute(new Consumer(sharedLocation));

Buffer empty. Consumer waits.

Buffer empty. Consumer waits.

Buffer full. Producer waits.

Buffer full. Producer waits.

Buffer full. Producer waits.

Buffer empty. Consumer waits.

994 Chapter 23 Concurrency

Study the outputs in Fig. 23.17. Observe that every integer produced is consumed exactly
once—no values are lost, and no values are consumed more than once. The synchronization
ensures that the Producer produces a value only when the buffer is empty and the Con-
sumer consumes only when the buffer is full. The Producer always goes first, the Consumer
waits if the Producer has not produced since the Consumer last consumed, and the Pro-
ducer waits if the Consumer has not yet consumed the value that the Producer most
recently produced. Execute this program several times to confirm that every integer pro-
duced is consumed exactly once. In the sample output, note the highlighted lines indi-
cating when the Producer and Consumer must wait to perform their respective tasks.

23.8 (Advanced) Producer/Consumer Relationship:
Bounded Buffers
The program in Section 23.7 uses thread synchronization to guarantee that two threads
manipulate data in a shared buffer correctly. However, the application may not perform
optimally. If the two threads operate at different speeds, one of them will spend more (or
most) of its time waiting. For example, in the program in Section 23.7 we shared a single
integer variable between the two threads. If the Producer thread produces values faster
than the Consumer can consume them, then the Producer thread waits for the Consumer,
because there are no other locations in the buffer in which to place the next value. Simi-
larly, if the Consumer consumes values faster than the Producer produces them, the Con-
sumer waits until the Producer places the next value in the shared buffer. Even when we
have threads that operate at the same relative speeds, those threads may occasionally be-
come “out of sync” over a period of time, causing one of them to wait for the other.

Producer writes 9 9 true

Consumer reads 9 9 false

Consumer tries to read.
 9 false

Producer writes 10 10 true

Consumer reads 10 10 false

Producer done producing
Terminating Producer

Consumer read values totaling 55
Terminating Consumer

Performance Tip 23.3
We cannot make assumptions about the relative speeds of concurrent threads—
interactions that occur with the operating system, the network, the user and other compo-
nents can cause the threads to operate at different and ever-changing speeds. When this
happens, threads wait. When threads wait excessively, programs become less efficient,
interactive programs become less responsive and applications suffer longer delays.

Fig. 23.17 | Two threads correctly manipulating a synchronized buffer. (Part 3 of 3.)

Buffer empty. Consumer waits.

23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers 995

Bounded Buffers
To minimize the amount of waiting time for threads that share resources and operate at
the same average speeds, we can implement a bounded buffer that provides a fixed number
of buffer cells into which the Producer can place values, and from which the Consumer can
retrieve those values. (In fact, we’ve already done this with the ArrayBlockingQueue class
in Section 23.6.) If the Producer temporarily produces values faster than the Consumer can
consume them, the Producer can write additional values into the extra buffer cells, if any
are available. This capability enables the Producer to perform its task even though the
Consumer is not ready to retrieve the current value being produced. Similarly, if the Con-
sumer consumes faster than the Producer produces new values, the Consumer can read ad-
ditional values (if there are any) from the buffer. This enables the Consumer to keep busy
even though the Producer is not ready to produce additional values. An example of the
producer/consumer relationship that uses a bounded buffer is video streaming, which we
discussed in Section 23.1.

Even a bounded buffer is inappropriate if the Producer and the Consumer operate con-
sistently at different speeds. If the Consumer always executes faster than the Producer, then
a buffer containing one location is enough. If the Producer always executes faster, only a
buffer with an “infinite” number of locations would be able to absorb the extra produc-
tion. However, if the Producer and Consumer execute at about the same average speed, a
bounded buffer helps to smooth the effects of any occasional speeding up or slowing down
in either thread’s execution.

The key to using a bounded buffer with a Producer and Consumer that operate at about
the same speed is to provide the buffer with enough locations to handle the anticipated
“extra” production. If, over a period of time, we determine that the Producer often pro-
duces as many as three more values than the Consumer can consume, we can provide a
buffer of at least three cells to handle the extra production. Making the buffer too small
would cause threads to wait longer.

[Note: As we mention in Fig. 23.22, ArrayBlockingQueue can work with multiple
producers and multiple consumers. For example, a factory that produces its product very
fast will need to have many more delivery trucks (i.e., consumers) to remove those prod-
ucts quickly from the warehousing area (i.e., the bounded buffer) so that the factory can
continue to produce products at full capacity.]

Bounded Buffers Using ArrayBlockingQueue
The simplest way to implement a bounded buffer is to use an ArrayBlockingQueue for the
buffer so that all of the synchronization details are handled for you. This can be done by mod-
ifying the example from Section 23.6 to pass the desired size for the bounded buffer into the
ArrayBlockingQueue constructor. Rather than repeat our previous ArrayBlockingQueue
example with a different size, we instead present an example that illustrates how you can

Performance Tip 23.4
Even when using a bounded buffer, it’s possible that a producer thread could fill the buf-
fer, which would force the producer to wait until a consumer consumed a value to free an
element in the buffer. Similarly, if the buffer is empty at any given time, a consumer
thread must wait until the producer produces another value. The key to using a bounded
buffer is to optimize the buffer size to minimize the amount of thread wait time, while
not wasting space.

996 Chapter 23 Concurrency

build a bounded buffer yourself. Again, using an ArrayBlockingQueue will result in more-
maintainable and better-performing code. In Exercise 23.13, we ask you to reimplement this
section’s example, using the Java Concurrency API techniques presented in Section 23.9.

Implementing Your Own Bounded Buffer as a Circular Buffer
The program in Figs. 23.18 and 23.19 demonstrates a Producer and a Consumer accessing
a bounded buffer with synchronization. Again, we reuse interface Buffer and classes Pro-
ducer and Consumer from the example in Section 23.5, except that line 28 is removed
from class Producer and class Consumer. We implement the bounded buffer in class Cir-
cularBuffer (Fig. 23.18) as a circular buffer that uses a shared array of three elements. A
circular buffer writes into and reads from the array elements in order, beginning at the first
cell and moving toward the last. When a Producer or Consumer reaches the last element,
it returns to the first and begins writing or reading, respectively, from there. In this version
of the producer/consumer relationship, the Consumer consumes a value only when the ar-
ray is not empty and the Producer produces a value only when the array is not full. Once
again, the output statements used in this class’s synchronized methods are for demonstra-
tion purposes only.

1 // Fig. 23.18: CircularBuffer.java
2 // Synchronizing access to a shared three-element bounded buffer.
3 public class CircularBuffer implements Buffer
4 {
5 private final int[] buffer = {-1, -1, -1}; // shared buffer
6
7 private int occupiedCells = 0; // count number of buffers used
8 private int writeIndex = 0; // index of next element to write to
9 private int readIndex = 0; // index of next element to read

10
11 // place value into buffer
12
13
14 {
15 // wait until buffer has space available, then write value;
16
17
18
19
20
21
22
23 buffer[writeIndex] = value; // set new buffer value
24
25 // update circular write index
26
27
28 ++occupiedCells; // one more buffer cell is full
29 displayState("Producer writes " + value);
30 notifyAll(); // notify threads waiting to read from buffer
31 }

Fig. 23.18 | Synchronizing access to a shared three-element bounded buffer. (Part 1 of 3.)

public synchronized void blockingPut(int value)
 throws InterruptedException

// while no empty locations, place thread in blocked state
while (occupiedCells == buffer.length)
{
 System.out.printf("Buffer is full. Producer waits.%n");
 wait(); // wait until a buffer cell is free
} // end while

writeIndex = (writeIndex + 1) % buffer.length;

23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers 997

32
33 // return value from buffer
34 public synchronized int blockingGet() throws InterruptedException
35 {
36 // wait until buffer has data, then read value;
37 // while no data to read, place thread in waiting state
38 while (occupiedCells == 0)
39 {
40 System.out.printf("Buffer is empty. Consumer waits.%n");
41 wait(); // wait until a buffer cell is filled
42 } // end while
43
44 int readValue = buffer[readIndex]; // read value from buffer
45
46 // update circular read index
47
48
49 --occupiedCells; // one fewer buffer cells are occupied
50 displayState("Consumer reads " + readValue);
51 notifyAll(); // notify threads waiting to write to buffer
52
53 return readValue;
54 }
55
56 // display current operation and buffer state
57 public void displayState(String operation)
58 {
59 // output operation and number of occupied buffer cells
60 System.out.printf("%s%s%d)%n%s", operation,
61 " (buffer cells occupied: ", occupiedCells, "buffer cells: ");
62
63 for (int value : buffer)
64 System.out.printf(" %2d ", value); // output values in buffer
65
66 System.out.printf("%n ");
67
68 for (int i = 0; i < buffer.length; i++)
69 System.out.print("---- ");
70
71 System.out.printf("%n ");
72
73 for (int i = 0; i < buffer.length; i++)
74 {
75 if (i == writeIndex && i == readIndex)
76 System.out.print(" WR"); // both write and read index
77 else if (i == writeIndex)
78 System.out.print(" W "); // just write index
79 else if (i == readIndex)
80 System.out.print(" R "); // just read index
81 else
82 System.out.print(" "); // neither index
83 }
84

Fig. 23.18 | Synchronizing access to a shared three-element bounded buffer. (Part 2 of 3.)

readIndex = (readIndex + 1) % buffer.length;

synchronized

998 Chapter 23 Concurrency

Line 5 initializes array buffer as a three-element int array that represents the circular
buffer. Variable occupiedCells (line 7) counts the number of elements in buffer that
contain data to be read. When occupiedBuffers is 0, the circular buffer is empty and the
Consumer must wait—when occupiedCells is 3 (the size of the circular buffer), the cir-
cular buffer is full and the Producer must wait. Variable writeIndex (line 8) indicates the
next location in which a value can be placed by a Producer. Variable readIndex (line 9)
indicates the position from which the next value can be read by a Consumer. Circular-
Buffer’s instance variables are all part of the class’s shared mutable data, thus access to all
of these variables must be synchronized to ensure that a CircularBuffer is thread safe.

CircularBuffer Method blockingPut
CircularBuffer method blockingPut (lines 12–31) performs the same tasks as in
Fig. 23.16, with a few modifications. The loop at lines 17–21 determines whether the
Producer must wait (i.e., all buffer cells are full). If so, line 19 indicates that the Producer
is waiting to perform its task. Then line 20 invokes method wait, causing the Producer
thread to release the CircularBuffer’s lock and wait until there’s space for a new value to
be written into the buffer. When execution continues at line 23 after the while loop, the
value written by the Producer is placed in the circular buffer at location writeIndex. Then
line 26 updates writeIndex for the next call to CircularBuffer method blockingPut.
This line is the key to the buffer’s circularity. When writeIndex is incremented past the
end of the buffer, the line sets it to 0. Line 28 increments occupiedCells, because there’s
now one more value in the buffer that the Consumer can read. Next, line 29 invokes meth-
od displayState (lines 57–86) to update the output with the value produced, the number
of occupied buffer cells, the contents of the buffer cells and the current writeIndex and
readIndex. Line 30 invokes method notifyAll to transition waiting threads to the run-
nable state, so that a waiting Consumer thread (if there is one) can now try again to read a
value from the buffer.

CircularBuffer Method blockingGet
CircularBuffer method blockingGet (lines 34–54) also performs the same tasks as it did
in Fig. 23.16, with a few minor modifications. The loop at lines 38–42 (Fig. 23.18) de-
termines whether the Consumer must wait (i.e., all buffer cells are empty). If the Consumer
must wait, line 40 updates the output to indicate that the Consumer is waiting to perform
its task. Then line 41 invokes method wait, causing the current thread to release the lock
on the CircularBuffer and wait until data is available to read. When execution eventually
continues at line 44 after a notifyAll call from the Producer, readValue is assigned the
value at location readIndex in the circular buffer. Then line 47 updates readIndex for the
next call to CircularBuffer method blockingGet. This line and line 26 implement the
circularity of the buffer. Line 49 decrements occupiedCells, because there’s now one
more position in the buffer in which the Producer thread can place a value. Line 50 in-
vokes method displayState to update the output with the consumed value, the number

85 System.out.printf("%n%n");
86 }
87 } // end class CircularBuffer

Fig. 23.18 | Synchronizing access to a shared three-element bounded buffer. (Part 3 of 3.)

23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers 999

of occupied buffer cells, the contents of the buffer cells and the current writeIndex and
readIndex. Line 51 invokes method notifyAll to allow any Producer threads waiting to
write into the CircularBuffer object to attempt to write again. Then line 53 returns the
consumed value to the caller.

CircularBuffer Method displayState
Method displayState (lines 57–86) outputs the application’s state. Lines 63–64 output
the values of the buffer cells. Line 64 uses method printf with a "%2d" format specifier
to print the contents of each buffer with a leading space if it’s a single digit. Lines 71–83
output the current writeIndex and readIndex with the letters W and R, respectively. Once
again, displayState is a synchronized method because it accesses class CircularBuffer’s
shared mutable data.

Testing Class CircularBuffer
Class CircularBufferTest (Fig. 23.19) contains the main method that launches the ap-
plication. Line 12 creates the ExecutorService, and line 15 creates a CircularBuffer ob-
ject and assigns its reference to CircularBuffer variable sharedLocation. Line 18
invokes the CircularBuffer’s displayState method to show the initial state of the buf-
fer. Lines 21–22 execute the Producer and Consumer tasks. Line 24 calls method shutdown
to end the application when the threads complete the Producer and Consumer tasks and
line 25 waits for the tasks to complete.

1 // Fig. 23.19: CircularBufferTest.java
2 // Producer and Consumer threads correctly manipulating a circular buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;
5 import java.util.concurrent.TimeUnit;
6
7 public class CircularBufferTest
8 {
9 public static void main(String[] args) throws InterruptedException

10 {
11 // create new thread pool with two threads
12 ExecutorService executorService = Executors.newCachedThreadPool();
13
14
15
16
17 // display the initial state of the CircularBuffer
18 sharedLocation.displayState("Initial State");
19
20 // execute the Producer and Consumer tasks
21
22
23
24 executorService.shutdown();
25 executorService.awaitTermination(1, TimeUnit.MINUTES);
26 }
27 } // end class CircularBufferTest

Fig. 23.19 | Producer and Consumer threads correctly manipulating a circular buffer. (Part 1 of 3.)

// create CircularBuffer to store ints
CircularBuffer sharedLocation = new CircularBuffer();

executorService.execute(new Producer(sharedLocation));
executorService.execute(new Consumer(sharedLocation));

1000 Chapter 23 Concurrency

Initial State (buffer cells occupied: 0)
buffer cells: -1 -1 -1
 ---- ---- ----
 WR

Producer writes 1 (buffer cells occupied: 1)
buffer cells: 1 -1 -1
 ---- ---- ----
 R W

Consumer reads 1 (buffer cells occupied: 0)
buffer cells: 1 -1 -1
 ---- ---- ----
 WR

Producer writes 2 (buffer cells occupied: 1)
buffer cells: 1 2 -1
 ---- ---- ----
 R W

Consumer reads 2 (buffer cells occupied: 0)
buffer cells: 1 2 -1
 ---- ---- ----
 WR

Producer writes 3 (buffer cells occupied: 1)
buffer cells: 1 2 3
 ---- ---- ----
 W R

Consumer reads 3 (buffer cells occupied: 0)
buffer cells: 1 2 3
 ---- ---- ----
 WR

Producer writes 4 (buffer cells occupied: 1)
buffer cells: 4 2 3
 ---- ---- ----
 R W

Producer writes 5 (buffer cells occupied: 2)
buffer cells: 4 5 3
 ---- ---- ----
 R W

Consumer reads 4 (buffer cells occupied: 1)
buffer cells: 4 5 3
 ---- ---- ----
 R W

Producer writes 6 (buffer cells occupied: 2)
buffer cells: 4 5 6
 ---- ---- ----
 W R

Fig. 23.19 | Producer and Consumer threads correctly manipulating a circular buffer. (Part 2 of 3.)

Buffer is empty. Consumer waits.

23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers 1001

Producer writes 7 (buffer cells occupied: 3)
buffer cells: 7 5 6
 ---- ---- ----
 WR

Consumer reads 5 (buffer cells occupied: 2)
buffer cells: 7 5 6
 ---- ---- ----
 W R

Producer writes 8 (buffer cells occupied: 3)
buffer cells: 7 8 6
 ---- ---- ----
 WR

Consumer reads 6 (buffer cells occupied: 2)
buffer cells: 7 8 6
 ---- ---- ----
 R W

Consumer reads 7 (buffer cells occupied: 1)
buffer cells: 7 8 6
 ---- ---- ----
 R W

Producer writes 9 (buffer cells occupied: 2)
buffer cells: 7 8 9
 ---- ---- ----
 W R

Consumer reads 8 (buffer cells occupied: 1)
buffer cells: 7 8 9
 ---- ---- ----
 W R

Consumer reads 9 (buffer cells occupied: 0)
buffer cells: 7 8 9
 ---- ---- ----
 WR

Producer writes 10 (buffer cells occupied: 1)
buffer cells: 10 8 9
 ---- ---- ----
 R W

Producer done producing
Terminating Producer
Consumer reads 10 (buffer cells occupied: 0)
buffer cells: 10 8 9
 ---- ---- ----
 WR

Consumer read values totaling: 55
Terminating Consumer

Fig. 23.19 | Producer and Consumer threads correctly manipulating a circular buffer. (Part 3 of 3.)

1002 Chapter 23 Concurrency

Each time the Producer writes a value or the Consumer reads a value, the program out-
puts a message indicating the action performed (a read or a write), the contents of buffer,
and the location of writeIndex and readIndex. In the output of Fig. 23.19, the Producer
first writes the value 1. The buffer then contains the value 1 in the first cell and the value
–1 (the default value that we use for output purposes) in the other two cells. The write
index is updated to the second cell, while the read index stays at the first cell. Next, the
Consumer reads 1. The buffer contains the same values, but the read index has been
updated to the second cell. The Consumer then tries to read again, but the buffer is empty
and the Consumer is forced to wait. Only once in this execution of the program was it nec-
essary for either thread to wait.

23.9 (Advanced) Producer/Consumer Relationship: The
Lock and Condition Interfaces
Though the synchronized keyword provides for most basic thread-synchronization
needs, Java provides other tools to assist in developing concurrent programs. In this sec-
tion, we discuss the Lock and Condition interfaces. These interfaces give you more precise
control over thread synchronization, but are more complicated to use. Only the most ad-
vanced programmers should use these interfaces.

Interface Lock and Class ReentrantLock
Any object can contain a reference to an object that implements the Lock interface (of
package java.util.concurrent.locks). A thread calls the Lock’s lock method (analo-
gous to entering a synchronized block) to acquire the lock. Once a Lock has been ob-
tained by one thread, the Lock object will not allow another thread to obtain the Lock until
the first thread releases the Lock (by calling the Lock’s unlock method—analogous to ex-
iting a synchronized block). If several threads are trying to call method lock on the same
Lock object at the same time, only one of these threads can obtain the lock—all the others
are placed in the waiting state for that lock. When a thread calls method unlock, the lock
on the object is released and a waiting thread attempting to lock the object proceeds.

Class ReentrantLock (of package java.util.concurrent.locks) is a basic imple-
mentation of the Lock interface. The constructor for a ReentrantLock takes a boolean
argument that specifies whether the lock has a fairness policy. If the argument is true, the
ReentrantLock’s fairness policy is “the longest-waiting thread will acquire the lock when
it’s available.” Such a fairness policy guarantees that indefinite postponement (also called
starvation) cannot occur. If the fairness policy argument is set to false, there’s no guar-
antee as to which waiting thread will acquire the lock when it’s available.

Error-Prevention Tip 23.4
Place calls to Lock method unlock in a finally block. If an exception is thrown, unlock
must still be called or deadlock could occur.

Software Engineering Observation 23.6
Using a ReentrantLock with a fairness policy avoids indefinite postponement.

23.9 The Lock and Condition Interfaces 1003

Condition Objects and Interface Condition
If a thread that owns a Lock determines that it cannot continue with its task until some
condition is satisfied, the thread can wait on a condition object. Using Lock objects allows
you to explicitly declare the condition objects on which a thread may need to wait. For
example, in the producer/consumer relationship, producers can wait on one object and
consumers can wait on another. This is not possible when using the synchronized key-
words and an object’s built-in monitor lock. Condition objects are associated with a spe-
cific Lock and are created by calling a Lock’s newCondition method, which returns an
object that implements the Condition interface (of package java.util.concur-
rent.locks). To wait on a condition object, the thread can call the Condition’s await
method (analogous to Object method wait). This immediately releases the associated
Lock and places the thread in the waiting state for that Condition. Other threads can then
try to obtain the Lock. When a runnable thread completes a task and determines that the
waiting thread can now continue, the runnable thread can call Condition method signal
(analogous to Object method notify) to allow a thread in that Condition’s waiting state
to return to the runnable state. At this point, the thread that transitioned from the waiting
state to the runnable state can attempt to reacquire the Lock. Even if it’s able to reacquire
the Lock, the thread still might not be able to perform its task at this time—in which case
the thread can call the Condition’s await method to release the Lock and reenter the wait-
ing state. If multiple threads are in a Condition’s waiting state when signal is called, the
default implementation of Condition signals the longest-waiting thread to transition to
the runnable state. If a thread calls Condition method signalAll (analogous to Object
method notifyAll), then all the threads waiting for that condition transition to the run-
nable state and become eligible to reacquire the Lock. Only one of those threads can obtain
the Lock on the object—the others will wait until the Lock becomes available again. If the
Lock has a fairness policy, the longest-waiting thread acquires the Lock. When a thread is
finished with a shared object, it must call method unlock to release the Lock.

Performance Tip 23.5
In most cases, a non-fair lock is preferable, because using a fair lock can decrease program
performance.

Error-Prevention Tip 23.5
When multiple threads manipulate a shared object using locks, ensure that if one thread
calls method await to enter the waiting state for a condition object, a separate thread
eventually will call Condition method signal to transition the thread waiting on the
condition object back to the runnable state. If multiple threads may be waiting on the
condition object, a separate thread can call Condition method signalAll as a safeguard
to ensure that all the waiting threads have another opportunity to perform their tasks. If
this is not done, starvation might occur.

Common Programming Error 23.2
An IllegalMonitorStateException occurs if a thread issues an await, a signal, or a
signalAll on a Condition object that was created from a ReentrantLock without hav-
ing acquired the lock for that Condition object.

1004 Chapter 23 Concurrency

Lock and Condition vs. the synchronized Keyword
In some applications, using Lock and Condition objects may be preferable to using the syn-
chronized keyword. Locks allow you to interrupt waiting threads or to specify a timeout for
waiting to acquire a lock, which is not possible using the synchronized keyword. Also, a
Lock is not constrained to be acquired and released in the same block of code, which is the
case with the synchronized keyword. Condition objects allow you to specify multiple con-
ditions on which threads may wait. Thus, it’s possible to indicate to waiting threads that a
specific condition object is now true by calling signal or signallAll on that Condition ob-
ject. With synchronized, there’s no way to explicitly state the condition on which threads
are waiting, and thus there’s no way to notify threads waiting on one condition that they may
proceed without also signaling threads waiting on any other conditions. There are other pos-
sible advantages to using Lock and Condition objects, but generally it’s best to use the syn-
chronized keyword unless your application requires advanced synchronization capabilities.

Using Locks and Conditions to Implement Synchronization
We now implement the producer/consumer relationship using Lock and Condition ob-
jects to coordinate access to a shared single-element buffer (Figs. 23.20 and 23.21). In this
case, each produced value is correctly consumed exactly once. Again, we reuse interface
Buffer and classes Producer and Consumer from the example in Section 23.5, except that
line 28 is removed from class Producer and class Consumer.

Class SynchronizedBuffer
Class SynchronizedBuffer (Fig. 23.20) contains five fields. Line 11 creates a new object
of type ReentrantLock and assigns its reference to Lock variable accessLock. The Reen-
trantLock is created without the fairness policy because at any time only a single Producer
or Consumer will be waiting to acquire the Lock in this example. Lines 14–15 create two
Conditions using Lock method newCondition. Condition canWrite contains a queue for
a Producer thread waiting while the buffer is full (i.e., there’s data in the buffer that the
Consumer has not read yet). If the buffer is full, the Producer calls method await on this
Condition. When the Consumer reads data from a full buffer, it calls method signal on
this Condition. Condition canRead contains a queue for a Consumer thread waiting while
the buffer is empty (i.e., there’s no data in the buffer for the Consumer to read). If the buffer
is empty, the Consumer calls method await on this Condition. When the Producer writes
to the empty buffer, it calls method signal on this Condition. The int variable buffer
(line 17) holds the shared mutable data. The boolean variable occupied (line 18) keeps
track of whether the buffer currently holds data (that the Consumer should read).

Software Engineering Observation 23.7
Think of Lock and Condition as an advanced version of synchronized. Lock and
Condition support timed waits, interruptible waits and multiple Condition queues per
Lock—if you do not need one of these features, you do not need Lock and Condition.

Error-Prevention Tip 23.6
Using interfaces Lock and Condition is error prone—unlock is not guaranteed to be
called, whereas the monitor in a synchronized statement will always be released when
the statement completes execution. Of course, you can guarantee that unlock will be
called if it’s placed in a finally block, as we do in Fig. 23.20.

23.9 The Lock and Condition Interfaces 1005

1 // Fig. 23.20: SynchronizedBuffer.java
2 // Synchronizing access to a shared integer using the Lock and Condition
3 // interfaces
4 import java.util.concurrent.locks.Lock;
5 import java.util.concurrent.locks.ReentrantLock;
6 import java.util.concurrent.locks.Condition;
7
8 public class SynchronizedBuffer implements Buffer
9 {

10
11
12
13
14
15
16
17
18 private boolean occupied = false; // whether buffer is occupied
19
20 // place int value into buffer
21 public void blockingPut(int value) throws InterruptedException
22 {
23
24
25 // output thread information and buffer information, then wait
26 try
27 {
28 // while buffer is not empty, place thread in waiting state
29 while (occupied)
30 {
31 System.out.println("Producer tries to write.");
32 displayState("Buffer full. Producer waits.");
33
34 }
35
36 buffer = value; // set new buffer value
37
38 // indicate producer cannot store another value
39 // until consumer retrieves current buffer value
40 occupied = true;
41
42 displayState("Producer writes " + buffer);
43
44
45
46 }
47 finally
48 {
49
50 }
51 }

Fig. 23.20 | Synchronizing access to a shared integer using the Lock and Condition
interfaces. (Part 1 of 2.)

// Lock to control synchronization with this buffer
private final Lock accessLock = new ReentrantLock();

// conditions to control reading and writing
private final Condition canWrite = accessLock.newCondition();
private final Condition canRead = accessLock.newCondition();

private int buffer = -1; // shared by producer and consumer threads

accessLock.lock(); // lock this object

canWrite.await(); // wait until buffer is empty

// signal any threads waiting to read from buffer
canRead.signalAll();

accessLock.unlock(); // unlock this object

1006 Chapter 23 Concurrency

52
53 // return value from buffer
54 public int blockingGet() throws InterruptedException
55 {
56 int readValue = 0; // initialize value read from buffer
57
58
59 // output thread information and buffer information, then wait
60 try
61 {
62 // if there is no data to read, place thread in waiting state
63 while (!occupied)
64 {
65 System.out.println("Consumer tries to read.");
66 displayState("Buffer empty. Consumer waits.");
67
68 }
69
70 // indicate that producer can store another value
71 // because consumer just retrieved buffer value
72 occupied = false;
73
74 readValue = buffer; // retrieve value from buffer
75 displayState("Consumer reads " + readValue);
76
77
78
79 }
80 finally
81 {
82
83 }
84
85 return readValue;
86 }
87
88 // display current operation and buffer state
89 private void displayState(String operation)
90 {
91 try
92 {
93
94 System.out.printf("%-40s%d\t\t%b%n%n", operation, buffer,
95 occupied);
96 }
97 finally
98 {
99
100 }
101 }
102 } // end class SynchronizedBuffer

Fig. 23.20 | Synchronizing access to a shared integer using the Lock and Condition
interfaces. (Part 2 of 2.)

accessLock.lock(); // lock this object

canRead.await(); // wait until buffer is full

// signal any threads waiting for buffer to be empty
canWrite.signalAll();

accessLock.unlock(); // unlock this object

accessLock.lock(); // lock this object

accessLock.unlock(); // unlock this objects

23.9 The Lock and Condition Interfaces 1007

Line 23 in method blockingPut calls method lock on the SynchronizedBuffer’s
accessLock. If the lock is available (i.e., no other thread has acquired it), this thread now
owns the lock and the thread continues. If the lock is unavailable (i.e., it’s held by another
thread), method lock waits until the lock is released. After the lock is acquired, lines 26–
46 execute. Line 29 tests occupied to determine whether buffer is full. If it is, lines 31–
32 display a message indicating that the thread will wait. Line 33 calls Condition method
await on the canWrite condition object, which temporarily releases the Synchronized-
Buffer’s Lock and waits for a signal from the Consumer that buffer is available for writing.
When buffer is available, the method proceeds, writing to buffer (line 36), setting occu-
pied to true (line 40) and displaying a message indicating that the producer wrote a value
(line 42). Line 45 calls Condition method signal on condition object canRead to notify
the waiting Consumer (if there is one) that the buffer has new data to be read. Line 49 calls
method unlock from a finally block to release the lock and allow the Consumer to pro-
ceed.

Line 57 of method blockingGet (lines 54–86) calls method lock to acquire the Lock.
This method waits until the Lock is available. Once the Lock is acquired, line 63 tests
whether occupied is false, indicating that the buffer is empty. If so, line 67 calls method
await on condition object canRead. Recall that method signal is called on variable can-
Read in the blockingPut method (line 45). When the Condition object is signaled, the
blockingGet method continues. Lines 72–74 set occupied to false, store the value of
buffer in readValue and output the readValue. Then line 78 signals the condition object
canWrite. This awakens the Producer if it’s indeed waiting for the buffer to be emptied.
Line 82 calls method unlock from a finally block to release the lock, and line 85 returns
readValue to the caller.

Class SharedBufferTest2
Class SharedBufferTest2 (Fig. 23.21) is identical to that of Fig. 23.17. Study the outputs
in Fig. 23.21. Observe that every integer produced is consumed exactly once—no values are
lost, and no values are consumed more than once. The Lock and Condition objects ensure
that the Producer and Consumer cannot perform their tasks unless it’s their turn. The Pro-
ducer must go first, the Consumer must wait if the Producer has not produced since the
Consumer last consumed and the Producer must wait if the Consumer has not yet con-
sumed the value that the Producer most recently produced. Execute this program several
times to confirm that every integer produced is consumed exactly once. In the sample out-
put, note the highlighted lines indicating when the Producer and Consumer must wait to
perform their respective tasks.

Common Programming Error 23.3
Forgetting to signal a waiting thread is a logic error. The thread will remain in the wait-
ing state, which will prevent it from proceeding. Such waiting can lead to indefinite post-
ponement or deadlock.

1 // Fig. 23.21: SharedBufferTest2.java
2 // Two threads manipulating a synchronized buffer.
3 import java.util.concurrent.ExecutorService;

Fig. 23.21 | Two threads manipulating a synchronized buffer. (Part 1 of 3.)

1008 Chapter 23 Concurrency

4 import java.util.concurrent.Executors;
5 import java.util.concurrent.TimeUnit;
6
7 public class SharedBufferTest2
8 {
9 public static void main(String[] args) throws InterruptedException

10 {
11 // create new thread pool with two threads
12 ExecutorService executorService = Executors.newCachedThreadPool();
13
14 // create SynchronizedBuffer to store ints
15 Buffer sharedLocation = new SynchronizedBuffer();
16
17 System.out.printf("%-40s%s\t\t%s%n%-40s%s%n%n", "Operation",
18 "Buffer", "Occupied", "---------", "------\t\t--------");
19
20 // execute the Producer and Consumer tasks
21 executorService.execute(new Producer(sharedLocation));
22 executorService.execute(new Consumer(sharedLocation));
23
24 executorService.shutdown();
25 executorService.awaitTermination(1, TimeUnit.MINUTES);
26 }
27 } // end class SharedBufferTest2

Operation Buffer Occupied
--------- ------ --------

Producer writes 1 1 true

Consumer reads 1 1 false

Producer writes 2 2 true

Consumer reads 2 2 false

Producer writes 3 3 true

Consumer reads 3 3 false

Producer writes 4 4 true

Consumer reads 4 4 false

Fig. 23.21 | Two threads manipulating a synchronized buffer. (Part 2 of 3.)

Producer tries to write.
Buffer full. Producer waits. 1 true

Producer tries to write.
Buffer full. Producer waits. 2 true

Consumer tries to read.
Buffer empty. Consumer waits. 4 false

23.10 Concurrent Collections 1009

23.10 Concurrent Collections
In Chapter 16, we introduced various collections from the Java Collections API. We also
mentioned that you can obtain synchronized versions of those collections to allow only one
thread at a time to access a collection that might be shared among several threads. The col-
lections from the java.util.concurrent package are specifically designed and optimized
for sharing collections among multiple threads.

Figure 23.22 lists the many concurrent collections in package java.util.concur-
rent. The entries for ConcurrentHashMap and LinkedBlockingQueue are shown in bold
because these are by far the most frequently used concurrent collections. Like the collec-
tions introduced in Chapter 16, the concurrent collections have been enhanced to support
lambdas. However, rather than providing methods to support streams, the concurrent col-
lections provide their own implementations of various stream-like operations—e.g., Con-
currentHashMap has methods forEach, reduce and search—that are designed and
optimized for concurrent collections that are shared among threads. For more information
on the concurrent collections, visit

Producer writes 5 5 true

Consumer reads 5 5 false

Producer writes 6 6 true

Consumer reads 6 6 false

Producer writes 7 7 true

Consumer reads 7 7 false

Producer writes 8 8 true

Consumer reads 8 8 false

Producer writes 9 9 true

Consumer reads 9 9 false

Producer writes 10 10 true

Producer done producing
Terminating Producer
Consumer reads 10 10 false

Consumer read values totaling 55
Terminating Consumer

Fig. 23.21 | Two threads manipulating a synchronized buffer. (Part 3 of 3.)

Consumer tries to read.
Buffer empty. Consumer waits. 5 false

1010 Chapter 23 Concurrency

Java SE 7:
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
 package-summary.html
Java SE 8
http://download.java.net/jdk8/docs/api/java/util/concurrent/
 package-summary.html

Collection Description

ArrayBlockingQueue A fixed-size queue that supports the producer/consumer relationship—
possibly with many producers and consumers.

ConcurrentHashMap A hash-based map (similar to the HashMap introduced in Chapter 16)
that allows an arbitrary number of reader threads and a limited num-
ber of writer threads. This and the LinkedBlockingQueue are by far the
most frequently used concurrent collections.

ConcurrentLinkedDeque A concurrent linked-list implementation of a double-ended queue.

ConcurrentLinkedQueue A concurrent linked-list implementation of a queue that can grow
dynamically.

ConcurrentSkipListMap A concurrent map that is sorted by its keys.

ConcurrentSkipListSet A sorted concurrent set.

CopyOnWriteArrayList A thread-safe ArrayList. Each operation that modifies the collection
first creates a new copy of the contents. Used when the collection is tra-
versed much more frequently than the collection’s contents are modified.

CopyOnWriteArraySet A set that’s implemented using CopyOnWriteArrayList.

DelayQueue A variable-size queue containing Delayed objects. An object can be
removed only after its delay has expired.

LinkedBlockingDeque A double-ended blocking queue implemented as a linked list that can
optionally be fixed in size.

LinkedBlockingQueue A blocking queue implemented as a linked list that can optionally be
fixed in size. This and the ConcurrentHashMap are by far the most fre-
quently used concurrent collections.

LinkedTransferQueue A linked-list implementation of interface TransferQueue. Each producer
has the option of waiting for a consumer to take an element being
inserted (via method transfer) or simply placing the element into the
queue (via method put). Also provides overloaded method tryTransfer
to immediately transfer an element to a waiting consumer or to do so
within a specified timeout period. If the transfer cannot be completed,
the element is not placed in the queue. Typically used in applications
that pass messages between threads.

PriorityBlockingQueue A variable-length priority-based blocking queue (like a PriorityQueue).

SynchronousQueue [For experts.] A blocking queue implementation that does not have an
internal capacity. Each insert operation by one thread must wait for a
remove operation from another thread and vice versa.

Fig. 23.22 | Concurrent collections summary (package java.util.concurrent).

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html
http://download.java.net/jdk8/docs/api/java/util/concurrent/package-summary.html
http://download.java.net/jdk8/docs/api/java/util/concurrent/package-summary.html

23.11 Multithreading with GUI: SwingWorker 1011

23.11 Multithreading with GUI: SwingWorker
Swing applications present a unique set of challenges for multithreaded programming. All
Swing applications have a single thread, called the event dispatch thread, to handle inter-
actions with the application’s GUI components. Typical interactions include updating
GUI components or processing user actions such as mouse clicks. All tasks that require inter-
action with an application’s GUI are placed in an event queue and are executed sequentially
by the event dispatch thread.

Swing GUI components are not thread safe—they cannot be manipulated by multiple
threads without the risk of incorrect results that might corrupt the GUI. Unlike the other
examples presented in this chapter, thread safety in GUI applications is achieved not by
synchronizing thread actions, but by ensuring that Swing components are accessed from only
the event dispatch thread. This technique is called thread confinement. Allowing just one
thread to access non-thread-safe objects eliminates the possibility of corruption due to
multiple threads accessing these objects concurrently.

It’s acceptable to perform brief calculations on the event dispatch thread in sequence
with GUI component manipulations. If an application must perform a lengthy computa-
tion in response to a user interaction, the event dispatch thread cannot attend to other
tasks in the event queue while the thread is tied up in that computation. This causes the
GUI components to become unresponsive. It’s preferable to handle a long-running com-
putation in a separate thread, freeing the event dispatch thread to continue managing
other GUI interactions. Of course, you must update the GUI with the computation’s
results from the event dispatch thread, rather than from the worker thread that performed
the computation.

Class SwingWorker
Class SwingWorker (in package javax.swing) enables you to perform an asynchronous
task in a worker thread (such as a long-running computation) then update Swing compo-
nents from the event dispatch thread based on the task’s results. SwingWorker implements
the Runnable interface, meaning that a SwingWorker object can be scheduled to execute in a
separate thread. The SwingWorker class provides several methods to simplify performing a
task in a worker thread and making its results available for display in a GUI. Some com-
mon SwingWorker methods are described in Fig. 23.23.

Method Description

doInBackground Defines a long computation and is called in a worker thread.
done Executes on the event dispatch thread when doInBackground returns.
execute Schedules the SwingWorker object to be executed in a worker thread.
get Waits for the computation to complete, then returns the result of the

computation (i.e., the return value of doInBackground).

publish Sends intermediate results from the doInBackground method to the pro-
cess method for processing on the event dispatch thread.

Fig. 23.23 | Commonly used SwingWorker methods. (Part 1 of 2.)

1012 Chapter 23 Concurrency

23.11.1 Performing Computations in a Worker Thread: Fibonacci
Numbers
In the next example, the user enters a number n and the program gets the nth Fibonacci
number, which we calculate using the recursive algorithm discussed in Section 18.5. Since
the algorithm is time consuming for large values, we use a SwingWorker object to perform
the calculation in a worker thread. The GUI also provides a separate set of components
that get the next Fibonacci number in the sequence with each click of a button, beginning
with fibonacci(1). This set of components performs its short computation directly in
the event dispatch thread. This program is capable of producing up to the 92nd Fibonacci
number—subsequent values are outside the range that can be represented by a long. Recall
that you can use class BigInteger to represent arbitrarily large integer values.

Class BackgroundCalculator (Fig. 23.24) performs the recursive Fibonacci calcula-
tion in a worker thread. This class extends SwingWorker (line 8), overriding the methods
doInBackground and done. Method doInBackground (lines 21–24) computes the nth
Fibonacci number in a worker thread and returns the result. Method done (lines 27–43)
displays the result in a JLabel.

process Receives intermediate results from the publish method and processes
these results on the event dispatch thread.

setProgress Sets the progress property to notify any property change listeners on the
event dispatch thread of progress bar updates.

1 // Fig. 23.24: BackgroundCalculator.java
2 // SwingWorker subclass for calculating Fibonacci numbers
3 // in a background thread.
4 import javax.swing.SwingWorker;
5 import javax.swing.JLabel;
6 import java.util.concurrent.ExecutionException;
7
8 public class BackgroundCalculator extends SwingWorker<Long, Object>
9 {

10 private final int n; // Fibonacci number to calculate
11 private final JLabel resultJLabel; // JLabel to display the result
12
13 // constructor
14 public BackgroundCalculator(int n, JLabel resultJLabel)
15 {
16 this.n = n;
17 this.resultJLabel = resultJLabel;
18 }

Fig. 23.24 | SwingWorker subclass for calculating Fibonacci numbers in a background thread.
(Part 1 of 2.)

Method Description

Fig. 23.23 | Commonly used SwingWorker methods. (Part 2 of 2.)

23.11 Multithreading with GUI: SwingWorker 1013

SwingWorker is a generic class. In line 8, the first type parameter is Long and the second
is Object. The first type parameter indicates the type returned by the doInBackground
method; the second indicates the type that’s passed between the publish and process
methods to handle intermediate results. Since we do not use publish and process in this
example, we simply use Object as the second type parameter. We discuss publish and
process in Section 23.11.2.

A BackgroundCalculator object can be instantiated from a class that controls a GUI.
A BackgroundCalculator maintains instance variables for an integer that represents the
Fibonacci number to be calculated and a JLabel that displays the results of the calculation
(lines 10–11). The BackgroundCalculator constructor (lines 14–18) initializes these
instance variables with the arguments that are passed to the constructor.

19
20 // long-running code to be run in a worker thread
21 public Long doInBackground()
22 {
23 return nthFib = fibonacci(n);
24 }
25
26 // code to run on the event dispatch thread when doInBackground returns
27 protected void done()
28 {
29 try
30 {
31
32
33 }
34 catch (InterruptedException ex)
35 {
36 resultJLabel.setText("Interrupted while waiting for results.");
37 }
38 catch (ExecutionException ex)
39 {
40 resultJLabel.setText(
41 "Error encountered while performing calculation.");
42 }
43 }
44
45 // recursive method fibonacci; calculates nth Fibonacci number
46 public long fibonacci(long number)
47 {
48 if (number == 0 || number == 1)
49 return number;
50 else
51 return fibonacci(number - 1) + fibonacci(number - 2);
52 }
53 } // end class BackgroundCalculator

Fig. 23.24 | SwingWorker subclass for calculating Fibonacci numbers in a background thread.
(Part 2 of 2.)

// get the result of doInBackground and display it
resultJLabel.setText(get().toString());

1014 Chapter 23 Concurrency

When method execute is called on a BackgroundCalculator object, the object is
scheduled for execution in a worker thread. Method doInBackground is called from the
worker thread and invokes the fibonacci method (lines 46–52), passing instance variable
n as an argument (line 23). Method fibonacci uses recursion to compute the Fibonacci
of n. When fibonacci returns, method doInBackground returns the result.

After doInBackground returns, method done is called from the event dispatch thread.
This method attempts to set the result JLabel to the return value of doInBackground by
calling method get to retrieve this return value (line 32). Method get waits for the result to
be ready if necessary, but since we call it from method done, the computation will be com-
plete before get is called. Lines 34–37 catch InterruptedException if the current thread is
interrupted while waiting for get to return. This exception will not occur in this example
since the calculation will have already completed by the time get is called. Lines 38–42 catch
ExecutionException, which is thrown if an exception occurs during the computation.

Class FibonacciNumbers
Class FibonacciNumbers (Fig. 23.25) displays a window containing two sets of GUI com-
ponents—one set to compute a Fibonacci number in a worker thread and another to get
the next Fibonacci number in response to the user’s clicking a JButton. The constructor
(lines 38–109) places these components in separate titled JPanels. Lines 46–47 and 78–
79 add two JLabels, a JTextField and a JButton to the workerJPanel to allow the user
to enter an integer whose Fibonacci number will be calculated by the BackgroundWorker.
Lines 84–85 and 103 add two JLabels and a JButton to the eventThreadJPanel to allow
the user to get the next Fibonacci number in the sequence. Instance variables n1 and n2
contain the previous two Fibonacci numbers in the sequence and are initialized to 0 and
1, respectively (lines 29–30). Instance variable count stores the most recently computed
sequence number and is initialized to 1 (line 31). The two JLabels display count and n2
initially, so that the user will see the text Fibonacci of 1: 1 in the eventThreadJPanel
when the GUI starts.

Software Engineering Observation 23.8
Any GUI components that will be manipulated by SwingWorker methods, such as
components that will be updated from methods process or done, should be passed to the
SwingWorker subclass’s constructor and stored in the subclass object. This gives these
methods access to the GUI components they’ll manipulate.

1 // Fig. 23.25: FibonacciNumbers.java
2 // Using SwingWorker to perform a long calculation with
3 // results displayed in a GUI.
4 import java.awt.GridLayout;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.ActionListener;
7 import javax.swing.JButton;
8 import javax.swing.JFrame;
9 import javax.swing.JPanel;

10 import javax.swing.JLabel;

Fig. 23.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 1 of 4.)

23.11 Multithreading with GUI: SwingWorker 1015

11 import javax.swing.JTextField;
12 import javax.swing.border.TitledBorder;
13 import javax.swing.border.LineBorder;
14 import java.awt.Color;
15 import java.util.concurrent.ExecutionException;
16
17 public class FibonacciNumbers extends JFrame
18 {
19 // components for calculating the Fibonacci of a user-entered number
20 private final JPanel workerJPanel =
21 new JPanel(new GridLayout(2, 2, 5, 5));
22 private final JTextField numberJTextField = new JTextField();
23 private final JButton goJButton = new JButton("Go");
24 private final JLabel fibonacciJLabel = new JLabel();
25
26 // components and variables for getting the next Fibonacci number
27 private final JPanel eventThreadJPanel =
28 new JPanel(new GridLayout(2, 2, 5, 5));
29 private long n1 = 0; // initialize with first Fibonacci number
30 private long n2 = 1; // initialize with second Fibonacci number
31 private int count = 1; // current Fibonacci number to display
32 private final JLabel nJLabel = new JLabel("Fibonacci of 1: ");
33 private final JLabel nFibonacciJLabel =
34 new JLabel(String.valueOf(n2));
35 private final JButton nextNumberJButton = new JButton("Next Number");
36
37 // constructor
38 public FibonacciNumbers()
39 {
40 super("Fibonacci Numbers");
41 setLayout(new GridLayout(2, 1, 10, 10));
42
43 // add GUI components to the SwingWorker panel
44 workerJPanel.setBorder(new TitledBorder(
45 new LineBorder(Color.BLACK), "With SwingWorker"));
46 workerJPanel.add(new JLabel("Get Fibonacci of:"));
47 workerJPanel.add(numberJTextField);
48 goJButton.addActionListener(
49 new ActionListener()
50 {
51 public void actionPerformed(ActionEvent event)
52 {
53 int n;
54
55 try
56 {
57 // retrieve user's input as an integer
58 n = Integer.parseInt(numberJTextField.getText());
59 }

Fig. 23.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 2 of 4.)

1016 Chapter 23 Concurrency

60 catch(NumberFormatException ex)
61 {
62 // display an error message if the user did not
63 // enter an integer
64 fibonacciJLabel.setText("Enter an integer.");
65 return;
66 }
67
68 // indicate that the calculation has begun
69 fibonacciJLabel.setText("Calculating...");
70
71
72
73
74
75 }
76 } // end anonymous inner class
77); // end call to addActionListener
78 workerJPanel.add(goJButton);
79 workerJPanel.add(fibonacciJLabel);
80
81 // add GUI components to the event-dispatching thread panel
82 eventThreadJPanel.setBorder(new TitledBorder(
83 new LineBorder(Color.BLACK), "Without SwingWorker"));
84 eventThreadJPanel.add(nJLabel);
85 eventThreadJPanel.add(nFibonacciJLabel);
86 nextNumberJButton.addActionListener(
87 new ActionListener()
88 {
89 public void actionPerformed(ActionEvent event)
90 {
91 // calculate the Fibonacci number after n2
92 long temp = n1 + n2;
93 n1 = n2;
94 n2 = temp;
95 ++count;
96
97 // display the next Fibonacci number
98 nJLabel.setText("Fibonacci of " + count + ": ");
99 nFibonacciJLabel.setText(String.valueOf(n2));
100 }
101 } // end anonymous inner class
102); // end call to addActionListener
103 eventThreadJPanel.add(nextNumberJButton);
104
105 add(workerJPanel);
106 add(eventThreadJPanel);
107 setSize(275, 200);
108 setVisible(true);
109 } // end constructor

Fig. 23.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 3 of 4.)

// create a task to perform calculation in background
BackgroundCalculator task =
 new BackgroundCalculator(n, fibonacciJLabel);
task.execute(); // execute the task

23.11 Multithreading with GUI: SwingWorker 1017

Lines 48–77 register the event handler for the goJButton. If the user clicks this
JButton, line 58 gets the value entered in the numberJTextField and attempts to parse it
as an integer. Lines 72–73 create a new BackgroundCalculator object, passing in the user-
entered value and the fibonacciJLabel that’s used to display the calculation’s results.
Line 74 calls method execute on the BackgroundCalculator, scheduling it for execution
in a separate worker thread. Method execute does not wait for the BackgroundCalcu-
lator to finish executing. It returns immediately, allowing the GUI to continue pro-
cessing other events while the computation is performed.

If the user clicks the nextNumberJButton in the eventThreadJPanel, the event handler
registered in lines 86–102 executes. Lines 92–95 add the previous two Fibonacci numbers
stored in n1 and n2 to determine the next number in the sequence, update n1 and n2 to their
new values and increment count. Then lines 98–99 update the GUI to display the next
number. The code for these calculations is in method actionPerformed, so they’re per-
formed on the event dispatch thread. Handling such short computations in the event dis-

110
111 // main method begins program execution
112 public static void main(String[] args)
113 {
114 FibonacciNumbers application = new FibonacciNumbers();
115 application.setDefaultCloseOperation(EXIT_ON_CLOSE);
116 }
117 } // end class FibonacciNumbers

Fig. 23.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 4 of 4.)

a) Begin calculating Fibonacci of 40 in the
background

b) Calculating other Fibonacci values while
Fibonacci of 40 continues calculating

c) Fibonacci of 40 calculation finishes

1018 Chapter 23 Concurrency

patch thread does not cause the GUI to become unresponsive, as with the recursive
algorithm for calculating the Fibonacci of a large number. Because the longer Fibonacci
computation is performed in a separate worker thread using the SwingWorker, it’s possible
to get the next Fibonacci number while the recursive computation is still in progress.

23.11.2 Processing Intermediate Results: Sieve of Eratosthenes
We’ve presented an example that uses the SwingWorker class to execute a long process in
a background thread and update the GUI when the process is finished. We now present an
example of updating the GUI with intermediate results before the long process completes.
Figure 23.26 presents class PrimeCalculator, which extends SwingWorker to compute
the first n prime numbers in a worker thread. In addition to the doInBackground and done
methods used in the previous example, this class uses SwingWorker methods publish,
process and setProgress. In this example, method publish sends prime numbers to
method process as they’re found, method process displays these primes in a GUI com-
ponent and method setProgress updates the progress property. We later show how to
use this property to update a JProgressBar.

1 // Fig. 23.26: PrimeCalculator.java
2 // Calculates the first n primes, displaying them as they are found.
3 import javax.swing.JTextArea;
4 import javax.swing.JLabel;
5 import javax.swing.JButton;
6 import javax.swing.SwingWorker;
7 import java.security.SecureRandom;
8 import java.util.Arrays;
9 import java.util.List;

10 import java.util.concurrent.CancellationException;
11 import java.util.concurrent.ExecutionException;
12
13 public class PrimeCalculator extends SwingWorker<Integer, Integer>
14 {
15 private static final SecureRandom generator = new SecureRandom();
16 private final JTextArea intermediateJTextArea; // displays found primes
17 private final JButton getPrimesJButton;
18 private final JButton cancelJButton;
19 private final JLabel statusJLabel; // displays status of calculation
20 private final boolean[] primes; // boolean array for finding primes
21
22 // constructor
23 public PrimeCalculator(int max, JTextArea intermediateJTextArea,
24 JLabel statusJLabel, JButton getPrimesJButton,
25 JButton cancelJButton)
26 {
27 this.intermediateJTextArea = intermediateJTextArea;
28 this.statusJLabel = statusJLabel;
29 this.getPrimesJButton = getPrimesJButton;
30 this.cancelJButton = cancelJButton;
31 primes = new boolean[max];
32

Fig. 23.26 | Calculates the first n primes, displaying them as they are found. (Part 1 of 3.)

23.11 Multithreading with GUI: SwingWorker 1019

33 Arrays.fill(primes, true); // initialize all primes elements to true
34 }
35
36 // finds all primes up to max using the Sieve of Eratosthenes
37 public Integer doInBackground()
38 {
39 int count = 0; // the number of primes found
40
41 // starting at the third value, cycle through the array and put
42 // false as the value of any greater number that is a multiple
43 for (int i = 2; i < primes.length; i++)
44 {
45 if (isCancelled()) // if calculation has been canceled
46 return count;
47 else
48 {
49
50
51 try
52 {
53 Thread.sleep(generator.nextInt(5));
54 }
55 catch (InterruptedException ex)
56 {
57 statusJLabel.setText("Worker thread interrupted");
58 return count;
59 }
60
61 if (primes[i]) // i is prime
62 {
63
64 ++count;
65
66 for (int j = i + i; j < primes.length; j += i)
67 primes[j] = false; // i is not prime
68 }
69 }
70 }
71
72 return count;
73 }
74
75
76
77
78
79
80
81
82 // code to execute when doInBackground completes
83 protected void done()
84 {
85 getPrimesJButton.setEnabled(true); // enable Get Primes button

Fig. 23.26 | Calculates the first n primes, displaying them as they are found. (Part 2 of 3.)

setProgress(100 * (i + 1) / primes.length);

publish(i); // make i available for display in prime list

// displays published values in primes list
protected void process(List<Integer> publishedVals)
{
 for (int i = 0; i < publishedVals.size(); i++)
 intermediateJTextArea.append(publishedVals.get(i) + "\n");
}

1020 Chapter 23 Concurrency

Class PrimeCalculator extends SwingWorker (line 13), with the first type parameter
indicating the return type of method doInBackground and the second indicating the type
of intermediate results passed between methods publish and process. In this case, both
type parameters are Integers. The constructor (lines 23–34) takes as arguments an integer
that indicates the upper limit of the prime numbers to locate, a JTextArea used to display
primes in the GUI, one JButton for initiating a calculation and one for canceling it, and
a JLabel used to display the status of the calculation.

Sieve of Eratosthenes
Line 33 initializes the elements of the boolean array primes to true with Arrays method
fill. PrimeCalculator uses this array and the Sieve of Eratosthenes algorithm (described
in Exercise 7.27) to find all primes less than max. The Sieve of Eratosthenes takes a list of
integers and, beginning with the first prime number, filters out all multiples of that prime.
It then moves to the next prime, which will be the next number that’s not yet filtered out,
and eliminates all of its multiples. It continues until the end of the list is reached and all
nonprimes have been filtered out. Algorithmically, we begin with element 2 of the bool-
ean array and set the cells corresponding to all values that are multiples of 2 to false to
indicate that they’re divisible by 2 and thus not prime. We then move to the next array
element, check whether it’s true, and if so set all of its multiples to false to indicate that
they’re divisible by the current index. When the whole array has been traversed in this way,
all indices that contain true are prime, as they have no divisors.

Method doInBackground
In method doInBackground (lines 37–73), the control variable i for the loop (lines 43–
70) controls the current index for implementing the Sieve of Eratosthenes. Line 45 calls
the inherited SwingWorker method isCancelled to determine whether the user has
clicked the Cancel button. If isCancelled returns true, method doInBackground returns
the number of primes found so far (line 46) without finishing the computation.

If the calculation isn’t canceled, line 49 calls setProgress to update the percentage of
the array that’s been traversed so far. Line 53 puts the currently executing thread to sleep
for up to 4 milliseconds. We discuss the reason for this shortly. Line 61 tests whether the
element of array primes at the current index is true (and thus prime). If so, line 63 passes

86 cancelJButton.setEnabled(false); // disable Cancel button
87
88 try
89 {
90 // retrieve and display doInBackground return value
91 statusJLabel.setText("Found " + get() + " primes.");
92 }
93 catch (InterruptedException | ExecutionException |
94 CancellationException ex)
95 {
96 statusJLabel.setText(ex.getMessage());
97 }
98 }
99 } // end class PrimeCalculator

Fig. 23.26 | Calculates the first n primes, displaying them as they are found. (Part 3 of 3.)

23.11 Multithreading with GUI: SwingWorker 1021

the index to method publish so that it can be displayed as an intermediate result in the
GUI and line 64 increments the number of primes found. Lines 66–67 set all multiples of
the current index to false to indicate that they’re not prime. When the entire array has
been traversed, line 72 returns the number of primes found.

Method process
Lines 76–80 declare method process, which executes in the event dispatch thread and re-
ceives its argument publishedVals from method publish. The passing of values between
publish in the worker thread and process in the event dispatch thread is asynchronous;
process might not be invoked for every call to publish. All Integers published since the
last call to process are received as a List by method process. Lines 78–79 iterate through
this list and display the published values in a JTextArea. Because the computation in
method doInBackground progresses quickly, publishing values often, updates to the
JTextArea can pile up on the event dispatch thread, causing the GUI to become sluggish.
In fact, when searching for a large number of primes, the event dispatch thread may receive
so many requests in quick succession to update the JTextArea that it runs out of memory
in its event queue. This is why we put the worker thread to sleep for a few milliseconds be-
tween calls to publish. The calculation is slowed just enough to allow the event dispatch
thread to keep up with requests to update the JTextArea with new primes, enabling the
GUI to update smoothly and remain responsive.

Method done
Lines 83–98 define method done. When the calculation is finished or canceled, method
done enables the Get Primes button and disables the Cancel button (lines 85–86). Line 91
gets and displays the return value—the number of primes found—from method doIn-
Background. Lines 93–97 catch the exceptions thrown by method get and display an ap-
propriate message in the statusJLabel.

Class FindPrimes
Class FindPrimes (Fig. 23.27) displays a JTextField that allows the user to enter a num-
ber, a JButton to begin finding all primes less than that number and a JTextArea to dis-
play the primes. A JButton allows the user to cancel the calculation, and a JProgressBar
shows the calculation’s progress. The constructor (lines 32–125) sets up the GUI.

1 // Fig. 23.27: FindPrimes.java
2 // Using a SwingWorker to display prime numbers and update a JProgressBar
3 // while the prime numbers are being calculated.
4 import javax.swing.JFrame;
5 import javax.swing.JTextField;
6 import javax.swing.JTextArea;
7 import javax.swing.JButton;
8 import javax.swing.JProgressBar;
9 import javax.swing.JLabel;

10 import javax.swing.JPanel;
11 import javax.swing.JScrollPane;
12 import javax.swing.ScrollPaneConstants;

Fig. 23.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 1 of 4.)

1022 Chapter 23 Concurrency

13 import java.awt.BorderLayout;
14 import java.awt.GridLayout;
15 import java.awt.event.ActionListener;
16 import java.awt.event.ActionEvent;
17 import java.util.concurrent.ExecutionException;
18 import java.beans.PropertyChangeListener;
19 import java.beans.PropertyChangeEvent;
20
21 public class FindPrimes extends JFrame
22 {
23 private final JTextField highestPrimeJTextField = new JTextField();
24 private final JButton getPrimesJButton = new JButton("Get Primes");
25 private final JTextArea displayPrimesJTextArea = new JTextArea();
26 private final JButton cancelJButton = new JButton("Cancel");
27 private final JProgressBar progressJProgressBar = new JProgressBar();
28 private final JLabel statusJLabel = new JLabel();
29 private PrimeCalculator calculator;
30
31 // constructor
32 public FindPrimes()
33 {
34 super("Finding Primes with SwingWorker");
35 setLayout(new BorderLayout());
36
37 // initialize panel to get a number from the user
38 JPanel northJPanel = new JPanel();
39 northJPanel.add(new JLabel("Find primes less than: "));
40 highestPrimeJTextField.setColumns(5);
41 northJPanel.add(highestPrimeJTextField);
42 getPrimesJButton.addActionListener(
43 new ActionListener()
44 {
45 public void actionPerformed(ActionEvent e)
46 {
47 progressJProgressBar.setValue(0); // reset JProgressBar
48 displayPrimesJTextArea.setText(""); // clear JTextArea
49 statusJLabel.setText(""); // clear JLabel
50
51 int number; // search for primes up through this value
52
53 try
54 {
55 // get user input
56 number = Integer.parseInt(
57 highestPrimeJTextField.getText());
58 }
59 catch (NumberFormatException ex)
60 {
61 statusJLabel.setText("Enter an integer.");
62 return;
63 }
64

Fig. 23.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 2 of 4.)

23.11 Multithreading with GUI: SwingWorker 1023

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87 // disable Get Primes button and enable Cancel button
88 getPrimesJButton.setEnabled(false);
89 cancelJButton.setEnabled(true);
90
91
92 }
93 } // end anonymous inner class
94); // end call to addActionListener
95 northJPanel.add(getPrimesJButton);
96
97 // add a scrollable JList to display results of calculation
98 displayPrimesJTextArea.setEditable(false);
99 add(new JScrollPane(displayPrimesJTextArea,
100 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
101 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER));
102
103 // initialize a panel to display cancelJButton,
104 // progressJProgressBar, and statusJLabel
105 JPanel southJPanel = new JPanel(new GridLayout(1, 3, 10, 10));
106 cancelJButton.setEnabled(false);
107 cancelJButton.addActionListener(
108 new ActionListener()
109 {
110 public void actionPerformed(ActionEvent e)
111 {
112
113 }
114 } // end anonymous inner class
115); // end call to addActionListener

Fig. 23.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 3 of 4.)

// construct a new PrimeCalculator object
calculator = new PrimeCalculator(number,
 displayPrimesJTextArea, statusJLabel, getPrimesJButton,
 cancelJButton);

// listen for progress bar property changes
calculator.addPropertyChangeListener(
 new PropertyChangeListener()
 {
 public void propertyChange(PropertyChangeEvent e)
 {
 // if the changed property is progress,
 // update the progress bar
 if (e.getPropertyName().equals("progress"))
 {
 int newValue = (Integer) e.getNewValue();
 progressJProgressBar.setValue(newValue);
 }
 }
 } // end anonymous inner class
); // end call to addPropertyChangeListener

calculator.execute(); // execute the PrimeCalculator object

calculator.cancel(true); // cancel the calculation

1024 Chapter 23 Concurrency

Lines 42–94 register the event handler for the getPrimesJButton. When the user
clicks this JButton, lines 47–49 reset the JProgressBar and clear the displayPrimes-
JTextArea and the statusJLabel. Lines 53–63 parse the value in the JTextField and dis-
play an error message if the value is not an integer. Lines 66–68 construct a new
PrimeCalculator object, passing as arguments the integer the user entered, the display-
PrimesJTextArea for displaying the primes, the statusJLabel and the two JButtons.

Lines 71–85 register a PropertyChangeListener for the PrimeCalculator object.
PropertyChangeListener is an interface from package java.beans that defines a single
method, propertyChange. Every time method setProgress is invoked on a PrimeCalcu-
lator, the PrimeCalculator generates a PropertyChangeEvent to indicate that the prog-
ress property has changed. Method propertyChange listens for these events. Line 78 tests
whether a given PropertyChangeEvent indicates a change to the progress property. If so,
line 80 gets the new value of the property and line 81 updates the JProgressBar with the
new progress property value.

The Get Primes JButton is disabled (line 88) so only one calculation that updates the
GUI can execute at a time, and the Cancel JButton is enabled (line 89) to allow the user

116 southJPanel.add(cancelJButton);
117 progressJProgressBar.setStringPainted(true);
118 southJPanel.add(progressJProgressBar);
119 southJPanel.add(statusJLabel);
120
121 add(northJPanel, BorderLayout.NORTH);
122 add(southJPanel, BorderLayout.SOUTH);
123 setSize(350, 300);
124 setVisible(true);
125 } // end constructor
126
127 // main method begins program execution
128 public static void main(String[] args)
129 {
130 FindPrimes application = new FindPrimes();
131 application.setDefaultCloseOperation(EXIT_ON_CLOSE);
132 } // end main
133 } // end class FindPrimes

Fig. 23.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 4 of 4.)

23.12 sort/parallelSort Timings with the Java SE 8 Date/Time API 1025

to stop the computation before it completes. Line 91 executes the PrimeCalculator to
begin finding primes. If the user clicks the cancelJButton, the event handler registered at
lines 107–115 calls PrimeCalculator’s method cancel (line 112), which is inherited from
class SwingWorker, and the calculation returns early. The argument true to method
cancel indicates that the thread performing the task should be interrupted in an attempt
to cancel the task.

23.12 sort/parallelSort Timings with the Java SE 8
Date/Time API
In Section 7.15, we used class Arrays’s static method sort to sort an array and we in-
troduced static method parallelSort for sorting large arrays more efficiently on multi-
core systems. Figure 23.28 uses both methods to sort 15,000,000 element arrays of ran-
dom int values so that we can demonstrate parallelSort’s performance improvement of
over sort on a multi-core system (we ran this on a dual-core system).

1 // SortComparison.java
2 // Comparing performance of Arrays methods sort and parallelSort.
3 import java.time.Duration;
4 import java.time.Instant;
5 import java.text.NumberFormat;
6 import java.util.Arrays;
7 import java.security.SecureRandom;
8
9 public class SortComparison

10 {
11 public static void main(String[] args)
12 {
13 SecureRandom random = new SecureRandom();
14
15 // create array of random ints, then copy it
16 int[] array1 = random.ints(15_000_000).toArray();
17 int[] array2 = new int[array1.length];
18 System.arraycopy(array1, 0, array2, 0, array1.length);
19
20 // time the sorting of array1 with Arrays method sort
21 System.out.println("Starting sort");
22
23
24
25
26 // display timing results
27 long sortTime = Duration.between(sortStart, sortEnd).toMillis();
28 System.out.printf("Total time in milliseconds: %d%n%n", sortTime);
29
30 // time the sorting of array2 with Arrays method parallelSort
31 System.out.println("Starting parallelSort");
32

Fig. 23.28 | Comparing performance of Arrays methods sort and parallelSort. (Part 1 of 2.)

Instant sortStart = Instant.now();
Arrays.sort(array1);
Instant sortEnd = Instant.now();

Instant parallelSortStart = Instant.now();

1026 Chapter 23 Concurrency

Creating the Arrays
Line 16 uses SecureRandom method ints to create an IntStream of 15,000,000 random
int values, then calls IntStream method toArray to place the values into an array. Lines
17 and 18 copy the array so that the calls to both sort and parallelSort work with the
same set of values.

Timing Arrays Method sort with Date/Time API Classes Instant and Duration
Lines 22 and 24 each call class Instant’s static method now to get the current time before
and after the call to sort. To determine the difference between two Instants, line 27 uses
class Duration’s static method between, which returns a Duration object containing the
time difference. Next, we call Duration method toMillis to get the difference in milli-
seconds.

Timing Arrays Method parallelSort with Date/Time API Classes Instant and
Duration

Lines 32–34 time the call to Arrays method parallelSort. Then, lines 37–38 calculate
the difference between the Instants.

Displaying the Percentage Difference Between the Sorting Times
Lines 43–44 use a NumberFormat (package java.text) to format the ratio of the sort times
as a percentage. NumberFormat static method getPercentInstance returns a Number-
Format that’s used to format a number as a percentage. NumberFormat method format per-
forms the formatting. As you can see in the sample output, the sort method took over
400% more time to sort the 15,000,000 random int values.

33
34
35
36 // display timing results
37 long parallelSortTime =
38 ;
39 System.out.printf("Total time in milliseconds: %d%n%n",
40 parallelSortTime);
41
42 // display time difference as a percentage
43
44
45 System.out.printf("%nsort took %s more time than parallelSort%n",
46 percentage);
47 }
48 } // end class SortComparison

Starting sort
Total time in milliseconds: 1319

Starting parallelSort
Total time in milliseconds: 323

sort took 408% more time than parallelSort

Fig. 23.28 | Comparing performance of Arrays methods sort and parallelSort. (Part 2 of 2.)

Arrays.parallelSort(array2);
Instant parallelSortEnd = Instant.now();

Duration.between(parallelSortStart, parallelSortEnd).toMillis()

String percentage = NumberFormat.getPercentInstance().format(
 (double) sortTime / parallelSortTime);

23.13 Java SE 8: Sequential vs. Parallel Streams 1027

Other Parallel Array Operations
In addition to method parallelSort, class Arrays now contains methods paral-
lelSetAll and parallelPrefix, which perform the following tasks:

• parallelSetAll—Fills an array with values produced by a generator function
that receives an int and returns a value of type int, long or double. Depending
on which overload of method parallelSetAll is used, the generator function is
an object of a class that implements IntToDoubleFunction (for double arrays),
IntUnaryOperator (for int arrays), IntToLongFunction (for long arrays) or
IntFunction (for arrays of any non-primitive type).

• parallelPrefix—Applies a BinaryOperator to the current and previous array
elements and stores the result in the current element. For example, consider:

This call to parallelPrefix uses a BinaryOperator that adds two values. After
the call completes, the array contains 1, 3, 6, 10 and 15. Similarly, the following
call to parallelPrefix, uses a BinaryOperator that multiplies two values. After
the call completes, the array contains 1, 2, 6, 24 and 120:

23.13 Java SE 8: Sequential vs. Parallel Streams
In Chapter 17, you learned about Java SE 8 lambdas and streams. We mentioned that
streams are easy to parallelize, enabling programs to benefit from enhanced performance
on multi-core systems. Using the timing capabilities introduced in Section 23.12,
Fig. 23.29 demonstrates both sequential and parallel stream operations on a 10,000,000-
element array of random long values (created at line 17) to compare the performance.

 int[] values = {1, 2, 3, 4, 5};
 Arrays.parallelPrefix(values, (x, y) -> x + y);

 int[] values = {1, 2, 3, 4, 5};
 Arrays.parallelPrefix(values, (x, y) -> x * y);

1 // StreamStatisticsComparison.java
2 // Comparing performance of sequential and parallel stream operations.
3 import java.time.Duration;
4 import java.time.Instant;
5 import java.util.Arrays;
6 import java.util.LongSummaryStatistics;
7 import java.util.stream.LongStream;
8 import java.security.SecureRandom;
9

10 public class StreamStatisticsComparison
11 {
12 public static void main(String[] args)
13 {
14 SecureRandom random = new SecureRandom();
15
16 // create array of random long values
17 long[] values = random.longs(10_000_000, 1, 1001).toArray();

Fig. 23.29 | Comparing performance of sequential and parallel stream operations. (Part 1 of 3.)

1028 Chapter 23 Concurrency

18
19 // perform calculcations separately
20
21
22
23
24
25
26
27
28 // display results
29 System.out.println("Calculations performed separately");
30 System.out.printf(" count: %,d%n", count);
31 System.out.printf(" sum: %,d%n", sum);
32 System.out.printf(" min: %,d%n", min);
33 System.out.printf(" max: %,d%n", max);
34 System.out.printf(" average: %f%n", average);
35 System.out.printf("Total time in milliseconds: %d%n%n",
36 Duration.between(separateStart, separateEnd).toMillis());
37
38 // time sum operation with sequential stream
39 LongStream stream1 = Arrays.stream(values);
40 System.out.println("Calculating statistics on sequential stream");
41
42
43
44
45 // display results
46 displayStatistics(results1);
47 System.out.printf("Total time in milliseconds: %d%n%n",
48 Duration.between(sequentialStart, sequentialEnd).toMillis());
49
50 // time sum operation with parallel stream
51 LongStream stream2 = Arrays.stream(values).parallel();
52 System.out.println("Calculating statistics on parallel stream");
53
54
55
56
57 // display results
58 displayStatistics(results1);
59 System.out.printf("Total time in milliseconds: %d%n%n",
60 Duration.between(parallelStart, parallelEnd).toMillis());
61 }
62
63 // display's LongSummaryStatistics values
64 private static void displayStatistics(LongSummaryStatistics stats)
65 {
66 System.out.println("Statistics");
67 System.out.printf(" count: %,d%n", stats.getCount());
68 System.out.printf(" sum: %,d%n", stats.getSum());
69 System.out.printf(" min: %,d%n", stats.getMin());
70 System.out.printf(" max: %,d%n", stats.getMax());

Fig. 23.29 | Comparing performance of sequential and parallel stream operations. (Part 2 of 3.)

Instant separateStart = Instant.now();
long count = Arrays.stream(values).count();
long sum = Arrays.stream(values).sum();
long min = Arrays.stream(values).min().getAsLong();
long max = Arrays.stream(values).max().getAsLong();
double average = Arrays.stream(values).average().getAsDouble();
Instant separateEnd = Instant.now();

Instant sequentialStart = Instant.now();
LongSummaryStatistics results1 = stream1.summaryStatistics();
Instant sequentialEnd = Instant.now();

Instant parallelStart = Instant.now();
LongSummaryStatistics results2 = stream2.summaryStatistics();
Instant parallelEnd = Instant.now();

23.13 Java SE 8: Sequential vs. Parallel Streams 1029

Performing Stream Operations with Separate Passes of a Sequential Stream
Section 17.3 demonstrated various numerical operations on IntStreams. Lines 20–26 per-
form and time the count, sum, min, max and average stream operations each performed
individually on a LongStream returned by Arrays method stream. Lines 29–36 then dis-
play the results and the total time required to perform all five operations.

Performing Stream Operations with a Single Pass of a Sequential Stream
Lines 39–48 demonstrate the performance improvement you get by using LongStream
method summaryStatistics to determine the count, sum, minimum value, maximum
value and average in one pass of a sequential LongStream—all streams are sequential by de-
fault. This operation took approximately 40% of the time required to perform the five op-
erations separately.

Performing Stream Operations with a Single Pass of a Parallel Stream
Lines 51–60 demonstrate the performance improvement you get by using LongStream
method summaryStatistics on a parallel LongStream. To obtain a parallel stream that can
take advantage of multi-core processors, simply invoke method parallel on an existing
stream. As you can see from the sample output, performing the operations on a parallel
stream decreased the total time required even further—taking approximately 55% of the

71 System.out.printf(" average: %f%n", stats.getAverage());
72 }
73 } // end class StreamStatisticsComparison

Calculations performed separately
 count: 10,000,000
 sum: 5,003,695,285
 min: 1
 max: 1,000
 average: 500.369529
Total time in milliseconds: 173

Calculating statistics on sequential stream
Statistics
 count: 10,000,000
 sum: 5,003,695,285
 min: 1
 max: 1,000
 average: 500.369529
Total time in milliseconds: 69

Calculating statistics on parallel stream
Statistics
 count: 10,000,000
 sum: 5,003,695,285
 min: 1
 max: 1,000
 average: 500.369529
Total time in milliseconds: 38

Fig. 23.29 | Comparing performance of sequential and parallel stream operations. (Part 3 of 3.)

1030 Chapter 23 Concurrency

calculation time for the sequential LongStream and just 22% of the time required to per-
form the five operations separately.

23.14 (Advanced) Interfaces Callable and Future
Interface Runnable provides only the most basic functionality for multithreaded program-
ming. In fact, this interface has limitations. Suppose a Runnable is performing a long cal-
culation and the application wants to retrieve the result of that calculation. The run
method cannot return a value, so shared mutable data would be required to pass the value
back to the calling thread. As you now know, this would require thread synchronization.
The Callable interface (of package java.util.concurrent) fixes this limitation. The in-
terface declares a single method named call which returns a value representing the result
of the Callable’s task—such as the result of a long running calculation.

An application that creates a Callable likely wants to run it concurrently with other
Runnables and Callables. ExecutorService method submit executes its Callable argu-
ment and returns an object of type Future (of package java.util.concurrent), which
represents the Callable’s future result. The Future interface get method blocks the calling
thread, and waits for the Callable to complete and return its result. The interface also
provides methods that enable you to cancel a Callable’s execution, determine whether the
Callable was cancelled and determine whether the Callable completed its task.

Executing Aysnchronous Tasks with CompletableFuture
Java SE 8 introduces class CompletableFuture (package java.util.concurrent), which
implements the Future interface and enables you to asynchronously execute Runnables that
perform tasks or Suppliers that return values. Interface Supplier, like interface Callable,
is a functional interface with a single method (in this case, get) that receives no arguments
and returns a result. Class CompletableFuture provides many additional capabilities that for
advanced programmers, such as creating CompletableFutures without executing them im-
mediately, composing one or more CompletableFutures so that you can wait for any or all
of them to complete, executing code after a CompletableFuture completes and more.

Figure 23.30 performs two long-running calculations sequentially, then performs
them again asynchronously using CompletableFutures to demonstrate the performance
improvement from asynchronous execution on a multi-core system. For demonstration
purposes, our long-running calculation is performed by a recursive fibonacci method
(lines 73–79; similar to the one presented in Section 18.5). For larger Fibonacci values,
the recursive implementation can require significant computation time—in practice, it’s
much faster to calculate Fibonacci values using a loop.

1 // FibonacciDemo.java
2 // Fibonacci calculations performed synchronously and asynchronously
3 import java.time.Duration;
4 import java.text.NumberFormat;
5 import java.time.Instant;
6
7
8

Fig. 23.30 | Fibonacci calculations performed synchronously and asynchronously. (Part 1 of 4.)

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;

23.14 (Advanced) Interfaces Callable and Future 1031

9 // class that stores two Instants in time
10 class TimeData
11 {
12 public Instant start;
13 public Instant end;
14
15 // return total time in seconds
16 public double timeInSeconds()
17 {
18 return Duration.between(start, end).toMillis() / 1000.0;
19 }
20 } // end class TimeData
21
22 public class FibonacciDemo
23 {
24 public static void main(String[] args)
25
26 {
27 // perform synchronous fibonacci(45) and fibonacci(44) calculations
28 System.out.println("Synchronous Long Running Calculations");
29
30
31 double synchronousTime =
32 calculateTime(synchronousResult1, synchronousResult2);
33 System.out.printf(
34 " Total calculation time = %.3f seconds%n", synchronousTime);
35
36 // perform asynchronous fibonacci(45) and fibonacci(44) calculations
37 System.out.printf("%nAsynchronous Long Running Calculations%n");
38
39
40
41
42
43 // wait for results from the asynchronous operations
44
45
46 double asynchronousTime =
47 calculateTime(asynchronousResult1, asynchronousResult2);
48 System.out.printf(
49 " Total calculation time = %.3f seconds%n", asynchronousTime);
50
51 // display time difference as a percentage
52 String percentage = NumberFormat.getPercentInstance().format(
53 synchronousTime / asynchronousTime);
54 System.out.printf("%nSynchronous calculations took %s" +
55 " more time than the asynchronous calculations%n", percentage);
56 }
57
58 // executes function fibonacci asynchronously
59 private static TimeData startFibonacci(int n)
60 {

Fig. 23.30 | Fibonacci calculations performed synchronously and asynchronously. (Part 2 of 4.)

throws InterruptedException, ExecutionException

TimeData synchronousResult1 = startFibonacci(45);
TimeData synchronousResult2 = startFibonacci(44);

CompletableFuture<TimeData> futureResult1 =
 CompletableFuture.supplyAsync(() -> startFibonacci(45));
CompletableFuture<TimeData> futureResult2 =
 CompletableFuture.supplyAsync(() -> startFibonacci(44));

TimeData asynchronousResult1 = futureResult1.get();
TimeData asynchronousResult2 = futureResult2.get();

1032 Chapter 23 Concurrency

61 // create a TimeData object to store times
62 TimeData timeData = new TimeData();
63
64 System.out.printf(" Calculating fibonacci(%d)%n", n);
65 timeData.start = Instant.now();
66
67 timeData.end = Instant.now();
68 displayResult(n, fibonacciValue, timeData);
69 return timeData;
70 }
71
72 // recursive method fibonacci; calculates nth Fibonacci number
73 private static long fibonacci(long n)
74 {
75 if (n == 0 || n == 1)
76 return n;
77 else
78 return fibonacci(n - 1) + fibonacci(n - 2);
79 }
80
81 // display fibonacci calculation result and total calculation time
82 private static void displayResult(int n, long value, TimeData timeData)
83 {
84 System.out.printf(" fibonacci(%d) = %d%n", n, value);
85 System.out.printf(
86 " Calculation time for fibonacci(%d) = %.3f seconds%n",
87 n, timeData.timeInSeconds());
88 }
89
90 // display fibonacci calculation result and total calculation time
91 private static double calculateTime(TimeData result1, TimeData result2)
92 {
93 TimeData bothThreads = new TimeData();
94
95 // determine earlier start time
96 bothThreads.start = result1.start.compareTo(result2.start) < 0 ?
97 result1.start : result2.start;
98
99 // determine later end time
100 bothThreads.end = result1.end.compareTo(result2.end) > 0 ?
101 result1.end : result2.end;
102
103 return bothThreads.timeInSeconds();
104 }
105 } // end class FibonacciDemo

Synchronous Long Running Calculations
 Calculating fibonacci(45)
 fibonacci(45) = 1134903170
 Calculation time for fibonacci(45) = 5.884 seconds
 Calculating fibonacci(44)
 fibonacci(44) = 701408733

Fig. 23.30 | Fibonacci calculations performed synchronously and asynchronously. (Part 3 of 4.)

long fibonacciValue = fibonacci(n);

23.14 (Advanced) Interfaces Callable and Future 1033

Class TimeData
Class TimeData (lines 10–20) stores two Instants representing the start and end time of
a task, and provides method timeInSeconds to calculate the total time between them. We
use TimeData objects throughout this example to calculate the time required to perform
Fibonacci calculations.

Method startFibonacci for Performing and Timing Fibonacci Calculations
Method startFibonacci (lines 59–70) is called several times in main (lines 29, 30, 39 and
41) to initiate Fibonacci calculations and to calculate the time each calculation requires.
The method receives the Fibonacci number to calculate and performs the following tasks:

• Line 62 creates a TimeData object to store the calculation’s start and end times.

• Line 64 displays the Fibonacci number to be calculated.

• Line 65 stores the current time before method fibonacci is called.

• Line 66 calls method fibonacci to perform the calculation.

• Line 67 stores the current time after the call to fibonacci completes.

• Line 68 displays the result and the total time required for the calculation.

• Line 69 returns the TimeData object for use in method main.

Performing Fibonacci Calculations Synchronously
Method main (lines 24–56) first demonstrates synchronous Fibonacci calculations. Line
29 calls startFibonacci(45) to initiate the fibonacci(45) calculation and store the
TimeData object containing the calculation’s start and end times. When this call com-
pletes, line 30 calls startFibonacci(44) to initiate the fibonacci(44) calculation and
store its TimeData. Next, lines 31–32 pass both TimeData objects to method calculate-
Time (lines 91–104), which returns the total calculation time in seconds. Lines 33–34 dis-
play the total calculation time for the synchronous Fibonacci calculations.

Performing Fibonacci Calculations Asynchronously
Lines 38–41 in main launch the asynchronous Fibonacci calculations in separate threads.
CompletableFuture static method supplyAsync executes an asynchronous task that re-
turns a value. The method receives as its argument an object that implements interface Sup-

 Calculation time for fibonacci(44) = 3.605 seconds
 Total calculation time = 9.506 seconds

Asynchronous Long Running Calculations
 Calculating fibonacci(45)
 Calculating fibonacci(44)
 fibonacci(44) = 701408733
 Calculation time for fibonacci(44) = 3.650 seconds
 fibonacci(45) = 1134903170
 Calculation time for fibonacci(45) = 5.911 seconds
 Total calculation time = 5.911 seconds

Synchronous calculations took 161% more time than the asynchronous ones

Fig. 23.30 | Fibonacci calculations performed synchronously and asynchronously. (Part 4 of 4.)

1034 Chapter 23 Concurrency

plier—in this case, we use a lambdas with empty parameter lists to invoke
startFibonacci(45) (line 39) and startFibonacci(44) (line 41). The compiler infers that
supplyAsync returns a CompletableFuture<TimeData> because method startFibonacci
returns type TimeData. Class CompletableFuture also provides static method runAsync to
execute an asynchronous task that does not return a result—this method receives a Runnable.

Getting the Asynchronous Calculations’ Results
Class CompletableFuture implements interface Future, so we can obtain the asynchronous
tasks’ results by calling Future method get (lines 44–45). These are blocking calls—they
cause the main thread to wait until the asynchronous tasks complete and return their results.
In our case, the results are TimeData objects. Once both tasks return, lines 46–47 pass both
TimeData objects to method calculateTime (lines 91–104) to get the total calculation
time in seconds. Then, lines 48–49 display the total calculation time for the asynchronous
Fibonacci calculations. Finally, lines 52–55 calculate and display the percentage difference
in execution time for the synchronous and asynchronous calculations.

Program Outputs
On our dual-core computer, the synchronous calculations took a total of 9.506 seconds.
Though the individual asynchronous calculations took approximately the same amount of
time as the corresponding synchronous calculations, the total time for the asynchronous
calculations was only 5.911 seconds, because the two calculations were actually performed
in parallel. As you can see in the output, the synchronous calculations took 161% more time
to complete, so asynchronous execution provided a significant performance improvement.

23.15 (Advanced) Fork/Join Framework
Java’s concurrency APIs include the fork/join framework, which helps programmers par-
allelize algorithms. The framework is beyond the scope of this book. Experts tell us that
most Java programmers will nevertheless benefit by the fork/join framework’s use “behind
the scenes” in the Java API and other third party libraries. For example, the parallel capa-
bilities of Java SE 8 streams are implemented using this framework.

The fork/join framework is particularly well suited to divide-and-conquer-style algo-
rithms, such as the merge sort that we implemented in Section 19.8. Recall that the recur-
sive merge-sort algorithm sorts an array by splitting it into two equal-sized subarrays,
sorting each subarray, then merging them into one larger array. Each subarray is sorted by
performing the same algorithm on the subarray. For algorithms like merge sort, the fork/
join framework can be used to create concurrent tasks so that they can be distributed across
multiple processors and be truly performed in parallel—the details of assigning the tasks
to different processors are handled for you by the framework.

23.16 Wrap-Up
In this chapter, we presented Java’s concurrency capabilities for enhancing application per-
formance on multi-core systems. You learned the differences between concurrent and par-
allel execution. We discussed that Java makes concurrency available to you through
multithreading. You also learned that the JVM itself creates threads to run a program, and
that it also can create threads to perform housekeeping tasks such as garbage collection.

 Summary 1035

We discussed the life cycle of a thread and the states that a thread may occupy during
its lifetime. Next, we presented the interface Runnable, which is used to specify a task that
can execute concurrently with other tasks. This interface’s run method is invoked by the
thread executing the task. We showed how to execute a Runnable object by associating it
with an object of class Thread. Then we showed how to use the Executor interface to
manage the execution of Runnable objects via thread pools, which can reuse existing
threads to eliminate the overhead of creating a new thread for each task and can improve
performance by optimizing the number of threads to ensure that the processor stays busy.

You learned that when multiple threads share an object and one or more of them
modify that object, indeterminate results may occur unless access to the shared object is
managed properly. We showed you how to solve this problem via thread synchronization,
which coordinates access to shared mutable data by multiple concurrent threads. You
learned several techniques for performing synchronization—first with the built-in class
ArrayBlockingQueue (which handles all the synchronization details for you), then with
Java’s built-in monitors and the synchronized keyword, and finally with interfaces Lock
and Condition.

We discussed the fact that Swing GUIs are not thread safe, so all interactions with and
modifications to the GUI must be performed in the event dispatch thread. We also dis-
cussed the problems associated with performing long-running calculations in the event
dispatch thread. Then we showed how you can use the SwingWorker class to perform long-
running calculations in worker threads. You learned how to display the results of a Swing-
Worker in a GUI when the calculation completed and how to display intermediate results
while the calculation was still in process.

We revisited the Arrays class’s sort and parallelSort methods to demonstrate the
benefit of using a parallel sorting algorithm on a multi-core processor. We used the Java
SE 8 Date/Time API’s Instant and Duration classes to time the sort operations.

You learned that Java SE 8 streams are easy to parallelize, enabling programs to benefit
from enhanced performance on multi-core systems, and that to obtain a parallel stream,
you simply invoke method parallel on an existing stream.

We discussed the Callable and Future interfaces, which enable you to execute tasks
that return results and to obtain those results, respectively. We then presented an example
of performing long-running tasks synchronously and asynchronously using Java SE 8’s
new CompletableFuture class. We use the multithreading techniques introduced in this
chapter again in Chapter 28, Networking, to help build multithreaded servers that can
interact with multiple clients concurrently. In the next chapter, we introduce database-
application development with Java’s JDBC API.

Summary
Section 23.1 Introduction
• Two tasks that are operating concurrently are both making progress at once.

• Two tasks that are operating in parallel are executing simultaneously. In this sense, parallelism is
a subset of concurrency. Today’s multi-core computers have multiple processors that can per-
form tasks in parallel.

• Java makes concurrency available to you through the language and APIs.

1036 Chapter 23 Concurrency

• Java programs can have multiple threads of execution, where each thread has its own method-
call stack and program counter, allowing it to execute concurrently with other threads. This ca-
pability is called multithreading.

• In a multithreaded application, threads can be distributed across multiple processors (if available)
so that multiple tasks execute in parallel and the application can operate more efficiently.

• The JVM creates threads to run a program and for housekeeping tasks such as garbage collection.

• Multithreading can also increase performance on single-processor systems—when one thread
cannot proceed (because, for example, it’s waiting for the result of an I/O operation), another
can use the processor.

• The vast majority of programmers should use existing collection classes and interfaces from the
concurrency APIs that manage synchronization for you.

Section 23.2 Thread States and Life Cycle
• A new thread begins its life cycle in the new state (p. 961). When the program starts the thread, it’s

placed in the runnable state. A thread in the runnable state is considered to be executing its task.

• A runnable thread transitions to the waiting state (p. 961) to wait for another thread to perform a
task. A waiting thread transitions to runnable when another thread notifies it to continue executing.

• A runnable thread can enter the timed waiting state (p. 961) for a specified interval of time, transi-
tioning back to runnable when that time interval expires or when the event it’s waiting for occurs.

• A runnable thread can transition to the timed waiting state if it provides an optional wait interval
when it’s waiting for another thread to perform a task. Such a thread will return to the runnable
state when it’s notified by another thread or when the timed interval expires.

• A sleeping thread (p. 961) remains in the timed waiting state for a designated period of time, after
which it returns to the runnable state.

• A runnable thread transitions to the blocked state (p. 961) when it attempts to perform a task that
cannot be completed immediately and the thread must temporarily wait until that task completes.
At that point, the blocked thread transitions to the runnable state, so it can resume execution.

• A runnable thread enters the terminated state (p. 961) when it successfully completes its task or
otherwise terminates (perhaps due to an error).

• At the operating-system level, the runnable state (p. 962) encompasses two separate states. When a
thread first transitions to the runnable state from the new state, it’s in the ready state (p. 962). A
ready thread enters the running state (p. 962) when the operating system dispatches it.

• Most operating systems allot a quantum (p. 962) in which a thread performs its task. When this
expires, the thread returns to the ready state and another thread is assigned to the processor.

• Thread scheduling determines which thread to dispatch based on thread priorities.

• The job of an operating system’s thread scheduler (p. 962) is to determine which thread runs next.

• When a higher-priority thread enters the ready state, the operating system generally preempts the
currently running thread (an operation known as preemptive scheduling; p. 963).

• Depending on the operating system, higher-priority threads could postpone—possibly indefi-
nitely (p. 963)—the execution of lower-priority threads.

Section 23.3 Creating and Executing Threads with the Executor Framework
• A Runnable (p. 963) object represents a task that can execute concurrently with other tasks.

• Interface Runnable declares method run (p. 963) in which you place the code that defines the
task to perform. The thread executing a Runnable calls method run to perform the task.

• A program will not terminate until its last thread completes execution.

 Summary 1037

• You cannot predict the order in which threads will be scheduled, even if you know the order in
which they were created and started.

• It’s recommended that you use the Executor interface (p. 963) to manage the execution of Run-
nable objects. An Executor object typically creates and manages a group of threads—called a
thread pool (p. 963).

• Executors (p. 964) can reuse existing threads and can improve performance by optimizing the
number of threads to ensure that the processor stays busy.

• Executor method execute (p. 963) receives a Runnable and assigns it to an available thread in a
thread pool. If there are none, the Executor creates a new thread or waits for one to become available.

• Interface ExecutorService (of package java.util.concurrent; p. 964) extends interface Exec-
utor and declares other methods for managing the life cycle of an Executor.

• An object that implements the ExecutorService interface can be created using static methods
declared in class Executors (of package java.util.concurrent).

• Executors method newCachedThreadPool (p. 965) returns an ExecutorService that creates new
threads as they’re needed by the application.

• ExecutorService method execute executes its Runnable sometime in the future. The method re-
turns immediately from each invocation—the program does not wait for each task to finish.

• ExecutorService method shutdown (p. 967) notifies the ExecutorService to stop accepting new
tasks, but continues executing existing tasks and terminates when those tasks complete execution.

Section 23.4 Thread Synchronization
• Thread synchronization (p. 968) coordinates access to shared mutable data by multiple concur-

rent threads.

• By synchronizing threads, you can ensure that each thread accessing a shared object excludes all
other threads from doing so simultaneously—this is called mutual exclusion (p. 968).

• A common way to perform synchronization is to use Java’s built-in monitors. Every object has a
monitor and a monitor lock (p. 968). The monitor ensures that its object’s monitor lock is held
by a maximum of only one thread at any time, and thus can be used to enforce mutual exclusion.

• If an operation requires the executing thread to hold a lock while the operation is performed, a
thread must acquire the lock (p. 968) before it can proceed with the operation. Any other threads
attempting to perform an operation that requires the same lock will be blocked until the first
thread releases the lock, at which point the blocked threads may attempt to acquire the lock.

• To specify that a thread must hold a monitor lock to execute a block of code, the code should be
placed in a synchronized statement (p. 968). Such code is said to be guarded by the monitor lock.

• The synchronized statements are declared using the synchronized keyword:

synchronized (object)
{
 statements
} // end synchronized statement

where object is the object whose monitor lock will be acquired; object is normally this if it’s the
object in which the synchronized statement appears.

• Java also allows synchronized methods (p. 969). Before executing, a synchronized instance
method must acquire the lock on the object that’s used to call the method. Similary, a static
synchronized method must acquire the lock on the class that’s used to call the method.

• ExecutorService method awaitTermination (p. 973) forces a program to wait for threads to ter-
minate. It returns control to its caller either when all tasks executing in the ExecutorService

1038 Chapter 23 Concurrency

complete or when the specified timeout elapses. If all tasks complete before the timeout elapses,
the method returns true; otherwise, it returns false.

• You can simulate atomicity (p. 974) by ensuring that only one thread performs a set of operations
at a time. Atomicity can be achieved with synchronized statements or synchronized methods.

• When you share immutable data across threads, you should declare the corresponding data fields
final to indicate that variables’ values will not change after they’re initialized.

Section 23.5 Producer/Consumer Relationship without Synchronization
• In a multithreaded producer/consumer relationship (p. 976), a producer thread generates data

and places it in a shared object called a buffer. A consumer thread reads data from the buffer.

• Operations on a buffer data shared by a producer and a consumer should proceed only if the buf-
fer is in the correct state. If the buffer is not full, the producer may produce; if the buffer is not
empty, the consumer may consume. If the buffer is full when the producer attempts to write into
it, the producer must wait until there’s space. If the buffer is empty or the previous value was
already read, the consumer must wait for new data to become available.

Section 23.6 Producer/Consumer Relationship: ArrayBlockingQueue
• ArrayBlockingQueue (p. 984) is a fully implemented buffer class from package java.util.con-

current that implements the BlockingQueue interface.

• An ArrayBlockingQueue can implement a shared buffer in a producer/consumer relationship.
Method put (p. 984) places an element at the end of the BlockingQueue, waiting if the queue is
full. Method take (p. 984) removes an element from the head of the BlockingQueue, waiting if
the queue is empty.

• ArrayBlockingQueue stores shared mutable data in an array that’s sized with an argument passed
to the constructor. Once created, an ArrayBlockingQueue is fixed in size.

Section 23.7 (Advanced) Producer/Consumer Relationship with synchronized,
wait, notify and notifyAll
• You can implement a shared buffer yourself using the synchronized keyword and Object meth-

ods wait, notify and notifyAll (p. 988).

• A thread can call Object method wait to release an object’s monitor lock, and wait in the waiting
state while the other threads try to enter the object’s synchronized statement(s) or method(s).

• When a thread executing a synchronized statement (or method) completes or satisfies the con-
dition on which another thread may be waiting, it can call Object method notify (p. 988) to
allow a waiting thread to transition to the runnable state. At this point, the thread that was tran-
sitioned can attempt to reacquire the monitor lock on the object.

• If a thread calls notifyAll (p. 988), then all the threads waiting for the monitor lock become
eligible to reacquire the lock (that is, they all transition to the runnable state).

Section 23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers
• You cannot make assumptions about the relative speeds of concurrent threads.

• A bounded buffer (p. 995) can be used to minimize the amount of waiting time for threads that
share resources and operate at the same average speeds. If the producer temporarily produces val-
ues faster than the consumer can consume them, the producer can write additional values into
the extra buffer space (if any are available). If the consumer consumes faster than the producer
produces new values, the consumer can read additional values (if there are any) from the buffer.

• The key to using a bounded buffer with a producer and consumer that operate at about the same
speed is to provide the buffer with enough locations to handle the anticipated “extra” production.

 Summary 1039

• The simplest way to implement a bounded buffer is to use an ArrayBlockingQueue for the buffer
so that all of the synchronization details are handled for you.

Section 23.9 (Advanced) Producer/Consumer Relationship: The Lock and Condition
Interfaces
• The Lock and Condition interfaces (p. 1002) give programmers more precise control over thread

synchronization, but are more complicated to use.

• Any object can contain a reference to an object that implements the Lock interface (of package
java.util.concurrent.locks). A thread calls a Lock’s lock method (p. 1002) to acquire the
lock. Once a Lock has been obtained by one thread, the Lock will not allow another thread to
obtain it until the first thread releases it (by calling the Lock’s unlock method; p. 1002).

• If several threads are trying to call method lock on the same Lock object at the same time, only
one thread can obtain the lock—the others are placed in the waiting state. When a thread calls
unlock, the object’s lock is released and a waiting thread attempting to lock the object proceeds.

• Class ReentrantLock (p. 1002) is a basic implementation of the Lock interface.

• The ReentrantLock constructor takes a boolean that specifies whether the lock has a fairness pol-
icy (p. 1002). If true, the ReentrantLock’s fairness policy is “the longest-waiting thread will ac-
quire the lock when it’s available”—this prevents indefinite postponement. If the argument is set
to false, there’s no guarantee as to which waiting thread will acquire the lock when it’s available.

• If a thread that owns a Lock determines that it cannot continue with its task until some condition
is satisfied, the thread can wait on a condition object (p. 1003). Using Lock objects allows you to
explicitly declare the condition objects on which a thread may need to wait.

• Condition (p. 1003) objects are associated with a specific Lock and are created by calling Lock
method newCondition, which returns a Condition object. To wait on a Condition, the thread
can call the Condition’s await method. This immediately releases the associated Lock and places
the thread in the waiting state for that Condition. Other threads can then try to obtain the Lock.

• When a runnable thread completes a task and determines that a waiting thread can now continue,
the runnable thread can call Condition method signal to allow a thread in that Condition’s wait-
ing state to return to the runnable state. At this point, the thread that transitioned from the wait-
ing state to the runnable state can attempt to reacquire the Lock.

• If multiple threads are in a Condition’s waiting state when signal is called, the default imple-
mentation of Condition signals the longest-waiting thread to transition to the runnable state.

• If a thread calls Condition method signalAll, then all the threads waiting for that condition
transition to the runnable state and become eligible to reacquire the Lock.

• When a thread is finished with a shared object, it must call method unlock to release the Lock.

• Locks allow you to interrupt waiting threads or to specify a timeout for waiting to acquire a
lock—not possible with synchronized. Also, a Lock object is not constrained to be acquired and
released in the same block of code, which is the case with the synchronized keyword.

• Condition objects allow you to specify multiple conditions on which threads may wait. Thus, it’s
possible to indicate to waiting threads that a specific condition object is now true by calling that
Condition object’s signal or signallAll methods (p. 1003). With synchronized, there’s no way
to explicitly state the condition on which threads are waiting.

Section 23.11 Multithreading with GUI: SwingWorker
• The event dispatch thread (p. 1011) handles interactions with the application’s GUI compo-

nents. All tasks that interact with the GUI are placed in an event queue and executed sequentially
by this thread.

1040 Chapter 23 Concurrency

• Swing GUI components are not thread safe. Thread safety is achieved by ensuring that Swing
components are accessed from only the event dispatch thread.

• Performing a lengthy computation in response to a user interface interaction ties up the event
dispatch thread, preventing it from attending to other tasks and causing the GUI components to
become unresponsive. Long-running computations should be handled in separate threads.

• You can extend generic class SwingWorker (package javax.swing; p. 1011), which implements
Runnable, to perform a task in a worker thread then update Swing components from the event
dispatch thread based on the task’s results. You override its doInBackground and done methods.
Method doInBackground performs the computation and returns the result. Method done displays
the results in the GUI.

• Class SwingWorker’s first type parameter indicates the type returned by the doInBackground
method; the second indicates the type that’s passed between the publish and process methods
to handle intermediate results.

• Method doInBackground is called from a worker thread. After doInBackground returns, method
done is called from the event dispatch thread to display the results.

• An ExecutionException is thrown if an exception occurs during the computation.

• SwingWorker method publish repeatedly sends intermediate results to method process, which
displays the results in a GUI component. Method setProgress updates the progress property.

• Method process executes in the event dispatch thread and receives data from method publish.
The passing of values between publish in the worker thread and process in the event dispatch
thread is asynchronous; process is not necessarily invoked for every call to publish.

• PropertyChangeListener (p. 1024) is an interface from package java.beans that defines a single
method, propertyChange. Every time method setProgress is invoked, a PropertyChangeEvent
is generated to indicate that the progress property has changed.

Section 23.12 Timing sort and parallelSort with the Java SE 8 Date/Time API
• Class Instant’s static method now gets the current time.

• To determine the difference between two Instants, use class Duration’s static method between,
which returns a Duration object containing the time difference.

• Duration method toMillis returns the Duration as a long value milliseconds.

• NumberFormat static method getPercentInstance returns a NumberFormat that’s used to format
a number as a percentage.

• NumberFormat method format returns a String representation of its argument in the specified
numeric format.

• Arrays static method parallelSetAll fills an array with values produced by a generator func-
tion that receives an int and returns a value of type int, long or double. Depending on which
overload of method parallelSetAll is used the generator function is an object of a class that im-
plements IntToDoubleFunction (for double arrays), IntUnaryOperator (for int arrays), IntTo-
LongFunction (for long arrays) or IntFunction (for arrays of any non-primitive type).

• Arrays static method parallelPrefix applies a BinaryOperator to the current and previous ar-
ray elements and stores the result in the current element.

Section 23.13 Java SE 8: Sequential vs. Parallel Streams
• Streams are easy to parallelize, enabling programs to benefit from enhanced performance on

multi-core systems.

• To obtain a parallel stream, simply invoke method parallel on an existing stream.

 Self-Review Exercises 1041

Section 23.14 (Advanced) Interfaces Callable and Future
• The Callable (p. 1030) interface (of package java.util.concurrent) declares a single method

named call that allows a task to return a value.

• ExecutorService method submit (p. 1030) executes a Callable passed in as its argument. Meth-
od submit returns an object of type Future (of package java.util.concurrent) that represents
the future result of the executing Callable.

• Interface Future (p. 1030) declares method get to return the result of the Callable. The inter-
face also provides methods that enable you to cancel a Callable’s execution, determine whether
the Callable was cancelled and determine whether the Callable completed its task.

• Java SE 8 introduces a new CompletableFuture class (package java.util.concurrent; p. 1030),
which implements the Future interface and enables you to asynchronously execute Runnables
that perform tasks or Suppliers that return values.

• Interface Supplier (p. 1030), like interface Callable, is a functional interface with a single meth-
od (in this case, get) that receives no arguments and returns a result.

• CompletableFuture static method supplyAsync (p. 1033) asynchronously executes a Supplier
task that returns a value.

• CompletableFuture static method runAsync (p. 1034) asynchronously executes a Runnable task
that does not return a result.

• CompletableFuture method get is a blocking method—it causes the calling thread to wait until
the asynchronous task completes and returns its results.

Section 23.15 (Advanced) Fork/Join Framework
• Java’s concurrency APIs include the fork/join framework, which helps programmers parallelize

algorithms. The fork/join framework particularly well suited to divide-and-conquer-style algo-
rithms, like the merge sort.

Self-Review Exercises
23.1 Fill in the blanks in each of the following statements:

a) A thread enters the terminated state when .
b) To pause for a designated number of milliseconds and resume execution, a thread

should call method of class .
c) A runnable thread can enter the state for a specified interval of time.
d) At the operating-system level, the runnable state actually encompasses two separate

states, and .
e) Runnables are executed using a class that implements the interface.
f) ExecutorService method ends each thread in an ExecutorService as soon as

it finishes executing its current Runnable, if any.
g) In a(n) relationship, the generates data and stores it in a shared ob-

ject, and the reads data from the shared object.
h) Keyword indicates that only one thread at a time should execute on an object.

23.2 (Advanced Optional Sections) Fill in the blanks in each of the following statements:
a) Method of class Condition moves a single thread in an object’s waiting state

to the runnable state.
b) Method of class Condition moves every thread in an object’s waiting state to

the runnable state.
c) A thread can call method on a Condition object to release the associated Lock

and place that thread in the state.

1042 Chapter 23 Concurrency

d) Class implements the BlockingQueue interface using an array.
e) Class Instant’s static method gets the current time.
f) Duration method returns the Duration as a long value milliseconds.
g) NumberFormat static method returns a NumberFormat that’s used to format a

number as a percentage.
h) NumberFormat method returns a String representation of its argument in the

specified numeric format.
i) Arrays static method fills an array with values produced by a generator function.
j) Arrays static method applies a BinaryOperator to the current and previous

array elements and stores the result in the current element.
k) To obtain a parallel stream, simply invoke method on an existing stream.
l) Among its many features a CompletableFuture enables you to asynchronously execute

 that perform tasks or that return values.

23.3 State whether each of the following is true or false. If false, explain why.
a) A thread is not runnable if it has terminated.
b) Some operating systems use timeslicing with threads. Therefore, they can enable threads

to preempt threads of the same priority.
c) When the thread’s quantum expires, the thread returns to the running state as the op-

erating system assigns it to a processor.
d) On a single-processor system without timeslicing, each thread in a set of equal-priority

threads (with no other threads present) runs to completion before other threads of equal
priority get a chance to execute.

23.4 (Advanced Optional Sections) State whether each of the following is true or false. If false,
explain why.

a) To determine the difference between two Instants, use class Duration’s static method
difference, which returns a Duration object containing the time difference.

b) Streams are easy to parallelize, enabling programs to benefit from enhanced perfor-
mance on multi-core systems.

c) Interface Supplier, like interface Callable, is a functional interface with a single meth-
od that receives no arguments and returns a result.

d) CompletableFuture static method runAsync asynchronously executes a Supplier task
that returns a value.

e) CompletableFuture static method supplyAsync asynchronously executes a Runnable
task that does not return a result.

Answers to Self-Review Exercises
23.1 a) its run method ends. b) sleep, Thread. c) timed waiting. d) ready, running. e) Executor.
f) shutdown. g) producer/consumer, producer, consumer. h) synchronized.

23.2 a) signal. b) signalAll. c) await, waiting. d) ArrayBlockingQueue. e) now. f) toMillis.
g) getPercentInstance. h) format. i) parallelSetAll. j) parallelPrefix. k) parallel. l) Runna-
bles, Suppliers.

23.3 a) True. b) False. Timeslicing allows a thread to execute until its timeslice (or quantum)
expires. Then other threads of equal priority can execute. c) False. When a thread’s quantum ex-
pires, the thread returns to the ready state and the operating system assigns to the processor another
thread. d) True.

23.4 a) False. The Duration method for calculating the difference between two Instants is
named between. b) True. c) True. d) False. The method that asynchronously executes a Supplier is
supplyAsync. e) False. The method that asynchronously executes a Runnable is runAsync.

 Exercises 1043

Exercises
23.5 (True or False) State whether each of the following is true or false. If false, explain why.

a) Method sleep does not consume processor time while a thread sleeps.
b) Swing components are thread safe.
c) (Advanced) Declaring a method synchronized guarantees that deadlock cannot occur.
d) (Advanced) Once a ReentrantLock has been obtained by a thread, the ReentrantLock

object will not allow another thread to obtain the lock until the first thread releases it.

23.6 (Multithreading Terms) Define each of the following terms.
a) thread
b) multithreading
c) runnable state
d) timed waiting state
e) preemptive scheduling
f) Runnable interface
g) producer/consumer relationship
h) quantum

23.7 (Advanced: Multithreading Terms) Discuss each of the following terms in the context of
Java’s threading mechanisms:

a) synchronized
b) wait
c) notify
d) notifyAll
e) Lock
f) Condition

23.8 (Blocked State) List the reasons for entering the blocked state. For each of these, describe
how the program will normally leave the blocked state and enter the runnable state.

23.9 (Deadlock and Indefinite Postponement) Two problems that can occur in systems that al-
low threads to wait are deadlock, in which one or more threads will wait forever for an event that
cannot occur, and indefinite postponement, in which one or more threads will be delayed for some
unpredictably long time. Give an example of how each of these problems can occur in multithread-
ed Java programs.

23.10 (Bouncing Ball) Write a program that bounces a blue ball inside a JPanel. The ball should
begin moving with a mousePressed event. When the ball hits the edge of the JPanel, it should bounce
off the edge and continue in the opposite direction. The ball should be updated using a Runnable.

23.11 (Bouncing Balls) Modify the program in Exercise 23.10 to add a new ball each time the user
clicks the mouse. Provide for a minimum of 20 balls. Randomly choose the color for each new ball.

23.12 (Bouncing Balls with Shadows) Modify the program in Exercise 23.11 to add shadows. As
a ball moves, draw a solid black oval at the bottom of the JPanel. You may consider adding a 3-D
effect by increasing or decreasing the size of each ball when it hits the edge of the JPanel.

23.13 (Advanced: Circular Buffer with Locks and Conditions) Reimplement the example in
Section 23.8 using the Lock and Condition concepts presented in Section 23.9.

23.14 (Bounded Buffer: A Real-World Example) Describe how a highway off-ramp onto a local
road is a good example of a producer/consumer relationship with a bounded buffer. In particular,
discuss how the designers might choose the size of the off-ramp.

1044 Chapter 23 Concurrency

Parallel Streams
For Exercises 23.15–23.17, you may need to create larger data sets to see a significant performance
difference.

23.15 (Summarizing the Words in a File) Reimplement Fig. 17.17 using parallel streams. Use the
Date/Time API timing techniques you learned in Section 23.12 to compare the time required for
the sequential and parallel versions of the program.

23.16 (Summarizing the Characters in a File) Reimplement Exercise 17.9 using parallel streams.
Use the Date/Time API timing techniques you learned in Section 23.12 to compare the time re-
quired for the sequential and parallel versions of the program.

23.17 (Summarizing the File Types in a Directory) Reimplement Exercise 17.10 using parallel
streams. Use the Date/Time API timing techniques you learned in Section 23.12 to compare the
time required for the sequential and parallel versions of the program.

24Accessing Databases with
JDBC

It is a capital mistake to
theorize before one has data.
—Arthur Conan Doyle

Now go, write it before them in
a table, and note it in a book,
that it may be for the time to
come for ever and ever.
—The Holy Bible, Isaiah 30:8

Get your facts first, and then
you can distort them as much as
you please.
—Mark Twain

I like two kinds of men:
domestic and foreign.
—Mae West

O b j e c t i v e s
In this chapter you’ll learn:

■ Relational database concepts.

■ To use Structured Query
Language (SQL) to retrieve
data from and manipulate
data in a database.

■ To use the JDBC™ API to
access databases.

■ To use the RowSet interface
from package javax.sql to
manipulate databases.

■ To use JDBC 4’s automatic
JDBC driver discovery.

■ To create precompiled SQL
statements with parameters
via PreparedStatements.

■ How transaction processing
makes database applications
more robust.

1046 Chapter 24 Accessing Databases with JDBC

24.1 Introduction
A database is an organized collection of data. There are many different strategies for orga-
nizing data to facilitate easy access and manipulation. A database management system
(DBMS) provides mechanisms for storing, organizing, retrieving and modifying data for
many users. Database management systems allow for the access and storage of data with-
out concern for the internal representation of data.

Structured Query Language
Today’s most popular database systems are relational databases (Section 24.2). A language
called SQL—pronounced “sequel,” or as its individual letters—is the international stan-
dard language used almost universally with relational databases to perform queries (i.e., to
request information that satisfies given criteria) and to manipulate data. [Note: As you
learn about SQL, you’ll see some authors writing “a SQL statement” (which assumes the
pronunciation “sequel”) and others writing “an SQL statement” (which assumes that the
individual letters are pronounced). In this book we pronounce SQL as “sequel.”]

Popular Relational Database Management Systems
Some popular relational database management systems (RDBMSs) are Microsoft SQL
Server®, Oracle®, Sybase®, IBM DB2®, Informix®, PostgreSQL and MySQL™. The
JDK comes with a pure-Java RDBMS called Java DB—the Oracle-branded version of
Apache Derby™.

JDBC
Java programs interact with databases using the Java Database Connectivity (JDBC™)
API. A JDBC driver enables Java applications to connect to a database in a particular
DBMS and allows you to manipulate that database using the JDBC API.

24.1 Introduction
24.2 Relational Databases
24.3 A books Database
24.4 SQL

24.4.1 Basic SELECT Query
24.4.2 WHERE Clause
24.4.3 ORDER BY Clause
24.4.4 Merging Data from Multiple

Tables: INNER JOIN
24.4.5 INSERT Statement
24.4.6 UPDATE Statement
24.4.7 DELETE Statement

24.5 Setting up a Java DB Database
24.5.1 Creating the Chapter’s Databases

on Windows

24.5.2 Creating the Chapter’s Databases on Mac
OS X

24.5.3 Creating the Chapter’s Databases on
Linux

24.6 Manipulating Databases with JDBC
24.6.1 Connecting to and Querying a Database
24.6.2 Querying the books Database

24.7 RowSet Interface
24.8 PreparedStatements
24.9 Stored Procedures

24.10 Transaction Processing
24.11 Wrap-Up

Summary | Self-Review Exercise | Answers to Self-Review Exercise | Exercises

Software Engineering Observation 24.1
The JDBC API is portable—the same code can manipulate databases in various RDBMSs.

24.2 Relational Databases 1047

Most popular database management systems provide JDBC drivers. In this chapter,
we introduce JDBC and use it to manipulate Java DB databases. The techniques we dem-
onstrate here can be used to manipulate other databases that have JDBC drivers. If not,
third-party vendors provide JDBC drivers for many DBMSs. This chapter’s examples were
tested with Java DB using both the Java SE 7 and Java SE 8 JDKs.

Java Persistence API (JPA)
In online Chapter 29, we introduce Java Persistence API (JPA). In that chapter, you’ll
learn how to autogenerate Java classes that represent the tables in a database and the rela-
tionships between them—known as object-relational mapping—then use objects of those
classes to interact with a database. As you’ll see, storing data in and retrieving data from a
database will be handled for you—the techniques you learn in this chapter will typically
be hidden from you by JPA.

24.2 Relational Databases
A relational database is a logical representation of data that allows the data to be accessed
without consideration of its physical structure. A relational database stores data in tables.
Figure 24.1 illustrates a sample table that might be used in a personnel system. The table
name is Employee, and its primary purpose is to store the attributes of employees. Tables
are composed of rows, each describing a single entity—in Fig. 24.1, an employee. Rows
are composed of columns in which values are stored. This table consists of six rows. The
Number column of each row is the table’s primary key—a column (or group of columns)
with a value that is unique for each row. This guarantees that each row can be identified
by its primary key. Good examples of primary-key columns are a social security number,
an employee ID number and a part number in an inventory system, as values in each of
these columns are guaranteed to be unique. The rows in Fig. 24.1 are displayed in order
by primary key. In this case, the rows are listed in ascending order by primary key, but they
could be listed in descending order or in no particular order at all.

Each column represents a different data attribute. Rows are unique (by primary key)
within a table, but particular column values may be duplicated between rows. For
example, three different rows in the Employee table’s Department column contain number
413.

Fig. 24.1 | Employee table sample data.

23603

24568

34589

35761

47132

78321

Jones

Kerwin

Larson

Myers

Neumann

Stephens

Number

Primary key

Row

Column

Name

413

413

642

611

413

611

Department

1100

2000

1800

1400

9000

8500

Salary

New Jersey

New Jersey

Los Angeles

Orlando

New Jersey

Orlando

Location

1048 Chapter 24 Accessing Databases with JDBC

Selecting Data Subsets
Different users of a database are often interested in different data and different relation-
ships among the data. Most users require only subsets of the rows and columns. Queries
specify which subsets of the data to select from a table. You use SQL to define queries. For
example, you might select data from the Employee table to create a result that shows where
each department is located, presenting the data sorted in increasing order by department
number. This result is shown in Fig. 24.2. SQL is discussed in Section 24.4.

24.3 A books Database
We introduce relational databases in the context of this chapter’s books database, which
you’ll use in several examples. Before we discuss SQL, we discuss the tables of the books
database. We use this database to introduce various database concepts, including how to
use SQL to obtain information from the database and to manipulate the data. We provide
a script to create the database. You can find the script in the examples directory for this
chapter. Section 24.5 explains how to use this script.

Authors Table
The database consists of three tables: Authors, AuthorISBN and Titles. The Authors ta-
ble (described in Fig. 24.3) consists of three columns that maintain each author’s unique
ID number, first name and last name. Figure 24.4 contains sample data from the Authors
table.

Fig. 24.2 | Distinct Department and Location data from the Employees table.

Column Description

AuthorID Author’s ID number in the database. In the books database, this integer col-
umn is defined as autoincremented—for each row inserted in this table, the
AuthorID value is increased by 1 automatically to ensure that each row has a
unique AuthorID. This column represents the table’s primary key. Autoincre-
mented columns are so-called identity columns. The SQL script we provide
for this database uses the SQL IDENTITY keyword to mark the AuthorID col-
umn as an identity column. For more information on using the IDENTITY
keyword and creating databases, see the Java DB Developer’s Guide at
http://docs.oracle.com/javadb/10.10.1.1/devguide/derbydev.pdf.

FirstName Author’s first name (a string).

LastName Author’s last name (a string).

Fig. 24.3 | Authors table from the books database.

413
611
642

New Jersey
Orlando
Los Angeles

Department Location

http://docs.oracle.com/javadb/10.10.1.1/devguide/derbydev.pdf

24.3 A books Database 1049

Titles Table
The Titles table described in Fig. 24.5 consists of four columns that maintain informa-
tion about each book in the database, including its ISBN, title, edition number and copy-
right year. Figure 24.8 contains the data from the Titles table.

AuthorID FirstName LastName

1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Dan Quirk
5 Michael Morgano

Fig. 24.4 | Sample data from the Authors table.

Column Description

ISBN ISBN of the book (a string). The table’s primary key. ISBN is an abbrevia-
tion for “International Standard Book Number”—a numbering scheme
that publishers use to give every book a unique identification number.

Title Title of the book (a string).

EditionNumber Edition number of the book (an integer).

Copyright Copyright year of the book (a string).

Fig. 24.5 | Titles table from the books database.

ISBN Title EditionNumber Copyright

0132151006 Internet & World Wide Web How to
Program

5 2012

0133807800 Java How to Program 10 2015
0132575655 Java How to Program, Late

Objects Version
10 2015

013299044X C How to Program 7 2013
0132990601 Simply Visual Basic 2010 4 2013
0133406954 Visual Basic 2012 How to Program 6 2014
0133379337 Visual C# 2012 How to Program 5 2014
0136151574 Visual C++ 2008 How to Program 2 2008
0133378713 C++ How to Program 9 2014
0133570924 Android How to Program 2 2015
0133570924 Android for Programmers: An App-

Driven Approach, Volume 1
2 2014

0132121360 Android for Programmers: An App-
Driven Approach

1 2012

Fig. 24.6 | Sample data from the Titles table of the books database .

1050 Chapter 24 Accessing Databases with JDBC

AuthorISBN Table
The AuthorISBN table (described in Fig. 24.7) consists of two columns that maintain
ISBNs for each book and their corresponding authors’ ID numbers. This table associates
authors with their books. The AuthorID column is a foreign key—a column in this table
that matches the primary-key column in another table (that is, AuthorID in the Authors
table). The ISBN column is also a foreign key—it matches the primary-key column (that is,
ISBN) in the Titles table. A database might consist of many tables. A goal when designing
a database is to minimize the amount of duplicated data among the database’s tables. For-
eign keys, which are specified when a database table is created in the database, link the data
in multiple tables. Together the AuthorID and ISBN columns in this table form a composite
primary key. Every row in this table uniquely matches one author to one book’s ISBN.
Figure 24.8 contains the data from the AuthorISBN table of the books database.

Every foreign-key value must appear as another table’s primary-key value so the
DBMS can ensure that the foreign key value is valid—this is known as the Rule of Refer-
ential Integrity. For example, the DBMS ensures that the AuthorID value for a particular

Column Description

AuthorID The author’s ID number, a foreign key to the Authors table.

ISBN The ISBN for a book, a foreign key to the Titles table.

Fig. 24.7 | AuthorISBN table from the books database.

AuthorID ISBN AuthorID ISBN

1 0132151006 2 0133379337

2 0132151006 1 0136151574

3 0132151006 2 0136151574

1 0133807800 4 0136151574

2 0133807800 1 0133378713

1 0132575655 2 0133378713

2 0132575655 1 0133764036

1 013299044X 2 0133764036

2 013299044X 3 0133764036

1 0132990601 1 0133570924

2 0132990601 2 0133570924

3 0132990601 3 0133570924

1 0133406954 1 0132121360

2 0133406954 2 0132121360

3 0133406954 3 0132121360

1 0133379337 5 0132121360

Fig. 24.8 | Sample data from the AuthorISBN table of books.

24.3 A books Database 1051

row of the AuthorISBN table is valid by checking that there is a row in the Authors table
with that AuthorID as the primary key.

Foreign keys also allow related data in multiple tables to be selected from those tables—
this is known as joining the data. There is a one-to-many relationship between a primary
key and a corresponding foreign key (for example, one author can write many books and
one book can be written by many authors). This means that a foreign key can appear many
times in its own table but only once (as the primary key) in another table. For example, the
ISBN 0132151006 can appear in several rows of AuthorISBN (because this book has several
authors) but only once in Titles, where ISBN is the primary key.

Entity-Relationship (ER) Diagram
There’s a one-to-many relationship between a primary key and a corresponding foreign
key (e.g., one author can write many books). A foreign key can appear many times in its
own table, but only once (as the primary key) in another table. Figure 24.9 is an entity-
relationship (ER) diagram for the books database. This diagram shows the database tables
and the relationships among them. The first compartment in each box contains the table’s
name and the remaining compartments contain the table’s columns. The names in italic
are primary keys. A table’s primary key uniquely identifies each row in the table. Every row
must have a primary-key value, and that value must be unique in the table. This is known
as the Rule of Entity Integrity. Again, for the AuthorISBN table, the primary key is the
combination of both columns—this is known as a composite primary key.

The lines connecting the tables in Fig. 24.9 represent the relationships among the
tables. Consider the line between the Authors and AuthorISBN tables. On the Authors end
of the line, there’s a 1, and on the AuthorISBN end, an infinity symbol (∞) . This indicates
a one-to-many relationship—for each author in the Authors table, there can be an arbitrary
number of ISBNs for books written by that author in the AuthorISBN table (that is, an
author can write any number of books). Note that the relationship line links the AuthorID
column in the Authors table (where AuthorID is the primary key) to the AuthorID column
in the AuthorISBN table (where AuthorID is a foreign key)—the line between the tables
links the primary key to the matching foreign key.

The line between the Titles and AuthorISBN tables illustrates a one-to-many relation-
ship—one book can be written by many authors. Note that the line between the tables
links the primary key ISBN in table Titles to the corresponding foreign key in table
AuthorISBN. The relationships in Fig. 24.9 illustrate that the sole purpose of the Author-
ISBN table is to provide a many-to-many relationship between the Authors and Titles
tables—an author can write many books, and a book can have many authors.

Fig. 24.9 | Table relationships in the books database.

1 1
Titles

Copyright

EditionNumber

Title

ISBN

AuthorISBN

ISBN

AuthorID

Authors

LastName

FirstName

AuthorID

1052 Chapter 24 Accessing Databases with JDBC

24.4 SQL
We now discuss SQL in the context of our books database. You’ll be able to use the SQL
discussed here in the examples later in the chapter. The next several subsections demon-
strate SQL queries and statements using the SQL keywords in Fig. 24.10. Other SQL key-
words are beyond this text’s scope.

24.4.1 Basic SELECT Query
Let’s consider several SQL queries that extract information from database books. A SQL
query “selects” rows and columns from one or more tables in a database. Such selections
are performed by queries with the SELECT keyword. The basic form of a SELECT query is

in which the asterisk (*) wildcard character indicates that all columns from the tableName
table should be retrieved. For example, to retrieve all the data in the Authors table, use

Most programs do not require all the data in a table. To retrieve only specific columns,
replace the * with a comma-separated list of column names. For example, to retrieve only
the columns AuthorID and LastName for all rows in the Authors table, use the query

This query returns the data listed in Fig. 24.11.

SQL keyword Description

SELECT Retrieves data from one or more tables.

FROM Tables involved in the query. Required in every SELECT.

WHERE Criteria for selection that determine the rows to be retrieved, deleted or
updated. Optional in a SQL query or a SQL statement.

GROUP BY Criteria for grouping rows. Optional in a SELECT query.

ORDER BY Criteria for ordering rows. Optional in a SELECT query.

INNER JOIN Merge rows from multiple tables.

INSERT Insert rows into a specified table.

UPDATE Update rows in a specified table.

DELETE Delete rows from a specified table.

Fig. 24.10 | SQL query keywords.

SELECT * FROM tableName

SELECT * FROM Authors

SELECT AuthorID, LastName FROM Authors

AuthorID LastName AuthorID LastName

1 Deitel 4 Quirk
2 Deitel 5 Morgano
3 Deitel

Fig. 24.11 | Sample AuthorID and LastName data from the Authors table.

24.4 SQL 1053

24.4.2 WHERE Clause
In most cases, it’s necessary to locate rows in a database that satisfy certain selection crite-
ria. Only rows that satisfy the selection criteria (formally called predicates) are selected.
SQL uses the optional WHERE clause in a query to specify the selection criteria for the query.
The basic form of a query with selection criteria is

For example, to select the Title, EditionNumber and Copyright columns from table
Titles for which the Copyright date is greater than 2013, use the query

Strings in SQL are delimited by single (') rather than double (") quotes. Figure 24.12
shows the result of the preceding query.

Pattern Matching: Zero or More Characters
The WHERE clause criteria can contain the operators <, >, <=, >=, =, <> and LIKE. Operator
LIKE is used for pattern matching with wildcard characters percent (%) and underscore
(_). Pattern matching allows SQL to search for strings that match a given pattern.

Software Engineering Observation 24.2
In general, you process results by knowing in advance the order of the columns in the
result—for example, selecting AuthorID and LastName from table Authors ensures that
the columns will appear in the result with AuthorID as the first column and LastName as
the second column. Programs typically process result columns by specifying the column
number in the result (starting from number 1 for the first column). Selecting columns by
name avoids returning unneeded columns and protects against changes in the actual order
of the columns in the table(s) by returning the columns in the exact order specified.

Common Programming Error 24.1
If you assume that the columns are always returned in the same order from a query that
uses the asterisk (*), the program may process the results incorrectly. If the column order
in the table(s) changes or if additional columns are added at a later time, the order of the
columns in the result will change accordingly.

SELECT columnName1, columnName2, … FROM tableName WHERE criteria

SELECT Title, EditionNumber, Copyright
 FROM Titles
 WHERE Copyright > '2013'

Title EditionNumber Copyright

Java How to Program 10 2015
Java How to Program, Late Objects Version 10 2015
Visual Basic 2012 How to Program 6 2014
Visual C# 2012 How to Program 5 2014
C++ How to Program 9 2014
Android How to Program 2 2015
Android for Programmers: An App-Driven
Approach, Volume 1

2 2014

Fig. 24.12 | Sampling of titles with copyrights after 2005 from table Titles.

1054 Chapter 24 Accessing Databases with JDBC

A pattern that contains a percent character (%) searches for strings that have zero or
more characters at the percent character’s position in the pattern. For example, the next
query locates the rows of all the authors whose last name starts with the letter D:

This query selects the two rows shown in Fig. 24.13—three of the five authors have a last
name starting with the letter D (followed by zero or more characters). The % symbol in the
WHERE clause’s LIKE pattern indicates that any number of characters can appear after the
letter D in the LastName. The pattern string is surrounded by single-quote characters.

Pattern Matching: Any Character
An underscore (_) in the pattern string indicates a single wildcard character at that posi-
tion in the pattern. For example, the following query locates the rows of all the authors
whose last names start with any character (specified by _), followed by the letter o, followed
by any number of additional characters (specified by %):

The preceding query produces the row shown in Fig. 24.14, because only one author in
our database has a last name that contains the letter o as its second letter.

SELECT AuthorID, FirstName, LastName
 FROM Authors
 WHERE LastName LIKE 'D%'

AuthorID FirstName LastName

1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel

Fig. 24.13 | Authors whose last name starts with D from the Authors table.

Portability Tip 24.1
See the documentation for your database system to determine whether SQL is case sensitive
on your system and to determine the syntax for SQL keywords.

Portability Tip 24.2
Read your database system’s documentation carefully to determine whether it supports the
LIKE operator as discussed here.

SELECT AuthorID, FirstName, LastName
 FROM Authors
 WHERE LastName LIKE '_o%'

AuthorID FirstName LastName

5 Michael Morgano

Fig. 24.14 | The only author from the Authors table
whose last name contains o as the second letter.

24.4 SQL 1055

24.4.3 ORDER BY Clause
The rows in the result of a query can be sorted into ascending or descending order by using
the optional ORDER BY clause. The basic form of a query with an ORDER BY clause is

where ASC specifies ascending order (lowest to highest), DESC specifies descending order
(highest to lowest) and column specifies the column on which the sort is based. For exam-
ple, to obtain the list of authors in ascending order by last name (Fig. 24.15), use the query

Sorting in Descending Order
The default sorting order is ascending, so ASC is optional. To obtain the same list of au-
thors in descending order by last name (Fig. 24.16), use the query

Sorting By Multiple Columns
Multiple columns can be used for sorting with an ORDER BY clause of the form

where sortingOrder is either ASC or DESC. The sortingOrder does not have to be identical for
each column. The query

SELECT columnName1, columnName2, … FROM tableName ORDER BY column ASC
SELECT columnName1, columnName2, … FROM tableName ORDER BY column DESC

SELECT AuthorID, FirstName, LastName
 FROM Authors
 ORDER BY LastName ASC

AuthorID FirstName LastName

1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
5 Michael Morgano
4 Dan Quirk

Fig. 24.15 | Sample data from table Authors in ascending order by LastName.

SELECT AuthorID, FirstName, LastName
 FROM Authors
 ORDER BY LastName DESC

AuthorID FirstName LastName

4 Dan Quirk
5 Michael Morgano
1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel

Fig. 24.16 | Sample data from table Authors in descending order by LastName.

ORDER BY column1 sortingOrder, column2 sortingOrder, …

1056 Chapter 24 Accessing Databases with JDBC

sorts all the rows in ascending order by last name, then by first name. If any rows have the
same last-name value, they’re returned sorted by first name (Fig. 24.17).

Combining the WHERE and ORDER BY Clauses
The WHERE and ORDER BY clauses can be combined in one query, as in

which returns the ISBN, Title, EditionNumber and Copyright of each book in the Titles
table that has a Title ending with "How to Program" and sorts them in ascending order
by Title. The query results are shown in Fig. 24.18.

24.4.4 Merging Data from Multiple Tables: INNER JOIN
Database designers often split related data into separate tables to ensure that a database does
not store data redundantly. For example, in the books database, we use an AuthorISBN table
to store the relationship data between authors and their corresponding titles. If we did not
separate this information into individual tables, we’d need to include author information
with each entry in the Titles table. This would result in the database’s storing duplicate au-

SELECT AuthorID, FirstName, LastName
 FROM Authors
 ORDER BY LastName, FirstName

AuthorID FirstName LastName

3 Abbey Deitel
2 Harvey Deitel
1 Paul Deitel
5 Michael Morgano
4 Dan Quirk

Fig. 24.17 | Sample data from Authors in ascending order by LastName and FirstName.

SELECT ISBN, Title, EditionNumber, Copyright
 FROM Titles
 WHERE Title LIKE '%How to Program'
 ORDER BY Title ASC

ISBN Title EditionNumber Copyright

0133764036 Android How to Program 2 2015
013299044X C How to Program 7 2013
0133378713 C++ How to Program 9 2014
0132151006 Internet & World Wide Web How to Program 5 2012
0133807800 Java How to Program 10 2015
0133406954 Visual Basic 2012 How to Program 6 2014
0133379337 Visual C# 2012 How to Program 5 2014
0136151574 Visual C++ 2008 How to Program 2 2008

Fig. 24.18 | Sampling of books from table Titles whose titles end with How to Program in
ascending order by Title.

24.4 SQL 1057

thor information for authors who wrote multiple books. Often, it’s necessary to merge data
from multiple tables into a single result. Referred to as joining the tables, this is specified by
an INNER JOIN operator, which merges rows from two tables by matching values in columns
that are common to the tables. The basic form of an INNER JOIN is:

The ON clause of the INNER JOIN specifies the columns from each table that are com-
pared to determine which rows are merged—these fields almost always correspond to the
foreign-key fields in the tables being joined. For example, the following query produces a
list of authors accompanied by the ISBNs for books written by each author:

The query merges the FirstName and LastName columns from table Authors with the
ISBN column from table AuthorISBN, sorting the results in ascending order by LastName
and FirstName. Note the use of the syntax tableName.columnName in the ON clause. This
syntax, called a qualified name, specifies the columns from each table that should be com-
pared to join the tables. The “tableName.” syntax is required if the columns have the same
name in both tables. The same syntax can be used in any SQL statement to distinguish
columns in different tables that have the same name. In some systems, table names quali-
fied with the database name can be used to perform cross-database queries. As always, the
query can contain an ORDER BY clause. Figure 24.19 shows the results of the preceding
query, ordered by LastName and FirstName. [Note: To save space, we split the result of the
query into two columns, each containing the FirstName, LastName and ISBN columns.]

SELECT columnName1, columnName2, …
FROM table1
INNER JOIN table2
 ON table1.columnName = table2.columnName

SELECT FirstName, LastName, ISBN
FROM Authors
INNER JOIN AuthorISBN
 ON Authors.AuthorID = AuthorISBN.AuthorID
ORDER BY LastName, FirstName

Common Programming Error 24.2
Failure to qualify names for columns that have the same name in two or more tables is an
error. In such cases, the statement must precede those column names with their table names
and a dot (e.g., Authors.AuthorID).

FirstName LastName ISBN FirstName LastName ISBN

Abbey Deitel 0132121360 Harvey Deitel 0133764036
Abbey Deitel 0133570924 Harvey Deitel 0133378713
Abbey Deitel 0133764036 Harvey Deitel 0136151574
Abbey Deitel 0133406954 Harvey Deitel 0133379337
Abbey Deitel 0132990601 Harvey Deitel 0133406954
Abbey Deitel 0132151006 Harvey Deitel 0132990601
Harvey Deitel 0132121360 Harvey Deitel 013299044X
Harvey Deitel 0133570924 Harvey Deitel 0132575655

Fig. 24.19 | Sampling of authors and ISBNs for the books they have written in ascending
order by LastName and FirstName. (Part 1 of 2.)

1058 Chapter 24 Accessing Databases with JDBC

24.4.5 INSERT Statement
The INSERT statement inserts a row into a table. The basic form of this statement is

where tableName is the table in which to insert the row. The tableName is followed by a
comma-separated list of column names in parentheses (this list is not required if the IN-
SERT operation specifies a value for every column of the table in the correct order). The list
of column names is followed by the SQL keyword VALUES and a comma-separated list of
values in parentheses. The values specified here must match the columns specified after the
table name in both order and type (e.g., if columnName1 is supposed to be the FirstName
column, then value1 should be a string in single quotes representing the first name). Al-
ways explicitly list the columns when inserting rows. If the table’s column order changes
or a new column is added, using only VALUES may cause an error. The INSERT statement

inserts a row into the Authors table. The statement indicates that values are provided for
the FirstName and LastName columns. The corresponding values are 'Sue' and 'Smith'.
We do not specify an AuthorID in this example because AuthorID is an autoincremented
column in the Authors table. For every row added to this table, the DBMS assigns a
unique AuthorID value that is the next value in the autoincremented sequence (i.e., 1, 2,
3 and so on). In this case, Sue Red would be assigned AuthorID number 6. Figure 24.20
shows the Authors table after the INSERT operation. [Note: Not every database manage-
ment system supports autoincremented columns. Check the documentation for your
DBMS for alternatives to autoincremented columns.]

Harvey Deitel 0133807800 Paul Deitel 0133406954
Harvey Deitel 0132151006 Paul Deitel 0132990601
Paul Deitel 0132121360 Paul Deitel 013299044X
Paul Deitel 0133570924 Paul Deitel 0132575655
Paul Deitel 0133764036 Paul Deitel 0133807800
Paul Deitel 0133378713 Paul Deitel 0132151006
Paul Deitel 0136151574 Michael Morgano 0132121360
Paul Deitel 0133379337 Dan Quirk 0136151574

INSERT INTO tableName (columnName1, columnName2, …, columnNameN)
 VALUES (value1, value2, …, valueN)

INSERT INTO Authors (FirstName, LastName)
 VALUES ('Sue', 'Red')

Common Programming Error 24.3
SQL delimits strings with single quotes ('). A string containing a single quote (e.g.,
O’Malley) must have two single quotes in the position where the single quote appears (e.g.,
'O''Malley'). The first acts as an escape character for the second. Not escaping single-
quote characters in a string that’s part of a SQL statement is a SQL syntax error.

FirstName LastName ISBN FirstName LastName ISBN

Fig. 24.19 | Sampling of authors and ISBNs for the books they have written in ascending
order by LastName and FirstName. (Part 2 of 2.)

24.4 SQL 1059

24.4.6 UPDATE Statement
An UPDATE statement modifies data in a table. Its basic form is

where tableName is the table to update. The tableName is followed by keyword SET and a
comma-separated list of columnName = value pairs. The optional WHERE clause provides
criteria that determine which rows to update. Though not required, the WHERE clause is
typically used, unless a change is to be made to every row. The UPDATE statement

updates a row in the Authors table. The statement indicates that LastName will be assigned
the value Black for the row where LastName is Red and FirstName is Sue. [Note: If there
are multiple matching rows, this statement will modify all such rows to have the last name
“Black.”] If we know the AuthorID in advance of the UPDATE operation (possibly because
we searched for it previously), the WHERE clause can be simplified as follows:

Figure 24.21 shows the Authors table after the UPDATE operation has taken place.

Common Programming Error 24.4
It’s normally an error to specify a value for an autoincrement column.

AuthorID FirstName LastName

1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Dan Quirk
5 Michael Morgano
6 Sue Red

Fig. 24.20 | Sample data from table Authors after an INSERT operation.

UPDATE tableName
 SET columnName1 = value1, columnName2 = value2, …, columnNameN = valueN
 WHERE criteria

UPDATE Authors
 SET LastName = 'Black'
 WHERE LastName = 'Red' AND FirstName = 'Sue'

WHERE AuthorID = 6

AuthorID FirstName LastName

1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Dan Quirk
5 Michael Morgano
6 Sue Black

Fig. 24.21 | Sample data from table Authors after an UPDATE operation.

1060 Chapter 24 Accessing Databases with JDBC

24.4.7 DELETE Statement
A SQL DELETE statement removes rows from a table. Its basic form is

where tableName is the table from which to delete. The optional WHERE clause specifies the
criteria used to determine which rows to delete. If this clause is omitted, all the table’s rows
are deleted. The DELETE statement

deletes the row for Sue Black in the Authors table. If we know the AuthorID in advance
of the DELETE operation, the WHERE clause can be simplified as follows:

Figure 24.22 shows the Authors table after the DELETE operation has taken place.

24.5 Setting up a Java DB Database
This chapter’s examples use Oracle’s pure Java database Java DB, which is installed with
Oracle’s JDK on Windows, Mac OS X and Linux. Before you can execute this chapter’s
applications, you must set up in Java DB the books database that’s used in Sections 24.6–
24.7 and the addressbook database that’s used in Section 24.8.

For this chapter, you’ll be using the embedded version of Java DB. This means that
the database you manipulate in each example must be located in that example’s folder.
This chapter’s examples are located in two subfolders of the ch24 examples folder—
books_examples and addressbook_example. Java DB may also act as a server that can
receive database requests over a network, but that is beyond this chapter’s scope.

JDK Installation Folders
The Java DB software is located in the db subdirectory of your JDK’s installation directo-
ry. The directories listed below are for Oracle’s JDK 7 update 51:

• 32-bit JDK on Windows:
C:\Program Files (x86)\Java\jdk1.7.0_51

• 64-bit JDK on Windows:
C:\Program Files\Java\jdk1.7.0_51

DELETE FROM tableName WHERE criteria

DELETE FROM Authors
 WHERE LastName = 'Black' AND FirstName = 'Sue'

WHERE AuthorID = 5

AuthorID FirstName LastName

1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Dan Quirk
5 Michael Morgano

Fig. 24.22 | Sample data from table Authors after a DELETE operation.

24.5 Setting up a Java DB Database 1061

• Mac OS X:
/Library/Java/JavaVirtualMachines/jdk1.7.0_51.jdk/Contents/Home

• Ubuntu Linux:
/usr/lib/jvm/java-7-oracle

For Linux, the install location depends on the installer you use and possibly the version of
Linux that you use. We used Ubuntu Linux for testing purposes.

Depending on your platform, the JDK installation folder’s name might differ if you’re
using a different update of JDK 7 or using JDK 8. In the following instructions, you
should update the JDK installation folder’s name based on the JDK version you’re using.

Java DB Configuration
Java DB comes with several files that enable you to configure and run it. Before executing
these files from a command window, you must set the environment variable JAVA_HOME to
refer to the JDK’s exact installation directory listed above (or the location where you in-
stalled the JDK if it differs from those listed above). See the Before You Begin section of
this book for information on setting environment variables.

24.5.1 Creating the Chapter’s Databases on Windows
After setting the JAVA_HOME environment variable, perform the following steps:

1. Run Notepad as an administrator. To do this on Windows 7, select Start > All
Programs > Accessories, right click Notepad and select Run as administrator. On
Windows 8, search for Notepad, right click it in the search results and select
Advanced in the app bar, then select Run as administrator.

2. From Notepad, open the batch file setEmbeddedCP.bat that is located in the
JDK installation folder’s db\bin folder.

3. Locate the line

and change it to

Save your changes and close this file.

4. Open a Command Prompt window and change directories to the JDK installa-
tion folder’s db\bin folder. Then, type setEmbeddedCP.bat and press Enter to set
the environment variables required by Java DB.

5. Use the cd command to change to this chapter’s books_examples directory. This
directory contains a SQL script books.sql that builds the books database.

6. Execute the following command (with the quotation marks):

to start the command-line tool for interacting with Java DB. The double quotes
are necessary because the path that the environment variable %JAVA_HOME% repre-
sents contains a space. This will display the ij> prompt.

@rem set DERBY_INSTALL=

@set DERBY_INSTALL=%JAVA_HOME%\db

"%JAVA_HOME%\db\bin\ij"

1062 Chapter 24 Accessing Databases with JDBC

7. At the ij> prompt type

and press Enter to create the books database in the current directory and to create
the user deitel with the password deitel for accessing the database.

8. To create the database table and insert sample data in it, we’ve provided the file
address.sql in this example’s directory. To execute this SQL script, type

Once you create the database, you can execute the SQL statements presented in
Section 24.4 to confirm their execution. Each command you enter at the ij>
prompt must be terminated with a semicolon (;).

9. To terminate the Java DB command-line tool, type

10. Change directories to the addressbook_example subfolder of the ch24 examples
folder, which contains the SQL script addressbook.sql that builds the address-
book database. Repeat Steps 6–9. In each step, replace books with addressbook.

You’re now ready to execute this chapter’s examples.

24.5.2 Creating the Chapter’s Databases on Mac OS X
After setting the JAVA_HOME environment variable, perform the following steps:

1. Open a Terminal, then type:

and press Enter. Then type

and press Enter. This specifies where Java DB is located on your Mac.

2. In the Terminal window, change directories to the JDK installation folder’s db/
bin folder. Then, type ./setEmbeddedCP and press Enter to set the environment
variables required by Java DB.

3. In the Terminal window, use the cd command to change to the books_examples
directory. This directory contains a SQL script books.sql that builds the books
database.

4. Execute the following command (with the quotation marks):

to start the command-line tool for interacting with Java DB. This will display the
ij> prompt.

5. Perform Steps 7–9 of Section 24.5.1 to create the books database.

6. Use the cd command to change to the addressbook_example directory. This direc-
tory contains a SQL script addressbook.sql that builds the addressbook database.

connect 'jdbc:derby:books;create=true;user=deitel;
 password=deitel';

run 'books.sql';

exit;

DERBY_HOME=/Library/Java/JavaVirtualMachines/jdk1.7.0_51.jdk/
 Contents/Home/db

export DERBY_HOME

$JAVA_HOME/db/bin/ij

24.6 Manipulating Databases with JDBC 1063

7. Perform Steps 7–9 of Section 24.5.1 to create the addressbook database. In each
step, replace books with addressbook.

You’re now ready to execute this chapter’s examples.

24.5.3 Creating the Chapter’s Databases on Linux
After setting the JAVA_HOME environment variable, perform the following steps:

1. Open a shell window.

2. Perform the steps in Section 24.5.2, but in Step 1, set DERBY_HOME to

On our Ubuntu Linux system, this was:

You’re now ready to execute this chapter’s examples.

24.6 Manipulating Databases with JDBC
This section presents two examples. The first introduces how to connect to a database and
query it. The second demonstrates how to display the result of the query in a JTable.

24.6.1 Connecting to and Querying a Database
The example of Fig. 24.23 performs a simple query on the books database that retrieves
the entire Authors table and displays the data. The program illustrates connecting to the
database, querying the database and processing the result. The discussion that follows pres-
ents the key JDBC aspects of the program.

Lines 3–8 import the JDBC interfaces and classes from package java.sql used in this
program. Method main (lines 12–48) connects to the books database, queries the database,
displays the query result and closes the database connection. Line 14 declares a String
constant for the database URL. This identifies the name of the database to connect to, as
well as information about the protocol used by the JDBC driver (discussed shortly). Lines
15–16 declare a String constant representing the SQL query that will select the authorID,
firstName and lastName columns in the database’s authors table.

DERBY_HOME=YourLinuxJDKInstallationFolder/db

DERBY_HOME=/usr/lib/jvm/java-7-oracle/db

1 // Fig. 24.23: DisplayAuthors.java
2 // Displaying the contents of the Authors table.
3 import java.sql.Connection;
4 import java.sql.Statement;
5 import java.sql.DriverManager;
6 import java.sql.ResultSet;
7 import java.sql.ResultSetMetaData;
8 import java.sql.SQLException;
9

10 public class DisplayAuthors
11 {

Fig. 24.23 | Displaying the contents of the Authors table. (Part 1 of 2.)

1064 Chapter 24 Accessing Databases with JDBC

JDBC supports automatic driver discovery—it loads the database driver into memory
for you. To ensure that the program can locate the driver class, you must include the class’s
location in the program’s classpath when you execute the program. You did this for Java DB
in Section 24.5 when you executed the setEmbeddedCP.bat or setEmbeddedCP file on your

12 public static void main(String args[])
13 {
14
15
16
17
18
19
20
21
22
23
24 {
25 // get ResultSet's meta data
26
27
28
29 System.out.printf("Authors Table of Books Database:%n%n");
30
31 // display the names of the columns in the ResultSet
32 for (int i = 1; i <= numberOfColumns; i++)
33 System.out.printf("%-8s\t",);
34 System.out.println();
35
36 // display query results
37 while (resultSet.next())
38 {
39 for (int i = 1; i <= numberOfColumns; i++)
40 System.out.printf("%-8s\t",);
41 System.out.println();
42 }
43
44 catch (SQLException sqlException)
45 {
46 sqlException.printStackTrace();
47 }
48 }
49 } // end class DisplayAuthors

Authors Table of Books Database:

AUTHORID FIRSTNAME LASTNAME
1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Dan Quirk
5 Michael Morgano

Fig. 24.23 | Displaying the contents of the Authors table. (Part 2 of 2.)

final String DATABASE_URL = "jdbc:derby:books";
final String SELECT_QUERY =
 "SELECT authorID, firstName, lastName FROM authors";

// use try-with-resources to connect to and query the database
try (
 Connection connection = DriverManager.getConnection(
 DATABASE_URL, "deitel", "deitel");
 Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery(SELECT_QUERY))

ResultSetMetaData metaData = resultSet.getMetaData();
int numberOfColumns = metaData.getColumnCount();

metaData.getColumnName(i)

resultSet.getObject(i)

} // AutoCloseable objects' close methods are called now

24.6 Manipulating Databases with JDBC 1065

system—that step configured a CLASSPATH environment variable in the command window
for your platform. After doing so, you can run this application simply using the command

Connecting to the Database
The JDBC interfaces we use in this example each extend the AutoCloseable interface, so
you can use objects that implement these interfaces with the try-with-resources statement
(introduced in Section 11.12). Lines 19–23 create this example’s AutoCloseable objects
in the parentheses following keyword try—such objects are automatically closed when the
try block terminates (line 43) or if an exception occurs during the try block’s execution.
Each object created in the parentheses following keyword try must be separated from the
next by a semicolon (;).

Lines 20–21 create a Connection object (package java.sql) referenced by connec-
tion. An object that implements interface Connection manages the connection between
the Java program and the database. Connection objects enable programs to create SQL
statements that manipulate databases. The program initializes connection with the result
of a call to static method getConnection of class DriverManager (package java.sql),
which attempts to connect to the database specified by its URL.

Method getConnection takes three arguments

• a String that specifies the database URL,

• a String that specifies the username and

• a String that specifies the password.

The username and password for the books database were set in Section 24.5. If you used
a different username and password there, you’ll need to replace the username (second ar-
gument) and password (third argument) passed to method getConnection in line 21.

The URL locates the database (possibly on a network or in the local file system of the
computer). The URL jdbc:derby:books specifies the protocol for communication
(jdbc), the subprotocol for communication (derby) and the location of the database
(books). The subprotocol derby indicates that the program uses a Java DB/Apache Derby-
specific subprotocol to connect to the database—recall that Java DB is simply the Oracle
branded version of Apache Derby. If the DriverManager cannot connect to the database,
method getConnection throws a SQLException (package java.sql). Figure 24.24 lists
the JDBC driver names and database URL formats of several popular RDBMSs.

java DisplayAuthors

RDBMS Database URL format

MySQL jdbc:mysql://hostname:portNumber/databaseName

ORACLE jdbc:oracle:thin:@hostname:portNumber:databaseName

DB2 jdbc:db2:hostname:portNumber/databaseName

PostgreSQL jdbc:postgresql://hostname:portNumber/databaseName

Java DB/Apache Derby jdbc:derby:dataBaseName (embedded)
jdbc:derby://hostname:portNumber/databaseName (network)

Fig. 24.24 | Popular JDBC database URL formats. (Part 1 of 2.)

1066 Chapter 24 Accessing Databases with JDBC

Creating a Statement for Executing Queries
Line 22 of Fig. 24.23 invokes Connection method createStatement to obtain an object
that implements interface Statement (package java.sql). The program uses the State-
ment object to submit SQL statements to the database.

Executing a Query
Line 23 use the Statement object’s executeQuery method to submit a query that selects
all the author information from table Authors. This method returns an object that imple-
ments interface ResultSet and contains the query results. The ResultSet methods enable
the program to manipulate the query result.

Processing a Query’s ResultSet
Lines 26–42 process the ResultSet. Line 26 obtains the ResultSet’s ResultSetMetaData
(package java.sql) object. The metadata describes the ResultSet’s contents. Programs
can use metadata programmatically to obtain information about the ResultSet’s column
names and types. Line 27 uses ResultSetMetaData method getColumnCount to retrieve
the number of columns in the ResultSet. Lines 32–33 display the column names.

Lines 37–42 display the data in each ResultSet row. First, the program positions the
ResultSet cursor (which points to the row being processed) to the first row in the
ResultSet with method next (line 37). Method next returns boolean value true if it’s
able to position to the next row; otherwise, the method returns false.

If there are rows in the ResultSet, lines 39–40 extract and display the contents of
each column in the current row. When a ResultSet is processed, each column can be
extracted as a specific Java type—ResultSetMetaData method getColumnType returns a

Microsoft SQL Server jdbc:sqlserver://hostname:portNumber;databaseName=dataBaseName

Sybase jdbc:sybase:Tds:hostname:portNumber/databaseName

Software Engineering Observation 24.3
Most database management systems require the user to log in before accessing the database
contents. DriverManager method getConnection is overloaded with versions that enable
the program to supply the username and password to gain access.

Software Engineering Observation 24.4
Metadata enables programs to process ResultSet contents dynamically when detailed
information about the ResultSet is not known in advance.

Common Programming Error 24.5
Initially, a ResultSet cursor is positioned before the first row. A SQLException occurs if
you attempt to access a ResultSet’s contents before positioning the ResultSet cursor to
the first row with method next.

RDBMS Database URL format

Fig. 24.24 | Popular JDBC database URL formats. (Part 2 of 2.)

24.6 Manipulating Databases with JDBC 1067

constant integer from class Types (package java.sql) indicating the type of a specified
column. Programs can use these values in a switch statement to invoke ResultSet
methods that return the column values as appropriate Java types. For example, if the type
of a column is Types.INTEGER, ResultSet method getInt can be used to get the column
value as an int. For simplicity, this example treats each value as an Object. We retrieve
each column value with ResultSet method getObject (line 40), then print the Object’s
String representation. ResultSet get methods typically receive as an argument either a
column number (as an int) or a column name (as a String) indicating which column’s
value to obtain. Unlike array indices, ResultSet column numbers start at 1.

When the end of the try block is reached (line 43), the close method is called on the
ResultSet, Statement and Connection that were obtained by the try-with-resources
statement.

24.6.2 Querying the books Database
The next example (Figs. 24.25 and 24.28) allows the user to enter any query into the pro-
gram. The example displays the result of a query in a JTable, using a TableModel object
to provide the ResultSet data to the JTable. A JTable is a swing GUI component that
can be bound to a database to display the results of a query. Class ResultSetTableModel
(Fig. 24.25) performs the connection to the database via a TableModel and maintains the
ResultSet. Class DisplayQueryResults (Fig. 24.28) creates the GUI and specifies an in-
stance of class ResultSetTableModel to provide data for the JTable.

Performance Tip 24.1
If a query specifies the exact columns to select from the database, the ResultSet contains
the columns in the specified order. In this case, using the column number to obtain the
column’s value is more efficient than using the column name. The column number pro-
vides direct access to the specified column. Using the column name requires a search of the
column names to locate the appropriate column.

Error-Prevention Tip 24.1
Using column names to obtain values from a ResultSet produces code that is less error
prone than obtaining values by column number—you don’t need to remember the col-
umn order. Also, if the column order changes, your code does not have to change.

Common Programming Error 24.6
Specifying column index 0 when obtaining values from a ResultSet causes a SQL-
Exception—the first column index in a ResultSet is always 1.

Common Programming Error 24.7
A SQLException occurs if you attempt to manipulate a ResultSet after closing the
Statement that created it. The ResultSet is discarded when the Statement is closed.

Software Engineering Observation 24.5
Each Statement object can open only one ResultSet object at a time. When a Statement
returns a new ResultSet, the Statement closes the prior ResultSet. To use multiple
ResultSets in parallel, separate Statement objects must return the ResultSets.

1068 Chapter 24 Accessing Databases with JDBC

ResultSetTableModel Class
Class ResultSetTableModel (Fig. 24.25) extends class AbstractTableModel (package
javax.swing.table), which implements interface TableModel. ResultSetTableModel
overrides TableModel methods getColumnClass, getColumnCount, getColumnName, get-
RowCount and getValueAt. The default implementations of TableModel methods is-
CellEditable and setValueAt (provided by AbstractTableModel) are not overridden,
because this example does not support editing the JTable cells. The default implementa-
tions of TableModel methods addTableModelListener and removeTableModelListener
(provided by AbstractTableModel) are not overridden, because the implementations of
these methods in AbstractTableModel properly add and remove event listeners.

1 // Fig. 24.25: ResultSetTableModel.java
2 // A TableModel that supplies ResultSet data to a JTable.
3 import java.sql.Connection;
4 import java.sql.Statement;
5 import java.sql.DriverManager;
6 import java.sql.ResultSet;
7 import java.sql.ResultSetMetaData;
8 import java.sql.SQLException;
9 import javax.swing.table.AbstractTableModel;

10
11 // ResultSet rows and columns are counted from 1 and JTable
12 // rows and columns are counted from 0. When processing
13 // ResultSet rows or columns for use in a JTable, it is
14 // necessary to add 1 to the row or column number to manipulate
15 // the appropriate ResultSet column (i.e., JTable column 0 is
16 // ResultSet column 1 and JTable row 0 is ResultSet row 1).
17
18 {
19 private final Connection connection;
20 private final Statement statement;
21 private ResultSet resultSet;
22 private ResultSetMetaData metaData;
23 private int numberOfRows;
24
25
26
27
28 // constructor initializes resultSet and obtains its metadata object;
29 // determines number of rows
30 public ResultSetTableModel(String url, String username,
31 String password, String query) throws SQLException
32 {
33 // connect to database
34 connection = DriverManager.getConnection(url, username, password);
35
36
37
38
39

Fig. 24.25 | A TableModel that supplies ResultSet data to a JTable. (Part 1 of 4.)

public class ResultSetTableModel extends AbstractTableModel

// keep track of database connection status
private boolean connectedToDatabase = false;

// create Statement to query database
statement = connection.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

24.6 Manipulating Databases with JDBC 1069

40
41
42
43
44 // set query and execute it
45 setQuery(query);
46 }
47
48 // get class that represents column type
49 throws IllegalStateException
50 {
51
52
53
54
55 // determine Java class of column
56 try
57 {
58
59
60
61
62 }
63 catch (Exception exception)
64 {
65 exception.printStackTrace();
66 }
67
68 return Object.class; // if problems occur above, assume type Object
69 }
70
71 // get number of columns in ResultSet
72 throws IllegalStateException
73 {
74 // ensure database connection is available
75 if (!connectedToDatabase)
76 throw new IllegalStateException("Not Connected to Database");
77
78 // determine number of columns
79 try
80 {
81 return metaData.getColumnCount();
82 }
83 catch (SQLException sqlException)
84 {
85 sqlException.printStackTrace();
86 }
87
88 return 0; // if problems occur above, return 0 for number of columns
89 }
90

Fig. 24.25 | A TableModel that supplies ResultSet data to a JTable. (Part 2 of 4.)

// update database connection status
connectedToDatabase = true;

public Class getColumnClass(int column)

// ensure database connection is available
if (!connectedToDatabase)
 throw new IllegalStateException("Not Connected to Database");

String className = metaData.getColumnClassName(column + 1);

// return Class object that represents className
return Class.forName(className);

public int getColumnCount()

1070 Chapter 24 Accessing Databases with JDBC

91 // get name of a particular column in ResultSet
92 throws IllegalStateException
93 {
94 // ensure database connection is available
95 if (!connectedToDatabase)
96 throw new IllegalStateException("Not Connected to Database");
97
98 // determine column name
99 try
100 {
101 return metaData.getColumnName(column + 1);
102 }
103 catch (SQLException sqlException)
104 {
105 sqlException.printStackTrace();
106 }
107
108 return ""; // if problems, return empty string for column name
109 }
110
111 // return number of rows in ResultSet
112 throws IllegalStateException
113 {
114 // ensure database connection is available
115 if (!connectedToDatabase)
116 throw new IllegalStateException("Not Connected to Database");
117
118 return numberOfRows;
119 }
120
121 // obtain value in particular row and column
122
123 throws IllegalStateException
124 {
125 // ensure database connection is available
126 if (!connectedToDatabase)
127 throw new IllegalStateException("Not Connected to Database");
128
129 // obtain a value at specified ResultSet row and column
130 try
131 {
132
133
134 }
135 catch (SQLException sqlException)
136 {
137 sqlException.printStackTrace();
138 }
139
140 return ""; // if problems, return empty string object
141 }

Fig. 24.25 | A TableModel that supplies ResultSet data to a JTable. (Part 3 of 4.)

public String getColumnName(int column)

public int getRowCount()

public Object getValueAt(int row, int column)

resultSet.absolute(row + 1);
return resultSet.getObject(column + 1);

24.6 Manipulating Databases with JDBC 1071

ResultSetTableModel Constructor
The ResultSetTableModel constructor (lines 30–46) accepts four String arguments—
the URL of the database, the username, the password and the default query to perform.
The constructor throws any exceptions that occur in its body back to the application that
created the ResultSetTableModel object, so that the application can determine how to

142
143 // set new database query string
144 public void setQuery(String query)
145 throws SQLException, IllegalStateException
146 {
147 // ensure database connection is available
148 if (!connectedToDatabase)
149 throw new IllegalStateException("Not Connected to Database");
150
151 // specify query and execute it
152 resultSet = statement.executeQuery(query);
153
154 // obtain metadata for ResultSet
155 metaData = resultSet.getMetaData();
156
157 // determine number of rows in ResultSet
158 resultSet.last(); // move to last row
159 numberOfRows = resultSet.getRow(); // get row number
160
161
162
163 }
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187 } // end class ResultSetTableModel

Fig. 24.25 | A TableModel that supplies ResultSet data to a JTable. (Part 4 of 4.)

// notify JTable that model has changed
fireTableStructureChanged();

// close Statement and Connection
public void disconnectFromDatabase()
{
 if (connectedToDatabase)
 {
 // close Statement and Connection
 try
 {
 resultSet.close();
 statement.close();
 connection.close();
 }
 catch (SQLException sqlException)
 {
 sqlException.printStackTrace();
 }
 finally // update database connection status
 {
 connectedToDatabase = false;
 }
 }
}

1072 Chapter 24 Accessing Databases with JDBC

handle the exception (e.g., report an error and terminate the application). Line 34 estab-
lishes a connection to the database. Lines 37–39 invoke Connection method createState-
ment to create a Statement object. This example uses a version of method
createStatement that takes two arguments—the result set type and the result set concur-
rency. The result set type (Fig. 24.26) specifies whether the ResultSet’s cursor is able to
scroll in both directions or forward only and whether the ResultSet is sensitive to changes
made to the underlying data.

ResultSets that are sensitive to changes reflect those changes immediately after they’re
made with methods of interface ResultSet. If a ResultSet is insensitive to changes, the
query that produced the ResultSet must be executed again to reflect any changes made.
The result set concurrency (Fig. 24.27) specifies whether the ResultSet can be updated
with ResultSet’s update methods.

ResultSet constant Description

TYPE_FORWARD_ONLY Specifies that a ResultSet’s cursor can move only in the forward
direction (i.e., from the first to the last row in the ResultSet).

TYPE_SCROLL_INSENSITIVE Specifies that a ResultSet’s cursor can scroll in either direction
and that the changes made to the underlying data during
ResultSet processing are not reflected in the ResultSet unless
the program queries the database again.

TYPE_SCROLL_SENSITIVE Specifies that a ResultSet’s cursor can scroll in either direction and
that the changes made to the underlying data during ResultSet
processing are reflected immediately in the ResultSet.

Fig. 24.26 | ResultSet constants for specifying ResultSet type.

Portability Tip 24.3
Some JDBC drivers do not support scrollable ResultSets. In such cases, the driver typi-
cally returns a ResultSet in which the cursor can move only forward. For more informa-
tion, see your database driver documentation.

Common Programming Error 24.8
Attempting to move the cursor backward through a ResultSet when the database driver
does not support backward scrolling causes a SQLFeatureNotSupportedException.

ResultSet static
concurrency constant Description

CONCUR_READ_ONLY Specifies that a ResultSet can’t be updated—changes to the ResultSet con-
tents cannot be reflected in the database with ResultSet’s update methods.

CONCUR_UPDATABLE Specifies that a ResultSet can be updated (i.e., changes to its contents can
be reflected in the database with ResultSet’s update methods).

Fig. 24.27 | ResultSet constants for specifying result properties.

24.6 Manipulating Databases with JDBC 1073

This example uses a ResultSet that is scrollable, insensitive to changes and read only.
Line 45 (Fig. 24.25) invokes method setQuery (lines 144–163) to perform the default query.

ResultSetTableModel Method getColumnClass
Method getColumnClass (lines 49–69) returns a Class object that represents the superclass
of all objects in a particular column. The JTable uses this information to configure the de-
fault cell renderer and cell editor for that column in the JTable. Line 58 uses ResultSet-
MetaData method getColumnClassName to obtain the fully qualified class name for the
specified column. Line 61 loads the class and returns the corresponding Class object. If an
exception occurs, the catch in lines 63–66 prints a stack trace and line 68 returns Ob-
ject.class—the Class instance that represents class Object—as the default type. [Note:
Line 58 uses the argument column + 1. Like arrays, JTable row and column numbers are
counted from 0. However, ResultSet row and column numbers are counted from 1. Thus,
when processing ResultSet rows or columns for use in a JTable, it’s necessary to add 1 to
the row or column number to manipulate the appropriate ResultSet row or column.]

ResultSetTableModel Method getColumnCount
Method getColumnCount (lines 72–89) returns the number of columns in the model’s un-
derlying ResultSet. Line 81 uses ResultSetMetaData method getColumnCount to obtain
the number of columns in the ResultSet. If an exception occurs, the catch in lines 83–
86 prints a stack trace and line 88 returns 0 as the default number of columns.

ResultSetTableModel Method getColumnName
Method getColumnName (lines 92–109) returns the name of the column in the model’s un-
derlying ResultSet. Line 101 uses ResultSetMetaData method getColumnName to obtain
the column name from the ResultSet. If an exception occurs, the catch in lines 103–106
prints a stack trace and line 108 returns the empty string as the default column name.

ResultSetTableModel Method getRowCount
Method getRowCount (lines 112–119) returns the number of rows in the model’s under-
lying ResultSet. When method setQuery (lines 144–163) performs a query, it stores the
number of rows in variable numberOfRows.

ResultSetTableModel Method getValueAt
Method getValueAt (lines 122–141) returns the Object in a particular row and column of
the model’s underlying ResultSet. Line 132 uses ResultSet method absolute to position
the ResultSet cursor at a specific row. Line 133 uses ResultSet method getObject to ob-
tain the Object in a specific column of the current row. If an exception occurs, the catch in
lines 135–138 prints a stack trace and line 140 returns an empty string as the default value.

Portability Tip 24.4
Some JDBC drivers do not support updatable ResultSets. In such cases, the driver typi-
cally returns a read-only ResultSet. For more information, see your database driver doc-
umentation.

Common Programming Error 24.9
Attempting to update a ResultSet when the database driver does not support updatable
ResultSets causes SQLFeatureNotSupportedExceptions.

1074 Chapter 24 Accessing Databases with JDBC

ResultSetTableModel Method setQuery
Method setQuery (lines 144–163) executes the query it receives as an argument to obtain
a new ResultSet (line 152). Line 155 gets the ResultSetMetaData for the new Result-
Set. Line 158 uses ResultSet method last to position the ResultSet cursor at the last
row in the ResultSet. [Note: This can be slow if the table contains many rows.] Line 159
uses ResultSet method getRow to obtain the row number for the current row in the Re-
sultSet. Line 162 invokes method fireTableStructureChanged (inherited from class
AbstractTableModel) to notify any JTable using this ResultSetTableModel object as its
model that the structure of the model has changed. This causes the JTable to repopulate
its rows and columns with the new ResultSet data. Method setQuery throws any excep-
tions that occur in its body back to the application that invoked setQuery.

ResultSetTableModel Method disconnectFromDatabase
Method disconnectFromDatabase (lines 166–186) implements an appropriate termina-
tion method for class ResultSetTableModel. A class designer should provide a public
method that clients of the class must invoke explicitly to free resources that an object has
used. In this case, method disconnectFromDatabase closes the ResultSet, Statement
and Connection (lines 173–175), which are considered limited resources. Clients of the
ResultSetTableModel class should always invoke this method when the instance of this
class is no longer needed. Before releasing resources, line 168 verifies whether the connec-
tion is already terminated. If not, the method proceeds. The other methods in class Re-
sultSetTableModel each throw an IllegalStateException if connectedToDatabase is
false. Method disconnectFromDatabase sets connectedToDatabase to false (line 183)
to ensure that clients do not use an instance of ResultSetTableModel after that instance
has already been terminated. IllegalStateException is an exception from the Java librar-
ies that is appropriate for indicating this error condition.

DisplayQueryResults Class
Class DisplayQueryResults (Fig. 24.28) implements the application’s GUI and interacts
with the ResultSetTableModel via a JTable object. This application also demonstrates
the JTable sorting and filtering capabilities.

1 // Fig. 24.28: DisplayQueryResults.java
2 // Display the contents of the Authors table in the books database.
3 import java.awt.BorderLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.WindowAdapter;
7 import java.awt.event.WindowEvent;
8 import java.sql.SQLException;
9 import java.util.regex.PatternSyntaxException;

10 import javax.swing.JFrame;
11 import javax.swing.JTextArea;
12 import javax.swing.JScrollPane;
13 import javax.swing.ScrollPaneConstants;
14
15 import javax.swing.JOptionPane;

Fig. 24.28 | Display the contents of the Authors table in the books database. (Part 1 of 5.)

import javax.swing.JTable;

24.6 Manipulating Databases with JDBC 1075

16 import javax.swing.JButton;
17 import javax.swing.Box;
18 import javax.swing.JLabel;
19 import javax.swing.JTextField;
20
21
22
23
24 public class DisplayQueryResults extends JFrame
25 {
26 // database URL, username and password
27 private static final String DATABASE_URL = "jdbc:derby:books";
28 private static final String USERNAME = "deitel";
29 private static final String PASSWORD = "deitel";
30
31 // default query retrieves all data from Authors table
32 private static final String DEFAULT_QUERY = "SELECT * FROM Authors";
33
34 private static ResultSetTableModel tableModel;
35
36 public static void main(String args[])
37 {
38 // create ResultSetTableModel and display database table
39 try
40 {
41
42
43
44
45 // set up JTextArea in which user types queries
46 final JTextArea queryArea = new JTextArea(DEFAULT_QUERY, 3, 100);
47 queryArea.setWrapStyleWord(true);
48 queryArea.setLineWrap(true);
49
50 JScrollPane scrollPane = new JScrollPane(queryArea,
51 ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED,
52 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
53
54 // set up JButton for submitting queries
55 JButton submitButton = new JButton("Submit Query");
56
57 // create Box to manage placement of queryArea and
58 // submitButton in GUI
59 Box boxNorth = Box.createHorizontalBox();
60 boxNorth.add(scrollPane);
61 boxNorth.add(submitButton);
62
63
64
65
66 JLabel filterLabel = new JLabel("Filter:");
67 final JTextField filterText = new JTextField();
68 JButton filterButton = new JButton("Apply Filter");

Fig. 24.28 | Display the contents of the Authors table in the books database. (Part 2 of 5.)

import javax.swing.RowFilter;
import javax.swing.table.TableRowSorter;
import javax.swing.table.TableModel;

// create TableModel for results of query SELECT * FROM Authors
tableModel = new ResultSetTableModel(DATABASE_URL,
 USERNAME, PASSWORD, DEFAULT_QUERY);

// create JTable based on the tableModel
JTable resultTable = new JTable(tableModel);

1076 Chapter 24 Accessing Databases with JDBC

69 Box boxSouth = Box.createHorizontalBox();
70
71 boxSouth.add(filterLabel);
72 boxSouth.add(filterText);
73 boxSouth.add(filterButton);
74
75 // place GUI components on JFrame's content pane
76 JFrame window = new JFrame("Displaying Query Results");
77 add(boxNorth, BorderLayout.NORTH);
78 add(new JScrollPane(resultTable), BorderLayout.CENTER);
79 add(boxSouth, BorderLayout.SOUTH);
80
81 // create event listener for submitButton
82 submitButton.addActionListener(
83 new ActionListener()
84 {
85 public void actionPerformed(ActionEvent event)
86 {
87 // perform a new query
88 try
89 {
90
91 }
92 catch (SQLException sqlException)
93 {
94 JOptionPane.showMessageDialog(null,
95 sqlException.getMessage(), "Database error",
96 JOptionPane.ERROR_MESSAGE);
97
98 // try to recover from invalid user query
99 // by executing default query
100 try
101 {
102
103 queryArea.setText(DEFAULT_QUERY);
104 }
105 catch (SQLException sqlException2)
106 {
107 JOptionPane.showMessageDialog(null,
108 sqlException2.getMessage(), "Database error",
109 JOptionPane.ERROR_MESSAGE);
110
111
112
113
114 System.exit(1); // terminate application
115 }
116 }
117 }
118 }
119);
120

Fig. 24.28 | Display the contents of the Authors table in the books database. (Part 3 of 5.)

tableModel.setQuery(queryArea.getText());

tableModel.setQuery(DEFAULT_QUERY);

// ensure database connection is closed
tableModel.disconnectFromDatabase();

24.6 Manipulating Databases with JDBC 1077

121
122
123
124
125 // create listener for filterButton
126 filterButton.addActionListener(
127 new ActionListener()
128 {
129 // pass filter text to listener
130 public void actionPerformed(ActionEvent e)
131 {
132 String text = filterText.getText();
133
134 if (text.length() == 0)
135
136 else
137 {
138 try
139 {
140
141
142 }
143 catch (PatternSyntaxException pse)
144 {
145 JOptionPane.showMessageDialog(null,
146 "Bad regex pattern", "Bad regex pattern",
147 JOptionPane.ERROR_MESSAGE);
148 }
149 }
150 }
151 }
152);
153 // dispose of window when user quits application (this overrides
154 // the default of HIDE_ON_CLOSE)
155 window.setDefaultCloseOperation(DISPOSE_ON_CLOSE);
156 window.setSize(500, 250);
157 window.setVisible(true);
158
159 // ensure database is closed when user quits application
160 addWindowListener(
161 new WindowAdapter()
162 {
163
164
165
166
167
168
169 }
170);
171 }
172 catch (SQLException sqlException)
173 {

Fig. 24.28 | Display the contents of the Authors table in the books database. (Part 4 of 5.)

final TableRowSorter<TableModel> sorter =
 new TableRowSorter<TableModel>(tableModel);
resultTable.setRowSorter(sorter);

sorter.setRowFilter(null);

sorter.setRowFilter(
 RowFilter.regexFilter(text));

// disconnect from database and exit when window has closed
public void windowClosed(WindowEvent event)
{
 tableModel.disconnectFromDatabase();
 System.exit(0);
}

1078 Chapter 24 Accessing Databases with JDBC

Lines 27–29 and 32 declare the URL, username, password and default query that are
passed to the ResultSetTableModel constructor to make the initial connection to the
database and perform the default query. The main method (lines 36–179) creates a

174 JOptionPane.showMessageDialog(null, sqlException.getMessage(),
175 "Database error", JOptionPane.ERROR_MESSAGE);
176
177 System.exit(1); // terminate application
178 }
179 }
180 } // end class DisplayQueryResults

Fig. 24.28 | Display the contents of the Authors table in the books database. (Part 5 of 5.)

tableModel.disconnectFromDatabase();

a) Displaying all authors from
the Authors table

b) Displaying the the authors’
first and last names joined with

the titles and edition numbers
of the books they’ve authored

c) Filtering the results of the
previous query to show only the

books with Java in the title

24.6 Manipulating Databases with JDBC 1079

ResultSetTableModel object and the GUI for the application and displays the GUI in a
JFrame. Line 64 creates the JTable object and passes a ResultSetTableModel object (cre-
ated at lines 42–43) to the JTable constructor, which then registers the JTable as a listener
for TableModelEvents generated by the ResultSetTableModel.

The local variables queryArea (line 46), filterText (line 67) and sorter (lines 121–
122) are declared final because they’re used from anonymous inner classes. Recall that
any local variable that will be used in an anonymous inner class must be declared final;
otherwise, a compilation error occurs. (In Java SE 8, this program would compile without
declaring these variables final because these variables would be effectively final, as dis-
cussed in Chapter 17.)

Lines 82–119 register an event handler for the submitButton that the user clicks to
submit a query to the database. When the user clicks the button, method actionPer-
formed (lines 85–117) invokes method setQuery from the class ResultSetTableModel to
execute the new query (line 90). If the user’s query fails (e.g., because of a syntax error in
the user’s input), lines 102–103 execute the default query. If the default query also fails,
there could be a more serious error, so line 112 ensures that the database connection is
closed and line 114 exits the program. The screen captures in Fig. 24.28 show the results
of two queries. The first screen capture shows the default query that retrieves all the data
from table Authors of database books. The second screen capture shows a query that
selects each author’s first name and last name from the Authors table and combines that
information with the title and edition number from the Titles table. Try entering your
own queries in the text area and clicking the Submit Query button to execute the query.

Lines 161–170 register a WindowListener for the windowClosed event, which occurs
when the user closes the window. Since WindowListeners can handle several window
events, we extend class WindowAdapter and override only the windowClosed event handler.

Sorting Rows in a JTable
JTables allow users to sort rows by the data in a specific column. Lines 121–122 use the
TableRowSorter class (from package javax.swing.table) to create an object that uses our
ResultSetTableModel to sort rows in the JTable that displays query results. When the
user clicks the title of a particular JTable column, the TableRowSorter interacts with the
underlying TableModel to reorder the rows based on the data in that column. Line 123
uses JTable method setRowSorter to specify the TableRowSorter for resultTable.

Filtering Rows in a JTable
JTables can now show subsets of the data from the underlying TableModel. This is known
as filtering the data. Lines 126–152 register an event handler for the filterButton that
the user clicks to filter the data. In method actionPerformed (lines 130–150), line 132
obtains the filter text. If the user did not specify filter text, line 135 uses JTable method
setRowFilter to remove any prior filter by setting the filter to null. Otherwise, lines 140–
141 use setRowFilter to specify a RowFilter (from package javax.swing) based on the
user’s input. Class RowFilter provides several methods for creating filters. The static
method regexFilter receives a String containing a regular expression pattern as its argu-
ment and an optional set of indices that specify which columns to filter. If no indices are
specified, then all the columns are searched. In this example, the regular expression pattern
is the text the user typed. Once the filter is set, the data displayed in the JTable is updated
based on the filtered TableModel.

1080 Chapter 24 Accessing Databases with JDBC

24.7 RowSet Interface
In the preceding examples, you learned how to query a database by explicitly establishing
a Connection to the database, preparing a Statement for querying the database and exe-
cuting the query. In this section, we demonstrate the RowSet interface, which configures
the database connection and prepares query statements automatically. The interface Row-
Set provides several set methods that allow you to specify the properties needed to establish
a connection (such as the database URL, username and password of the database) and cre-
ate a Statement (such as a query). RowSet also provides several get methods that return
these properties.

Connected and Disconnected RowSets
There are two types of RowSet objects—connected and disconnected. A connected RowSet
object connects to the database once and remains connected while the object is in use. A
disconnected RowSet object connects to the database, executes a query to retrieve the data
from the database and then closes the connection. A program may change the data in a
disconnected RowSet while it’s disconnected. Modified data can be updated in the data-
base after a disconnected RowSet reestablishes the connection with the database.

Package javax.sql.rowset contains two subinterfaces of RowSet—JdbcRowSet and
CachedRowSet. JdbcRowSet, a connected RowSet, acts as a wrapper around a ResultSet
object and allows you to scroll through and update the rows in the ResultSet. Recall that
by default, a ResultSet object is nonscrollable and read only—you must explicitly set the
result-set type constant to TYPE_SCROLL_INSENSITIVE and set the result-set concurrency
constant to CONCUR_UPDATABLE to make a ResultSet object scrollable and updatable. A
JdbcRowSet object is scrollable and updatable by default. CachedRowSet, a disconnected
RowSet, caches the data of a ResultSet in memory and disconnects from the database.
Like JdbcRowSet, a CachedRowSet object is scrollable and updatable by default. A Cached-
RowSet object is also serializable, so it can be passed between Java applications through a
network, such as the Internet. However, CachedRowSet has a limitation—the amount of
data that can be stored in memory is limited. Package javax.sql.rowset contains three
other subinterfaces of RowSet.

Using a RowSet
Figure 24.29 reimplements the example of Fig. 24.23 using a RowSet. Rather than estab-
lish the connection and create a Statement explicitly, Fig. 24.29 uses a JdbcRowSet object
to create a Connection and a Statement automatically.

Class RowSetProvider (package javax.sql.rowset) provides static method new-
Factory which returns a an object that implements interface RowSetFactory (package
javax.sql.rowset) that can be used to create various types of RowSets. Lines 18–19 in
the try-with-resources statement use RowSetFactory method createJdbcRowSet to
obtain a JdbcRowSet object.

Lines 22–24 set the RowSet properties that the DriverManager uses to establish a data-
base connection. Line 22 invokes JdbcRowSet method setUrl to specify the database

Portability Tip 24.5
A RowSet can provide scrolling capability for drivers that do not support scrollable Re-
sultSets.

24.7 RowSet Interface 1081

1 // Fig. 24.29: JdbcRowSetTest.java
2 // Displaying the contents of the Authors table using JdbcRowSet.
3 import java.sql.ResultSetMetaData;
4 import java.sql.SQLException;
5
6
7
8 public class JdbcRowSetTest
9 {

10 // JDBC driver name and database URL
11 private static final String DATABASE_URL = "jdbc:derby:books";
12 private static final String USERNAME = "deitel";
13 private static final String PASSWORD = "deitel";
14
15 public static void main(String args[])
16 {
17 // connect to database books and query database
18
19
20 {
21
22
23
24
25
26
27
28 // process query results
29
30 int numberOfColumns = metaData.getColumnCount();
31 System.out.printf("Authors Table of Books Database:%n%n");
32
33 // display rowset header
34 for (int i = 1; i <= numberOfColumns; i++)
35 System.out.printf("%-8s\t", metaData.getColumnName(i));
36 System.out.println();
37
38 // display each row
39 while ()
40 {
41 for (int i = 1; i <= numberOfColumns; i++)
42 System.out.printf("%-8s\t",);
43 System.out.println();
44 }
45 }
46 catch (SQLException sqlException)
47 {
48 sqlException.printStackTrace();
49 System.exit(1);
50 }
51 }
52 } // end class JdbcRowSetTest

Fig. 24.29 | Displaying the contents of the Authors table using JdbcRowSet. (Part 1 of 2.)

import javax.sql.rowset.JdbcRowSet;
import javax.sql.rowset.RowSetProvider;

try (JdbcRowSet rowSet =
 RowSetProvider.newFactory().createJdbcRowSet())

// specify JdbcRowSet properties
rowSet.setUrl(DATABASE_URL);
rowSet.setUsername(USERNAME);
rowSet.setPassword(PASSWORD);
rowSet.setCommand("SELECT * FROM Authors"); // set query
rowSet.execute(); // execute query

ResultSetMetaData metaData = rowSet.getMetaData();

rowSet.next()

rowSet.getObject(i)

1082 Chapter 24 Accessing Databases with JDBC

URL. Line 23 invokes JdbcRowSet method setUsername to specify the username. Line 24
invokes JdbcRowSet method setPassword to specify the password. Line 25 invokes Jdbc-
RowSet method setCommand to specify the SQL query that will be used to populate the
RowSet. Line 26 invokes JdbcRowSet method execute to execute the SQL query. Method
execute performs four actions—it establishes a Connection to the database, prepares the
query Statement, executes the query and stores the ResultSet returned by query. The
Connection, Statement and ResultSet are encapsulated in the JdbcRowSet object.

The remaining code is almost identical to Fig. 24.23, except that line 29 (Fig. 24.29)
obtains a ResultSetMetaData object from the JdbcRowSet, line 39 uses the JdbcRowSet’s
next method to get the next row of the result and line 42 uses the JdbcRowSet’s getObject
method to obtain a column’s value. When the end of the try block is reached, the try-
with-resources statement invokes JdbcRowSet method close, which closes the RowSet’s
encapsulated ResultSet, Statement and Connection. In a CachedRowSet, invoking close
also releases the resources held by that RowSet. The output of this application is the same
as that of Fig. 24.23.

24.8 PreparedStatements
A PreparedStatement enables you to create compiled SQL statements that execute more ef-
ficiently than Statements. PreparedStatements can also specify parameters, making them
more flexible than Statements—you can execute the same query repeatedly with different
parameter values. For example, in the books database, you might want to locate all book titles
for an author with a specific last and first name, and you might want to execute that query
for several authors. With a PreparedStatement, that query is defined as follows:

The two question marks (?) in the the preceding SQL statement’s last line are placeholders
for values that will be passed as part of the query to the database. Before executing a Pre-
paredStatement, the program must specify the parameter values by using the Prepared-
Statement interface’s set methods.

For the preceding query, both parameters are strings that can be set with Prepared-
Statement method setString as follows:

Authors Table of Books Database:

AUTHORID FIRSTNAME LASTNAME
1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Dan Quirk
5 Michael Morgano

PreparedStatement authorBooks = connection.prepareStatement(
 "SELECT LastName, FirstName, Title " +
 "FROM Authors INNER JOIN AuthorISBN " +
 "ON Authors.AuthorID=AuthorISBN.AuthorID " +
 "INNER JOIN Titles " +
 "ON AuthorISBN.ISBN=Titles.ISBN " +
 "WHERE LastName = ? AND FirstName = ?");

Fig. 24.29 | Displaying the contents of the Authors table using JdbcRowSet. (Part 2 of 2.)

24.8 PreparedStatements 1083

Method setString’s first argument represents the parameter number being set, and the
second argument is that parameter’s value. Parameter numbers are counted from 1, starting
with the first question mark (?). When the program executes the preceding Prepared-
Statement with the parameter values set above, the SQL passed to the database is

Method setString automatically escapes String parameter values as necessary. For exam-
ple, if the last name is O’Brien, the statement

escapes the ' character in O’Brien by replacing it with two single-quote characters, so that
the ' appears correctly in the database.

Interface PreparedStatement provides set methods for each supported SQL type. It’s
important to use the set method that is appropriate for the parameter’s SQL type in the
database—SQLExceptions occur when a program attempts to convert a parameter value
to an incorrect type.

Address Book Application that Uses PreparedStatements
We now present an address book app that enables you to browse existing entries, add new
entries and search for entries with a specific last name. Our AddressBook Java DB database
contains an Addresses table with the columns addressID, FirstName, LastName, Email
and PhoneNumber. The column addressID is an identity column in the Addresses table.

Class Person
Our address book application consists of three classes—Person (Fig. 24.30), PersonQue-
ries (Fig. 24.31) and AddressBookDisplay (Fig. 24.32). Class Person is a simple class

authorBooks.setString(1, "Deitel");
authorBooks.setString(2, "Paul");

SELECT LastName, FirstName, Title
FROM Authors INNER JOIN AuthorISBN
 ON Authors.AuthorID=AuthorISBN.AuthorID
INNER JOIN Titles
 ON AuthorISBN.ISBN=Titles.ISBN
WHERE LastName = 'Deitel' AND FirstName = 'Paul'

authorBooks.setString(1, "O'Brien");

Performance Tip 24.2
PreparedStatements are more efficient than Statements when executing SQL statements
multiple times and with different parameter values.

Error-Prevention Tip 24.2
Use PreparedStatements with parameters for queries that receive String values as ar-
guments to ensure that the Strings are quoted properly in the SQL statement.

Error-Prevention Tip 24.3
PreparedStatements help prevent SQL injection attacks, which typically occur in SQL
statements that include user input improperly. To avoid this security issue, use Prepared-
Statements in which user input can be supplied only via parameters—indicated with ?
when creating a PreparedStatement. Once you’ve created such a PreparedStatement,
you can use its set methods to specify the user input as arguments for those parameters.

1084 Chapter 24 Accessing Databases with JDBC

that represents one person in the address book. The class contains fields for the address
ID, first name, last name, email address and phone number, as well as set and get methods
for manipulating these fields.

1 // Fig. 24.30: Person.java
2 // Person class that represents an entry in an address book.
3 public class Person
4 {
5 private int addressID;
6 private String firstName;
7 private String lastName;
8 private String email;
9 private String phoneNumber;

10
11 // constructor
12 public Person()
13 {
14 }
15
16 // constructor
17 public Person(int addressID, String firstName, String lastName,
18 String email, String phoneNumber)
19 {
20 setAddressID(addressID);
21 setFirstName(firstName);
22 setLastName(lastName);
23 setEmail(email);
24 setPhoneNumber(phoneNumber);
25 }
26
27 // sets the addressID
28 public void setAddressID(int addressID)
29 {
30 this.addressID = addressID;
31 }
32
33 // returns the addressID
34 public int getAddressID()
35 {
36 return addressID;
37 }
38
39 // sets the firstName
40 public void setFirstName(String firstName)
41 {
42 this.firstName = firstName;
43 }
44
45 // returns the first name
46 public String getFirstName()
47 {

Fig. 24.30 | Person class that represents an entry in an AddressBook. (Part 1 of 2.)

24.8 PreparedStatements 1085

Class PersonQueries
Class PersonQueries (Fig. 24.31) manages the address book application’s database con-
nection and creates the PreparedStatements that the application uses to interact with the
database. Lines 18–20 declare three PreparedStatement variables. The constructor (lines
23–49) connects to the database at lines 27–28.

48 return firstName;
49 }
50
51 // sets the lastName
52 public void setLastName(String lastName)
53 {
54 this.lastName = lastName;
55 }
56
57 // returns the last name
58 public String getLastName()
59 {
60 return lastName;
61 }
62
63 // sets the email address
64 public void setEmail(String email)
65 {
66 this.email = email;
67 }
68
69 // returns the email address
70 public String getEmail()
71 {
72 return email;
73 }
74
75 // sets the phone number
76 public void setPhoneNumber(String phone)
77 {
78 this.phoneNumber = phone;
79 }
80
81 // returns the phone number
82 public String getPhoneNumber()
83 {
84 return phoneNumber;
85 }
86 } // end class Person

1 // Fig. 24.31: PersonQueries.java
2 // PreparedStatements used by the Address Book application.
3 import java.sql.Connection;

Fig. 24.31 | PreparedStatements used by the Address Book application. (Part 1 of 5.)

Fig. 24.30 | Person class that represents an entry in an AddressBook. (Part 2 of 2.)

1086 Chapter 24 Accessing Databases with JDBC

4 import java.sql.DriverManager;
5
6 import java.sql.ResultSet;
7 import java.sql.SQLException;
8 import java.util.List;
9 import java.util.ArrayList;

10
11 public class PersonQueries
12 {
13 private static final String URL = "jdbc:derby:AddressBook";
14 private static final String USERNAME = "deitel";
15 private static final String PASSWORD = "deitel";
16
17 private Connection connection; // manages connection
18
19
20
21
22 // constructor
23 public PersonQueries()
24 {
25 try
26 {
27 connection =
28 DriverManager.getConnection(URL, USERNAME, PASSWORD);
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 }
44 catch (SQLException sqlException)
45 {
46 sqlException.printStackTrace();
47 System.exit(1);
48 }
49 }
50
51 // select all of the addresses in the database
52 public List< Person > getAllPeople()
53 {
54 List< Person > results = null;
55 ResultSet resultSet = null;
56

Fig. 24.31 | PreparedStatements used by the Address Book application. (Part 2 of 5.)

import java.sql.PreparedStatement;

private PreparedStatement selectAllPeople;
private PreparedStatement selectPeopleByLastName;
private PreparedStatement insertNewPerson;

// create query that selects all entries in the AddressBook
selectAllPeople =
 connection.prepareStatement("SELECT * FROM Addresses");

// create query that selects entries with a specific last name
selectPeopleByLastName = connection.prepareStatement(
 "SELECT * FROM Addresses WHERE LastName = ?");

// create insert that adds a new entry into the database
insertNewPerson = connection.prepareStatement(
 "INSERT INTO Addresses " +
 "(FirstName, LastName, Email, PhoneNumber) " +
 "VALUES (?, ?, ?, ?)");

24.8 PreparedStatements 1087

57 try
58 {
59
60
61 results = new ArrayList< Person >();
62
63 while (resultSet.next())
64 {
65 results.add(new Person(
66 resultSet.getInt("addressID"),
67 resultSet.getString("FirstName"),
68 resultSet.getString("LastName"),
69 resultSet.getString("Email"),
70 resultSet.getString("PhoneNumber")));
71 }
72 }
73 catch (SQLException sqlException)
74 {
75 sqlException.printStackTrace();
76 }
77 finally
78 {
79 try
80 {
81 resultSet.close();
82 }
83 catch (SQLException sqlException)
84 {
85 sqlException.printStackTrace();
86 close();
87 }
88 }
89
90 return results;
91 }
92
93 // select person by last name
94 public List< Person > getPeopleByLastName(String name)
95 {
96 List< Person > results = null;
97 ResultSet resultSet = null;
98
99 try
100 {
101
102
103
104
105
106 results = new ArrayList< Person >();
107
108 while (resultSet.next())
109 {

Fig. 24.31 | PreparedStatements used by the Address Book application. (Part 3 of 5.)

// executeQuery returns ResultSet containing matching entries
resultSet = selectAllPeople.executeQuery();

selectPeopleByLastName.setString(1, name); // specify last name

// executeQuery returns ResultSet containing matching entries
resultSet = selectPeopleByLastName.executeQuery();

1088 Chapter 24 Accessing Databases with JDBC

110 results.add(new Person(resultSet.getInt("addressID"),
111 resultSet.getString("FirstName"),
112 resultSet.getString("LastName"),
113 resultSet.getString("Email"),
114 resultSet.getString("PhoneNumber")));
115 }
116 }
117 catch (SQLException sqlException)
118 {
119 sqlException.printStackTrace();
120 }
121 finally
122 {
123 try
124 {
125 resultSet.close();
126 }
127 catch (SQLException sqlException)
128 {
129 sqlException.printStackTrace();
130 close();
131 }
132 }
133
134 return results;
135 }
136
137 // add an entry
138 public int addPerson(
139 String fname, String lname, String email, String num)
140 {
141 int result = 0;
142
143 // set parameters, then execute insertNewPerson
144 try
145 {
146
147
148
149
150
151
152
153 }
154 catch (SQLException sqlException)
155 {
156 sqlException.printStackTrace();
157 close();
158 }
159
160 return result;
161 }
162

Fig. 24.31 | PreparedStatements used by the Address Book application. (Part 4 of 5.)

insertNewPerson.setString(1, fname);
insertNewPerson.setString(2, lname);
insertNewPerson.setString(3, email);
insertNewPerson.setString(4, num);

// insert the new entry; returns # of rows updated
result = insertNewPerson.executeUpdate();

24.8 PreparedStatements 1089

Creating PreparedStatements
Lines 31–32 invoke Connection method prepareStatement to create the Prepared-
Statement named selectAllPeople that selects all the rows in the Addresses table. Lines
35–36 create the PreparedStatement named selectPeopleByLastName with a parameter.
This statement selects all the rows in the Addresses table that match a particular last
name. Notice the ? character that’s used to specify the last-name parameter. Lines 39–42
create the PreparedStatement named insertNewPerson with four parameters that repre-
sent the first name, last name, email address and phone number for a new entry. Again,
notice the ? characters used to represent these parameters.

PersonQueries Method getAllPeople
Method getAllPeople (lines 52–91) executes PreparedStatement selectAllPeople
(line 60) by calling method executeQuery, which returns a ResultSet containing the
rows that match the query (in this case, all the rows in the Addresses table). Lines 61–71
place the query results in an ArrayList of Person objects, which is returned to the caller
at line 90. Method getPeopleByLastName (lines 94–135) uses PreparedStatement meth-
od setString to set the parameter to selectPeopleByLastName (line 101). Then, line 104
executes the query and lines 106–115 place the query results in an ArrayList of Person
objects. Line 134 returns the ArrayList to the caller.

PersonQueries Methods addPerson and Close
Method addPerson (lines 138–161) uses PreparedStatement method setString (lines
146–149) to set the parameters for the insertNewPerson PreparedStatement. Line 152
uses PreparedStatement method executeUpdate to insert the new record. This method
returns an integer indicating the number of rows that were updated (or inserted) in the
database. Method close (lines 164–174) simply closes the database connection.

Class AddressBookDisplay
The AddressBookDisplay (Fig. 24.32) application uses a PersonQueries object to inter-
act with the database. Line 59 creates the PersonQueries object. When the user presses
the Browse All Entries JButton, the browseButtonActionPerformed handler (lines 309–
335) is called. Line 313 calls the method getAllPeople on the PersonQueries object to
obtain all the entries in the database. The user can then scroll through the entries using the

163 // close the database connection
164 public void close()
165 {
166 try
167 {
168 connection.close();
169 }
170 catch (SQLException sqlException)
171 {
172 sqlException.printStackTrace();
173 }
174 }
175 } // end class PersonQueries

Fig. 24.31 | PreparedStatements used by the Address Book application. (Part 5 of 5.)

1090 Chapter 24 Accessing Databases with JDBC

Previous and Next JButtons. When the user presses the Find JButton, the queryButtonAc-
tionPerformed handler (lines 265–287) is called. Lines 267–268 call method getPeo-
pleByLastName on the PersonQueries object to obtain the entries in the database that
match the specified last name. If there are several such entries, the user can then scroll
through them using the Previous and Next JButtons.

1 // Fig. 24.32: AddressBookDisplay.java
2 // A simple address book
3 import java.awt.event.ActionEvent;
4 import java.awt.event.ActionListener;
5 import java.awt.event.WindowAdapter;
6 import java.awt.event.WindowEvent;
7 import java.awt.FlowLayout;
8 import java.awt.GridLayout;
9 import java.util.List;

10 import javax.swing.JButton;
11 import javax.swing.Box;
12 import javax.swing.JFrame;
13 import javax.swing.JLabel;
14 import javax.swing.JPanel;
15 import javax.swing.JTextField;
16 import javax.swing.WindowConstants;
17 import javax.swing.BoxLayout;
18 import javax.swing.BorderFactory;
19 import javax.swing.JOptionPane;
20
21 public class AddressBookDisplay extends JFrame
22 {
23 private Person currentEntry;
24
25 private List<Person> results;
26 private int numberOfEntries = 0;
27 private int currentEntryIndex;
28
29 private JButton browseButton;
30 private JLabel emailLabel;
31 private JTextField emailTextField;
32 private JLabel firstNameLabel;
33 private JTextField firstNameTextField;
34 private JLabel idLabel;
35 private JTextField idTextField;
36 private JTextField indexTextField;
37 private JLabel lastNameLabel;
38 private JTextField lastNameTextField;
39 private JTextField maxTextField;
40 private JButton nextButton;
41 private JLabel ofLabel;
42 private JLabel phoneLabel;
43 private JTextField phoneTextField;
44 private JButton previousButton;
45 private JButton queryButton;
46 private JLabel queryLabel;

Fig. 24.32 | A simple address book. (Part 1 of 8.)

private PersonQueries personQueries;

24.8 PreparedStatements 1091

47 private JPanel queryPanel;
48 private JPanel navigatePanel;
49 private JPanel displayPanel;
50 private JTextField queryTextField;
51 private JButton insertButton;
52
53 // constructor
54 public AddressBookDisplay()
55 {
56 super("Address Book");
57
58
59
60
61 // create GUI
62 navigatePanel = new JPanel();
63 previousButton = new JButton();
64 indexTextField = new JTextField(2);
65 ofLabel = new JLabel();
66 maxTextField = new JTextField(2);
67 nextButton = new JButton();
68 displayPanel = new JPanel();
69 idLabel = new JLabel();
70 idTextField = new JTextField(10);
71 firstNameLabel = new JLabel();
72 firstNameTextField = new JTextField(10);
73 lastNameLabel = new JLabel();
74 lastNameTextField = new JTextField(10);
75 emailLabel = new JLabel();
76 emailTextField = new JTextField(10);
77 phoneLabel = new JLabel();
78 phoneTextField = new JTextField(10);
79 queryPanel = new JPanel();
80 queryLabel = new JLabel();
81 queryTextField = new JTextField(10);
82 queryButton = new JButton();
83 browseButton = new JButton();
84 insertButton = new JButton();
85
86 setLayout(new FlowLayout(FlowLayout.CENTER, 10, 10));
87 setSize(400, 300);
88 setResizable(false);
89
90 navigatePanel.setLayout(
91 new BoxLayout(navigatePanel, BoxLayout.X_AXIS));
92
93 previousButton.setText("Previous");
94 previousButton.setEnabled(false);
95 previousButton.addActionListener(
96 new ActionListener()
97 {
98 public void actionPerformed(ActionEvent evt)
99 {

Fig. 24.32 | A simple address book. (Part 2 of 8.)

// establish database connection and set up PreparedStatements
personQueries = new PersonQueries();

1092 Chapter 24 Accessing Databases with JDBC

100 previousButtonActionPerformed(evt);
101 }
102 }
103);
104
105 navigatePanel.add(previousButton);
106 navigatePanel.add(Box.createHorizontalStrut(10));
107
108 indexTextField.setHorizontalAlignment(
109 JTextField.CENTER);
110 indexTextField.addActionListener(
111 new ActionListener()
112 {
113 public void actionPerformed(ActionEvent evt)
114 {
115 indexTextFieldActionPerformed(evt);
116 }
117 }
118);
119
120 navigatePanel.add(indexTextField);
121 navigatePanel.add(Box.createHorizontalStrut(10));
122
123 ofLabel.setText("of");
124 navigatePanel.add(ofLabel);
125 navigatePanel.add(Box.createHorizontalStrut(10));
126
127 maxTextField.setHorizontalAlignment(
128 JTextField.CENTER);
129 maxTextField.setEditable(false);
130 navigatePanel.add(maxTextField);
131 navigatePanel.add(Box.createHorizontalStrut(10));
132
133 nextButton.setText("Next");
134 nextButton.setEnabled(false);
135 nextButton.addActionListener(
136 new ActionListener()
137 {
138 public void actionPerformed(ActionEvent evt)
139 {
140 nextButtonActionPerformed(evt);
141 }
142 }
143);
144
145 navigatePanel.add(nextButton);
146 add(navigatePanel);
147
148 displayPanel.setLayout(new GridLayout(5, 2, 4, 4));
149
150 idLabel.setText("Address ID:");
151 displayPanel.add(idLabel);
152

Fig. 24.32 | A simple address book. (Part 3 of 8.)

24.8 PreparedStatements 1093

153 idTextField.setEditable(false);
154 displayPanel.add(idTextField);
155
156 firstNameLabel.setText("First Name:");
157 displayPanel.add(firstNameLabel);
158 displayPanel.add(firstNameTextField);
159
160 lastNameLabel.setText("Last Name:");
161 displayPanel.add(lastNameLabel);
162 displayPanel.add(lastNameTextField);
163
164 emailLabel.setText("Email:");
165 displayPanel.add(emailLabel);
166 displayPanel.add(emailTextField);
167
168 phoneLabel.setText("Phone Number:");
169 displayPanel.add(phoneLabel);
170 displayPanel.add(phoneTextField);
171 add(displayPanel);
172
173 queryPanel.setLayout(
174 new BoxLayout(queryPanel, BoxLayout.X_AXIS));
175
176 queryPanel.setBorder(BorderFactory.createTitledBorder(
177 "Find an entry by last name"));
178 queryLabel.setText("Last Name:");
179 queryPanel.add(Box.createHorizontalStrut(5));
180 queryPanel.add(queryLabel);
181 queryPanel.add(Box.createHorizontalStrut(10));
182 queryPanel.add(queryTextField);
183 queryPanel.add(Box.createHorizontalStrut(10));
184
185 queryButton.setText("Find");
186 queryButton.addActionListener(
187 new ActionListener()
188 {
189 public void actionPerformed(ActionEvent evt)
190 {
191 queryButtonActionPerformed(evt);
192 }
193 }
194);
195
196 queryPanel.add(queryButton);
197 queryPanel.add(Box.createHorizontalStrut(5));
198 add(queryPanel);
199
200 browseButton.setText("Browse All Entries");
201 browseButton.addActionListener(
202 new ActionListener()
203 {
204 public void actionPerformed(ActionEvent evt)
205 {

Fig. 24.32 | A simple address book. (Part 4 of 8.)

1094 Chapter 24 Accessing Databases with JDBC

206 browseButtonActionPerformed(evt);
207 }
208 }
209);
210
211 add(browseButton);
212
213 insertButton.setText("Insert New Entry");
214 insertButton.addActionListener(
215 new ActionListener()
216 {
217 public void actionPerformed(ActionEvent evt)
218 {
219 insertButtonActionPerformed(evt);
220 }
221 }
222);
223
224 add(insertButton);
225
226 addWindowListener(
227 new WindowAdapter()
228 {
229 public void windowClosing(WindowEvent evt)
230 {
231 personQueries.close(); // close database connection
232 System.exit(0);
233 }
234 }
235);
236
237 setVisible(true);
238 } // end constructor
239
240 // handles call when previousButton is clicked
241 private void previousButtonActionPerformed(ActionEvent evt)
242 {
243 currentEntryIndex--;
244
245 if (currentEntryIndex < 0)
246 currentEntryIndex = numberOfEntries - 1;
247
248 indexTextField.setText("" + (currentEntryIndex + 1));
249 indexTextFieldActionPerformed(evt);
250 }
251
252 // handles call when nextButton is clicked
253 private void nextButtonActionPerformed(ActionEvent evt)
254 {
255 currentEntryIndex++;
256
257 if (currentEntryIndex >= numberOfEntries)
258 currentEntryIndex = 0;

Fig. 24.32 | A simple address book. (Part 5 of 8.)

24.8 PreparedStatements 1095

259
260 indexTextField.setText("" + (currentEntryIndex + 1));
261 indexTextFieldActionPerformed(evt);
262 }
263
264 // handles call when queryButton is clicked
265 private void queryButtonActionPerformed(ActionEvent evt)
266 {
267
268
269 numberOfEntries = results.size();
270
271 if (numberOfEntries != 0)
272 {
273 currentEntryIndex = 0;
274 currentEntry = results.get(currentEntryIndex);
275 idTextField.setText("" + currentEntry.getAddressID());
276 firstNameTextField.setText(currentEntry.getFirstName());
277 lastNameTextField.setText(currentEntry.getLastName());
278 emailTextField.setText(currentEntry.getEmail());
279 phoneTextField.setText(currentEntry.getPhoneNumber());
280 maxTextField.setText("" + numberOfEntries);
281 indexTextField.setText("" + (currentEntryIndex + 1));
282 nextButton.setEnabled(true);
283 previousButton.setEnabled(true);
284 }
285 else
286 browseButtonActionPerformed(evt);
287 }
288
289 // handles call when a new value is entered in indexTextField
290 private void indexTextFieldActionPerformed(ActionEvent evt)
291 {
292 currentEntryIndex =
293 (Integer.parseInt(indexTextField.getText()) - 1);
294
295 if (numberOfEntries != 0 && currentEntryIndex < numberOfEntries)
296 {
297 currentEntry = results.get(currentEntryIndex);
298 idTextField.setText("" + currentEntry.getAddressID());
299 firstNameTextField.setText(currentEntry.getFirstName());
300 lastNameTextField.setText(currentEntry.getLastName());
301 emailTextField.setText(currentEntry.getEmail());
302 phoneTextField.setText(currentEntry.getPhoneNumber());
303 maxTextField.setText("" + numberOfEntries);
304 indexTextField.setText("" + (currentEntryIndex + 1));
305 }
306 }
307
308 // handles call when browseButton is clicked
309 private void browseButtonActionPerformed(ActionEvent evt)
310 {

Fig. 24.32 | A simple address book. (Part 6 of 8.)

results =
 personQueries.getPeopleByLastName(queryTextField.getText());

1096 Chapter 24 Accessing Databases with JDBC

311 try
312 {
313
314 numberOfEntries = results.size();
315
316 if (numberOfEntries != 0)
317 {
318 currentEntryIndex = 0;
319 currentEntry = results.get(currentEntryIndex);
320 idTextField.setText("" + currentEntry.getAddressID());
321 firstNameTextField.setText(currentEntry.getFirstName());
322 lastNameTextField.setText(currentEntry.getLastName());
323 emailTextField.setText(currentEntry.getEmail());
324 phoneTextField.setText(currentEntry.getPhoneNumber());
325 maxTextField.setText("" + numberOfEntries);
326 indexTextField.setText("" + (currentEntryIndex + 1));
327 nextButton.setEnabled(true);
328 previousButton.setEnabled(true);
329 }
330 }
331 catch (Exception e)
332 {
333 e.printStackTrace();
334 }
335 }
336
337 // handles call when insertButton is clicked
338 private void insertButtonActionPerformed(ActionEvent evt)
339 {
340
341
342
343
344 if (result == 1)
345 JOptionPane.showMessageDialog(this, "Person added!",
346 "Person added", JOptionPane.PLAIN_MESSAGE);
347 else
348 JOptionPane.showMessageDialog(this, "Person not added!",
349 "Error", JOptionPane.PLAIN_MESSAGE);
350
351 browseButtonActionPerformed(evt);
352 }
353
354 // main method
355 public static void main(String args[])
356 {
357 new AddressBookDisplay();
358 }
359 } // end class AddressBookDisplay

Fig. 24.32 | A simple address book. (Part 7 of 8.)

results = personQueries.getAllPeople();

int result = personQueries.addPerson(firstNameTextField.getText(),
 lastNameTextField.getText(), emailTextField.getText(),
 phoneTextField.getText());

24.8 PreparedStatements 1097

To add a new entry into the AddressBook database, the user can enter the first name,
last name, email and phone number (the AddressID will autoincrement) in the JTextFields
and press the Insert New Entry JButton. The insertButtonActionPerformed handler (lines
338–352) is called. Lines 340–342 call the method addPerson on the PersonQueries object
to add a new entry to the database. Line 351 calls browseButtonActionPerformed to obtain
the updated set of people in the address book and update the GUI accordingly.

Fig. 24.32 | A simple address book. (Part 8 of 8.)

a) Initial Address Book screen. b) Results of clicking Browse All Entries.

c) Browsing to the next entry. d) Finding entries with the last name Green.

e) After adding a new entry and browsing to it.

1098 Chapter 24 Accessing Databases with JDBC

The user can then view different entries by pressing the Previous JButton or Next
JButton, which results in calls to methods previousButtonActionPerformed (lines 241–
250) or nextButtonActionPerformed (lines 253–262), respectively. Alternatively, the
user can enter a number in the indexTextField and press Enter to view a particular entry.
This results in a call to method indexTextFieldActionPerformed (lines 290–306) to dis-
play the specified record.

24.9 Stored Procedures
Many database management systems can store individual or sets of SQL statements in a
database, so that programs accessing that database can invoke them. Such named collec-
tions of SQL statements are called stored procedures. JDBC enables programs to invoke
stored procedures using objects that implement the interface CallableStatement.
CallableStatements can receive arguments specified with the methods inherited from in-
terface PreparedStatement. In addition, CallableStatements can specify output param-
eters in which a stored procedure can place return values. Interface CallableStatement
includes methods to specify which parameters in a stored procedure are output parameters.
The interface also includes methods to obtain the values of output parameters returned
from a stored procedure.

24.10 Transaction Processing
Many database applications require guarantees that a series of database insertions, updates
and deletions executes properly before the application continues processing the next data-
base operation. For example, when you transfer money electronically between bank ac-
counts, several factors determine if the transaction is successful. You begin by specifying
the source account and the amount you wish to transfer from that account to a destination
account. Next, you specify the destination account. The bank checks the source account
to determine whether its funds are sufficient to complete the transfer. If so, the bank with-
draws the specified amount and, if all goes well, deposits it into the destination account to
complete the transfer. What happens if the transfer fails after the bank withdraws the mon-
ey from the source account? In a proper banking system, the bank redeposits the money
in the source account. How would you feel if the money was subtracted from your source
account and the bank did not deposit the money in the destination account?

Transaction processing enables a program that interacts with a database to treat a
database operation (or set of operations) as a single operation. Such an operation also is known

Portability Tip 24.6
Although the syntax for creating stored procedures differs across database management sys-
tems, the interface CallableStatement provides a uniform interface for specifying input
and output parameters for stored procedures and for invoking stored procedures.

Portability Tip 24.7
According to the Java API documentation for interface CallableStatement, for maxi-
mum portability between database systems, programs should process the update counts
(which indicate how many rows were updated) or ResultSets returned from a Call-
ableStatement before obtaining the values of any output parameters.

24.11 Wrap-Up 1099

as an atomic operation or a transaction. At the end of a transaction, a decision can be
made either to commit the transaction or roll back the transaction. Committing the
transaction finalizes the database operation(s); all insertions, updates and deletions per-
formed as part of the transaction cannot be reversed without performing a new database
operation. Rolling back the transaction leaves the database in its state prior to the database
operation. This is useful when a portion of a transaction fails to complete properly. In our
bank-account-transfer discussion, the transaction would be rolled back if the deposit could
not be made into the destination account.

Java provides transaction processing via methods of interface Connection. Method
setAutoCommit specifies whether each SQL statement commits after it completes (a true
argument) or whether several SQL statements should be grouped as a transaction (a false
argument). If the argument to setAutoCommit is false, the program must follow the last
SQL statement in the transaction with a call to Connection method commit (to commit
the changes to the database) or Connection method rollback (to return the database to
its state prior to the transaction). Interface Connection also provides method getAuto-
Commit to determine the autocommit state for the Connection.

24.11 Wrap-Up
In this chapter, you learned basic database concepts, how to query and manipulate data in
a database using SQL and how to use JDBC to allow Java applications to interact with Java
DB databases. You learned about the SQL commands SELECT, INSERT, UPDATE and DE-
LETE, as well as clauses such as WHERE, ORDER BY and INNER JOIN. You created and config-
ured databases in Java DB by using predefined SQL scripts. You learned the steps for
obtaining a Connection to the database, creating a Statement to interact with the data-
base’s data, executing the statement and processing the results. Then you used a RowSet to
simplify the process of connecting to a database and creating statements. You used Pre-
paredStatements to create precompiled SQL statements. We also provided overviews of
CallableStatements and transaction processing. In the next chapter, you’ll build graphi-
cal user interfaces using JavaFX—Java’s GUI technology of the future.

Summary
Section 24.1 Introduction
• A database (p. 1046) is an integrated collection of data. A database management system (DBMS;

p. 1046) provides mechanisms for storing, organizing, retrieving and modifying data.

• Today’s most popular database management systems are relational database (p. 1046) systems.

• SQL (p. 1046) is the international standard language used to query (p. 1046) and manipulate
relational data.

• Programs connect to, and interact with, relational databases via an interface—software that fa-
cilitates communications between a database management system and a program.

• A JDBC driver (p. 1046) enables Java applications to connect to a database in a particular DBMS
and allows you to retrieve and manipulate database data.

1100 Chapter 24 Accessing Databases with JDBC

Section 24.2 Relational Databases
• A relational database (p. 1047) stores data in tables (p. 1047). Tables are composed of rows

(p. 1047), and rows are composed of columns in which values are stored.

• A table’s primary key (p. 1047) has a unique in each row.

• Each column (p. 1047) of a table represents a different attribute.

• The primary key can be composed of more than one column.

• An identity column is the SQL standard way to represent an autoincremented (p. 1048) column.
The SQL IDENTITY keyword (p. 1048) marks a column as an identity column.

• A foreign key is a column in a table that must match the primary-key column in another table.
This is known as the Rule of Referential Integrity (p. 1050).

• A one-to-many relationship (p. 1051) between tables indicates that a row in one table can have
many related rows in a separate table.

• Every column in a primary key must have a value, and the value of the primary key must be
unique. This is known as the Rule of Entity Integrity (p. 1051).

• Foreign keys enable information from multiple tables to be joined together. There’s a one-to-
many relationship between a primary key and its corresponding foreign key.

Section 24.4.1 Basic SELECT Query
• The basic form of a query (p. 1052) is

SELECT * FROM tableName

where the asterisk (*; p. 1052) indicates that all columns from tableName should be selected,
and tableName specifies the table in the database from which rows will be retrieved.

• To retrieve specific columns, replace the * with a comma-separated list of column names.

Section 24.4.2 WHERE Clause
• The optional WHERE clause (p. 1053) in a query specifies the selection criteria for the query. The

basic form of a query with selection criteria (p. 1052) is

SELECT columnName1, columnName2, … FROM tableName WHERE criteria

• The WHERE clause can contain operators <, >, <=, >=, =, <> and LIKE. LIKE (p. 1053) is used for
string pattern matching (p. 1053) with wildcard characters percent (%) and underscore (_).

• A percent character (%; p. 1053) in a pattern indicates that a string matching the pattern can
have zero or more characters at the percent character’s location in the pattern.

• An underscore (_ ; p. 1053) in the pattern string indicates a single character at that position in
the pattern.

Section 24.4.3 ORDER BY Clause
• A query’s result can be sorted with the ORDER BY clause (p. 1055). The simplest form of an ORDER

BY clause is

SELECT columnName1, columnName2, … FROM tableName ORDER BY column ASC
SELECT columnName1, columnName2, … FROM tableName ORDER BY column DESC

where ASC specifies ascending order, DESC specifies descending order and column specifies the col-
umn on which the sort is based. The default sorting order is ascending, so ASC is optional.

• Multiple columns can be used for ordering purposes with an ORDER BY clause of the form

ORDER BY column1 sortingOrder, column2 sortingOrder, …

 Summary 1101

• The WHERE and ORDER BY clauses can be combined in one query. If used, ORDER BY must be the
last clause in the query.

Section 24.4.4 Merging Data from Multiple Tables: INNER JOIN
• An INNER JOIN (p. 1057) merges rows from two tables by matching values in columns that are

common to the tables. The basic form for the INNER JOIN operator is:

SELECT columnName1, columnName2, …
FROM table1
INNER JOIN table2
 ON table1.columnName = table2.columnName

The ON clause (p. 1057) specifies the columns from each table that are compared to determine
which rows are joined. If a SQL statement uses columns with the same name from multiple ta-
bles, the column names must be fully qualified (p. 1057) by prefixing them with their table
names and a dot (.).

Section 24.4.5 INSERT Statement
• An INSERT statement (p. 1058) inserts a new row into a table. The basic form of this statement is

INSERT INTO tableName (columnName1, columnName2, …, columnNameN)
 VALUES (value1, value2, …, valueN)

where tableName is the table in which to insert the row. The tableName is followed by a comma-
separated list of column names in parentheses. The list of column names is followed by the SQL
keyword VALUES (p. 1058) and a comma-separated list of values in parentheses.

• SQL uses single quotes (') to delimit strings. To specify a string containing a single quote in
SQL, escape the single quote with another single quote (i.e., '').

Section 24.4.6 UPDATE Statement
• An UPDATE statement (p. 1059) modifies data in a table. The basic form of an UPDATE statement is

UPDATE tableName
 SET columnName1 = value1, columnName2 = value2, …, columnNameN = valueN
 WHERE criteria

where tableName is the table to update. Keyword SET (p. 1059) is followed by a comma-separated
list of columnName = value pairs. The optional WHERE clause determines which rows to update.

Section 24.4.7 DELETE Statement
• A DELETE statement (p. 1060) removes rows from a table. The simplest form for a DELETE state-

ment is

DELETE FROM tableName WHERE criteria

where tableName is the table from which to delete a row (or rows). The optional WHERE criteria
determines which rows to delete. If this clause is omitted, all the table’s rows are deleted.

Section 24.5 Setting up a Java DB Database
• Oracle’s pure Java database Java DB (p. 1060) is installed with the JDK on Windows, Mac OS

X and Linux.

• Java DB has both an embedded version and a network version.

• The Java DB software is located in the db subdirectory of your JDK’s installation directory.

• Java DB comes with several files that enable you to configure and run it. Before executing these
files from a command window, you must set the environment variable JAVA_HOME to refer to the
JDK’s exact installation directory.

1102 Chapter 24 Accessing Databases with JDBC

• You use the setEmbeddedCP.bat or setEmbeddedCP file (depending on your OS platform) to con-
figure the CLASSPATH for working with Java DB embedded databases.

• The Java DB ij tool allows you to interact with Java DB from the command line. You can use
it to create databases, run SQL scripts and perform SQL queries. Each command you enter at
the ij> prompt must be terminated with a semicolon (;).

Section 24.6.1 Connecting to and Querying a Database
• Package java.sql contains classes and interfaces for accessing relational databases in Java.

• A Connection object (p. 1065) manages the connection between a Java program and a database.
Connection objects enable programs to create SQL statements that access data.

• DriverManager (p. 1065) method getConnection (p. 1065) attempts to connect to a database at
a URL that specifies the protocol for communication, the subprotocol (p. 1065) for communi-
cation and the database name.

• Connection method createStatement (p. 1066) creates a Statement object (p. 1066), which can
be used to submit SQL statements to the database.

• Statement method executeQuery (p. 1066) executes a query and returns a ResultSet object
(p. 1066). ResultSet methods enable a program to manipulate query results.

• A ResultSetMetaData object (p. 1066) describes a ResultSet’s contents. Programs can use meta-
data programmatically to obtain information about the ResultSet column names and types.

• ResultSetMetaData method getColumnCount (p. 1066) retrieves the number of ResultSet col-
umns.

• ResultSet method next (p. 1066) positions the ResultSet cursor to the next row and returns
true if the row exists; otherwise, it returns false. This method must be called to begin processing
a ResultSet because the cursor is intially positioned before the first row.

• It’s possible to extract each ResultSet column as a specific Java type. ResultSetMetaData method
getColumnType (p. 1066) returns a Types (p. 1067) constant (package java.sql) indicating the
column’s type.

• ResultSet get methods typically receive as an argument either a column number (as an int) or a
column name (as a String) indicating which column’s value to obtain.

• ResultSet row and column numbers start at 1.

• Each Statement object can open only one ResultSet at a time. When a Statement returns a new
ResultSet, the Statement closes the prior ResultSet.

Section 24.6.2 Querying the books Database
• TableModel (p. 1067) method getColumnClass (p. 1068) returns a Class object that represents

the superclass of all objects in a particular column. A JTable (p. 1067) uses this information to
set up the default cell renderer and cell editor for that column in a JTable.

• Connection method createStatement has an overloaded version that receives the result type and
concurrency. The result type specifies whether the ResultSet’s cursor is able to scroll in both di-
rections or forward only and whether the ResultSet is sensitive to changes. The result concur-
rency (p. 1072) specifies whether the ResultSet can be updated.

• Some JDBC drivers (p. 1072) do not support scrollable or updatable ResultSets.

• ResultSetMetaData method getColumnClassName (p. 1073) obtains a column’s fully qualified
class name.

• TableModel method getColumnCount (p. 1073) returns the number of columns in the ResultSet.

• TableModel method getColumnName (p. 1073) returns the column name in the ResultSet.

 Summary 1103

• ResultSetMetaData method getColumnName (p. 1073) obtains a ResultSet column’s name.

• TableModel method getRowCount (p. 1073) returns the number of rows in the model’s ResultSet.

• TableModel method getValueAt (p. 1073) returns the Object at a particular row and column of
the model’s underlying ResultSet.

• ResultSet method absolute (p. 1073) positions the ResultSet cursor at a specific row.

• AbstractTableModel method fireTableStructureChanged (p. 1074) notifies any JTable using a
particular TableModel object as its model that the data in the model has changed.

Section 24.7 RowSet Interface
• Interface RowSet (p. 1080) configures a database connection and executes a query automatically.

• A connected RowSet (p. 1080) remains connected to the database while the object is in use. A
disconnected RowSet (p. 1080) connects, executes a query, then closes the connection.

• JdbcRowSet (p. 1080) (a connected RowSet) wraps a ResultSet object and allows you to scroll and
update its rows. Unlike a ResultSet object, a JdbcRowSet is scrollable and updatable by default.

• CachedRowSet (p. 1080), a disconnected RowSet, caches a ResultSet’s data in memory. A
CachedRowSet is scrollable and updatable. A CachedRowSet is also serializable.

• Class RowSetProvider (package javax.sql.rowset; p. 1080) provides static method newFacto-
ry which returns an object that implements interface RowSetFactory (package javax.sql.row-
set) that can be used to create various types of RowSets.

• RowSetFactory (p. 1080) method createJdbcRowSet returns a JdbcRowSet object.

• JdbcRowSet method setUrl specifies the database URL.

• JdbcRowSet method setUsername specifies the username.

• JdbcRowSet method setPassword specifies the password.

• JdbcRowSet method setCommand specifies the SQL query that will be used to populate a RowSet.

• JdbcRowSet method execute executes the SQL query. Method execute performs establishes a
Connection to the database, prepares the query Statement, executes the query and stores the Re-
sultSet returned by query. The Connection, Statement and ResultSet are encapsulated in the
JdbcRowSet object.

Section 24.8 PreparedStatements
• PreparedStatements (p. 1082) are compiled, so they execute more efficiently than Statements.

• PreparedStatements can have parameters, so the same query can execute with different arguments.

• A parameter is specified with a question mark (?) in the SQL statement. Before executing a Pre-
paredStatement, you must use PreparedStatement’s set methods to specify the arguments.

• PreparedStatement method setString’s (p. 1082) first argument represents the parameter num-
ber being set and the second argument is that parameter’s value.

• Parameter numbers are counted from 1, starting with the first question mark (?).

• Method setString automatically escapes String parameter values as necessary.

• Interface PreparedStatement provides set methods for each supported SQL type.

Section 24.9 Stored Procedures
• JDBC enables programs to invoke stored procedures (p. 1098) using CallableStatement

(p. 1098) objects.

• CallableStatement can specify input parameters. CallableStatement can specify output param-
eters (p. 1098) in which a stored procedure can place return values.

1104 Chapter 24 Accessing Databases with JDBC

Section 24.10 Transaction Processing
• Transaction processing (p. 1098) enables a program that interacts with a database to treat a da-

tabase operation (or set of operations) as a single operation—known as an atomic operation
(p. 1099) or a transaction (p. 1099).

• At the end of a transaction, a decision can be made to either commit or roll back the transaction.

• Committing a transaction (p. 1099) finalizes the database operation(s)—inserts, updates and de-
letes cannot be reversed without performing a new database operation.

• Rolling back a transaction (p. 1099) leaves the database in its state prior to the database operation.

• Java provides transaction processing via methods of interface Connection.

• Method setAutoCommit (p. 1099) specifies whether each SQL statement commits after it com-
pletes (a true argument) or whether several SQL statements should be grouped as a transaction.

• When autocommit is disabled, the program must follow the last SQL statement in the transac-
tion with a call to Connection method commit (to commit the changes to the database; p. 1099)
or Connection method rollback (to return the database to its state prior to the transaction;
p. 1099).

• Method getAutoCommit (p. 1099) determines the autocommit state for the Connection.

Self-Review Exercise
24.1 Fill in the blanks in each of the following statements:

a) The international standard database language is .
b) A table in a database consists of and .
c) Statement objects return SQL query results as objects.
d) The uniquely identifies each row in a table.
e) SQL keyword is followed by the selection criteria that specify the rows to

select in a query.
f) SQL keywords specify the order in which rows are sorted in a query.
g) Merging rows from multiple database tables is called the tables.
h) A(n) is an organized collection of data.
i) A(n) is a set of columns whose values match the primary-key values of an-

other table.
j) method is used to obtain a Connection to a database.
k) Interface helps manage the connection between a Java program and a data-

base.
l) A(n) object is used to submit a query to a database.
m) Unlike a ResultSet object, and objects are scrollable and updat-

able by default.
n) , a disconnected RowSet, caches the data of a ResultSet in memory.

Answers to Self-Review Exercise
24.1 a) SQL. b) rows, columns. c) ResultSet. d) primary key. e) WHERE. f) ORDER BY. g) joining.
h) database. i) foreign key. j) DriverManager, getConnection. k) Connection. l) Statement.
m) JdbcRowSet, CachedRowSet. n) CachedRowSet.

Exercises
24.2 (Query Application for the books Database) Using the techniques shown in this chapter, de-
fine a complete query application for the books database. Provide the following predefined queries:

 Exercises 1105

a) Select all authors from the Authors table.
b) Select a specific author and list all books for that author. Include each book’s title, year

and ISBN. Order the information alphabetically by the author’s last name then by first
name.

c) Select a specific title and list all authors for that title. Order the authors alphabetically
by last name then by first name.

d) Provide any other queries you feel are appropriate.

Display a JComboBox with appropriate names for each predefined query. Also allow users to supply
their own queries.

24.3 (Data-Manipulation Application for the books Database) Define a data-manipulation ap-
plication for the books database. The user should be able to edit existing data and add new data to
the database (obeying referential and entity integrity constraints). Allow the user to edit the database
in the following ways:

a) Add a new author.
b) Edit the existing information for an author.
c) Add a new title for an author. (Remember that the book must have an entry in the Au-

thorISBN table.).
d) Add a new entry in the AuthorISBN table to link authors with titles.

24.4 (Employee Database) In Section 10.5, we introduced an employee-payroll hierarchy to cal-
culate each employee’s payroll. In this exercise, we provide a database of employees that corresponds
to the employee-payroll hierarchy. (A SQL script to create the employees database is provided with
the examples for this chapter.) Write an application that allows the user to:

a) Add employees to the employee table.
b) Add payroll information to the appropriate table for each new employee. For example,

for a salaried employee add the payroll information to the salariedEmployees table.

Figure 24.33 is the entity-relationship diagram for the employees database.

24.5 (Employee Database Query Application) Modify Exercise 24.4 to provide a JComboBox and
a JTextArea to allow the user to perform a query that is either selected from the JComboBox or de-
fined in the JTextArea. Sample predefined queries are:

a) Select all employees working in Department SALES.
b) Select hourly employees working over 30 hours.
c) Select all commission employees in descending order of the commission rate.

24.6 (Employee Database Data-Manipulation Application) Modify Exercise 24.5 to perform
the following tasks:

a) Increase base salary by 10% for all base-plus-commission employees.
b) If the employee’s birthday is in the current month, add a $100 bonus.
c) For all commission employees with gross sales over $10,000, add a $100 bonus.

24.7 (Address Book Modification: Update an Existing Entry) Modify the program in Figs. 24.30–
24.32 to provide a JButton that allows the user to call a method named updatePerson in PersonQue-
ries class to update the current entry in the AddressBook database.

24.8 (Address Book Modification: Delete an Existing Entry) Modify the program of Exercise 24.7
to provide a JButton that allows the user to call a method named deletePerson in PersonQueries
class to delete the current entry in the AddressBook database.

24.9 (Optional Project: ATM Case Study with a Database) Modify the optional ATM Case
Study (online Chapters 33–34) to use an actual database to store the account information. We pro-
vide a SQL script to create BankDatabase, which has a single table consisting of four columns—
AccountNumber (an int), PIN (an int), AvailableBalance (a double) and TotalBalance (a double).

1106 Chapter 24 Accessing Databases with JDBC

Fig. 24.33 | Table relationships in the employees database.

1

1

1

1

1

1 1

1

employees

departmentName

employeeType

birthday

lastName

firstName

socialSecurityNumber

basePluscommissionEmployees

bonus

baseSalary

commissionRate

grossSales

socialSecurityNumber

hourlyEmployees

bonus

wage

hours

socialSecurityNumber

salariedEmployees

bonus

weeklySalary

socialSecurityNumber

commissionEmployees

bonus

commissionRate

grossSales

socialSecurityNumber

25JavaFX GUI: Part 1

But, soft! what light through
yonder window breaks?
It is the east, and Juliet is
the sun!
—William Shakespeare

Even a minor event in the life of
a child is an event of that child’s
world and thus a world event.
—Gaston Bachelard

… the wisest prophets make sure
of the event first.
—Horace Walpole

Do you think I can listen all day
to such stuff?
—Lewis Carroll

O b j e c t i v e s
In this chapter you’ll:

■ Build JavaFX GUIs and
handle events generated by
user interactions with them.

■ Understand the structure of a
JavaFX app window.

■ Use JavaFX Scene Builder to
create FXML files that
describe JavaFX scenes
containing Labels,
ImageViews, TextFields,
Sliders and Buttons
without writing any code.

■ Arrange GUI components
using the VBox and
GridPane layout containers.

■ Use a controller class to
define event handlers for
JavaFX FXML GUI.

■ Build two JavaFX apps.

1108 Chapter 25 JavaFX GUI: Part 1

25.1 Introduction
[Note: The prerequisites for this chapter are Chapters 1–11. This chapter does not require
that you’ve read Chapter 12, GUI Components: Part 1, which discusses Swing GUI.]

A graphical user interface (GUI) presents a user-friendly mechanism for interacting with
an app. A GUI (pronounced “GOO-ee”) gives an app a distinctive “look-and-feel.” GUIs
are built from GUI components. These are sometimes called controls or widgets—short for
window gadgets. A GUI component is an object with which the user interacts via the
mouse, the keyboard or another form of input, such as voice recognition.

History of GUI in Java
Java’s original GUI library was the Abstract Window Toolkit (AWT). Swing (Chapters 12
and 22) was added to the platform in Java SE 1.2. Since then, Swing has remained the pri-
mary Java GUI technology. Swing is now in maintenance mode—Oracle has stopped de-
velopment and will provide only bug fixes going forward; however, it will remain part of
Java and is still widely used.

Java’s GUI, graphics and multimedia API of the future is JavaFX. Sun Microsystems
(acquired by Oracle in 2010) announced JavaFX in 2007 as a competitor to Adobe Flash
and Microsoft Silverlight. JavaFX 1.0 was released in 2008. Prior to version 2.0, devel-
opers used JavaFX Script—which was similar to JavaScript—to write JavaFX apps. The
JavaFX Script source code compiled to Java bytecode, allowing JavaFX apps to run on the
Java Virtual Machine. Starting with version 2.0 in 2011, JavaFX was reimplemented as a
set of Java libraries that could be used directly in Java apps. Some of the benefits of JavaFX
vs. Swing include:

25.1 Introduction
25.2 JavaFX Scene Builder and the

NetBeans IDE
25.3 JavaFX App Window Structure
25.4 Welcome App—Displaying Text and

an Image
25.4.1 Creating the App’s Project
25.4.2 NetBeans Projects Window—

Viewing the Project Contents
25.4.3 Adding an Image to the Project
25.4.4 Opening JavaFX Scene Builder from

NetBeans
25.4.5 Changing to a VBox Layout Container
25.4.6 Configuring the VBox Layout

Container

25.4.7 Adding and Configuring a Label
25.4.8 Adding and Configuring an

ImageView
25.4.9 Running the Welcome App

25.5 Tip Calculator App—Introduction to
Event Handling

25.5.1 Test-Driving the Tip Calculator App
25.5.2 Technologies Overview
25.5.3 Building the App’s GUI
25.5.4 TipCalculator Class
25.5.5 TipCalculatorController Class

25.6 Features Covered in the Online
JavaFX Chapters

25.7 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

Look-and-Feel Observation 25.1
Providing different apps with consistent, intuitive user-interface components gives users a
sense of familiarity with a new app, so that they can learn it more quickly and use it more
productively.

25.2 JavaFX Scene Builder and the NetBeans IDE 1109

• JavaFX is easier to use—it provides one API for GUI, graphics and multimedia
(images, animation, audio and video), whereas Swing is only for GUIs, so you
need to use other APIs for graphics and multimedia apps.

• With Swing, many IDEs provided GUI design tools for dragging and dropping
components onto a layout; however, each IDE produced different code. JavaFX
Scene Builder (Section 25.2) can be used standalone or integrated with many
IDEs and it produces the same code regardless of the IDE.

• Though Swing components could be customized, JavaFX gives you complete
control over a JavaFX GUI’s look-and-feel (online Chapter 26) via Cascading
Style Sheets (CSS).

• JavaFX was designed for improved thread safety, which is important for today’s
multi-core systems.

• JavaFX supports transformations for repositioning and reorienting JavaFX com-
ponents, and animations for changing the properties of JavaFX components over
time. These can be used to make apps more intuitive and easier to use.

JavaFX Version Used in This Chapter
In this chapter, we use JavaFX 2.2 (released in late 2012) with Java SE 7. We tested the
chapter’s apps on Windows, Mac OS X and Linux. At the time of this writing, Oracle was
about to release JavaFX 8 and Java SE 8. Our online Chapters 26 and 27—located on the
book’s companion website (see the inside front cover of this book)—present additional
JavaFX GUI features and introduce JavaFX graphics and multimedia features in the con-
text of JavaFX 8 and Java SE 8.

25.2 JavaFX Scene Builder and the NetBeans IDE
Most Java textbooks that introduce GUI programming provide hand-coded GUIs—that
is, the authors build the GUIs from scratch in Java code, rather than using a visual GUI
design tool. This is due to the fractured Java IDE market—there are many Java IDEs, so
authors can’t depend on any one IDE being used.

JavaFX is organized differently. The JavaFX Scene Builder tool is a standalone JavaFX
GUI visual layout tool that can also be used with various IDEs, including the most popular
ones—NetBeans, Eclipse and IntelliJ IDEA. JavaFX Scene Builder is most tightly inte-
grated with NetBeans,1 which is why we use it in our JavaFX presentation.

JavaFX Scene Builder enables you to create GUIs by dragging and dropping GUI
components from Scene Builder’s library onto a design area, then modifying and styling
the GUI—all without writing any code. JavaFX Scene Builder’s live editing and preview
features allow you to view your GUI as you create and modify it, without compiling and
running the app. You can use Cascading Style Sheets (CSS) to change the entire look-
and-feel of your GUI—a concept sometimes called skinning. In online Chapter 26, we’ll
demonstrate the basics of styling with CSS.

In this chapter, we use JavaFX Scene Builder version 1.1 and NetBeans 7.4 to create
two complete introductory JavaFX apps. Online Chapters 26–27 use JavaFX Scene
Builder 2.0, which was about to be released when this book went to publication.

1. http://www.oracle.com/technetwork/java/javafx/tools/index.html.

http://www.oracle.com/technetwork/java/javafx/tools/index.html

1110 Chapter 25 JavaFX GUI: Part 1

What is FXML?
As you create and modify a GUI, JavaFX Scene Builder generates FXML (FX Markup
Language)—an XML vocabulary for defining and arranging JavaFX GUI controls with-
out writing any Java code. You do not need to know FXML or XML to study this chapter.
As you’ll see in Section 25.4, JavaFX Scene Builder hides the FXML details from you, so
you can focus on defining what the GUI should contain without specifying how to gener-
ate it—this is another example of declarative programming, which we used with Java SE
lambdas in Chapter 17.

25.3 JavaFX App Window Structure
A JavaFX app window consists of several parts (Fig. 25.1) that you’ll use in Sections 25.4–
25.5:

• The window in which a JavaFX app’s GUI is displayed is known as the stage and
is an instance of class Stage (package javafx.stage).

• The stage contains one active scene that defines the GUI as a scene graph—a tree
data structure of an app’s visual elements, such as GUI controls, shapes, images, vid-
eo, text and more. The scene is an instance of class Scene (package javafx.scene).

• Each visual element in the scene graph is a node—an instance of a subclass of
Node (package javafx.scene), which defines common attributes and behaviors
for all nodes in the scene graph. With the exception of the first node in the scene
graph—known as the root node—each node has one parent. Nodes can have
transforms (e.g., moving, rotating, scaling and skewing), opacity (which controls
whether a node is transparent, partially transparent or opaque), effects (e.g., drop
shadows, blurs, reflection and lighting) and more that we’ll introduce in online
Chapter 26.

Software Engineering Observation 25.1
The FXML code is separate from the program logic that’s defined in Java source code—
this separation of the interface (the GUI) from the implementation (the Java code) makes
it easier to debug, modify and maintain JavaFX GUI apps.

Fig. 25.1 | JavaFX app window parts.

Each of the JavaFX
components in this GUI is a
node in the scene graph

The root node of this scene’s scene
graph is a layout container that
arranges the other nodes

The window is known as the stage

The stage’s scene contains
a scene graph of nodes

25.4 Welcome App—Displaying Text and an Image 1111

• Nodes that have children are typically layout containers that arrange their child
nodes in the scene. You’ll use two layout containers (VBox and GridPane) in this
chapter and learn several more in online Chapters 26–27.

• The nodes arranged in a layout container are a combination of controls and, in
more complex GUIs, possibly other layout containers. Controls are GUI compo-
nents, such as Labels that display text, TextFields that enable a program to re-
ceive text typed by the user, Buttons that initiate actions and more. When the
user interacts with a control, such as clicking a Button, the control generates an
event. Programs can respond to these events—known as event handling—to
specify what should happen when each user interaction occurs.

• An event handler is a method that responds to a user interaction. An FXML
GUI’s event handlers are defined in a so-called controller class (as you’ll see in
Section 25.5.5).

25.4 Welcome App—Displaying Text and an Image
In this section, without writing any code you’ll build a JavaFX Welcome app that displays text
in a Label and an image in an ImageView (Fig. 25.2). First, you’ll create a JavaFX app project
in the NetBeans IDE. Then, you’ll use visual-programming techniques and JavaFX Scene
Builder to drag-and-drop JavaFX components onto the design area. Next, you’ll use JavaFX
Scene Builder’s Inspector window to configure options, such as the Labels’s text and font
size, and the ImageView’s image. Finally, you’ll execute the app from NetBeans. This section
assumes that you’ve read the Before You Begin section, and installed NetBeans and Scene
Builder. We used NetBeans 7.4, Scene Builder 1.1 and Java SE 7 for this chapter’s examples.

25.4.1 Creating the App’s Project
You’ll now use NetBeans to create a JavaFX FXML App. Open NetBeans on your system.
Initially, the Start Page (Fig. 25.3) is displayed—this page gives you links to the NetBeans
documentation and displays a list of your recent projects, if any.

Fig. 25.2 | Final Welcome app running on Windows 7.

Label component

ImageView components

1112 Chapter 25 JavaFX GUI: Part 1

Creating a New Project
To create an app, you must first create a project—a group of related files, such as code files
and images that make up an app. Click the New Project… () button on the toolbar or
select File > New Project… to display the New Project dialog (Fig. 25.4). Under Categories,
select JavaFX and under Projects select JavaFX FXML Application, then click Next >.

Fig. 25.3 | NetBeans IDE showing the Start Page.

Fig. 25.4 | New Project dialog.

25.4 Welcome App—Displaying Text and an Image 1113

New JavaFX Application Dialog
In the New JavaFX Application dialog (Fig. 25.5), specify the following information:

1. Project Name: field—This is your app’s name. Enter Welcome in this field.

2. Project Location: field—The project’s location on your system. NetBeans places
new projects in a subdirectory of NetBeansProjects within your user account’s
Documents folder. You can click the Browse… button to specify a different loca-
tion. Your project’s name is used as the subdirectory name.

3. FXML name: field—The name of the FXML filename that will contain the app’s
GUI. Enter Welcome here—the IDE creates the file Welcome.fxml in the project.

4. Create Application Class: checkbox—When this is checked, NetBeans creates a
class with the specified name. This class contains the app’s main method. Enter
Welcome in this field. If you precede the class name with a package name, Net-
Beans creates the class in that package; otherwise, NetBeans will place the class in
the default package.

Click Finish to create the project.

25.4.2 NetBeans Projects Window—Viewing the Project Contents
The NetBeans Projects window provides access to all of your projects. The Welcome node
represents this app’s project. You can have many projects open at once—each will have its
own top-level node. Within a project’s node, the contents are organized into folders and
files. You can view the Welcome project’s contents by expanding the Welcome > Source

Fig. 25.5 | New JavaFX Application dialog.

1114 Chapter 25 JavaFX GUI: Part 1

Packages > <default package> node (Fig. 25.6). If you specified a package name for the
app class in Fig. 25.5, then that package’s name will appear rather than <default package>.

NetBeans creates and opens three files for a JavaFX FXML Application project:

• Welcome.fxml—This file contains the FXML markup for the GUI. By default,
the IDE creates a GUI containing a Button and a Label.

• Welcome.java—This is the main class that creates the GUI from the FXML file
and displays the GUI in a window.

• WelcomeController.java—This is the class in which you’d define the GUI’s
event handlers that allow the app to respond to user interactions with the GUI.

In Section 25.5, when we present an app with event handlers, we’ll discuss the main app
class and the controller class in detail. For the Welcome app, you will not edit any of these
files in NetBeans, so you can close them. You do not need the WelcomeController.java
file in this app, so you can right click the file in the Projects window and select Delete to
remove it. Click Yes in the confirmation dialog to delete the file.

25.4.3 Adding an Image to the Project
One way to use an image in your app is to add its file to the project, then display it on an
ImageView. The bug.png image you’ll use for this app is located in the images subfolder
of this chapter’s examples folder. Locate the images folder on your file system, then drag
bug.png onto the project’s <default package> node to add the file to the project.

25.4.4 Opening JavaFX Scene Builder from NetBeans
You’ll now open JavaFX Scene Builder so that you can create this app’s GUI. To do so,
right click Welcome.fxml in the Projects window, then select Open to view the FXML file
in Scene Builder (Fig. 25.7).

Deleting the Default Controls
The FXML file provided by NetBeans contains a default GUI consisting of a Button con-
trol and a Label control. The Welcome app will not use these default controls, so you can
delete them. To do so, click each in the content panel (or in the Hierarchy window at the
bottom-left of Scene Builder’s window), then press the Backspace or Delete key. In each
case, Scene Builder displays the warning “Some components have an fx:id. Do you really
want to delete them?”. This means that there could be Java code in the project that refers

Fig. 25.6 | NetBeans Projects window.

Expanded node

Collapsed node

25.4 Welcome App—Displaying Text and an Image 1115

to these controls—for this app, there will not be any such code, so you can click Delete to
remove these controls.

Deleting the Reference to the WelcomeController Class
As you’ll learn in Section 25.5, in Scene Builder, you can specify the name of the controller
class that contains methods for responding to the user’s interactions with the GUI. The
Welcome app does not need to respond to any user interactions, so you’ll remove the ref-
erence in the FXML file to class WelcomeController. To do so, select the AnchorPane
node in the Hierarchy window, then click the Inspector window’s Code section to expand
it and delete the value specified in the Controller class field. You’re now ready to create the
Welcome app’s GUI.

25.4.5 Changing to a VBox Layout Container
For this app, you’ll place a Label and an ImageView in a VBox layout container (package
javafx.scene.layout), which will be the scene graph’s root node. Layout containers help
you arrange and size GUI components. A VBox arranges its nodes vertically from top to
bottom. VBox is one of several JavaFX layout containers for arranging controls in a GUI.
We discuss the GridPane layout container in Section 25.5 and several others in online
Chapter 26. By default, NetBeans provides an AnchorPane as the root layout. To change
from the default AnchorPane to a VBox:

ii

Fig. 25.7 | JavaFX Scene Builder displaying the default GUI in Welcome.fxml.

The Library contains JavaFX Containers,
Controls and other items that can be dragged
and dropped on the canvas

The Hierarchy window shows the structure of the
GUI and allows you to select and reorganize controls

You use the
content panel to
design the GUI

You use the Inspector window to
configure the currently selected item in
the content panel

1116 Chapter 25 JavaFX GUI: Part 1

1. Adding a VBox to the Default Layout. Drag a VBox from the Library window’s
Containers section onto the default AnchorPane in Scene Builder’s content panel.

2. Making the VBox the Root Layout. Select Edit > Trim Document to Selection to
make the VBox the root layout and remove the AnchorPane.

25.4.6 Configuring the VBox Layout Container
You’ll now specify the VBox’s alignment, initial size and padding:

1. Specifying the VBox’s Alignment. A VBox’s alignment determines the layout posi-
tioning of the VBox’s children. In this app, we’d like each child node (the Label and
the ImageView) to be centered horizontally in the scene, and we’d like both children
to be centered vertically, so that there is an equal amount of space above the Label
and below the ImageView. To accomplish this, select the VBox, then in the Inspec-
tor’s Properties section, set the Alignment property to CENTER. When you set the
Alignment, notice the variety of potential alignment values you can use.

2. Specifying the VBox’s Preferred Size. The preferred size (width and height) of the
scene graph’s root node is used by the scene to determine its window size when
the app begins executing. To set the preferred size, select the VBox, then in the
Inspector’s Layout section, set the Pref Width property to 450 and the Pref Height
property to 300.

25.4.7 Adding and Configuring a Label
Next, you’ll create the Label that displays "Welcome to JavaFX!":

1. Adding a Label to the VBox. Drag a Label from the Library window’s Controls
section onto the VBox. The Label is automatically centered in the VBox because
you set the VBox’s alignment to CENTER in Section 25.4.6.

2. Changing the Label’s text. You can set a Label’s text either by double clicking it
and typing the text, or by selecting the Label and setting its Text property in the
Inspector’s Properties section. Set the Label’s text to "Welcome to JavaFX!".

3. Changing the Label’s font. For this app, we set the Label to display in a large bold
font. To do so, select the Label, then in the Inspector’s Preferences section, click
the value to the right of the Font property. In the window that appears, set the
style property to Bold and the size property to 30.

25.4.8 Adding and Configuring an ImageView
Finally, you’ll add the ImageView that displays bug.png:

1. Adding an ImageView to the VBox. Drag an ImageView from the Library window’s
Controls section onto the VBox. The ImageView is automatically placed below the
Label. Each new control you add to a VBox is placed below the VBox’s other chil-
dren, though you can change the order by dragging the children in Scene Build-
er’s Hierarchy window. Like the Label, the ImageView is also automatically
centered in the VBox.

2. Setting the ImageViews’s image. To set the image to display, select the ImageView
and click the ellipsis (…) button to the right of the Image property in the Inspec-

25.4 Welcome App—Displaying Text and an Image 1117

tor’s Properties section. By default, Scene Builder opens a dialog showing the
project’s source-code folder, which is where you placed the image file bug.png in
Section 25.4.3. Select the image file, then click Open. Scene Builder displays the
image and resizes the ImageView to match the image’s aspect ratio—the ratio of
the image’s width to its height—by setting the ImageView’s Fit Width and Fit
Height properties.

3. Changing the ImageView’s size. We’d like to display the image in its original size.
To do so, you must delete the default values for the ImageView’s Fit Width and Fit
Height properties, which are located in the Inspector’s Layout section. Once you
delete these values, Scene Builder resizes the ImageView to the image’s exact di-
mensions. Save the FXML file.

You’ve now completed the GUI. Scene Builder’s content panel should now appear as
shown in Fig. 25.8.

25.4.9 Running the Welcome App
You can run the app from NetBeans in one of three ways:

• Select the project’s root node in the NetBeans Projects window, then click the
Run Project () button on the toolbar.

• Select the project’s root node in the NetBeans Projects window, then press F6.

• Right click the project’s root node in the NetBeans Projects window, then select
Run.

In each case, the IDE will compile the app (if it isn’t already compiled), then run the app.
The Welcome app should now appear as shown in Fig. 25.2.

Fig. 25.8 | Completed design of the Welcome app’s GUI in Scene Builder.

1118 Chapter 25 JavaFX GUI: Part 1

25.5 Tip Calculator App—Introduction to Event
Handling
The Tip Calculator app (Fig. 25.9(a)) calculates and displays a restaurant bill tip and total.
By default, the app calculates the total with a 15% tip. You can specify a tip percentage
from 0% to 30% by moving the Slider thumb—this updates the tip percentage
(Fig. 25.9(b) and (c)). In this section, you’ll build a Tip Calculator app using several JavaFX
components and learn how to respond to user interactions with the GUI.

Fig. 25.9 | Entering the bill amount and calculating the tip.

Move the Slider thumb to
change the tip percentage

a) Initial Tip Calculator GUI

Current tip percentage
is displayed in this Label

User enters bill amount in this
TextField

Title bar

b) GUI after user enters the amount 34.56
and clicks the Calculate Button

User clicks the Calculate
Button to display the tip
and total

c) GUI after user moves the Slider’s thumb to change the tip
percentage to 20% then clicks the Calculate Button

Updated tip percentage
after user moved the

Slider’s thumb

25.5 Tip Calculator App—Introduction to Event Handling 1119

You’ll begin by test-driving the app, using it to calculate 15% and 10% tips. Then
we’ll overview the technologies you’ll use to create the app. You’ll build the app’s GUI
using the NetBeans and JavaFX SceneBuilder. Finally, we’ll present the complete Java
code for the app and do a detailed code walkthrough.

25.5.1 Test-Driving the Tip Calculator App
Opening and Running the App
Open the NetBeans IDE, then perform the following steps to open the Tip Calculator app’s
project and run it:

1. Opening the Tip Calculator app’s project. Select File > Open Project… or click the
Open Project… () button on the toolbar to display the Open Project dialog.
Navigate to this chapter’s examples folder, select TipCalculator and click the
Open Project button. A TipCalculator node now appears in the Projects window.

2. Running the Tip Calculator app. Right click the TipCalculator project in the
Projects window, then click the Run Project () button on the toolbar.

Entering a Bill Total
Using your keyboard, enter 34.56, then press the Calculate Button. The Tip and Total
TextFields show the tip amount and the total bill for a 15% tip (Fig. 25.9(b)).

Selecting a Custom Tip Percentage
Use the Slider to specify a custom tip percentage. Drag the Slider’s thumb until the per-
centage reads 20% (Fig. 25.9(c)), then press the Calculate Button to display the updated
tip and total. As you drag the thumb, the tip percentage in the Label to the Slider’s left
updates continuously. By default, the Slider allows you to select values from 0.0 to 100.0,
but in this app we’ll restrict the Slider to selecting whole numbers from 0 to 30.

25.5.2 Technologies Overview
This section introduces the technologies you’ll use to build the Tip Calculator app.

Class Application
The main class in a JavaFX app is a subclass of Application (package javafx.applica-
tion.Application). The app’s main method calls class Application’s static launch
method to begin executing a JavaFX app. This method, in turn, causes the JavaFX runtime
to create an object of the Application subclass and call its start method, which creates
the GUI, attaches it to a Scene and places it on the Stage that method start receives as
an argument.

Arranging JavaFX Components with a GridPane
Recall that layout containers arrange JavaFX components in a Scene. A GridPane (package
javafx.scene.layout) arranges JavaFX components into columns and rows in a rectangu-
lar grid.

This app uses a GridPane (Fig. 25.10) to arrange views into two columns and five
rows. Each cell in a GridPane can be empty or can hold one or more JavaFX components,
including layout containers that arrange other controls. Each component in a GridPane
can span multiple columns or rows, though we did not use that capability in this GUI.

1120 Chapter 25 JavaFX GUI: Part 1

When you drag a GridPane onto Scene Builder’s content panel, Scene Builder creates the
GridPane with two columns and three rows by default. You can add and remove columns
and rows as necessary. We’ll discuss other GridPane features as we present the GUI-
building steps. To learn more about class GridPane, visit:

Creating and Customizing the GUI with Scene Builder
You’ll create Labels, TextFields, a Slider and a Button by dragging them onto the con-
tent panel in Scene Builder, then customize them using the Inspector window.

• A TextField (package javafx.scene.control) can accept text input from the user
or display text. You’ll use one editable TextField to input the bill amount from the
user and two uneditable TextFields to display the tip and total amounts.

• A Slider (package javafx.scene.control) represents a value in the range 0.0–
100.0 by default and allows the user to select a number in that range by moving
the Slider’s thumb. You’ll customize the Slider so the user can choose a custom
tip percentage only from the more limited range 0 to 30.

• A Button (package javafx.scene.control) allows the user to initiate an ac-
tion—in this app, pressing the Calculate Button calculates and displays the tip
and total amounts.

Formatting Numbers as Locale-Specific Currency and Percentage Strings
You’ll use class NumberFormat (package java.text) to create locale-specific currency and
percentage strings—an important part of internationalization.

Event Handling
Normally, a user interacts with an app’s GUI to indicate the tasks that the app should per-
form. For example, when you write an e-mail in an e-mail app, clicking the Send button
tells the app to send the e-mail to the specified e-mail addresses. GUIs are event driven.
When the user interacts with a GUI component, the interaction—known as an event—

http://docs.oracle.com/javafx/2/api/javafx/scene/layout/GridPane.html

Fig. 25.10 | Tip Calculator GUI’s GridPane labeled by its rows and columns.

column 0 column 1

row 0

row 1

row 2

row 3

row 4

http://docs.oracle.com/javafx/2/api/javafx/scene/layout/GridPane.html

25.5 Tip Calculator App—Introduction to Event Handling 1121

drives the program to perform a task. Some common user interactions that cause an app
to perform a task include clicking a button, typing in a text field, selecting an item from a
menu, closing a window and moving the mouse. The code that performs a task in response
to an event is called an event handler, and the process of responding to events is known as
event handling.

Before an app can respond to an event for a particular control, you must:

1. Create a class that represents the event handler and implements an appropriate
interface—known as an event-listener interface.

2. Indicate that an object of that class should be notified when the event occurs—
known as registering the event handler.

In this app, you’ll respond to two events—when the user moves the Slider’s thumb,
the app will update the Label that displays the current tip percentage, and when the user
clicks the Calculate Button, the app will calculate and display the tip and total bill amount.

You’ll see that for certain events—such as when the user clicks a Button—you can link
a control to its event-handling method by using the Code section of Scene Builder’s Inspector
window. In this case, the class that implements the event-listener interface will be created for
you and will call the method you specify. For events that occur when the value of control’s
property changes—such as when the user moves a Slider’s thumb to change the Slider’s
value—you’ll see that you must create the event handler entirely in code.

Implementing Interface ChangeListener for Handling Slider Thumb Position
Changes
You’ll implement the ChangeListener interface (from package javafx.beans.value) to
respond to the user moving the Slider’s thumb. In particular, you’ll use method changed
to display the user-selected tip percentage as the user moves the Slider’s thumb.

Model-View-Controller (MVC) Architecture
JavaFX applications in which the GUI is implemented as FXML adhere to the Model-
View-Controller (MVC) design pattern, which separates an app’s data (contained in the
model) from the app’s GUI (the view) and the app’s processing logic (the controller).

The controller implements logic for processing user inputs. The model contains appli-
cation data, and the view presents the data stored in the model. When a user provides some
input, the controller modifies the model with the given input. In the Tip Calculator, the
model is the bill amount, the tip and the total. When the model changes, the controller
updates the view to present the changed data.

In a JavaFX FXML app, you define the app’s event handlers in a controller class. The
controller class defines instance variables for interacting with controls programmatically,
as well as event-handling methods. The controller class may also declare additional
instance variables, static variables and methods that support the app’s operation. In a
simple app like the Tip Calculator, the model and controller are often combined into a
single class, as we’ll do in this example.

FXMLLoader Class
When a JavaFX FXML app begins executing, class FXMLLoader’s static method load is
used to load the FXML file that represents the app’s GUI. This method:

1122 Chapter 25 JavaFX GUI: Part 1

• Creates the GUI’s scene graph and returns a Parent (package javafx.scene) ref-
erence to the scene graph’s root node.

• Initializes the controller’s instance variables for the components that are manip-
ulated programmatically.

• Creates and registers the event handlers for any events specified in the FXML.

We’ll discuss these steps in more detail in Sections 25.5.4–25.5.5.

25.5.3 Building the App’s GUI
In this section, we’ll show the precise steps for using Scene Builder to create the Tip Calcu-
lator’s GUI. The GUI will not look like the one shown in Fig. 25.9 until you’ve completed
the steps.

fx:id Property Values for This App’s Controls
If a control or layout will be manipulated programmatically in the controller class (as we’ll
do with one of the Labels, all of the TextFields and the Slider in this app), you must
provide a name for that control or layout. In Section 25.5.4, you’ll learn how to declare
variables in your source code for each such component in the FXML, and we’ll discuss
how those variables are initialized for you. Each object’s name is specified via its fx:id prop-
erty. You can set this property’s value by selecting a component in your scene, then ex-
panding the Inspector window’s Code section—the fx:id property appears at the top of the
Code section. Figure 25.11 shows the fx:id properties of the Tip Calculator’s programmat-
ically manipulated controls. For clarity, our naming convention is to use the control’s class
name in the fx:id property.

Creating the TipCalculator Project
Click the New Project… () button on the toolbar or select File > New Project…. In the
New Project dialog. Under Categories, select JavaFX and under Projects select JavaFX
FXML Application, then click Next > and specify TipCalculator in the Project Name, FXML
name and Create Application Class fields. Click Finish to create the project.

Fig. 25.11 | Tip Calculator’s programmatically manipulated controls labeled with their fx:ids.

amountTextField

tipPercentageLabel tipPercentageSlider

tipTextField

totalTextField

25.5 Tip Calculator App—Introduction to Event Handling 1123

Step 1: Changing the Root Layout from an AnchorPane to a GridPane
Open TipCalculator.fxml in Scene Builder so that you can build the GUI and delete the
default controls, then change from the default AnchorPane to a GridPane:

1. Adding a GridPane to the Default Layout. Drag a GridPane from the Library win-
dow’s Containers section onto the default AnchorPane in Scene Builder’s content
panel.

2. Making the GridPane the Root Layout. Select Edit > Trim Document to Selection
to make the GridPane the root layout and remove the AnchorPane.

Step 2: Adding Rows to the GridPane
By default, the GridPane contains two columns and three rows. Recall that the GUI in
Fig. 25.10 consists of five rows. You can add a row above or below an existing row by right
clicking a row and selecting Grid Pane > Add Row Above or Grid Pane > Add Row Below.
After adding two rows, the GridPane should appear as shown in Fig. 25.12. You can use
similar steps to add columns. You can delete a row or column by right clicking the tab con-
taining its row or column number and selecting Delete.

Step 3: Adding the Controls to the GridPane
You’ll now add the controls in Fig. 25.10 to the GridPane. For those that have fx:ids (see
Fig. 25.11), while the control is selected, set its fx:id property in the Inspector window’s
Code section. Perform the following steps:

1. Adding the Labels. Drag Labels from the Library window’s Controls section into
the first four rows of the GridPane’s left column (i.e., column 0). As you add each
Label, set its text as shown Fig. 25.10.

2. Adding the TextFields. Drag TextFields from the Library window’s Controls
section into rows 0, 2 and 3 of the GridPane’s right column (i.e., column 1).

3. Adding a Slider. Drag a horizontal Slider from the Library window’s Controls
section into row 1 of the GridPane’s right column.

4. Adding a Button. Drag a Button from the Library window’s Controls section into
row 4 of the GridPane’s right column. You can set the Button’s text by double
clicking it, or by selecting the Button, then setting its Text property in the Inspec-
tor window’s Properties section.

The GridPane should appear as shown in Fig. 25.13.

Fig. 25.12 | GridPane with five rows.

Tab for selecting row 0

Tab for selecting column 1

1124 Chapter 25 JavaFX GUI: Part 1

Step 4: Right-Aligning GridPane Column 0’s Contents
A GridPane column’s contents are left-aligned by default. To right-align the contents of
column 0, select it by clicking the tab at the top or bottom of the column, then in the In-
spector’s Layout section, set the Halignment (horizontal alignment) property to RIGHT.

Step 5: Sizing the GridPane Columns to Fit Their Contents
By default, Scene Builder sets each GridPane column’s width to 100 pixels and each row’s
height to 30 pixels to ensure that you can easily drag controls into the GridPane’s cells. In
this app, we sized each column to fit its contents. To do so, select the column 0 by clicking
the tab at the top or bottom of the column, then in the Inspector’s Layout section, set the
Pref Width property to USE_COMPUTED_SIZE to indicate that the column’s width should be
based on the widest child—the Amount Label in this case. Repeat this process for column 1.
The GridPane should appear as shown in Fig. 25.14.

Step 6: Sizing the TextFields
Scene Builder sets each TextField’s width to 200 pixels by default. You may size controls
as appropriate for each GUI you create. In this app, we do not need the TextFields to be
so wide, so we used the preferred width for each TextField, which is somewhat narrower.
When setting a property to the same value for several controls, you can select all of them
and specify the value once. To select all three TextFields, hold the Ctrl (or Command)
key and click each TextField. Then in the Inspector’s Layout section, set the Pref Width
property to USE_COMPUTED_SIZE. This indicates that each TextField should use its pre-
ferred width (as defined by JavaFX). Notice that the GridPane’s right column resizes to
the TextFields’ preferred widths.

Fig. 25.13 | GridPane filled with the Tip Calculator’s controls.

Fig. 25.14 | GridPane with columns sized to fit their contents.

25.5 Tip Calculator App—Introduction to Event Handling 1125

Step 7: Sizing the Button
By default, Scene Builder sets a Button’s width based on its text. For this app, we chose to
make the Button the same width as the other controls in the GridPane’s right column. To
do so, select the Button, then in the Inspector’s Layout section, set the Max Width property
to MAX_VALUE. This causes the Button’s width to grow to fill the column’s width.

Previewing the GUI
As you design your GUI, you can preview it by selecting Preview > Show Preview in Win-
dow. As you can see in Fig. 25.15, there’s no space between the Labels in the left column
and the controls in the right column. In addition, there’s no space around the GridPane,
because the Stage is sized to fit the Scene’s content. Thus, many of the controls touch or
come close to the window’s borders. You’ll fix these issues in the next step.

Step 8: Configuring the GridPane’s Padding and Horizontal Gap Between Its Columns
The space between a node’s contents and its top, right, bottom and left edges is known as
the padding, which separates the contents from the node’s edges. Since the GridPane’s size
determines the size of the Stage’s window, the padding in this example also separates the
GridPane’s children from the window’s edges. To set the padding, select the GridPane,
then in the Inspector’s Layout section, set the Padding property’s four values (TOP, RIGHT,
BOTTOM and LEFT) to 14—the JavaFX recommended distance between the edge of a con-
trol and the edge of a Scene.

You can specify the default amount of space between a GridPane’s columns and rows
with its Hgap (horizontal gap) and Vgap (vertical gap) properties, respectively. Because
Scene Builder sets each GridPane row’s height to 30 pixels—which is greater than the
heights of this app’s controls—there’s already some vertical space between the compo-
nents. To specify the horizontal gap between the columns, select the GridPane in the Hier-
archy window, then in the Inspector’s Layout section, set the Hgap property to 8. If you’d
like to precisely control the vertical space between components, you can set each row’s Pref
Height property to USE_COMPUTED_SIZE (as we did for the columns’ Pref Width property in
Step 5), then set the GridPane’s Vgap property.

Step 9: Making the tipTextField and totalTextField Uneditable and Not
Focusable
The tipTextField and totalTextField are used in this app only to display results, not
receive text input. For this reason, they should not be interactive. You can type in a Text-
Field only if it’s “in focus”—that is, it’s the control that the user is interacting with. When

Fig. 25.15 | GridPane with the TextFields and Button resized.

1126 Chapter 25 JavaFX GUI: Part 1

you click an interactive control, it receives the focus. Similarly, when you press the Tab
key, the focus transfers from the current focusable control to the next one—this occurs in
the order the controls were added to the GUI. Interactive controls—such as TextFields,
Sliders and Buttons—are focusable by default. Non-interactive controls—like Labels—
are not focusable.

In this app, the tipTextField and totalTextField are neither editable nor focus-
able. To make these changes, select both TextFields, then in the Inspector’s Properties
section, uncheck the Editable and Focus Traversable properties.

Step 10: Setting the Slider’s Properties
To complete the GUI, you’ll now configure the Tip Calculator’s Slider. By default, a
Slider’s range is 0.0 to 100.0 and its initial value is 0.0. This app allows tip percentages
from 0 to 30 with a default of 15. To make these changes, select the Slider, then in the
Inspector’s Properties section, set the Slider’s Max property to 30 and the Value property
to 15. We also set the Block Increment property to 5—this is the amount by which the Val-
ue property increases or decreases when the user clicks between an end of the Slider and
the Slider’s thumb. Save the FXML file by selecting File > Save.

Previewing the Final Layout
Select Preview > Show Preview in Window to view the final GUI (Fig. 25.16). When we
discuss the TipCalculatorController class in Section 25.5.5, we’ll show how to specify
the Calculate Button’s event handler in the FXML file.

25.5.4 TipCalculator Class
When you created the Tip Calculator app’s project, NetBeans created two Java source-code
files for you:

• TipCalculator.java—This file contains the TipCalculator class, in which the
main method (discussed in this section) loads the FXML file to create the GUI
and attaches the GUI to a Scene that’s displayed on the app’s Stage.

• TipCalculatorController.java—This file contains the TipCalculatorCon-
troller class (discussed in Section 25.5.5), which is where you’ll specify the
Slider and Button controls’ event handlers.

Figure 25.17 presents class TipCalculator. We reformatted the code to meet our conven-
tions. With the exception of line 18, all of the code in this class was generated by Net-

Fig. 25.16 | Final GUI design previewed in Scene Builder.

25.5 Tip Calculator App—Introduction to Event Handling 1127

Beans. As we discussed in Section 25.5.2, the Application subclass is the starting point
for a JavaFX app. The main method calls class Application’s static launch method (line
26) to begin executing the app. This method, in turn, causes the JavaFX runtime to create
an object of the TipCalculator class and calls its start method.

Overridden Application Method start
Method start (lines 11–21) creates the GUI, attaches it to a Scene and places it on the
Stage that method start receives as an argument. Lines 14–15 use class FXMLLoader’s
static method load to create the GUI’s scene graph. This method:

• Returns a Parent (package javafx.scene) reference to the scene graph’s root
node (the GridPane in this example).

• Creates an object of the controller class.

• Initializes the controller’s instance variables for the components that are manip-
ulated programmatically.

• Registers the event handlers for any events specified in the FXML.

We discuss the initialization of the controller’s instance variables and the registration of
the event handlers in Section 25.5.5.

1 // Fig. 25.17: TipCalculator.java
2 // Main app class that loads and displays the Tip Calculator's GUI
3 import javafx.application.Application;
4 import javafx.fxml.FXMLLoader;
5 import javafx.scene.Parent;
6 import javafx.scene.Scene;
7 import javafx.stage.Stage;
8
9 public class TipCalculator

10 {
11 @Override
12
13 {
14
15
16
17
18
19
20
21 }
22
23 public static void main(String[] args)
24 {
25 // create a TipCalculator object and call its start method
26
27 }
28 }

Fig. 25.17 | Main app class that loads and displays the Tip Calculator’s GUI.

extends Application

public void start(Stage stage) throws Exception

Parent root =
 FXMLLoader.load(getClass().getResource("TipCalculator.fxml"));

Scene scene = new Scene(root); // attach scene graph to scene
stage.setTitle("Tip Calculator"); // displayed in window's title bar
stage.setScene(scene); // attach scene to stage
stage.show(); // display the stage

launch(args);

1128 Chapter 25 JavaFX GUI: Part 1

Creating the Scene
To display the GUI, you must attach it to a Scene, then attach the Scene to the Stage that’s
passed into method start. Line 17 creates a Scene, passing root (the scene graph’s root
node) as an argument to the constructor. By default, the Scene’s size is determined by the
size of the scene graph’s root node. Overloaded versions of the Scene constructor allow you
to specify the Scene’s size and fill (a color, gradient or image), which appears in the Scene’s
background. Line 18 uses Scene method setTitle to specify the text that appears in the
Stage window’s title bar. Line 19 places Stage method setScene to place the Scene onto
the Stage. Finally, line 20 calls Stage method show to display the Stage window.

25.5.5 TipCalculatorController Class
Figures 25.18–25.21 present the TipCalculatorController class that responds to user
interactions with the app’s Button and Slider. Replace the code that NetBeans generated
in TipCalculatorController.java with the code in Figs. 25.18–25.21.

Class TipCalculatorController’s import Statements
Figure 25.18 shows class TipCalculatorController’s import statements.

Lines 3–12 import the classes and interfaces used by class TipCalculatorController:

• Class BigDecimal of package java.math (line 3) is used to perform precise mon-
etary calculations. The RoundingMode enum of package java.math (line 4) is used
to specify how BigDecimal values are rounded during calculations or when for-
matting floating-point numbers as Strings.

• Class NumberFormat of package java.text (line 5) provides numeric formatting
capabilities, such as locale-specific currency and percentage formats. For example,
in the U.S. locale, the monetary value 34.56 is formatted as $34.95 and the per-
centage 15 is formatted as 15%. Class NumberFormat determines the locale of the
system on which your app runs, then formats currency amounts and percentages
accordingly.

• You implement interface ChangeListener of package javafx.beans.value (line
6) to respond to the user moving the Slider’s thumb. This interface’s changed

1 // TipCalculatorController.jav
2 // Controller that handles calculateButton and tipPercentageSlider events
3 import java.math.BigDecimal;
4 import java.math.RoundingMode;
5 import java.text.NumberFormat;
6 import javafx.beans.value.ChangeListener;
7 import javafx.beans.value.ObservableValue;
8 import javafx.event.ActionEvent;
9 import javafx.fxml.FXML;

10 import javafx.scene.control.Label;
11 import javafx.scene.control.Slider;
12 import javafx.scene.control.TextField;
13

Fig. 25.18 | TipCalculatorController’s import declarations.

25.5 Tip Calculator App—Introduction to Event Handling 1129

method receives an object that implements interface ObservableValue (line 7)—
that is, a value that generates an event when it changes.

• A Button’s event handler receives an ActionEvent (line 8; package javafx.event),
which indicates that the Button was clicked. As you’ll see in online Chapter 26,
many JavaFX controls support ActionEvents.

• The annotation FXML (line 9; package javafx.fxml) is used in a JavaFX controller
class’s code to mark instance variables that should refer to JavaFX components in
the GUI’s FXML file and methods that can respond to the events of JavaFX com-
ponents in the GUI’s FXML file.

• Package javafx.scene.control (lines 10–12) contains many JavaFX control
classes, including Label, Slider and TextField.

As you write code with various classes and interfaces, you can use the the NetBeans
IDE’s Source > Organize Imports command to let the IDE insert the import statements for
you. If the same class or interface name appears in more than one package, the IDE will
display a dialog in which you can select the appropriate import statement.

TipCalculatorController’s static Variables and Instance Variables
Lines 17–38 of Fig. 25.19 present class TipCalculatorController’s static and instance
variables. The NumberFormat objects (lines 17–20) are used to format currency values and
percentages, respectively. Method getCurrencyInstance returns a NumberFormat object
that formats values as currency using the default locale for the system on which the app is
running. Similarly, method getPercentInstance returns a NumberFormat object that for-
mats values as percentages using the system’s default locale. The BigDecimal object tip-
Percentage (line 22) stores the current tip percentage and is used in the tip calculation
(Fig. 25.20) when the user clicks the app’s Calculate Button.

14 public class TipCalculatorController
15 {
16 // formatters for currency and percentages
17 private static final NumberFormat currency =
18 NumberFormat.getCurrencyInstance();
19 private static final NumberFormat percent =
20 NumberFormat.getPercentInstance();
21
22 private BigDecimal tipPercentage = new BigDecimal(0.15); // 15% default
23
24 // GUI controls defined in FXML and used by the controller's code
25
26 private TextField amountTextField;
27
28
29 private Label tipPercentageLabel;
30
31
32 private Slider tipPercentageSlider;
33

Fig. 25.19 | TipCalculatorController’s static variables and instance variables. (Part 1 of 2.)

@FXML

@FXML

@FXML

1130 Chapter 25 JavaFX GUI: Part 1

@FXML Annotation
Recall from Section 25.5.3 that each control that this app manipulates in its Java source
code needs an fx:id. Lines 25–38 (Fig. 25.19) declare the controller class’s corresponding
instance variables. The @FXML annotation that precedes each declaration (lines 25, 28, 31,
34 and 37) indicates that the variable name can be used in the FXML file that describes
the app’s GUI. The variable names that you specify in the controller class must precisely
match the fx:id values you specified when building the GUI. When the FXMLLoader loads
TipCalculator.fxml to create the GUI, it also initializes each of the controller’s instance
variables that are declared with @FXML to ensure that they refer to the corresponding GUI
components in the FXML file.

TipCalculatorController’s calculateButtonPressed Event Handler
Figure 25.20 presents class TipCalculatorController’s calculateButtonPressed meth-
od, which is called with the user clicks the Calculate Button. The @FXML annotation (line
41) preceding the method indicates that this method can be used to specify a control’s
event handler in the FXML file that describes the app’s GUI. For a control that generates
an ActionEvent (as is the case for many JavaFX controls), the event-handling method
must return void and receive one ActionEvent parameter (line 42).

34
35 private TextField tipTextField;
36
37
38 private TextField totalTextField;
39

40 // calculates and displays the tip and total amounts
41
42
43 {
44 try
45 {
46 BigDecimal amount = new BigDecimal(amountTextField.getText());
47 BigDecimal tip = amount.multiply(tipPercentage);
48 BigDecimal total = amount.add(tip);
49
50 tipTextField.setText(currency.format(tip));
51 totalTextField.setText(currency.format(total));
52 }
53 catch (NumberFormatException ex)
54 {
55 amountTextField.setText("Enter amount");
56 amountTextField.selectAll();
57 amountTextField.requestFocus();
58 }
59 }
60

Fig. 25.20 | TipCalculatorController’s calculateButtonPressed event handler.

Fig. 25.19 | TipCalculatorController’s static variables and instance variables. (Part 2 of 2.)

@FXML

@FXML

@FXML
private void calculateButtonPressed(ActionEvent event)

25.5 Tip Calculator App—Introduction to Event Handling 1131

Specifying the Calculate Button’s Event Handler in Scene Builder
When you created the TipCalculator project with NetBeans, it preconfigured the class
TipCalculatorController as the controller for the GUI in TipCalculator.fxml. You
can see this in Scene Builder by selecting the scene’s root node (i.e., the GridPane), then
expanding the Inspector window’s Code section. The controller class’s name is specified in
the Controller class field. If you declare the method calculateButtonPressed in the con-
troller class before specifying the Calculate Button’s event handler in the FXML, when you
open Scene Builder it scans the controller class for methods prefixed with @FXML and allows
you to select from those methods to configure event handlers.

To indicate that calculateButtonPressed should be called when the user clicks the
Calculate Button, open TipCalculator.fxml in Scene Builder, then:

1. Select the Calculate Button.

2. In the Inspector window, expand the Code section.

3. Under On Action, select #calculateButtonPressed from the drop-down list and
save the FXML file.

When the FXMLLoader loads TipCalculator.fxml to create the GUI, it creates and regis-
ters an event handler for the Calculate Button’s ActionEvent. An ActionEvent’s handler
is an object of a class that implements the EventHandler<ActionEvent> interface, which
contains a handle method that returns void and receives an ActionEvent parameter. This
method, in turn, calls method calculateButtonPressed when the user clicks the Calcu-
late Button. The FXMLLoader performs similar tasks for every event listener you specified
via the Inspector window’s Code section.

Calculating and Displaying the Tip and Total Amounts
Lines 46–51 calculate and display the tip and total amounts. Line 46 calls method getText
to get from the amountTextField the bill amount typed by the user. This String is passed
to the BigDecimal constructor, which throws a NumberFormatException if its argument
is not a number. In that case, line 55 calls amountTextField’s setText method to display
the message "Enter amount" in the TextField. Line 56 then calls method selectAll to
select the TextField’s text and line 57 calls requestFocus, which gives the TextField the
focus. This allows the user to immediately type a new value in the amountTextField with-
out having to first select its text. Methods getText, setText and selectAll are inherited
into class TextField from class TextInputControl (package javafx.scene.control),
and method requestFocus is inherited into class TextField from class Node (package
javafx.scene).

If line 46 does not throw an exception, line 47 calculates the tip by calling method
multiply to multiply the amount by the tipPercentage, and line 48 calculates the total
by calling method add to add the tip to the bill amount. Next lines 50 and 51 use the
currency object’s format method to create currency-formatted Strings representing the
tip and total amounts—these are displayed in tipTextField and totalTextField, respec-
tively.

TipCalculatorController’s initalize Method
Figure 25.21 presents class TipCalculatorController’s initialize method. When the
FXMLLoader creates an object of class TipCalculatorController, it determines whether
the class contains an initialize method with no parameters and, if so, calls that method

1132 Chapter 25 JavaFX GUI: Part 1

to initialize the controller. This method can be used to configure the controller before the
GUI is displayed. Line 65 calls the currency object’s setRoundingMode method to specify
how currency values should be rounded. The value RoundingMode.HALF_UP indicates that
values greater than or equal to .5 should round up—for example, 34.567 would be for-
matted as 34.57 and 34.564 would be formatted as 34.56.

Using an Anonymous Inner Class for Event Handling
Each JavaFX control has various properties, some of which—such as a Slider’s value—
can notify an event listener when they change. For such properties, you must manually
register as the event handler an object of a class that implements the ChangeListener in-
terface from package javafx.beans.value. If such an event handler is not reused, you’d
typically define it as an instance of an anonymous inner class—a class that’s declared with-
out a name and typically appears inside a method declaration. Lines 68–80 are one state-
ment that declares the event listener’s class, creates an object of that class and registers it
as the listener for changes to the tipPercentageSlider’s value.

The call to method valueProperty (line 68) returns an object of class DoubleProp-
erty (package javax.beans.property) that represents the Slider’s value. A DoublePro-
perty is an ObservableValue that can notify listeners when the value changes. Each class
that implements interface ObservableValue provides method addListener (called on line
68) for registering a ChangeListener. In the case of a Slider’s value, addListener’s argu-
ment is an object that implements ChangeListener<Number>, because the Slider’s value
is a numeric value.

Since an anonymous inner class has no name, one object of the class must be created
at the point where the class is declared (starting at line 69). Method addListener’s argu-
ment is defined in lines 69–79 as a class-instance creation expression that declares an anon-

61 // called by FXMLLoader to initialize the controller
62
63 {
64 // 0-4 rounds down, 5-9 rounds up
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81 }
82 }

Fig. 25.21 | TipCalculatorController’s initalize method.

public void initialize()

currency.setRoundingMode(RoundingMode.HALF_UP);

// listener for changes to tipPercentageSlider's value
tipPercentageSlider.valueProperty().addListener(
 new ChangeListener<Number>()
 {
 @Override
 public void changed(ObservableValue<? extends Number> ov,
 Number oldValue, Number newValue)
 {
 tipPercentage =
 BigDecimal.valueOf(newValue.intValue() / 100.0);
 tipPercentageLabel.setText(percent.format(tipPercentage));
 }
 }
);

25.6 Features Covered in the Online JavaFX Chapters 1133

ymous inner class and creates one object of that class. A reference to that object is then
passed to addListener. After the new keyword, the syntax ChangeListener<Number>()
(line 69) begins the declaration of an anonymous inner class that implements interface
ChangeListener<Number>. This is similar to beginning a class declaration with

The opening left brace at 70 and the closing right brace at line 79 delimit the body of
the anonymous inner class. Lines 71–78 declare the ChangeListener<Number>’s changed
method, which receives a reference to the ObservableValue that changed, a Number con-
taining the Slider’s old value before the event occurred and a Number containing the
Slider’s new value. When the user moves the Slider’s thumb, lines 75–76 store the new
tip percentage and line 77 updates the tipPercentageLabel.

An anonymous inner class can access its top-level class’s instance variables, static
variables and methods—in this case, the anonymous inner class uses instance variables
tipPercentage and tipPercentageLabel, and static variable percent. However, an
anonymous inner class has limited access to the local variables of the method in which it’s
declared—it can access only the final local variables declared in the enclosing method’s
body. (As of Java SE 8, an anonymous inner class may also access a class’s effectively final
local variables—see Section 17.3.1 for more information.)

Java SE 8: Using a Lambda to Implement the ChangeListener
Recall from Section 10.10 that in Java SE 8 an interface containing one method is a func-
tional interface and recall from Chapter 17 that such interfaces may be implemented with
lambdas. Section 17.9 showed how to implement an event-handling functional interface
using a lambda. The event handler in Fig. 25.21 can be implemented with a lambda as
follows:

25.6 Features Covered in the Online JavaFX Chapters
JavaFX is a robust GUI, graphics and multimedia technology. In the online Chapters 26
and 27, you’ll:

• Learn additional JavaFX layouts and controls.

• Handle other event types (such as MouseEvents).

• Apply transformations (such as moving, rotating, scaling and skewing) and effects
(such as drop shadows, blurs, reflection and lighting) to a scene graph’s nodes.

• Use CSS to specify the look-and-feel of controls.

• Use JavaFX properties and data binding to enable automatic updating of controls
as corresponding data changes.

• Use JavaFX graphics capabilities.

public class MyHandler implements ChangeListener<Number>

tipPercentageSlider.valueProperty().addListener(
 (ov, oldValue, newValue) ->
 {
 tipPercentage =
 BigDecimal.valueOf(newValue.intValue() / 100.0);
 tipPercentageLabel.setText(percent.format(tipPercentage));
 });

1134 Chapter 25 JavaFX GUI: Part 1

• Perform JavaFX animations.

• Use JavaFX multimedia capabilities to play audio and video.

In addition, our JavaFX Resource Center

contains links to online resources where you can learn more about JavaFX’s capabilities.

25.7 Wrap-Up
In this chapter, we introduced JavaFX. We presented the structure of a JavaFX stage (the
application window). You learned that the stage displays a scene’s scene graph, that the
scene graph is composed of nodes and that nodes consist of layouts and controls.

You designed GUIs using visual programming techniques in JavaFX Scene Builder,
which enabled you to create GUIs without writing any Java code. You arranged Label,
ImageView, TextField, Slider and Button controls using the VBox and GridPane layout
containers. You learned how class FXMLLoader uses the FXML created in Scene Builder to
create the GUI.

You implemented a controller class to respond to user interactions with Button and
Slider controls. We showed that certain event handlers can be specified directly in FXML
from Scene Builder, but event handlers for changes to a control’s property values must be
implemented directly in the controllers code. You also learned that the FXMLLoader creates
and initializes an instance of an application’s controller class, initializes the controller’s
instance variables that are declared with the @FXML annotation, and creates and registers
event handlers for any events specified in the FXML.

In the next chapter, you’ll use additional JavaFX controls and layouts and use CSS to
style your GUI. You’ll also learn more about JavaFX properties and how to use a technique
called data binding to automatically update elements in a GUI with new data.

http://www.deitel.com/JavaFX

Summary
Section 25.1 Introduction
• A graphical user interface (GUI) presents a user-friendly mechanism for interacting with an app.

A GUI (pronounced “GOO-ee”) gives an app a distinctive “look-and-feel.”

• GUIs are built from GUI components—sometimes called controls or widgets.

• Providing different apps with consistent, intuitive user-interface components gives users a sense
of familiarity with a new app, so that they can learn it more quickly and use it more productively.

• Java’s GUI, graphics and multimedia API of the future is JavaFX.

Section 25.2 JavaFX Scene Builder and the NetBeans IDE
• JavaFX Scene Builder is a standalone JavaFX GUI visual layout tool that can also be used with

various IDEs.

• JavaFX Scene Builder enables you to create GUIs by dragging and dropping GUI components
from Scene Builder’s library onto a design area, then modifying and styling the GUI—all with-
out writing any code.

• JavaFX Scene Builder generates FXML (FX Markup Language)—an XML vocabulary for defin-
ing and arranging JavaFX GUI controls without writing any Java code.

http://www.deitel.com/JavaFX

 Summary 1135

• The FXML code is separate from the program logic that’s defined in Java source code—this sep-
aration of the interface (the GUI) from the implementation (the Java code) makes it easier to
debug, modify and maintain JavaFX GUI apps.

Section 25.3 JavaFX App Window Structure
• The window in which a JavaFX app’s GUI is displayed is known as the stage and is an instance

of class Stage (package javafx.stage).

• The stage contains one scene that defines the GUI as a scene graph—a tree structure of an app’s
visual elements, such as GUI controls, shapes, images, video, text and more. The scene is an in-
stance of class Scene (package javafx.scene).

• Each visual element in the scene graph is a node—an instance of a subclass of Node (package
javafx.scene), which defines common attributes and behaviors for all nodes in the scene graph.

• The first node in the scene graph is known as the root node.

• Nodes that have children are typically layout containers that arrange their child nodes in the
scene.

• The nodes arranged in a layout container are a combination of controls and possibly other layout
containers.

• When the user interacts with a control, it generates an event. Programs can use event handling
to specify what should happen when each user interaction occurs.

• An event handler is a method that responds to a user interaction. An FXML GUI’s event handlers
are defined in a controller class.

Section 25.4 Welcome App—Displaying Text and an Image
• To create an app in NetBeans, you must first create a project—a group of related files, such as

code files and images that make up an app.

• The NetBeans Projects window provides access to all of your projects. Within a project’s node,
the contents are organized into folders and files.

• NetBeans creates three files for a JavaFX FXML Application project: an FXML markup file for
the GUI, a file containing the app’s main class and a file containing the app’s controller class.

• To open a project’s FXML file in JavaFX Scene Builder, right click the FXML file in the Projects

window, then select Open.

• Layout containers help you arrange GUI components. A VBox arranges its nodes vertically from
top to bottom.

• To make a layout container the root node in a scene graph, select the layout container, then select
Scene Builder’s Edit > Trim Document to Selection menu item.

• A VBox’s alignment determines the layout positioning of its children.

• The preferred size (width and height) of the scene graph’s root node is used by the scene to de-
termine its window size when the app begins executing.

• You can set a Label’s text either by double clicking it and typing the text, or by selecting the La-
bel and setting its Text property in the Inspector’s Properties section.

• When adding controls to a VBox, each new control is placed below the preceding ones by default.
You can change the order by dragging the children in Scene Builder’s Hierarchy window.

• To set the image to display, select the ImageView then set its Image property in the Inspector’s
Properties section. An image’s aspect ratio is the ratio of the image’s width to its height.

• To specify an ImageView’s size, set its Fit Width and Fit Height properties in the Inspector’s Layout

section.

1136 Chapter 25 JavaFX GUI: Part 1

Section 25.5.2 Technologies Overview
• A JavaFX app’s main class inherits from Application (package javafx.application.Application).

• The main class’s main method calls class Application’s static launch method to begin executing
a JavaFX app. This method, in turn, causes the JavaFX runtime to create an object of the Appli-
cation subclass and call its start method, which creates the GUI, attaches it to a Scene and plac-
es it on the Stage that method start recevies as an argument.

• A GridPane (package javafx.scene.layout) arranges JavaFX nodes into columns and rows in a
rectangular grid.

• Each cell in a GridPane can be empty or can hold one or more JavaFX components, including
layout containers that arrange other controls.

• Each component in a GridPane can span multiple columns or rows.

• A TextField (package javafx.scene.control) can accept text input or display text.

• A Slider (package javafx.scene.control) represents a value in the range 0.0–100.0 by default
and allows the user to select a number in that range by moving the Slider’s thumb.

• A Button (package javafx.scene.control) allows the user to initiate an action.

• Class NumberFormat (package java.text) can format locale-specific currency and percentage strings.

• GUIs are event driven. When the user interacts with a GUI component, the interaction—known
as an event—drives the program to perform a task.

• The code that performs a task in response to an event is called an event handler.

• For certain events you can link a control to its event-handling method by using the Code section
of Scene Builder’s Inspector window. In this case, the class that implements the event-listener in-
terface will be created for you and will call the method you specify.

• For events that occur when the value of a control’s property changes, you must create the event
handler entirely in code.

• You implement the ChangeListener interface (package javafx.beans.value) to respond to the
user moving the Slider’s thumb.

• JavaFX applications in which the GUI is implemented as FXML adhere to the Model-View-
Controller (MVC) design pattern, which separates an app’s data (contained in the model) from
the app’s GUI (the view) and the app’s processing logic (the controller). The controller imple-
ments logic for processing user inputs. The view presents the data stored in the model. When a
user provides input, the controller modifies the model with the given input. When the model
changes, the controller updates the view to present the changed data. In a simple app, the model
and controller are often combined into a single class.

• In a JavaFX FXML app, you define the app’s event handlers in a controller class. The controller
class defines instance variables for interacting with controls programmatically, as well as event-
handling methods.

• Class FXMLLoader’s static method load uses the FXML file that represents the app’s GUI to cre-
ates the GUI’s scene graph and returns a Parent (package javafx.scene) reference to the scene
graph’s root node. It also initializes the controller’s instance variables, and creates and registers
the event handlers for any events specified in the FXML.

Section 25.5.3 Building the App’s GUI
• If a control or layout will be manipulated programmatically in the controller class, you must pro-

vide a name for that control or layout. Each object’s name is specified via its fx:id property. You
can set this property’s value by selecting a component in your scene, then expanding the Inspector
window’s Code section—the fx:id property appears at the top.

 Summary 1137

• By default, the GridPane contains two columns and three rows. You can add a row above or be-
low an existing row by right clicking a row and selecting Grid Pane > Add Row Above or Grid
Pane > Add Row Below. You can delete a row or column by right clicking the tab containing its
row or column number and selecting Delete.

• You can set a Button’s text by double clicking it, or by selecting the Button, then setting its Text
property in the Inspector window’s Properties section.

• A GridPane column’s contents are left-aligned by default. To change the alignment, select the
column by clicking the tab at the top or bottom of the column, then in the Inspector’s Layout
section, set the Halignment property.

• Setting a node’s Pref Width property of a GridPane column to USE_COMPUTED_SIZE indicates that
the width should be based on the widest child.

• To size a Button the same width as the other controls in a GridPane’s column, select the Button,
then in the Inspector’s Layout section, set the Max Width property to MAX_VALUE.

• As you design your GUI, you can preview it in Scene Builder by selecting Preview > Show Preview
in Window.

• The space between a node’s contents and its top, right, bottom and left edges is known as the
padding, which separates the contents from the node’s edges. To set the padding, select the node,
then in the Inspector’s Layout section, set the Padding property’s values.

• You can specify the default amount of space between a GridPane’s columns and rows with its
Hgap (horizontal gap) and Vgap (vertical gap) properties, respectively.

• You can type in a TextField only if it’s “in focus”—that is, it’s the control that the user is inter-
acting with. When you click an interactive control, it receives the focus. Similarly, when you
press the Tab key, the focus transfers from the current focusable control to the next one—this
occurs in the order the controls were added to the GUI.

Section 25.5.4 TipCalculator Class
• To display a GUI, you must attach it to a Scene, then attach the Scene to the Stage that’s passed

into Application method start.

• By default, the Scene’s size is determined by the size of the scene graph’s root node. Overloaded
versions of the Scene constructor allow you to specify the Scene’s size and fill (a color, gradient
or image), which appears in the c’s background.

• Scene method setTitle specifies the text that appears in the Stage window’s title bar.

• Stage method setScene places a Scene onto a Stage.

• Stage method show displays the Stage window.

Section 25.5.5 TipCalculatorController Class
• The RoundingMode enum of package java.math is used to specify how BigDecimal values are

rounded during calculations or when formatting floating-point numbers as Strings.

• Class NumberFormat of package java.text provides numeric formatting capabilities, such as lo-
cale-specific currency and percentage formats.

• A Button’s event handler receives an ActionEvent, which indicates that the Button was clicked.
Many JavaFX controls support ActionEvents.

• Package javafx.scene.control contains many JavaFX control classes.

• The @FXML annotation preceding an instance variable indicates that the variable’s name can be
used in the FXML file that describes the app’s GUI. The variable names that you specify in the
controller class must precisely match the fx:id values you specified when building the GUI.

1138 Chapter 25 JavaFX GUI: Part 1

• When the FXMLLoader loads an FXML file to create a GUI, it also initializes each of the control-
ler’s instance variables that are declared with @FXML to ensure that they refer to the corresponding
GUI components in the FXML file.

• The @FXML annotation preceding a method indicates that the method can be used to specify a
control’s event handler in the FXML file that describes the app’s GUI.

• When the FXMLLoader creates an object of a controller class, it determines whether the class con-
tains an initialize method with no parameters and, if so, calls that method to initialize the con-
troller. This method can be used to configure the controller before the GUI is displayed.

• An anonymous inner class is a class that’s declared without a name and typically appears inside
a method declaration.

• Since an anonymous inner class has no name, one object of the class must be created at the point
where the class is declared.

• An anonymous inner class can access its top-level class’s instance variables, static variables and
methods, but has limited access to the local variables of the method in which it’s declared—it can
access only the final local variables declared in the enclosing method’s body. (As of Java SE 8,
an anonymous inner class may also access a class’s effectively final local variables.)

Self-Review Exercises
25.1 Fill in the blanks in each of the following statements:

a) A(n) can display text and accept text input from the user.
b) Use a(n) to arrange GUI components into cells in a rectangular grid.
c) JavaFX Scene Builder’s window shows the structure of the GUI and allows

you to select and reorganize controls.
d) You implement interface to respond to events when the user moves a Slider’s

thumb.
e) A(n) represents the app’s window.
f) The method is called by the FXMLLoader before the GUI is displayed.
g) The contents of a scene are placed in its .
h) The elements in the scene graph are called .
i) allows you to build JavaFX GUIs using drag-and-drop techniques.
j) A(n) file contains the description of a JavaFX GUI.

25.2 State whether each of the following is true or false. If false, explain why.
a) You must create JavaFX GUIs by hand coding them in Java.
b) The layout VBox arranges components vertically in a scene.
c) To right align controls in a GridPane column, set its Alignment property to RIGHT.
d) The FXMLLoader initializes the controller’s @FXML instance variables.
e) You override class Application’s launch method to display a JavaFX app’s stage.
f) The control that the user is interacting with “has the focus.”
g) By default, a Slider allows you to select values from 0 to 255.
h) A node can span multiple columns in a GridPane.
i) Every Application subclass must override the start method.

Answers to Self-Review Exercises
25.1 a) TextField. b) GridPane. c) Hierarchy. d) ChangeListener<Number>. e) Stage. f) initial-
ize. g) scene graph. h) nodes. i) JavaFX Scene Builder. j) FXML.

25.2 a) False. You can use JavaFX Scene Builder to create JavaFX GUIs without writing any
code. b) True. c) False. The name of the property is Halignment. d) True. e) False. You override class

 Exercises 1139

Application’s start method to display a JavaFX app’s stage. f) True. g) False. By default a Slider
allows you to select values from 0.0 to 100.0. h) True. i) True.

Exercises
25.3 (Scrapbooking App) Find four images of famous landmarks using websites such as Flickr.
Create an app similar to the Welcome app in which you arrange the images in a collage. Add text
that identifies each landmark. You can use images that are part of your project or you can specify
the URL of an image that’s online.

25.4 (Enhanced Tip Calculator App) Modify the Tip Calculator app to allow the user to enter the
number of people in the party. Calculate and display the amount owed by each person if the bill
were to be split evenly among the party members.

25.5 (Mortgage Calculator App) Create a mortgage calculator app that allows the user to enter a
purchase price, down-payment amount and an interest rate. Based on these values, the app should
calculate the loan amount (purchase price minus down payment) and display the monthly payment
for 10-, 20- and 30-year loans. Allow the user to select a custom loan duration (in years) by using a
Slider and display the monthly payment for that custom loan duration.

25.6 (College Loan Payoff Calculator App) A bank offers college loans that can be repaid in 5, 10,
15, 20, 25 or 30 years. Write an app that allows the user to enter the amount of the loan and the
annual interest rate. Based on these values, the app should display the loan lengths in years and their
corresponding monthly payments.

25.7 (Car Payment Calculator App) Typically, banks offer car loans for periods ranging from two
to five years (24 to 60 months). Borrowers repay the loans in monthly installments. The amount of
each monthly payment is based on the length of the loan, the amount borrowed and the interest
rate. Create an app that allows the customer to enter the price of a car, the down-payment amount
and the loan’s annual interest rate. The app should display the loan’s duration in months and the
monthly payments for two-, three-, four- and five-year loans. The variety of options allows the user
to easily compare repayment plans and choose the most appropriate.

25.8 (Miles-Per-Gallon Calculator App) Drivers often want to know the miles per gallon their cars get
so they can estimate gasoline costs. Develop an app that allows the user to input the number of miles
driven and the number of gallons used and calculates and displays the corresponding miles per gallon.

Making a Difference
25.9 (Body Mass Index Calculator App) The formulas for calculating the BMI are

or

Create a BMI calculator app that allows users to enter their weight and height and whether they are
entering these values in English or metric units, then calculates and displays the user’s body mass
index. The app should also display the following information from the Department of Health and
Human Services/National Institutes of Health so that users can evaluate their BMIs:

BMI VALUES
Underweight: less than 18.5
Normal: between 18.5 and 24.9
Overweight: between 25 and 29.9
Obese: 30 or greater

BMI weightInPounds 703×
heightInInches heightInInches×
--=

BMI weightInKi ramslog
heightInMeters heightInMeters×
---=

1140 Chapter 25 JavaFX GUI: Part 1

25.10 (Target-Heart-Rate Calculator App) While exercising, you can use a heart-rate monitor to see
that your heart rate stays within a safe range suggested by your trainers and doctors. According to
the American Heart Association (AHA), the formula for calculating your maximum heart rate in
beats per minute is 220 minus your age in years (http://bit.ly/AHATargetHeartRates). Your target
heart rate is a range that is 50–85% of your maximum heart rate. [Note: These formulas are estimates
provided by the AHA. Maximum and target heart rates may vary based on the health, fitness and
gender of the individual. Always consult a physician or qualified health care professional before be-
ginning or modifying an exercise program.] Write an app that inputs the person’s age, then calcu-
lates and displays the person’s maximum heart rate and target-heart-rate range.

http://bit.ly/AHATargetHeartRates

Chapters on the Web

The following chapters are available at Java How to Program, 10/e’s Companion Website
(www.pearsonhighered.com/deitel) as PDF documents:

• Chapter 26, JavaFX GUI: Part 2

• Chapter 27, JavaFX Graphics and Multimedia

• Chapter 28, Networking

• Chapter 29, Java Persistence API (JPA)

• Chapter 30, JavaServer™ Faces Web Apps: Part 1

• Chapter 31, JavaServer™ Faces Web Apps: Part 2

• Chapter 32, REST-Based Web Services

• Chapter 33, (Optional) ATM Case Study, Part 1: Object-Oriented Design with
the UML

• Chapter 34, (Optional) ATM Case Study, Part 2: Implementing an Object-Ori-
ented Design

These files can be viewed in Adobe® Reader® (get.adobe.com/reader).

www.pearsonhighered.com/deitel

This page intentionally left blank

A
Operator Precedence Chart

Operators are shown in decreasing order of precedence from top to bottom (Fig. A.1).

Operator Description Associativity

++
--

unary postfix increment
unary postfix decrement

right to left

++
--
+
-
!
~
(type)

unary prefix increment
unary prefix decrement
unary plus
unary minus
unary logical negation
unary bitwise complement
unary cast

right to left

*
/
%

multiplication
division
remainder

left to right

+
-

addition or string concatenation
subtraction

left to right

<<
>>
>>>

left shift
signed right shift
unsigned right shift

left to right

<
<=
>
>=
instanceof

less than
less than or equal to
greater than
greater than or equal to
type comparison

left to right

==
!=

is equal to
is not equal to

left to right

& bitwise AND
boolean logical AND

left to right

^ bitwise exclusive OR
boolean logical exclusive OR

left to right

Fig. A.1 | Operator precedence chart. (Part 1 of 2.)

1144 Appendix A Operator Precedence Chart

| bitwise inclusive OR
boolean logical inclusive OR

left to right

&& conditional AND left to right

|| conditional OR left to right

?: conditional right to left

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=
>>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
remainder assignment
bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise left-shift assignment
bitwise signed-right-shift assignment
bitwise unsigned-right-shift assign-
ment

right to left

Operator Description Associativity

Fig. A.1 | Operator precedence chart. (Part 2 of 2.)

B
ASCII Character Set

The digits at the left of the table are the left digits of the decimal equivalents (0–127) of
the character codes, and the digits at the top of the table are the right digits of the character
codes. For example, the character code for “F” is 70, and the character code for “&” is 38.

Most users of this book are interested in the ASCII character set used to represent
English characters on many computers. The ASCII character set is a subset of the Unicode
character set used by Java to represent characters from most of the world’s languages. For
more information on the Unicode character set, see the web bonus Appendix H.

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 nl vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp ! " # $ % & ‘

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ’ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

Fig. B.1 | ASCII character set.

C
Keywords and Reserved Words

Java also contains the reserved words true and false, which are boolean literals, and
null, which is the literal that represents a reference to nothing. Like keywords, these re-
served words cannot be used as identifiers.

Java Keywords

abstract assert boolean break byte

case catch char class continue

default do double else enum

extends final finally float for

if implements import instanceof int

interface long native new package

private protected public return short

static strictfp super switch synchronized

this throw throws transient try

void volatile while

Keywords that are not currently used

const goto

Fig. C.1 | Java keywords.

D
Primitive Types

You can use underscores to make numeric literal values more readable. For example,
1_000_000 is equivalent to 1000000.

For more information on IEEE 754 visit http://grouper.ieee.org/groups/754/.
For more information on Unicode, see Appendix H.

Type Size in bits Values Standard

boolean true or false

[Note: A boolean’s representation is specific to the Java Virtual Machine on each platform.]

char 16 '\u0000' to '\uFFFF' (0 to 65535) (ISO Unicode
character set)

byte 8 –128 to +127 (–27 to 27 – 1)

short 16 –32,768 to +32,767 (–215 to 215 – 1)

int 32 –2,147,483,648 to +2,147,483,647 (–231 to 231 – 1)

long 64 –9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807 (–263 to 263 – 1)

float 32 Negative range:
–3.4028234663852886E+38 to
–1.40129846432481707e–45
Positive range:
1.40129846432481707e–45 to
3.4028234663852886E+38

(IEEE 754
floating point)

double 64 Negative range:
–1.7976931348623157E+308 to
–4.94065645841246544e–324
Positive range:
4.94065645841246544e–324 to
1.7976931348623157E+308

(IEEE 754
floating point)

Fig. D.1 | Java primitive types.

http://grouper.ieee.org/groups/754/

E Using the Debugger

And so shall I catch the fly.
—William Shakespeare

We are built to make mistakes,
coded for error.
—Lewis Thomas

What we anticipate seldom
occurs; what we least expect
generally happens.
—Benjamin Disraeli

O b j e c t i v e s
In this appendix you’ll learn:

■ To set breakpoints to debug
applications.

■ To use the run command to
run an application through
the debugger.

■ To use the stop command
to set a breakpoint.

■ To use the cont command
to continue execution.

■ To use the print command
to evaluate expressions.

■ To use the set command to
change variable values during
program execution.

■ To use the step, step up
and next commands to
control execution.

■ To use the watch command
to see how a field is modified
during program execution.

■ To use the clear command
to list breakpoints or remove
a breakpoint.

E.1 Introduction 1149

E.1 Introduction
In Chapter 2, you learned that there are two types of errors—syntax errors and logic er-
rors—and you learned how to eliminate syntax errors from your code. Logic errors do not
prevent the application from compiling successfully, but they do cause an application to
produce erroneous results when it runs. The JDK includes software called a debugger that
allows you to monitor the execution of your applications so you can locate and remove
logic errors. The debugger will be one of your most important application development
tools. Many IDEs provide their own debuggers similar to the one included in the JDK or
provide a graphical user interface to the JDK’s debugger.

This appendix demonstrates key features of the JDK’s debugger using command-line
applications that receive no input from the user. The same debugger features discussed
here can be used to debug applications that take user input, but debugging such applica-
tions requires a slightly more complex setup. To focus on the debugger features, we’ve
opted to demonstrate the debugger with simple command-line applications involving no
user input. For more information on the Java debugger visit http://docs.oracle.com/
javase/7/docs/technotes/tools/windows/jdb.html.

E.2 Breakpoints and the run, stop, cont and print
Commands
We begin our study of the debugger by investigating breakpoints, which are markers that
can be set at any executable line of code. When application execution reaches a breakpoint,
execution pauses, allowing you to examine the values of variables to help determine wheth-
er logic errors exist. For example, you can examine the value of a variable that stores the
result of a calculation to determine whether the calculation was performed correctly. Set-
ting a breakpoint at a line of code that is not executable (such as a comment) causes the
debugger to display an error message.

To illustrate the features of the debugger, we use application AccountTest (Fig. E.1),
which creates and manipulates an object of class Account (Fig. 3.8). Execution of
AccountTest begins in main (lines 7–24). Line 9 creates an Account object with an initial
balance of $50.00. Recall that Account’s constructor accepts one argument, which speci-
fies the Account’s initial balance. Lines 12–13 output the initial account balance using
Account method getBalance. Line 15 declares and initializes a local variable deposit-
Amount. Lines 17–19 then print depositAmount and add it to the Account’s balance using

E.1 Introduction
E.2 Breakpoints and the run, stop,

cont and print Commands
E.3 The print and set Commands
E.4 Controlling Execution Using the

step, step up and next
Commands

E.5 The watch Command
E.6 The clear Command
E.7 Wrap-Up

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html

1150 Appendix E Using the Debugger

its credit method. Finally, lines 22–23 display the new balance. [Note: The Appendix E
examples directory contains a copy of Account.java identical to the one in Fig. 3.8.]

In the following steps, you’ll use breakpoints and various debugger commands to
examine the value of the variable depositAmount declared in AccountTest (Fig. E.1).

1. Opening the Command Prompt window and changing directories. Open the Com-
mand Prompt window by selecting Start > Programs > Accessories > Command
Prompt. Change to the directory containing the Appendix E examples by typing
cd C:\examples\debugger [Note: If your examples are in a different directory,
use that directory here.]

2. Compiling the application for debugging. The Java debugger works only with
.class files that were compiled with the -g compiler option, which generates in-
formation that is used by the debugger to help you debug your applications.
Compile the application with the -g command-line option by typing javac -g
AccountTest.java Account.java. Recall from Chapter 3 that this command

1 // Fig. E.1: AccountTest.java
2 // Create and manipulate an Account object.
3
4 public class AccountTest
5 {
6 // main method begins execution
7 public static void main(String[] args)
8 {
9 Account account = new Account("Jane Green", 50.00);

10
11 // display initial balance of Account object
12 System.out.printf("initial account balance: $%.2f%n",
13 account.getBalance());
14
15 double depositAmount = 25.0; // deposit amount
16
17 System.out.printf("%nadding %.2f to account balance%n%n",
18 depositAmount);
19 account.deposit(depositAmount); // add to account balance
20
21 // display new balance
22 System.out.printf("new account balance: $%.2f%n",
23 account.getBalance());
24 }
25 } // end class AccountTest

initial account balance: $50.00

adding 25.00 to account balance

new account balance: $75.00

Fig. E.1 | Create and manipulate an Account object.

E.2 Breakpoints and the run, stop, cont and print Commands 1151

compiles both AccountTest.java and Account.java. The command java -g
*.java compiles all of the working directory’s .java files for debugging.

3. Starting the debugger. In the Command Prompt, type jdb (Fig. E.2). This com-
mand will start the Java debugger and enable you to use its features. [Note: We
modified the colors of our Command Prompt window for readability.]

4. Running an application in the debugger. Run the AccountTest application
through the debugger by typing run AccountTest (Fig. E.3). If you do not set
any breakpoints before running your application in the debugger, the application
will run just as it would using the java command.

5. Restarting the debugger. To make proper use of the debugger, you must set at
least one breakpoint before running the application. Restart the debugger by typ-
ing jdb.

6. Inserting breakpoints in Java. You set a breakpoint at a specific line of code in your
application. The line numbers used in these steps are from the source code in
Fig. E.1. Set a breakpoint at line 12 in the source code by typing stop at
AccountTest:12 (Fig. E.4). The stop command inserts a breakpoint at the line
number specified after the command. You can set as many breakpoints as necessary.
Set another breakpoint at line 19 by typing stop at AccountTest:19 (Fig. E.4).
When the application runs, it suspends execution at any line that contains a break-

C:\examples\debugger>javac -g AccountTest.java Account.java

C:\examples\debugger>jdb
Initializing jdb ...
>

Fig. E.2 | Starting the Java debugger.

C:\examples\debugger>jdb
Initializing jdb ...
> run AccountTest
run AccountTest
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
>
VM Started: initial account balance: $50.00

adding 25.00 to account balance

new account balance: $75.00

The application exited

Fig. E.3 | Running the AccountTest application through the debugger.

1152 Appendix E Using the Debugger

point. The application is said to be in break mode when the debugger pauses the
application’s execution. Breakpoints can be set even after the debugging process has
begun. The debugger command stop in, followed by a class name, a period and a
method name (e.g., stop in Account.credit) instructs the debugger to set a
breakpoint at the first executable statement in the specified method. The debugger
pauses execution when program control enters the method.

7. Running the application and beginning the debugging process. Type run
AccountTest to execute the application and begin the debugging process
(Fig. E.5). The debugger prints text indicating that breakpoints were set at lines
12 and 19. It calls each breakpoint a “deferred breakpoint” because each was set
before the application began running in the debugger. The application pauses
when execution reaches the breakpoint on line 12. At this point, the debugger no-
tifies you that a breakpoint has been reached and it displays the source code at
that line (12). That line of code is the next statement that will execute.

8. Using the cont command to resume execution. Type cont. The cont command
causes the application to continue running until the next breakpoint is reached
(line 19), at which point the debugger notifies you (Fig. E.6). AccountTest’s nor-
mal output appears between messages from the debugger.

C:\examples\debugger>jdb
Initializing jdb ...
> stop at AccountTest:12
Deferring breakpoint AccountTest:12.
It will be set after the class is loaded.
> stop at AccountTest:19
Deferring breakpoint AccountTest:19.
It will be set after the class is loaded.
>

Fig. E.4 | Setting breakpoints at lines 12 and 19.

It will be set after the class is loaded.
> run AccountTest
run AccountTest
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
>
VM Started: Set deferred breakpoint AccountTest:19
Set deferred breakpoint AccountTest:12

Breakpoint hit: "thread=main", AccountTest.main(), line=12 bci=13
12 System.out.printf("initial account balance: $%.2f%n",

main[1]

Fig. E.5 | Restarting the AccountTest application.

E.3 The print and set Commands 1153

9. Examining a variable’s value. Type print depositAmount to display the current
value stored in the depositAmount variable (Fig. E.7). The print command al-
lows you to peek inside the computer at the value of one of your variables. This
command will help you find and eliminate logic errors in your code. The value
displayed is 25.0—the value assigned to depositAmount in line 15 of Fig. E.1.

10. Continuing application execution. Type cont to continue the application’s exe-
cution. There are no more breakpoints, so the application is no longer in break
mode. The application continues executing and eventually terminates (Fig. E.8).
The debugger will stop when the application ends.

E.3 The print and set Commands
In the preceding section, you learned how to use the debugger’s print command to exam-
ine the value of a variable during program execution. In this section, you’ll learn how to
use the print command to examine the value of more complex expressions. You’ll also
learn the set command, which allows the programmer to assign new values to variables.

For this section, we assume that you’ve followed Step 1 and Step 2 in Section E.2 to
open the Command Prompt window, change to the directory containing the Appendix E

main[1] cont
> initial account balance: $50.00

adding 25.00 to account balance

Breakpoint hit: "thread=main", AccountTest.main(), line=19 bci=60
19 account.deposit(depositAmount); // add to account balance

main[1]

Fig. E.6 | Execution reaches the second breakpoint.

main[1] print depositAmount
 depositAmount = 25.0
main[1]

Fig. E.7 | Examining the value of variable depositAmount.

main[1] cont
> new account balance: $75.00

The application exited

Fig. E.8 | Continuing application execution and exiting the debugger.

1154 Appendix E Using the Debugger

examples (e.g., C:\examples\debugger) and compile the AccountTest application (and
class Account) for debugging.

1. Starting debugging. In the Command Prompt, type jdb to start the Java debugger.

2. Inserting a breakpoint. Set a breakpoint at line 19 in the source code by typing
stop at AccountTest:19.

3. Running the application and reaching a breakpoint. Type run AccountTest to
begin the debugging process (Fig. E.9). This will cause AccountTest’s main to ex-
ecute until the breakpoint at line 19 is reached. This suspends application execu-
tion and switches the application into break mode. At this point, the statements
in lines 9–13 created an Account object and printed the initial balance of the Ac-
count obtained by calling its getBalance method. The statement in line 15
(Fig. E.1) declared and initialized local variable depositAmount to 25.0. The
statement in line 19 is the next statement that will execute.

4. Evaluating arithmetic and boolean expressions. Recall from Section E.2 that
once the application has entered break mode, you can explore the values of the
application’s variables using the debugger’s print command. You can also use the
print command to evaluate arithmetic and boolean expressions. In the Com-
mand Prompt window, type print depositAmount - 2.0. The print command
returns the value 23.0 (Fig. E.10). However, this command does not actually
change the value of depositAmount. In the Command Prompt window, type
print depositAmount == 23.0. Expressions containing the == symbol are treated
as boolean expressions. The value returned is false (Fig. E.10) because
depositAmount does not currently contain the value 23.0—depositAmount is
still 25.0.

C:\examples\debugger>jdb
Initializing jdb ...
> stop at AccountTest:19
Deferring breakpoint AccountTest:19.
It will be set after the class is loaded.
> run AccountTest
run AccountTest
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
>
VM Started: Set deferred breakpoint AccountTest:19
initial account balance: $50.00

adding 25.00 to account balance

Breakpoint hit: "thread=main", AccountTest.main(), line=19 bci=60
19 account.deposit(depositAmount); // add to account balance

main[1]

Fig. E.9 | Application execution suspended when debugger reaches the breakpoint at line 19.

E.4 Controlling Execution Using the step, step up and next Commands 1155

5. Modifying values. The debugger allows you to change the values of variables dur-
ing the application’s execution. This can be valuable for experimenting with dif-
ferent values and for locating logic errors in applications. You can use the
debugger’s set command to change the value of a variable. Type set deposit-
Amount = 75.0. The debugger changes the value of depositAmount and displays
its new value (Fig. E.11).

6. Viewing the application result. Type cont to continue application execution.
Line 19 of AccountTest (Fig. E.1) executes, passing depositAmount to Account
method credit. Method main then displays the new balance. The result is
$125.00 (Fig. E.12). This shows that the preceding step changed the value of de-
positAmount from its initial value (25.0) to 75.0.

E.4 Controlling Execution Using the step, step up and
next Commands
Sometimes you’ll need to execute an application line by line to find and fix errors. Walking
through a portion of your application this way can help you verify that a method’s code
executes correctly. In this section, you’ll learn how to use the debugger for this task. The
commands you learn in this section allow you to execute a method line by line, execute all
the statements of a method at once or execute only the remaining statements of a method
(if you’ve already executed some statements within the method).

Once again, we assume you’re working in the directory containing the Appendix E
examples and have compiled for debugging with the -g compiler option.

main[1] print depositAmount - 2.0
 depositAmount - 2.0 = 23.0
main[1] print depositAmount == 23.0
 depositAmount == 23.0 = false
main[1]

Fig. E.10 | Examining the values of an arithmetic and boolean expression.

main[1] set depositAmount = 75.0
 depositAmount = 75.0 = 75.0
main[1]

Fig. E.11 | Modifying values.

main[1] cont
> new account balance: $125.00

The application exited

C:\examples\debugger>

Fig. E.12 | Output showing new account balance based on altered value of depositAmount.

1156 Appendix E Using the Debugger

1. Starting the debugger. Start the debugger by typing jdb.

2. Setting a breakpoint. Type stop at AccountTest:19 to set a breakpoint at line 19.

3. Running the application. Run the application by typing run AccountTest. After
the application displays its two output messages, the debugger indicates that the
breakpoint has been reached and displays the code at line 19. The debugger and
application then pause and wait for the next command to be entered.

4. Using the step command. The step command executes the next statement in the
application. If the next statement to execute is a method call, control transfers to
the called method. The step command enables you to enter a method and study
the individual statements of that method. For instance, you can use the print
and set commands to view and modify the variables within the method. You’ll
now use the step command to enter the credit method of class Account
(Fig. 3.8) by typing step (Fig. E.13). The debugger indicates that the step has
been completed and displays the next executable statement—in this case, line 21
of class Account (Fig. 3.8).

5. Using the step up command. After you’ve stepped into the credit method, type
step up. This command executes the remaining statements in the method and
returns control to the place where the method was called. The credit method
contains only one statement to add the method’s parameter amount to instance
variable balance. The step up command executes this statement, then pauses be-
fore line 22 in AccountTest. Thus, the next action to occur will be to print the
new account balance (Fig. E.14). In lengthy methods, you may want to look at a
few key lines of code, then continue debugging the caller’s code. The step up
command is useful for situations in which you do not want to continue stepping
through the entire method line by line.

main[1] step
>
Step completed: "thread=main", Account.deposit(), line=24 bci=0
24 if (depositAmount > 0.0) // if the depositAmount is valid

main[1]

Fig. E.13 | Stepping into the credit method.

main[1] step up
>
Step completed: "thread=main", AccountTest.main(), line=22 bci=65
22 System.out.printf("new account balance: $%.2f%n",

main[1]

Fig. E.14 | Stepping out of a method.

E.4 Controlling Execution Using the step, step up and next Commands 1157

6. Using the cont command to continue execution. Enter the cont command
(Fig. E.15) to continue execution. The statement at lines 22–23 executes, dis-
playing the new balance, then the application and the debugger terminate.

7. Restarting the debugger. Restart the debugger by typing jdb.

8. Setting a breakpoint. Breakpoints persist only until the end of the debugging ses-
sion in which they’re set—once the debugger exits, all breakpoints are removed.
(In Section E.6, you’ll learn how to manually clear a breakpoint before the end
of the debugging session.) Thus, the breakpoint set for line 19 in Step 2 no longer
exists upon restarting the debugger in Step 7. To reset the breakpoint at line 19,
once again type stop at AccountTest:19.

9. Running the application. Type run AccountTest to run the application. As in
Step 3, AccountTest runs until the breakpoint at line 19 is reached, then the de-
bugger pauses and waits for the next command.

10. Using the next command. Type next. This command behaves like the step com-
mand, except when the next statement to execute contains a method call. In that
case, the called method executes in its entirety and the application advances to the
next executable line after the method call (Fig. E.16). Recall from Step 4 that the
step command would enter the called method. In this example, the next com-
mand causes Account method credit to execute, then the debugger pauses at line
22 in AccountTest.

11. Using the exit command. Use the exit command to end the debugging session
(Fig. E.17). This command causes the AccountTest application to immediately
terminate rather than execute the remaining statements in main. When debug-
ging some types of applications (e.g., GUI applications), the application contin-
ues to execute even after the debugging session ends.

main[1] cont
> new account balance: $75.00

The application exited

C:\examples\debugger>

Fig. E.15 | Continuing execution of the AccountTest application.

main[1] next
>
Step completed: "thread=main", AccountTest.main(), line=22 bci=65
22 System.out.printf("new account balance: $%.2f%n",

main[1]

Fig. E.16 | Stepping over a method call.

1158 Appendix E Using the Debugger

E.5 The watch Command
In this section, we present the watch command, which tells the debugger to watch a field.
When that field is about to change, the debugger will notify you. In this section, you’ll
learn how to use the watch command to see how the Account object’s field balance is
modified during the execution of the AccountTest application.

As in the preceding two sections, we assume that you’ve followed Step 1 and Step 2 in
Section E.2 to open the Command Prompt, change to the correct examples directory and
compile classes AccountTest and Account for debugging (i.e., with the -g compiler option).

1. Starting the debugger. Start the debugger by typing jdb.

2. Watching a class’s field. Set a watch on Account’s balance field by typing watch
Account.balance (Fig. E.18). You can set a watch on any field during execution
of the debugger. Whenever the value in a field is about to change, the debugger
enters break mode and notifies you that the value will change. Watches can be
placed only on fields, not on local variables.

3. Running the application. Run the application with the command run Account-
Test. The debugger will now notify you that field balance’s value will change
(Fig. E.19). When the application begins, an instance of Account is created with
an initial balance of $50.00 and a reference to the Account object is assigned to
the local variable account (line 9, Fig. E.1). Recall from Fig. 3.8 that when the
constructor for this object runs, if parameter initialBalance is greater than 0.0,
instance variable balance is assigned the value of parameter initialBalance.
The debugger notifies you that the value of balance will be set to 50.0.

4. Adding money to the account. Type cont to continue executing the application.
The application executes normally before reaching the code on line 19 of Fig. E.1
that calls Account method credit to raise the Account object’s balance by a
specified amount. The debugger notifies you that instance variable balance will
change (Fig. E.20). Although line 19 of class AccountTest calls method deposit,
line 25 in Account’s method deposit actually changes the value of balance.

main[1] exit

C:\examples\debugger>

Fig. E.17 | Exiting the debugger.

C:\examples\debugger>jdb
Initializing jdb ...
> watch Account.balance
Deferring watch modification of Account.balance.
It will be set after the class is loaded.
>

Fig. E.18 | Setting a watch on Account’s balance field.

E.5 The watch Command 1159

5. Continuing execution. Type cont—the application will finish executing because
the application does not attempt any additional changes to balance (Fig. E.21).

6. Restarting the debugger and resetting the watch on the variable. Type jdb to re-
start the debugger. Once again, set a watch on the Account instance variable bal-
ance by typing the watch Account.balance, then type run AccountTest to run
the application.

7. Removing the watch on the field. Suppose you want to watch a field for only part
of a program’s execution. You can remove the debugger’s watch on variable bal-
ance by typing unwatch Account.balance (Fig. E.22). Type cont—the applica-
tion will finish executing without reentering break mode.

> run AccountTest
run AccountTest
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
>
VM Started: Set deferred watch modification of Account.balance

Field (Account.balance) is 0.0, will be 50.0: "thread=main", Acount.<init>(),
line=18 bci=17
18 this.balance = balance; // assign to instance variable balance

main[1]

Fig. E.19 | AccountTest application stops when account is created and its balance field will
be modified.

main[1] cont
> initial account balance: $50.00

adding 25.00 to account balance
Field (Account.balance) is 50.0, will be 75.0: "thread=main",
Account.deposit(), line=25 bci=13

25 balance = balance + depositAmount; // add it to the balance

main[1]

Fig. E.20 | Changing the value of balance by calling Account method credit.

main[1] cont
> new account balance: $75.00

The application exited

C:\examples\debugger>

Fig. E.21 | Continuing execution of AccountTest.

1160 Appendix E Using the Debugger

E.6 The clear Command
In the preceding section, you learned to use the unwatch command to remove a watch on a
field. The debugger also provides the clear command to remove a breakpoint from an ap-
plication. You’ll often need to debug applications containing repetitive actions, such as a
loop. You may want to examine the values of variables during several, but possibly not all, of
the loop’s iterations. If you set a breakpoint in the body of a loop, the debugger will pause
before each execution of the line containing a breakpoint. After determining that the loop is
working properly, you may want to remove the breakpoint and allow the remaining itera-
tions to proceed normally. In this section, we use the compound interest application in
Fig. 5.6 to demonstrate how the debugger behaves when you set a breakpoint in the body of
a for statement and how to remove a breakpoint in the middle of a debugging session.

1. Opening the Command Prompt window, changing directories and compiling the
application for debugging. Open the Command Prompt window, then change to
the directory containing the Appendix E examples. For your convenience, we’ve
provided a copy of the Interest.java file in this directory. Compile the appli-
cation for debugging by typing javac -g Interest.java.

2. Starting the debugger and setting breakpoints. Start the debugger by typing jdb.
Set breakpoints at lines 13 and 22 of class Interest by typing stop at Inter-
est:13, then stop at Interest:22.

3. Running the application. Run the application by typing run Interest. The ap-
plication executes until reaching the breakpoint at line 13 (Fig. E.23).

4. Continuing execution. Type cont to continue—the application executes line 13,
printing the column headings "Year" and "Amount on deposit". Line 13 ap-
pears before the for statement at lines 16–23 in Interest (Fig. 5.6) and thus ex-
ecutes only once. Execution continues past line 13 until the breakpoint at line 22
is reached during the first iteration of the for statement (Fig. E.24).

5. Examining variable values. Type print year to examine the current value of
variable year (i.e., the for’s control variable). Print the value of variable amount
too (Fig. E.25).

main[1] unwatch Account.balance
Removed: watch modification of Account.balance
main[1] cont
> initial account balance: $50.00

adding 25.00 to account balance

new account balance: $75.00

The application exited

C:\examples\debugger>

Fig. E.22 | Removing the watch on variable balance.

E.6 The clear Command 1161

6. Continuing execution. Type cont to continue execution. Line 22 executes and
prints the current values of year and amount. After the for enters its second itera-
tion, the debugger notifies you that the breakpoint at line 22 has been reached a
second time. The debugger pauses each time a line where a breakpoint has been set
is about to execute—when the breakpoint appears in a loop, the debugger pauses
during each iteration. Print the values of variables year and amount again to see
how the values have changed since the first iteration of the for (Fig. E.26).

It will be set after the class is loaded.
> run Interest
run Interest
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
>
VM Started: Set deferred breakpoint Interest:22
Set deferred breakpoint Interest:13

Breakpoint hit: "thread=main", Interest.main(), line=13 bci=9
13 System.out.printf("%s%20s%n", "Year", "Amount on deposit");

main[1]

Fig. E.23 | Reaching the breakpoint at line 13 in the Interest application.

main[1] cont
> Year Amount on deposit
Breakpoint hit: "thread=main", Interest.main(), line=22 bci=55
22 System.out.printf("%4d%,20.2f%n", year, amount);

main[1]

Fig. E.24 | Reaching the breakpoint at line 22 in the Interest application.

main[1] print year
 year = 1
main[1] print amount
 amount = 1050.0
main[1]

Fig. E.25 | Printing year and amount during the first iteration of Interest’s for.

main[1] cont
> 1 1,050.00
Breakpoint hit: "thread=main", Interest.main(), line=22 bci=55
22 System.out.printf("%4d%,20.2f%n", year, amount);

main[1] print amount
 amount = 1102.5
main[1] print year
 year = 2
main[1]

Fig. E.26 | Printing year and amount during the second iteration of Interest’s for.

1162 Appendix E Using the Debugger

7. Removing a breakpoint. You can display a list of all of the breakpoints in the appli-
cation by typing clear (Fig. E.27). Suppose you’re satisfied that the Interest ap-
plication’s for statement is working properly, so you want to remove the
breakpoint at line 22 and allow the remaining iterations of the loop to proceed nor-
mally. You can remove the breakpoint at line 22 by typing clear Interest:22.
Now type clear to list the remaining breakpoints in the application. The debugger
should indicate that only the breakpoint at line 13 remains (Fig. E.27). This break-
point has already been reached and thus will no longer affect execution.

8. Continuing execution after removing a breakpoint. Type cont to continue exe-
cution. Recall that execution last paused before the printf statement in line 22.
If the breakpoint at line 22 was removed successfully, continuing the application
will produce the correct output for the current and remaining iterations of the
for statement without the application halting (Fig. E.28).

E.7 Wrap-Up
In this appendix, you learned how to insert and remove breakpoints in the debugger.
Breakpoints allow you to pause application execution so you can examine variable values

main[1] clear
Breakpoints set:
 breakpoint Interest:13
 breakpoint Interest:22
main[1] clear Interest:22
Removed: breakpoint Interest:22
main[1] clear
Breakpoints set:
 breakpoint Interest:13
main[1]

Fig. E.27 | Removing the breakpoint at line 22.

main[1] cont
> 2 1,102.50
 3 1,157.63
 4 1,215.51
 5 1,276.28
 6 1,340.10
 7 1,407.10
 8 1,477.46
 9 1,551.33
 10 1,628.89

The application exited

C:\examples\debugger>

Fig. E.28 | Application executes without a breakpoint set at line 22.

E.7 Wrap-Up 1163

with the debugger’s print command. This capability will help you locate and fix logic er-
rors in your applications. You saw how to use the print command to examine the value
of an expression and how to use the set command to change the value of a variable. You
also learned debugger commands (including the step, step up and next commands) that
can be used to determine whether a method is executing correctly. You learned how to use
the watch command to keep track of a field throughout the life of an application. Finally,
you learned how to use the clear command to list all the breakpoints set for an application
or remove individual breakpoints to continue execution without breakpoints.

This page intentionally left blank

Appendices on the Web

The following appendices are available at Java How to Program, 9/e’s Companion Web-
site (www.pearsonhighered.com/deitel) as PDF documents:

• Appendix F, Using the Java API Documentation

• Appendix G, Creating Documentation with javadoc

• Appendix H, Unicode®

• Appendix I, Formatted Output

• Appendix J, Number Systems

• Appendix K, Bit Manipulation

• Appendix L, Labeled break and continue Statements

• Appendix M, UML 2: Additional Diagram Types

• Appendix N, Design Patterns

These files can be viewed in Adobe® Reader® (get.adobe.com/reader).

www.pearsonhighered.com/deitel

This page intentionally left blank

Symbols
^, boolean logical exclusive OR 176, 179

truth table 179
_ SQL wildcard character 1053, 1054
, (comma) formatting flag 162
--, predecrement/postdecrement 131
-, subtraction 51, 52
!, logical NOT 176, 179

truth table 179
!=, not equals 54
? (wildcard type argument) 862
?:, ternary conditional operator 110, 134
. dot separator 76
{, left brace 38
}, right brace 38
@Override annotation 369
* SQL wildcard character 1052
* wildcard in a file name 77
*, multiplication 51, 52
*=, multiplication assignment operator

131
/, division 51, 52
/* */ traditional comment 36
/** */ Java documentation comment 36
//, end-of-line comment 36
/=, division assignment operator 131
\, backslash escape sequence 43
\", double-quote escape sequence 43
\n, newline escape sequence 43
\r, carriage-return escape sequence 43
\t, horizontal tab escape sequence 43
&, boolean logical AND 176, 178
&&, conditional AND 176, 177

truth table 177
% SQL wildcard character 1053
%, remainder 51, 52
%=, remainder assignment operator 131
%b format specifier 180
%c format specifier 66
%d format specifier 49
%f format specifier 66, 88
%s format specifier 44
– (minus sign) formatting flag 161
+, addition 51, 52
++, preincrement/postincrement 131
+=, addition assignment operator 131
+=, string concatenation assignment

operator 612
<, less than 55
<=, less than or equal 55
<> (diamond notation in generics) 691
<> diamond notation for generic type

inference (Java SE 7) 691
=, assignment operator 48
-=, subtraction assignment operator 131

== to determine whether two references
refer to the same object 387

==, is equal to 54
-> (arrow token in a lambda) 733
>, greater than 55
>=, greater than or equal to 55
|, boolean logical inclusive OR 176, 178
||, conditional OR 176, 177

truth table 178

Numerics
0 flag 253
0 format flag 318

A
abbreviating assignment expressions 131
abs method of Math 204
absolute method of ResultSet 1073
absolute path 647, 649
absolute value 204
abstract class 397, 401, 402, 403, 422
abstract implementation 722
abstract keyword 402
abstract method 402, 404, 406, 493,

1146
abstract superclass 401
Abstract Window Toolkit (AWT) 479,

1108
Abstract Window Toolkit Event package

212
AbstractButton class 495, 498, 918,

923
addActionListener method 498
addItemListener method 501
isSelected method 925
setMnemonic method 923
setRolloverIcon method 498
setSelected method 924

AbstractCollection class 722
AbstractList class 722
AbstractMap class 722
AbstractQueue class 722
AbstractSequentialList class 722
AbstractSet class 722
AbstractTableModel class 1068, 1074

fireTableStructureChanged
method 1074

accelerometer 5
accept method of functional interface

Consumer (Java SE 8) 751
accept method of interface

BiConsumer (Java SE 8) 755
accept method of interface

IntConsumer (Java SE 8) 738

access modifier 71, 72
private 72, 321, 364
protected 321, 364
public 71, 321, 364

access modifier in the UML
- (private) 78

access shared data 984
accessibility 480
accessibility heuristic 304
accessor method 331
Accounts Payable System Modification

exercise 440
accounts receivable file 682
accumulator register 308, 311
acquire a lock 968
acquire the lock 968
action 106, 114
action expression in the UML 104
action key 525
action state in the UML 104, 184
action state symbol 104
action to execute 102
ActionEvent class 489, 490, 494, 541

getActionCommand method 490,
498

ActionEvent class (JavaFX) 1129, 1131
ActionListener interface 489, 494

actionPerformed method 489,
493, 534, 541

actionPerformed method of interface
ActionListener 489, 493, 534,
541

activation record 210
activity diagram 104, 107, 158, 184

do...while statement 164
for statement 158
if statement 106
if...else statement 107
in the UML 114
sequence statement 104
switch statement 170
while statement 114

activity in the UML 104
actual type arguments 844
acyclic gradient 584
Ada Lovelace 16
Ada programming language 16
adapter class 518
Adapter Classes used to implement event

handlers 522
add method

ArrayList<T> 290
BigInteger 784
ButtonGroup 504
JFrame 390, 483
JFrame class 138
JMenu 923

Index

1168 Index

add method (cont.)
JMenuBar 924
LinkedList<T> 695
List<T> 690, 693

add method of class BigDecimal 347
add rows or columns to a GridPane 1123
addActionListener method

of class AbstractButton 498
of class JTextField 489

addAll method
Collections 696, 706
List 693

addFirst method of LinkedList 696
Adding Object Serialization to the

MyShape Drawing Application
(exercise) 683

addItemListener method of class
AbstractButton 501

addition 6, 51, 52
addition compound assignment operator,

+= 131
addKeyListener method of class

Component 525
addLast method of LinkedList 695
addListener method of interface

ObservableValue 1132
addListSelectionListener method

of class JList 510
addMouseListener method of class

Component 518
addMouseMotionListener method of

class Component 518
addPoint method of class Polygon 579,

581
addSeparator method of class JMenu

924
addTab method of class JTabbedPane

938
addTableModelListener method of

TableModel 1068
addWindowListener method of class

Window 917
“administrative” section of the computer

6
Agile Alliance 28
Agile Manifesto 28
agile software development 28
Airline Reservation System 301
Ajax (Asynchronous JavaScript and

XML) 27
algebraic notation 51
algorithm 102, 115, 122, 785

binary search 816
bubble sort 836
bucket sort 836
in Java Collections Framework 696
insertion sort 824
linear search 812
merge sort 827
quicksort 837
recursive binary search 837
recursive linear search 837
selection sort 821

alignment in a VBox (JavaFX) 1116
Alignment property of a VBox (JavaFX)

1116
alpha software 29
alphabetizing 600
ALU (arithmetic and logic unit) 6

Analytical Engine 16
anchor field of class

GridBagConstraints 943
AND (in SQL) 1059, 1060
and method of interface Predicate

(Java SE 8) 745
Android 14

Google Play 15
operating system 13, 14
smartphone 14

Android for Programmers: An App-Driven
Approach 15

angle brackets (< and >) 843
annotation

@Override 369
anonymous inner class 316, 433, 489,

507, 523, 1132
anonymous method (Java SE 8) 733
anonymous methods 433
Apache Software Foundation 14
API (application programming interface)

46, 201
API documentation 213
append method of class

StringBuilder 615
application 35

command-line arguments 205
Application class (JavaFX) 1119

launch method 1119, 1127
start method 1119, 1127

application programming interface (API)
17, 201

apply method of functional interface
Function (Java SE 8) 747

applyAsDouble method of interface
ToDoubleFunction (Java SE 8) 757

applyAsInt method of interface
IntBinaryOperator (Java SE 8)
740

applyAsInt method of interface
IntUnaryOperator (Java SE 8) 742

arc 575
arc angle 575
arc width and arc height for rounded

rectangles 574
Arc2D class 556

CHORD constant 585
OPEN constant 585
PIE constant 585

Arc2D.Double class 581, 593
archive files 885
area of a circle 239
args parameter 283
argument promotion 210
argument to a method 39, 76
arithmetic and logic unit (ALU) 6
arithmetic calculation 51
arithmetic compound assignment

operators 131
arithmetic mean 52
arithmetic operators 51
arithmetic overflow 118, 451
ArithmeticException class 347, 444,

450
ARPANET 25
array 244, 645

bounds checking 254
ignoring element zero 256
length instance variable 246

array (cont.)
pass an array element to a method

264
pass an array to a method 264

array-access expression 245
array-creation expression 246
array initializer 248

for multidimensional array 272
nested 272

array of one-dimensional arrays 272
ArrayBlockingQueue class 984, 995,

1010
size method 986

arraycopy method of class System
285, 286

ArrayIndexOutOfBoundsException
class 254, 257, 581

ArrayList<T> generic class 288, 688,
704
add method 290
clear method 288
contains method 288, 290
get method 290
indexOf method 288
isEmpty method 332
remove method 288, 290
size method 290
toString method 862
trimToSize method 288

Arrays class 285
asList method 694, 695
binarySearch method 285
equals method 285
fill method 285, 1020
parallelPrefix method 1027
parallelSetAll method 1027
parallelSort method (Java SE 8)

745, 1025
sort method 285, 745, 817, 1025
stream method (Java SE 8) 743,

744
toString method 631, 814

Arrays method parallelSort 287
arrow 104
arrow key 525
arrow token (->) in a lambda 733
ascending order 285

ASC in SQL 1055, 1056
ascent 569
ASCII (American Standard Code for

Information Interchange) character
set 7, 170, 313

ASCII character set Appendix 1145
asList method of Arrays 694, 695
assembler 9
assembly language 9
assert statement 466, 1146
assertion 465
AssertionError class 466
assign a value to a variable 48
Assigning superclass and subclass

references to superclass and subclass
variables 400

assignment operator, = 48, 57
assignment operators 131
assignment statement 48
associate

left to right 134
right to left 125, 134

Index 1169

associativity chart 134
associativity of operators 52, 58, 134

left to right 58
right to left 52

asterisk (*) SQL wildcard character 1052
asynchronous event 451
atomic operation 974, 1099
attribute

in the UML 12, 78
of a class 10
of an object 12

AuthorISBN table of Books database
1050

authorISBN table of books database
1048, 1050

authors table of books database 1048
auto commit state 1099
auto-unboxing 687
autobox an int 847
autoboxing 622, 687, 847
AutoCloseable interface 338, 467,

1065
close method 467

autoincremented 1048, 1058
automatic driver discovery (JDBC 4)

1064
automatic garbage collection 454
automatic scrolling 510
average 52, 115, 118
average method of interface

DoubleStream (Java SE 8) 757
average method of interface

IntStream (Java SE 8) 739
await method of interface Condition

1003, 1007
awaitTermination method of interface

ExecutorService 973
AWT (Abstract Window Toolkit) 479,

1108
components 480

AWTEvent class 491

B
Babbage, Charles 16
background color 563, 565
backing array 694
backslash (\) 43
backtracking 802
bandwidth 26
bar chart 197, 251, 252
bar of asterisks 251, 252
base case 778, 784, 785, 790
base class 361
base of a number 621
baseline of the font 567
BasePlusCommissionEmployee class

extends CommissionEmployee 413
BASIC (Beginner’s All-Purpose Symbolic

Instruction Code) 16, 870
BasicStroke class 556, 584, 585

CAP_ROUND constant 585
JOIN_ROUND constant 586

batch file 653
behavior

of a class 10
beta software 29
between method of class Duration

1026

BiConsumer functional interface (Java
SE 8) 755, 762
accept method 755

bidirectional iterator 694
big data 8
Big O notation 814, 820, 824, 827, 833
BigDecimal class 126, 163, 346, 781,

1128
add method 347
ArithmeticException class 347
multiply method 347
ONE constant 347
pow method 347
setScale method 348
TEN constant 347
valueOf method 347
ZERO constant 347

BigInteger class 781, 1012
add method 784
compareTo method 782
multiply method 782
ONE constant 782, 784
subtract method 782, 784
ZERO constant 784

binary 241
binary digit (bit) 6
binary file 646
binary integer 150
binary operator 48, 51, 179
binary search algorithm 704, 816, 820
binary search tree 894, 898
binary tree 870, 899

delete 907
search 908
sort 899

BinaryOperator functional interface
(Java SE 8) 733

binarySearch method
of Arrays 285, 287
of Collections 696, 704, 706

bit (binary digit) 6
bitwise operators 176
Bjarne Stroustrup 16
blank line 37, 122
block 110, 124
block increment of a JSlider 913
blocked state 961, 969
BlockingQueue interface 984

put method 984, 985
take method 984, 986

body
of a class declaration 38
of a loop 114
of a method 38
of an if statement 54

body mass index (BMI) 33
Body Mass Index Calculator app exercise

1139
Body Mass Index Calculator exercise 67
Bohm, C. 103
BOLD constant of class Font 567, 567
book-title capitalization 478, 495
books database 1048

table relationships 1051, 1106
Boolean

class 687
boolean 171

expression 110, 1154
promotions 211

boolean logical AND, & 176, 178

boolean logical exclusive OR, ^ 176, 179
truth table 179

boolean logical inclusive OR, | 178
boolean primitive type 110, 1146,

1147, 1154
border of a JFrame 916
BorderLayout class 390, 518, 528, 529,

532, 541
CENTER constant 390, 518, 532, 534
EAST constant 390, 518, 532
NORTH constant 390, 518, 532
SOUTH constant 390, 518, 532
WEST constant 390, 518, 532

BOTH constant of class
GridBagConstraints 944

bounded buffer 995
bounding rectangle 188, 573, 575, 913
bounds checking 254
Box class 540, 939, 941

createGlue method 942
createHorizontalBox method

541, 941
createHorizontalGlue method

942
createHorizontalStrut method

941
createRigidArea method 942
createVerticalBox method 941
createVerticalGlue method 942
createVerticalStrut method

941
X_AXIS constant 942
Y_AXIS constant 942

boxed method of interface IntStream
(Java SE 8) 762

boxing 288
boxing conversion 687, 847
BoxLayout class 541, 939
BoxLayout layout manager 939
braces ({ and }) 109, 124, 156, 165, 248

not required 169
braille screen reader 480
break 1146
break mode 1152
break statement 168, 174, 198
breakpoint 1149

inserting 1151, 1154
listing 1162
removing 1162

brightness 565
brittle software 381
browser 90
brute force 304, 305

Knight’s Tour 305
bubble sort 836

improving performance 836
bucket sort 836
buffer 674, 977
buffered I/O 674
BufferedImage class 585

createGraphics method 585
TYPE_INT_RGB constant 585

BufferedInputStream class 675
BufferedOutputStream class 674

flush method 674
BufferedReader class 675
BufferedWriter class 675
building block appearance 184
building blocks 102

1170 Index

Building Your Own Compiler 870
Building Your Own Computer 308
building-block approach to creating

programs 11
bulk operation 687
business publications 30
button 475, 495
Button class (JavaFX) 1125
button label 495
ButtonGroup class 501, 918, 925

add method 504
byte 5, 7
byte-based stream 646
Byte class 687
byte keyword 1147
byte primitive type 165, 1146

promotions 211
ByteArrayInputStream class 675
ByteArrayOutputStream class 675
bytecode 19, 40, 870
bytecode verifier 20

C
C programming language 16
C++ 16
CachedRowSet interface 1080

close method 1082
calculations 6, 58, 104
call-by-reference 265
call-by-value 265
call method of interface Callable

1030
Callable interface 1030

call method 1030
CallableStatement interface 1098
calling method (caller) 202
camel case 48
camera 15
Cancel button 92
cancel method of class SwingWorker

1025
CANCEL_OPTION constant of

JFileChooser 671
CAP_ROUND constant of class

BasicStroke 585
capacity method

of class StringBuilder 612
capacity of a StringBuilder 611
capturing lambdas 738
Car Payment Calculator app exercise

1139
carbon footprint calculator 33
card games 257
Card Shuffling and Dealing 307, 308

with Collections method
shuffle 700

Car-Pool Savings Calculator exercise 68
carriage return 43
Cascading 1109
Cascading Style Sheets (CSS) 1109, 1109
case keyword 168, 1146
case sensitive 38

Java commands 22
casino 218
cast

downcast 399
operator 66, 125, 211

catch
a superclass exception 454
an exception 446
block 448, 450, 451, 455, 458, 459
clause 448, 1146
keyword 448

Catch block 256
catch handler

multi-catch 449
catch-or-declare requirement 453
Catching Exceptions Using Class

Exception exercise 472
Catching Exceptions Using Outer Scopes

exercise 472
Catching Exceptions with Superclasses

exercise 472
cd to change directories 40
ceil method of Math 204
cell in a GridPane 1119
Celsius 551

equivalent of a Fahrenheit
temperature 240

CENTER constant
BorderLayout 518, 532, 534
FlowLayout 532
GridBagConstraints 943

center mouse button click 521
centered 530
central processing unit (CPU) 6
chained exception 462
change directories 40
change the default layout (JavaFX Scene

Builder) 1115, 1123
changed method of interface

ChangeListener (JavaFX) 1128
ChangeEvent class 916
ChangeListener interface 916

stateChanged method 916
ChangeListener interface (JavaFX)

1121, 1128, 1132
changing look-and-feel of a Swing-based

GUI 932
char

array 599
keyword 1146, 1147
primitive type 47, 165
promotions 211

character 7
constant 170
literal 597
set 66

character-based stream 646
Character class 597, 620, 687

charValue method 622
digit method 621
forDigit method 621
isDefined method 620
isDigit method 620
isJavaIdentifierPart method

620
isJavaIdentifierStart method

620
isLetter method 620
isLetterOrDigit method 620
isLowerCase method 620
isUpperCase method 620
static conversion methods 621
toLowerCase method 621
toUpperCase method 620

character set 7

character string 39
CharArrayReader class 676
CharArrayWriter class 676
charAt method

of class String 599
of class StringBuilder 614

CharSequence interface 631
charValue method of class Character

622
check protection exercise 639
checkbox 495, 501
checkbox label 501
checked exception 452
checkerboard pattern 66
Checking with assert that a value is

within range 466
child node 893
child window 912, 933, 935, 936
CHORD constant of class Arc2D 585
Circles Using Class Ellipse2D.Double

exercise 592
circular buffer 996
circumference 66, 592
class 11

anonymous inner class 316
class keyword 72
constructor 75, 81
data hiding 80
declaration 37
default constructor 83
file 40
get method 324
instance variable 12
name 37
nested class 316
set method 324

class 7
class-average problem 115, 116, 121, 122
class cannot extend a final class 420
Class class 388, 418, 484, 1073

getName method 388, 418
getResource method 484

.class file 18, 41
separate one for every class 322

class hierarchy 361, 402
class instance creation expression 75, 83,

318
diamond notation (<>) 290

class keyword 37, 72, 1146
class library 362
class loader 19, 484, 885
class method 203
class name

fully qualified 79
class names

came case naming 72
class variable 204, 338
classwide information 338
ClassCastException class 686
Classes

AbstractButton 495, 498, 918,
923

AbstractCollection 722
AbstractList 722
AbstractMap 722
AbstractQueue 722
AbstractSequentialList 722
AbstractSet 722
AbstractTableModel 1068, 1074

Index 1171

Classes (cont.)
ActionEvent 489, 490, 494, 541
ActionEvent (JavaFX) 1129, 1131
Application (JavaFX) 1119
Arc2D 556
Arc2D.Double 581
ArithmeticException 347, 444
ArrayBlockingQueue 984, 995,

1010
ArrayIndexOutOfBoundsExcept

ion 254, 257
ArrayList<T> 288, 290, 688, 689,

704
Arrays 285
AssertionError 466
AWTEvent 491
BasicStroke 556, 584, 585
BigDecimal 126, 163, 346, 781,

1128
BigInteger 781, 1012
Boolean 687
BorderLayout 518, 528, 529, 532,

541
Box 540, 939, 941
BoxLayout 541, 939
BufferedImage 585
BufferedInputStream 675
BufferedOutputStream 674
BufferedReader 675
BufferedWriter 675
ButtonGroup 501, 918, 925
Byte 687
ByteArrayInputStream 675
ByteArrayOutputStream 675
ChangeEvent 916
Character 597, 615, 620, 687
CharArrayReader 676
CharArrayWriter 676
Class 388, 418, 484, 1073
Collections 688, 846
Collector (Java SE 8) 745
Color 227, 556
CompletableFuture class 1030
Component 480, 513, 558, 559,

917, 948
ComponentAdapter 519
ComponentListener 529
ConcurrentHashMap 1010
ConcurrentLinkedDeque 1010
ConcurrentSkipListMap 1010
ConcurrentSkipListSet 1010
Container 480, 511, 529, 537, 538
ContainerAdapter 519
CopyOnWriteArrayList 1010
CopyOnWriteArraySet 1010
DataInputStream 674
DataOutputStream 674
DelayQueue 1010
Double 687, 861
DoubleProperty (JavaFX) 1132
DriverManager 1065
Ellipse2D 556
Ellipse2D.Double 581
Ellipse2D.Float 581
EmptyStackException 710
EnumSet 337
Error 451
EventListenerList 493
Exception 451

Classes (cont.)
ExecutionException 1014
Executors 964
FileReader 676
Files 647, 759
FilterInputStream 674
FilterOutputStream 674
Float 687
FlowLayout 483, 529
FocusAdapter 519
Font 500, 556, 567
FontMetrics 556, 569
Formatter 647
Frame 916
FXMLLoader (JavaFX) 1121, 1127,

1130, 1131
GeneralPath 556, 586
GradientPaint 556, 584
Graphics 523, 556, 581
Graphics2D 556, 581, 585
GridBagConstraints 943, 948,

949
GridBagLayout 939, 942, 944,

949
GridLayout 529, 536
GridPane (JavaFX) 1119
HashMap 714
HashSet 711
Hashtable 714
IllegalMonitorStateExceptio

n 988, 1003
ImageIcon 484
ImageView (JavaFX) 1111
IndexOutOfRangeException 257
InputEvent 514, 521, 525
InputMismatchException 445
InputStream 673
InputStreamReader 676
Instant (Java SE 8) 1033
Integer 478, 687, 861
InterruptedException 965
ItemEvent 501, 504
JApplet 917
JButton 479, 495, 498, 534
JCheckBox 479, 498
JCheckBoxMenuItem 917, 918,

924
JColorChooser 563
JComboBox 479, 504, 944
JComponent 480, 481, 483, 493,

505, 508, 522, 538, 556, 558
JDesktopPane 933, 956
JDialog 923
JFileChooser 670
JFrame 916
JInternalFrame 933, 935
JLabel 479, 481
JList 479, 508
JMenu 917, 924, 935
JMenuBar 917, 924, 935
JMenuItem 918, 935
JOptionPane 90, 476, 953
JPanel 479, 522, 529, 538, 913
JPasswordField 485, 490
JPopupMenu 925
JProgressBar 1021
JRadioButton 498, 501, 504
JRadioButtonMenuItem 917,

918, 925

Classes (cont.)
JScrollPane 510, 513, 541, 542
JSlider 912, 913, 916
JTabbedPane 936, 942
JTable 1067
JTextArea 528, 539, 541, 944, 947
JTextComponent 485, 488, 539,

541
JTextField 479, 485, 489, 493,

539
JToggleButton 498
KeyAdapter 519
KeyEvent 494, 525
Label (JavaFX) 1111
Line2D 556, 585
Line2D.Double 581
LinearGradientPaint 584
LineNumberReader 676
LinkedBlockingDeque 1010
LinkedBlockingQueue 1010
LinkedList 688
LinkedTransferQueue 1010
ListSelectionEvent 508
ListSelectionModel 510
Long 687
Matcher 597, 631
Math 203, 204
MouseAdapter 518, 519
MouseEvent 494, 514, 928
MouseMotionAdapter 519, 522
MouseWheelEvent 515
Node (JavaFX) 1110
Number 861
NumberFormat 346, 1026, 1120,

1128
Object 338
ObjectInputStream 662
ObjectOutputStream 662
Optional class (Java SE 8) 752
OptionalDouble 739, 757
OutputStream 673
OutputStreamWriter 676
Parent (JavaFX) 1122, 1127
Paths 647
Pattern 597, 631
PipedInputStream 673
PipedOutputStream 673
PipedReader 676
PipedWriter 676
Point 523
Polygon 556, 578
PrintStream 674
PrintWriter 676
PriorityBlockingQueue 1010
PriorityQueue 710
Properties 718
RadialGradientPaint 584
Random 300
Reader 675
Rectangle2D 556
Rectangle2D.Double 581
ReentrantLock 1002, 1004
RoundRectangle2D 556
RoundRectangle2D.Double 581,

585
RowFilter 1079
RowSetFactory 1080
RowSetProvider 1080
RuntimeException 452

1172 Index

Classes (cont.)
Scanner 47
Scene (JavaFX) 1110, 1119, 1127,

1128
SecureRandom 213
Short 687
Slider (JavaFX) 1118, 1120
SQLException 1065
SQLFeatureNotSupportedExcep

tion 1073
Stack 708
StackTraceElement 461
Stage (JavaFX) 1110, 1119, 1127,

1128
String 92, 597
StringBuffer 612
StringBuilder 597, 611
StringIndexOutOfBoundsExcep

tion 607
StringReader 676
StringWriter 676
SwingUtilities 932
SwingWorker 1011
SynchronousQueue 1010
SystemColor 584
TableModelEvent 1079
TableRowSorter 1079
TextField (JavaFX) 1120
TexturePaint 556, 584, 585
Throwable 451, 461
TreeMap 714
TreeSet 711
Types 1067
UIManager 929
UnsupportedOperationExcepti

on 694
Vbox (JavaFX) 1115
Vector 688
Window 916, 917
WindowAdapter 519, 1079
Writer 675

class-instance creation expression 1132
ClassName.this 923
CLASSPATH

environment variable 41, 885
classpath 885, 1064
-classpath command-line argument

to java 886
to javac 885

CLASSPATH problem 22
clear debugger command 1162
clear method

of ArrayList<T> 288
of List<T> 694
of PriorityQueue 710

clearRect method of class Graphics
572

click a button 485, 1121
click count 519
click the scroll arrows 507
clicking the close box 956
client

of a class 79
client code 398
clone method of Object 388
cloning objects

deep copy 388
shallow copy 388

close a window 481, 485, 1121

close method
of CachedRowSet 1082
of Connection 1067
of Formatter 654
of interface Connection 1067
of interface ResultSet 1067
of interface Statement 1067
of JdbcRowSet 1082
of ObjectOutputStream 667
of ResultSet 1067
of Statement 1067

close method of interface
AutoCloseable 467

closed polygons 578
closed tour 306, 593
closePath method of class

GeneralPath 588
cloud computing 29
COBOL (COmmon Business Oriented

Language) 15
code 12
code maintenance 89
coin tossing 214, 241
collect method of interface Stream

(Java SE 8) 745, 745, 755, 756, 762
collection 287, 685
collection implementation 721
Collection interface 686, 687, 691,

696
contains method 691
iterator method 691

collections
synchronized collection 688
unmodifiable collection 688

Collections class 688, 846
addAll method 696, 706
binarySearch method 696, 704,

706
copy method 696, 703
disjoint method 696, 706
fill method 696, 702
frequency method 696, 706
max method 696, 703
min method 696, 703
reverse method 696, 702
reverseOrder method 698
shuffle method 696, 700, 702
sort method 697
wrapper methods 688

collections framework 685
Collections methods reverse, fill,

copy, max and min 703
Collector interface (Java SE 8) 745
Collectors class (Java SE 8) 745

groupingBy method 755, 756, 760,
762

toList method 745
College Loan Payoff Calculator app

exercise 1139
collision in a hashtable 715
color 556
Color class 227, 556

getBlue method 560, 562
getColor method 560
getGreen method 560, 562
getRed method 560, 562
setColor method 560

Color constant 559, 562
color manipulation 558

color swatches 565
Color.BLACK 227
Color.BLUE 227
Color.CYAN 227
Color.DARK_GRAY 227
Color.GRAY 227
Color.GREEN 227
Color.LIGHT_GRAY 227
Color.MAGENTA 227
Color.ORANGE 227
Color.PINK 227
Color.RED 227
Color.WHITE 227
Color.YELLOW 227
color-chooser dialog 565
colors 227
column 272, 1047, 1048
column number in a result set 1053
columns of a two-dimensional array 272
combo box 475, 504
comma (,) 160
comma (,) formatting flag 162
comma in an argument list 44
comma-separated list 160

of arguments 44, 47
of parameters 207

command button 495
command line 39
command-line argument 205, 283
Command Prompt 18, 39
command window 21, 39
comment

end-of-line (single-line), // 36, 39
Javadoc 36
single line 39

commercial data processing 680
commission 147, 300
CommissionEmployee class derived

from Employee 411
commit a transaction 1099
commit method of interface

Connection 1099
Comparable interface 898
Comparable<T> interface 431, 603,

697, 845, 898
compareTo method 697, 846

Comparator interface 697, 698, 748,
748
compare method 699
thenComparing method (Java SE

8) 753
Comparator object 697, 703, 712, 714

in sort 697
compare method of interface

Comparator 699
compareTo method

of class String 601, 603
of Comparable 697

compareTo method of class
BigInteger 782

compareTo method of Comparable<T>
846

comparing String objects 600
comparison operator 431
compartment in a UML class diagram 77
compilation error 36
compilation errors 40
compile 40
compile a program 18

Index 1173

compile method of class Pattern 631
compile-time error 36
compile-time type safety 690
compiler 10
compiler error 36
compiler options

-d 884
compile-time type safety 840
compiling an application with multiple

classes 77
CompletableFuture class (Java SE 8)

1030
runAsync method 1034
supplyAsync method 1033

Complex 356
complex curve 586
complex number 357
Complex Numbers (exercise) 356
complexity theory 785
component 10, 513
Component class 480, 513, 558, 559,

565, 917, 948
addKeyListener method 525
addMouseListener method 518
addMouseMotionListener

method 518
getMinimumSize method 916
getPreferredSize method 915
repaint method 524
setBackground method 565
setBounds method 529
setFont method 500
setLocation method 529, 917
setSize method 529, 917
setVisible method 534, 917

component of an array 245
ComponentAdapter class 519
ComponentListener interface 519, 529
composing lambda expressions 742
composite primary key 1050, 1051
composition 332, 362, 364
compound assignment operators 131,

133
compound interest 160, 196, 197
computer-assisted instruction (CAI) 241,

242
computer-assisted instruction (CAI):

Monitoring Student Performance 242
computer-assisted instruction (CAI):

Reducing Student Fatigue 242
computer-assisted instruction (CAI):

Varying the Types of Problems 242
computer-assisted instruction

(CAI):Difficulty Levels 242
computer dump 311
computer program 4
computer simulator 310
Computerization of Health Records

exercise 99
computers in education 241
concat method of class String 608
concatenate strings 341
concatenation 208
Concentric Circles Using Class

Ellipse2D.Double exercise 592
Concentric Circles Using Method

drawArc exercise 592
concordance 758
concrete class 402

concrete subclass 407
CONCUR_READ_ONLY constant 1072
CONCUR_UPDATABLE constant 1072
Concurrency API 959
concurrency APIs 959
concurrent access to a Collection by

multiple threads 721
concurrent operations 958
concurrent programming 959
concurrent threads 984
ConcurrentHashMap class 1010
ConcurrentLinkedDeque class 1010
ConcurrentSkipListMap class 1010
ConcurrentSkipListSet class 1010
condition 54, 164
Condition interface 1003, 1004

await method 1003, 1007
signal method 1003
signalAll method 1003

condition object 1003
conditional AND, && 176, 178

truth table 177
conditional expression 110
conditional operator, ?: 110, 134
conditional OR, || 176, 177

truth table 178
confusing the equality operator == with

the assignment operator = 57
connect to a database 1063
connected lines 578
connected RowSet 1080
connection between Java program and

database 1065
Connection interface 1065, 1067,

1072, 1099
close method 1067
commit method 1099
createStatement method 1066,

1072
getAutoCommit method 1099
prepareStatement method 1089
rollBack method 1099
setAutoCommit method 1099

constant 343
Math.PI 66

constant integral expression 165, 170
constant run time 815
constant variable 170, 250

must be initialized 250
constructor 75, 81

call another constructor of the same
class using this 327

multiple parameters 84
no argument 327
overloaded 324

Constructor failure exercise 472
constructor reference (Java SE 8) 760
constructors cannot specify a return type

83
consume an event 489
consume memory 788
consumer 959, 976
consumer electronic device 17
Consumer functional interface (Java SE

8) 733, 738, 751
accept method 751

consumer thread 977
cont debugger command 1152

Container class 480, 511, 529, 537,
538
setLayout method 483, 530, 534,

537, 942
validate method 537

container for menus 917
ContainerAdapter class 519
ContainerListener interface 519
contains method

of Collection 691
contains method of class

ArrayList<T> 288, 290
containsKey method of Map 717
content pane 510, 925

setBackground method 511
context-sensitive popup menu 925
continue statement 174, 175, 198,

1146
continuous beta 29
control statement 102, 103, 105, 106,

787
nesting 105, 185
stacking 105, 182

control variable 115, 153, 154, 155
controller (in MVC architecture) 1121
controller class 1122

initialize instance variables 1127
controller class (JavaFX) 1111, 1121

initialize method 1131
controlling expression of a switch 168
controls 474, 1108, 1111
converge on a base case 778
convert

between number systems 621
Cooking with Healthier Ingredients 641
coordinate system 135, 556, 558
coordinates (0, 0) 135, 556
copy method of Collections 696, 703
copying files 647
copying objects

deep copy 388
shallow copy 388

CopyOnWriteArrayList class 1010
CopyOnWriteArraySet class 1010
core package 41
correct in a mathematical sense 182
cos method of Math 204
cosine 204
count method of interface IntStream

(Java SE 8) 739
counter 115, 121, 127
counter-controlled repetition 115, 116,

124, 127, 128, 153, 155, 310, 787
-cp command line argument

to java 886
CPU (central processing unit) 6
CraigsList 26
craps (casino game) 218, 241, 301
create a reusable class 883
create an object of a class 75
create and use your own packages 882
createGlue method of class Box 942
createGraphics method of class

BufferedImage 585
createHorizontalBox method of class

Box 541, 941
createHorizontalGlue method of

class Box 942

1174 Index

createHorizontalStrut method of
class Box 941

createJdbcRowSet method of interface
RowSetFactory 1080

createRigidArea method of class Box
942

createStatement method of
Connection 1066, 1072

createVerticalBox method of class
Box 941

createVerticalGlue method of class
Box 942

createVerticalStrut method of class
Box 941

creating and initializing an array 247
creating files 647
credit limit on a charge account 147
crossword puzzle generator 641
CSS(Cascading Style Sheets) 1109
<Ctrl>-d 168
Ctrl key 511, 528
ctrl key 168
<Ctrl>-z 168
currentThread method of class

Thread 965, 970
currentTimeMillis method of class

System 809
cursor 39, 42
curve 586
custom drawing area 522
customized subclass of class JPanel 522
cyclic gradient 584

D
-d compiler option 884
dangling-else problem 109, 149
dashed lines 581
data 4
data entry 91
data hiding 80
data hierarchy 6, 7
data integrity 331
data source 731
data structure 244
database 8, 1046, 1052

table 1047
database management system (DBMS)

1046
DataInput interface 674
DataInputStream class 674
DataOutput interface 674

writeBoolean method 674
writeByte method 674
writeBytes method 674
writeChar method 674
writeChars method 674
writeDouble method 674
writeFloat method 674
writeInt method 674
writeLong method 674
writeShort method 674
writeUTF method 674

DataOutputStream class 674
Date and Time Class (exercise) 357
Date class

exercise 357
Date/Time API 287, 321
Date/Time API package 213

DB2 1046
De Morgan’s Laws 197
dead state 961
deadlock 963, 1007, 1043
dealing 257
debugger 1149

break mode 1152
breakpoint 1149
clear command 1162
cont command 1152
defined 1149
exit command 1157
-g compiler option 1150
inserting breakpoints 1151
jdb command 1151
logic error 1149
next command 1157
print command 1153, 1154
run command 1151, 1154
set command 1153, 1155
step command 1156
step up command 1156
stop command 1151, 1154
suspending program execution 1154
unwatch command 1158, 1159
watch command 1158

decimal digit 6
decimal integer formatting 49
decision 54, 106

symbol in the UML 106
declaration

class 37
import 46, 48
method 38

declarative programming 1110
decrement a control variable 158
decrement operator, -- 131
decrypt 151
dedicated drawing area 522
deep copy 388
deeply nested statement 185
default case in a switch 168, 170, 217
default constructor 83, 330, 368
default exception handler 461
default initial value 76
default interface methods (Java SE 8)

432
default keyword 1146
default layout of the content pane 541
default locale 1129
default method in an interface (Java SE

8) 732, 763
default method of an interface (Java SE

8) 731
default methods in interfaces (Java SE

8) 432
default package 79, 883
default upper bound (Object) of a type

parameter 851
default value 76, 135
define a custom drawing area 522
definite repetition 115
degree 575
Deitel Resource Centers 30
DelayQueue class 1010
delegate a method call 890
delegation event model 492
delete method of class

StringBuilder 617

DELETE SQL statement 1052, 1060
deleteCharAt method of class

StringBuilder 617
deleting an item from a binary tree 900
deleting directories 647
deleting files 647
delimiter for tokens 623
delimiter string 623
Department of Defense (DOD) 16
dependent condition 178
deprecated APIs 46
deprecation flag 46
dequeue operation of queue 891
derived class 361
descending order 285
descending sort (DESC) 1055
descent 569
deserialized object 662
design pattern 28
design process 13
Determining points C and D for level 1 of

“Lo fractal” 794
dialog 476
dialog box 90, 476, 923
Dialog font 567
DialogInput font 567
diameter 66, 592
diamond in the UML 104, 198
diamond notation 691
diamond notation (<>) 290, 290
dice game 218
Dice Rolling 300
digit 47, 622, 624
digit method of class Character 621
digits reversed 240
direct superclass 361, 363
directories

creating 647
getting information about 647
manipulating 647

DIRECTORIES_ONLY constant of
JFileChooser 670

directory 647
separator 885

DirectoryStream interface 647, 774
entries method 774

disconnected RowSet 1080
disjoint method of Collections

696, 706
disk 4, 21, 645
disk I/O completion 451
disk space 871
dismiss a dialog 477
dispatch

a thread 962
an event 494

display a line of text 39
display monitor 135, 556
display output 58
displaying text in a dialog box 90
dispose method of class Window 917
DISPOSE_ON_CLOSE constant of

interface WindowConstants 917
distance between values (random

numbers) 218
distinct method of interface Stream

(Java SE 8) 754
divide-and-conquer approach 201, 202,

778

Index 1175

divide by zero 21, 121, 444
division 6, 51, 52
division compound assignment operator,

/= 131
DO_NOTHING_ON_CLOSE constant of

interface WindowConstants 916
do...while repetition statement 105,

163, 164, 186, 1146
document 912, 933
document a program 36
dollar signs ($) 37, 47
dot (.) separator 76, 91, 162, 203, 339,

581
dotted line in the UML 105
(double) cast 125
Double class 687, 861
double equals, == 57
double-precision floating-point number

84
double primitive type 47, 84, 122,

1146, 1147
promotions 211

double quotes, " 39, 43
double selection 186
double-selection statement 105, 128
DoubleProperty class (JavaFX) 1132
doubles method of class

SecureRandom (Java SE 8) 762
DoubleStream interface (Java SE 8)

736, 756
average method 757
reduce method 757
sum method 757

doubleValue method of Number 862
downcast 418, 686
downcasting 399
downstream Collector (Java SE 8) 756
drag the scroll box 507
dragging the mouse to highlight 541
draw method of class Graphics2D 584
draw shapes 556
draw3DRect method of class Graphics

572, 575
drawArc method of class Graphics

292, 575, 592
drawing color 560
drawing on the screen 558
drawLine method of class Graphics

137, 572
drawOval method of class Graphics

187, 188, 572, 575
drawPolygon method of class

Graphics 578, 580
drawPolyline method of class

Graphics 578, 580
drawRect method of class Graphics

187, 572, 585, 592
drawRoundRect method of class

Graphics 573
drawString method of class Graphics

562
driver class 74
DriverManager class 1065

getConnection method 1065
drop-down list 479, 504
dual-core processor 6
dummy value 119
Duplicate Elimination 300
duplicate elimination 899

duplicate values 900
Duplicate Word Removal exercise 774
Duration clas

between method 1026
toMillis method 1026

dynamic binding 401, 417
dynamic content 17
dynamic data structure 870
dynamic memory allocation 871
dynamic resizing 245

E
eager 734
eager stream operation (Java SE 8) 739
eager terminal operation 741
EAST constant

of class BorderLayout 518, 532
of class GridBagConstraints 943

echo character of class JPasswordField
485

Eclipse 18
demonstration video 35

Eclipse Foundation 14
Ecofont 553
edit a program 18
editor 18
effectively final local variables (Java SE

8) 738
efficiency of

binary search 820
bubble sort 836
insertion sort 827
linear search 816
merge sort 832
selection sort 824

Eight Queens exercise 305, 807
Brute Force Approaches 305

electronic mail (e-mail) 25
element of an array 245
element of chance 213
eligible for garbage collection 342
eliminate resource leaks 455
Ellipse2D class 556
Ellipse2D.Double class 581, 592
Ellipse2D.Float class 581
ellipsis (...) in a method parameter list

281
else keyword 107, 1146
emacs 18
e-mail (electronic mail) 25
embedded system 14
embedded version of Java DB 1060
Employee abstract superclass 406
Employee class hierarchy test program

414
Employee class that implements

Payable 426
employee identification number 8
empty set 357
empty statement (a semicolon, ;) 57,

110, 165
empty string 490, 599
EmptyStackException class 710
encapsulation 12
encrypt 151
end cap 584
End key 525
“end of data entry” 119

end-of-file (EOF)
indicator 167
key combinations 654
marker 645

end-of-line (single-line) comment, // 36,
39

endsWith method of class String 604
Enforcing Privacy with Cryptography

exercise 151
English-like abbreviations 9
enhanced for statement 262
Enhancing Class Date (exercise) 356
Enhancing Class Time2 (exercise) 356
enqueue operation of queue 891, 891
ensureCapacity method of class

StringBuilder 613
Enter (or Return) key 39, 493
entity-relationship diagram 1051
entries method of interface

DirectoryStream 774
entry point 182
enum 221

constant 335
constructor 335
declaration 335
EnumSet class 337
keyword 221, 1146
values method 336

enum type 221
enumeration constant 221
EnumSet class 337

range method 337
environment variable

CLASSPATH 41
PATH 40

EOFException class 670
equal likelihood 215
equality operator == to compare String

objects 601
equality operators 54
equals method

of class Arrays 285
of class Object 387
of class String 601, 603

equalsIgnoreCase method of class
String 601, 603

erasure 845, 848
Error class 451
Error-Prevention Tips overview xxxviii
escape character 43, 1058
escape sequence 43, 47, 651

\, backslash 43
\", double-quote 43
\t, horizontal tab 43
newline, \n 43

Euclid’s Algorithm 240
Euler 303
evaluating expressions 905
event 432, 485, 558, 1111, 1120
event classes 491
event-dispatch thread (EDT) 558, 1011
event driven 485, 1120
event-driven process 558
event eandling 1120
event handler 432, 485, 1111, 1121

implement with a lambda 763, 1133
lambda 763

event handling 485, 488, 493, 1111, 1121
event source 490

1176 Index

event ID 494
event listener 432, 492, 518

adapter class 518
interface 488, 489, 492, 493, 494,

513, 518, 1121
event object 492
event registration 489
event source 490, 492
EventHandler<ActionEvent>

interface (JavaFX) 1131
EventListenerList class 493
EventObject class

getSource method 490
examination-results problem 128
exception 256, 442

handler 256
handling 254
parameter 257

Exception class 451
exception handler 448
exception parameter 448
Exceptions 257

IndexOutOfRangeException 257
execute 20, 40
execute method

of JdbcRowSet 1082
execute method of the Executor

interface 963, 967
executeQuery method

of PreparedStatement 1089
of Statement 1066

executeUpdate method of interface
PreparedStatement 1089

executing an application 21
execution-time error 21
ExecutionException class 1014
Executor interface 963

execute method 963, 967
Executors class 964

newCachedThreadPool method
965

ExecutorService interface 964, 1030
awaitTermination method 973
shutdown method 967
submit method 1030

exists method of class Files 648
exit debugger command 1157
exit method of class System 455, 653
exit point 182

of a control statement 105
EXIT_ON_CLOSE constant of class

JFrame 138
exiting a for statement 174
exp method of Math 204
expanded submenu 923
explicit conversion 125
exponential method 204
exponentiation 313
exponentiation operator 162
expression 49
extend a class 361
extends keyword 137, 365, 376, 1146
extensibility 398
extensible language 70
extension mechanism

extending Java with additional class
libraries 885

external event 513
external iteration 731, 761

F
Facebook 14
factorial 150, 196, 779
Factorial calculations with a recursive

method 781
factorial method 779
Fahrenheit 551

equivalent of a Celsius temperature
240

fail fast iterator 691
fairness policy of a lock 1002
false keyword 54, 110, 1146
fatal error 110, 313
fatal logic error 110
fatal runtime error 21
fault tolerant 48, 442
fault-tolerant program 256
feature-complete 29
fetch 311
fibonacci method 784
Fibonacci series 307, 783, 785

defined recursively 783
field 7

default initial value 76
field of a class 8, 223
field width 161
fields of a class 204
file 8, 645
File class

toPath method 671
used to obtain file and directory

information 649
file matching

exercise 680
program 680
with Multiple Transactions exercise

682
with Object Serialization exercise

682
FileInputStream class 721
FileNotFoundException class 653
FileOutputStream class 720
FileReader class 676
files

copying 647
creating 647
getting information about 647
manipulating 647
reading 647

Files class 647, 759
exists method 648
getLastModifiedTime method

648
isDirectory method 648
lines method (Java SE 8) 759
newDirectoryStream method 648
newOutputStream method 665,

668
size method 648

FILES_AND_DIRECTORIES constant of
JFileChooser 670

FILES_ONLY constant of
JFileChooser 670

FileWriter class 676
fill method

of class Arrays 285, 286
of class Collections 696, 702
of class Graphics2D 584, 585, 588,

593

fill method of class Arrays 1020
fill pattern 585
fill texture 585
fill with color 556
fill3DRect method of class Graphics

572, 575
fillArc method of class Graphics 291,

292, 575
filled-in shape 227, 585
filled rectangle 560
filled three-dimensional rectangle 572
fillOval method of class Graphics

228, 524, 572, 575
fillPolygon method of class

Graphics 578, 581
fillRect method of class Graphics

228, 560, 572, 585
fillRoundRect method of class

Graphics 573
filter a stream 674
filter elements of a stream (Java SE 8) 741
filter method of interface IntStream

(Java SE 8) 741
filter method of interface Stream

(Java SE 8) 745, 748
FilterInputStream class 674
FilterOutputStream class 674
final

class 420
keyword 170, 205, 250, 343, 419,

968, 1146
local variable 507
method 419
variable 250

final release 29
final state in the UML 104, 182
final value 154
finalize method 338, 388
finally

block 448, 454, 1007
clause 454, 1146
keyword 448

find method of class Matcher 631
Find the Minimum Value in an Array

exercise 807
findFirst method of interface Stream

(Java SE 8) 752
Firefox web browser 90
fireTableStructureChanged

method of AbstractTableModel
1074

first-in, first-out (FIFO) data structure
891

first method of SortedSet 713
first refinement 127
first refinement in top-down, stepwise

refinement 120
Fit Width property of an ImageView

(JavaFX) 1117
five-pointed star 586
fixed text 49

in a format string 44
flag value 119
flash drive 645
flatMap method of interface Stream

(Java SE 8) 760
float

literal suffix F 710
primitive type 47, 84, 1146, 1147
primitive type promotions 211

Index 1177

Float class 687
floating-point constant 160
floating-point literal 84

double by default 84
floating-point number 84, 118, 122, 124,

710
division 125
double precision 84
double primitive type 84
float primitive type 84
single precision 84

floor method of Math 204
flow of control 114, 124
flow of control in the if...else statement

107
FlowLayout class 483, 529, 530

CENTER constant 532
LEFT constant 532
RIGHT constant 532
setAlignment method 532

flush method
of class BufferedOutputStream

674
focus 486, 1125
focus for a GUI application 913, 928
FocusAdapter class 519
FocusListener interface 519
font

manipulation 558
name 567
size 567
style 567

Font class 500, 556, 567
BOLD constant 567
getFamily method 566, 569
getName method 566, 567
getSize method 566, 567
getStyle method 566, 569
isBold method 566, 569
isItalic method 566, 569
isPlain method 566, 569
ITALIC constant 567
PLAIN constant 567

font information 556
font manipulation 558
font metrics 569

ascent 571
descent 571
height 571
leading 571

Font property of a Label (JavaFX) 1116
font style 499
FontMetrics class 556, 569

getAscent method 570
getDescent method 570
getFontMetrics method 569
getHeight method 570
getLeading method 570

for repetition statement 105, 155, 158,
160, 162, 186, 1146
activity diagram 158
enhanced 262
example 158
header 156
nested 253, 274
nested enhanced for 274

forDigit method of class Character
621

forEach method of interface
IntStream (Java SE 8) 738

forEach method of interface Map (Java
SE 8) 755

forEach method of interface Stream
(Java SE 8) 745

foreign key 1050, 1051
fork/join framework 1034
format method

of class Formatter 654
of class String 92, 318

format method of class NumberFormat
347, 1026

format specifiers 44
%.2f for floating-point numbers

with precision 126
%b for boolean values 180
%c 66
%d 49
%f 66, 88
%n (line separator) 44
%s 44

format string 44
formatted output

, (comma) formatting flag 162
%f format specifier 88
– (minus sign) formatting flag 161
0 flag 253, 318
boolean values 180
comma (,) formatting flag 162
field width 161
floating-point numbers 88
grouping separator 162
left justify 161
minus sign (–) formatting flag 161
precision 88
right justification 161

Formatter class 647, 651
close method 654
format method 654

FormatterClosedException class
654

formatting
display formatted data 43

formulating algorithms 115
Fortran (FORmula TRANslator) 15
fractal 791

“Lo fractal” at level 0 793
“Lo fractal” at level 2 795
“Lo fractal” at level 2, dashed lines

from level 1 provided 794
depth 792
exercises 807
Koch Curve 791
Koch Snowflake 792
level 792
“Lo fractal” at level 1, with C and D

points determined for level 2 794
order 792
self-similar property 791
strictly self-similar fractal 791

Fractal user interface 795
fragile software 381
Frame class 916
frequency method of Collections

696, 706
FROM SQL clause 1052
full tour 593
fully qualified class name 79

fully qualified type name 884
Function functional interface (Java SE

8) 733, 747
apply method 747
identity method 762

function key 525
functional interface 731, 1030
functional interface (Java SE 8) 433, 733
Functional Interfaces

Supplier 1030
Functional interfaces (Java SE 8)

@FunctionalInterface
annotation 764

functional interfaces
ActionListener 763
ItemListener 763

Functional interfaces (Java SE 8) 732,
733
BiConsumer 755, 762
BinaryOperator 733
Consumer 733, 738, 751
Function 733, 747
IntFunction 1027
IntToDoubleFunction 1027
IntToLongFunction 1027
IntUnaryOperator 1027
Predicate 733, 751
Supplier 733
UnaryOperator 733

functional programming 732
@FunctionalInterface annotation

764
Future interface 1030

get method 1030, 1034
fx:id property of a JavaFX component

1122
FXML (FX Markup Language) 1110
@FXML annotation 1129, 1130
FXML markup 1114
FXMLLoader class (JavaFX) 1121, 1127,

1130, 1131
load method 1121, 1127

G
-g command line option to javac 1150
Game of Craps 301
game playing 213
gaming console 15
garbage collection 959
garbage collector 338, 450, 454
GCD (greatest common divisor) 806
general class average problem 119
general path 586
generalities 398
GeneralPath class 556, 586, 592

closePath method 588
lineTo method 588
moveTo method 587

Generating Mazes Randomly exercise 809
generic class 288
generics 686, 840

? (wildcard type argument) 862
actual type arguments 844
angle brackets (< and >) 843
class 840, 849
default upper bound (Object) of a

type parameter 851
diamond notation 691

1178 Index

generics (cont.)
erasure 845
interface 846
method 840, 842, 848
parameterized class 849
parameterized type 849
scope of a type parameter 851
type parameter 843
type parameter section 843
type variable 843
upper bound of a type parameter

847, 848
upper bound of a wildcard 862
wildcard type argument 862
wildcard without an upper bound

864
wildcards 860, 862

gesture 15
get method

of class ArrayList<T> 290
of interface Future 1030
of interface List<T> 690
of interface Map 717

get method 324, 331
get method of class Paths 647, 648
get method of interface Future 1034
getActionCommand method of class

ActionEvent 490, 498
getAscent method of class

FontMetrics 570
getAsDouble method of class

OptionalDouble (Java SE 8) 739,
757

getAutoCommit method of interface
Connection 1099

getBlue method of class Color 560,
562

getChars method
of class String 599
of class StringBuilder 614

getClass method of class Object 484
getClass method of Object 388, 418
getClassName method of class

StackTraceElement 461
getClassName method of class

UIManager.LookAndFeelInfo 932
getClickCount method of class

MouseEvent 521
getColor method of class Color 560
getColor method of class Graphics

560
getColumnClass method of

TableModel 1068, 1073
getColumnClassName method of

ResultSetMetaData 1073
getColumnCount method of

ResultSetMetaData 1066, 1073
getColumnCount method of

TableModel 1068, 1073
getColumnName method of

ResultSetMetaData 1073
getColumnName method of

TableModel 1068, 1073
getColumnType method of

ResultSetMetaData 1066
getConnection method of

DriverManager 1065
getContentPane method of class

JFrame 510

getDescent method of class
FontMetrics 570

getFamily method of class Font 566,
569

getFileName method of class
StackTraceElement 461

getFileName method of interface Path
648

getFont method of class Graphics 567
getFontMetrics method of class

FontMetrics 569
getFontMetrics method of class

Graphics 570
getGreen method of class Color 560,

562
getHeight method of class

FontMetrics 570
getHeight method of class JPanel 137
getIcon method of class JLabel 484
getInstalledLookAndFeels method

of class UIManager 929
getInt method of ResultSet 1067
getKeyChar method of class KeyEvent

528
getKeyCode method of class KeyEvent

528
getKeyModifiersText method of class

KeyEvent 528
getKeyText method of class KeyEvent

528
getLastModifiedTime method of class

Files 648
getLeading method of class

FontMetrics 570
getLineNumber method of class

StackTraceElement 461
getMessage method of class

Throwable 461
getMethodName method of class

StackTraceElement 461
getMinimumSize method of class

Component 916
getModifiers method of class

InputEvent 528
getName method of class Class 388,

418
getName method of class Font 566, 567
getObject method of interface

ResultSet 1067, 1073
getPassword method of class

JPasswordField 490
getPercentInstance method of class

NumberFormat 1026, 1129
getPoint method of class MouseEvent

524
getPreferredSize method of class

Component 915
getProperty method of class

Properties 718
getRed method of class Color 560, 562
getResource method of class Class

484
getRow method of interface ResultSet

1074
getRowCount method of interface

TableModel 1068, 1073
getSelectedFile method of class

JFileChooser 671

getSelectedIndex method of class
JComboBox 508

getSelectedIndex method of class
JList 511

getSelectedText method of class
JTextComponent 541

getSelectedValuesList method of
class JList 513

getSize method of class Font 566, 567
getSource method of class

EventObject 490
getStackTrace method of class

Throwable 461
getStateChange method of class

ItemEvent 508
getStyle method of class Font 566,

569
getText method 1131
getText method of class JLabel 484
getText method of class

JTextComponent 925
getText method of class

TextInputControl 1131
geturrencyCInstance method of class

NumberFormat 347
getValue method of class JSlider 916
getValueAt method of interface

TableModel 1068, 1073
getWidth method of class JPanel 137
getX method of class MouseEvent 518
getY method of class MouseEvent 518
GIF (Graphics Interchange Format) 484
gigabyte 5
GitHub 14
glass pane 510
Global Warming Facts Quiz exercise 199
golden mean 783
golden ratio 783
Google Maps 26
Google Play 15
Gosling, James 17
goto elimination 103
goto statement 103
GPS device 5
gradient 584
GradientPaint class 556, 584, 593
graph 197
graph information 252
graphical user interface (GUI) 91, 432,

474, 1108
component 91
design tool 529

graphics 522
Graphics class 136, 227, 291, 434, 435,

523, 556, 558, 581
clearRect method 572
draw3DRect method 572, 575
drawArc method 575, 592
drawLine method 137, 572
drawOval method 572, 575
drawPolygon method 578, 580
drawPolyline method 578, 580
drawRect method 572, 585, 592
drawRoundRect method 573
drawString method 562
fill3DRect method 572, 575
fillArc method 575
fillOval method 228, 524, 572,

575

Index 1179

Graphics class (cont.)
fillPolygon method 578, 581
fillRect method 228, 560, 572,

585
fillRoundRect method 573
getColor method 560
getFont method 567, 567
getFontMetrics method 570
setColor method 228, 585
setFont method 567

graphics context 558
graphics in a platform-independent

manner 558
Graphics Interchange Format (GIF) 484
Graphics2D class 556, 581, 585, 588,

592
draw method 584
fill method 584, 585, 588, 593
rotate method 588
setPaint method 584
setStroke method 584
translate method 588

greatest common divisor (GCD) 240,
806
exercise 806

greedy quantifier 629
grid 536
grid for GridBagLayout layout manager

942
Grid Using Class Line2D.Double

exercise 592
Grid Using Class

Rectangle2D.Double exercise 592
Grid Using Method drawLine exercise

592
Grid Using Method drawRect exercise

592
GridBagConstraints class 943, 948,

949
anchor field 943
BOTH constant 944
CENTER constant 943
EAST constant 943
gridheight field 944
gridwidth field 944
gridx field 944
gridy field 944
HORIZONTAL constant 944
instance variables 943
NONE constant 944
NORTH constant 943
NORTHEAST constant 943
NORTHWEST constant 943
RELATIVE constant 949
REMAINDER constant 949
SOUTH constant 943
SOUTHEAST constant 943
SOUTHWEST constant 943
VERTICAL constant 944
weightx field 944
weighty field 944
WEST constant 943

GridBagConstraints constants
RELATIVE and REMAINDER 949

GridBagLayout class 939, 942, 944,
949
setConstraints method 949

GridBagLayout layout manager 945

gridheight field of class
GridBagConstraints 944

GridLayout class 529, 536
GridLayout containing six buttons 536
GridPane class (JavaFX) 1119, 1119

add rows or columns 1123
Hgap property 1125
Vgap property 1125

gridwidth field of class
GridBagConstraints 944

gridx field of class
GridBagConstraints 944

gridy field of class
GridBagConstraints 944

gross pay 147
GROUP BY 1052
group method of class Matcher 632
grouping separator (formatted output)

162
groupingBy method of class

Collectors (Java SE 8) 755, 756,
760, 762

guard condition in the UML 106
guarding code with a lock 968
“guess the number” game 241, 551
GUI (Graphical User Interface) 432

component 474
design tool 529

GUI (Graphical User Interface)
component 1108
ImageView (JavaFX) 1111
Label (JavaFX) 1111
Label class (JavaFX) 1111
naming convention 1122
Slider (JavaFX) 1118, 1120
TextField (JavaFX) 1120
TextField class (JavaFX) 1120

guillemets (« and ») 84

H
half word 313
handle an exception 446
hard drive 4, 6
hardcopy printer 21
hardware 2, 4, 9
has-a relationship 332, 362
hash table 711, 715
hashCode method of Object 387
hashing 714
HashMap class 714

keySet method 718
HashSet class 711
Hashtable class 714, 715
hash-table collisions 715
hasNext method

of class Scanner 168, 654
of interface Iterator 691, 694

hasPrevious method of
ListIterator 694

head of a queue 870, 890
headSet method of class TreeSet 712
heavyweight components 480
height 569
height of a rectangle in pixels 560
helper method 319, 898
heuristic 304
hexadecimal (base 16) number system

241, 313

Hgap property of a GridPane 1125
hidden fields 223
hide a dialog 477
hide implementation details 202, 321
HIDE_ON_CLOSE constant of interface

WindowConstants 916
hierarchical boss-method/worker-method

relationship 202
Hierarchy window in NetBeans 1114,

1115
high-level language 10
hold a lock 968
Home key 525
Hopper, Grace 15
HORIZONTAL constant of class

GridBagConstraints 944
horizontal coordinate 135, 556
horizontal gap space 534
horizontal glue 942
horizontal JSlider component 913
horizontal scrollbar policy 542
horizontal tab 43
HORIZONTAL_SCROLLBAR_ALWAYS

constant of class JScrollPane 542
HORIZONTAL_SCROLLBAR_AS_NEEDED

constant of class JScrollPane 542
HORIZONTAL_SCROLLBAR_NEVER

constant of class JScrollPane 542
hot spots in bytecode 20
HourlyEmployee class derived from

Employee 409
HTML (HyperText Markup Language)

26
HTTP (HyperText Transfer Protocol) 26
hue 565
HugeInteger Class 358

exercise 358
HyperText Markup Language (HTML)

26
HyperText Transfer Protocol (HTTP) 26
hypotenuse of a right triangle 238

I
I/O performance enhancement 674
IBM Corporation 15
icon 478
Icon interface 484
IDE (integrated development

environment) 18
identifier 37, 47
identifiers

came case naming 72
identity column 1048, 1083
IDENTITY keyword (SQL) 1048
identity method of functional interface

Function (Java SE 8) 762
identity value in a reduction (Java SE 8)

740
IEEE 754 floating point 1147
if single-selection statement 54, 105,

106, 165, 186, 187, 1146
activity diagram 106

if...else double-selection statement
105, 106, 107, 122, 165, 186
activity diagram 107

ignoring array element zero 256
IllegalArgumentException class

318

1180 Index

IllegalMonitorStateException
class 988, 1003

IllegalStateException class 657
Image property of a ImageView 1116,

1117
ImageIcon class 390, 484
ImageView class (JavaFX) 1111

Fit Width property 1117
Image property 1116, 1117

imaginary part 356
immutability 732
immutable 599
immutable data 968
immutable object 341
immutable String object 599
implement an interface 397, 421, 429
implementation-dependent code 321
implementation of a function 407
implements 12
implements 1146
implements keyword 421, 426
implements multiple interfaces 515
implicit conversion 125
import declaration 46, 48, 79, 1146
improve performance of bubble sort 836
in parallel 958
increment 160

a control variable 154
expression 175
of a for statement 158
operator, ++ 131

increment a control variable 153
increment and decrement operators 132
indefinite postponement 963, 1007,

1043
indefinite repetition 119
indentation 107, 109
index (subscript) 245, 254
index of a JComboBox 507
index zero 245
indexed lists 910
indexOf method of class

ArrayList<T> 288
indexOf method of class String 605
IndexOutOfBoundsException class

703
IndexOutOfRangeException class

257
indirect recursion 778
indirect recursive call 778
indirect superclass 361, 363
infer a type with the diamond (<>)

notation 290
infer parameter types in a lambda 738
infinite loop 114, 124, 157
infinite recursion 386, 781, 787, 789
infinite series 197
infinite stream (Java SE 8) 762
infinity symbol 1051
infix notation 905
infix-to-postfix conversion algorithm 905
information hiding 12, 80
inherit 137
inheritance 12, 137, 361

examples 362
extends keyword 365, 376
hierarchy 362, 403
hierarchy for university

CommunityMembers 363

inheritance (cont.)
multiple 361
single 361

initial state 182
initial state in the UML 104
initial value of control variable 153
initialization phase 120
initialize a controller’s instance variables

1127
initialize a variable in a declaration 47
initialize method of a JavaFX

controller class 1131
initializer list 248
initializing two-dimensional arrays in

declarations 273
initiate an action 918
inlining method calls 328
inner class 488, 501, 523, 924

anonymous 507, 1132
object of 501
relationship between an inner class

and its top-level class 501
INNER JOIN SQL clause 1052, 1057
innermost set of brackets 255
inorder traversal 894
input data from the keyboard 58
input device 5
input dialog 91, 476
input/output operation 104, 309
input/output package 212
input unit 5
InputEvent class 514, 521, 525

getModifiers method 528
isAltDown method 521, 528
isControlDown method 528
isMetaDown method 521, 528
isShiftDown method 528

InputMismatchException class 445,
448

InputStream class 663, 673, 721
InputStreamReader class 676
insert method of class

StringBuilder 617
INSERT SQL statement 1052, 1058
insertion point 287, 705, 872
insertion sort 824

algorithm 824, 827
Inspector window in NetBeans 1115
instance 11
instance (non-static) method 339
instance method reference (Java SE 8)

747
instance methods 208
instance variable 12, 72, 85, 204
instance variables 72
instanceof operator 417, 1146
Instant clas

now method 1026
Instant class (Java SE 8) 1033
instruction execution cycle 311
instructor resources for Java How to

Program, 9/e xxxix
int primitive type 47, 122, 131, 165,

1146, 1147
promotions 211

IntBinaryOperator functional
interface (Java SE 8) 740
applyAsInt method 740

IntConsumer functional interface (Java
SE 8) 738
accept method 738

integer 45
array 249
division 118
quotient 51
value 47

Integer class 283, 478, 687, 861
parseInt method 283, 478

integer division 51
integerPower method 238
integers

suffix L 709
integral expression 170
integrated development environment

(IDE) 18
intelligent consumer electronic device 17
IntelliJ IDEA 18
Interactive Drawing Application exercise

552
interest rate 160
interface 12, 397, 422, 430, 1066

declaration 421
implementing more than one at a

time 515
tagging interface 663

interface keyword 421, 1146
Interfaces 421

ActionListener 489, 494
AutoCloseable 338, 467, 1065
BiConsumer functional interface

(Java SE 8) 755, 762
BinaryOperator functional

interface (Java SE 8) 733
BlockingQueue 984
CachedRowSet 1080
Callable 1030
CallableStatement 1098
ChangeListener 916
ChangeListener (JavaFX) 1121,

1128, 1132
CharSequence 631
Collection 686, 687, 696
Collector functional interface

(Java SE 8) 745
Comparable 431, 603, 697, 845,

898
Comparator 697, 698, 748
ComponentListener 519
Condition 1003, 1004
Connection 1065, 1067, 1072
Consumer functional interface (Java

SE 8) 733, 738, 751
ContainerListener 519
DataInput 674
DataOutput 674
default methods (Java SE 8) 432,

432
DirectoryStream 647
DoubleStream functional interface

(Java SE 8) 736
EventHandler<ActionEvent>

(JavaFX) 1131
Executor 963
ExecutorService 964, 1030
FocusListener 519
Function functional interface (Java

SE 8) 733, 747

Index 1181

Interfaces (cont.)
Future 1030
Icon 484
IntBinaryOperator functional

interface (Java SE 8) 740
IntConsumer functional interface

(Java SE 8) 738
IntFunction functional interface

(Java SE 8) 1027
IntPredicate functional interface

(Java SE 8) 741
IntStream functional interface

(Java SE 8) 736
IntToDoubleFunction functional

interface (Java SE 8) 1027
IntToLongFunction functional

interface (Java SE 8) 1027
IntUnaryOperator functional

interface (Java SE 8) 742, 1027
ItemListener 501, 924
Iterator 687
JdbcRowSet 1080
KeyListener 494, 519, 525
LayoutManager 528, 532
LayoutManager2 532
List 686, 694
ListIterator 688
ListSelectionListener 510
Lock 1002
LongStream functional interface

(Java SE 8) 736
Map 686, 714
Map.Entry 760
MouseInputListener 513, 518
MouseListener 494, 513, 519, 928
MouseMotionListener 494, 513,

518, 519
MouseWheelListener 515
ObjectInput 662
ObjectOutput 662
ObservableValue (JavaFX) 1129
Path 647
Predicate functional interface

(Java SE 8) 733, 751
PreparedStatement 1098
PropertyChangeListener 1024
Queue 686, 710, 984
ResultSet 1066
ResultSetMetaData 1066
RowSet 1080
Runnable 963, 432
Serializable 432, 663
Set 686, 711
SortedMap 714
SortedSet 712
Statement 1067
static methods (Java SE 8) 433
Stream (Java SE 8) 734, 744
Supplier 1030, 1033
Supplier functional interface (Java

SE 8) 733
SwingConstants 484, 916
TableModel 1067
ToDoubleFunction functional

interface (Java SE 8) 757
UnaryOperator functional

interface (Java SE 8) 733
WindowConstants 916
WindowListener 518, 917, 1079

intermediate operation 741
intermediate operations

stateful 742
stateless 742

intermediate stream operations (Java SE
8)
filter method of interface

IntStream 741
filter method of interface Stream

745, 748
flatMap method of interface

Stream 760
map method of interface IntStream

742
map method of interface Stream 747
sorted method of interface

IntStream 741
sorted method of interface Stream

745, 748
internal frame

closable 936
maximizable 936
minimizable 936
resizable 936

internal iteration 732
internationalization 347, 1120
Internet 25
Internet domain name in reverse order

883
Internet Explorer 90
Internet of Things (IoT) 27
interpreter 10
interrupt method of class Thread 965
InterruptedException class 965
intersection of two sets 357
IntFunction functional interface (Java

SE 8) 1027
IntPredicate functional interface (Java

SE 8) 741
test method 741, 742

intrinsic lock 968
ints method of class SecureRandom

(Java SE 8) 762
IntStream interface (Java SE 8) 736

average method 739
boxed method 762
count method 739
filter method 741
forEach method 738
map method 742
max method 739
min method 739
of method 738
range method 743
rangeClosed method 743
reduce method 739
sorted method 741
sum method 739

IntToDoubleFunction functional
interface (Java SE 8) 1027

IntToLongFunction functional
interface (Java SE 8) 1027

IntUnaryOperator functional interface
(Java SE 8) 742, 1027
applyAsInt method 742

invoke a method 44, 202
IOException class 667
iOS 13
is-a relationship 362, 398

isAbsolute method of interface Path
648

isActionKey method of class
KeyEvent 528

isAltDown method of class
InputEvent 521, 528

isBold method of class Font 566, 569
isCancelled method of class

SwingWorker 1020
isControlDown method of class

InputEvent 528
isDefined method of class Character

620
isDigit method of class Character

620
isDirectory method of class Files

648
isEmpty method

ArrayList 332
Map 718
Stack 710

isItalic method of class Font 566,
569

isJavaIdentifierPart method of
class Character 620

isJavaIdentifierStart method of
class Character 620

isLetter method of class Character
620

isLetterOrDigit method of class
Character 620

isLowerCase method of class
Character 620

isMetaDown method of class
InputEvent 521, 528

isPlain method of class Font 566, 569
isPopupTrigger method of class

MouseEvent 928
isSelected method

AbstractButton 925
JCheckBox 501

isShiftDown method of class
InputEvent 528

isUpperCase method of class
Character 620

ITALIC constant of class Font 567
ItemEvent class 501, 504

getStateChange method 508
ItemListener interface 501, 924

itemStateChanged method 501,
925

itemStateChanged method of interface
ItemListener 501, 925

iteration 117, 787
of a loop 153, 175

iteration (looping)
of a for loop 255

iteration statements 105
iterative (non-recursive) 779
iterative factorial solution 788
iterator 685

fail fast 691
Iterator interface 687

hasNext method 691
next method 691
remove method 691

iterator method of Collection 691

1182 Index

J
Jacopini, G. 103
JApplet class 917
java .time package 321
Java 2D API 556, 581
Java 2D shapes 581
Java 2D Shapes package 212
Java Abstract Window Toolkit Event

package 212
Java API 201

overview 213
Java API documentation 49, 213

download 50
online 49

Java Application Programming Interface
(Java API) 17, 46, 201, 211

Java class library 17, 46, 201
java command 19, 21, 35
Java compiler 18
Java Concurrency Package 212
Java Database Connectivity (JDBC)

1046
Java DB 1046, 1060

embedded 1060
Java DB Developer’s Guide 1048
Java debugger 1149
Java development environment 18, 19,

20
Java Development Kit (JDK) 40
Java Enterprise Edition (Java EE) 3
.java extension 18
.java file name extension 71
Java fonts

Dialog 567
DialogInput 567
Monospaced 567
SansSerif 567
Serif 567

Java HotSpot compiler 20
Java How to Program, 8/e

instructor resources xxxix
Java Input/Output Package 212
java interpreter 40
Java Keywords 1146
Java Language Package 212
Java Micro Edition (Java ME) 4
Java Networking Package 212
Java Persistence API (JPA) 1047
Java programming language 14
Java SE 6

package overview 213
Java SE 7

ConcurrentLinkedDeque 1010
fork/join framework 1034
LinkedTransferQueue 1010
type inference with the <> notation

691
Java SE 7 (Java Standard Edition 7) 3
Java SE 8 (Java Standard Edition 8) 3,

245, 263, 271, 287, 321, 1027, 1030
@FunctionalInterface

annotation 764
anonymous onner classes with

lambdas 508
Arrays method parallelSort

287
BinaryOperator functional

interface 733
Collector functional interface 745

Java SE 8 (cont.)
Collectors class 745
CompletableFuture class 1030
Consumer functional interface 733,

738, 751
Date/Time API 287, 321
Date/Time APi 213
default interface methods 432
default method in an interface

732, 763
default method of an interface 731
default methods in interfaces 432
doubles method of class

SecureRandom 762
effectively final 507
Function functional interface 733,

747
functional interface 433
functional interfaces 733
@FunctionalInterface

annotation 764
implementing event listeners with

lambdas 491, 912
Instant class 1033
IntBinaryOperator functional

interface 740
IntConsumer functional interface

738
IntFunction functional interface

1027
IntPredicate functional interface

741
ints method of class

SecureRandom 762
IntToDoubleFunction functional

interface 1027
IntToLongFunction functional

interface 1027
IntUnaryOperator functional

interface 742, 1027
java.util.function package

732, 738
java.util.stream package 736
lambda 433
lambdas and streams with regular

expressions 633
lines method of class Files 759
longs method of class

SecureRandom 762
Optional 752
OptionalDouble class 739
Predicate functional interface 733,

745, 748, 751
reversed method of interface

Comparator 748
static interface methods 433
static method in an interface 732,

763
static method of an interface 731
Stream interface 744
Supplier functional interface 733
Supplier interface 1030, 1033
ToDoubleFunction functional

interface 757
UnaryOperator functional

interface 733
Java SE 8 Development Kit (JDK) 17
Java Security Package 212

Java Standard Edition (Java SE)
7 3
8 3

Java Standard Edition 7 (Java SE 7) 3
Java Standard Edition 8 (Java SE 8) 3
Java Swing Event Package 212
Java Swing GUI Components Package

212
Java Utilities Package 212
Java Virtual Machine (JVM) 19, 35, 38
JAVA_HOME environment variable 1061
java.awt package 479, 558, 559, 578,

581, 916, 928
java.awt.color package 581
java.awt.event package 212, 491,

493, 518, 528
java.awt.font package 581
java.awt.geom package 212, 581
java.awt.image package 581
java.awt.image.renderable

package 581
java.awt.print package 581
java.beans package 1024
java.io package 212, 646
java.lang package 48, 203, 212, 365,

387, 597, 963
imported in every Java program 48

java.math package 126, 346, 781, 1128
java.net package 212
java.nio.file package 645, 646, 647,

759
java.security package 213
java.sql package 212, 1063, 1066
java.text package 346, 1120, 1128
java.time package 213
java.util package 46, 212, 288, 686,

708, 872
java.util.concurrent package 212,

964, 984, 1009, 1030
java.util.concurrent.locks

package 1002, 1003
java.util.function package (Java SE

8) 732, 738
java.util.prefs package 718
java.util.regex package 597
java.util.stream package (Java SE 8)

736
Java™ Language Specification 52
Java2D API 581
javac compiler 18, 40
javacdeprecation flag 46
Javadoc comment 36
javadoc utility program 36
JavaFX 474, 1108

@FXML annotation 1129, 1130
ActionEvent class 1129, 1131
alignment in a VBox 1116
Application class 1119
Cascading Style Sheets (CSS) 1109
ChangeListener interface 1121,

1128, 1132
controller class 1111, 1121
DoubleProperty class 1132
EventHandler<ActionEvent>

interface 1131
fx:id property 1122
FXML (FX Markup Language) 1110
FXMLLoader class 1121, 1127
GridPane class 1119, 1119

Index 1183

JavaFX (cont.)
ImageView class 1111
Label class 1111
Max Width property 1125
node 1110
Node class 1110
padding 1125
Padding property 1125
Parent class 1122, 1127
Pref Height property of a

component 1116
Pref Width property 1124
Pref Width property of a component

1116
preferred size 1116
register event handlers 1127
scene 1110
Scene class 1110, 1119, 1127, 1128
scene graph 1110
Slider class 1118, 1120
stage 1110
Stage class 1110, 1119, 1127, 1128
TextField class 1120
Vbox class 1115

JavaFX FXML Application NetBeans
project 1111

JavaFX Scene Builder 1109, 1111
change the default layout 1115, 1123

JavaFX Script 1108
javafx.application.Application

package 1119
javafx.beans.value package 1128,

1132
javafx.event package 1129
javafx.fxml package 1129
javafx.scene package 1110, 1122,

1127
javafx.scene.control package

1120, 1129
javafx.scene.layout package 1115,

1119
javafx.stage package 1110
JavaScript 1108
javax.sql.rowset package 1080
javax.swing package 91, 212, 474,

476, 484, 493, 495, 540, 563, 916,
929, 935

javax.swing.event package 212, 492,
510, 518, 916

javax.swing.table package 1068,
1079

JAX-WS package 212
JButton class 479, 495, 498, 534
JCheckBox buttons and item events 499
JCheckBox class 479, 498

isSelected method 501
JCheckBoxMenuItem class 917, 918,

924
JColorChooser class 563, 565

showDialog method 564
JColorChooser Dialog exercise 593
JComboBox class 479, 504, 944

getSelectedIndex method 508
setMaximumRowCount method 507

JComboBox that displays a list of image
names 505

JComponent class 480, 481, 483, 493,
505, 508, 522, 538, 556, 558
paintComponent method 137,

522, 556, 913, 915
repaint method 559
setForeground method 924
setOpaque method 522, 524
setToolTipText method 483

jdb command 1151
JDBC

API 1046, 1063, 1098
driver 1046

JDBC Package 212
jdbc†erby:books 1065
JdbcRowSet interface 1080

close method 1082
execute method 1082
setCommand method 1082
setPassword method 1082
setUrl method 1080
setUsername method 1082

JDesktopPane class 933, 956
JDesktopPane documentation 936
JDialog class 923
JDK 17, 40
JFileChooser class 670

CANCEL_OPTION constant 671
FILES_AND_DIRECTORIES

constant 670
FILES_ONLY constant 670
getSelectedFile method 671
setFileSelectionMode method

670
showOpenDialog method 670

JFrame class 138, 229, 916
add method 138, 483
EXIT_ON_CLOSE 485
getContentPane method 510
setDefaultCloseOperation

method 138, 485, 916
setJMenuBar method 917, 924
setSize method 138, 485
setVisible method 138, 485

JFrame class EXIT_ON_CLOSE constant
138

JFrame.EXIT_ON_CLOSE 485
JInternalFrame class 933, 935
JInternalFrame documentation 936
JLabel class 388, 390, 479, 481

getIcon method 484
getText method 484
setHorizontalAlignment

method 484
setHorizontalTextPosition

method 484
setIcon method 484
setText method 484
setVerticalAlignment method

484
setVerticalTextPosition

method 484
JList class 479, 508

addListSelectionListener
method 510

getSelectedIndex method 511
getSelectedValuesList method

513
setFixedCellHeight method 513
setFixedCellWidth method 513

JList class (cont.)
setListData method 513
setSelectionMode method 510
setVisibleRowCount method 510

JMenu class 917, 924, 935
add method 923
addSeparator method 924

JMenuBar class 917, 924, 935
add method 924

JMenuItem class 918, 935
JMenus and mnemonics 918
JOIN_ROUND constant of class

BasicStroke 586
joining database tables 1051, 1057
Joint Photographic Experts Group

(JPEG) 484
JOptionPane class 90, 91, 476, 477,

953
constants for message dialogs 479
PLAIN_MESSAGE constant 478
showInputDialog method 92, 477
showMessageDialog method 91,

478
JOptionPane constants for message

dialogs
JOptionPane.ERROR_MESSAGE

479
JOptionPane.INFORMATION_MES

SAGE 479
JOptionPane.PLAIN_MESSAGE

479
JOptionPane.QUESTION_MESSAG

E 479
JOptionPane.WARNING_MESSAGE

479
JPanel class 136, 137, 479, 522, 529,

538, 913
getHeight method 137
getWidth method 137

JPasswordField class 485, 490
getPassword method 490

JPEG (Joint Photographic Experts
Group) 484

JPopupMenu class 925
show method 928

JProgressBar class 1021
JRadioButton class 498, 501, 504
JRadioButtonMenuItem class 917,

918, 925
JScrollPane class 510, 513, 541, 542

HORIZONTAL_SCROLLBAR_ALWAYS
constant 542

HORIZONTAL_SCROLLBAR_AS_NEE
DED constant 542

HORIZONTAL_SCROLLBAR_NEVER
constant 542

setHorizontalScrollBarPolic
y method 542

setVerticalScrollBarPolicy
method 542

VERTICAL_SCROLLBAR_ALWAYS
constant 542

VERTICAL_SCROLLBAR_AS_NEEDE
D constant 542

VERTICAL_SCROLLBAR_NEVER
constant 542

JScrollPane scrollbar policies 542

1184 Index

JSlider class 912, 913, 916
block increment 913
getValue method 916
major tick marks 912
minor tick marks 912
setInverted method 913
setMajorTickSpacing method

916
setPaintTicks method 916
snap-to ticks 912
thumb 912
tick marks 912

JTabbedPane class 936, 942
addTab method 938
SCROLL_TAB_LAYOUT constant 942
TOP constant 942

JTable class 1067
RowFilter 1079
setRowFilter method 1079
setRowSorter method 1079
TableRowSorter 1079

JTextArea class 528, 539, 541, 944, 947
setLineWrap method 542

JTextComponent class 485, 488, 539,
541
getSelectedText method 541
getText method 925
setDisabledTextColor method

528
setEditable method 488
setText method 541

JTextField class 479, 485, 489, 493,
539
addActionListener method 489

JTextFields and JPasswordFields
486

JToggleButton class 498
just-in-time compilation 20
just-in-time (JIT) compiler 20

K
Kelvin temperature scale 551
kernel 13
key constant 528, 528
key event 494, 525
Key event handling 525
key value 900
key–value pair 715
KeyAdapter class 519
keyboard 4, 45, 474, 1108
KeyEvent class 494, 525

getKeyChar method 528
getKeyCode method 528
getKeyModifiersText method

528
getKeyText method 528
isActionKey method 528

KeyListener interface 494, 519, 525
keyPressed method 525, 528
keyReleased method 525
keyTyped method 525

keyPressed method of interface
KeyListener 525, 528

keyReleased method of interface
KeyListener 525

keySet method
of class HashMap 718
of class Properties 721

keyTyped method of interface
KeyListener 525

keyword 37, 105
Keywords

abstract 402
boolean 110, 1154
break 168
case 168
catch 448
char 47
class 37, 72
continue 174
default 168
do 105, 163
double 47, 84
else 105
enum 221
extends 137, 365, 376
false 110, 1146
final 170, 205, 250, 968
finally 448
float 47, 84
for 105, 155
if 105
implements 421
import 46
instanceof 417
int 47
interface 421
new 47, 75, 246, 247
null 81, 246, 1146
private 72, 321, 331
public 37, 71, 72, 206, 321
reserved but not used by Java 1146
return 71, 74, 202, 209
static 91, 162, 203
super 364, 387
switch 105
synchronized 968
table of Keywords and reserved words

1146
this 73, 322, 339
throw 458
true 110, 1146
try 447
void 38, 73
while 105, 163

Knight’s Tour 303, 593
Brute Force Approach 304
Closed Tour Test 306
exercise 593

Koch Curve fractal 791
Koch Snowflake fractal 792
Koenig, Andrew 442

L
label 388, 481
Label class (JavaFX) 1111

Font property 1116
Text property 1116

label in a switch 168
labels for tick marks 912
Lady Ada Lovelace 16
lambda (Java SE 8) 433
lambda expression

composing 742
type of 733

lambda expression (Java SE 8) 733

lambda expressions
arrow token (->) 733
event handler 763
method references 734
parameter list 733
target type 738
with an empty parameter list 734

lambdas
implementing an event handler 1133

lamda expressions
statement block 733
type inference 738

LAMP 28
language package 212
last-in, first-out (LIFO) 210
last-in, first-out (LIFO) order 854
last-in, first-out (LIFO) data structure

886
last method of ResultSet 1074
last method of SortedSet 713
lastIndexOf method of class String

605
late binding 417
launch method of class Application

(JavaFX) 1119, 1127
layout 390
layout containers (JavaFX) 1111
layout manager 483, 518, 528, 537

BorderLayout 518
FlowLayout 483
GridLayout 536

layoutContainer method of interface
LayoutManager 532

LayoutManager interface 528, 532
layoutContainer method 532

LayoutManager2 interface 532
Layouts

GridPane 1119
Vbox 1115

lazy 734
lazy quantifier 629
lazy stream operation (Java SE 8) 741,

742
leading 569
leaf node 893

in a binary search tree 898
left brace, { 38, 46
left child 893
LEFT constant of class FlowLayout 532
left justified 107, 161, 484, 530
left-mouse-button click 521
left subtree 893, 898, 908
left-to-right evaluation 53
Left, center and right mouse-button clicks

519
length field of an array 246
length instance variable of an array 246
length method of class String 599
length method of class

StringBuilder 612
letter 6
level of indentation 107
level-order binary tree traversal 900, 908
lexical scope 738
lexicographical comparison 602, 603
Library window in NetBeans 1115, 1116
life cycle of a thread 960, 962
LIFO (last-in, first-out) 210, 854
lightweight GUI component 480

Index 1185

LIKE operator (SQL) 1053
LIKE SQL clause 1054, 1056
Limericks 637
line 556, 571, 580
line join 584
line wrapping 542
Line2D class 556, 585
Line2D.Double class 581, 592
linear collection 872
linear data structure 893
linear run time 815
linear search algorithm 812, 814, 820
LinearGradientPaint class 584
LineNumberReader class 676
lines method of class Files (Java SE 8)

759
lineTo method of class GeneralPath

588
link 872, 893
link to another node 871
linked list 870, 872
LinkedBlockingDeque class 1010
LinkedBlockingQueue class 1010
LinkedList class 688, 704, 727

add method 695
addFirst method 696
addLast method 695

LinkedTransferQueue class 1010
Linux 13, 39, 653
Linux operating system 14
list 507
List interface 686, 694, 697, 698, 702

add method 690, 693
addAll method 693
clear method 694
get method 690
listIterator method 694
size method 690, 694
subList method 694
toArray method 695

list method of Properties 720
listen for events 489
ListIterator interface 688

hasPrevious method 694
previous method 694
set method 694

listIterator method of interface
List 694

ListSelectionEvent class 508
ListSelectionListener interface

510
valueChanged method 510

ListSelectionModel class 510
MULTIPLE_INTERVAL_SELECTION

constant 510, 513
SINGLE_INTERVAL_SELECTION

constant 510, 511, 513
SINGLE_SELECTION constant 510

literals
floating point 84

“Lo fractal” at level 0 793
“Lo fractal” at level 1, with C and D points

determined for level 2 794
“Lo fractal” at level 2 795
“Lo fractal” at level 2, dashed lines from

level 1 provided 794
load factor 715
load method of class FXMLLoader

(JavaFX) 1121, 1127

load method of Properties 721
load/store operations 309
loading 19
local variable 73, 117, 223
locale-specific currency Strings 347
locale-specific String 346
localization 480
location of a variable in the computer’s

memory 50
lock

acquire 968
hold 968
release 968

lock an object 990, 991
Lock interface 1002

lock method 1002, 1007
newCondition method 1003, 1004
unlock method 1002, 1007

lock method of interface Lock 1002,
1007

log method of Math 205
logarithm 204
logarithmic run time 820
logic error 18, 48, 110, 155, 1149
logical complement operator, ! 179
logical decision 4
logical input operations 675
logical negation, ! 179
logical negation, or logical NOT (!)

operator truth table 179
logical operators 176, 179
logical output operations 674
logical unit 5
Logo language 302
long

literal suffix L 709
Long class 687
long keyword 1146, 1147
long promotions 211
longs method of class SecureRandom

(Java SE 8) 762
LongStream interface (Java SE 8) 736
look-and-feel 479, 480, 528, 928

Nimbus 476
Look-and-Feel Observations

overview xxxviii
Look-and-feel of a Swing-based GUI 929
look-and-feel of an application 479
look-and-feel 476
LookAndFeelInfo nested class of class

UIManager 929
lookingAt method of class Matcher

631
loop 115, 117

body 163
continuation condition 105
counter 153
infinite 114, 124
nested within a loop 128
statement 105

loop-continuation condition 153, 154,
155, 156, 157, 159, 163, 164, 175

looping 117
Lord Byron 16
Lovelace, Ada 16
lowercase letter 7, 37
lowered rectangle 575

M
m-by-n array 272
Mac OS X 13, 39, 653
machine dependent 9
machine language 9
machine language programming 308
Macintosh look-and-feel 929
main method 38, 39, 46, 79
main thread 967
maintainability 870
major tick marks of class JSlider 912
make your point (game of craps) 218
making decisions 58
Mandelbrot, Benoit 791
“manufacturing” section of the computer

6
many-to-many relationship 1051
many-to-one mapping 714
map elements of a stream (Java SE 8) 742
Map interface 686, 714

containsKey method 717
forEach method (Java SE 8) 755
get method 717
isEmpty method 718
put method 717
size method 718

map method of interface IntStream
(Java SE 8) 742

map method of interface Stream (Java SE
8) 747

Map.Entry interface 760
mapToDouble method of interface

Stream (Java SE 8) 756
marker interfaces 422
mashups 26
master file 680
Matcher class 597, 631

find method 631
group method 632
lookingAt method 631
matches method 631
replaceAll method 631
replaceFirst method 631

matcher method of class Pattern 631
matches method of class Matcher 631
matches method of class Pattern 631
matches method of class String 624
matching catch block 448
Math class 162, 203, 204

abs method 204
ceil method 204
cos method 204
E constant 204
exp method 204
floor method 204
log method 205
max method 204
min method 204
PI constant 204, 235
pow method 162, 203, 204, 235
sqrt method 203, 204, 210
tan method 204

Math.PI constant 66, 592
MathContext class 348
mathematical computations 15
max method of Collections 696, 703
max method of interface IntStream

(Java SE 8) 739
max method of Math 204

1186 Index

Max property of a Slider (JavaFX) 1126
Max Width property of a JavaFX control

1125
maximize a window 481, 935
maximized internal frame 936
Maze Traversal Using Recursive

Backtracking exercise 808
Mazes of Any Size exercise 809
MDI (Multiple Document Interface)

912, 933
mean 52
memory 4, 5
memory buffer 675
memory leak 338, 454
memory location 50
memory-space/execution-time trade-off

715
memory unit 5
memory utilization 715
menu 475, 539, 917, 918
menu bar 475, 917
menu item 918, 923
merge records from tables 1056
merge sort 827
merge sort algorithm 827, 832
merge symbol in the UML 114
merge two arrays 827
message dialog 90, 476, 478

types 478
Meta key 521
metadata 1066
metal look-and-feel 912, 929
method 11, 38

declaration 39
local variable 73
parameter list 73
signature 226
static 162

method call 11, 202, 207
method-call stack 210
Method calls made within the call

fibonacci(3) 786
Method calls on the program execution

stack 786
method declaration 207
method header 73
method names

came case naming 72
method overloading 225
method parameter list 281
method reference 747
method reference (Java SE 8) 747
method references 734
methods implicitly final 420
Metric Conversion Program 640
Microsoft SQL Server 1046
Microsoft Windows 168, 916, 928
Microsoft Windows-style look-and-feel

929
middle mouse button 521
mileage obtained by automobiles 147
Miles-Per-Gallon Calculator app exercise

1139
min method of Collections 696, 703
min method of interface IntStream

(Java SE 8) 739
min method of Math 204
minimize a window 481, 917, 935
minimize internal frame 935

minor tick marks of class JSlider 912
minus sign (–) formatting flag 161
mnemonic 480, 918, 922, 924
mobile application 3
modal dialog 478, 565
modal dialog box 923
model (in MVC architecture) 1121
Model-View-Controller (MVC) 1121
modifier key 528
Modifying the Internal Data

Representation of a Class (exercise)
356

modularizing a program with methods
202

monetary calculations 163, 346
monitor 968
monitor lock 968
Monospaced Java font 567
Moore’s Law 4
Morse Code 640
Motif-style (UNIX) look-and-feel 912,

929
motion information 5
mouse 4, 474, 1108
mouse-button click 521
mouse click 519
mouse event 494, 513, 928

handling 514
mouse wheel 515
MouseAdapter class 518, 519

mousePressed method 1043
mouseClicked method of interface

MouseListener 514, 519
mouseDragged method of interface

MouseMotionListener 514, 522
mouseEntered method of interface

MouseListener 514
MouseEvent class 494, 514, 928

getClickCount method 521
getPoint method 524
getX method 518
getY method 518
isAltDown method 521
isMetaDown method 521
isPopupTrigger method 928

mouseExited method of interface
MouseListener 514

MouseInputListener interface 513,
518

MouseListener interface 494, 513,
519, 928
mouseClicked method 514, 519
mouseEntered method 514
mouseExited method 514
mousePressed method 514, 928
mouseReleased method 514, 928

MouseMotionAdapter class 519, 522
MouseMotionListener interface 494,

513, 518, 519
mouseDragged method 514, 522
mouseMoved method 514, 522

mouseMoved method of interface
MouseMotionListener 514, 522

mousePressed method of class
MouseAdapter 1043

mousePressed method of interface
MouseListener 514, 928

mouseReleased method of interface
MouseListener 514, 928

MouseWheelEvent class 515
MouseWheelListener interface 515

mouseWheelMoved method 515
mouseWheelMoved method of interface

MouseWheelListener 515
moveTo method of class GeneralPath

587
Mozilla Foundation 14
MP3 player 15
multi-button mouse 521
multi-core processor 6
multi-catch 449
multi-core 730
multidimensional array 272, 273
multiple class declarations

in one source-code file 322
multiple document interface (MDI) 912,

933
multiple inheritance 361
multiple-selection list 508, 510, 511
multiple-selection statement 105
MULTIPLE_INTERVAL_SELECTION

constant of interface
ListSelectionModel 510, 513

multiplication compound assignment
operator, *= 131

multiplication, * 51, 52
multiplicative operators: *, / and % 125
multiply method of class BigDecimal

347
multiply method of class BigInteger

782
multithreading 688, 959
multitouch screen 15
mutable data 968
mutable reduction (Java SE 8) 745
mutable reduction operations 735
mutator method 331
mutual exclusion 968
mutually exclusive options 501
MVC (Model-View-Controller) 1121
MyShape hierarchy 434
MyShape hierarchy with

MyBoundedShape 435
MySQL 28, 1046

N
%n format specifier (line separator) 44
name collision 884
name conflict 884
name of a variable 50
name of an array 246
named constant 250
naming convention

GUI (Graphical User Interface)
component 1122

methods that return boolean 171
native keyword 1146
natural comparison method 697
natural logarithm 204
natural order 748
negate method of functional interface

Predicate (Java SE 8) 745
negative arc angles 576
negative degree 575
nested array initializers 272
nested building block 186

Index 1187

nested class 316, 488, 929
relationship between an inner class

and its top-level class 501
nested control statements 126, 185, 187,

217
Examination-results problem 129

nested for statement 253, 273, 274, 275,
279
enhanced for 274

nested if selection statement 111
nested if...else selection statement 107,

109, 111, 113
nested parentheses 52
nesting rule 185
NetBeans

Hierarchy window 1114, 1115
Inspector window 1115
JavaFX FXML Application project

1111
Library window 1115, 1116
Projects window 1113

Netbeans 18
demonstration video 35

network message arrival 451
networking package 212
new keyword 47, 75, 246, 247, 1146
New Project dialog (NetBeans) 1112,

1122
new Scanner(System.in) expression

47
new state 961
newCachedThreadPool method of class

Executors 965
newCondition method of interface

Lock 1003, 1004
newDirectoryStream method of class

Files 648
newFactory method of interface

RowSetProvider 1080
newline character 42
newline escape sequence, \n 43, 313
newOutputStream method of class

Files 665, 668
next method

of Iterator 691
of ResultSet 1066
of Scanner 75

nextDouble method of class Scanner
88

nextInt method of class Random 214,
217

nextLine method of class Scanner 75
Nimbus look and feel 476

swing.properties lv, 476
Nimbus look-and-feel 929
no-argument constructor 327, 328
Node class (JavaFX) 1110, 1131
node in a JavaFX application 1110
node in a list 872
non-deterministic random numbers 213
NONE constant of class

GridBagConstraints 944
nonfatal logic error 110
nonfatal runtime error 21
nonlinear data structures 872
NORTH constant of class BorderLayout

518, 532
NORTH constant of class

GridBagConstraints 943

NORTHEAST constant of class
GridBagConstraints 943

NORTHWEST constant of class
GridBagConstraints 943

NoSuchElementException class 654,
657

note in the UML 104
Notepad 18
notify method of class Object 988
notify method of Object 388
notifyAll method of class Object

988, 991
notifyAll method of Object 388
now method of class Instant 1026
null 1146
null keyword 76, 81, 91, 246, 478, 871
null reserved word 135
NullPointerException exception 261
Number class 861

doubleValue method 862
number systems 621
NumberFormat class 346, 1026, 1120,

1128
format method 347, 1026
getCurrencyInstance method

347
getPercentInstance method

1026, 1129
setRoundingMode method 1132

numeric Classes 687

O
O(1) 815
O(log n) 820
O(n log n) time 833
O(n) time 815
O(n2) time 815
object 2, 10
Object class 338, 361, 365, 670

clone method 388
equals method 387
finalize method 388
getClass method 388, 418, 484
hashCode method 387
notify method 388, 988
notifyAll method 388, 988, 991
toString method 368, 388
wait method 388, 988

object of a derived class 399
object of a derived class is instantiated 387
object-oriented analysis and design

(OOAD) 13
object-oriented language 13
object-oriented programming (OOP) 2,

4, 13, 361
object serialization 662
ObjectInput interface 662

readObject method 663
ObjectInputStream class 662, 662,

663, 668
ObjectOutput interface 662

writeObject method 663
ObjectOutputStream class 662, 662,

663, 720
close method 667

ObservableValue interface 1129
ObservableValue interface (JavaFX)

addListener method 1132

octal number system (base 8) 241
of method of interface IntStream (Java

SE 8) 738
off-by-one error 155
offer method of PriorityQueue 710
OK button 92
ON clause 1057
ONE constant of class BigDecimal 347
ONE constant of class BigInteger 782,

784
one statement per line 57
one-to-many relationship 1051, 1051
one-to-one mapping 714
one-, two- or three-button mouse 521
OOAD (object-oriented analysis and

design) 13
OOP (object-oriented programming) 13,

361
opaque Swing GUI components 522
open a file 646
OPEN constant of class Arc2D 585
Open Handset Alliance 14
open source 14
operand 48, 125, 308
operating system 13, 14
operation code 308
operation in the UML 78
operation parameter in the UML 78
operator 48

precedence and associativity chart
134

operator precedence 52, 784
operator precedence chart 125
Operator Precedence Chart

Appendix 1143
rules 52

Operators
^, boolean logical exclusive OR 176,

179
--, predecrement/postdecrement

131
--, prefix decrement/postfix

decrement 132
!, logical NOT 176, 179
?:, ternary conditional operator 110,

134
*=, multiplication assignment

operator 131
/=, division assignment operator 131
&, boolean logical AND 176, 178
&&, conditional AND 176, 177
%=, remainder assignment operator

131
++, prefix increment/postfix

increment 132
++, preincrement/postincrement 131
+=, addition assignment operator

131
= 48, 57
-=, subtraction assignment operator

131
|, boolean logical inclusive OR 176,

178
||, conditional OR 176, 177
arithmetic 51
binary 48, 51
boolean logical AND, & 176, 178
boolean logical exclusive OR, ^ 176,

179

1188 Index

Operators (cont.)
boolean logical inclusive OR, | 178
cast 125
compound assignment 131, 133
conditional AND, && 176, 178
conditional operator, ?: 110, 134
conditional OR, || 176, 177, 178
decrement operator, -- 131, 132
increment and decrement 132
increment, ++ 131
logical complement, ! 179
logical negation, ! 179
logical operators 176, 179, 180
multiplication, * 51
multiplicative: *, / and % 125
postfix decrement 131
postfix increment 131
prefix decrement 131
prefix increment 131
remainder 150
remainder, % 51, 52
subtraction, - 52

optimizing compiler 162
Optional class (Java SE 8) 752
optional package 885
OptionalDouble class (Java SE 8) 739,

757
getAsDouble method 739, 757
orElse method 739, 757

or method of functional interface
Predicate (Java SE 8) 745

Oracle Corporation 1046
order 103
ORDER BY SQL clause 1052, 1055, 1056
order in which actions should execute

102
Order of catch Blocks exercise 472
order of exception handlers 472
ordering of records 1052
orElse method of class

OptionalDouble (Java SE 8) 739,
757

orientation information 5
origin component 928
out-of-bounds array index 451
outer set of brackets 256
OutOfMemoryError 872
output 39
output cursor 39, 42
output device 5
output parameter for a

CallableStatement 1098
output unit 5
OutputStream class 663, 673
OutputStreamWriter class 676
oval 571, 575
oval bounded by a rectangle 575
oval filled with gradually changing colors

584
overflow 451
overflow error 313
overload a method 225
overloaded constructors 324
overloaded method 840
overloading generic methods 848
override a superclass method 364, 368

P
PaaS (Platform as a Service) 28
pack method of class Window 936
package 45, 201, 211, 882
package access 344
package-access members of a class 345
package-access methods 344
package declaration 883
package directory names 884
package directory structure 883
package keyword 1146
package name 79
package overview 213
Packages

default package 79
java .time 321
java.awt 479, 559, 581, 916, 928
java.awt.color 581
java.awt.event 212, 491, 493,

518, 528
java.awt.font 581
java.awt.geom 212, 581
java.awt.image 581
java.awt.image.renderable

581
java.awt.print 581
java.beans 1024
java.io 212, 646
java.lang 48, 203, 212, 365, 387,

597, 963
java.math 126, 346, 781, 1128
java.net 212
java.nio.file 645, 646, 647,

759
java.security 213
java.sql 212, 1063, 1066
java.text 346, 1120, 1128
java.time 213
java.util 46, 212, 288
java.util.concurrent 212, 964,

984, 1009, 1030
java.util.concurrent.locks

1002, 1003
java.util.function (Java SE 8)

732, 738
java.util.prefs 718
java.util.regex 597
java.util.stream (Java SE 8)

736
javafx.application.

Application 1119
javafx.beans.value 1128, 1132
javafx.event 1129
javafx.fxml 1129
javafx.scene 1110, 1122, 1127
javafx.scene.control 1120,

1129
javafx.scene.layout 1115,

1119
javafx.stage 1110
javax.sql.rowset 1080
javax.swing 212, 474, 476, 484,

495, 540, 563, 916, 929, 935
javax.swing.event 212, 492,

493, 510, 518, 916
javax.swing.table 1068, 1079

packages
create your own 882
naming 883

padding (JavaFX) 1125
Padding property of a JavaFX layout

container 1125
Page Down key 525
page layout software 597
Page Up key 525
Paint object 584
paintComponent method of class

JComponent 522, 556, 913, 915
paintComponent method of

JComponent 137
palindrome 150, 807
Palindromes exercise 807
panel 538
parallel 958
parallel operations 958
parallel stream 1029
parallelPrefix method of class

Arrays 1027
parallelSetAll method of class

Arrays 1027
parallelSort method of class Arrays

287, 1025
parallelSort method of class Arrays

(Java SE 8) 745
parameter 76
parameter in the UML 78
parameter list 73
parameter list in a lambda 733
parameterized class 849
parameterized type 849
Parent class (JavaFX) 1122, 1127
parent node 894, 907
parent window 91, 478, 912, 933
parent window for a dialog box 923
parent window specified as null 923
parentheses 38, 52

nested 52
redundant 53
unnecessary 53

parentheses to force order of evaluation
134

parseInt method of class Integer 478
parseInt method of Integer 92, 188,

283
partition step in quicksort 837, 838
Pascal programming language 15
pass an array element to a method 264
pass an array to a method 264
pass-by-reference 265
pass-by-value 263, 265
passing options to a program 283
password 485
PATH environment variable liv, lv, 40
Path interface 647

getFileName method 648
isAbsolute method 648
toAbsolutePath method 648
toString method 648

Paths class 647
get method 647, 648

pattern 581
Pattern class 597, 631

compile method 631
matcher method 631
matches method 631
splitAsStream method (Java SE

8) 760
pattern matching 1053

Index 1189

pattern of 1s and 0s 7
Payable interface declaration 424
Payable interface hierarchy UML class

diagram 423
Payable interface test program

processing Invoices and Employees
polymorphically 430

Payroll System Modification exercise 439
peek method of class PriorityQueue

710
peek method of class Stack 710
percent (%) SQL wildcard character 1053
perfect number (exercise) 240
perform a calculation 58
perform a task 73
perform an action 39
performance of binary tree sorting and

searching 910
Performance Tips overview xxxviii
performing operations concurrently 958
Perl (Practical Extraction and Report

Language) 16
persistent 6
persistent data 645
persistent Hashtable 718
phase 120
Phishing Scanner 683
PHP 16, 28
physical input operation 675
physical output operation 674
PI 592
“pick off” each digit 67
pie chart 593
Pie Chart exercise 593
PIE constant of class Arc2D 585
pie-shaped arc 585
Pig Latin 637
pipe 673
PipedInputStream class 673
PipedOutputStream class 673
PipedReader class 676
PipedWriter class 676
pixel (“picture element”) 135, 556
PLAF (pluggable look-and-feel) 912
PLAIN constant of class Font 567
PLAIN_MESSAGE 478
Platform as a Service (PaaS) 28
platform dependency 963
platform independent 19
pluggable look-and-feel (PLAF) 912
pluggable look-and-feel package 480
PNG (Portable Network Graphics) 484
point 567
Point class 523
poker 307
poll method of PriorityQueue 710
polygon 578, 580
Polygon class 556, 578

addPoint method 579, 581
polyline 578
polylines 578
polymorphic processing

of collections 688
polymorphic processing of related

exceptions 454
polymorphically process Invoices and

Employees 430
polymorphism 171, 391, 396
polynomial 53, 54

pop method of Stack 710
pop off a stack 209
pop stack operation 887
popup trigger event 925, 928
portability 558
Portability Tips overview xxxviii
portable 19
portable GUI 212
Portable Network Graphics (PNG) 484
position number 245
positive and negative arc angles 576
positive degrees 575
postcondition 465
postdecrement 132
postfix decrement operator 131
postfix expression evaluation algorithm

905
postfix increment operator 131, 157
postfix notation 905
PostgreSQL 1046
postincrement 132, 133
postorder traversal 894, 898
pow method of class BigDecimal 347
pow method of class Math 162, 203, 235
power (exponent) 204, 240
power of 2 larger than 100 114
Practical Extraction and Report Language

(Perl) 16
prebuilt data structures 685
precedence 52, 58, 134, 784

arithmetic operators 52
chart 52, 125

precedence chart 134
Precedence Chart Appendix 1143
precise floating-point calculations 346
precision of a formatted floating-point

number 88, 126
precondition 465
predecrement 132
predefined character class 624
predicate 741, 1053
Predicate functional interface (Java SE

8) 733, 751
and method 745
negate method 745
or method 745

predicate method 171, 332, 878
preemptive scheduling 963
Pref Height property of a JavaFX

component 1116
Pref Width property of a JavaFX

component 1116
Pref Width property of a JavaFX control

1124
Preferences API 718
preferred size (JavaFX) 1116
prefix decrement operator 131
prefix increment operator 131
preincrement 132, 133
Preincrementing and postincrementing

132
preorder traversal 894
PreparedStatement interface 1082,

1083, 1085, 1089, 1098
executeQuery method 1089
executeUpdate method 1089
setString method 1082, 1089

prepareStatement method of interface
Connection 1089

previous method of ListIterator
694

primary key 1047, 1051
composite 1051

primary memory 5
prime 240, 727
prime number 306, 762
primitive type 47, 80, 134, 210

boolean 1154
byte 165
char 47, 165
double 47, 84, 122
float 47, 84
int 47, 122, 131, 165
names are keywords 47
passed by value 266
promotions 211
short 165

principal in an interest calculation 160
Principle of Least Privilege 225
principle of least privilege 343
print a line of text 39
print an array 807
Print an Array Backward exercise 807
Print an Array exercise 807
print an array recursively 807
print debugger command 1153
print method of System.out 42
print on multiple lines 41, 42
print spooling 891, 977
printArray generic method 843
printf method of System.out 43
printing a binary tree in a two-

dimensional tree format 900
printing trees 909
println method of System.out 39, 42
printStackTrace method of class

Throwable 461
PrintStream class 674, 720
PrintWriter class 654, 676
priority of a thread 962
PriorityBlockingQueue class 1010
PriorityQueue class 710

clear method 710
offer method 710
peek method 710
poll method 710
size method 710

private
access modifier 72, 321, 364
data 331
field 330
keyword 331, 1146

private static
class member 339

probability 214
procedure for solving a problem 102
processing phase 120
processing unit 4
producer 959, 976
producer thread 977
producer/consumer relationship 976,

996
product of odd integer 196
program 4
program construction principles 190
program control 102
program development tool 106, 122
program execution stack 887
program in the general 396, 439

1190 Index

program in the specific 396
programmer 4
project (NetBeans) 1112
Projects window in NetBeans 1113
promotion 125

of arguments 210
rules 125, 210

promotions for primitive types 211
prompt 48
Properties class 718

getProperty method 718
keySet method 721
list method 720
load method 721
setProperty method 718
store method 720

propertyChange method of interface
PropertyChangeListener 1024

PropertyChangeListener interface
1024
propertyChange method 1024

protected access modifier 321, 364,
1146

protocol for communication (jdbc) 1065
pseudocode 103, 107, 116, 126, 128

algorithm 121
first refinement 120, 127
second refinement 120, 128

public
abstract method 421
access modifier 71, 72, 206, 321, 364
final static data 421
interface 316
keyword 37, 72, 1146
member of a subclass 364
method 137, 317, 321
method encapsulated in an object

320
service 316
static class members 339
static method 339

push method of class Stack 709
push onto a stack 209
push stack operation 887
put method

of interface BlockingQueue 984,
985

of interface Map 717
Pythagorean Triples 197
Python 16

Q
quad-core processor 6
quadratic run time 815
qualified name 1057
quantifiers used in regular expressions

628, 629
quantum 962
query 1046, 1048
query a database 1063
query application for the books database

1104
query method 331
QUESTION_MESSAGE 478
queue 710, 870, 890
Queue interface 686, 710, 984
quicksort algorithm 837

R
RadialGradientPaint class 584
radians 204
radio button 495, 501
radio button group 501
radius 592
radius of a circle 239
radix (base) of a number 621
raised rectangle 575
RAM (Random Access Memory) 5
Random Characters exercise 592
Random class 300

nextInt method 214, 217
Random Colors exercise 593
random limericks 637
Random Lines Using Class

Line2D.Double exercise 592
random numbers

difference between values 218
element of chance 213
generation 257
generation to create sentences 637
scaling 214
scaling factor 214, 217, 218
shift a range 214
shifting value 214, 217, 218

Random Triangles exercise 592
randomly generated triangles 592
randomly sized shapes 593
range checking 119
range method of class EnumSet 337
range method of interface IntStream

(Java SE 8) 743
range-view methods 694, 712
rangeClosed method of interface

IntStream (Java SE 8) 743
ratio of successive Fibonacci numbers 783
Rational class 357
Rational Numbers (exercise) 357
raw type 857
read-only file 667
read-only text 481
readability 36, 37, 128
Reader class 675
reading files 647
readObject method of ObjectInput

663
readObject method of

ObjectInputStream 670
ready state 962
real number 47, 122
real part 356
realization in the UML 423
“receiving” section of the computer 5
reclaim memory 342
record 7, 651
rectangle 356, 556, 560, 572
Rectangle Class (exercise) 356
Rectangle2D class 556
Rectangle2D.Double class 581
recursion

overhead 788
quicksort 837
recursion step 778, 784
recursive backtracking 802
recursive binary search algorithm 837
recursive call 778, 784, 785
recursive evaluation 780
Recursive evaluation of 5! 780

recursion (cont.)
recursive factorial method 779
recursive linear search algorithm 837
recursive method 777
Recursive power Method exercise

805
recursive step 837
recursively generating Fibonacci

numbers 785
Recursively Print a List Backwards

907
Recursively Search a List 907

Recursion Exercises
binary search 837
Eight Queens 807
Find the Minimum Value in an

Array 807
Fractals 807
Generating Mazes Randomly 809
Greatest Common Divisor 806
linear search 837
Maze Traversal Using Recursive

Backtracking 808
Mazes of Any Size 809
Palindromes 807
Print an Array 807
Print an Array Backward 807
quicksort 837
Recursive power Method 805
Time to Calculate Fibonacci

Numbers 809
Visualizing Recursion 806

recursive backtracking 809
redirect a standard stream 646
reduce method of interface

DoubleStream (Java SE 8) 757
reduce method of interface IntStream

(Java SE 8) 739
reduction (mutable) 745
reduction operations 735
redundant parentheses 49, 53
reentrant lock 992
ReentrantLock class 1002, 1004
refactoring 28
refer to an object 81
reference 81
reference type 80, 344
refinement process 120
regexFilter method of class

RowFilter 1079
regionMatches method of class

String 601
register an ActionListener 924
register event handlers (JavaFX) 1127
registered listener 494
registering the event handler 488, 1121
regular expression 624, 758

^ 628
? 628
. 632
{n,} 629
{n,m} 628
{n} 628
* 628
\D 625
\d 625
\S 625
\s 625
\W 625

Index 1191

regular expression (cont.)
\w 625
+ 628
| 628

reinventing the wheel 11, 45, 285
relational database 1046, 1047
relational database management system

(RDBMS) 1046
relational database table 1047
relational operators 54
relationship between an inner class and its

top-level class 501
RELATIVE constant of class

GridBagConstraints 949
relative path 647
release a lock 968, 990, 991
release a resource 455
release candidate 29
reluctant quantifier 629
remainder 51
remainder compound assignment

operator, %= 131
REMAINDER constant of class

GridBagConstraints 949
remainder operator, % 51, 52, 150
remove duplicate String 711
remove method of class ArrayList<T>

288, 290
remove method of interface Iterator

691
removeTableModelListener method

of interface TableModel 1068
repaint method of class Component

524
repaint method of class JComponent

559
repetition 105, 186

counter controlled 116, 124, 127,
128

definite 115
sentinel controlled 119, 121, 122,

124
repetition statement 104, 105, 113, 121,

787
do...while 105, 163, 164, 186, 164,

186
for 105, 158, 186
while 105, 114, 117, 122, 124,

153, 186, 187
repetition terminates 114
replaceAll method

of class Matcher 631
of class String 629

replaceFirst method
of class Matcher 631
of class String 629

requestFocus method 1131
requestFocus method of class Node

1131
requirements 13
requirements of an app 171
reservations system 301
reserved word 37, 105, 1146

false 106
null 76, 81, 135
true 106

resizable array
implementation of a List 688

resolution 135, 556

resource leak 337, 454
resource-release code 455
responses to a survey 254
result 1053
result set concurrency 1072
result set type 1072
ResultSet interface 1066, 1072, 1073,

1074
absolute method 1073
close method 1067
column name 1067
column number 1067
CONCUR_READ_ONLY constant 1072
CONCUR_UPDATABLE constant 1072
concurrency constant 1072
getInt method 1067
getObject method 1067, 1073
getRow method 1074
last method 1074
next method 1066
TYPE_FORWARD_ONLY constant

1072
TYPE_SCROLL_INSENSITIVE

constant 1072
TYPE_SCROLL_SENSITIVE

constant 1072
ResultSetMetaData interface 1066,

1073
getColumnClassName method

1073
getColumnCount method 1066,

1073
getColumnName method 1073
getColumnType method 1066

ResultSetTableModel enables a
JTable to display the contents of a
ResultSet 1068

resumption model of exception handling
449

rethrow an exception 458, 472
Rethrowing Exceptions exercise 472
return keyword 74, 202, 209, 1146
return statement 778
return type

of a method 73
reusability 849, 870
reusable software components 10, 211,

362
reuse 11, 45
reverse method of class

StringBuilder 614
reverse method of Collections 696,

702
reversed method of interface

Comparator (Java SE 8) 748
reverseOrder method of

Collections 698
RGB value 559, 560, 565
RGB values 227
right aligned 530
right brace, } 38, 46, 117, 124
right child 893
RIGHT constant of class FlowLayout

532
right justify output 161
right subtree 898, 908
right-align the contents of a column 1124
rigid area of class Box 942
rise-and-shine algorithm 102

Ritchie, Dennis 16
robust 48
robust application 442
roll back a transaction 1099
rollback method of interface

Connection 1099
rolling two dice 220
rollover Icon 497
root directory 647
root node 893, 1110
rotate method of class Graphics2D

588
round a floating-point number for display

purposes 126
round-robin scheduling 962
rounded rectangle 573, 585
rounding a number 51, 118, 163, 204,

238
RoundingMode enum 348, 1128
RoundRectangle2D class 556
RoundRectangle2D.Double class 581,

585
row 1047, 1051, 1052, 1053, 1054, 1058
RowFilter class 1079
rows of a two-dimensional array 272
rows to be retrieved 1052
RowSet interface 1080
RowSetFactory class 1080
RowSetFactory interface

createJdbcRowSet method 1080
RowSetProvider class 1080
RowSetProvider interface

newFactory method 1080
Ruby on Rails 17
Ruby programming language 17
Rule of Entity Integrity 1051
Rule of Referential Integrity 1050
rule of thumb (heuristic) 176
rules for forming structured programs

182
rules of operator precedence 52, 784
run debugger command 1151
run method of interface Runnable 963
runAsync method of class

CompletableFuture 1034
Runnable interface 432, 963

run method 963
runnable state 961
running an application 21
running state 962
running total 120
runtime error 21
runtime logic error 48
RuntimeException class 452

S
SaaS (Software as a Service) 28
Safari 90
SalariedEmployee class that

implements interface Payable
method getPaymentAmount 428

SalariedEmployee concrete class
extends abstract class Employee
408

Sales Commissions 300
SAM interface 732
SansSerif Java font 567
saturation 565

1192 Index

savings account 160
SavingsAccount Class (exercise) 356
scalar 263
scaling (random numbers) 214

scale factor 214, 217, 218
scaling BigDecimal values 348
Scanner class 46, 47

hasNext method 168
next method 75
nextDouble method 88
nextLine method 75

scanning images 5
Scene Builder 1109, 1111
Scene class (JavaFX) 1110, 1119, 1127,

1128
scene graph 1128
scene graph in a JavaFX application 1110
scene in a JavaFX application 1110
scheduling threads 962
scope 157
scope of a declaration 222
scope of a type parameter 851
scope of a variable 157
Scrapbooking app exercise 1139
screen 4, 5
screen cursor 43
screen-manager program 398
Screen Saver exercise 592
Screen Saver for Random Number of

Lines exercise 593
Screen Saver Using the Java2D API

exercise 593
Screen Saver Using Timer exercise 592
Screen Saver with Shapes exercise 593
scroll 506, 510
scroll arrow 507
scroll box 507
SCROLL_TAB_LAYOUT constant of class

JTabbedPane 942
scrollbar 510, 542

of a JComboBox 507
scrollbar policies 542
SDK (Software Development Kit) 29
search algorithms

binary search 816
linear search 812
recursive binary search 837
recursive linear search 837

search key 811
searching 870
searching data 811
second-degree polynomial 53, 54
second refinement 128
second refinement in top-down, stepwise

refinement 120
secondary storage 4
secondary storage devices 645
secondary storage unit 6
sector 576
SecureRandom class 213, 214

documentation 214
doubles method (Java SE 8) 762
ints method (Java SE 8) 762
longs method (Java SE 8) 762
streams of random numbers (Java SE

8) 762
security 20
security breach 37, 76
security breaches 213

SecurityException class 653
seful 647
SELECT SQL keyword 1052, 1053,

1054, 1055, 1056
selectAll method 1131
selectAll method of class

TextInputControl 1131
selected text in a JTextArea 541
selecting an item from a menu 485, 1121
Selecting Shapes exercise 593
selection 105, 185, 186
selection criteria 1053
selection mode 510
selection sort algorithm 821, 824
selection statement 103, 105

if 105, 106, 165, 186, 187
if...else 105, 106, 107, 122, 165,

186
switch 105, 165, 169, 186

self-documenting 48
self-documenting code 48
self-referential class 871, 872
self-similar property 791
semicolon (;) 39, 47, 57
send a message to an object 11
sentence-style capitalization 477
sentinel-controlled repetition 119, 121,

122, 124, 197, 310
sentinel value 119, 121, 124
separator character 650
separator line in a menu 923, 924
sequence 105, 184, 186, 688, 893
sequence structure 103
sequence-structure activity diagram 104
SequenceInputStream class 675
sequential-access file 645, 651
sequential execution 103
Sequentially searching an array for an

item 813
Serializable interface 432, 663
serialized object 662
Serif Java font 567
service of a class 321
set debugger command 1153
Set interface 686, 711, 712, 714

stream method (Java SE 8) 760
set method

of interface ListIterator 694
set method 324
Set of Integers (exercise) 357
Set of recursive calls for fibonacci(3

) 785
SET SQL clause 1059
set-theoretic intersection 357
set-theoretic union 357
set up event handling 488
setAlignment method of class

FlowLayout 532
setAutoCommit method of interface

Connection 1099
setBackground method of class

Component 291, 511, 565
setBounds method of class Component

529
setCharAt method of class

StringBuilder 614
setColor method of class Graphics

560, 585
setColor method of Graphics 228

setCommand method of JdbcRowSet
interface 1082

setConstraints method of class
GridBagLayout 949

setDefaultCloseOperation method
of class JFrame 138, 485, 916

setDisabledTextColor method of
class JTextComponent 528

setEditable method of class
JTextComponent 488

setErr method of class System 646
setFileSelectionMode method of

class JFileChooser 670
setFixedCellHeight method of class

JList 513
setFixedCellWidth method of class

JList 513
setFont method of class Component

500
setFont method of class Graphics 567
setForeground method of class

JComponent 924
setHorizontalAlignment method of

class JLabel 484
setHorizontalScrollBarPolicy

method of class JScrollPane 542
setHorizontalTextPosition

method of class JLabel 484
setIcon method of class JLabel 484
setIn method of class System 646
setInverted method of class JSlider

913
setJMenuBar method of class JFrame

917, 924
setLayout method of class Container

483, 530, 534, 537, 942
setLength method of class

StringBuilder 613
setLineWrap method of class

JTextArea 542
setListData method of class JList

513
setLocation method of class

Component 529, 917
setLookAndFeel method of class

UIManager 932
setMajorTickSpacing method of class

JSlider 916
setMaximumRowCount method of class

JComboBox 507
setMnemonic method of class

AbstractButton 923
setOpaque method of class

JComponent 522, 524
setOut method of System 646
setPaint method of class Graphics2D

584
setPaintTicks method of class

JSlider 916
setPassword method of JdbcRowSet

interface 1082
setProperty method of Properties

718
setRolloverIcon method of class

AbstractButton 498
setRoundingMode method of class

NumberFormat 1132
setRowFilter method of class JTable

1079

Index 1193

setRowSorter method of class JTable
1079

setScale method of class BigDecimal
348

setSelected method of class
AbstractButton 924

setSelectionMode method of class
JList 510

setSize method of class Component
529, 917

setSize method of class JFrame 138,
485

setString method of interface
PreparedStatement 1082, 1089

setStroke method of class
Graphics2D 584

setText method 1131
setText method of class JLabel 390,

484
setText method of class

JTextComponent 541
setText method of class

TextInputControl 1131
Setting the PATH environment variable

liv, lv
setToolTipText method of class

JComponent 483
setUrl method of JdbcRowSet

interface 1080
setUsername method of JdbcRowSet

interface 1082
setVerticalAlignment method of

class JLabel 484
setVerticalScrollBarPolicy

method of class JScrollPane 542
setVerticalTextPosition method

of class JLabel 484
setVisible method of class

Component 485, 534, 917
setVisible method of class JFrame

138
setVisibleRowCount method of class

JList 510
shadow 73
shadow a field 223
shallow copy 388
shape 581
Shape class hierarchy 363, 393
Shape Hierarchy exercise 439
Shape object 584
share memory 959
shared buffer 977
shell 39
shell in Linux 18
shell script 653
Shift 528
shift (random numbers) 214

shifting value 214, 217, 218
“shipping” section of the computer 5
shopping list 113
short-circuit evaluation 178
Short class 687
short primitive type 165, 1146, 1147

promotions 211
short-circuting terminal operation (Java

SE 8) 752
shortcut key 918
show method of class JPopupMenu 928

showDialog method of class
JColorChooser 564

showInputDialog method of class
JOptionPane 92, 477

showMessageDialog method of class
JOptionPane 91, 478

showOpenDialog method of class
JFileChooser 670

shuffle 257
algorithm 700

shuffle method of class Collections
696, 700, 702

shutdown method of class
ExecutorService 967

sibling nodes 893
side effect 178
Sieve of Eratosthenes 306, 762, 1020
signal method of interface Condition

1003, 1007
signal value 119
signalAll method of interface

Condition 1003
signature of a method 226, 227
simple condition 176
simple name 884
simplest activity diagram 182, 184
Simpletron Machine Language (SML)

308, 870
Simpletron simulator 310, 313, 871
simulate a middle-mouse-button click on

a one- or two-button mouse 521
simulate a right-mouse-button click on a

one-button mouse 521
simulation 213

coin tossing 241
Simulation: Tortoise and the Hare 306,

593
simulator 308
sin method of class Math 204
sine 204
single abstract method (SAM) interface

732
single entry point 182
single-entry/single-exit control statements

105, 182
single exit point 182
single inheritance 361
single-line (end-of-line) comment 39
single-precision floating-point number 84
single-quote character 597, 1054
single-selection list 508
single-selection statement 105, 106, 186
single static import 342
single-type-import declaration 885
SINGLE_INTERVAL_SELECTION

constant of interface
ListSelectionModel 510, 511,
513

SINGLE_SELECTION constant of
interface ListSelectionModel 510

single-selection statement
if 106

singly linked list 872
size method

of class ArrayBlockingQueue 986
of class ArrayList<T> 290
of class PriorityQueue 710
of interface List 690, 694
of interface Map 718

size method of class Files 648
size of a variable 50
skinning 1109
sleep interval 961
sleep method of class Thread 965, 978,

980, 981
sleeping thread 961
Slider class (JavaFX) 1118, 1120

Max property 1126
Value property 1126
valueProperty method 1132

small circles in the UML 104
smallest of several integers 196
smartphone 3
SML 870
SMS Language 643
snap-to ticks for JSlider 912
software 2
Software as a Service (SaaS) 28
Software Development Kit (SDK) 29
software engineering 331
Software Engineering Observations

overview xxxviii
software model 310
software reuse 11, 202, 882
software simulation 308
solid circle in the UML 104
solid circle surrounded by a hollow circle

in the UML 104
Solves Towers of Hanoi problem with a

recursive method 790
sort algorithms

bubble sort 836
bucket sort 836
insertion sort 824
merge sort 827
quicksort 837
selection sort 821

sort key 811
sort method

of class Arrays 285, 817
of class Collections 697

sort method of class Arrays 745, 1025
sorted array 872
sorted method of interface IntStream

(Java SE 8) 741
sorted method of interface Stream

(Java SE 8) 745, 748
sorted order 712, 714
SortedMap interface 714
SortedSet interface 712, 713

first method 713
last method 713

sorting 870
descending order 697
with a Comparator 698

sorting data 811, 820
Sorting Letters and Removing Duplicates

exercise 775
source code 18
SourceForge 14
SOUTH constant of class BorderLayout

518, 532
SOUTH constant of class

GridBagConstraints 943
SOUTHEAST constant of class

GridBagConstraints 943
SOUTHWEST constant of class

GridBagConstraints 943

1194 Index

space character 37
Spam Scanner 642
speaking to a computer 5
special character 47, 597
Special Section: Advanced String-

Manipulation Exercises 638
Special Section: Building Your Own

Compiler 870
Special Section: Building Your Own

Computer 308
Special Section: Challenging String-

Manipulation Projects 641
special symbol 6
specialization 361
specifics 398
Spelling Checker project 641
sphere 235
spiral 593, 783
split method of class String 623, 629
split the array in merge sort 827
splitAsStream method of class

Pattern (Java SE 8) 760
spooler 891
spooling 891
SQL 1046, 1048, 1052, 1058

DELETE statement 1052, 1060
FROM clause 1052
GROUP BY 1052
IDENTITY keyword 1048
INNER JOIN clause 1052, 1057
INSERT statement 1052, 1058
LIKE clause 1054
ON clause 1057
ORDER BY clause 1052, 1055, 1056
SELECT query 1052, 1053, 1054,

1055, 1056
SET clause 1059
UPDATE statement 1052
VALUES clause 1058
WHERE clause 1053

SQL (Structured Query Language) 1082
SQL injection attack (preventing) 1083
SQL keyword 1052
SQL statement 1099
SQLException class 1065, 1067, 1083
SQLFeatureNotSupported-

Exception class 1073
sqrt method of class Math 203, 204, 210
square brackets, [] 245
square root 204
stack 209, 849, 870, 886

method call stack 210
stack overflow 210

Stack class 710, 886
isEmpty method 710
of package java.util 708
peek method 710
pop method 710
push method 709

stack frame 210, 788
Stack generic class 849

Stack< Double > 856
Stack< Integer > 856

Stack generic class declaration 850
stack operation

pop 887
push 887

stack trace 444
stack unwinding 459

stacked building blocks 186
stacking control statements 187
stacking rule 184
StackTraceElement class 461

getClassName method 461
getFileName method 461
getLineNumber method 461
getMethodName method 461

Stage class (JavaFX) 1110, 1119, 1127,
1128

stage in a JavaFX application 1110
stale value 974
standard error stream 448, 457
standard error stream (System.err)

646, 674
standard input stream (System.in) 47,

646
standard output stream 457
standard output stream (System.out)

39, 646, 674
standard reusable component 362
standard time format 319
“warehouse” section of the computer 6
start method of class Application

(JavaFX) 1119, 1127
starting angle 575
startsWith method of class String

604
starvation 963
state button 498
state dependent 977
stateChanged method of interface

ChangeListener 916
stateful intermediate operation 742
stateless intermediate operation 742
stateless stream operation 742
statement 39, 73
statement block in a lambda 733
Statement interface 1066, 1067, 1082

close method 1067
executeQuery method 1066

Statements 121
break 168, 174, 198
continue 174, 198
control statement 102, 103, 105,

106
control-statement nesting 105
control-statement stacking 105
do...while 105, 163, 164, 186
double selection 105, 128
empty 57, 110
empty statement 110
enhanced for 262
for 105, 155, 158, 160, 162, 186
if 54, 105, 106, 165, 186, 187
if...else 105, 106, 107, 122, 165,

186
looping 105
multiple selection 105
nested 126
nested if...else 107, 109
repetition 104, 105, 113
return 202, 209
selection 103, 105
single selection 105
switch 105, 165, 169, 186
switch multiple-selection statement

217
throw 318

Statements (cont.)
try 256
try-with-resources 467
while 105, 114, 117, 122, 124, 153,

186, 187
static

class member 338, 339
class variable 339
field (class variable) 338
import 342
import on demand 342
keyword 203, 1146
method 79, 91, 162

static binding 420
static interface methods (Java SE 8)

433
static method in an interface (Java SE

8) 732, 763
static method of an interface (Java SE

8) 731
step debugger command 1156
step up debugger command 1156
stop debugger command 1151
store method of Properties 720
stored procedure 1098
straight-line form 51
stream 457
stream (Java SE 8)

DoubleStream interface 736
eager operations 739
filter elements 741
intermediate operation 734
IntStream interface 736
lazy operation 741, 742
LongStream interface 736
map elements to new values 742
pipeline 734, 741, 742
terminal operation 734

Stream interface (Java SE 8) 734, 744
collect method 745, 745, 755,

756, 762
distinct method 754
filter method 745, 748
findFirst method 752
forEach method 745
map method 747, 747
sorted method 745, 748

Stream interface (java SE 8)
flatMap method 760

stream method of class Arrays (Java SE
8) 743, 744

stream method of interface Set 760
stream of bytes 645
stream pipeline 738
streaming 959
streams 734
streams (Java SE 8)

infinite streams 762
strictfp keyword 1146
strictly self-similar fractal 791
string 39

literal 39
of characters 39

String class 597
charAt method 599, 614
compareTo method 601, 603
concat method 608
endsWith method 604
equals method 601, 603

Index 1195

String class (cont.)
equalsIgnoreCase method 601,

603
format method 92, 318
getChars method 599
immutable 341
indexOf method 605
lastIndexOf method 605
length method 599
matches method 624
regionMatches method 601
replaceAll method 629
replaceFirst method 629
split method 623, 629
startsWith method 604
substring method 607
toCharArray method 610, 807
toLowerCase 694
toLowerCase method 610
toUpperCase 694
toUpperCase method 609
trim method 610
valueOf method 610

String class searching methods 605
string concatenation 208, 341
string literal 597
StringBuffer class 612
StringBuilder class 597, 611

append method 615
capacity method 612
charAt method 614
constructors 612
delete method 617
deleteCharAt method 617
ensureCapacity method 613
getChars method 614
insert method 617
length method 612
reverse method 614
setCharAt method 614
setLength method 613

StringIndexOutOfBoundsExceptio
n class 607

StringReader class 676
StringWriter class 676
Stroke object 584, 585
strongly typed languages 134
Stroustrup, Bjarne 442
structured programming 4, 103, 153,

176, 182
summary 182

Structured Query Language (SQL) 1046,
1048, 1052

Student Poll exercise 683
subclass 12, 137, 361
sublist 694
subList method of List 694
submenu 918
submit method of class

ExecutorService 1030
subprotocol for communication 1065
subscript (index) 245
substring method of class String 607
subtract method of class BigInteger

782, 784
subtraction 6, 51

operator, - 52
subtraction compound assignment

operator, -= 131

suffix F for float literals 710
suffix L for long literals 709
sum method of interface DoubleStream

(Java SE 8) 757
sum method of interface IntStream

(Java SE 8) 739
sum the elements of an array 251
summarizing responses to a survey 254
super keyword 364, 387, 1146

call superclass constructor 378
super.paintComponent(g) 137
superclass 12, 137, 361

constructor 368
constructor call syntax 378
default constructor 368
direct 361, 363
indirect 361, 363
method overridden in a subclass 386

Supermarket Simulation 906
Supplier functional interface (Java SE

8) 733
Supplier interface (Java SE 8) 1030,

1033
supplyAsync method of class

CompletableFuture 1033
swapping values 821, 824
sweep 292, 575
sweep counterclockwise 575
Swing Event Package 212
Swing GUI APIs 475
Swing GUI components 474
Swing GUI components package 212
swing.properties file lv, 476
SwingConstants interface 484, 916
SwingUtilities class 932

updateComponentTreeUI method
932

SwingWorker class 1011
cancel method 1025
doInBackground method 1011,

1014
done method 1011, 1014
execute method 1011
get method 1011
isCancelled method 1020
process method 1012, 1021
publish method 1011, 1021
setProgress method 1012, 1020

switch logic 171
switch multiple-selection statement

105, 165, 169, 186, 217, 1146
activity diagram with break

statements 170
case label 168, 169
controlling expression 168
default case 168, 170, 217

Sybase 1046
synchronization 968, 988
synchronization wrapper 721
synchronize 959
synchronize access to a collection 688
synchronized

keyword 721, 968, 1146
method 969
statement 968

synchronized collection 688
synchronous error 451
SynchronousQueue class 1010
syntax error 36

System class
arraycopy 285, 286
currentTimeMillis method 809
exit method 455, 653
setErr method 646
setIn method 646
setOut 646

System.err (standard error stream)
448, 646, 674

System.in (standard input stream) 646
System.out

print method 42, 42
printf method 43
println method 39, 39, 42

System.out (standard output stream)
39, 646, 674

SystemColor class 584

T
tab character, \t 43
Tab key 38
tab stops 43
table 272, 1047
table element 272
table of values 272
TableModel interface 1067

addTableModelListener 1068
getColumnClass method 1068,

1073
getColumnCount method 1068,

1073
getColumnName method 1068,

1073
getRowCount method 1068
getValueAt method 1068
removeTableModelListener

1068
TableModelEvent class 1079
TableRowSorter class 1079
tabular format 249
tagging interface 422, 663
tail of a queue 870, 890
tailSet method of class TreeSet 713
take method of class BlockingQueue

984, 986
tan method of class Math 204
tangent 204
target type of a lambda (Java SE 8) 738
Target-Heart-Rate Calculator app

exercise 1140
Target-Heart-Rate Calculator exercise 99
Tax Plan Alternatives exercise 199
TCP (Transmission Control Protocol) 25
TCP/IP 26
technical publications 30
Telephone-Number Word Generator

exercise 682
temporary 125
TEN constant of class BigDecimal 347
terabyte 6
Terminal application (OS X) 18
terminal operation 738

eager 741
terminal operations

mutable reduction 735
reduction 735

1196 Index

terminal stream operations (Java SE 8)
734, 745
average method of interface

IntStream 739
collect method of interface

Stream 745, 755, 756, 762
count method of interface

IntStream 739
findFirst method of interface

Stream 752
mapToDouble method of interface

Stream 756
max method of interface IntStream

739
min method of interface IntStream

739
reduce method of interface

IntStream 739
short-circuting 752
sum method of interface IntStream

739
terminal window 39
terminate a loop 121
terminate an application 923
terminate successfully 653
terminated state 961
termination housekeeping 338, 388
termination model of exception handling

449
termination phase 120
termination test 787
ternary operator 110
test method of functional interface

IntPredicate (Java SE 8) 741, 742
Text analysis 638
text editor 39, 597
text field 92
text file 646
Text property of a Label (JavaFX) 1116
TextEdit 18
TextField class (JavaFX) 1120, 1124
TextInputControl class (JavaFX) 1131
TexturePaint class 556, 584, 585
The “FairTax” 199
thenComparing method of functional

interface Comparator (Java SE 8)
753

thick lines 581
this

keyword 73, 322, 339, 1146
reference 322
to call another constructor of the

same class 327
thread 449, 558

life cycle 960, 962
of execution 959
scheduling 962, 981
state 960
synchronization 721, 968

Thread class
currentThread method 965, 970
interrupt method 965
sleep method 965

thread confinement 1011
thread-life-cycle statechart diagram 960,

962
thread pool 963
thread priority 962
thread safe 974, 1011
thread scheduler 962

thread states
blocked 961, 969
dead 961
new 961
ready 962
runnable 961
running 962
terminated 961
timed waiting 961
waiting 961

three-button mouse 521
three-dimensional rectangle 572
ThreeDimensionalShape class 393
throw an exception 256, 443, 447
throw an exception 318, 328
throw keyword 458, 1146
throw point 445
throw statement 457
Throwable class 451, 461

getMessage method 461
getStackTrace method 461
hierarchy 452
printStackTrace method 461

throws clause 450
throws keyword 1146
thumb of class JSlider 912, 916
thumb position of class JSlider 916
tick marks on a JSlider 912
TicTacToe 358

exercise 358
tightly packed binary tree 900
Time to Calculate Fibonacci Numbers

exercise 809
timed waiting state 961
Timer class 592
timeslice 962
timeslicing 962
title bar 475, 481, 916
title bar of a window 478
title bar of internal window 936
titles table of books database 1048,

1049
toAbsolutePath method of interface

Path 648
toArray method of List 695, 696
toCharArray method of class String

610
toCharArray method of String 807
ToDoubleFunction functional interface

(Java SE 8) 757
applyAsDouble method 757

toggle buttons 495
token of a String 623
tokenization 623
toList method of class Collectors

(Java SE 8) 745
toLowerCase method of class

Character 621
toLowerCase method of class String

610, 694
toMillis method of class Duration

1026
tool tips 480, 483, 485
top 120, 710
TOP constant of class JTabbedPane 942
top-down, stepwise refinement 120, 121,

122, 127, 128
top-level class 488
top of a stack 870

toPath method of class File 671
Tortoise and the Hare 306, 593
Tortoise and the Hare exercise 593
toString method

of class ArrayList 697, 862
of class Arrays 631, 814
of class Object 368, 388

toString method of an object 208
toString method of interface Path 648
total 115, 120
Total Sales 301
toUpperCase method of class

Character 620
toUpperCase method of class String

609, 694
Towers of Hanoi 789
Towers of Hanoi for the case with four

disks 789
track mouse events 515
traditional comment 36
trailing white-space characters 610
transaction file 681
transaction processing 1098, 1099
transaction record 682
transfer of control 103, 310, 311, 312
transient keyword 665, 1146
transition arrow 107, 115

in the UML 104
transition arrow in the UML 114
transition in the UML 104
translate method of class

Graphics2D 588
translation 9
translator program 9
Transmission Control Protocol (TCP) 25
transparency of a JComponent 522
traverse a tree 898
traverse an array 273
tree 711, 893
TreeMap class 714, 760
TreeSet class 711, 712, 713

headSet method 712
tailSet method 713

trigger an event 479
trigonometric cosine 204
trigonometric sine 204
trigonometric tangent 204
trim method of class String 610
trimToSize method of class

ArrayList<T> 288
true 54, 1146
true reserved word 106, 110
truncate 51
truncate fractional part of a calculation

118
truncated 651
truth table 177
truth tables

for operator ^ 179
for operator ! 179
for operator && 177
for operator || 177

try block 256, 447, 459
terminates 449

try keyword 447, 1146
try statement 256, 450
try-with-resources statement 467
Turtle Graphics 302, 593
Turtle Graphics exercise 593

Index 1197

24-hour clock format 316
two-dimensional array

representation of a maze 808
 272, 273
two-dimensional data structure 893
two-dimensional graphics 581
two-dimensional shapes 556
two largest values 148
TwoDimensionalShape class 393
type 46
type argument 851
type casting 125
type-import-on-demand declaration 885
type inference with the <> notation (Java

SE 7) 691
type inferencing 691
type of a lambda expression 733
type of a variable 50
type parameter 843, 849, 856

scope 851
section 843, 849

type safety 842
type variable 843
type-wrapper class 618, 687, 845

implements Comparable 845
TYPE_FORWARD_ONLY constant 1072
TYPE_INT_RGB constant of class

BufferedImage 585
TYPE_SCROLL_INSENSITIVE constant

1072
TYPE_SCROLL_SENSITIVE constant

1072
Types class 1067
typesetting system 597
type-wrapper classes 618
typing in a text field 485, 1121
Typing Tutor: Tuning a Crucial Skill in

the Computer Age 554

U
UIManager class 929

getInstalledLookAndFeels
method 929

LookAndFeelInfo nested class 929
setLookAndFeel method 932

UIManager.LookAndFeelInfo class
getClassName method 932

UML (Unified Modeling Language) 13
activity diagram 104, 107, 114, 158,

164
arrow 104
class diagram 77
compartment in a class diagram 77
diamond 106
dotted line 105
final state 104
guard condition 106
merge symbol 114
note 104
solid circle 104
solid circle surrounded by a hollow

circle 104
UML 105
unary operator 125, 179

cast 125
UnaryOperator functional interface

(Java SE 8) 733
unbiased shuffling algorithm 260

unboxing 849, 854
unboxing conversion 687
uncaught exception 449
unchecked exceptions 452
uncovering a component 558
underlying data structure 710
underscore (_) SQL wildcard character

1053, 1054
uneditable JTextArea 539
uneditable text or icons 479
Unicode character set 7, 66, 135, 170,

597, 602, 620, 1147
Unicode value of the character typed 528
Unified Modeling Language (UML) 13
Uniform Resource Identifier (URI) 648
Uniform Resource Locator (URL) 648
union of two sets 357
universal-time format 316, 318, 319
UNIX 39, 168, 653
unlock method of interface Lock 1002,

1007
unmodifiable collection 688
unmodifiable wrapper 721
unnecessary parentheses 53
unspecified number of arguments 281
UnsupportedOperationException

class 694
unwatch debugger command 1159
unwinding the method-call stack 459
UPDATE SQL statement 1052, 1059
updateComponentTreeUI method of

class SwingUtilities 932
upper bound 846

of a wildcard 862
upper bound of a type parameter 847,

848
upper-left corner of a GUI component

135, 556
upper-left x-coordinate 560
upper-left y-coordinate 560
uppercase letter 38, 47
URI (Uniform Resource Identifier) 648
URL (Uniform Resource Locator) 648
Use binary search to locate an item in an

array 817
Utilities Package 212
utility method 319

V
va 654
valid identifier 47
validate data 119
validate method of class Container

537
validity checking 331
value of a variable 50
Value property of a Slider (JavaFX)

1126
value to the nearest integer 238
valueChanged method of interface

ListSelectionListener 510
valueOf method of class BigDecimal

347
valueOf method of class String 610
valueProperty method of class

Slider 1132
values method of an enum 336
VALUES SQL clause 1058, 1058

van Rossum, Guido 16
variable 45, 46, 47

name 46, 50
reference type 80
size 50
type 50
value 50

variable declaration statement 47
variable is not modifiable 343
variable-length argument list 281
variable names

came case naming 72
variable scope 157
VBox class (JavaFX) 1115

alignment 1116
Alignment property 1116

Vbox class (JavaFX) 1115
Vector class 688
VERTICAL constant of class

GridBagConstraints 944
vertical coordinate 135, 556
vertical gap space 534
vertical scrolling 541
vertical strut 941
VERTICAL_SCROLLBAR_ALWAYS

constant of class JScrollPane 542
VERTICAL_SCROLLBAR_AS_NEEDED

constant of class JScrollPane 542
VERTICAL_SCROLLBAR_NEVER constant

of class JScrollPane 542
Vgap property of a GridPane 1125
vi editor 18
video game 214
video streaming 995
View 475
view (in MVC) 1121
virtual key code 528
virtual machine (VM) 19
Visual Basic programming language 16
Visual C# programming language 16
Visual C++ programming language 16
visual feedback 498
visual programming 1111
Visualizing Recursion exercise 806
void keyword 38, 73, 1146
volatile information 5
volatile keyword 1146
volume of a sphere 235, 237

W
W3C (World Wide Web Consortium)

26
wait method of class Object 388, 988
waiting line 710
waiting state 961
waiting thread 991
watch debugger command 1158
web browser 90
web page 90
web services 26

Amazon eCommerce 27
eBay 27
Facebook 27
Flickr 27
Foursquare 27
Google Maps 26
Groupon 27
Instagram 27

1198 Index

web services (cont.)
Last.fm 27
LinkedIn 27
Microsoft Bing 27
Netflix 27
PayPal 27
Salesforce.com 27
Skype 27
Twitter 26
WeatherBug 27
Wikipedia 27
Yahoo Search 27
YouTube 27
Zillow 27

weightx field of class
GridBagConstraints 944

weighty field of class
GridBagConstraints 944

WEST constant of class BorderLayout
518, 532

WEST constant of class
GridBagConstraints 943

WHERE SQL clause 1052, 1053, 1054,
1056, 1059, 1060

while repetition statement 105, 114,
117, 122, 124, 153, 186, 187, 1146
activity diagram in the UML 114

white space 37, 39, 58
white-space character 610, 623, 624
widgets 474, 1108
width 571
width of a rectangle in pixels 560
wildcard 862

in a generic type parameter 860
type argument 862, 862
upper bound 862

window 90, 135, 136, 138, 916
Window class 916, 917

addWindowListener method 917
dispose method 917
pack method 936

window event 917
window event-handling methods 518
window events 917
window gadgets 474, 1108
windowActivated method of interface

WindowListener 917
WindowAdapter class 519, 1079
windowClosed method of interface

WindowListener 917, 1079

windowClosing method of interface
WindowListener 917

WindowConstants interface 916
DISPOSE_ON_CLOSE constant 917
DO_NOTHING_ON_CLOSE constant

916
HIDE_ON_CLOSE constant 916

windowDeactivated method of
interface WindowListener 917

windowDeiconified method of
interface WindowListener 917

windowIconified method of interface
WindowListener 917

windowing system 480
WindowListener interface 518, 519,

917, 1079
windowActivated method 917
windowClosed method 917, 1079
windowClosing method 917
windowDeactivated method 917
windowDeiconified method 917
windowIconified method 917
windowOpened method 917

windowOpened method of interface
WindowListener 917

Windows 13, 168, 653
Windows look-and-feel 912
Windows operating system 13
word character 624
word processor 597, 605
workflow 104
World Population Growth Calculator

exercise 68
World Population Growth exercise 151
World Wide Web 26
World Wide Web (WWW)

browser 90
World Wide Web Consortium (W3C)

26
worst-case run time for an algorithm 814
wrapper methods of the Collections

class 688
wrapper object (collections) 721
wrapping stream objects 662, 667
wrapping text in a JTextArea 542
writeBoolean method of interface

DataOutput 674
writeByte method of interface

DataOutput 674

writeBytes method of interface
DataOutput 674

writeChar method of interface
DataOutput 674

writeChars method
of interface DataOutput 674

writeDouble method
of interface DataOutput 674

writeFloat method
of interface DataOutput 674

writeInt method of interface
DataOutput 674

writeLong method of interface
DataOutput 674

writeObject method
of class ObjectOutputStream 667
of interface ObjectOutput 663

Writer class 675
writeShort method of interface

DataOutput 674
writeUTF method of interface

DataOutput 674
Writing the Word Equivalent of a Check

Amount 640
www 28

X
x-coordinate 135, 556, 580
X_AXIS constant of class Box 942
x-axis 135, 556

Y
y-coordinate 135, 556, 580
Y_AXIS constant of class Box 942
y-axis 135, 556

Z
zero-based counting 156
ZERO constant of class BigDecimal 347
ZERO constant of class BigInteger 784
zero-based counting 248
zeroth element 245

This page intentionally left blank

Additional Comments from Recent Editions Reviewers

Fantastic textbook and reference. Provides great detail on the latest Java features including lambdas. The code examples make it easy to
understand the concepts. —Lance Andersen, Principal Member of the Technical Staff, Oracle Corporation

If you think a 10th edition is just going to be a repeat then you would not do this book justice. It has the breadth and depth to get a beginning
Java programmer started, but at the same time it is a good companion for a more seasoned programmer who wants to get updated to the latest
version of Java. Perfect introduction to strings. Good explanation of static vs. non-static methods and variables. Best introduction to Java 2D I’ve
seen! The collections framework is well explained. Good introduction to the most essential data structures. A nice introduction to JavaFX.
—Manfred Riem, Java Champion

Clearly describes the use cases for different parts of the Java APIs. The tips and observations are very useful. Clearly explains opportunities and
pitfalls in Java. Rather than telling the reader what to do and not do, the rationale behind these opportunities and pitfalls is explained. The new
features introduced in Java 8 are well mixed with older functionality. —Johan Vos, LodgON and Java Champion

Really good, clear explanation of object-oriented programming fundamentals. Excellent polymorphism chapter. Covers all the essentials of
strings. Good to see things like try-with-resources and DirectoryStream being used. Excellent generic collections chapter. Covering lambdas and
streams in one chapter is a tough challenge; you’ve done pretty well. Concurrency chapter gives good coverage of numerous aspects. Good data
structures chapter. Introduces JavaFX, the great new way to develop client applications in Java; I like the use of Scene Builder to create the GUI
with drag-and-drop design rather than doing it by hand, which shows the way it should be done. —Simon Ritter, Oracle Corporation

GUI examples are very good and the exercises are well thought out. Graphics examples are easy to follow; good and challenging exercises.
Recursion is a well-written chapter; factorials, the Fibonacci series and the Tower of Hanoi are good examples. The JavaFX GUI chapter provides a
solid introduction to using the JavaFX Scene Builder demonstrating how easy it is to create Java-based GUI applications. —Lance Andersen,
Principal Member of the Technical Staff, Oracle Corporation

The Making a Difference exercises are well thought through. I like the DeckOfCards example [in the Arrays and ArrayLists chapter]. The evolving
inheritance example is a good approach to motivating inheritance. I like the employee [polymorphism] example. Very thorough and well explained
GUI chapter; I liked the layout exercises. Thorough strings chapter; I like the clear definitions of regular expressions and the Pig Latin exercise. Good
introduction to collections; Hashtable performance discussion was good. I like the summary of searching and sorting algorithms with Big O values.
Solid treatment of threading. —Dr. Danny Coward, Oracle Corporation

Nice breadth of coverage of traditional core Java and programming topics as well as newer areas such as lambda expressions and areas
becoming more critical such as concurrent programming. A fine intro chapter. I like the [Intro to Classes] bank account example. [Arrays and
ArrayLists] is a fine chapter. [Classes and Objects: A Deeper Look] provides a good examination of data type creation. Nice chapter on exception
handling. Very nice coverage of files, streams and object serialization. Very nice chapter on generics. Nice overview of hand-managed node-based
data structures. —Evan Golub, University of Maryland

I like the references to big data, Moore’s Law and encapsulation. The inheritance chapter is excellent; examples are gender neutral which is perfect;
the University Community Member inheritance hierarchy is a great example.
—Khallai Taylor, Assistant Professor, Triton College and Adjunct Professor, Lonestar College—Kingwood

Good approach to important concepts like static, accessors and private fields and their validation. Good explanation of control statements, and
translating from pseudocode to a Java program. [Classes and Objects: A Deeper Look] coverage is very interesting—I like how the book flows.
Excellent explanation of Java SE 8 interfaces. Excellent explanation of exceptions. —Jorge Vargas, Yumbling and a Java Champion

Very interesting and entertaining introduction. Good job explaining arrays before the more abstract collections. Guiding the reader to avoid
dangerous patterns is equally important as explaining the correct syntax; great work! Excellent introduction to object-oriented concepts; rather than
just a theoretical overview, it points the reader to how OO is implemented. Great polymorphism chapter—should help the reader distinguish between
abstract classes and Java 8 interfaces with default methods. Good discussion of analyzing stack traces, since exceptions provide useful debugging
information. Great job explaining Java2D. Shows how easily files and the file system are accessible using Java. Very good introduction to hashtables.
Pushing all lambda-related content into a single chapter is hard, but the authors succeeded; I like the way they show how lambda expressions
compare to existing code with inner classes; they show that it’s the compiler that does the work. Recursion is well explained. Great introduction to
BigInteger and BigDecimal. One of the best explanations of generics I’ve read. Clearly explains collections, and when and how they should be used;
it’s important that developers understand this, since choosing a wrong implementation can lead to massive performance penalties or hard-to-under-
stand programs. The explanations of linked lists, stacks and queues are excellent. —Johan Vos, LodgON and Java Champion

ONLINE ACCESS

Thank you for purchasing a new copy of Java™ How to Program, Tenth Edition,
Early Objects. Your textbook includes 12 months of prepaid access to the book’s
Companion Website. This prepaid subscription provides you with full access to
the following student support areas:

• 	��VideoNotes (step-by-step video tutorials specifically designed to enhance
the programming concepts presented in this textbook)

• 	��Source code
•	�� Premium web chapters and appendices

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the Java How to Program, Tenth Edition, Early Objects Companion
Website for the first time, you will need to register online using a computer with an
Internet connection and a web browser. The process takes just a couple of minutes
and only needs to be completed once.

1.	Go to http://www.pearsonhighered.com/deitel/

2.	 Click on Companion Website.

3.	 Click on the Register button.

4.	 On the registration page, enter your student access code* found beneath the scratch-
off panel. Do not type the dashes. You can use lower- or uppercase.

5.	 Follow the on-screen instructions. If you need help at any time during the online
registration process, simply click the Need Help? icon.

6.	 Once your personal Login Name and Password are confirmed, you can begin using
the Java How to Program, Tenth Edition, Early Objects Companion Website!

To log in after you have registered:

You only need to register for this Companion Website once. After that, you can log in any
time at http://www.pearsonhighered.com/deitel/ by providing your Login Name and
Password when prompted.

*Important: The access code can only be used once. This subscription is valid for 12
months upon activation and is not transferable. If this access code has already been
revealed, it may no longer be valid. If this is the case, you can purchase a subscription
at http://www.pearsonhighered.com/deitel/, by going to the Java How to Program,
Tenth Edition, Early Objects book and following the on-screen instructions.

Additional Comments from Recent Editions Reviewers

❝Updated to reflect the state of the art in Java technologies; deep and crystal clear explanations. The social-consciousness [Making a Difference]
exercises are something new and refreshing. Nice introduction to Java networking.~—José Antonio González Seco, Parliament of Andalusia

❝An easy-to-read conversational style. Clear code examples propel readers to become proficient in Java.~—Patty Kraft, San Diego State U.

❝The [early] introduction of the class concept is clearly presented. A comprehensive overview of control structures and the pitfalls that befall new
programmers. I applaud the authors for their topical research and illustrative examples. The arrays exercises are sophisticated and interesting. The
clearest explanation of pass-by-value and pass-by-reference that I’ve encountered. A logical progression of inheritance and the rationale for properly
implementing encapsulation in a system involving an inheritance hierarchy. The polymorphism and exception handling discussions are the best I’ve
seen. An excellent strings chapter. I like the [recursion] discussions of the ‘Lo Fractal’ and backtracking (which is useful in computer vision applica-
tions). A good segue into a data structures course.~—Ric Heishman, George Mason University

❝Practical top-down, solution approach to teaching programming basics, covering pseudocode, algorithm development and activity diagrams. Of
immense value to practitioners and students of the object-oriented approach. Demystifies inheritance and polymorphism, and illustrates their use in
getting elegant, simple and maintainable code. The [optional] OO design case study presents the object-oriented approach in a simple manner, from
requirements to Java code.~—Vinod Varma, Astro Infotech Private Limited

❝Easy-to-follow examples provide great teaching opportunities! I like the [optional] graphics track early in the book—the exercises will be fun
for the students. OO design techniques are incorporated throughout. The concept of inheritance is built through examples and is very understandable.
Great examples of polymorphism and interfaces. Great comparison of recursion and iteration. The searching and sorting chapter is just right. A
simplified explanation of Big O—the best I’ve read! I appreciate the coverage of GUI threading issues. Great approach to Java web technologies.~
—Sue McFarland Metzger, Villanova University

❝The Making a Difference exercises are inspired—they have a real contemporary feeling, both in their topics and in the way they encourage the
student to gather data from the Internet and bring it back to the question at hand.~—Vince O’Brien, Pearson Education (our publisher)

❝Most major concepts are illustrated by complete, annotated programs. Abundant exercises hone your understanding of the material. JDBC is
explained well.~—Shyamal Mitra, University of Texas at Austin

❝The best introductory textbook that I’ve encountered. I wish I had this book when I was learning how to program! Good introduction to the software
engineering process.~—Lance Andersen, Oracle Corporation

❝You’ll be well on your way to becoming a great Java programmer with this book.~—Peter Pilgrim, Java Champion, Consultant

❝A good objects-early introduction to Java. Exceptionally well-written recursion chapter. Excellent descriptions of the search and sort algorithms and
a gentle introduction to Big-O notation—the examples give the code for the algorithms, and output that creates a picture of how the algorithms
work.~—Diana Franklin, University of California, Santa Barbara

❝Suitable for new programmers, intermediate-level programmers who want to hone their skills, and expert programmers who need a well-organized
reference. Event handling and layouts are well explained.~—Manjeet Rege, Rochester Institute of Technology

❝Beautiful collections of exercises—a nice illustration of how to use Java to generate impressive graphics.~—Amr Sabry, Indiana University

❝The [optional] OOD ATM case study puts many concepts from previous chapters together in a plan for a large program, showing the object-oriented
design process—the discussion of inheritance and polymorphism is especially good as the authors integrate these into the design.~
—Susan Rodger, Duke University

❝The transition from design to implementation is explained powerfully—the reader can easily understand the design issues and how to implement
them in Java.~—S. Sivakumar, Astro Infotech Private Limited

❝Comprehensive introduction to Java, now in its eighth major iteration. With clear descriptions, useful tips and hints, and well thought out exercises,
this is a great book for studying the world’s most popular programming language.~—Simon Ritter, Oracle Corporation

❝Comprehensive treatment of Java programming, covering both the latest version of the language and Java SE APIs, with its concepts and techniques
reinforced by a plethora of well-thought-through exercises.~—Dr. Danny Coward, Oracle Corporation

❝There are many Java programming books in the world. This textbook is the best one. If you like to introduce object-oriented programming early
and smoothly, then this is the right one for you!~—Dr. Huiwei Guan, North Shore Community College

More Comments on Facing Page

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Before You Begin
	1 Introduction to Computers, the Internet and Java
	1.1 Introduction
	1.2 Hardware and Software
	1.2.1 Moore’s Law
	1.2.2 Computer Organization

	1.3 Data Hierarchy
	1.4 Machine Languages, Assembly Languages and High-Level Languages
	1.5 Introduction to Object Technology
	1.5.1 The Automobile as an Object
	1.5.2 Methods and Classes
	1.5.3 Instantiation
	1.5.4 Reuse
	1.5.5 Messages and Method Calls
	1.5.6 Attributes and Instance Variables
	1.5.7 Encapsulation and Information Hiding
	1.5.8 Inheritance
	1.5.9 Interfaces
	1.5.10 Object-Oriented Analysis and Design (OOAD)
	1.5.11 The UML (Unified Modeling Language)

	1.6 Operating Systems
	1.6.1 Windows—A Proprietary Operating System
	1.6.2 Linux—An Open-Source Operating System
	1.6.3 Android

	1.7 Programming Languages
	1.8 Java
	1.9 A Typical Java Development Environment
	1.10 Test-Driving a Java Application
	1.11 Internet and World Wide Web
	1.11.1 The Internet: A Network of Networks
	1.11.2 The World Wide Web: Making the Internet User-Friendly
	1.11.3 Web Services and Mashups
	1.11.4 Ajax
	1.11.5 The Internet of Things

	1.12 Software Technologies
	1.13 Keeping Up-to-Date with Information Technologies

	2 Introduction to Java Applications; Input/Output and Operators
	2.1 Introduction
	2.2 Your First Program in Java: Printing a Line of Text
	2.3 Modifying Your First Java Program
	2.4 Displaying Text with printf
	2.5 Another Application: Adding Integers
	2.5.1 import Declarations
	2.5.2 Declaring Class Addition
	2.5.3 Declaring and Creating a Scanner to Obtain User Input from the Keyboard
	2.5.4 Declaring Variables to Store Integers
	2.5.5 Prompting the User for Input
	2.5.6 Obtaining an int as Input from the User
	2.5.7 Prompting for and Inputting a Second int
	2.5.8 Using Variables in a Calculation
	2.5.9 Displaying the Result of the Calculation
	2.5.10 Java API Documentation

	2.6 Memory Concepts
	2.7 Arithmetic
	2.8 Decision Making: Equality and Relational Operators
	2.9 Wrap-Up

	3 Introduction to Classes, Objects, Methods and Strings
	3.1 Introduction
	3.2 Instance Variables, set Methods and get Methods
	3.2.1 Account Class with an Instance Variable, a set Method and a get Method
	3.2.2 AccountTest Class That Creates and Uses an Object of Class Account
	3.2.3 Compiling and Executing an App with Multiple Classes
	3.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods
	3.2.5 Additional Notes on Class AccountTest
	3.2.6 Software Engineering with private Instance Variables and public set and get Methods

	3.3 Primitive Types vs. Reference Types
	3.4 Account Class: Initializing Objects with Constructors
	3.4.1 Declaring an Account Constructor for Custom Object Initialization
	3.4.2 Class AccountTest: Initializing Account Objects When They’re Created

	3.5 Account Class with a Balance; Floating-Point Numbers
	3.5.1 Account Class with a balance Instance Variable of Type double
	3.5.2 AccountTest Class to Use Class Account

	3.6 (Optional) GUI and Graphics Case Study: Using Dialog Boxes
	3.7 Wrap-Up

	4 Control Statements: Part 1; Assignment, ++ and -- Operators
	4.1 Introduction
	4.2 Algorithms
	4.3 Pseudocode
	4.4 Control Structures
	4.5 if Single-Selection Statement
	4.6 if…else Double-Selection Statement
	4.7 Student Class: Nested if…else Statements
	4.8 while Repetition Statement
	4.9 Formulating Algorithms: Counter-Controlled Repetition
	4.10 Formulating Algorithms: Sentinel-Controlled Repetition
	4.11 Formulating Algorithms: Nested Control Statements
	4.12 Compound Assignment Operators
	4.13 Increment and Decrement Operators
	4.14 Primitive Types
	4.15 (Optional) GUI and Graphics Case Study: Creating Simple Drawings
	4.16 Wrap-Up

	5 Control Statements: Part 2; Logical Operators
	5.1 Introduction
	5.2 Essentials of Counter-Controlled Repetition
	5.3 for Repetition Statement
	5.4 Examples Using the for Statement
	5.5 do…while Repetition Statement
	5.6 switch Multiple-Selection Statement
	5.7 Class AutoPolicy Case Study: Strings in switch Statements
	5.8 break and continue Statements
	5.9 Logical Operators
	5.10 Structured Programming Summary
	5.11 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals
	5.12 Wrap-Up

	6 Methods: A Deeper Look
	6.1 Introduction
	6.2 Program Modules in Java
	6.3 static Methods, static Fields and Class Math
	6.4 Declaring Methods with Multiple Parameters
	6.5 Notes on Declaring and Using Methods
	6.6 Method-Call Stack and Stack Frames
	6.7 Argument Promotion and Casting
	6.8 Java API Packages
	6.9 Case Study: Secure Random-Number Generation
	6.10 Case Study: A Game of Chance; Introducing enum Types
	6.11 Scope of Declarations
	6.12 Method Overloading
	6.13 (Optional) GUI and Graphics Case Study: Colors and Filled Shapes
	6.14 Wrap-Up

	7 Arrays and ArrayLists
	7.1 Introduction
	7.2 Arrays
	7.3 Declaring and Creating Arrays
	7.4 Examples Using Arrays
	7.4.1 Creating and Initializing an Array
	7.4.2 Using an Array Initializer
	7.4.3 Calculating the Values to Store in an Array
	7.4.4 Summing the Elements of an Array
	7.4.5 Using Bar Charts to Display Array Data Graphically
	7.4.6 Using the Elements of an Array as Counters
	7.4.7 Using Arrays to Analyze Survey Results

	7.5 Exception Handling: Processing the Incorrect Response
	7.5.1 The try Statement
	7.5.2 Executing the catch Block
	7.5.3 toString Method of the Exception Parameter

	7.6 Case Study: Card Shuffling and Dealing Simulation
	7.7 Enhanced for Statement
	7.8 Passing Arrays to Methods
	7.9 Pass-By-Value vs. Pass-By-Reference
	7.10 Case Study: Class GradeBook Using an Array to Store Grades
	7.11 Multidimensional Arrays
	7.12 Case Study: Class GradeBook Using a Two-Dimensional Array
	7.13 Variable-Length Argument Lists
	7.14 Using Command-Line Arguments
	7.15 Class Arrays
	7.16 Introduction to Collections and Class ArrayList
	7.17 (Optional) GUI and Graphics Case Study: Drawing Arcs
	7.18 Wrap-Up

	8 Classes and Objects: A Deeper Look
	8.1 Introduction
	8.2 Time Class Case Study
	8.3 Controlling Access to Members
	8.4 Referring to the Current Object’s Members with the this Reference
	8.5 Time Class Case Study: Overloaded Constructors
	8.6 Default and No-Argument Constructors
	8.7 Notes on Set and Get Methods
	8.8 Composition
	8.9 enum Types
	8.10 Garbage Collection
	8.11 static Class Members
	8.12 static Import
	8.13 final Instance Variables
	8.14 Package Access
	8.15 Using BigDecimal for Precise Monetary Calculations
	8.16 (Optional) GUI and Graphics Case Study: Using Objects with Graphics
	8.17 Wrap-Up

	9 Object-Oriented Programming: Inheritance
	9.1 Introduction
	9.2 Superclasses and Subclasses
	9.3 protected Members
	9.4 Relationship Between Superclasses and Subclasses
	9.4.1 Creating and Using a CommissionEmployee Class
	9.4.2 Creating and Using a BasePlusCommissionEmployee Class
	9.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy
	9.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Instance Variables
	9.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Instance Variables

	9.5 Constructors in Subclasses
	9.6 Class Object
	9.7 (Optional) GUI and Graphics Case Study: Displaying Text and Images Using Labels
	9.8 Wrap-Up

	10 Object-Oriented Programming: Polymorphism and Interfaces
	10.1 Introduction
	10.2 Polymorphism Examples
	10.3 Demonstrating Polymorphic Behavior
	10.4 Abstract Classes and Methods
	10.5 Case Study: Payroll System Using Polymorphism
	10.5.1 Abstract Superclass Employee
	10.5.2 Concrete Subclass SalariedEmployee
	10.5.3 Concrete Subclass HourlyEmployee
	10.5.4 Concrete Subclass CommissionEmployee
	10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee
	10.5.6 Polymorphic Processing, Operator instanceof and Downcasting

	10.6 Allowed Assignments Between Superclass and Subclass Variables
	10.7 final Methods and Classes
	10.8 A Deeper Explanation of Issues with Calling Methods from Constructors
	10.9 Creating and Using Interfaces
	10.9.1 Developing a Payable Hierarchy
	10.9.2 Interface Payable
	10.9.3 Class Invoice
	10.9.4 Modifying Class Employee to Implement Interface Payable
	10.9.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy
	10.9.6 Using Interface Payable to Process Invoices and Employees Polymorphically
	10.9.7 Some Common Interfaces of the Java API

	10.10 Java SE 8 Interface Enhancements
	10.10.1 default Interface Methods
	10.10.2 static Interface Methods
	10.10.3 Functional Interfaces

	10.11 (Optional) GUI and Graphics Case Study: Drawing with Polymorphism
	10.12 Wrap-Up

	11 Exception Handling: A Deeper Look
	11.1 Introduction
	11.2 Example: Divide by Zero without Exception Handling
	11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions
	11.4 When to Use Exception Handling
	11.5 Java Exception Hierarchy
	11.6 finally Block
	11.7 Stack Unwinding and Obtaining Information from an Exception Object
	11.8 Chained Exceptions
	11.9 Declaring New Exception Types
	11.10 Preconditions and Postconditions
	11.11 Assertions
	11.12 try-with-Resources: Automatic Resource Deallocation
	11.13 Wrap-Up

	12 GUI Components: Part 1
	12.1 Introduction
	12.2 Java’s Nimbus Look-and-Feel
	12.3 Simple GUI-Based Input/Output with JOptionPane
	12.4 Overview of Swing Components
	12.5 Displaying Text and Images in a Window
	12.6 Text Fields and an Introduction to Event Handling with Nested Classes
	12.7 Common GUI Event Types and Listener Interfaces
	12.8 How Event Handling Works
	12.9 JButton
	12.10 Buttons That Maintain State
	12.10.1 JCheckBox
	12.10.2 JRadioButton

	12.11 JComboBox; Using an Anonymous Inner Class for Event Handling
	12.12 JList
	12.13 Multiple-Selection Lists
	12.14 Mouse Event Handling
	12.15 Adapter Classes
	12.16 JPanel Subclass for Drawing with the Mouse
	12.17 Key Event Handling
	12.18 Introduction to Layout Managers
	12.18.1 FlowLayout
	12.18.2 BorderLayout
	12.18.3 GridLayout

	12.19 Using Panels to Manage More Complex Layouts
	12.20 JTextArea
	12.21 Wrap-Up

	13 Graphics and Java 2D
	13.1 Introduction
	13.2 Graphics Contexts and Graphics Objects
	13.3 Color Control
	13.4 Manipulating Fonts
	13.5 Drawing Lines, Rectangles and Ovals
	13.6 Drawing Arcs
	13.7 Drawing Polygons and Polylines
	13.8 Java 2D API
	13.9 Wrap-Up

	14 Strings, Characters and Regular Expressions
	14.1 Introduction
	14.2 Fundamentals of Characters and Strings
	14.3 Class String
	14.3.1 String Constructors
	14.3.2 String Methods length, charAt and getChars
	14.3.3 Comparing Strings
	14.3.4 Locating Characters and Substrings in Strings
	14.3.5 Extracting Substrings from Strings
	14.3.6 Concatenating Strings
	14.3.7 Miscellaneous String Methods
	14.3.8 String Method valueOf

	14.4 Class StringBuilder
	14.4.1 StringBuilder Constructors
	14.4.2 StringBuilder Methods length, capacity, setLength and ensureCapacity
	14.4.3 StringBuilder Methods charAt, setCharAt, getChars and reverse
	14.4.4 StringBuilder append Methods
	14.4.5 StringBuilder Insertion and Deletion Methods

	14.5 Class Character
	14.6 Tokenizing Strings
	14.7 Regular Expressions, Class Pattern and Class Matcher
	14.8 Wrap-Up

	15 Files, Streams and Object Serialization
	15.1 Introduction
	15.2 Files and Streams
	15.3 Using NIO Classes and Interfaces to Get File and Directory Information
	15.4 Sequential-Access Text Files
	15.4.1 Creating a Sequential-Access Text File
	15.4.2 Reading Data from a Sequential-Access Text File
	15.4.3 Case Study: A Credit-Inquiry Program
	15.4.4 Updating Sequential-Access Files

	15.5 Object Serialization
	15.5.1 Creating a Sequential-Access File Using Object Serialization
	15.5.2 Reading and Deserializing Data from a Sequential-Access File

	15.6 Opening Files with JFileChooser
	15.7 (Optional) Additional java.io Classes
	15.7.1 Interfaces and Classes for Byte-Based Input and Output
	15.7.2 Interfaces and Classes for Character-Based Input and Output

	15.8 Wrap-Up

	16 Generic Collections
	16.1 Introduction
	16.2 Collections Overview
	16.3 Type-Wrapper Classes
	16.4 Autoboxing and Auto-Unboxing
	16.5 Interface Collection and Class Collections
	16.6 Lists
	16.6.1 ArrayList and Iterator
	16.6.2 LinkedList

	16.7 Collections Methods
	16.7.1 Method sort
	16.7.2 Method shuffle
	16.7.3 Methods reverse, fill, copy, max and min
	16.7.4 Method binarySearch
	16.7.5 Methods addAll, frequency and disjoint

	16.8 Stack Class of Package java.util
	16.9 Class PriorityQueue and Interface Queue
	16.10 Sets
	16.11Maps
	16.12 Properties Class
	16.13 Synchronized Collections
	16.14 Unmodifiable Collections
	16.15 Abstract Implementations
	16.16 Wrap-Up

	17 Java SE 8 Lambdas and Streams
	17.1 Introduction
	17.2 Functional Programming Technologies Overview
	17.2.1 Functional Interfaces
	17.2.2 Lambda Expressions
	17.2.3 Streams

	17.3 IntStream Operations
	17.3.1 Creating an IntStream and Displaying Its Values with the forEach Terminal Operation
	17.3.2 Terminal Operations count, min, max, sum and average
	17.3.3 Terminal Operation reduce
	17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values
	17.3.5 Intermediate Operation: Mapping
	17.3.6 Creating Streams of ints with IntStream Methods range and rangeClosed

	17.4 Stream<Integer> Manipulations
	17.4.1 Creating a Stream<Integer>
	17.4.2 Sorting a Stream and Collecting the Results
	17.4.3 Filtering a Stream and Storing the Results for Later Use
	17.4.4 Filtering and Sorting a Stream and Collecting the Results
	17.4.5 Sorting Previously Collected Results

	17.5 Stream<String> Manipulations
	17.5.1 Mapping Strings to Uppercase Using a Method Reference
	17.5.2 Filtering Strings Then Sorting Them in Case-Insensitive Ascending Order
	17.5.3 Filtering Strings Then Sorting Them in Case-Insensitive Descending Order

	17.6 Stream<Employee> Manipulations
	17.6.1 Creating and Displaying a List<Employee>
	17.6.2 Filtering Employees with Salaries in a Specified Range
	17.6.3 Sorting Employees By Multiple Fields
	17.6.4 Mapping Employees to Unique Last Name Strings
	17.6.5 Grouping Employees By Department
	17.6.6 Counting the Number of Employees in Each Department
	17.6.7 Summing and Averaging Employee Salaries

	17.7 Creating a Stream<String> from a File
	17.8 Generating Streams of Random Values
	17.9 Lambda Event Handlers
	17.10 Additional Notes on Java SE 8 Interfaces
	17.11 Java SE 8 and Functional Programming Resources
	17.12 Wrap-Up

	18 Recursion
	18.1 Introduction
	18.2 Recursion Concepts
	18.3 Example Using Recursion: Factorials
	18.4 Reimplementing Class FactorialCalculator Using Class BigInteger
	18.5 Example Using Recursion: Fibonacci Series
	18.6 Recursion and the Method-Call Stack
	18.7 Recursion vs. Iteration
	18.8 Towers of Hanoi
	18.9 Fractals
	18.9.1 Koch Curve Fractal
	18.9.2 (Optional) Case Study: Lo Feather Fractal

	18.10 Recursive Backtracking
	18.11 Wrap-Up

	19 Searching, Sorting and Big O
	19.1 Introduction
	19.2 Linear Search
	19.3 Big O Notation
	19.3.1 O(1) Algorithms
	19.3.2 O(n) Algorithms
	19.3.3 O(n[sup(2)) Algorithms
	19.3.4 Big O of the Linear Search

	19.4 Binary Search
	19.4.1 Binary Search Implementation
	19.4.2 Efficiency of the Binary Search

	19.5 Sorting Algorithms
	19.6 Selection Sort
	19.6.1 Selection Sort Implementation
	19.6.2 Efficiency of the Selection Sort

	19.7 Insertion Sort
	19.7.1 Insertion Sort Implementation
	19.7.2 Efficiency of the Insertion Sort

	19.8 Merge Sort
	19.8.1 Merge Sort Implementation
	19.8.2 Efficiency of the Merge Sort

	19.9 Big O Summary for This Chapter’s Searching and Sorting Algorithms
	19.10 Wrap-Up

	20 Generic Classes and Methods
	20.1 Introduction
	20.2 Motivation for Generic Methods
	20.3 Generic Methods: Implementation and Compile-Time Translation
	20.4 Additional Compile-Time Translation Issues: Methods That Use a Type Parameter as the Return Type
	20.5 Overloading Generic Methods
	20.6 Generic Classes
	20.7 Raw Types
	20.8 Wildcards in Methods That Accept Type Parameters
	20.9 Wrap-Up

	21 Custom Generic Data Structures
	21.1 Introduction
	21.2 Self-Referential Classes
	21.3 Dynamic Memory Allocation
	21.4 Linked Lists
	21.4.1 Singly Linked Lists
	21.4.2 Implementing a Generic List Class
	21.4.3 Generic Classes ListNode and List
	21.4.4 Class ListTest
	21.4.5 List Method insertAtFront
	21.4.6 List Method insertAtBack
	21.4.7 List Method removeFromFront
	21.4.8 List Method removeFromBack
	21.4.9 List Method print
	21.4.10 Creating Your Own Packages

	21.5 Stacks
	21.6 Queues
	21.7 Trees
	21.8 Wrap-Up

	22 GUI Components: Part 2
	22.1 Introduction
	22.2 JSlider
	22.3 Understanding Windows in Java
	22.4 Using Menus with Frames
	22.5 JPopupMenu
	22.6 Pluggable Look-and-Feel
	22.7 JDesktopPane and JInternalFrame
	22.8 JTabbedPane
	22.9 BoxLayout Layout Manager
	22.10 GridBagLayout Layout Manager
	22.11Wrap-Up

	23 Concurrency
	23.1 Introduction
	23.2 Thread States and Life Cycle
	23.2.1 New and Runnable States
	23.2.2 Waiting State
	23.2.3 Timed Waiting State
	23.2.4 Blocked State
	23.2.5 Terminated State
	23.2.6 Operating-System View of the Runnable State
	23.2.7 Thread Priorities and Thread Scheduling
	23.2.8 Indefinite Postponement and Deadlock

	23.3 Creating and Executing Threads with the Executor Framework
	23.4 Thread Synchronization
	23.4.1 Immutable Data
	23.4.2 Monitors
	23.4.3 Unsynchronized Mutable Data Sharing
	23.4.4 Synchronized Mutable Data Sharing—Making Operations Atomic

	23.5 Producer/Consumer Relationship without Synchronization
	23.6 Producer/Consumer Relationship: ArrayBlockingQueue
	23.7 (Advanced) Producer/Consumer Relationship with synchronized, wait, notify and notifyAll
	23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers
	23.9 (Advanced) Producer/Consumer Relationship: The Lock and Condition Interfaces
	23.10 Concurrent Collections
	23.11 Multithreading with GUI: SwingWorker
	23.11.1 Performing Computations in a Worker Thread: Fibonacci Numbers
	23.11.2 Processing Intermediate Results: Sieve of Eratosthenes

	23.12 sort and parallelSort Timings with the Java SE 8 Date/Time API
	23.13 Java SE 8: Sequential vs. Parallel Streams
	23.14 (Advanced) Interfaces Callable and Future
	23.15 (Advanced) Fork/Join Framework
	23.16 Wrap-Up

	24 Accessing Databases with JDBC
	24.1 Introduction
	24.2 Relational Databases
	24.3 A books Database
	24.4 SQL
	24.4.1 Basic SELECT Query
	24.4.2 WHERE Clause
	24.4.3 ORDER BY Clause
	24.4.4 Merging Data from Multiple Tables: INNER JOIN
	24.4.5 INSERT Statement
	24.4.6 UPDATE Statement
	24.4.7 DELETE Statement

	24.5 Setting up a Java DB Database
	24.5.1 Creating the Chapter’s Databases on Windows
	24.5.2 Creating the Chapter’s Databases on Mac OS X
	24.5.3 Creating the Chapter’s Databases on Linux

	24.6 Manipulating Databases with JDBC
	24.6.1 Connecting to and Querying a Database
	24.6.2 Querying the books Database

	24.7 RowSet Interface
	24.8 PreparedStatements
	24.9 Stored Procedures
	24.10 Transaction Processing
	24.11 Wrap-Up

	25 JavaFX GUI: Part 1
	25.1 Introduction
	25.2 JavaFX Scene Builder and the NetBeans IDE
	25.3 JavaFX App Window Structure
	25.4 Welcome App—Displaying Text and an Image
	25.4.1 Creating the App’s Project
	25.4.2 NetBeans Projects Window—Viewing the Project Contents
	25.4.3 Adding an Image to the Project
	25.4.4 Opening JavaFX Scene Builder from NetBeans
	25.4.5 Changing to a VBox Layout Container
	25.4.6 Configuring the VBox Layout Container
	25.4.7 Adding and Configuring a Label
	25.4.8 Adding and Configuring an ImageView
	25.4.9 Running the Welcome App

	25.5 Tip Calculator App—Introduction to Event Handling
	25.5.1 Test-Driving the Tip Calculator App
	25.5.2 Technologies Overview
	25.5.3 Building the App’s GUI
	25.5.4 TipCalculator Class
	25.5.5 TipCalculatorController Class

	25.6 Features Covered in the Online JavaFX Chapters
	25.7 Wrap-Up

	Chapters on the Web
	A: Operator Precedence Chart
	B: ASCII Character Set
	C: Keywords and Reserved Words
	D: Primitive Types
	E: Using the Debugger
	E.1 Introduction
	E.2 Breakpoints and the run, stop, cont and print Commands
	E.3 The print and set Commands
	E.4 Controlling Execution Using the step, step up and next Commands
	E.5 The watch Command
	E.6 The clear Command
	E.7 Wrap-Up

	Appendices on the Web
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

