

Praise for Functional Programming in Java

Venkat has done a superb job of bringing core functional language concepts to
the Java ecosystem. Once you have peered into his looking glass of functional
language design, it will be hard to go back to old-school imperative programming.

➤ Stephen Chin, Java technology ambassador and JavaOne content chair

The introduction of lambdas to Java 8 has made me excited to use Java again,
and Venkat’s combination of technical details and best practices make it easy to
apply functional thinking to this new feature.

➤ Kimberly D. Barnes, senior software engineer

Java 8 lambda expressions are an incredibly important new language feature.
Every Java developer should read this excellent book and learn how to use them
effectively.

➤ Chris Richardson, software architect and Java champion

Many can explain lambdas; Venkat makes them useful.

➤ Kirk Pepperdine, Java performance tuning expert

I highly recommend this book for Java programmers who want to get up to speed
with functional programming in Java 8. It is a very concise book but still provides
a comprehensive overview of Java 8.

➤ Nilanjan Raychaudhuri, author and developer at Typesafe

Functional Programming in Java
Harnessing the Power of Java 8 Lambda Expressions

Venkat Subramaniam

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Sir Charles Antony Richard Hoare’s quote is used by permission of the ACM.
Abelson and Sussman’s quote is used under Creative Commons license.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-46-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2014

http://pragprog.com
rights@pragprog.com

To the loving memory of my grandmothers,
Kuppammal and Jayalakshmi. I cherish my

wonder years under your care.

Contents

Foreword xi

Acknowledgments xiii

Preface xv

1. Hello, Lambda Expressions! 1
Change the Way You Think 1
The Big Gains of Functional-Style Code 5
Why Code in the Functional Style? 6
Evolution, Not Revolution 12
A Little Sugar to Sweeten 15
Recap 17

2. Using Collections 19
Iterating through a List 19
Transforming a List 23
Finding Elements 26
Reusing Lambda Expressions 27
Using Lexical Scoping and Closures 29
Picking an Element 33
Reducing a Collection to a Single Value 35
Joining Elements 38
Recap 40

3. Strings, Comparators, and Filters 41
Iterating a String 41
Implementing the Comparator Interface 44
Multiple and Fluent Comparisons 51
Using the collect Method and the Collectors Class 52
Listing All Files in a Directory 56
Listing Select Files in a Directory 57

Listing Immediate Subdirectories Using flatMap 59
Watching a File Change 60
Recap 62

4. Designing with Lambda Expressions 63
Separating Concerns Using Lambda Expressions 63
Delegating Using Lambda Expressions 68
Decorating Using Lambda Expressions 72
A Peek into the default Methods 77
Creating Fluent Interfaces Using Lambda Expressions 80
Dealing with Exceptions 83
Recap 86

5. Working with Resources 87
Cleaning Up Resources 87
Using Lambda Expressions to Clean Up Resources 91
Managing Locks 95
Creating Concise Exception Tests 97
Recap 101

6. Being Lazy 103
Delayed Initialization 103
Lazy Evaluations 108
Leveraging the Laziness of Streams 111
Creating Infinite, Lazy Collections 115
Recap 119

7. Optimizing Recursions 121
Using Tail-Call Optimization 121
Speeding Up with Memoization 129
Recap 134

8. Composing with Lambda Expressions 135
Using Function Composition 135
Using MapReduce 138
Taking a Leap to Parallelize 143
Recap 145

9. Bringing It All Together 147
Essential Practices to Succeed with the Functional Style 147
Performance Concerns 151
Adopting the Functional Style 153

Contents • viii

A1. Starter Set of Functional Interfaces 155

A2. Syntax Overview 157

A3. Web Resources 163

Bibliography 165

Index 167

Contents • ix

Foreword
Venkat Subramaniam would never be described as a “waterfall” sort of guy. So,
when he mentioned that he was starting on a Java 8 book—long before the design
of Java 8 was settled—I was not at all surprised. It was clear this was going to
be an “agile” book project.

Despite having to more than occasionally rework the text as the language and
library features evolved, Venkat had a secret advantage—he knew where we were
going. The Java 8 design was heavily influenced by the core principles of functional
programming: functions as values, immutability, and statelessness. We didn’t do
this because functional programming is trendy or cool; we did it because programs
that are expressed as stateless transformations on immutable data, rather than
as modifications of mutable data structures, tend to be easier to read and main-
tain, to be less error prone, and to parallelize more gracefully.

The new features introduced in Java 8 were designed together to facilitate devel-
opment of more expressive and parallel-friendly libraries. Lambda expressions
reduce the syntactic overhead of encoding behavior as data; default methods
allow existing libraries to evolve over time, enabling core JDK classes such as
Collections to take advantage of lambda expressions; the java.util.stream package
leverages these language features to offer rich aggregate operations on collections,
arrays, and other data sources in a declarative, expressive, and parallel-friendly
manner. All of this adds up to more powerful and performant code, as well as a
more pleasant programming experience.

This book not only provides lots of examples of how to use these new features,
but offers readers a peek into the underlying principles behind their design, and
why they result in better code. Let Venkat be your guide to this new and improved
Java—you’re in for a treat.

Brian Goetz
Java Language Architect, Oracle Corporation

September 2013

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Acknowledgments
Writing a book is like taking a road trip—we know where we’re heading, but
some details emerge only after the start. The journey may involve detours—
opportunities to explore unexpected places—and it’s more fun with good
company. I’m thankful for the great company of people on this voyage: smart
reviewers, an amazing editor, a wonderful set of people at The Pragmatic
Bookshelf, and a very supportive family.

I first thank the Java language team members at Oracle for their hard work
to bring the functional style of programming to one of the most popular
mainstream languages. You’ve taken the language in the right direction—not
through shortcuts and quick fixes, but by way of sound reasoning and prudent
design decisions. Kudos, team.

I express my sincere gratitude to the smart developers who volunteered their
personal time to review this book. Thank you, Kimberly Barnes, Fred Daoud,
Raju Gandhi, Marty Hall, Praveen Kumar, Rebecca Parsons, Kirk Pepperdine,
Chris Richardson, Ian Roughley, Nate Schutta, Ken Sipe, and Dan Sline. Your
comments were critical yet very constructive and motivational; they helped
make this book better. I’m honored and humbled by Bruce Tate reviewing
this book. He’s been a great mentor for me over the years. He reviewed this
book multiple times, at different stages, and took the time to motivate me as
to why certain changes were essential. Thank you, Bruce. I’d also like to
express my gratitude to Brian Goetz for reviewing the book multiple times,
for the encouragement starting early on, and for kindly agreeing to write the
foreword. Any errors in the book are solely mine.

The biggest benefit of publishing a beta copy of a book is the opportunity to
improve it based on valuable feedback from early readers. I’m indebted to the
following readers for taking their valuable time to provide feedback on the
forum for this book or reporting errors on the errata page. Thank you, Greg
Helton, Günter Jantzen, Narayanan Jayaratchagan, Wacek Kusnierczyk,
Nabeel Ali Memon, Marc-Daniel Ortega, Arjo Ouwens, Philip Schwarz,

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Ekaterina Sh, Dan Talpau, Benjamin Tan, Brian Tarbox, Marco Vermeulen,
and Jason Weden.

I benefited greatly from every interaction with Jackie Carter. She did not just
edit; she motivated me and helped shape this book. Thank you, Jackie, for
your hard work, fast responses, and truly making this a fun experience.

Impatience is one of my many weaknesses, but the kind folks at The Pragmatic
Bookshelf turned that into a strength when I set out to write this book.
Susannah Pfalzer, Andy Hunt, Dave Thomas, and several others worked
behind the scenes to help me succeed on a self-imposed fast-paced schedule.
You make writing books so much easier and more fun, much more than you
may realize.

I have enjoyed the privilege of being part of various conferences, and the No
Fluff Just Stuff (NFJS) conference series in particular. I have learned a lot
from the interactions I’ve had with other speakers and developers. Special
thanks to my friends on the conference circuit, especially Jay Zimmerman,
director of NFJS.

I thank my wife Kavitha and sons Karthik and Krupa for letting me hide in
my office during the holidays to work on this book. It was a true pleasure to
have their support and above all to see their curiousness. Special thanks to
my parents for their blessings and encouragement.

Acknowledgments • xiv

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

In any field, find the strangest thing and then explore it.

 ➤ John Archibald Wheeler

Preface
You’re in for a treat. One of the most prominent and widely used languages
in the world has evolved. Until now Java gave us one set of tools—the object-
oriented paradigm—and we did the best we could with it. Now there’s another,
more elegant way to solve the common problems we encounter when develop-
ing applications. We can now do quite effectively in Java what was previously
possible only on the JVM using other languages—this means more power to
Java programmers.

I’m thankful to have had the privilege over the past few decades to program
with multiple languages: C, C++, Java, C#, F#, Ruby, Groovy, Scala, Clojure,
Erlang, JavaScript… When asked which one’s my favorite, my resounding
answer has been that it’s not the language that excites me, but the way we
program.

The science and engineering in programming drew me in, but the art in pro-
gramming keeps me. Coding has a lot in common with writing—there’s more
than one way to express our ideas. Java helped us write code using objects.
Now we have an additional way to implement our designs and ideas.

This is a new way in Java, one that will make our code more expressive,
easier to write, less error prone, and easier to parallelize than has been the
case with Java until now. This way has been around for decades and widely
used in languages like Lisp, Clojure, Erlang, Smalltalk, Scala, Groovy, and
Ruby. It’s not only a new way in Java, but a better way.

Since coding is like writing, we can learn a few things from that field. In On
Writing Well [Zin01], William Zinsser recommends simplicity, clarity, and
brevity. To create better applications, we can start by making the code simpler,
clear, and concise. The new style of programming in Java lets us do exactly
that, as we will explore throughout this book.

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Who’s This Book For
This book is for programmers well versed in object-oriented programming in
Java and keen to learn and apply the new facilities of lambda expressions.
You’ll need good experience programming in previous versions of Java, espe-
cially Java 5, to make the best use of this book.

Programmers mostly interested in JVM languages like Scala, Groovy, JRuby,
and Clojure can benefit from the examples in this book and can relate back
to the facilities offered in those languages. They can also use the examples
to help fellow Java programmers on their teams.

Programmers experienced with the functional style of programming in other
languages and who are now involved in Java projects can use this book, as
well. They can learn how what they know translates to the specifics of the
lambda expressions’ usage in Java.

Programmers who are familiar with lambda expressions in Java can use this
book to help coach and train their team members who are getting up to speed
in this area.

What’s in This Book
This book will help you get up to speed with Java 8 lambda expressions, to
think in the elegant style, and to benefit from the additions to the Java
Development Kit (JDK) library. We’ll take an example-driven approach to
exploring the concepts. Rather than discuss the theory of functional program-
ming, we’ll dive into specific day-to-day tasks to apply the elegant style. This
approach will quickly get these concepts under our belts so we can put them
to real use on projects right away.

On the first read, take the time to go over the chapters sequentially as we
build upon previously discussed concepts and examples. Each chapter closes
with a quick summary to recap what was covered. Later, when working on
applications, take a quick glance at any relevant example or section in the
book. There’s also a syntax appendix for quick reference.

Here’s how the rest of the book is organized:

We discuss the functional style of programming, its benefits, and how it differs
from the prevalent imperative style in Chapter 1, Hello, Lambda Expressions!,
on page 1. We also look into how Java supports lambda expressions in this
chapter.

Preface • xvi

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The JDK collections have received some special treatment in Java 8, with
new interfaces, classes, and methods that support functional-style operations.
We will explore these in Chapter 2, Using Collections, on page 19.

In Chapter 3, Strings, Comparators, and Filters, on page 41, we exploit func-
tional-style and lambda expressions to work with strings, implement the
Comparator interface, and use filters for file selection.

In addition to using the functional-style facilities in the JDK, we can benefit
from applying the elegant style in the design of methods and classes we create.
We’ll cover functional-style design techniques in Chapter 4, Designing with
Lambda Expressions, on page 63.

The lambda expressions facilitate a code structure that helps delineate oper-
ations to manage object lifetimes and resource cleanup, as we’ll discuss in
Chapter 5, Working with Resources, on page 87.

We’ll see lambda expressions shine in Chapter 6, Being Lazy, on page 103;
they provide us the ability to postpone instance creation and method evalua-
tions as well as create infinite lazy collections, and thereby improve the code’s
performance.

In Chapter 7, Optimizing Recursions, on page 121, we will use lambda
expressions to optimize recursions and achieve stellar performance using
memoization techniques.

We’ll put the techniques we cover in the book to some real use in Chapter 8,
Composing with Lambda Expressions, on page 135, where we’ll transform
objects, implement MapReduce, and safely parallelize a program with little
effort.

In Chapter 9, Bringing It All Together, on page 147, we’ll go over the key concepts
and the practices needed to adopt those techniques.

In Appendix 1, Starter Set of Functional Interfaces, on page 155, we’ll take a
glance at some of the most popular functional interfaces.

A quick overview of the Java 8 syntax for functional interfaces, lambda
expressions, and method/constructor references is in Appendix 2, Syntax
Overview, on page 157.

The URLs mentioned throughout this book are gathered together for your
convenience in Appendix 3, Web Resources, on page 163.

report erratum • discuss

What’s in This Book • xvii

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Java Version Used in This Book
To run the examples in this book you need Java 8 with support for lambda
expressions. Using automated scripts, the examples in this book have been
tried out with the following version of Java:

java version "1.8.0"
Java(TM) SE Runtime Environment (build 1.8.0-b128)
Java HotSpot(TM) 64-Bit Server VM (build 25.0-b69, mixed mode)

Take a few minutes to download the appropriate version of Java for your
system. This will help you follow along with the examples in this book.

How to Read the Code Examples
When writing code in Java, we place classes in packages, and executable state-
ments and expressions in methods. To reduce clutter, we’ll skip the package
names and imports in the code listings. All code in this book belongs to a package:

package fpij;

Any executable code not listed within a method is part of an undisplayed main()
method. When going through the code listings, if you have an urge to look at the
full source code, remember it’s only a click away at the website for this book.

Online Resources
A number of web resources referenced throughout the book are collected in
Appendix 3, Web Resources, on page 163. Here are a few that will help you get
started with this book:

The Oracle website for downloading the version of Java used in this book is
https://jdk8.java.net/download.html. The JDK documentation is available at
http://download.java.net/jdk8/docs/api.

This book’s page at the Pragmatic Bookshelf website is http://www.pragprog.com/
titles/vsjava8. From there you can download all the example source code for the
book. You can also provide feedback by submitting errata entries or posting
your comments and questions in the forum. If you’re reading the book in PDF
form, you can click on the link above a code listing to view or download the
specific examples.

Now for some fun with lambda expressions…

Venkat Subramaniam

February 2014

Preface • xviii

report erratum • discuss

https://jdk8.java.net/download.html
http://download.java.net/jdk8/docs/api
http://www.pragprog.com/titles/vsjava8
http://www.pragprog.com/titles/vsjava8
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

CHAPTER 1

There are two ways of constructing a software design: One way is to
make it so simple that there are obviously no deficiencies, and the
other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.1

 ➤ Sir Charles Antony Richard Hoare

Hello, Lambda Expressions!
Our Java coding style is ready for a remarkable makeover.

The everyday tasks we perform just got simpler, easier, and more expressive.
The new way of programming in Java has been around for decades in other
languages. With these facilities in Java we can write concise, elegant, and
expressive code with fewer errors. We can use this to easily enforce policies
and implement common design patterns with fewer lines of code.

In this book we’ll explore the functional style of programming using direct
examples of everyday tasks we do as programmers. Before we take the leap
to this elegant style, and this new way to design and program, let’s discuss
why it’s better.

Change the Way You Think
Imperative style—that’s what Java has provided us since its inception. In this
style, we tell Java every step of what we want it to do and then we watch it
faithfully exercise those steps. That’s worked fine, but it’s a bit low level. The
code tends to get verbose, and we often wish the language were a tad more
intelligent; we could then tell it—declaratively—what we want rather than
delve into how to do it. Thankfully, Java can now help us do that. Let’s look
at a few examples to see the benefits and the differences in style.

The Habitual Way
Let’s start on familiar ground to see the two paradigms in action. Here’s an
imperative way to find if Chicago is in a collection of given cities—remember, the

1. Hoare, Charles Antony Richard, "The Emperor’s Old Clothes," Communications of the
ACM 24, no. 2 (February 1981): 5–83, doi:10.1145/358549.358561.

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

listings in this book only have snippets of code (see How to Read the Code
Examples, on page xviii).

introduction/fpij/Cities.java
boolean found = false;
for(String city : cities) {

if(city.equals("Chicago")) {
found = true;
break;

}
}

System.out.println("Found chicago?:" + found);

This imperative version is noisy and low level; it has several moving parts.
We first initialize a smelly boolean flag named found and then walk through each
element in the collection. If we found the city we’re looking for, then we set
the flag and break out of the loop. Finally we print out the result of our finding.

A Better Way
As observant Java programmers, the minute we set our eyes on this code
we’d quickly turn it into something more concise and easier to read, like this:

introduction/fpij/Cities.java
System.out.println("Found chicago?:" + cities.contains("Chicago"));

That’s one example of declarative style—the contains() method helped us get
directly to our business.

Tangible Improvements
That change improved our code in quite a few ways:

• No messing around with mutable variables
• Iteration steps wrapped under the hood
• Less clutter
• Better clarity; retains our focus
• Less impedance; code closely trails the business intent
• Less error prone
• Easier to understand and maintain

Beyond Simple Cases
That was simple—the declarative function to check if an element is present
in a collection has been around in Java for a very long time. Now imagine not
having to write imperative code for more advanced operations, like parsing

Chapter 1. Hello, Lambda Expressions! • 2

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/introduction/fpij/Cities.java
http://media.pragprog.com/titles/vsjava8/code/introduction/fpij/Cities.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

files, working with databases, making calls to web services, programming
concurrency, and so on. Java now makes it possible to write concise, elegant,
less error-prone code, not just for simple cases, but throughout our
applications.

The Old Way
Let’s look at another example. We’ll define a collection of prices and try out
a few ways to total discounted price values.

final List<BigDecimal> prices = Arrays.asList(
new BigDecimal("10"), new BigDecimal("30"), new BigDecimal("17"),
new BigDecimal("20"), new BigDecimal("15"), new BigDecimal("18"),
new BigDecimal("45"), new BigDecimal("12"));

Suppose we’re asked to total the prices greater than $20, discounted by 10%.
Let’s do that in the habitual Java way first.

introduction/fpij/DiscountImperative.java
BigDecimal totalOfDiscountedPrices = BigDecimal.ZERO;

for(BigDecimal price : prices) {
if(price.compareTo(BigDecimal.valueOf(20)) > 0)

totalOfDiscountedPrices =
totalOfDiscountedPrices.add(price.multiply(BigDecimal.valueOf(0.9)));

}
System.out.println("Total of discounted prices: " + totalOfDiscountedPrices);

That’s familiar code; we start with a mutable variable to hold the total of the
discounted prices. We then loop through the prices, pick each price greater
than $20, compute each item’s discounted value, and add those to the total.
Finally we print the total value of the discounted prices.

And here’s the output from the code.

Total of discounted prices: 67.5

It worked, but writing it feels dirty. It’s no fault of ours; we had to use what
was available. But the code is fairly low level—it suffers from “primitive
obsession” and defies the single-responsibility principle. Those of us working
from home have to keep this code away from the eyes of kids aspiring to be
programmers, for they may be dismayed and sigh, “That’s what you do for a
living?”

A Better Way, Again
Now we can do better—a lot better. Our code can resemble the requirement
specification. This will help reduce the gap between the business needs and

report erratum • discuss

Change the Way You Think • 3

http://media.pragprog.com/titles/vsjava8/code/introduction/fpij/DiscountImperative.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

the code that implements it, further reducing the chances of the requirements
being misinterpreted.

Rather than tell Java to create a mutable variable and then to repeatedly
assign to it, let’s talk with it at a higher level of abstraction, as in the next
code.

introduction/fpij/DiscountFunctional.java
final BigDecimal totalOfDiscountedPrices =

prices.stream()
.filter(price -> price.compareTo(BigDecimal.valueOf(20)) > 0)
.map(price -> price.multiply(BigDecimal.valueOf(0.9)))
.reduce(BigDecimal.ZERO, BigDecimal::add);

System.out.println("Total of discounted prices: " + totalOfDiscountedPrices);

Let’s read that aloud—filter prices greater than $20, map the prices to dis-
counted values, and then add them up. The code flows along with logic in the
same way we’d describe the requirements. As a convention in Java, we wrap
long lines of code and line up the dots before the method names, as in the
previous example.

The code is concise, but we’re using quite a number of new things from Java
8. First, we invoked a stream() method on the prices list. This opens the door to
a special iterator with a wealth of convenience functions, which we’ll discuss
later.

Instead of explicitly iterating through the prices list, we’re using a few special
methods, such as filter() and map(). Unlike the methods we’re used to in Java
and the Java Development Kit (JDK), these methods take an anonymous
function—a lambda expression—as a parameter, within the parentheses ().
(We’ll soon explore this further.) We invoke the reduce() method to compute
the total on the result of the map() method.

The looping is concealed much like it was under the contains() method. The
map() method (and the filter() method), however, is more sophisticated. For each
price in the prices list, it invokes the provided lambda expression and puts the
responses from these calls into a new collection. The reduce() method is invoked
on this collection to get the final result.

Here’s the output from this version of code:

Total of discounted prices: 67.5

The Improvements
This is quite an improvement from the habitual way:

Chapter 1. Hello, Lambda Expressions! • 4

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/introduction/fpij/DiscountFunctional.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

• Nicely composed, not cluttered
• Free of low-level operations
• Easier to enhance or change the logic
• Iteration controlled by a library of methods
• Efficient; lazy evaluation of loops
• Easier to parallelize where desired

Later we’ll discuss how Java provides these improvements.

Lambdas to the Rescue
Lambdas are the functional key to free us from the hassles of imperative
programming. By changing the way we program, with a feature now baked
into Java, we can write code that’s not only elegant and concise, but also less
prone to errors; more efficient; and easier to optimize, enhance, and parallelize.

The Big Gains of Functional-Style Code
Functional-style code has a higher signal-to-noise ratio; we write fewer lines
of code, but each line or expression achieves more. We gained quite a bit from
the functional-style version, compared with the imperative-style version:

• We avoided explicit mutation or reassignment of variables, which are often
sources of bugs and result in code that’s hard to make concurrent. In the
imperative version we repeatedly set the totalOfDiscountedPrices variable
within the loop. In the functional-style version, there is no explicit muta-
tion in our code. Fewer mutations leads to fewer errors in code.

• The functional version can easily be parallelized. If the computation was
time consuming, we can easily run it concurrently for each element in
the list. If we parallelized the imperative version, we’d have to worry about
concurrent modification of the totalOfDiscountedPrices variable. In the func-
tional version we gain access to the variable only after it’s fully baked,
which removes the thread-safety concerns.

• The code is more expressive. Rather than conveying the intent in multiple
steps—create an initial dummy value, loop through prices, add discounted
values to the variable, and so on—we simply ask the list’s map() method
to return another list with discounted values, and sum it.

• The functional-style version is more concise; it took us fewer lines of code
to achieve the same result as the imperative version. More concise code
means less code to write, less code to read, and less code to maintain—
see Does concise just mean less code?, on page 7.

report erratum • discuss

The Big Gains of Functional-Style Code • 5

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

• The functional-style version is intuitive—code reads more like how we’d
state the problem—and it’s easier to understand once we’re familiar with
the syntax. The map() method applies the given function (which computes
the discount) to each element of the collection and produces the resulting
collection, as we see in the following figure.

price * 0.9

map

10
15

50

9.0
13.5

45.0

Figure 1—map applies the given function on each element of the collection.

With the support for lambda expressions, we can fully utilize the power of
the functional style of programming in Java. If we embrace this style, we can
create more expressive, more concise code with less mutability and fewer
errors.

One of Java’s key strengths has been its support of the object-oriented
paradigm. The functional style is not counter to object-oriented programming
(OOP). The real paradigm shift is from the imperative to the declarative style
of programming. With Java 8, we can now intermix functional and OO styles
of programming quite effectively. We can continue to use the OOP style to
model domain entities, their states, and their relationships. In addition, we
can model the behavior or state transformations, business workflows, and
data processing as a series of functions to form a function composition.

Why Code in the Functional Style?
We saw the general benefits of the functional style of programming, but is it
worth picking up this new style? Should we expect a marginal improvement,
or is it life altering? Those are genuine questions that we need answered
before we commit our time and effort.

Writing Java code is not that hard; the syntax is simple. We’ve gotten quite
familiar and comfortable with the libraries and their APIs. What really gets
us is the effort required to code and maintain the typical enterprise applica-
tions we use Java to develop.

Chapter 1. Hello, Lambda Expressions! • 6

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Joe asks:

Does concise just mean less code?
Concise is short, devoid of noise, and boiled down to its essence to convey the intent
effectively. The benefits are far reaching.

Writing code is like throwing ingredients together; making it concise is like turning
that into a sauce. It often takes more effort to write concise code. It’s less code to
read, but effective code is transparent. A short code listing that’s hard to understand
or hides details is terse rather than concise.

Concise code equals design agility. Concise code has less ceremony.a This means we
can quickly try out our design ideas and move forward if they’re good, or move on if
they turn sour.

a. Stuart Halloway on essence versus ceremony: http://thinkrelevance.com/blog/2008/04/
01/ending-legacy-code-in-our-lifetime.

We must ensure that fellow programmers have closed the database connec-
tions at the right time, that they’re not holding on to transactions any longer
than needed, that they’re handling the exceptions well and at the right level,
that they’re securing and releasing locks properly…and the list goes on.

Each one of these in isolation may not seem like a big deal. But when com-
bined with the domain’s inherent complexities, things get quite overwhelming,
labor intensive, and hard to maintain.

What if we could encapsulate each of these decisions into tiny pieces of code
that can manage the constraints well? Then we wouldn’t have to continuously
expend energy to enforce policies. That would be a big win, so let’s see how
the functional style can help.

Iteration on Steroids
We write iterations all the time to process a list of objects and to work with
sets and maps. The iterators we’re used to in Java are familiar and primitive,
but not simple. Not only do they take a few lines of code to work with; they’re
also quite hard to compose.

How do we iterate and print each element in a collection? We could use a for
loop. How do we select some elements from a collection? With the same for
loop, but some extra mutable variables have to step in to support the opera-
tion. Now after selecting the values, how do we reduce the results to a single
value, such as a minimum, a maximum, or an average? More looping, more
mutable variables.

report erratum • discuss

Why Code in the Functional Style? • 7

http://thinkrelevance.com/blog/2008/04/01/ending-legacy-code-in-our-lifetime
http://thinkrelevance.com/blog/2008/04/01/ending-legacy-code-in-our-lifetime
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

That’s like having a jack-of-all-iterations, but a master of none. Java now
provides specialized internal iterators for various operations: one to simply
loop, one to map data values, one to filter out select values, one to reduce,
and several convenience functions to pick the min, the max, the average, and
so on. In addition, these operations nicely compose so we can combine a
variety of them to implement the business logic with greater ease and less
code. When we’re done, the code is easier to understand, as it logically flows
thought the sequence described in the problem. We’ll see several examples
of this in Chapter 2, Using Collections, on page 19, and throughout the book.

Enforcing Policies
Policies rule enterprise applications. For instance, we may have to ensure an
operation has proper security credentials. We may have to ensure that
transactions run fast and update audit trails properly. These tasks often turn
into mundane service-tier code like the following pseudocode form:

Transaction transaction = getFromTransactionFactory();

//... operation to run within the transaction ...

checkProgressAndCommitOrRollbackTransaction();
UpdateAuditTrail();

There are two issues with this kind of approach. First, it often leads to
duplication of effort and, in turn, increases maintenance cost. Second, it’s
easy to forget about exceptions that may be thrown in the application code,
thus jeopardizing the transaction lifetime and the update of audit trails. We
could implement a proper try and finally block, but every time someone touches
that code, we’d have to reverify that it’s not broken.

Alternatively, we could get rid of the factory and turn this code on its head.
Instead of receiving a transaction, we could send the processing code to a
well-managed function, like so (in pseudocode):

runWithinTransaction((Transaction transaction) -> {
//... operation to run within the transaction ...

});

This is such a small step with a huge savings. The policy to check the status
and update the audit trails is abstracted and encapsulated within the runWith-
inTransaction() method. To this method we send a piece of code that needs to
run in the context of a transaction. We no longer have to worry about forgetting
to perform the steps or about the exceptions being handled well. The policy-
enforcing function takes care of all that.

Chapter 1. Hello, Lambda Expressions! • 8

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We’ll cover how to use lambda expressions to enforce such policies in Chapter
5, Working with Resources, on page 87.

Extending Policies
Policies seem to grow around us—beyond their being enforced, enterprise
applications require ways to extend them. Based on some configuration
information we may have to add or remove a series of operations that, in turn,
may have to be processed before core logic in a module is executed. This is
a common task in Java, but it requires much forethought and design.

The machinery for extensibility is often one or more interfaces. We could
carefully design these interfaces and the hierarchy of classes that will imple-
ment them. The result may be effective, but this effort possibly leaves a
number of interfaces and classes that we have to maintain. The design can
easily become heavyweight and hard to maintain, jeopardizing the very goal
of extensibility we set out for.

There’s an alternative—functional interfaces and lambda expressions, which
let us design extensible policies. This way we’re not forced to create extra
interfaces or conform to a method name, but instead we can focus on the
core behaviors we’d like to provide, as we’ll see in Decorating Using Lambda
Expressions, on page 72.

Hassle-Free Concurrency
A big application is close to its delivery milestone when a huge performance
issue comes to the surface. The team quickly figures out that the bottleneck
is in the titanic module of the application, which involves processing large
volumes of data. Someone on the team suggests that we can improve perfor-
mance if we more effectively exploit the available multiple cores. But the
excitement from the suggestion is likely short lived if the titanic module is
like typical old-style Java code.

The team quickly realizes that converting the titanic module’s code from a
sequential to a concurrent version would take substantial effort, create
additional complexity, and open doors for many multithreading-related bugs.
Isn’t there an easier way to get better performance?

What if there is no difference between sequential and concurrent code, and
the effort to run it sequentially versus concurrently is merely the flip of a
switch to clearly express our intent?

That may seem possible only in Narnia, but it’s quite real if we develop our
modules with functional purity. The internal iterators and functional style

report erratum • discuss

Why Code in the Functional Style? • 9

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

remove the last roadblock to easy parallelism. The JDK library has been
designed to make the switch between serial and parallel execution require
only a small and explicit but unobtrusive code change, as we’ll see in Taking
a Leap to Parallelize, on page 143.

Telling the Story
So much is lost in the translation between what the business wants and how
the code implements it. The bigger that gap, the greater the chance of errors
and higher the cost of maintenance. If the code reads more like the way the
business states the problem, it becomes easier to read, easier to discuss with
the business folks, and easier to evolve to meet their changing demands.

For instance, you hear the business say, “Get the prices for all the tickers,
find the prices that are less than $500, and total the net asset value of only
the stocks that make the cut.” Using the new facilities available, we can write
something like this:

tickers.map(StockUtil::getprice).filter(StockUtil::priceIsLessThan500).sum()

There’s little chance of losing something in translation here, as there’s not
much to translate. This is function composition at work, and we’ll see more
of it in this book, especially in Chapter 8, Composing with Lambda Expressions,
on page 135.

Separation of Concerns
A common need in applications is the separation of the core computations
from the fine-grained logic the computations depend on. For example, an
order-processing system may want to apply different tax computations based
on the origin of transaction. Separating the tax-computation logic from the
rest of the processing will help us create more reusable and extensible code.

In OOP we call this separation of concern and often use the strategy pattern
to solve it. The effort typically involves creating one or more interfaces and a
bunch of classes to implement them.

We can achieve the same now, but with far less code. And we can try out our
design ideas really fast without being bogged down by a hierarchy of code
that we have to lay out first. We’ll cover how to create this pattern and separate
concerns using lightweight functions in Separating Concerns Using Lambda
Expressions, on page 63.

Chapter 1. Hello, Lambda Expressions! • 10

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Delaying Evaluation
When creating enterprise applications, we may have to interact with web
services, make database calls, process XML…the list goes on. There are so
many operations that we have to perform, but not all of them are necessary
all the time. Avoiding some operations or at least postponing the ones that
don’t have to be performed yet is one of the easiest ways to improve perfor-
mance and application start-up or response time.

It’s a simple goal, but one that may be quite hard to implement using a pure
OOP approach. We would have to fuss with object references and null checks
to postpone initialization of heavyweight objects, for instance.

Alternatively, we can minimize our effort and make the intent more explicit
by using the new Optional class and the functional-style API it provides, as we’ll
see in Delayed Initialization, on page 103.

Improving Testability
Fewer things tend to break in code that has few moving parts. By nature,
functional-style code is more resilient to change and requires relatively less
testing effort.

In addition, as we’ll see in Chapter 4, Designing with Lambda Expressions,
on page 63, and Chapter 5, Working with Resources, on page 87, lambda
expressions can stand in as lightweight mocks or stubs, and can help create
highly expressive exception tests. Lambda expressions can also serve as a
great testing aid. A common set of test cases can receive and exercise lambda
expressions. The tests can capture the essence of behaviors that need to be
tested for regression. At the same time, the lambda expressions being passed
in can serve as variations of implementations that need to be exercised.

The automated tests that are part of the JDK itself are great examples of this
—for more details browse through the JDK source code in the OpenJDK
repository.2

These tests show how lambda expressions help parameterize the test cases’
key behaviors; for example, they help compose the tests as “make a container
for the results” followed by “assert some parameterized postconditions.”

We’ve discussed how the functional style not only helps us write better quality
code, but also solves elegantly so many of our common application develop-
ment challenges. That means we can create applications more quickly, with

2. http://hg.openjdk.java.net

report erratum • discuss

Why Code in the Functional Style? • 11

http://hg.openjdk.java.net
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

less effort and fewer errors—as long as we follow a few guidelines, as we’ll
discuss next.

Evolution, Not Revolution
To reap the benefits of functional style, we don’t have to switch over to
another language; we simply have to change the way we use Java.

Languages like C++, Java, and C# started out with support for imperative
and object-oriented programming. Now all these languages also embrace the
functional style of programming. We just saw examples of these two styles
and discussed the benefits we derived from the functional style. Now let’s
look into some key concepts and practices that will help us adopt the new
style.

The Java language team has put in substantial time and effort to bring
functional capabilities to the language and the JDK. To reap the benefits, we
have to pick up a few new concepts. We can improve our code if we follow
some guidelines:

• Be declarative.
• Promote immutability.
• Avoid side effects.
• Prefer expressions over statements.
• Design with higher-order functions.

Let’s quickly look at these practices.

Be Declarative
At the core of the familiar imperative style are mutability and command-
driven programming. We create variables or objects and modify their state
along the way. We also provide detailed commands or instructions to execute,
such as create a loop index, increment its value, check if we reached the end,
update the nth element of an array, and so on. It made sense for us to program
this way in the past due to the nature of the tools and the hardware
limitations.

We saw how the declarative use of the contains() method—when used on an
immutable collection—was far easier to work with than the imperative style.
All the hard work and the lower-level details were moved into the library
function and we don’t have to deal with those details. We would prefer doing
everything this way if it were only easier. Immutability and declarative pro-
gramming are the essence of the functional style of programming, and Java
now makes them quite approachable.

Chapter 1. Hello, Lambda Expressions! • 12

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Promote Immutability
Mutable code has many moving parts. The more things change, the easier it
is for components to break and for errors to creep in. Code where multiple
variables change is hard to understand and quite difficult to parallelize.
Immutability removes all these problems at the root.

Java supports immutability but does not enforce it—but we can. We need to
change our old habits of mutating objects’ states. As much as possible, we
must use immutable objects.

When declaring variables, fields, and parameters, lean toward declaring them
final, following the sage advice “Treat objects as immutable” from Effective
Java [Blo08], by Joshua Bloch.

When creating objects, promote immutable objects such as the String class.
When working with collections, create immutable or unmodifiable collections
using functions like Arrays.asList() or the Collections class’s unmodifiableList() method,
for example.

By avoiding mutability we can create pure functions—that is, functions with
no side effects.

Avoid Side Effects
Imagine writing a piece of code to go out to the Web to fetch a stock price and
then update a shared variable. If we have a number of prices to fetch, we’re
forced to run these time-consuming operations sequentially. If we resort to
multithreading, then we have to burden ourselves with threading and
synchronization issues to prevent race conditions. The net result is poor
application performance and/or lack of sleep trying to manage multiple
threads. We can totally eliminate the problems by removing the side effect.

A function with no side effects honors immutability and does not change its
input or anything in its reach. These functions are easier to understand, have
fewer errors, and are easier to optimize. The lack of side effects removes any
concerns of race conditions or simultaneous updates. As a result we can also
easily parallelize execution of such functions, as we’ll see in Taking a Leap to
Parallelize, on page 143.

Prefer Expressions Over Statements
Statements are stubborn and force mutation. Expressions promote
immutability and function composition. For example, we first used the for
statement to compute the total of discounted prices. This version promoted

report erratum • discuss

Evolution, Not Revolution • 13

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

mutation and verbose code. By switching over to the more expressive declar-
ative version using the map() and sum() methods, which are expressions, we
avoided mutations and were able to chain or compose functions.

It’s better to design with expressions and use them more than statements in
our code. This will now make the code concise and easier to understand. The
code will flow logically, in the same order in which we would state the problem.
The concise version is easier to change if the problem changes.

Design with Higher-Order Functions
Unlike some functional programming languages, such as Haskell, that enforce
immutability, Java lets us modify variables at will. In that regard Java is not,
and will never be, a pure functional programming language. However, we can
write code in the functional style in Java by using higher-order functions.

A higher-order function takes the concept of reuse to the next level. Instead
of solely relying on objects and classes to promote reuse, with higher-order
functions we can easily reuse small, focused, cohesive, and well-written
functions.

In OOP we’re used to passing objects to methods, creating objects within
methods, and returning objects from within methods. Higher-order functions
do to functions what methods did to objects. With higher-order functions we
can

• Pass functions to functions
• Create functions within functions
• Return functions from functions

We already saw an example of passing a function to another function, and
we’ll see examples of creating and returning functions later. Let’s look at our
“passing a function to a function” example again.

prices.stream()
.filter(price -> price.compareTo(BigDecimal.valueOf(20)) > 0)
.map(price -> price.multiply(BigDecimal.valueOf(0.9)))
.reduce(BigDecimal.ZERO, BigDecimal::add);

In this example we’re sending a function, price -> price.multiply(BigDecimal.valueOf(0.9)),
as an argument to map. The function being passed is created just in time, at
the point of call to the higher-order function map. Generally a function has a
body, a name, a parameter list, and a return type. The just-in-time function
created here has a parameter list followed by an arrow (->), and then the short
body. The type of the parameter may be inferred by the Java compiler here
and the return type is implicit. This function is anonymous; it has no name.

Chapter 1. Hello, Lambda Expressions! • 14

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Rather than referring to these as anonymous functions, we call them lambda
expressions.

Passing anonymous functions is not a totally unknown concept in Java; we’re
used to passing instances of anonymous classes. If our anonymous class had
only one method, we still had to go through the ceremony of creating a class,
albeit anonymous, and instantiating it. Instead we can now enjoy a lightweight
syntax in Java with lambda expressions. Additionally, we’re accustomed to
abstracting concepts with objects. Now we can combine that with abstracting
behavior using lambda expressions.

It takes some rethinking to design applications with this style of programming.
We have to tune our imperative-ingrained minds to think functionally. This
may seem a bit difficult at the beginning, but we’ll get used to it in no time,
and can leave those dysfunctional APIs far behind as we move forward.

Let’s now switch gears and look at how Java handles lambda expressions.
We’re used to passing objects to methods, but now we can store functions
and pass them around. Let’s look at the magic behind how Java accepts a
function as an argument.

A Little Sugar to Sweeten
We could implement all the ideas with what was already available in Java,
but lambda expressions remove the ceremony and sweeten our efforts by
adding a little syntax sugar. This quickly translates into code that’s faster to
create and makes it easier to express our ideas.

In the past we’ve used a number of interfaces that only have single methods:
Runnable, Callable, Comparable, and so on. These interfaces are common in the
JDK library and often appear where just a single function is expected. All
these existing library methods that expect a single method interface can now
accept lightweight functions, thanks to the brilliant syntax sugar provided
though functional interfaces.

A functional interface is an interface with one abstract—unimplemented—
method. Again think single-method interfaces like Runnable, Callable, Comparable,
and so on, which all fit that definition. JDK 8 has more of these types of
interfaces—Function, Predicate, Consumer, Supplier, and so on (for a summary of the
starter set of functional interfaces see Appendix 1, Starter Set of Functional
Interfaces, on page 155). A functional interface may also have zero or more
static methods and default methods, which are implemented right within the
interface.

report erratum • discuss

A Little Sugar to Sweeten • 15

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We can mark a functional interface with the @FunctionalInterface annotation. The
compiler does not require this annotation, but it is helpful to explicitly state
the purpose that the interface serves. Furthermore, if we mark an interface
with this annotation, the compiler will enforce the rules for the interface to
qualify as a functional interface.

If a method takes a functional interface as a parameter, then we can pass
the following:

• An anonymous inner class, the old-fashioned way (but why would we?)
• A lambda expression, like we did when we called the map() method
• A method or constructor reference (as we’ll see later)

The compiler readily accepts a lambda expression or a method/constructor
reference as an argument if the method’s corresponding parameter is a refer-
ence to a functional interface.

When we pass a lambda expression to a method, the compiler will convert
the lambda expression to an instance of the appropriate functional interface.
This conversion is not a mere generation of an inner class in place. The
synthesized method of this instance conforms to the abstract method of the
functional interface that corresponds to the argument. For example, the map()
method takes the functional interface Function<T, R> as its parameter. In a call
to the map() method, the Java compiler synthesizes it, as the following figure
shows.

//synthesized by the Java Compiler

apply(Integer param) {
 int price = Integer.intValue(param);
 return Double.valueOf(price * 0.9d);
 }

In Stream...
Stream<R> map(Function<T, R> mapper) {

;

}

Call:
prices.stream().map(price -> price * 0.9);

Figure 2—Simplified view of the promotion from lambda expression to functional
interface

Chapter 1. Hello, Lambda Expressions! • 16

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The parameters of the lambda expression must match the parameters of the
interface’s abstract method. This synthesized method returns the lambda
expression’s result. If the return type doesn’t directly match that of the abstract
method, the synthesized method may convert the return value to a proper
assignable type.

We took a peek at how lambda expressions are passed as arguments to
methods. Let’s quickly review what we covered and move on to explore
lambda expressions.

Recap
It’s a whole new world in Java. We can now program in an elegant and fluent
functional style, with higher-order functions. This can lead to concise code
that has fewer errors and is easier to understand, maintain, and parallelize.
The Java compiler works its magic so we can send lambda expressions or
method references where functional interfaces are expected.

We’re all set to dive into the fun parts of lambda expressions and the JDK
library that’s been fine-tuned to work with lambda expressions. In the next
chapter we’ll start by using lambda expressions in one of the most fundamen-
tal programming tasks: working with collections.

report erratum • discuss

Recap • 17

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

CHAPTER 2

If you cannot grok the overall structure of a program while taking
a shower, you are not ready to code it.

 ➤ Richard Pattis

Using Collections
We often use collections of numbers, strings, and objects. They are so com-
monplace that removing even a small amount of ceremony from coding
collections can reduce code clutter greatly. In this chapter we explore the use
of lambda expressions to manipulate collections. We use them to iterate col-
lections, transform them into new collections, extract elements from them,
and easily concatenate their elements.

After this chapter, our Java code to manipulate collections will never be the
same—it’ll be concise, expressive, elegant, and more extensible than ever
before.

Iterating through a List
Iterating through a list is a basic operation on a collection, but over the years
it’s gone through a few significant changes. We’ll begin with the old and evolve
an example—enumerating a list of names—to the elegant style.

We can easily create an immutable collection of a list of names with the fol-
lowing code:

final List<String> friends =
Arrays.asList("Brian", "Nate", "Neal", "Raju", "Sara", "Scott");

Here’s the habitual, but not so desirable, way to iterate and print each of the
elements.

collections/fpij/Iteration.java
for(int i = 0; i < friends.size(); i++) {

System.out.println(friends.get(i));
}

I call this style the self-inflicted wound pattern—it’s verbose and error prone.
We have to stop and wonder, “is it i < or i <=?” This is useful only if we need

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/Iteration.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

to manipulate elements at a particular index in the collection, but even then,
we can opt to use a functional style that favors immutability, as we’ll discuss
soon.

Java also offers a construct that is a bit more civilized than the good old for
loop.

collections/fpij/Iteration.java
for(String name : friends) {
System.out.println(name);

}

Under the hood this form of iteration uses the Iterator interface and calls into
its hasNext() and next() methods.

Both these versions are external iterators, which mix how we do it with what
we’d like to achieve. We explicitly control the iteration with them, indicating
where to start and where to end; the second version does that under the hood
using the Iterator methods. With explicit control, the break and continue statements
can also help manage the iteration’s flow of control.

The second construct has less ceremony than the first. Its style is better than
the first if we don’t intend to modify the collection at a particular index. Both
of these styles, however, are imperative and we can dispense with them in
modern Java.

There are quite a few reasons to favor the change to the functional style:

• The for loops are inherently sequential and are quite difficult to parallelize.

• Such loops are non-polymorphic; we get exactly what we ask for. We
passed the collection to for instead of invoking a method (a polymorphic
operation) on the collection to perform the task.

• At the design level, the code fails the "Tell, don’t ask” principle. We ask
for a specific iteration to be performed instead of leaving the details of the
iteration to underlying libraries.

It’s time to trade in the old imperative style for the more elegant functional-
style version of internal iteration. With an internal iteration we willfully turn
over most of the hows to the underlying library so we can focus on the
essential whats. The underlying function will take care of managing the iter-
ation. Let’s use an internal iterator to enumerate the names.

The Iterable interface has been enhanced in JDK 8 with a special method named
forEach(), which accepts a parameter of type Consumer. As the name indicates,
an instance of Consumer will consume, through its accept() method, what’s given

Chapter 2. Using Collections • 20

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/Iteration.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

to it. Let’s use the forEach() method with the all-too-familiar anonymous inner
class syntax.

collections/fpij/Iteration.java
friends.forEach(new Consumer<String>() {

public void accept(final String name) {
System.out.println(name);

}
});

We invoked the forEach() on the friends collection and passed an anonymous
instance of Consumer to it. The forEach() method will invoke the accept() method
of the given Consumer for each element in the collection and let it do whatever
it wants with it. In this example we merely print the given value, which is the
name.

Let’s look at the output from this version, which is the same as the output
from the two previous versions:

Brian
Nate
Neal
Raju
Sara
Scott

We changed just one thing: we traded in the old for loop for the new internal
iterator forEach(). As for the benefit, we went from specifying how to iterate to
focusing on what we want to do for each element. The bad news is the code
looks a lot more verbose—so much that it can drain away any excitement
about the new style of programming. Thankfully, we can fix that quickly; this
is where lambda expressions and the new compiler magic come in. Let’s make
one change again, replacing the anonymous inner class with a lambda
expression.

collections/fpij/Iteration.java
friends.forEach((final String name) -> System.out.println(name));

That’s a lot better. We look at less code, but watch closely to see what’s in
there. The forEach() is a higher-order function that accepts a lambda expression
or block of code to execute in the context of each element in the list. The
variable name is bound to each element of the collection during the call. The
underlying library takes control of how the lambda expressions are evaluated.
It can decide to perform them lazily, in any order, and exploit parallelism as
it sees fit.

This version produces the same output as the previous versions.

report erratum • discuss

Iterating through a List • 21

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/Iteration.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/Iteration.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The internal-iterator version is more concise than the other ones. However,
when we use it we’re able to focus our attention on what we want to achieve
for each element rather than how to sequence through the iteration—it’s
declarative.

This version has a limitation, however. Once the forEach method starts, unlike
in the other two versions, we can’t break out of the iteration. (There are
facilities to handle this limitation.) As a consequence, this style is useful in
the common case where we want to process each element in a collection.
Later we’ll see alternate functions that give us control over the path of
iteration.

The standard syntax for lambda expressions expects the parameters to be
enclosed in parentheses, with the type information provided and comma
separated. The Java compiler also offers some lenience and can infer the
types. Leaving out the type is convenient, requires less effort, and is less
noisy. Here’s the previous code without the type information.

collections/fpij/Iteration.java
friends.forEach((name) -> System.out.println(name));

In this case, the Java compiler determines the name parameter’s a String type,
based on the context. It looks up the signature of the called method, forEach()
in this example, and analyzes the functional interface it takes as a parameter.
It then looks at that interface’s abstract method to determine the expected
number of parameters and their types. We can also use type inference if a
lambda expression takes multiple parameters, but in that case we must leave
out the type information for all the parameters; we have to specify the type
for none or for all of the parameters in a lambda expression.

The Java compiler treats single-parameter lambda expressions as special: we
can leave off the parentheses around the parameter if the parameter’s type
is inferred.

collections/fpij/Iteration.java
friends.forEach(name -> System.out.println(name));

There’s one caveat: inferred parameters are non-final. In the previous example,
where we explicitly specified the type, we also marked the parameter as final.
This prevents us from modifying the parameter within the lambda expression.
In general, modifying parameters is in poor taste and leads to errors, so
marking them final is a good practice. Unfortunately, when we favor type
inference we have to practice extra discipline not to modify the parameter, as
the compiler will not protect us.

Chapter 2. Using Collections • 22

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/Iteration.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/Iteration.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We have come a long way with this example and reduced the code quite a bit.
But there’s more. Let’s take one last step to tease out another ounce of
conciseness.

collections/fpij/Iteration.java
friends.forEach(System.out::println);

In the preceding code we used a method reference. Java lets us simply replace
the body of code with the method name of our choice. We will dig into this
further in the next section, but for now let’s reflect on the wise words of
Antoine de Saint-Exupéry: “Perfection is achieved not when there is nothing
more to add, but when there is nothing left to take away.”

Lambda expressions helped us concisely iterate over a collection. Next we’ll
cover how they help remove mutability and make the code even more concise
when transforming collections.

Transforming a List
Manipulating a collection to produce another result is as easy as iterating
through the elements of a collection. Suppose we’re asked to convert a list of
names to all capital letters. Let’s explore some options to achieve this.

Java’s String is immutable, so instances can’t be changed. We could create
new strings in all caps and replace the appropriate elements in the collection.
However, the original collection would be lost; also, if the original list is
immutable, like it is when created with Arrays.asList(), then the list can’t change.
Another downside is it would be hard to parallelize the computations.

Creating a new list that has the elements in all caps is a better option.

That suggestion may seem quite naive at first; performance is an obvious
concern we all share. Surprisingly, the functional approach often yields better
performance than the imperative approach, as we’ll see in Performance Con-
cerns, on page 151.

Let’s start by creating a new collection of uppercase names from the given
collection.

collections/fpij/Transform.java
final List<String> uppercaseNames = new ArrayList<String>();

for(String name : friends) {
uppercaseNames.add(name.toUpperCase());

}

report erratum • discuss

Transforming a List • 23

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/Iteration.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/Transform.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

In this imperative style, we created an empty list then populated it with all-
uppercase names, one element at a time, while iterating through the original
list. As a first step to move toward a functional style, we could use the internal
iterator forEach() method from Iterating through a List, on page 19, to replace
the for loop, as we see next.

collections/fpij/Transform.java
final List<String> uppercaseNames = new ArrayList<String>();
friends.forEach(name -> uppercaseNames.add(name.toUpperCase()));
System.out.println(uppercaseNames);

We used the internal iterator, but that still required the empty list and the
effort to add elements to it. We can do a lot better.

Using Lambda Expressions
The map() method of a new Stream interface can help us avoid mutability and
make the code concise. A Stream is much like an iterator on a collection of
objects and provides some nice fluent functions. Using the methods of this
interface, we can compose a sequence of calls so that the code reads and
flows in the same way we’d state problems, making it easier to read.

The Stream’s map() method can map or transform a sequence of input to a
sequence of output—that fits quite well for the task at hand.

collections/fpij/Transform.java
friends.stream()

.map(name -> name.toUpperCase())

.forEach(name -> System.out.print(name + " "));
System.out.println();

The method stream() is available on all collections in JDK 8 and it wraps the
collection into an instance of Stream. The map() method applies the given
lambda expression or block of code, within the parenthesis, on each element
in the Stream. The map() method is quite unlike the forEach() method, which
simply runs the block in the context of each element in the collection. In
addition, the map() method collects the result of running the lambda expression
and returns the result collection. Finally, we print the elements in this result
using the forEach() method. The names in the new collection are in all caps:

BRIAN NATE NEAL RAJU SARA SCOTT

The map() method is quite useful to map or transform an input collection into
a new output collection. This method will ensure that the same number of
elements exists in the input and the output sequence. However, element types
in the input don’t have to match the element types in the output collection.
In this example, both the input and the output are a collection of strings. We

Chapter 2. Using Collections • 24

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/Transform.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/Transform.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

could have passed to the map() method a block of code that returned, for
example, the number of characters in a given name. In this case, the input
would still be a sequence of strings, but the output would be a sequence of
numbers, as in the next example.

collections/fpij/Transform.java
friends.stream()

.map(name -> name.length())

.forEach(count -> System.out.print(count + " "));

The result is a count of the number of letters in each name:

5 4 4 4 4 5

The versions using the lambda expressions have no explicit mutation; they’re
concise. These versions also didn’t need any initial empty collection or garbage
variable; that variable quietly receded into the shadows of the underlying
implementation.

Using Method References
We can nudge the code to be just a bit more concise by using a feature called
method reference. The Java compiler will take either a lambda expression or
a reference to a method where an implementation of a functional interface is
expected. With this feature, a short String::toUpperCase can replace name ->
name.toUpperCase(), like so:

collections/fpij/Transform.java
friends.stream()

.map(String::toUpperCase)

.forEach(name -> System.out.println(name));

Java knows to invoke the String class’s given method toUpperCase() on the
parameter passed in to the synthesized method—the implementation of the
functional interface’s abstract method. That parameter reference is implicit
here. In simple situations like the previous example, we can substitute method
references for lambda expressions; see When should we use method refer-
ences?, on page 26.

In the preceding example, the method reference was for an instance method.
Method references can also refer to static methods and methods that take
parameters. We’ll see examples of these later.

Lambda expressions helped us enumerate a collection and transform it into
a new collection. They can also help us concisely pick an element from a
collection, as we’ll see next.

report erratum • discuss

Transforming a List • 25

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/Transform.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/Transform.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Joe asks:

When should we use method references?
We’d normally use lambda expressions much more than method references when
programming in Java. That doesn’t mean method references are unimportant or less
useful, though. They are nice replacements when the lambda expressions are really
short and make simple, direct calls to either an instance method or a static method.
In other words, if lambda expressions merely pass their parameters through, we can
replace them with method references.

These candidate lambda expressions are much like Tom Smykowski, in the movie
Office Space,a whose job is to “take specifications from the customers and bring them
down to the software engineers.” For this reason, I call the refactoring of lambdas to
method references the office-space pattern.

In addition to conciseness, by using method references we gain the ability to use
more directly the names already chosen for these methods.

There’s quite a bit of compiler magic under the hood when we use method references.
The method reference’s target object and parameters are derived from the parameters
passed to the synthesized method. This makes the code with method references much
more concise than the code with lambda expressions. However, we can’t use this
convenience if we have to manipulate parameters before sending them as arguments
or tinker with the call’s results before returning them.

a. http://en.wikipedia.org/wiki/Office_Space

Finding Elements
The now-familiar elegant methods to traverse and transform collections will
not directly help pick elements from a collection. The filter() method is designed
for that purpose.

From a list of names, let’s pick the ones that start with the letter N. Since
there may be zero matching names in the list, the result may be an empty
list. Let’s first code it using the old approach.

collections/fpij/PickElements.java
final List<String> startsWithN = new ArrayList<String>();
for(String name : friends) {
if(name.startsWith("N")) {

startsWithN.add(name);
}

}

That’s a chatty piece of code for a simple task. We created a variable and
initialized it to an empty collection. Then we looped through the collection,

Chapter 2. Using Collections • 26

report erratum • discuss

http://en.wikipedia.org/wiki/Office_Space
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickElements.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

looking for a name that starts with the desired letter. If found, we added the
element to the collection.

Let’s refactor this code to use the filter() method, and see how it changes things.

collections/fpij/PickElements.java
final List<String> startsWithN =

friends.stream()
.filter(name -> name.startsWith("N"))
.collect(Collectors.toList());

The filter() method expects a lambda expression that returns a boolean result.
If the lambda expression returns a true, the element in context while executing
that lambda expression is added to a result collection; it’s skipped otherwise.
Finally the method returns a Stream with only elements for which the lambda
expression yielded a true. In the end we transformed the result into a List using
the collect() method—we’ll discuss this method further in Using the collect
Method and the Collectors Class, on page 52.

Let’s print the number of elements in the result collection.

collections/fpij/PickElements.java
System.out.println(String.format("Found %d names", startsWithN.size()));

From the output it’s clear that the method picked up the proper number of
elements from the input collection.

Found 2 names

The filter() method returns an iterator just like the map() method does, but the
similarity ends there. Whereas the map() method returns a collection of the
same size as the input collection, the filter() method may not. It may yield a
result collection with a number of elements ranging from zero to the maximum
number of elements in the input collection. However, unlike map(), the elements
in the result collection that filter() returned are a subset of the elements in the
input collection.

The conciseness we’ve achieved by using lambda expressions so far is nice,
but code duplication may sneak in quickly if we’re not careful. Let’s address
that concern next.

Reusing Lambda Expressions
Lambda expressions are deceivingly concise and it’s easy to carelessly dupli-
cate them in code. Duplicate code leads to poor-quality code that’s hard to
maintain; if we needed to make a change, we’d have to find and touch the
relevant code in several places.

report erratum • discuss

Reusing Lambda Expressions • 27

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickElements.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickElements.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Avoiding duplication can also help improve performance. By keeping the code
related to a piece of knowledge concentrated in one place, we can easily study
its performance profile and make changes in one place to get better
performance.

Now let’s see how easy it is to fall into the duplication trap when using
lambda expressions, and consider ways to avoid it.

Suppose we have a few collections of names: friends, editors, comrades, and so
on.

final List<String> friends =
Arrays.asList("Brian", "Nate", "Neal", "Raju", "Sara", "Scott");

final List<String> editors =
Arrays.asList("Brian", "Jackie", "John", "Mike");

final List<String> comrades =
Arrays.asList("Kate", "Ken", "Nick", "Paula", "Zach");

We want to filter out names that start with a certain letter. Let’s first take a
naive approach to this using the filter() method.

collections/fpij/PickElementsMultipleCollection.java
final long countFriendsStartN =
friends.stream()

.filter(name -> name.startsWith("N")).count();

final long countEditorsStartN =
editors.stream()

.filter(name -> name.startsWith("N")).count();

final long countComradesStartN =
comrades.stream()

.filter(name -> name.startsWith("N")).count();

The lambda expressions made the code concise, but quietly led to duplicate
code. In the previous example, one change to the lambda expression needs
to change in more than one place—that’s a no-no. Fortunately, we can assign
lambda expressions to variables and reuse them, just like with objects.

The filter() method, the receiver of the lambda expression in the previous
example, takes a reference to a java.util.function.Predicate functional interface.
Here, the Java compiler works its magic to synthesize an implementation of
the Predicate’s test() method from the given lambda expression. Rather than
asking Java to synthesize the method at the argument-definition location, we
can be more explicit. In this example, it’s possible to store the lambda

Chapter 2. Using Collections • 28

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickElementsMultipleCollection.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

expression in an explicit reference of type Predicate and then pass it to the
function; this is an easy way to remove the duplication.

Let’s refactor the previous code to make it DRY.1 (See the Don’t Repeat Yourself
—DRY—principle in The Pragmatic Programmer: From Journeyman to Master
[HT00], by Andy Hunt and Dave Thomas.)

collections/fpij/PickElementsMultipleCollection.java
final Predicate<String> startsWithN = name -> name.startsWith("N");

final long countFriendsStartN =
friends.stream()

.filter(startsWithN)

.count();
final long countEditorsStartN =
editors.stream()

.filter(startsWithN)

.count();
final long countComradesStartN =

comrades.stream()
.filter(startsWithN)
.count();

Rather than duplicate the lambda expression several times, we created it once
and stored it in a reference named startsWithN of type Predicate. In the three calls
to the filter() method, the Java compiler happily took the lambda expression
stored in the variable under the guise of the Predicate instance.

The new variable gently removed the duplication that sneaked in. Unfortu-
nately, it’s about to sneak back in with a vengeance, as we’ll see next, and
we need something a bit more powerful to thwart it.

Using Lexical Scoping and Closures
There’s a misconception among some developers that using lambda expres-
sions may introduce duplication and lower code quality. Contrary to that
belief, even when the code gets more complicated we still don’t need to com-
promise code quality to enjoy the conciseness that lambda expressions give,
as we’ll see in this section.

We managed to reuse the lambda expression in the previous example; however,
duplication will sneak in quickly when we bring in another letter to match.
Let’s explore the problem further and then solve it using lexical scoping and
closures.

1. http://c2.com/cgi/wiki?DontRepeatYourself

report erratum • discuss

Using Lexical Scoping and Closures • 29

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickElementsMultipleCollection.java
http://c2.com/cgi/wiki?DontRepeatYourself
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Duplication in Lambda Expressions
Let’s pick the names that start with N or B from the friends collection of names.
Continuing with the previous example, we may be tempted to write something
like the following:

collections/fpij/PickDifferentNames.java
final Predicate<String> startsWithN = name -> name.startsWith("N");
final Predicate<String> startsWithB = name -> name.startsWith("B");

final long countFriendsStartN =
friends.stream()

.filter(startsWithN).count();
final long countFriendsStartB =
friends.stream()

.filter(startsWithB).count();

The first predicate tests if the name starts with an N and the second tests for
a B. We pass these two instances to the two calls to the filter() method,
respectively. Seems reasonable, but the two predicates are mere duplicates,
with only the letter they use being different. Let’s figure out a way to eliminate
this duplication.

Removing Duplication with Lexical Scoping
As a first option, we could extract the letter as a parameter to a function and
pass the function as an argument to the filter() method. That’s a reasonable
idea, but the filter() method will not accept some arbitrary function. It insists
on receiving a function that accepts one parameter representing the context
element in the collection, and returning a boolean result. It’s expecting a Predicate.

For comparison purposes we need a variable that will cache the letter for
later use, and hold onto it until the parameter, name in this example, is
received. Let’s create a function for that.

collections/fpij/PickDifferentNames.java
public static Predicate<String> checkIfStartsWith(final String letter) {

return name -> name.startsWith(letter);
}

We defined checkIfStartsWith() as a static function that takes a letter of type String
as a parameter. It then returns a Predicate that can be passed to the filter()
method for later evaluation. Unlike the higher-order functions we’ve seen so
far, which accepted functions as parameters, the checkIfStartsWith() returns a
function as a result. This is also a higher-order function, as we discussed in
Evolution, Not Revolution, on page 12.

Chapter 2. Using Collections • 30

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickDifferentNames.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickDifferentNames.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The Predicate that checkIfStartsWith() returned is different from the lambda
expressions we’ve seen so far. In return name -> name.startsWith(letter), it’s clear
what name is: it’s the parameter passed to this lambda expression. But what’s
the variable letter bound to? Since that’s not in the scope of this anonymous
function, Java reaches over to the scope of the definition of this lambda
expression and finds the variable letter in that scope. This is called lexical
scoping. Lexical scoping is a powerful technique that lets us cache values
provided in one context for use later in another context. Since this lambda
expression closes over the scope of its definition, it’s also referred to as a
closure. For lexical scope access restriction, see Are there restrictions to lexical
scoping?, on page 31.

Joe asks:

Are there restrictions to lexical scoping?
From within a lambda expression we can only access local variables that are final or
effectively final in the enclosing scope.

A lambda expression may be invoked right away, or it may be invoked lazily or from
multiple threads. To avoid race conditions, the local variables we access in the
enclosing scope are not allowed to change once initialized. Any attempt to change
them will result in a compilation error.

Variables marked final directly fit this bill, but Java does not insist that we mark them
as such. Instead, Java looks for two things. First, the accessed variables have to be
initialized within the enclosing methods before the lambda expression is defined.
Second, the values of these variables don’t change anywhere else—that is, they’re
effectively final although they are not marked as such.

When using lambda expressions that capture local state, we should be aware that
stateless lambda expressions are runtime constants, but those that capture local
state have an additional evaluation cost.

We can use the lambda expression returned by checkIfStartsWith() in the call to
the filter() method, like so:

collections/fpij/PickDifferentNames.java
final long countFriendsStartN =
friends.stream()

.filter(checkIfStartsWith("N")).count();
final long countFriendsStartB =
friends.stream()

.filter(checkIfStartsWith("B")).count();

report erratum • discuss

Using Lexical Scoping and Closures • 31

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickDifferentNames.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

In the calls to the filter() method, we first invoke the checkIfStartsWith() method,
passing in a desired letter. This call immediately returns a lambda expression
that is then passed on to the filter() method.

By creating a higher-order function, checkIfStartsWith() in this example, and using
lexical scoping, we managed to remove the duplication in code. We did not
have to repeat the comparison to check if the name starts with different letters.

Refactoring to Narrow the Scope
In the preceding (smelly) example we used a static method, but we don’t want
to pollute the class with static methods to cache each variable in the future.
It would be nice to narrow the function’s scope to where it’s needed. We can
do that using a Function interface.

collections/fpij/PickDifferentNames.java
final Function<String, Predicate<String>> startsWithLetter =
(String letter) -> {

Predicate<String> checkStarts = (String name) -> name.startsWith(letter);
return checkStarts;

};

This lambda expression replaces the static method checkIfStartsWith() and can
appear within a function, just before it’s needed. The startsWithLetter variable
refers to a Function that takes in a String and returns a Predicate.

This version is verbose compared to the static method we saw earlier, but we’ll
refactor that soon to make it concise. For all practical purposes, this function
is equivalent to the static method; it takes a String and returns a Predicate. Instead
of explicitly creating the instance of the Predicate and returning it, we can
replace it with a lambda expression.

collections/fpij/PickDifferentNames.java
final Function<String, Predicate<String>> startsWithLetter =
(String letter) -> (String name) -> name.startsWith(letter);

We reduced clutter, but we can take the conciseness up another notch by
removing the types and letting the Java compiler infer the types based on the
context. Let’s look at the concise version.

collections/fpij/PickDifferentNames.java
final Function<String, Predicate<String>> startsWithLetter =
letter -> name -> name.startsWith(letter);

It takes a bit of effort to get used to this concise syntax. Feel free to look away
for a moment if this makes you cross-eyed. Now that we’ve refactored that
version, we can use it in place of the checkIfStartsWith(), like so:

Chapter 2. Using Collections • 32

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickDifferentNames.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickDifferentNames.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickDifferentNames.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

collections/fpij/PickDifferentNames.java
final long countFriendsStartN =
friends.stream()

.filter(startsWithLetter.apply("N")).count();
final long countFriendsStartB =
friends.stream()

.filter(startsWithLetter.apply("B")).count();

We’ve come full circle with higher-order functions in this section. Our examples
illustrate how to pass functions to functions, create functions within functions,
and return functions from within functions. They also demonstrate the con-
ciseness and reusability that lambda expressions facilitate.

We made good use of both Function and Predicate in this section, but let’s discuss
how they’re different. A Predicate<T> takes in one parameter of type T and
returns a boolean result to indicate a decision for whatever check it represents.
We can use it anytime we want to make a go or no-go decision for a candidate
we pass to the predicate. Methods like filter() that evaluate candidate elements
take in a Predicate as their parameters. On the other hand, a Function<T, R> rep-
resents a function that takes a parameter of type T and returns a result of
type R. This is more general than a Predicate that always returns a boolean. We
can use a Function anywhere we want to transform an input to another value,
so it’s quite logical that the map() method uses Function as its parameter.

Selecting elements from a collection was easy. Next we’ll cover how to pick
just one element out of a collection.

Picking an Element
It’s reasonable to expect that picking one element from a collection would be
simpler than picking multiple elements. But there are a few complications.
Let’s look at the complexity introduced by the habitual approach and then
bring in lambda expressions to solve it.

Let’s create a method that will look for an element that starts with a given
letter, and print it.

collections/fpij/PickAnElement.java
public static void pickName(

final List<String> names, final String startingLetter) {
String foundName = null;
for(String name : names) {
if(name.startsWith(startingLetter)) {

foundName = name;
break;

}
}

report erratum • discuss

Picking an Element • 33

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickDifferentNames.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickAnElement.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

System.out.print(String.format("A name starting with %s: ", startingLetter));

if(foundName != null) {
System.out.println(foundName);

} else {
System.out.println("No name found");

}
}

This method’s odor can easily compete with passing garbage trucks. We first
created a foundName variable and initialized it to null—that’s the source of our
first bad smell. This will force a null check, and if we forget to deal with it the
result could be a NullPointerException or an unpleasant response. We then used
an external iterator to loop through the elements, but had to break out of the
loop if we found an element—here are other sources of rancid smells: primitive
obsession, imperative style, and mutability. Once out of the loop, we had to
check the response and print the appropriate result. That’s quite a bit of code
for a simple task.

Let’s rethink the problem. We simply want to pick the first matching element
and safely deal with the absence of such an element. Let’s rewrite the pickName()
method, this time using lambda expressions.

collections/fpij/PickAnElementElegant.java
public static void pickName(

final List<String> names, final String startingLetter) {

final Optional<String> foundName =
names.stream()

.filter(name ->name.startsWith(startingLetter))

.findFirst();

System.out.println(String.format("A name starting with %s: %s",
startingLetter, foundName.orElse("No name found")));

}

Some powerful features in the JDK library came together to help achieve this
conciseness. First we used the filter() method to grab all the elements matching
the desired pattern. Then the findFirst() method of the Stream class helped pick
the first value from that collection. This method returns a special Optional
object, which is the state-appointed null deodorizer in Java.

The Optional class is useful whenever the result may be absent. It protects us
from getting a NullPointerException by accident and makes it quite explicit to the
reader that “no result found” is a possible outcome. We can inquire if an
object is present by using the isPresent() method, and we can obtain the current
value using its get() method. Alternatively, we could suggest a substitute value

Chapter 2. Using Collections • 34

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickAnElementElegant.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

for the missing instance, using the method (with the most threatening name)
orElse(), like in the previous code.

Let’s exercise the pickName() function with the sample friends collection we’ve
used in the examples so far.

collections/fpij/PickAnElementElegant.java
pickName(friends, "N");
pickName(friends, "Z");

The code picks out the first matching element, if found, and prints an
appropriate message otherwise.

A name starting with N: Nate
A name starting with Z: No name found

The combination of the findFirst() method and the Optional class reduced our
code and its smell quite a bit. We’re not limited to the preceding options when
working with Optional, though. For example, rather than providing an alternate
value for the absent instance, we can ask Optional to run a block of code or a
lambda expression only if a value is present, like so:

collections/fpij/PickAnElementElegant.java
foundName.ifPresent(name -> System.out.println("Hello " + name));

When compared to using the imperative version to pick the first matching
name, the nice, flowing functional style looks better. But are we doing more
work in the fluent version than we did in the imperative version? The answer
is no—these methods have the smarts to perform only as much work as is
necessary (we’ll talk about this more in Leveraging the Laziness of Streams,
on page 111).

The search for the first matching element demonstrated a few more neat
capabilities in the JDK. Next we’ll look at how lambda expressions help
compute a single result from a collection.

Reducing a Collection to a Single Value
We’ve gone over quite a few techniques to manipulate collections so far:
picking matching elements, selecting a particular element, and transforming
a collection. All these operations have one thing in common: they all worked
independently on individual elements in the collection. None required com-
paring elements against each other or carrying over computations from one
element to the next. In this section we look at how to compare elements and
carry over a computational state across a collection.

report erratum • discuss

Reducing a Collection to a Single Value • 35

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickAnElementElegant.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickAnElementElegant.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Let’s start with some basic operations and build up to something a bit more
sophisticated. As the first example, let’s read over the values in the friends
collection of names and determine the total number of characters.

collections/fpij/PickALongest.java
System.out.println("Total number of characters in all names: " +
friends.stream()

.mapToInt(name -> name.length())

.sum());

To find the total of the characters we need the length of each name. We can
easily compute that using the mapToInt() method. Once we transform from the
names to their lengths, the final step is to total them. This step we perform
using the built-in sum() method. Here’s the output for this operation:

Total number of characters in all names: 26

We leveraged the mapToInt() method, a variation of the map operation (variations
like mapToInt(), mapToDouble(), and so on create type-specialized streams such
as IntStream and DoubleStream) and then reduced the resulting length to the sum
value.

Instead of using the sum() method, we could use a variety of methods like max()
to find the longest length, min() to find the shortest length, sorted() to sort the
lengths, average() to find the average of the length, and so on.

The hidden charm in the preceding example is the increasingly popular
MapReduce pattern,2 with the map() method being the spread operation and
the sum() method being the special case of the more general reduce operation.
In fact, the implementation of the sum() method in the JDK uses a reduce()
method. Let’s look at the more general form of reduce.

As an example, let’s read over the given collection of names and display the
longest one. If there is more than one name with the same longest length,
we’ll display the first one we find. One way we could do that is to figure out
the longest length, and then pick the first element of that length. But that’d
require going over the list twice—not efficient. This is where a reduce() method
comes into play.

We can use the reduce() method to compare two elements against each other
and pass along the result for further comparison with the remaining elements
in the collection. Much like the other higher-order functions on collections
we’ve seen so far, the reduce() method iterates over the collection. In addition,

2. http://research.google.com/archive/mapreduce.html

Chapter 2. Using Collections • 36

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickALongest.java
http://research.google.com/archive/mapreduce.html
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

it carries forward the result of the computation that the lambda expression
returned. An example will help clarify this, so let’s get down to the code.

collections/fpij/PickALongest.java
final Optional<String> aLongName =

friends.stream()
.reduce((name1, name2) ->

name1.length() >= name2.length() ? name1 : name2);
aLongName.ifPresent(name ->
System.out.println(String.format("A longest name: %s", name)));

The lambda expression we’re passing to the reduce() method takes two
parameters, name1 and name2, and returns one of them based on the length.
The reduce() method has no clue about our specific intent. That concern is
separated from this method into the lambda expression that we pass to it—
this is a lightweight application of the strategy pattern.3

This lambda expression conforms to the interface of an apply() method of a
JDK functional interface named BinaryOperator. This is the type of the parameter
the reduce() method receives. Let’s run the reduce() method and see if it picks
the first of the two longest names from our friends list.

A longest name: Brian

As the reduce() method iterated through the collection, it called the lambda
expression first, with the first two elements in the list. The result from the lambda
expression is used for the subsequent call. In the second call name1 is bound to
the result from the previous call to the lambda expression, and name2 is bound
to the third element in the collection. The calls to the lambda expression continue
for the rest of the elements in the collection. The result from the final call is
returned as the result of the reduce() method call.

The result of the reduce() method is an Optional because the list on which reduce()
is called may be empty. In that case, there would be no longest name. If the
list had only one element, then reduce() would return that element and the
lambda expression we pass would not be invoked.

From the example we can infer that the reduce() method’s result is at most one
element from the collection. If we want to set a default or a base value, we
can pass that value as an extra parameter to an overloaded variation of the
reduce() method. For example, if the shortest name we want to pick is Steve,
we can pass that to the reduce() method, like so:

3. See Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95], by
Gamma et al.

report erratum • discuss

Reducing a Collection to a Single Value • 37

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickALongest.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

collections/fpij/PickALongest.java
final String steveOrLonger =

friends.stream()
.reduce("Steve", (name1, name2) ->

name1.length() >= name2.length() ? name1 : name2);

If any name was longer than the given base, it would get picked up; otherwise
the function would return the base value, Steve in this example. This version
of reduce() does not return an Optional since if the collection is empty, the default
will be returned; there’s no concern of an absent or nonexistent value.

Before we wrap up this chapter, let’s visit a fundamental yet seemingly difficult
operation on collections: joining elements.

Joining Elements
We’ve explored how to select elements, iterate, and transform collections. Yet
in a trivial operation—concatenating a collection—we could lose all the gains
we made with concise and elegant code if not for a newly added join() function.
This simple method is so useful that it’s poised to become one of the most
used functions in the JDK. Let’s see how to use it to print the values in a list,
comma separated.

Let’s work with our friends list. What does it take to print the list of names,
separated by commas, using only the old JDK libraries?

We have to iterate through the list and print each element. Since the Java 5
for construct is better than the archaic for loop, let’s start with that.

collections/fpij/PrintList.java
for(String name : friends) {
System.out.print(name + ", ");

}
System.out.println();

That was simple code, but let’s look at what it yielded.

Brian, Nate, Neal, Raju, Sara, Scott,

Darn it; there’s a stinking comma at the end (shall we blame it on Scott?).
How do we tell Java not to place a comma there? Unfortunately, the loop will
run its course and there’s no easy way to tell the last element apart from the
rest. To fix this, we can fall back on the habitual loop.

collections/fpij/PrintList.java
for(int i = 0; i < friends.size() - 1; i++) {

System.out.print(friends.get(i) + ", ");
}

Chapter 2. Using Collections • 38

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PickALongest.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PrintList.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PrintList.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

if(friends.size() > 0)
System.out.println(friends.get(friends.size() - 1));

Let’s see if the output of this version was decent.

Brian, Nate, Neal, Raju, Sara, Scott

The result looks good, but the code to produce the output does not. Beam us
up, modern Java.

We no longer have to endure that pain. A StringJoiner class cleans up all that
mess in Java 8 and the String class has an added convenience method join() to
turn that smelly code into a simple one-liner.

collections/fpij/PrintList.java
System.out.println(String.join(", ", friends));

Let’s quickly verify the output is as charming as the code that produced it.

Brian, Nate, Neal, Raju, Sara, Scott

Under the hood the String’s join() method calls upon the StringJoiner to concatenate
the values in the second argument, a varargs, into a larger string separated by
the first argument. We’re not limited to concatenating only with a comma
using this feature. We could, for example, take a bunch of paths and concate-
nate them to form a classpath easily, thanks to the new methods and classes.

We saw how to join a list of elements; we can also transform the elements
before joining them. We already know how to transform elements using the
map() method. We can also be selective about which element we want to keep
by using methods like filter(). The final step of joining the elements, separated
by commas or something else, is simply a reduce operation.

We could use the reduce() method to concatenate elements into a string, but
that would require some effort on our part. The JDK has a convenience method
named collect(), which is another form of reduce that can help us collect values
into a target destination.

The collect() method does the reduction but delegates the actual implementation
or target to a collector. We could drop the transformed elements into an
ArrayList, for instance. Or, to continue with the current example, we could collect
the transformed elements into a string concatenated with commas.

collections/fpij/PrintList.java
System.out.println(
friends.stream()

.map(String::toUpperCase)

.collect(joining(", ")));

report erratum • discuss

Joining Elements • 39

http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PrintList.java
http://media.pragprog.com/titles/vsjava8/code/collections/fpij/PrintList.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We invoked the collect() on the transformed list and provided it a collector
returned by the joining() method, which is a static method on a Collectors utility
class. A collector acts as a sink object to receive elements passed by the collect()
method and stores it in a desired format: ArrayList, String, and so on. We will
explore the collect() method further in Using the collect Method and the Collectors
Class, on page 52.

Here are the names, now in uppercase and comma separated.

BRIAN, NATE, NEAL, RAJU, SARA, SCOTT

The StringJoiner gives a lot more control over the format of concatenation; we
can specify a prefix, a suffix, and infix character sequences, if we desire.

We saw how lambda expressions and the newly added classes and methods
make programming in Java so much easier, and more fun too. Let’s go over
what we covered in this chapter.

Recap
Collections are commonplace in programming and, thanks to lambda
expressions, using them is now much easier and simpler in Java. We can
trade the longwinded old methods for elegant, concise code to perform the
common operations on collections. Internal iterators make it convenient to
traverse collections, transform collections without enduring mutability, and
select elements from collections without much effort. Using these functions
means less code to write. That can lead to more maintainable code, more code
that does useful domain- or application-related logic, and less code to handle
the basics of coding.

In the next chapter we’ll cover how lambda expressions simplify another
fundamental programming task: working with strings and comparing objects.

Chapter 2. Using Collections • 40

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

CHAPTER 3

Make everything as simple as possible, but not simpler.

 ➤ Albert Einstein

Strings, Comparators, and Filters
The JDK has evolved to include convenience methods that promote the
functional style. When using familiar classes and interfaces from the library
—String, for example—we need to look for opportunities to use these newer
functions in place of the old style. Also, anywhere we used an anonymous
inner class with just one method, we can now use lambda expressions to
reduce clutter and ceremony.

In this chapter we’ll use lambda expressions and method references to iterate
over a String, to implement Comparators, to list files in a directory, and to observe
file and directory changes. Quite a few methods introduced in the previous
chapter will appear here again to help with the tasks at hand. Techniques
you pick up along the way will help turn long, mundane tasks into concise
code snippets you can quickly write and easily maintain.

Iterating a String
The chars() method is a new one in the String class from the CharSequence interface.
It’s useful for fluently iterating over the String’s characters. We can use this
convenient internal iterator to apply an operation on the individual characters
that make up the string. Let’s use it in an example to process a string. Along
the way we’ll discuss a few more handy ways to use method references.

compare/fpij/IterateString.java
final String str = "w00t";

str.chars()
.forEach(ch -> System.out.println(ch));

The chars() method returns a Stream over which we can iterate, using the forEach()
internal iterator. We get direct read access to the characters in the String
within the iterator. Here’s the result when we iterate and print each character.

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/IterateString.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

119
48
48
116

The result is not quite what we’d expect. Instead of seeing letters we’re seeing
numbers. That’s because the chars() method returns a stream of Integers repre-
senting the letters instead of a stream of Characters. Let’s explore the API a bit
further before we fix the output.

In the previous code we created a lambda expression in the argument list for
the forEach() method. The implementation was a simple call where we routed
the parameter directly as an argument to the println() method. Since this is a
trivial operation, we can eliminate this mundane code with the help of the
Java compiler. We can rely on it to do this parameter routing for us, using a
method reference like we did in Using Method References, on page 25.

We already saw how to create a method reference for an instance method.
For example, for the call name.toUpperCase(), the method reference is String::toUp-
perCase. In this example, however, we have a call on a static reference System.out.
We can use either a class name or an expression to the left of the double
colon in method references. Using this flexibility, it’s quite easy to provide a
reference to the println() method, as we see next.

compare/fpij/IterateString.java
str.chars()

.forEach(System.out::println);

In this example we see the smarts of the Java compiler for parameter routing.
Recall that lambda expressions and method references may stand in where
implementations of functional interfaces are expected, and the Java compiler
synthesizes the appropriate method in place (see A Little Sugar to Sweeten,
on page 15). In the earlier method reference we used, String::toUppercase, the
parameter to the synthesized method turned into the target of the method
call, like so: parameter.toUppercase();. That’s because the method reference is
based on a class name (String). In this example, the method reference, again
to an instance method, is based on an expression—an instance of PrintStream
accessed through the static reference System.out. Since we already provided a
target for the method, the Java compiler decided to use the parameter of the
synthesized method as an argument to the referenced method, like so:
System.out.println(parameter);. Sweet.

The code with the method reference is quite concise, but we have to dig into
it a bit more to understand what’s going on. Once we get used to method
references, our brains will know to autoparse these.

Chapter 3. Strings, Comparators, and Filters • 42

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/IterateString.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

In this example, although the code is concise, the output is not satisfactory.
We want to see letters and not numbers in their place. To fix that, let’s write
a convenience method that prints an int as a letter.

compare/fpij/IterateString.java
private static void printChar(int aChar) {
System.out.println((char)(aChar));

}

We can use a reference to this convenience method to fix the output.

compare/fpij/IterateString.java
str.chars()

.forEach(IterateString::printChar);

We can continue to use the result of chars() as an int, and when it’s time to
print we can convert it to a character. The output of this version will display
letters.

w
0
0
t

If we want to process characters and not int from the start, we can convert
the ints to characters right after the call to the chars() method, like so:

compare/fpij/IterateString.java
str.chars()

.mapToObj(ch -> Character.valueOf((char)ch))

.forEach(System.out::println);

We used the internal iterator on the Stream that the chars() method returned,
but we’re not limited to that method. Once we get a Stream we can use any
methods available on it, like map(), filter(), reduce(), and so on, to process the
characters in the string. For example, we can filter out only digits from the
string, like so:

compare/fpij/IterateString.java
str.chars()

.filter(ch -> Character.isDigit(ch))

.forEach(ch -> printChar(ch));

We can see the filtered digits in the next output.

0
0

Once again, instead of the lambda expressions we passed to the filter() method
and the forEach() method, we can use references to the respective methods.

report erratum • discuss

Iterating a String • 43

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/IterateString.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/IterateString.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/IterateString.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/IterateString.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

compare/fpij/IterateString.java
str.chars()

.filter(Character::isDigit)

.forEach(IterateString::printChar);

The method references here helped remove the mundane parameter routing.
In addition, in this example we see yet another variation of method references
compared to the previous two instances where we used them. When we first
saw method references, we created one for an instance method. Later we
created one for a call on a static reference. Now we’re creating a method refer-
ence for a static method—method references seem to keep on giving.

The one for an instance method and the one for a static method look the same
structurally: for example, String::toUppercase and Character::isDigit. To decide how
to route the parameter, the Java compiler will check whether the method is
an instance method or a static method. If it’s an instance method, then the
synthesized method’s parameter becomes the call’s target, like in parameter.toUp-
percase(); (the exception to this rule is if the target is already specified like in
System.out::println). On the other hand, if the method is static, then the parameter
to the synthesized method is routed as an argument to this method, like in
Character.isDigit(parameter);. See Appendix 2, Syntax Overview, on page 157, for a
listing of method-reference variations and their syntax.

While this parameter routing is quite convenient, there is one caveat—method
collisions and the resulting ambiguity. If there’s both a matching instance
method and a static method, we’ll get a compilation error due to the reference’s
ambiguity. For example, if we write Double::toString to convert an instance of
Double to a String, the compiler would get confused whether to use the public
String toString() instance method or the static method public static String toString(double
value), both from the Double class. If we run into this, no sweat; we simply
switch back to using the appropriate lambda-expression version to move on.

Once we get used to the functional style, we can switch between the lambda
expressions and the more concise method references, based on our comfort
level.

We used a new method in Java 8 to easily iterate over characters. Next we’ll
explore the enhancements to the Comparator interface.

Implementing the Comparator Interface
The Comparator interface is used in hundreds of places in the JDK library, from
searching operations to sorting, reversing, and so on. In Java 8 this has

Chapter 3. Strings, Comparators, and Filters • 44

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/IterateString.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

turned into a functional interface; the benefit is that we can use charmingly
fluent syntax to implement comparators.

Let’s create a few different implementations of the Comparator to understand
the influence of the new style. Our fingers will thank us for all the keystrokes
saved by not having to create anonymous inner classes.

Sorting with a Comparator
We’ll build an example to sort a list of people using a few different points of
comparisons. Let’s first create the Person JavaBean.

compare/fpij/Person.java
public class Person {
private final String name;
private final int age;

public Person(final String theName, final int theAge) {
name = theName;
age = theAge;

}

public String getName() { return name; }
public int getAge() { return age; }

public int ageDifference(final Person other) {
return age - other.age;

}

public String toString() {
return String.format("%s - %d", name, age);

}
}

We could implement the Comparable interface on the Person class, but that’d
limit us to one particular comparison. We would want to compare on different
things—on name, age, or a combination of fields, for example. To get this
flexibility, we’ll create the code for different comparisons just when we need
them, with the help of the Comparator interface.

Let’s create a list of people to work with, folks with different names and ages.

compare/fpij/Compare.java
final List<Person> people = Arrays.asList(
new Person("John", 20),
new Person("Sara", 21),
new Person("Jane", 21),
new Person("Greg", 35));

report erratum • discuss

Implementing the Comparator Interface • 45

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/Person.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/Compare.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We could sort the people by their names or ages and in ascending or
descending order. In the habitual way to achieve this we would implement
the Comparator interface using anonymous inner classes. But the essence here
is the code for the comparison logic, and anything else we write would be
pure ceremony. We can boil this down to its essence using lambda expressions.

Let’s first sort the people in the list in ascending order by age.

Since we have a List, the obvious choice is the sort() method on the List. There
are downsides to using this method, however. That’s a void method, which
means the list will be mutated when we call it. To preserve the original list,
we’d have to make a copy and then invoke the sort() method on the copy; that’s
quite labor intensive. Instead we’ll seek the help of the Stream.

We can get a Stream from the List and conveniently call the sorted() method on
it. Rather than messing with the given collection, it will return a sorted collec-
tion. We can nicely configure the Comparator parameter when calling this
method.

compare/fpij/Compare.java
List<Person> ascendingAge =
people.stream()

.sorted((person1, person2) -> person1.ageDifference(person2))

.collect(toList());
printPeople("Sorted in ascending order by age: ", ascendingAge);

We first transformed the given List of people to a Stream using the stream() method.
We then invoked the sorted() method on it. This method takes a Comparator as
its parameter. Since Comparator is a functional interface, we conveniently passed
in a lambda expression. Finally we invoked the collect() method and asked it
to put the result into a List. Recall that the collect() method is a reducer that
will help to target the members of the transformed iteration into a desirable
type or format. The toList() is a static method on the Collectors convenience class.

Comparator’s compareTo() abstract method takes two parameters, the objects to be
compared, and returns an int result. To comply with this, our lambda
expression takes two parameters, two instances of Person, with their types
inferred by the Java compiler. We return an int indicating whether the objects
are equal.

Since we want to sort by the age property, we compare the two given people’s
ages and return the difference. If they’re the same age, our lambda expression
will return a 0 to indicate they’re equal. Otherwise, it will indicate the first
person is younger by returning a negative number or older by returning a
positive number for the age difference.

Chapter 3. Strings, Comparators, and Filters • 46

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/Compare.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The sorted() method will iterate over each element in the target collection (people
in this example) and apply the given Comparator (a lambda expression in this
case) to decide the logical ordering of the elements. The execution mechanism
of sorted() is much like the reduce() method we saw earlier. The reduce() method
trickles the list down to one value. The sorted() method, on the other hand,
uses the result of the comparison to perform the ordering.

Once we sort the instances we want to print the values, so we invoke a con-
venience method printPeople(); let’s write that method next.

compare/fpij/Compare.java
public static void printPeople(

final String message, final List<Person> people) {

System.out.println(message);
people.forEach(System.out::println);

}

In this method we print a message and iterate over the given collection,
printing each of the instances.

Let’s call the sorted() method, and the people in the list will be printed in
ascending order by age.

Sorted in ascending order by age:
John - 20
Sara - 21
Jane - 21
Greg - 35

Let’s revisit the call to the sorted() method and make one more improvement
to it.

.sorted((person1, person2) -> person1.ageDifference(person2))

In the lambda expression we’re passing to the sorted() method, we’re simply
routing the two parameters—the first parameter as the target to the ageDiffer-
ence() method and the second as its argument. Rather than writing this code,
we can use the office-space pattern—i.e., ask the Java compiler to do the
routing again, using a method reference.

The parameter routing we want here is a bit different from the ones we saw
earlier. So far we’ve seen a parameter being used as a target in one case and
as an argument in another case. In the current situation, however, we have
two parameters and we want those to be split, the first to be used as a target
to the method and the second as an argument. No worries. The Java compiler
gives us a friendly nod: “I can take care of that for you.”

report erratum • discuss

Implementing the Comparator Interface • 47

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/Compare.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Let’s replace the lambda expression in the previous call to the sorted() method
with a short and sweet reference to the ageDifference() method.

people.stream()
.sorted(Person::ageDifference)

The code is fantastically concise, thanks to the method-reference convenience
the Java compiler offers. The compiler took the parameters, the two person
instances being compared, and made the first the ageDifference() method’s target
and the second the parameter. Rather than explicitly connecting these, we
let the compiler work a little extra for us. When using this conciseness, we
must be careful to ensure that the first parameter is really the intended target
of the method referenced and the remaining parameters are its arguments.

Reusing a Comparator
We got the people sorted in ascending order by age quite easily, and sorting
them in descending order is just as easy. Let’s give that a shot.

compare/fpij/Compare.java
printPeople("Sorted in descending order by age: ",
people.stream()

.sorted((person1, person2) -> person2.ageDifference(person1))

.collect(toList()));

We called the sorted() method and passed a lambda expression that conforms
to the Comparator interface, much like the previous time. The only difference is
the implementation of the lambda expression—we switched the people in the
age comparison. The result should be a sort by descending order of their ages.
Let’s look at the output.

Sorted in descending order by age:
Greg - 35
Sara - 21
Jane - 21
John - 20

Changing the logic for our comparison was effortless. We can’t quite refactor
this version to use the method reference, though, because the parameter
order here does not follow the parameter-routing conventions for method
reference; the first parameter is not used as a target to the method, but rather
as its argument. There’s a way to fix that, and in the process remove a
duplication of effort that crept in. Let’s see how.

Earlier we created two lambda expressions: one to order the ages of two people
in ascending order and the other to do it in descending order. In so doing, we

Chapter 3. Strings, Comparators, and Filters • 48

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/Compare.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

duplicated the logic and the effort, and violated the DRY principle.1 If all we
want is a reverse of the comparison, the JDK has us covered with a reversed()
method on the Comparator, marked with a special method modifier called default.
We’ll discuss default methods in A Peek into the default Methods, on page 77,
but here we’ll use the new reversed() method to remove the duplication.

compare/fpij/Compare.java
Comparator<Person> compareAscending =

(person1, person2) -> person1.ageDifference(person2);
Comparator<Person> compareDescending = compareAscending.reversed();

We first created a Comparator, compareAscending, to compare the age of the people
in ascending order using the lambda expression syntax. To reverse the order
of comparison instead of duplicating the effort, we can simply call reversed()
on the first Comparator to get another Comparator with the comparison orders in
reverse. Under the hood the reversed() creates a comparator that swaps its
parameters’ order of comparison. This makes the reversed() method a higher-
order method—this function creates and returns another functional expression
with no side effect. Let’s use these two comparators in the code.

compare/fpij/Compare.java
printPeople("Sorted in ascending order by age: ",
people.stream()

.sorted(compareAscending)

.collect(toList())
);
printPeople("Sorted in descending order by age: ",
people.stream()

.sorted(compareDescending)

.collect(toList())
);

It’s becoming clear how the new features in Java 8 can greatly reduce code
complexity and duplication of effort, but to get all the benefits we have to
explore the seemingly endless possibilities the JDK offers.

We’ve been sorting by age, but we could sort by name quite easily, as well.
Let’s sort in ascending alphabetical order by name; again, only the logic
within the lambda expression needs to change.

compare/fpij/Compare.java
printPeople("Sorted in ascending order by name: ",
people.stream()

.sorted((person1, person2) ->
person1.getName().compareTo(person2.getName()))

.collect(toList()));

1. http://c2.com/cgi/wiki?DontRepeatYourself

report erratum • discuss

Implementing the Comparator Interface • 49

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/Compare.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/Compare.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/Compare.java
http://c2.com/cgi/wiki?DontRepeatYourself
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

In the output we should now see the people with names listed in ascending
alphabetical order.

Sorted in ascending order by name:
Greg - 35
Jane - 21
John - 20
Sara - 21

So far our comparisons have worked on either the age or the name property.
We can make the logic in the lambda expression more intelligent. For example,
we could sort based on both name and age.

Let’s pick the youngest person in the list. We could find the first person after
we’ve sorted by age in ascending order. But we don’t need to go that far; the
Stream has us covered with a min() method. This method also accepts a Comparator
but returns the smallest object in the collection based on the given comparator.
Let’s use that method.

compare/fpij/Compare.java
people.stream()

.min(Person::ageDifference)

.ifPresent(youngest -> System.out.println("Youngest: " + youngest));

We use the reference for the ageDifference() method in the call to the min() method.
The min() method returns an Optional because the list may be empty and
therefore there may not be a youngest person. We then print the details of
the youngest person that we get access to from the Optional using its ifPresent()
method. Let’s look at the output.

Youngest: John - 20

We can as easily find the oldest person in the list. Simply pass that method
reference to a max() method.

compare/fpij/Compare.java
people.stream()

.max(Person::ageDifference)

.ifPresent(eldest -> System.out.println("Eldest: " + eldest));

Let’s look at the output for the name and age of the oldest in the list.

Eldest: Greg - 35

We saw how lambda expressions and method references make implementing
comparators concise and easy. For its part, the JDK has evolved with a few
convenience methods added to the Comparator interface to make comparisons
more fluent, as we’ll see next.

Chapter 3. Strings, Comparators, and Filters • 50

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/Compare.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/Compare.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Multiple and Fluent Comparisons
Let’s look at the new convenience methods added to the Comparator interface
and use them to compare with ease based on multiple properties.

We’ll continue with the example from the previous section. To sort people by
their name we used this:

people.stream()
.sorted((person1, person2) ->

person1.getName().compareTo(person2.getName()));

The syntax is quite concise compared to the inner-classes syntax from
yesteryear. But we can do better thanks to convenience functions in the
Comparator interface. We can more fluently express our objectives using them.
For example, to sort people by comparing their names, we can write this:

compare/fpij/Compare.java
final Function<Person, String> byName = person -> person.getName();
people.stream()

.sorted(comparing(byName));

In the code we statically imported the comparing() method in the Comparator
interface. The comparing() method uses the logic embedded in the provided
lambda expression to create a Comparator. In other words, it’s a higher-order
function that takes in one function (Function) and returns another (Comparator).
In addition to making the syntax more concise, the code now reads fluently
to express the problem being solved.

We can take this fluency further to make multiple comparisons. For example,
here is some cogent syntax to sort people in ascending order by both age and
name:

compare/fpij/Compare.java
final Function<Person, Integer> byAge = person -> person.getAge();
final Function<Person, String> byTheirName = person -> person.getName();

printPeople("Sorted in ascending order by age and name: ",
people.stream()

.sorted(comparing(byAge).thenComparing(byTheirName))

.collect(toList()));

We first created two lambda expressions, one to return the age of a given
person and the other to return that person’s name. We then combined these
two lambda expressions in the call to the sorted() method to compare on both
properties. The comparing() method created and returned a Comparator to compare
based on age. On the returned Comparator we invoked the thenComparing() method

report erratum • discuss

Multiple and Fluent Comparisons • 51

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/Compare.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/Compare.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

to create a composite comparator that compares based on both age and name.
The output from this code shows the net result of sorting by age first and
then by name.

Sorted in ascending order by age and name:
John - 20
Jane - 21
Sara - 21
Greg - 35

As we can see, it’s easy to combine the Comparator implementations using the
convenience of lambda expressions and the new utility classes in the JDK.
Next we’ll examine Collectors.

Using the collect Method and the Collectors Class
We’ve used the collect() method a few times in the examples to gather Stream
elements into an ArrayList. This method is a reduce operation that’s useful for
transforming the collection into another form, often a mutable collection. The
collect() function, when combined with the utility methods of the Collectors class,
provides a wealth of conveniences, as we’ll see in this section.

Let’s examine the power of collect() using the Person list as an example. Suppose
we want to collect only people older than 20 years from the original list. Here’s
a version that uses mutability and forEach().

compare/fpij/OlderThan20.java
List<Person> olderThan20 = new ArrayList<>();

people.stream()
.filter(person -> person.getAge() > 20)
.forEach(person -> olderThan20.add(person));

System.out.println("People older than 20: " + olderThan20);

From the Person list we filtered only people who are older than 20 years using
the filter() method. Then, within the forEach() method, we added the elements
into an ArrayList we initialized before starting the iteration. Let’s look at the
output from this code before we refactor it.

People older than 20: [Sara - 21, Jane - 21, Greg - 35]

The code produced the desired result, but there are a few issues. First, the
operation of adding an element into the target collection is pretty low level—
imperative rather than declarative. If we decide to make the iteration concur-
rent, we immediately have to deal with thread-safety concerns—the mutabil-
ity makes it hard to parallelize. Fortunately, we can easily alleviate these
concerns using the collect() method. Let’s see how.

Chapter 3. Strings, Comparators, and Filters • 52

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/OlderThan20.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The collect() method takes a stream of elements and collects or gathers them
into a result container. To do that, the method needs to know three things:

• How to make a result container (for example, using the ArrayList::new method)

• How to add a single element to a result container (for example, using the
ArrayList::add method)

• How to merge one result container into another (for example, using the
ArrayList::addAll method)

The last item may not be necessary for purely sequential operations; the code
is designed to work for both sequential and parallel execution.

Let’s provide these operations to the collect() method to gather the results of a
stream after a filter operation.

compare/fpij/OlderThan20.java
List<Person> olderThan20 =

people.stream()
.filter(person -> person.getAge() > 20)
.collect(ArrayList::new, ArrayList::add, ArrayList::addAll);

System.out.println("People older than 20: " + olderThan20);

This version of code produces the same result as the previous version; how-
ever, this version has many benefits.

First, we’re programming with intention and more expressively, clearly indi-
cating our goal of collecting the result into an ArrayList. The collect() method took
a factory or supplier as the first parameter, followed by operations that help
accumulate elements into the collection.

Second, since we’re not performing any explicit mutation in code, it’s easy to
parallelize the execution of the iteration. Since we let the library control the
mutation, it can handle coordination and thread safety for us. This is in spite
of the fact that ArrayList is not itself thread safe—nifty.

The collect() method can perform parallel additions, as appropriate, into different
sublists, and then merge them in a thread-safe manner into a larger list
(hence the last parameter to help merge lists).

We saw the benefits of the collect() method over manually adding elements into
an ArrayList. Next let’s look at another overloaded version of this method that’s
simpler and more convenient—it uses a Collector as the parameter. The Collector
rolls into an interface the operations of supplier, accumulator, and combiner
—the operations we specified as three separate parameters in the previous
example—for ease and reuse. The Collectors utility class provides a toList()

report erratum • discuss

Using the collect Method and the Collectors Class • 53

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/OlderThan20.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

convenience method that creates an implementation of the Collector interface
to accumulate elements into an ArrayList. Let’s modify the previous version to
use this version of collect.

compare/fpij/OlderThan20.java
List<Person> olderThan20 =

people.stream()
.filter(person -> person.getAge() > 20)
.collect(Collectors.toList());

System.out.println("People older than 20: " + olderThan20);

The convenience of this concise version of collect() along with the Collectors util-
ity doesn’t stop here. There are several methods on the Collectors to perform
various collect or accumulate operations. For example, in addition to toList(),
there is toSet() to accumulate into a set, toMap() to gather into a key-value col-
lection, and joining() to concatenate the elements into a string. We can also
join multiple combine operations using methods like mapping(), collectingAndThen(),
minBy(), maxBy(), and groupingBy().

Let’s use groupingBy() to group people by their age.

compare/fpij/OlderThan20.java
Map<Integer, List<Person>> peopleByAge =

people.stream()
.collect(Collectors.groupingBy(Person::getAge));

System.out.println("Grouped by age: " + peopleByAge);

With a simple call to the collect() method we are able to perform the grouping.
The groupingBy() method takes a lambda expression or a method reference—
called the classifier function—that returns the value of the property on which
we want to do the grouping. Based on what we return from this function, it
puts the element in context into that bucket or group. We can see the
grouping in this output:

Grouped by age: {35=[Greg - 35], 20=[John - 20], 21=[Sara - 21, Jane - 21]}

The instances of Person are grouped based on their age.

In the previous example we grouped and collected people by age. A variation
of the groupingBy() method can combine multiple criteria. The simple groupingBy
collector uses the classifier to organize the stream of elements into buckets.
The general groupingBy collector, on the other hand, can apply yet another
collector to each bucket. In other words, downstream the values collected
into buckets can go through more classification and collection, as we’ll see
next.

Chapter 3. Strings, Comparators, and Filters • 54

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/OlderThan20.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/OlderThan20.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Continuing with the previous example, instead of creating a map of all Person
objects by age, let’s get only people’s names, ordered by age.

compare/fpij/OlderThan20.java
Map<Integer, List<String>> nameOfPeopleByAge =

people.stream()
.collect(
groupingBy(Person::getAge, mapping(Person::getName, toList())));

System.out.println("People grouped by age: " + nameOfPeopleByAge);

In this version groupingBy() takes two parameters: the first is the age, which is
the criteria to group by, and the second is a Collector, which is the result of a
call to the mapping() function. These methods are from the Collectors utility class,
statically imported for use in this code. The mapping() method takes two details,
the property on which to map (name in this case) and the type of the object to
collect into, such as list or set. Let’s look at the output from this code:

People grouped by age: {35=[Greg], 20=[John], 21=[Sara, Jane]}

We see that the list of names is grouped by age.

Let’s look at one more combination: let’s group the names by their first
character and then get the oldest person in each group.

compare/fpij/OlderThan20.java
Comparator<Person> byAge = Comparator.comparing(Person::getAge);
Map<Character, Optional<Person>> oldestPersonOfEachLetter =

people.stream()
.collect(groupingBy(person -> person.getName().charAt(0),

reducing(BinaryOperator.maxBy(byAge))));
System.out.println("Oldest person of each letter:");
System.out.println(oldestPersonOfEachLetter);

We first group the names based on their first letter. For this, we pass a
lambda expression as the first parameter to the groupingBy() method. From
within this lambda expression we return the first character of the name for
grouping purposes. The second parameter in this example, instead of mapping,
performs a reduce operation. In each group, it reduces the elements to the
oldest person, as decided by the maxBy() method. The syntax is a bit dense
due to the combination of operations, but it reads like this: group by first
character of name and reduce to the person with maximum age. Let’s look at
the output, which lists the oldest person in each grouping of names that start
with a given letter.

Oldest person of each letter:
{S=Optional[Sara - 21], G=Optional[Greg - 35], J=Optional[Jane - 21]}

report erratum • discuss

Using the collect Method and the Collectors Class • 55

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/OlderThan20.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/OlderThan20.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We’ve seen the power of the collect() method and the Collectors. Take a few min-
utes to examine the Collectors utility class in your integrated development
environment or the documentation and get familiar with the facilities it offers.
Next we’ll use lambda expressions to stand in for some filters.

Listing All Files in a Directory
It’s pretty simple to use the File class’s list() method to list all filenames in a
directory. To get all the files instead of just their names, we can use the listFiles()
method. That’s easy, but the challenge is how to proceed once we get the list.
Rather than the long-winded traditional external iterator, we can use the
elegant functional-style facility to iterate through the list. To achieve this, we
have to reach out to the JDK’s new CloseableStream interface, along with some
related higher-order convenience functions.

Here’s the code to list the names of all the files in the current directory.

compare/fpij/ListFiles.java
Files.list(Paths.get("."))

.forEach(System.out::println);

To list files in a different directory, we can replace "." with the full path of the
directory we desire.

We first created a Path instance from the string using the get() method of the
Paths convenience class. Then, using the list() method of the Files utility class
(in the java.nio.file package) we got a new CloseableStream to iterate over the files
in the given path. We then used the internal iterator, forEach(), on it to print
the filenames. Let’s look at part of the output from this code: listing the files
and subdirectories of the current directory.

./aSampleFiles.txt

./bin

./fpij

...

If we want only the subdirectories in the current directory instead of a listing
of all the files, we can use the filter() method:

compare/fpij/ListDirs.java
Files.list(Paths.get("."))

.filter(Files::isDirectory)

.forEach(System.out::println);

The filter() method extracted only the directories from the stream of files. Instead
of passing in a lambda expression, we provided a method reference to the Files
class’s isDirectory() method. Recall that the filter() method expects a Predicate,

Chapter 3. Strings, Comparators, and Filters • 56

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/ListFiles.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/ListDirs.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

which returns a boolean result, so this method fits the bill. Finally we used the
internal iterator to print the names of the directories. The output from this
code will show the subdirectories of the current directory.

./bin

./fpij

./output

...

That was quite simple and took fewer lines than it would have with old-style
Java code. Next let’s look at listing only select files that match a pattern.

Listing Select Files in a Directory
Java has long provided a variation of the list() method to cherry-pick filenames.
This version of list() takes a FilenameFilter as its parameter. This interface has
one method, accept(), that takes two parameters: File dir (representing the
directory) and String name (representing a filename). We’d return a true from the
accept() method to include the given filename in the list, and false otherwise.
Let’s explore the options to implement this method.

It’s a habitual practice in Java to pass to the list() method an instance of an
anonymous inner class that implements the FilenameFilter interface. For example,
let’s look at how we’d select only the java files in a fpij directory using that
approach.

compare/fpij/ListSelectFiles.java
final String[] files =

new File("fpij").list(new java.io.FilenameFilter() {
public boolean accept(final File dir, final String name) {
return name.endsWith(".java");

}
});

System.out.println(files);

That took some effort and a few lines of code. There’s a lot of noise in that
code: an object creation, a function call, an anonymous inner class definition,
the embedded method within that class, and so on. We don’t have to endure
that pain anymore; we can simply pass a lambda expression that takes two
parameters and returns a boolean result. The Java compiler can take care of
the rest for us.

While we could simply replace the anonymous inner class with a lambda
expression in the previous example, we can do better than that. The new Directo-
ryStream facility can help traverse large directory structures more efficiently, so
let’s explore that route. There’s a variation of the newDirectoryStream() method, which
takes an additional filter parameter.

report erratum • discuss

Listing Select Files in a Directory • 57

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/ListSelectFiles.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Let’s use lambda expressions to get a list of all java files in the fpij directory.

compare/fpij/ListSelectFiles.java
Files.newDirectoryStream(

Paths.get("fpij"), path -> path.toString().endsWith(".java"))
.forEach(System.out::println);

We got rid of the anonymous inner class and turned the verbose code into
short and sweet code. The net effect of the two versions is the same. Let’s
print the selected files.

The code will display only the .java files in the mentioned directory, as in this
partial output:

fpij/Compare.java
fpij/IterateString.java
fpij/ListDirs.java
...

We picked files based on filenames, but we can easily pick files based on file
properties, such as if a file is executable, readable, or writable. For this we
need a variation of the listFiles() method that takes FileFilter as its parameter.
Once again, we can use lambda expressions instead of creating an anonymous
inner class. Let’s look at an example of listing all hidden files in the current
directory.

compare/fpij/ListHiddenFiles.java
final File[] files = new File(".").listFiles(file -> file.isHidden());

If we’re working with a large directory, then we can use the DirectoryStream
instead of directly using the methods on File.

The signature of the lambda expression we passed to the listFiles() method
conforms to the signature of the FileFilter interface’s accept() method. In the
lambda expression we receive a File instance as the parameter, named file in
this example. We return a boolean true if the file has the hidden property, and
false otherwise.

We can further reduce the code here; rather than passing a lambda expression,
we can use a method reference to make the code more concise:

compare/fpij/ListHiddenFiles.java
new File(".").listFiles(File::isHidden);

We created the lambda-expressions version and then refactored it to the more
concise method-references version. When working on new code, it’s perfectly
OK to take that route. If we can see the concise code from miles away, then
of course we can readily key that in. In the spirit of “make it work, then make

Chapter 3. Strings, Comparators, and Filters • 58

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/ListSelectFiles.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/ListHiddenFiles.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/ListHiddenFiles.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

it better,” it’s good to get something simple working first, and once we
understand the code, we can take the next step to refactor for conciseness,
performance, and so on.

We worked through an example to filter out select files from a directory. Next
we’ll look at how to explore subdirectories of a given directory.

Listing Immediate Subdirectories Using flatMap
We saw how to list the members of a given directory. Let’s look at the effort
to explore the immediate (one level deep) subdirectories in a given directory,
first using a rudimentary operation and then, more conveniently, using the
flatMap() method.

Let’s use the traditional for loop first to iterate over the files in a given directory.
If a subdirectory contains any files, we’ll add them to our list; otherwise, we’ll
add the subdirectory itself to the list. Finally, we’ll print the total number of
files found. Here’s the code—for the hard way.

compare/fpij/ListSubDirs.java
public static void listTheHardWay() {

List<File> files = new ArrayList<>();

File[] filesInCurrentDir = new File(".").listFiles();
for(File file : filesInCurrentDir) {
File[] filesInSubDir = file.listFiles();
if(filesInSubDir != null) {
files.addAll(Arrays.asList(filesInSubDir));

} else {
files.add(file);

}
}

System.out.println("Count: " + files.size());
}

We fetch the list of files in the current directory and loop through each of the
files. For each file, we query for its children and add them, if present, to the
list of files. That works, but it comes with the usual culprits: mutability,
primitive obsession, imperative, noise.… We can get rid of these using a nice
little method called flatMap().

As the name indicates, this method will flatten after mapping. It maps the
elements in a collection, much like the map() method does. But unlike the
map() method, where we generally return an element from the lambda
expression, we return a Stream instead. The method then flattens the multiple
streams, obtained by mapping each element, into one flat stream.

report erratum • discuss

Listing Immediate Subdirectories Using flatMap • 59

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/ListSubDirs.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We can use flatMap() for various operations, but the problem on hand nicely
demonstrates the usefulness of this method. Each subdirectory has a list or
stream of files and we’re trying to get a combined (or flattened) list of files in
all the subdirectories of the current directory.

Some directories (or files) may be empty and may not have children. In that
case, we simply wrap a stream around the no-child directory or file element.
In case we choose to ignore a file, the flatMap() method in the JDK can deal
with empty quite well; it will merge a null reference to a Stream as an empty
collection. Let’s see the flatMap() method in action.

compare/fpij/ListSubDirs.java
public static void betterWay() {

List<File> files =
Stream.of(new File(".").listFiles())

.flatMap(file -> file.listFiles() == null ?
Stream.of(file) : Stream.of(file.listFiles()))

.collect(toList());
System.out.println("Count: " + files.size());

}

We obtained a stream of files in the current directory and invoked the flatMap()
method on it. To this method we passed a lambda expression that returns a
Stream of children for the given file. The flatMap() returns a flattened map of a
collection of all the children of the current directory’s subdirectories. We collect
those back into a List using the toList() methods of the collect() and Collectors.

The lambda expression we passed as a parameter to the flatMap() method
returned, for a given file, a Stream of its children (if any). Otherwise, it returned
a stream with just the file. The flatMap() method gracefully handled that and
mapped these streams into a resulting collection of streams and finally flat-
tened it into one final Stream of Files.

flatMap() eliminates so much effort—it nicely combines a sequence of two
operations, often called as a monadic composition—into one single elegant
step.

We saw how the flatMap() method simplifies the task of listing the immediate
(one level deep) contents of a subdirectory. Next we’ll create an observer for
file changes.

Watching a File Change
We know how to look for files and directories, but if we want to sit back and get
alerts when a file is created, modified, or deleted, that’s quite easy as well. Such
a facility is useful for monitoring changes to special files like configuration files

Chapter 3. Strings, Comparators, and Filters • 60

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/ListSubDirs.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

and system resources. Here we’ll explore the facility that’s been available since
Java 7, the WatchService, to watch for file changes. Most of the features we’ll see
here are from JDK 7 and the main improvement will be in the convenience of the
internal iterator.

Let’s create an example to watch for file changes in the current directory. The
Path class in the JDK can lead to an instance of the file system, which acts as
a factory for the watch service. We can register with this service for any noti-
fication, like so:

compare/fpij/WatchFileChange.java
final Path path = Paths.get(".");
final WatchService watchService =
path.getFileSystem()

.newWatchService();

path.register(watchService, StandardWatchEventKinds.ENTRY_MODIFY);

System.out.println("Report any file changed within next 1 minute...");

We’ve registered a WatchService to observe any change to the current directory.
We can poll the watch service for any change to files in this directory, and it
will notify us through a WatchKey. Once we gain access to the key, we can
iterate though all the events to get the details of the file update. Since multiple
files may change at once, a poll may return a collection of events rather than
a single event. Let’s look at the code for polling and iterating.

compare/fpij/WatchFileChange.java
final WatchKey watchKey = watchService.poll(1, TimeUnit.MINUTES);

if(watchKey != null) {
watchKey.pollEvents()

.stream()

.forEach(event ->
System.out.println(event.context()));

}

We see an interplay of Java 7 and Java 8 features here. We transformed the
collection returned by pollEvents() into a Java 8 Stream and then used an internal
iterator on it to display the details of the updated file(s).

Let’s run the code, change the sample.txt file in the current directory, and see
if the program tattletales about the change.

Report any file changed within next 1 minute...
sample.txt

When we modified the file, the program promptly reported that the file was
changed. We can use this facility to watch for changes to various files and

report erratum • discuss

Watching a File Change • 61

http://media.pragprog.com/titles/vsjava8/code/compare/fpij/WatchFileChange.java
http://media.pragprog.com/titles/vsjava8/code/compare/fpij/WatchFileChange.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

perform appropriate tasks in our applications. Or we could register for only
file creation or deletion, as we desire.

Recap
The regular tasks of working with strings and files and creating custom
comparators got a lot easier and more concise with lambda expressions and
method references. Anonymous inner classes morphed into an elegant style
and, along the way, mutability disappeared like the fog in the morning sun.
As a bonus for favoring this style, we can benefit from the new JDK facilities
to iterate efficiently over large directories.

Now you know how to create lambda expressions to pass as parameters to
methods. In the next chapter we’ll look at ways to design programs with
functional interfaces and lambda expressions.

Chapter 3. Strings, Comparators, and Filters • 62

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

CHAPTER 4

Design is not just what it looks like and feels like. Design is
how it works.

 ➤ Steve Jobs

Designing with Lambda Expressions
OOP has become the de facto standard, but with lambda expressions in Java,
we can pull a few more techniques out of our bag of design tricks. In Java,
OOP and functional style can now complement each other and can nicely
interplay. We can use these to create lightweight designs that are flexible to
change and easier to extend.

We can replace interfaces, class hierarchies, and anonymous inner classes
with concise code. We need fewer lines of code to get the same job done, and
we can quickly try out new ideas.

In this chapter lambda expressions bring to life some neat design ideas; where
we often use objects, we’ll instead use lightweight functions. We’ll use lambda
expressions to easily separate logic from functions, making them more
extensible. Then we’ll apply them to delegate responsibilities and implement
the decorator pattern in just a couple of lines of code. Finally we’ll use them
to turn mundane interfaces into fluent, intuitive interfaces.

Separating Concerns Using Lambda Expressions
We often create classes to reuse code; we have good intentions, but it’s not
always the right choice. By using higher-order functions, we can accomplish
the same goals without needing a hierarchy of classes.

Exploring Design Concerns
Let’s start with an example to sum asset values as a way to illustrate the
design idea of separation of concerns. We’ll build it in iterations. The design
we first create will mix multiple concerns in one method, but we’ll quickly
refactor to make the method more cohesive. Let’s start with an Asset class.

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

designing/fpij/Asset.java
public class Asset {
public enum AssetType { BOND, STOCK };
private final AssetType type;
private final int value;
public Asset(final AssetType assetType, final int assetValue) {

type = assetType;
value = assetValue;

}
public AssetType getType() { return type; }
public int getValue() { return value; }

}

Asset is a simple JavaBean with two properties: type and value. Suppose we’re
asked to total the values of all the assets given—let’s write a method for that
in a AssetUtil class.

designing/fpij/AssetUtil.java
public static int totalAssetValues(final List<Asset> assets) {

return assets.stream()
.mapToInt(Asset::getValue)
.sum();

}

We used the convenience of lambda expressions within this function. We
transformed the List of Assets into a Stream, then mapped that into a Stream of
values using the mapToInt() method. Finally we reduced or totaled the values
in this stream to arrive at a single value using the sum() method. Let’s define
some assets to try out the code.

designing/fpij/AssetUtil.java
final List<Asset> assets = Arrays.asList(

new Asset(Asset.AssetType.BOND, 1000),
new Asset(Asset.AssetType.BOND, 2000),
new Asset(Asset.AssetType.STOCK, 3000),
new Asset(Asset.AssetType.STOCK, 4000)

);

Here’s a call to the totalAssetValues() method using these assets.

designing/fpij/AssetUtil.java
System.out.println("Total of all assets: " + totalAssetValues(assets));

The code will report the total of all the given assets, as we see in the output.

Total of all assets: 10000

It’s good we employed lambda expressions to write the totalAssetValues() method
—we used fluent iterators and favored immutability. But let’s shift our
attention to the design of the method itself. It’s tangled with three concerns:

Chapter 4. Designing with Lambda Expressions • 64

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/Asset.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/AssetUtil.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/AssetUtil.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/AssetUtil.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

how to iterate, what to total, and how to total. This entangled logic will result
in poor reuse. Let’s see how.

Getting Entangled with the Concerns
Imagine we’re asked to total only the bond assets. After a quick glance at the
totalAssetValues() method, we realize it does almost everything we need. Why not
copy and paste that code? After all, there’s a reason the integrated development
environments have gone through the trouble to provide keyboard shortcuts
for that, right?

We’ll leave totalAssetValues() intact, but duplicate it and modify the new version,
like so:

designing/fpij/AssetUtil.java
public static int totalBondValues(final List<Asset> assets) {

return assets.stream()
.mapToInt(asset ->

asset.getType() == AssetType.BOND ? asset.getValue() : 0)
.sum();

}

The only difference, other than their names, between totalBondValues() and
totalAssetValues() is in the lambda expressions we send to the mapToInt() function.
In this newer method we pick the price of the asset if it’s a bond; otherwise
we use a 0 for the price. Instead of crowding the logic within that one lambda
expression we could use a filter() method to extract only bonds, and leave the
lambda expression that was passed to the mapToInt() method untouched from
the version copied from the totalAssetValues() method.

Let’s call this version of the method and make sure it works.

designing/fpij/AssetUtil.java
System.out.println("Total of bonds: " + totalBondValues(assets));

The output should report only the total of bond prices.

Total of bonds: 3000

As fate may have it, now we’re asked to total only stocks. We know it’s
morally wrong to copy and paste code once more, but no one’s looking.

designing/fpij/AssetUtil.java
public static int totalStockValues(final List<Asset> assets) {

return assets.stream()
.mapToInt(asset ->

asset.getType() == AssetType.STOCK ? asset.getValue() : 0)
.sum();

}

report erratum • discuss

Separating Concerns Using Lambda Expressions • 65

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/AssetUtil.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/AssetUtil.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/AssetUtil.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Let’s call this version of the method too:

designing/fpij/AssetUtil.java
System.out.println("Total of stocks: " + totalStockValues(assets));

The output gives us the desired results: a total of stocks only.

Total of stocks: 7000

Hey, it works and we even used lambda expressions. Time to call it done and
celebrate?

Not quite; if our geeky friends discover the duplicates, they’ll no longer hang
out with us. We need a better design: one that’s DRY,1 one that’ll make
mothers proud.

Refactoring to Separate a Key Concern
Let’s revisit the three methods. They share two out of the three concerns we
mentioned earlier. The iteration and the way to total are the same. The “what
to total” concern is different and is a good candidate to separate out of these
methods.

This seems like a good place for the strategy pattern (see Gamma et al.’s
Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]).
We often create interfaces and classes to implement that pattern in Java, but
here lambda expressions will give us a design edge.

Let’s refactor the three methods into one that takes a functional interface as
a parameter.

designing/fpij/AssetUtilRefactored.java
public static int totalAssetValues(final List<Asset> assets,

final Predicate<Asset> assetSelector) {
return assets.stream()

.filter(assetSelector)

.mapToInt(Asset::getValue)

.sum();
}

This refactored version of totalAssetValues() takes two parameters: the list of
assets and a Predicate to evaluate whether an asset should be considered.

At first this may look like what we would’ve done all along in Java, but it’s
different in a few ways. Rather than creating our own interface, we’ve reused
the java.util.function.Predicate interface from the JDK. Furthermore, instead of

1. http://c2.com/cgi/wiki?DontRepeatYourself

Chapter 4. Designing with Lambda Expressions • 66

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/AssetUtil.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/AssetUtilRefactored.java
http://c2.com/cgi/wiki?DontRepeatYourself
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

creating classes or anonymous inner classes, we can pass lambda expressions
to the refactored version of the totalAssetValue() method.

Let’s dig into this refactored version. We filtered the list of assets using the
filter() method, then mapped the assets to their prices using the mapToInt()
function, and totaled them. We simply passed the Predicate we received on to
the filter() method and used a method reference for the mapToInt()’s argument.

The filter method takes care of picking only the assets we’re interested in.
Under the hood, it calls the given Predicate’s test() method to make that decision.
If the selector accepted the asset, we use its value to total further down in
the chain.

With this refactoring, we turned the three normal methods into one higher-
order function that depends on a lightweight strategy to handle a configurable
concern, as the next figure illustrates.

totalAssetValues

assets

total

select?
strategy

an asset

yep or nope

lambda expressions

Figure 3—Using lambda expressions to realize the strategy pattern

Let’s use this refactored version of totalAssetValues() to total the values of all the
assets.

designing/fpij/AssetUtilRefactored.java
System.out.println("Total of all assets: " +

totalAssetValues(assets, asset -> true));

We invoke the totalAssetValues() function, passing it the list of assets as the first
argument and a succinct lambda expression as the second argument. As the

report erratum • discuss

Separating Concerns Using Lambda Expressions • 67

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/AssetUtilRefactored.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

function iterates over the assets, it invokes the lambda expression for each
asset, asking if the asset’s value should be included in the total. Since we
want to total all the assets, we return a boolean true here.

We’ve used the open/closed principle in this refactored design.2 We can easily
change the selection criteria without changing the method, as we’ll see next.

Let’s reuse the function to compute the total of only bonds and then the total
of only stocks. We’ll pass different lambda expressions as the second argument
to the totalAssetValues() function.

designing/fpij/AssetUtilRefactored.java
System.out.println("Total of bonds: " +
totalAssetValues(assets, asset -> asset.getType() == AssetType.BOND));

System.out.println("Total of stocks: " +
totalAssetValues(assets, asset -> asset.getType() == AssetType.STOCK));

Let quickly run these last three calls to the refactored totalAssetValues() function
to ensure the output is the same as that of the previous version.

Total of all assets: 10000
Total of bonds: 3000
Total of stocks: 7000

We’ve used lambda expressions to separate the concern from the method.
This is a simple use of the strategy pattern, but without the burden of creating
extra classes. This pattern does require a bit more from the higher-order
function’s users—they have to chose the selection logic. However, they can
save these lambda expressions into variables and reuse them if they desire.

We focused on concerns at a method level in this section; let’s apply that
technique at the class level next.

Delegating Using Lambda Expressions
We used lambda expressions and the strategy pattern to separate a concern
from a method. We can also use them to separate a concern from a class.
From a reuse point of view, delegation is a better design tool than inheritance.
With delegation it’s easier to vary the implementation we rely on, and we can
plug in a different behavior more dynamically. This can help vary the behavior
of classes independent of the behavior of the parts they depend on, and make
the design more flexible without forcing a deep class hierarchy.

2. http://en.wikipedia.org/wiki/Open/closed_principle

Chapter 4. Designing with Lambda Expressions • 68

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/AssetUtilRefactored.java
http://en.wikipedia.org/wiki/Open/closed_principle
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Creating a Delegate
Rather than delegating part of the responsibility to another class, we can
delegate it to lambda expressions and method references. This will further
reduce class proliferation. Let’s explore that idea with an example; we’ll start
with a class, CalculateNAV, that performs financial calculations with data from
a web service.

designing/fpij/CalculateNAV.java
public class CalculateNAV {
public BigDecimal computeStockWorth(

final String ticker, final int shares) {
return priceFinder.apply(ticker).multiply(BigDecimal.valueOf(shares));

}
//... other methods that use the priceFinder ...

}

In the computeStockWorth() method we request the price of a ticker from a (yet
to be defined) priceFinder and determine the net worth based on the number of
shares. The CalculateNAV may have other methods to perform other calculations,
such as yield, with the price returned by the priceFinder. That’s a reason for the
priceFinder to be a field in the class rather than a parameter to one particular
method of CalculateNAV.

Now we need the priceFinder; we have to decide what kind of object it will be. We
want to send in a ticker symbol and receive a price, hopefully obtained from a
web service. The java.util.function.Function<T, R> functional interface seems like a good
lightweight fit for our needs. Its abstract method can take in a value and return
another value, of possibly a different type. Let’s use that to define the field.

designing/fpij/CalculateNAV.java
private Function<String, BigDecimal> priceFinder;

In the computeStockWorth() method we’re already using the Function interface’s
apply() method. Let’s initialize the field through a constructor injection rather
than coupling to an implementation directly within the class. In effect we’re
using dependency injection and the dependency inversion principle.3 Instead
of embedding an implementation, we’ll separate the concern and rely on an
abstraction. This will make the code more extensible and help shorten the
coding and testing time. Here’s the constructor for the CalculateNAV class.

designing/fpij/CalculateNAV.java
public CalculateNAV(final Function<String, BigDecimal> aPriceFinder) {
priceFinder = aPriceFinder;

}

3. http://c2.com/cgi/wiki?DependencyInversionPrinciple

report erratum • discuss

Delegating Using Lambda Expressions • 69

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/CalculateNAV.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/CalculateNAV.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/CalculateNAV.java
http://c2.com/cgi/wiki?DependencyInversionPrinciple
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We’re all set to use CalculateNAV, but we need to implement a call to the web
service. Let’s look into that next.

Stubbing the Web Service
We’re focused on the design of CalculateNAV; we want to quickly run it and get
feedback. When test-driving the design of this class using unit tests, we don’t
want to depend on external services—that would make the tests brittle. We
want to stub the web service.

In general, though, creating a stub (or mock) in Java can be arduous and we
often rely on libraries. Thanks to the lambda expressions and their fluency,
this just got easier. Let’s create a unit test to try out our computeStockWorth()
method, stubbing away the implementation of the apply() method.

designing/fpij/CalculateNAVTest.java
public class CalculateNAVTest {
@Test
public void computeStockWorth() {

final CalculateNAV calculateNAV =
new CalculateNAV(ticker -> new BigDecimal("6.01"));

BigDecimal expected = new BigDecimal("6010.00");
assertEquals(0,
calculateNAV.computeStockWorth("GOOG", 1000).compareTo(expected),
0.001);

}
//...

}

Creating the test was effortless. We passed a lambda expression to the Calcu-
lateNAV constructor—this is lightweight stubbing of the web service. From
within the lambda expression, we returned a contrived value for the price in
response to the call. Then, in the test, we asserted that the computeStockWorth()
returned the expected result, within a tolerance of 0.001, for a given ticker
and the number of shares.

We can also assert that the ticker passed to the lambda expression is the right
one. We can take this further quite easily to add other tests—for example, an
exception test to ensure code properly handles web-service failures. We can
do all this without really spending time to create the code to talk to the web
service, but instead merely stubbing away the implementation. Let’s run the
test and ensure JUnit reports it passing.

.
Time: ...

OK (1 test)

Chapter 4. Designing with Lambda Expressions • 70

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/CalculateNAVTest.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Testing the code was quick; we easily stubbed away the dependency to the
web service, which helped to rapidly develop and test the code. But we can’t
call it done until we run it with a real web service. That’s our next task.

Integrating with the Web Service
Talking to the real web service is almost as easy—let’s invite Yahoo! to the
party.

designing/fpij/CalculateNAV.java
final CalculateNAV calculateNav = new CalculateNAV(YahooFinance::getPrice);

System.out.println(String.format("100 shares of Google worth: $%.2f",
calculateNav.computeStockWorth("GOOG", 100)));

Rather than stubbing away the implementation here, we pass a method ref-
erence to YahooFinance’s getPrice() method. We need to implement that method
to complete this task.

designing/fpij/YahooFinance.java
public class YahooFinance {
public static BigDecimal getPrice(final String ticker) {

try {
final URL url =
new URL("http://ichart.finance.yahoo.com/table.csv?s=" + ticker);

final BufferedReader reader =
new BufferedReader(new InputStreamReader(url.openStream()));

final String data = reader.lines().skip(1).findFirst().get();
final String[] dataItems = data.split(",");
return new BigDecimal(dataItems[dataItems.length - 1]);

} catch(Exception ex) {
throw new RuntimeException(ex);

}
}

}

In the getPrice() method we send a request to the Yahoo! web service and parse
the response to extract the stock price. The data we’re looking for is in the
second line of the multiline response from Yahoo!. Instead of reading line by
line from the BufferedReader, we use the new lines() method, an internal iterator
that returns a Stream. From this we extract the second line and the data we
desire. Let’s now exercise the call to the computeStockWorth() method we wrote.

100 shares of Google worth: $104593.00

In the output we see the worth of 100 shares of Google stock at the time the
code was executed. If we run the code now, the value may be something
insanely higher—let’s hope.

report erratum • discuss

Delegating Using Lambda Expressions • 71

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/CalculateNAV.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/YahooFinance.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We have to figure out a way to deal with exceptions that may arise when
calling the web service. Suppressing exceptions with empty catch blocks or
printing them in arbitrary places is pure evil. Rather than dealing with
exceptions within lambda expressions, we have to find the right place to
handle them. That requires us to rethrow the exceptions so they can be
handled upstream.

Lambda expressions and method references can throw checked exceptions
only if those exceptions are declared using the throws clause in the abstract
method of the functional interface they stand in for. Since the Function inter-
face’s apply() method doesn’t specify any expected exceptions, we can’t directly
throw the checked exception in this example. As a workaround, we wrapped
the exception into the unchecked RuntimeException. The lambda expression now
simply passes the exception through, and upstream in the code we’ll have to
handle it. Any runtime exception that is not handled, of course, will abruptly
terminate the application.

We delegated part of the responsibility of our class using lambda expressions
and method references in this example, as the next figure demonstrates.

CalculateNAV Function<String, BigDecimal>

ticker

price

functional interface

ticker -> 6.01
stub

lambda expression

YahooFinance::getPrice

method reference

Figure 4—The CalculateNAV class delegating the task of getting a stock price

The approach we took helped vary the implementation of the call to the web
service and stub it away. Next we’ll use lambda expressions to combine
multiple behaviors.

Decorating Using Lambda Expressions
So far we’ve avoided creating implementation classes to support the delegate
interfaces. We needed simple implementations for these interfaces, so that

Chapter 4. Designing with Lambda Expressions • 72

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

worked out fairly well. Let’s increase our demands on these implementations,
ask them to interact with multiple delegates, and see how lambda expressions
handle that.

Delegation is great, but we can take it further if we can chain delegates to
add behavior. We can then create discrete flavors of behavior and sprinkle
them onto the classes, like the mix-ins at the ice-cream shop.

The decorator pattern is powerful, but programmers often hesitate to use it
due to the burdensome hierarchy of classes and interfaces—like FilterInputStream
and FilterOutputStream in the JDK—that are used to implement the pattern (see
Gamma et al.’s Design Patterns: Elements of Reusable Object-Oriented Software
[GHJV95]). We can now realize this pattern with less effort in Java.

In the next example we’ll chain delegates—using lambda expressions, of
course—to realize the decorator pattern. This will help us see how we can
create flexible and extensible lightweight design with just a few lines of code.

Designing Filters
Adding filters to a camera is a good example of chaining behavior or respon-
sibilities. We may start with no filters, then add a filter, and then a few more.
We want our design to be flexible so that it does not care how many filters
we have. Let’s create an example Camera that’ll use filters to process the
captured colors.

designing/fpij/Camera.java
@SuppressWarnings("unchecked")
public class Camera {
private Function<Color, Color> filter;

public Color capture(final Color inputColor) {
final Color processedColor = filter.apply(inputColor);
//... more processing of color...
return processedColor;

}

//... other functions that use the filter ...
}

The Camera has a field for the filter, a reference to an instance of Function (much
like the delegation example we saw earlier). This filter function can receive a
Color and return a processed Color. Looking at what we have so far, the class
may appear to use only one filter, but with a design tweak we’ll make it work
with multiple filters.

report erratum • discuss

Decorating Using Lambda Expressions • 73

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/Camera.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

To achieve this flexibility, we’ll use a method that belongs to a special type
called default methods, which is new to Java 8. In addition to abstract methods,
interfaces can have methods with implementation, marked as default. These
methods are automatically added to the classes that implement the interfaces.
This was done as a trick in Java 8 to enhance existing classes with new
methods without having to change each one of them. In addition, interfaces
can have static methods.

In addition to the apply() abstract method, the Function interface has a default
method, compose(), to combine or chain multiple Functions. Within the lambda
expression that stands in for a Function parameter, we can readily use this
method.

The compose() method can combine or chain two Functions together. Once we
compose them, a call to apply() will hop through the chained Functions. Let’s
take a quick look at how that works. Suppose we compose two Functions, target
and next, like this:

wrapper = target.compose(next);

Now let’s invoke the apply() method on the resulting wrapper.

wrapper.apply(input);

The result of that call is the same as doing this:

temp = target.apply(input);
return next.apply(temp);

Without the temporary variable, it would be like this:

return next.apply(target.apply(input));

Let’s write a setFilters() method that takes a varargs of Function; we can send
zero or more filters to this function. In addition, let’s create the constructor
for the Camera.

designing/fpij/Camera.java
public void setFilters(final Function<Color, Color>... filters) {
filter =

Stream.of(filters)
.reduce((filter, next) -> filter.compose(next))
.orElse(color -> color);

}
public Camera() { setFilters(); }

In the setFilters() method we iterate through the filters and compose them into
a chain using the compose() method. If no filter is given, then the reduce() method
(we saw this method in Reducing a Collection to a Single Value, on page 35)

Chapter 4. Designing with Lambda Expressions • 74

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/Camera.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

will return an Optional empty. In that case we provide a dummy filter as an
argument to the orElse() method, and it simply returns the color that the filter
would receive for processing. If we provide filters to the setFilters() method, the
filter field will refer to the first filter—an instance of Function<Color, Color>—that’s
at the head of a chain of filters.

We provided a lambda expression as a parameter to the orElse() method of the
Optional that the reduce() method returned. The Function interface has an identity()
static method that does the same operation as the lambda expression we wrote.
Instead of creating our own lambda expression, we can use a reference to
that method instead. To do so, we need to change

.orElse(color -> color);

to

.orElseGet(Function::identity);

In addition to the setFilters() method we have a constructor that simply sets
the filter to the dummy filter I mentioned previously.

Our design of the camera with filters is complete, so let’s try it out. We’ll use
it with no filters first, but we need a Camera instance to start. Let’s create one
and assign it to a local variable camera.

designing/fpij/Camera.java
final Camera camera = new Camera();
final Consumer<String> printCaptured = (filterInfo) ->
System.out.println(String.format("with %s: %s", filterInfo,

camera.capture(new Color(200, 100, 200))));

To see the camera in action, we need a convenience function to print the
capture() method’s results. Rather than creating a standalone static method, we
created a lambda expression to stand in for an instance of the Consumer func-
tional interface, right here within the main() method. We chose a Consumer
because printing consumes the value and does not yield any results. This
function will invoke capture() with the colors 200, 100, 200 for the red, green,
and blue parts of color, respectively, and print the resulting filtered/processed
output. Let’s ask the camera to capture the given colors.

designing/fpij/Camera.java
printCaptured.accept("no filter");

Since no filters are given, the captured color should be the same as the input;
let’s verify that in the output.

with no filter: java.awt.Color[r=200,g=100,b=200]

report erratum • discuss

Decorating Using Lambda Expressions • 75

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/Camera.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/Camera.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Adding a Filter
Adding a filter is a breeze; we simply have to pass the filter to the setFilters()
method. The filter can be a simple lambda expression or a method reference.
We can use brighter() on the java.awt.Color class as a filter, so let’s simply pass a
reference of this method to the setFilters() method.

designing/fpij/Camera.java
camera.setFilters(Color::brighter);
printCaptured.accept("brighter filter");

Let’s look at the result of the capture() with this filter in place.

with brighter filter: java.awt.Color[r=255,g=142,b=255]

The input color has been brightened. As we can see, the output RGB values
are higher than the corresponding values in the input. Let’s quickly change
the filter to a darker shade.

designing/fpij/Camera.java
camera.setFilters(Color::darker);
printCaptured.accept("darker filter");

This should reduce the brightness of the input, as we can see in the output.

with darker filter: java.awt.Color[r=140,g=70,b=140]

Adding Multiple Filters
The design is good so far; now let’s mix two filters—a brighter one and a
darker one—to see the effect of chaining.

designing/fpij/Camera.java
camera.setFilters(Color::brighter, Color::darker);
printCaptured.accept("brighter & darker filter");

We passed two method references to the setFilters() method—just essence, no
ceremony. (We could’ve passed in lambda expressions instead of method ref-
erences.) The two filters are now chained and the filter reference in the Camera
instance is referring to the head of the chain. A call to the capture() method
will now route the color processing through each of these filters, as we see in
Figure 5, Implementation of the decorator pattern or chaining using lambda
expressions, on page 77.

With this filter combination, the input color goes through a series of transfor-
mations or filtering; first it passes through the bright filter, which brightens
the shades, then it goes through the dark filter, which makes the colors
darker again, as we can see from the output.

with brighter & darker filter: java.awt.Color[r=200,g=100,b=200]

Chapter 4. Designing with Lambda Expressions • 76

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/Camera.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/Camera.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/Camera.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Camera

1

lambda expressions

ncapture
input color

processed color

Figure 5—Implementation of the decorator pattern or chaining using lambda expressions

Adding more than two filters is no different; we simply pass more comma-
separated filters, either as method references or as lambda expressions.

We designed object chaining and implemented the decorator pattern without
having to create a hierarchy of classes. The magic happens in just a couple
of lines of code within the setFilters() method. We made good use of the JDK
Function interface here. We saw lambda expressions and method references
really shine in this example.

We ran into another new Java 8 feature in this section: the default methods.
Let’s take a closer look at them next.

A Peek into the default Methods
In the design we explored in the previous section we used the new default
methods. default methods are not intrinsically tied to lambda expressions or
the functional style of programming. However, many of the convenience
methods in collections would not have been possible without them.

Interface evolution is the key motivation behind default methods. The API
defined in the early ’90s was a good idea back then, but for the platform to
stay relevant it needs to evolve. The default methods provide a nondisruptive
path for that. Moving forward, when we design with interfaces we’ll likely use
default methods. Let’s examine their behavior and how they intermix with
classes.

The Java compiler follows a few simple rules to resolve default methods:

1. Subtypes automatically carry over the default methods from their
supertypes.

2. For interfaces that contribute a default method, the implementation in a
subtype takes precedence over the one in supertypes.

3. Implementations in classes, including abstract declarations, take prece-
dence over all interface defaults.

report erratum • discuss

A Peek into the default Methods • 77

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

4. If there’s a conflict between two or more default method implementations,
or there’s a default-abstract conflict between two interfaces, the inheriting
class should disambiguate.

To get a better understanding of these rules, let’s create an example with
default methods.

public interface Fly {
default void takeOff() { System.out.println("Fly::takeOff"); }
default void land() { System.out.println("Fly::land"); }
default void turn() { System.out.println("Fly::turn"); }
default void cruise() { System.out.println("Fly::cruise"); }

}

public interface FastFly extends Fly {
default void takeOff() { System.out.println("FastFly::takeOff"); }

}

public interface Sail {
default void cruise() { System.out.println("Sail::cruise"); }
default void turn() { System.out.println("Sail::turn"); }

}

public class Vehicle {
public void turn() { System.out.println("Vehicle::turn"); }

}

All the interfaces in this example have default methods. The FastFly interface
extends from the Fly interface and overrides the takeOff() method, providing its
own default implementation. FastFly also carries forward the other three methods
of the Fly interface (rule 1). Any class or interface inheriting from FastFly will
see the implementation of takeOff() in FastFly, and not the implementation in Fly
(rule 2).

All three interfaces have implementations for the cruise() and turn() methods.
In addition, the Vehicle class implements the turn() method.

Let’s create a class that inherits these types.

public class SeaPlane extends Vehicle implements FastFly, Sail {
private int altitude;
//...
public void cruise() {

System.out.print("SeaPlane::cruise currently cruise like: ");
if(altitude > 0)
FastFly.super.cruise();

else
Sail.super.cruise();

}
}

Chapter 4. Designing with Lambda Expressions • 78

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

SeaPlane extends Vehicle and implements the FastFly and Sail interfaces. Let’s take
a closer look at the implementation of this class.

There appears to be a conflict for the turn() method, but that’s really not the
case. Even though the turn() method is present in the interfaces, the implemen-
tation in the superclass Vehicle takes precedence here (rule 3), so there’s no
conflict to resolve.

However, the Java compiler will force us to implement the cruise() method in
the SeaPlane class because the default implementations in the interfaces FastFly
(derived from Fly) and Sail conflict (rule 4).

From within the overridden methods we can call back into the corresponding
default methods. For example, from within the cruise() method, we can see how
to call the default methods of both the FastFly and the Sail interfaces.

We can see the logic of why we’d need to specify the interface name, like FastFly
or Sail, when invoking the default methods from within the overriding method.
At first glance the use of super may appear superfluous, but it’s required.
That’s how the Java compiler knows if we’re referring to a default method (when
super is used) or a static method in the interface. In Java 8, interfaces can
optionally have default methods and static methods, possibly with the same
name.

To see the behavior of the default methods in action, let’s create an instance
of SeaPlane and invoke the methods on it.

SeaPlane seaPlane = new SeaPlane();
seaPlane.takeOff();
seaPlane.turn();
seaPlane.cruise();
seaPlane.land();

Before running the code on the computer, we’ll run it mentally; let’s go over
the code to ensure we’ve understood the rules.

The call to the takeOff() method should go to the implementation in the FastFly
interface (rules 1 and 2). The implementation of the turn() method in Vehicle
should be picked for the call to the turn() method on the SeaPlane, even though
these are available on the interfaces (rule 3). Since we were forced to implement
the cruise() method on the SeaPlane, that specific implementation of the method
should be invoked for the call to cruise() (rule 4). Finally, the call to the land()
method will land on the implementation in the Fly interface (rule 1).

We can now compare the output we got from the mental run of the code with
the output from the run on the computer:

report erratum • discuss

A Peek into the default Methods • 79

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

FastFly::takeOff
Vehicle::turn
SeaPlane::cruise currently cruise like: Sail::cruise
Fly::land

We used default methods in interfaces, whereas in the past interfaces were
allowed to have only abstract methods. Seeing this, it may seem that interfaces
have evolved into abstract classes, but that’s not the case. Abstract classes
can have state, but interfaces can’t—this eliminates the concerns of the
“diamond problem” of collision from multiple inheritance. Also, we can
inherit (implement) a class from multiple interfaces, but we only inherit
(extend) from at most one abstract class. The good old recommendation to
favor interfaces over abstract classes where possible is still a nice rule to fol-
low. And now, thanks to the ability to have default methods, interfaces are
even more attractive and powerful than before.

Now that we understand the behavior of default methods, let’s shift our attention
back to lambda expressions. So far in this chapter, we’ve seen the different
forms the lambda expressions can take and the multiple design goals we were
able to achieve using them. Next we’ll cover how they can influence a class’s
interface.

Creating Fluent Interfaces Using Lambda Expressions
We’ve been looking at the internals of methods and classes in this chapter.
Now let’s shift our focus to see how lambda expressions can help shape a
class’s skin or interface. We can use these techniques to structure the API of
our classes, to make it more intuitive and fluent for programmers to use.

Starting with a Design
Let’s start with a simple Mailer class and evolve the design of its interface.

designing/fpij/Mailer.java
public class Mailer {
public void from(final String address) { /*... */ }
public void to(final String address) { /*... */ }
public void subject(final String line) { /*... */ }
public void body(final String message) { /*... */ }
public void send() { System.out.println("sending..."); }

//...
}

The class looks routine—a bunch of void methods. Let’s use this class to
configure and send out an email.

Chapter 4. Designing with Lambda Expressions • 80

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/Mailer.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

designing/fpij/Mailer.java
Mailer mailer = new Mailer();
mailer.from("build@agiledeveloper.com");
mailer.to("venkats@agiledeveloper.com");
mailer.subject("build notification");
mailer.body("...your code sucks...");
mailer.send();

We’ve all encountered code like this, but it has a couple of smells. First, it’s
noisy; we had to repeat the mailer so many times. Second, at the end of the
call, what do we do with the mailer instance? Can we reuse it for another set
of calls, or is it disposable? How do we know?

One answer may be “go read the documentation,” but that doesn’t help the
“put that ‘read me’ document away and start tinkering with stuff” types among
us. Let’s design this API so it’s more intuitive and fluent.

Using Method Chaining
We discussed two smells: repeated use of mailer reference and unclear object
lifetime. Let’s address the first smell now.

Rather than repeating the reference, it would be great to continue a conversa-
tional state on a context object. We can achieve this using a simple method
chaining or cascade method pattern. In this pattern, rather than having void
methods, we make each method return an instance. This returned object is
often this, the object on which the method is invoked. We use this returned
object to build on or chain the subsequent call. Let’s evolve the Mailer to use
this design; we’ll call the new version the MailBuilder. Each method of the class,
except the terminal methods like send(), returns a reference instead of being
void.

designing/fpij/MailBuilder.java
public class MailBuilder {

public MailBuilder from(final String address) { /*... */; return this; }
public MailBuilder to(final String address) { /*... */; return this; }
public MailBuilder subject(final String line) { /*... */; return this; }
public MailBuilder body(final String message) { /*... */; return this; }
public void send() { System.out.println("sending..."); }

//...
}

The new interface will be less noisy to use; we get rid of the repetitive variable
name and nicely chain the calls.

report erratum • discuss

Creating Fluent Interfaces Using Lambda Expressions • 81

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/Mailer.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/MailBuilder.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

designing/fpij/MailBuilder.java
new MailBuilder()

.from("build@agiledeveloper.com")

.to("venkats@agiledeveloper.com")

.subject("build notification")

.body("...it sucks less...")

.send();

We started with a MailBuilder instance and chained the calls to the functions,
in sequence, on the instance that the previous call returned. The method
chaining, or a train wreck as some like to call it, passed the state from one
call to the next as we moved through the chain. The terminal method, send()
in this example, wrapped up the sequence.

Even though this design reduced the noise, it has a few disadvantages. The
new keyword sticks out, reducing the API’s fluency and readability. The design
does not prevent someone from storing the reference from new and then
chaining from that reference. In the latter case, we’d still have the issue with
object lifetime, the second smell I mentioned earlier. Also, there are a lot of
corner cases—for example, we have to ensure methods like from() are called
exactly once.

We need to refine the design further to make it more intuitive and fluent. Let’s
call our friends, lambda expressions, for help.

Making the API Intuitive and Fluent
Let’s evolve the design further. This time we’ll combine the method-chaining
approach with lambda expressions. We’ll call this version of mailer FluentMailer.

designing/fpij/FluentMailer.java
public class FluentMailer {
private FluentMailer() {}

public FluentMailer from(final String address) { /*... */; return this; }
public FluentMailer to(final String address) { /*... */; return this; }
public FluentMailer subject(final String line) { /*... */; return this; }
public FluentMailer body(final String message) { /*... */; return this; }

public static void send(final Consumer<FluentMailer> block) {
final FluentMailer mailer = new FluentMailer();
block.accept(mailer);
System.out.println("sending...");

}

//...
}

Chapter 4. Designing with Lambda Expressions • 82

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/MailBuilder.java
http://media.pragprog.com/titles/vsjava8/code/designing/fpij/FluentMailer.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Just like in the method-chaining version, all the nonterminal methods return
the instance. In addition, in this version we made the constructor private. This
will disallow direct object creation. We also made the terminal method, send(),
a static method and it expects a Consumer as a parameter.

Rather than creating an instance, users will now invoke send() and pass a
block of code. The send() method will create an instance, yield it to the block,
and, upon return, complete any required validations and perform its final
send operations.

This may feel a bit roundabout, but we removed the smells we discussed
earlier. The object’s scope is confined within the block, and once we return
from the send() method, the reference is gone. We can also benefit from the
fluent method chaining within the block, without the sour new keyword
sticking out. Let’s use this new API in an example.

designing/fpij/FluentMailer.java
FluentMailer.send(mailer ->
mailer.from("build@agiledeveloper.com")

.to("venkats@agiledeveloper.com")

.subject("build notification")

.body("...much better..."));

We invoked the send() method and passed a lambda expression to it. Within
the lambda expression, we received an instance of the mailer and invoked
the desired chain of methods on it.

The instance’s scope is fairly easy to see: we get it, work with it, and return
it. For that reason, this is also called the loan pattern.4

From a mundane repetitive interface, we evolved the design to support a fluent
interface. This design is quite useful in a number of areas in applications.
For example, we can use it to configure mailers, to specify database-connection
parameters, or anywhere we need to build a series of states on an instance,
but in a controlled manner.

We covered how to create fluent interfaces with lambda expressions, but our
discussion of design wouldn’t be complete without addressing a pesky issue
—exceptions. Let’s look at that next.

Dealing with Exceptions
Java programmers are quite opinionated about checked exceptions. Irrespec-
tive of how we feel about them, checked exceptions are here to stay and we

4. https://wiki.scala-lang.org/display/SYGN/Loan

report erratum • discuss

Dealing with Exceptions • 83

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/FluentMailer.java
https://wiki.scala-lang.org/display/SYGN/Loan
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

have to deal with them. Let’s look at some options for working with them in
the context of lambda expressions.

In the next example we create a lambda expression that invokes a method
that potentially throws a checked exception. We take a list of path names and
ask for their canonical path using the getCanonicalPath() method.

public class HandleException {
public static void main(String[] args) throws IOException {
Stream.of("/usr", "/tmp")

.map(path -> new File(path).getCanonicalPath())

.forEach(System.out::println);
//Error, this code will not compile

}
}

We’ve decorated the main() method with the throws clause. However, when we
compile this code the Java compiler will report an error:

... unreported exception IOException; must be caught or declared to be thrown
.map(path -> new File(path).getCanonicalPath())

^
1 error

The error is directly from within the lambda expression passed to the map()
method. This method expects as a parameter an implementation of the Function
interface. The apply() method of the Function interface does not specify any
checked exceptions. So, our lambda expression that stands in for the abstract
method in this example is not permitted to throw any checked exceptions.

We’re limited to two options here: we could either handle the exception right
there within the lambda expression, or catch it and rethrow it as an unchecked
exception. Let’s try the first option:

Stream.of("/usr", "/tmp")
.map(path -> {
try {
return new File(path).getCanonicalPath();

} catch(IOException ex) {
return ex.getMessage();

}
})

.forEach(System.out::println);

In this scenario, if there were an exception, we’d return the exception details
instead of the canonical path. Alternatively, to make it easier to identify suc-
cess versus failure, we could return an object instead of a string. We could
design the result object to carry two fields, one with a valid path response
and the other with an optional error message.

Chapter 4. Designing with Lambda Expressions • 84

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Instead of handling the exception, we could replace the return within the
catch with a throw new RuntimeException(ex); and propagate the exception—see
Integrating with the Web Service, on page 71, for an example of this approach.
We can improve the client code’s readability quite a bit by creating static helpers
for this catch and rethrow.

Transforming from a checked to an unchecked exception and rethrowing may
work fine if the calls to the lambda expressions are made sequentially. If the
calls are made concurrently from different threads, however, there are a few
caveats.

In a concurrent execution, an exception raised within the lambda expressions
will be propagated automatically to the calling primary thread. There are two
snags: First, this will not terminate or obstruct the execution of other lambda
expressions running concurrently. Second, if exceptions are thrown from
multiple concurrent executions, only one of them will be reported in the catch
block. If the details of all the exceptions are important, it’s better to capture
those within the lambda expressions and pass them back to the main thread
as part of the result.

In the previous example we were limited to the Function interface since the map()
method relies on it. When we design our own higher-order functions based
on our specific needs, we can more flexibly design the companion functional
interfaces to go with it. For example, the next code shows a functional interface
whose method specifies a checked exception using the throws clause.

resources/fpij/UseInstance.java
@FunctionalInterface
public interface UseInstance<T, X extends Throwable> {

void accept(T instance) throws X;
}

Any method that accepts a parameter of the UseInstance interface will expect
and be ready to handle appropriate exceptions or propagate them. We’ll take
a closer look at this design option in Using Higher-Order Functions, on page
92.

The preceding idiom is tailored for lambda expressions that throw exactly one
exception—for example, IOException. If the lambda expressions were to throw
one of many exceptions, such as IOException or SQLException, then the parametric
type X would need to be modeled as the least upper-bound of these exceptions
—namely, Exception. If we want to use this to model a lambda expression that
throws no exception at all, we’d have to model the parametric type X as
RuntimeException.

report erratum • discuss

Dealing with Exceptions • 85

http://media.pragprog.com/titles/vsjava8/code/resources/fpij/UseInstance.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Exception handling is a sticky issue; when designing and programming with
lambda expressions we have to take extra care to handle them properly.

Recap
Lambda expressions are not just a language feature; they turn into a very
powerful yet lightweight design tool. Instead of spending the effort to create
a hierarchy of interfaces and classes, we can reuse functional interfaces and
pass around lambda expressions and method references where possible. This
technique can help us easily create delegates to quickly implement the
strategy pattern at both the method and the class level. We can also use
lambda expressions to implement the decorator pattern. By turning lambda
expressions into controlled workhorses, we can create easy-to-read, fluent
interfaces as well as configuration details in code. We must take extra care,
however, to properly deal with exceptions when working with lambda
expressions.

In the next chapter we’ll explore a variation of the loan pattern; we’ll use
lambda expressions to exert greater control when managing object lifetime.

Chapter 4. Designing with Lambda Expressions • 86

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

CHAPTER 5

No one is useless in this world who lightens the burden of it to
anyone else.

 ➤ Charles Dickens

Working with Resources
We may have been led to believe that the JVM automates all garbage collection
(GC). It’s true that we could let the JVM handle it if we’re only using internal
resources. However, GC is our responsibility if we use external resources,
such as when we connect to databases, open files and sockets, or use native
resources.

Java provides a few options to properly clean up resources, but, as we’ll see
in this chapter, none are as effective as what we can do with lambda expres-
sions. We’ll use lambda expressions to implement the execute around method
(EAM) pattern, which gives us better control over sequencing of operations.1

Then we’ll use this pattern to do even more: manage locks and write exception
tests.

Cleaning Up Resources
GC can be a pain to deal with. A company asked me to help debug a problem
—one programmer described the issue as “it works fine…most of the time.”
The application failed during peak usage. It turned out that the code was
relying on the finalize() method to release database connections. The JVM figured
it had enough memory and opted not to run GC. Since the finalizer was rarely
invoked, it led to external resource clogging and the resulting failure.

We need to manage situations like this in a better way, and lambda expres-
sions can help. Let’s start with an example problem that involves GC. We’ll
build the example using a few different approaches, discussing the merits
and deficiencies of each. This will help us see the strengths of the final solution
using lambda expressions.

1. http://c2.com/cgi/wiki?ExecuteAroundMethod

report erratum • discuss

http://c2.com/cgi/wiki?ExecuteAroundMethod
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Peeking into the Problem
We’re concerned with external resource cleanup, so let’s start with a simple
example class that uses a FileWriter to write some messages.

resources/fpij/FileWriterExample.java
public class FileWriterExample {

private final FileWriter writer;

public FileWriterExample(final String fileName) throws IOException {
writer = new FileWriter(fileName);

}
public void writeStuff(final String message) throws IOException {
writer.write(message);

}
public void finalize() throws IOException {
writer.close();

}
//...

}

In the FileWriterExample class’s constructor we initialize an instance of FileWriter,
giving it the name of a file to write to. In the writeStuff() method we write the
given message to the file using the instance of the FileWriter we created. Then,
in the finalize() method we clean up the resource, calling close() on it with the
hope that it will flush the content to the file and close it.

Let’s write a main() method to use this class.

resources/fpij/FileWriterExample.java
public static void main(final String[] args) throws IOException {
final FileWriterExample writerExample =
new FileWriterExample("peekaboo.txt");

writerExample.writeStuff("peek-a-boo");
}

We created an instance of the FileWriterExample class and invoked the writeStuff()
method on it, but if we ran this code, we’d see that the peekaboo.txt file was
created but it’s empty. The finalizer never ran; the JVM decided it wasn’t
necessary as there was enough memory. As a result, the file was never closed,
and the content we wrote was not flushed from memory.

If we create several instances of the FileWriterExample class in a long-running
process we’ll end up with several open files. Many of these files will not be
closed in a timely manner since the JVM has a lot of memory and sees no
reason to run GC.

Let’s fix the problem by adding an explicit call to close(), and let’s get rid of the
finalize() method.

Chapter 5. Working with Resources • 88

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/resources/fpij/FileWriterExample.java
http://media.pragprog.com/titles/vsjava8/code/resources/fpij/FileWriterExample.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Closing the Resource
When we’re done using the instance, we could make an explicit request for
its cleanup. Even though the object’s memory cleanup is still at the mercy of
the JVM GC, we can quickly release the external resources the instance uses.
We first need a method to do the cleanup. Let’s write that.

resources/fpij/FileWriterExample.java
public void close() throws IOException {

writer.close();
}

In the close() method we simply call the close() method on the FileWriter instance.
If we used any other external resources in the FileWriterExample, we can clean
them up here, as well. Let’s make explicit use of this method in the main()
method.

resources/fpij/FileWriterExample.java
final FileWriterExample writerExample =
new FileWriterExample("peekaboo.txt");

writerExample.writeStuff("peek-a-boo");
writerExample.close();

If we run the code now and look into the peekaboo.txt file, we’ll see the peek-a-
boo message. The code works, but it’s far from perfect.

The explicit call to close() cleans up any external resources the instance uses,
as soon as we indicate the instance is no longer needed. However, we may
not reach the call to the close() method if there was an exception in the code
leading up to it. We’ll have to do a bit more work to ensure the call to close()
happens. Let’s take care of that next.

Ensuring Cleanup
We need to ensure the call to close() happens whether or not there’s an
exception. To achieve this we can wrap the call in a finally block.

resources/fpij/FileWriterExample.java
final FileWriterExample writerExample =
new FileWriterExample("peekaboo.txt");

try {
writerExample.writeStuff("peek-a-boo");

} finally {
writerExample.close();

}

This version will ensure resource cleanup even if an exception occurs in the
code, but that’s a lot of effort and the code is quite smelly. The automatic

report erratum • discuss

Cleaning Up Resources • 89

http://media.pragprog.com/titles/vsjava8/code/resources/fpij/FileWriterExample.java
http://media.pragprog.com/titles/vsjava8/code/resources/fpij/FileWriterExample.java
http://media.pragprog.com/titles/vsjava8/code/resources/fpij/FileWriterExample.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

resource management (ARM) feature, introduced in Java 7, was designed to
reduce such smells, as we’ll see next.

Using ARM
ARM can reduce the verbosity in the previous example. Rather than using
both the try and finally blocks, we can use a special form of the try block with
a resource attached to it. Then the Java compiler takes care of automatically
inserting the finally block and the call to the close() method.

Let’s see how the code would look with ARM; we’ll use an instance of a new
FileWriterARM class.

resources/fpij/FileWriterARM.java
try(final FileWriterARM writerARM = new FileWriterARM("peekaboo.txt")) {
writerARM.writeStuff("peek-a-boo");

System.out.println("done with the resource...");
}

We created an instance of the class FileWriterARM within the safe haven of the
try-with-resources form and invoked the writeStuff() method within its block.
When we leave the scope of the try block, the close() method is automatically
called on the instance/resource managed by this try block. For this to work,
the compiler requires the managed resource class to implement the AutoCloseable
interface, which has just one method, close().

The rules around AutoCloseable have gone through a few changes in Java 8.
First, Stream implements AutoCloseable and as a result all input/output
(I/O)-backed streams can be used with try-with-resources. The contract of
AutoCloseable has been modified from a strict “the resource must be closed” to
a more relaxed “the resource can be closed.” If we’re certain that our code
uses an I/O resource, then we should use try-with-resources.

Here’s the FileWriterARM class used in the previous code.

resources/fpij/FileWriterARM.java
public class FileWriterARM implements AutoCloseable {
private final FileWriter writer;

public FileWriterARM(final String fileName) throws IOException {
writer = new FileWriter(fileName);

}

public void writeStuff(final String message) throws IOException {
writer.write(message);

}

Chapter 5. Working with Resources • 90

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/resources/fpij/FileWriterARM.java
http://media.pragprog.com/titles/vsjava8/code/resources/fpij/FileWriterARM.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

public void close() throws IOException {
System.out.println("close called automatically...");
writer.close();

}

//...
}

Let’s run the code and look at the peekaboo.txt file and the console for the code’s
output.

done with the resource...
close called automatically...

We can see the close() method was called as soon as we left the try block. The
instance we created when entering the try block is not accessible beyond the
point of leaving the block. The memory that instance uses will be garbage-
collected eventually based on the GC strategy the JVM employs.

The previous code using ARM is quite concise and charming, but the program-
mers have to remember to use it. The code won’t complain if we ignore this
elegant construct; it will simply create an instance and call methods like
writeStuff() outside of any try blocks. If we’re looking for a way to really ensure
timely cleanup and avoid programmer errors, we have to look beyond ARM,
as we’ll do next.

Using Lambda Expressions to Clean Up Resources
ARM was a good step in the right direction, but it’s not very effective—never
trust anything with the word management in it, right? Just kidding. Anyone
using our class has to figure out that it implements AutoCloseable and remember
to use the try-with-resources construct. It’d be great if the API we design could
guide the programmers and, with the compiler’s help, point them in the right
direction. We can achieve that quite easily with lambda expressions.

Preparing the Class for Resource Cleanup
We’ll design a class, FileWriterEAM, that encapsulates heavy resources that need
timely cleanup. In this example we’ll use the FileWriter to represent that
resource. Let’s make both the constructor and the close() methods private—
that’ll grab the attention of programmers trying to use the class. They can’t
create an instance directly, and can’t invoke the close() on it either. Before we
discuss it further, let’s implement the design devised so far.

report erratum • discuss

Using Lambda Expressions to Clean Up Resources • 91

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

resources/fpij/FileWriterEAM.java
public class FileWriterEAM {
private final FileWriter writer;

private FileWriterEAM(final String fileName) throws IOException {
writer = new FileWriter(fileName);

}
private void close() throws IOException {
System.out.println("close called automatically...");
writer.close();

}
public void writeStuff(final String message) throws IOException {
writer.write(message);

}
//...

}

The private constructor and the private close methods are in place, along with
the public method writeStuff().

Using Higher-Order Functions
Since the programmers can’t directly create an instance of FileWriterEAM, we
need a factory method for them to use. Unlike the regular factory methods
that create an instance and throw it across the fence, our method will yield
it to users and wait for them to finish their work with it. We’ll use the help of
lambda expressions to do this, as we’ll see soon. Let’s write this method first.

resources/fpij/FileWriterEAM.java
public static void use(final String fileName,

final UseInstance<FileWriterEAM, IOException> block) throws IOException {

final FileWriterEAM writerEAM = new FileWriterEAM(fileName);
try {

block.accept(writerEAM);
} finally {
writerEAM.close();

}
}

In the use() method, we receive two parameters, fileName and a reference to an
interface UseInstance (which we haven’t defined yet). Within this method we
instantiate FileWriterEAM, and within the safe haven of the try and finally block
we pass the instance to an accept() method of our soon-to-be-created interface.
When the call returns, we invoke the close() method on the instance in the
finally block. Instead of using this construct, we could use ARM within the use()
method. In any case, the users of our class don’t have to worry about these
details.

Chapter 5. Working with Resources • 92

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/resources/fpij/FileWriterEAM.java
http://media.pragprog.com/titles/vsjava8/code/resources/fpij/FileWriterEAM.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The use() method represents the structure of the execute around method pat-
tern. The main action here is the use of the instance within the accept() method,
but the creation and cleanup operations nicely surround this call.

Before we can exercise this code, let’s take care of the last missing piece, the
UseInstance interface.

resources/fpij/UseInstance.java
@FunctionalInterface
public interface UseInstance<T, X extends Throwable> {

void accept(T instance) throws X;
}

UseInstance is a functional interface, an ideal candidate for the Java compiler
to automatically synthesize from lambda expressions or method references.
We marked the interface with the @FunctionalInterface annotation. This is purely
optional, but is useful to convey our intent more explicitly. Whether we use
this interface or not, the compiler will automatically recognize functional
interfaces structurally, as we discussed in A Little Sugar to Sweeten, on page
15.

We could have used a java.function.Consumer interface instead of defining our own
UseInstance; however, since the method may throw an exception, we needed to
indicate that in our interface. Lambda expressions can only throw checked
exceptions defined as part of the signature of the abstract method being synthe-
sized (see Dealing with Exceptions, on page 83). We created the UseInstance
interface so that the accept() method can accept an instance of a generic type;
in this example, we tied it down to an instance of a concrete FileWriterEAM. We
also designed it so this method implementation could potentially throw a
generic exception X—again, in this example tied to the concrete class IOException.

Using the Design for Instance Cleanup
As the class’s designers, we put in a bit more effort than simply implementing
the AutoCloseable interface. This extra investment on our part quickly will pay
recurring dividends: each time programmers use our class, they’ll get instant
resource cleanup, as we can see here:

resources/fpij/FileWriterEAM.java
FileWriterEAM.use("eam.txt", writerEAM -> writerEAM.writeStuff("sweet"));

First, our class’s users can’t create an instance directly. This prevents them
from creating code that would postpone the resource cleanup beyond its
expiration point (unless they go through extreme measures, such as using
reflection, to defeat the mechanism). Since the compiler will prevent calls to
the constructor or the close() method, the programmers will quickly figure out

report erratum • discuss

Using Lambda Expressions to Clean Up Resources • 93

http://media.pragprog.com/titles/vsjava8/code/resources/fpij/UseInstance.java
http://media.pragprog.com/titles/vsjava8/code/resources/fpij/FileWriterEAM.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

the benefit of the use() method, which yields an instance for their use. To
invoke use(), they can use the short-and-sweet syntax that lambda expressions
provide, as we saw in the previous code.

Let’s run this version of code and look at the eam.txt file it creates.

sweet

Let’s also glance at the console for the output from the code.

close called automatically...

We can see that the file has the proper output and that the resource cleanup
happened automatically.

In the example we use the given instance writerEAM for just one call within the
lambda expression. If we have to perform more operations with it, we can
send it off to other functions as an argument. We can also perform a few
operations on it, right within the lambda expression, by using multiline syntax.

resources/fpij/FileWriterEAM.java
FileWriterEAM.use("eam2.txt", writerEAM -> {

writerEAM.writeStuff("how");
writerEAM.writeStuff("sweet");

});

We can place multiple lines of code within a lambda expression by wrapping
them in a {} block. If the lambda expression is expected to return a result,
be sure to place a return at the appropriate expression. The Java compiler gives
us the flexibility to write just one line or wrap multiple lines, but we should
keep lambda expressions short.

Long methods are bad, but long lambda expressions are evil—we would lose
the benefit of code that’s concise, easy to understand, and simple to maintain.
Instead of writing long lambda expressions, we should move the code into
other methods and then use method references for them if possible, or invoke
them from within a lambda expression.

In this example the UseInstance’s accept() is a void method. If we were interested
in returning some results to the caller of the use() method, we’d have to modify
this method’s signature to place an appropriate return type, such as a
generic parameter R. If we were to make this change, then the UseInstance would
be more like the Function<U, R> interface than like the Consumer<T> interface.
We’d also have to change the use() method to propagate the return results
from the modified apply() method.

Chapter 5. Working with Resources • 94

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/resources/fpij/FileWriterEAM.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We used lambda expressions to implement the execute around method pattern.
We can benefit from this pattern when designing classes that require prompt
cleanup of resources. Rather than shifting the burden to our class’s users,
we put in a bit more effort that made their lives much easier and the behavior
of our code a lot more consistent.

This pattern is not restricted to the cleanup of resources. For me, the pattern
came to life on a project where my team had to perform operations within the
bounds of transactions. Rather than creating and managing transactions all
over the code, we wrapped them into a nice runWithinTransaction() method. The
method’s callers received a transaction instance, and when they returned the
method took care of checking the status as well as performing actions such
as committing or rolling back the transaction and logging.

We used lambda expressions and the execute around method pattern to
manage resources. Next we’ll use it to manage locks.

Managing Locks
Locks play a critical part in concurrent Java applications. In this section we’ll
use lambda expressions to gain finer control over locks and open the doors
to unit-test the proper locking of critical sections.

synchronized is an age-old keyword used to provide mutual exclusion. A synchro-
nized block of code, such as synchronized { ... }, is a realization of the execute
around method pattern. This pattern has been around since Java 1.0, but it
was restricted and bound to the synchronized keyword in Java. Lambda
expressions have now unleashed this pattern’s power.

synchronized has some shortcomings—see Java Concurrency in Practice [Goe06],
by Brian Goetz, and Programming Concurrency on the JVM [Sub11]. First, it’s
hard to time out a call to synchronized, and this can increase the chance of
deadlocks and livelocks. Second, it’s hard to mock out synchronized, and that
makes it really hard to unit-test to see if code adheres to proper thread safety.

To address these concerns, the Lock interface, along with a few implementations
such as ReentrantLock, was introduced in Java 5. The Lock interface gives us
better control to lock, unlock, check if a lock is available, and easily time out
if a lock is not gained within a certain time span. Because this is an interface,
it’s easy to mock up its implementation for the sake of unit testing.2

2. https://www.agiledeveloper.com/presentations/TestDrivingMultiThreadedCode.zip

report erratum • discuss

Managing Locks • 95

https://www.agiledeveloper.com/presentations/TestDrivingMultiThreadedCode.zip
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

There’s one caveat to the Lock interface—unlike its counterpart synchronized, it
requires explicit locking and unlocking. This means we not only have to
remember to unlock, but to do so within the finally block. From our discussions
so far in this chapter, we can see lambda expressions and the execute around
method pattern helping out quite a bit here.

Let’s first look at a piece of code that uses a Lock.

resources/fpij/Locking.java
public class Locking {

Lock lock = new ReentrantLock(); //or mock

protected void setLock(final Lock mock) {
lock = mock;

}

public void doOp1() {
lock.lock();
try {

//...critical code...
} finally {
lock.unlock();

}
}
//...

}

We’re using a Lock lock field to share the lock between methods of this class.
However, the task of locking—for example, within the doOp1() method—leaves
a lot to be desired. It’s verbose, error prone, and hard to maintain. Let’s turn
to lambda expressions for help, and create a small class to manage the lock.

resources/fpij/Locker.java
public class Locker {
public static void runLocked(Lock lock, Runnable block) {
lock.lock();

try {
block.run();

} finally {
lock.unlock();

}
}

}

This class absorbs the pain of working with the Lock interface so the rest of
the code benefits. We can use the runLocked() method in code to wrap critical
sections.

Chapter 5. Working with Resources • 96

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/resources/fpij/Locking.java
http://media.pragprog.com/titles/vsjava8/code/resources/fpij/Locker.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

resources/fpij/Locking.java
public void doOp2() {
runLocked(lock, () -> {/*...critical code ... */});

}

public void doOp3() {
runLocked(lock, () -> {/*...critical code ... */});

}

public void doOp4() {
runLocked(lock, () -> {/*...critical code ... */});

}

The methods are quite concise, and they use the static method runLocked() of
the Locker helper class we created (we’d need an import static Locker.runLocked for
this code to compile). Lambda expressions come to our assistance once more.

We saw how the execute around method pattern helps to make the code concise
and less error prone, but the elegance and conciseness should help remove
the ceremony, not hide what’s essential. When designing with lambda
expressions, we should ensure that the intent of the code and its consequences
are clearly visible. Also, when creating lambda expressions that capture local
state, we must be aware of the restrictions we discussed in Are there restric-
tions to lexical scoping?, on page 31.

Let’s look at one more benefit the execute around method pattern offers, in
unit testing with JUnit.

Creating Concise Exception Tests
When Java 5 annotations were introduced, JUnit was quick to use them.
Overall this has been a benefit, but one use in particular, the convenience of
exception tests, leads to terse rather than concise code. Let’s understand the
issues and then resolve them using—good guess—lambda expressions. We
will see here that lambda expressions are not just another language feature;
they alter the way we think and design applications.

Suppose we’re driving the design of a class, RodCutter, through unit tests and
we expect a method maxProfit() to throw an exception if the argument is zero.
Let’s look at a few ways we can write the exception tests for it.

Exception Test with try and catch
Here’s the test for the maxProfit() method with try and catch to check for
exceptions.

report erratum • discuss

Creating Concise Exception Tests • 97

http://media.pragprog.com/titles/vsjava8/code/resources/fpij/Locking.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

resources/fpij/RodCutterTest.java
@Test public void VerboseExceptionTest() {
rodCutter.setPrices(prices);
try {

rodCutter.maxProfit(0);
fail("Expected exception for zero length");

} catch(RodCutterException ex) {
assertTrue("expected", true);

}
}

That’s quite verbose and it may take some effort to understand, but this code
is quite specific about what’s expected to fail: the call to the maxProfit() method.

Exception Test Using Annotation
We may be tempted to attack the verbosity with annotation.

resources/fpij/RodCutterTest.java
@Test(expected = RodCutterException.class)
public void TerseExceptionTest() {
rodCutter.setPrices(prices);
rodCutter.maxProfit(0);

}

The code is short but deceptive—it’s terse. It tells us that the test should pass
if the exception RodCutterException is received, but it fails to ensure that the
method that raised that exception is maxProfit(). If the setPrices() method threw
that exception, due to some code change, then this test will continue to pass,
but for the wrong reason. A good test should pass only for the right reasons
—this test deceives us.

Using Lambda Expressions for Exception Tests
Let’s use lambda expressions to look for exceptions. We’ll manually create
the code for this in a TestHelper class, but if and when JUnit supports this
natively we won’t have to write such a class.

resources/fpij/TestHelper.java
public class TestHelper {
public static <X extends Throwable> Throwable assertThrows(

final Class<X> exceptionClass, final Runnable block) {

try {
block.run();

} catch(Throwable ex) {
if(exceptionClass.isInstance(ex))
return ex;

}

Chapter 5. Working with Resources • 98

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/resources/fpij/RodCutterTest.java
http://media.pragprog.com/titles/vsjava8/code/resources/fpij/RodCutterTest.java
http://media.pragprog.com/titles/vsjava8/code/resources/fpij/TestHelper.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

fail("Failed to throw expected exception ");
return null;

}
}

In the TestHelper we wrote a static method assertThrows() that expects an exception
class and a block of code to run. It exercises the block of code, and examines
the exception the code throws. If no exception was thrown or if an exception
other than the type given in the first parameter was received, the call will fail
using the JUnit fail() method.

Let’s use this helper to create a concise test.

resources/fpij/RodCutterTest.java
@Test
public void ConciseExceptionTest() {
rodCutter.setPrices(prices);
assertThrows(RodCutterException.class, () -> rodCutter.maxProfit(0));

}

This test is fine grained—it will pass only if the method maxProfit() throws the
expected exception.

Exercising the Tests
We have three versions of exception tests so far; let’s review them.

resources/fpij/RodCutterTest.java
@Test public void VerboseExceptionTest() {
rodCutter.setPrices(prices);
try {

rodCutter.maxProfit(0);
fail("Expected exception for zero length");

} catch(RodCutterException ex) {
assertTrue("expected", true);

}
}

@Test(expected = RodCutterException.class)
public void TerseExceptionTest() {
rodCutter.setPrices(prices);
rodCutter.maxProfit(0);

}

@Test
public void ConciseExceptionTest() {
rodCutter.setPrices(prices);
assertThrows(RodCutterException.class, () -> rodCutter.maxProfit(0));

}

report erratum • discuss

Creating Concise Exception Tests • 99

http://media.pragprog.com/titles/vsjava8/code/resources/fpij/RodCutterTest.java
http://media.pragprog.com/titles/vsjava8/code/resources/fpij/RodCutterTest.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

All these tests are checking whether the maxProfit() method throws an exception.
Let’s implement minimal code in the RodCutter class to make the tests pass.

resources/fpij/RodCutter.java
public class RodCutter {

public void setPrices(final List<Integer> prices) {
}
public int maxProfit(final int length) {
if (length == 0) throw new RodCutterException();

return 0;
}

}

The maxProfit() method throws an exception if the value of the length parameter
is zero, which is exactly what the tests are checking for. Let’s look at the result
of running the tests.

...
Time: ...

OK (3 tests)

All three tests passed, indicating that the maxProfit() blew up as expected.

All the tests achieve the same goal, but the last concise version is better than
the others; one change to the setPrice() method will show us why.

resources/fpij/RodCutter.java
public void setPrices(final List<Integer> prices) {

throw new RodCutterException();
}

The setPrice() method, which is called in each of the tests, now abruptly throws
the RodCutterException exception. Since the tests are expecting the method
maxProfit() to throw a specific exception, any other behavior in the invoked code
should trigger an alert. Good tests would fail now due to the code change we
made; poor tests will quietly pass. Let’s run the tests to see how they perform.

.E.E.
Time: ...
There were 2 errors:
...

The change to the setPrices() method should have caused all three tests to fail,
but only two failed, as we can see from the output. If we examine the full
output of the tests, we’ll find the culprit: the terse version using the annotation
facility for the exception test.

Chapter 5. Working with Resources • 100

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/resources/fpij/RodCutter.java
http://media.pragprog.com/titles/vsjava8/code/resources/fpij/RodCutter.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We want to avoid the terse version, as it is plain wrong. We’re now limited to
the other two versions that behave properly. We can narrow the choice further
to the concise version—no need to write more code when fewer lines of readable
code can accomplish the same thing.

We saw how lambda expressions help us write tests that target specific
methods for the expected exception, and that helps us create concise, easy-
to-read, less error-prone tests.

Recap
We can’t totally rely on automatic garbage collection, especially when our
applications use external resources. The execute around method pattern can
help us gain finer control over the flow of execution, and release external
resources. Lambda expressions are a good fit to implement this pattern. In
addition to controlling the object lifetime, we can use this pattern to better
manage locks and to write concise exception tests. This can lead to more
deterministic execution of code, timely cleanup of heavyweight resources, and
fewer errors.

We managed resources in this chapter. In the next we’ll use lambda expres-
sions to delay execution of some parts of code as a way to make the programs
more efficient.

report erratum • discuss

Recap • 101

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

CHAPTER 6

Progress is made by lazy men looking for easier ways to do things.

 ➤ Robert A. Heinlein

Being Lazy
In Java we often execute code eagerly. The arguments are evaluated right at
the time of method calls, for example. There’s a good reason for that; eager
code is easy to write and to reason about. But delaying commitments until
the last responsible moment is a good agile practice. When executing code,
we can gain in performance by being just a little lazy. Eager is simple, but
lazy is efficient. Now we can easily be lazy and make things simple and
efficient.

If we use heavyweight objects in a program, we want to postpone creating
them. Certainly we’d delay running any expensive computations until we
really need them. Paradoxically, laziness often requires effort, and this creates
an impediment. After all, who wants to work hard to be lazy? In Java 8 we
don’t have to; we can relax because lambda expressions make running our
programs both lazy and fast.

In this chapter we start with a task to postpone the creation of a heavyweight
object, then we turn some eager computations into lazy evaluations. As the
last task we look at creating infinite lazy sequences by exploiting the laziness
built into Streams. The tricks from this chapter can help our programs run
faster, our code become more concise, and us look smarter.

Delayed Initialization
In object-oriented programming we ensure that objects are well constructed
before any method calls. We encapsulate, ensure proper state transitions,
and preserve the object’s invariants. This works well most of the time, but
when parts of an object’s internals are heavyweight resources, we’ll benefit
if we postpone creating them. This can speed up object creation, and the
program doesn’t expend any effort creating things that may not be used.

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The design decision to postpone creating part of an object should not burden
the object’s users—it should be seamless. Let’s explore some ways to design
lazy initialization.

A Familiar Approach
In the following example, we will craft a way to delay the creation of a heavy-
weight instance. Then we’ll improve on the design.

Let’s start with a Holder class that needs some heavyweight resources. Creating
an instance of this class may take significant time and memory due to the
resources it depends on. To address this we can move the heavyweight
resources into another class—say, Heavy. Then an instance of Holder will keep
a reference to an instance of Heavy and route calls to it as appropriate.

Let’s create the Heavy class.

lazy/fpij/Heavy.java
public class Heavy {
public Heavy() { System.out.println("Heavy created"); }

public String toString() { return "quite heavy"; }
}

This class represents a hypothetical heavyweight resource. In its constructor
we print a message to tell us when it’s created. Let’s use an instance of this
class in the first trial version of the Holder class, named HolderNaive.

lazy/fpij/HolderNaive.java
public class HolderNaive {

private Heavy heavy;

public HolderNaive() {
System.out.println("Holder created");

}

public Heavy getHeavy() {
if(heavy == null) {
heavy = new Heavy();

}

return heavy;
}

//...

At first glance this code appears quite simple. We created a null reference,
heavy, and assigned it to a proper instance on the first call to the getHeavy()

Chapter 6. Being Lazy • 104

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/Heavy.java
http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/HolderNaive.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

method. Let’s use this class to create an instance of HolderNaive and see if it
postpones the creation of the Heavy instance.

lazy/fpij/HolderNaive.java
final HolderNaive holder = new HolderNaive();
System.out.println("deferring heavy creation...");
System.out.println(holder.getHeavy());
System.out.println(holder.getHeavy());

This is the code’s output:

Holder created
deferring heavy creation...
Heavy created
quite heavy
quite heavy

That appears to work. The solution is familiar, but it’s also a rather simplistic
solution that fails thread safety. Let’s work through it.

Providing Thread Safety
For an instance of HolderNaive, the dependent instance of Heavy is created on
the first call to the getHeavy() method. On subsequent calls to this method, the
already created instance will be returned. That’s exactly what we want, but
there’s a catch. This code suffers from a race condition.

If two or more threads call the getHeavy() method at the same time, then we
could end up with multiple Heavy instances, potentially one per thread. This
side effect is undesirable. Let’s fix it.

public synchronized Heavy getHeavy() {
if(heavy == null) {
heavy = new Heavy();

}

return heavy;
}

We marked getHeavy() with the synchronized keyword to ensure mutual exclusion.
If two or more threads call this method concurrently, due to mutual exclusion
only one will be allowed to enter and the others will queue up for their turn.
The first one to enter into the method will create the instance. When subse-
quent threads enter this method they will see that the instance already exists,
and will simply return it.

We averted the race condition, but the solution created another negative
impact. Every call to the getHeavy() method now has to endure the synchroniza-
tion overhead; the calling threads have to cross the memory barrier (see Brian

report erratum • discuss

Delayed Initialization • 105

http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/HolderNaive.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Goetz’s Java Concurrency in Practice [Goe06]) even if there are no concurrently
competing threads.

In fact, the possibility of the race condition is so short lived it can happen
only when the heavy reference is first being assigned, and the synchronization
approach is a rather heavy-handed solution. We need thread safety until the
reference is first created, and free unhindered access to the reference after
that. We’ll achieve this by using David Wheeler’s advice: “Any problem in
computer science can be solved with another level of indirection.”1

Adding a Level of Indirection
The indirection we’ll add in this example comes from a Supplier<T> class. This
is a functional interface in the JDK, with one abstract method named get()
that returns an instance. In other words, this is a factory that keeps on giving
without expecting anything as input, kind of like a mother’s love.

In the most rudimentary form a Supplier will return an instance. For example,
we could implement Supplier<Heavy> to return an instance of Heavy, like so:

Supplier<Heavy> supplier = () -> new Heavy();

Alternatively, we could use a constructor reference instead of the traditional
new syntax to instantiate an instance. A constructor reference is much like a
method reference, except it’s a reference to a constructor instead of a method.
We can use a constructor reference anywhere a lambda expression does
nothing more than instantiate an instance. Let’s look at an example with a
constructor reference.

Supplier<Heavy> supplier = Heavy::new;

We took a look at what a Supplier can do for us, but we need something more
than this simple form. We need to postpone and cache the instance. We can
do that by moving the instance creation to another function, as we see next,
in the final version of the Holder class.

lazy/fpij/Holder.java
public class Holder {
private Supplier<Heavy> heavy = () -> createAndCacheHeavy();

public Holder() {
System.out.println("Holder created");

}

public Heavy getHeavy() {

1. http://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)

Chapter 6. Being Lazy • 106

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/Holder.java
http://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

return heavy.get();
}
//...

}

The field heavy in this version is an instance of the Supplier<Heavy>. We assign
it to a lambda expression and the Java compiler synthesizes from it an
instance with the expected get() method. The implementation simply routes
the call to a createAndCacheHeavy() method, which we’ll implement soon. The
getHeavy() method returns the same thing the Supplier’s get method returns.

When an instance of Holder is created, as we can see, an instance of Heavy is
not created. This design achieves the goal of lazy initialization. We also need
a non-draconian solution to thread safety. This is where the createAndCacheHeavy()
method comes in.

Let’s first look at the code for this method.

lazy/fpij/Holder.java
private synchronized Heavy createAndCacheHeavy() {

class HeavyFactory implements Supplier<Heavy> {
private final Heavy heavyInstance = new Heavy();

public Heavy get() { return heavyInstance; }
}

if(!HeavyFactory.class.isInstance(heavy)) {
heavy = new HeavyFactory();

}

return heavy.get();
}

We’ll mark this method synchronized so threads calling this method concurrently
will be mutually exclusive. But within this method, on the first call we
quickly replace the Supplier reference heavy with a direct supplier, HeavyFactory,
that will return an instance of Heavy. Let’s see how this adequately solves
thread safety.

Let’s consider a scenario in which a new instance of Holder has just been cre-
ated. Let’s assume two threads invoke the getHeavy() method concurrently,
followed by a third thread calling this method much later. When the first two
threads call the default supplier’s get() method in the Holder, the createAnd-
CacheHeavy() method will let one of them through and make the other wait. The
first thread to enter will check if heavy is an instance of the HeavyFactory. Since
it is not the default Supplier, this thread will replace heavy with an instance of
HeavyFactory. Finally it returns the Heavy instance that this HeavyFactory holds.

report erratum • discuss

Delayed Initialization • 107

http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/Holder.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The second concurrent thread to enter will again check if heavy is an instance
of HeavyFactory, and will bypass the creation. It would simply return the same
instance that first thread returned. Here we assume Heavy itself is thread safe,
and we’re only focusing on the thread safety of Holder.

We’ve taken care of the race condition, but since the instance has been created
lazily, we no longer need to be so protective. Now that heavy has been replaced
with HeavyFactory, subsequent calls to the getHeavy() method will go directly to
the HeavyFactory’s get() method and will not incur any synchronization overhead.

We designed lazy initialization and, at the same time, avoided null checks.
Furthermore, we ensured the thread safety of the lazy instance creation. This
is a simple, lightweight implementation of the virtual proxy pattern. Next we’ll
use lambda expressions to postpone function evaluations.

Lazy Evaluations
In the previous section we delayed creation of heavyweight objects to make
code execution faster. We’ll explore that further in this section to delay running
methods, and use that approach to improve our designs. The main objective
is to reduce the execution of code to the bare minimum—especially the
expensive code—and speed up the execution.

Java already uses lazy execution when evaluating logical operations. For
example, in fn1() || fn2(), the call fn2() is never performed if fn1() returns a boolean
true. Likewise, if we replace the || with &&, the call to fn2() never happens if fn1()
returns a boolean false. Programs benefit from this short-circuiting; we avoid
unnecessary evaluation of expressions or functions, and that can help improve
performance. Often we rely on such short-circuiting for code correctness, as
well.

While Java uses lazy or normal order when evaluating logical operators, it
uses eager or applicative order when evaluating method arguments. All the
arguments to methods are fully evaluated before a method is invoked. If the
method doesn’t use all of the passed arguments, the program has wasted
time and effort executing them. We can use lambda expressions to postpone
the execution of select arguments.

The Java compiler evaluates lambda expressions and method references in
the argument list at the called location. The invocation of these, however, is
postponed until they are explicitly called from within the methods they’re
passed to. We can take advantage of this behavior to delay or even avoid
method invocation by embedding calls to them within lambda expressions.

Chapter 6. Being Lazy • 108

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We can’t seamlessly wrap arbitrary arguments into lambda expressions,
however. We have to explicitly design for it, as we’ll see here.

Quite a few methods in the JDK—including methods on the Stream class—do
lazy evaluation. For instance, the filter() method may not invoke the Predicate,
passed as an argument, on all the elements in the target collection.

We can design lazy evaluation of arguments to methods by turning the
parameters into functional interfaces. Let’s work that approach into an
example to get a feel for the design.

Starting with Eager Evaluation
In the example here, methods take significant time to run. We’ll call them
eagerly and then alter the design to improve speed.

Let’s start with a method evaluate() that takes quite a bit of time and resources
to run.

lazy/fpij/Evaluation.java
public class Evaluation {
public static boolean evaluate(final int value) {

System.out.println("evaluating ..." + value);
simulateTimeConsumingOp(2000);
return value > 100;

}
//...

}

A call to evaluate() would take a couple of seconds to run, so we definitely want
to postpone any unnecessary calls. Let’s create a method, eagerEvaluator(), which
is like almost any method we write in Java: all of its arguments will be evalu-
ated before its call.

lazy/fpij/Evaluation.java
public static void eagerEvaluator(

final boolean input1, final boolean input2) {
System.out.println("eagerEvaluator called...");
System.out.println("accept?: " + (input1 && input2));

}

The method takes two boolean parameters. Within the method we perform a
logical and operation on the parameters. Sadly, it’s too late to benefit from
the lazy evaluation this operation automatically provides since the arguments
are evaluated well before we enter this method.

Let’s invoke eagerEvaluator() and pass as arguments the results of two evaluate()
method calls.

report erratum • discuss

Lazy Evaluations • 109

http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/Evaluation.java
http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/Evaluation.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

lazy/fpij/Evaluation.java
eagerEvaluator(evaluate(1), evaluate(2));

If we run this code we’ll see both the calls to evaluate() execute well before we
enter the eagerEvaluator() method.

evaluating ...1
evaluating ...2
eagerEvaluator called...
accept?: false

This would take at least four seconds to run because of the cumulative delay
from the calls to the evaluate() method. We’ll improve on that next.

Designing for Lazy Evaluation
If we know that some arguments may not be used during the execution of a
method, we can design the method’s interface to facilitate the delayed execu-
tion of some or all arguments. The arguments can be evaluated on demand,
like in this lazyEvaluator() method:

lazy/fpij/Evaluation.java
public static void lazyEvaluator(

final Supplier<Boolean> input1, final Supplier<Boolean> input2) {
System.out.println("lazyEvaluator called...");
System.out.println("accept?: " + (input1.get() && input2.get()));

}

Rather than taking two boolean parameters, the method receives references to
the Supplier instances. This JDK functional interface will return an instance,
Boolean in this case, in response to a call to its get() method. The logical and
operation we use within the lazyEvaluator() method will invoke the get() methods
only on demand.

If we pass two calls to evaluate() as arguments to the lazyEvaluator() method, the
second will be evaluated only if the first call returned a boolean true. Let’s run
the method to see this.

lazy/fpij/Evaluation.java
lazyEvaluator(() -> evaluate(1), () -> evaluate(2));

Each Supplier makes a call to the evaluate() method, but not until the lazyEvaluator()
method is invoked. The evaluation is lazy and optional, determined by the
flow of execution within the lazyEvaluator() method. We can see this delayed
evaluation in the output when we run the code.

lazyEvaluator called...
evaluating ...1
accept?: false

Chapter 6. Being Lazy • 110

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/Evaluation.java
http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/Evaluation.java
http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/Evaluation.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The arguments are not evaluated before we enter the lazyEvaluator() method.
The second call to evaluate() was skipped in this version. This example call of
lazyEvaluator() takes only about two seconds, whereas the previous call to
eagerEvaluator() took about four seconds.

We saw the cost savings of the lazy evaluation. This technique is quite helpful
when we have to evaluate a large number of methods or if method evaluations
are time/resource consuming.

This technique can significantly boost performance, but its disadvantage is
that it burdens the caller with packaging the calls in a lambda expression.
Sure, lambda expressions are concise, but they’re a hindrance compared to
the usual way of passing arguments. In some contexts we may be able to use
method references instead of lambda expressions, and this can make the
code a bit more concise and ease the burden a little.

The lazy solutions so far have helped us make code more efficient. Next we’ll
use it purely for convenience.

Leveraging the Laziness of Streams
In previous chapters we’ve seen the facilities that the new Stream interface
offers, but so far we haven’t discussed one of their most salient fea-
tures—they’re really lazy, in a good way. The lazy evaluation of Streams is quite
powerful. First, we don’t have to do anything special to derive their benefits.
In fact, we’ve used them many times already! Second, they can postpone not
just one, but a sequence of evaluations so that only the most essential parts
of the logic are evaluated, and only when needed. Let’s look at how lazy Streams
are and how we benefit from that.

Intermediate and Terminal Operations
Streams have two types of methods: intermediate and terminal, which work
together. The secret behind their laziness is that we chain multiple interme-
diate operations followed by a terminal operation.

Methods like map() and filter() are intermediate; calls to them return immediately
and the lambda expressions provided to them are not evaluated right away.
The core behavior of these methods is cached for later execution and no real
work is done when they’re called. The cached behavior is run when one of
the terminal operations, like findFirst() and reduce(), is called. Not all the cached
code is executed, however, and the computation will complete as soon as the
desired result is found. Let’s look at an example to understand this better.

report erratum • discuss

Leveraging the Laziness of Streams • 111

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Suppose we’re given a collection of names and are asked to print in all caps
the first name that is only three letters long. We can use Stream’s functional-
style methods to achieve this. But first let’s create a few helper methods.

lazy/fpij/LazyStreams.java
public class LazyStreams {

private static int length(final String name) {
System.out.println("getting length for " + name);
return name.length();

}
private static String toUpper(final String name) {

System.out.println("converting to uppercase: " + name);
return name.toUpperCase();

}
//...

}

The two helper methods simply print the parameters they receive before
returning the expected results. We wrote these methods to take a peek at the
intermediate operations in the code we’ll write next.

lazy/fpij/LazyStreams.java
public static void main(final String[] args) {

List<String> names = Arrays.asList("Brad", "Kate", "Kim", "Jack", "Joe",
"Mike", "Susan", "George", "Robert", "Julia", "Parker", "Benson");

final String firstNameWith3Letters =
names.stream()

.filter(name -> length(name) == 3)

.map(name -> toUpper(name))

.findFirst()

.get();

System.out.println(firstNameWith3Letters);
}

We started with a list of names, transformed it into a Stream, filtered out only
names that are three letters long, converted the selected names to all caps,
and picked the first name from that set.

At first glance it appears the code is doing a lot of work transforming collec-
tions, but it’s deceptively lazy; it didn’t do any more work than absolutely
essential. Let’s take a look.

Method Evaluation Order
It would help to read the code from right to left, or bottom up, to see what’s
really going on here. Each step in the call chain will do only enough work to

Chapter 6. Being Lazy • 112

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/LazyStreams.java
http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/LazyStreams.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

ensure that the terminal operation in the chain completes. This behavior is
in direct contrast to the usual eager evaluation, but is efficient.

If the code were eager, the filter() method would have first gone through all
dozen names in the collection to create a list of two names, Kim and Joe,
whose length is three (letters). The subsequent call to the map() method would
have then evaluated the two names. The findFirst() method finally would have
picked the first element of this reduced list. We can visualize this hypothetical
eager order of evaluation in the next figure.

15 operations total

12 operations

2 operations

map
1 operation

KIM

Figure 6—Hypothetical eager evaluation of operations

However, both the filter() and map() methods are lazy to the bone. As the execu-
tion goes through the chain, the filter() and map() methods store the lambda
expressions and pass on a façade to the next call in the chain. The evaluations
start only when findFirst(), a terminal operation, is called.

The order of evaluation is different as well, as we see in Figure 7, Actual lazy
evaluation of operations, on page 114. The filter() method does not plow through
all the elements in the collection in one shot. Instead, it runs until it finds
the first element that satisfies the condition given in the attached lambda
expression. As soon as it finds an element, it passes that to the next method
in the chain. This next method, map() in this example, does its part on the
given input and passes it down the chain. When the evaluation reaches the
end, the terminal operation checks to see if it has received the result it’s
looking for.

report erratum • discuss

Leveraging the Laziness of Streams • 113

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

5 operations total

3 operations 1 operation

map KIM1 operation

Figure 7—Actual lazy evaluation of operations

If the terminal operation got what it needed, the computation of the chain
terminates. If the terminal operation is not satisfied, it will ask for the chain
of operations to be carried out for more elements in the collection.

By examining the logic of this sequencing of operations, we can see that the
execution will iterate over only essential elements in the collection. We can
see evidence of this behavior by running the code.

getting length for Brad
getting length for Kate
getting length for Kim
converting to uppercase: Kim
KIM

From the output we can see that most of the elements in the example list
were not evaluated once the candidate name we’re looking for was found.

The logical sequence of operations we saw in the previous example is achieved
under the hood in the JDK using a fusing operation—all the functions in the
intermediate operations are fused together into one function that is evaluated
for each element, as appropriate, until the terminal operation is satisfied. In
essence, there’s only one pass on the data—filtering, mapping, and selecting
the element all happen in one shot.

Peeking into the Laziness
Writing the series of operations as a chain is the preferred and natural way
in Java 8. But to really see that the lazy evaluations didn’t start until we
reached the terminal operation, let’s break the chain from the previous code
into steps.

Chapter 6. Being Lazy • 114

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

lazy/fpij/LazyStreams.java
Stream<String> namesWith3Letters =

names.stream()
.filter(name -> length(name) == 3)
.map(name -> toUpper(name));

System.out.println("Stream created, filtered, mapped...");
System.out.println("ready to call findFirst...");

final String firstNameWith3Letters =
namesWith3Letters.findFirst()

.get();

System.out.println(firstNameWith3Letters);

We transformed the collection into a stream, filtered the values, and then
mapped the resulting collection. Then, separately, we called the terminal
operation. Let’s run the code to see the sequence of evaluation.

Stream created, filtered, mapped...
ready to call findFirst...
getting length for Brad
getting length for Kate
getting length for Kim
converting to uppercase: Kim
KIM

From the output we can clearly see that the intermediate operations delayed
their real work until the last responsible moment, when the terminal operation
was invoked. And even then, they only did the minimum work necessary to
satisfy the terminal operation. Pretty efficient, eh?

This example helped us uncover Stream’s true power. Next we’ll use Streams to
create infinite collections.

Creating Infinite, Lazy Collections
Infinite collections can make the code to create a growing series, like the
Fibonacci numbers, clearer and easier to express. But from our experience
in Java, we might think a series can’t be infinite due to practical memory
limits. The laziness of Streams comes in again here.

In Java, collections are still required to be finite but streams can be infinite.
We’ll see here how laziness becomes an essential workhorse to make infinite
streams possible. We’ll use them to create highly expressive, easy-to-under-
stand code to produce an infinitely growing series.

report erratum • discuss

Creating Infinite, Lazy Collections • 115

http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/LazyStreams.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

A Desperate Attempt
We’ll use a series of prime numbers, 2, 3, 5, 7,… as an example to explore
the concepts here. Let’s first create a helper function to determine if a number
is prime.

public static boolean isPrime(final int number) {
return number > 1 &&
IntStream.rangeClosed(2, (int) Math.sqrt(number))

.noneMatch(divisor -> number % divisor == 0);
}

A number greater than 1 is prime if it’s not divisible by any number between
2 and its square root. Normally we would use an external iterator to search
for a divisor in that range. Instead, we use more Java 8 goodness here—the
rangeClosed() static method of the new IntStream interface.

The closed suffix in the method name emphasizes that the range of values
will include the second parameter. For example, rangeClosed(1, 10) will return
the range of values 1, 2,..., 10 packed into a Stream. In contrast, the range() method,
also a static method in the interface, will return a range of values, up to (but
not including) the value in the second parameter.

In the isPrime() method, we use the short and sweet noneMatch() method on the
stream returned by the rangeClosed() method. The noneMatch() method takes a
Predicate as its parameter and we use this to determine if there’s a divisor for
the given number. The noneMatch() method will yield a boolean true if the lambda
expression returned false for all values in the range—that is, if there are no
divisors.

On our first attempt, we’ll use the isPrime() method to create a series of prime
numbers starting at any given number.

//don't try this at the office
public static List<Integer> primes(final int number) {

if(isPrime(number))
return concat(number, primes(number + 1));

else
return primes(number + 1);

}

If a given number is prime we include it in the list of primes that follows the
number. Otherwise, we omit it and move on to get that list.

Hold your tweets; no, your humble author has not gone mad—that code is
enticingly elegant but, sadly, won’t work. If we implement the concat() method

Chapter 6. Being Lazy • 116

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

and run the code, we’ll enter into a never-ending recursion and end up with
a java.lang.StackOverflowError.

Let’s drill into the code just a bit more to see if we can salvage anything from
it. The StackOverflowError is from the recursive calls to the primes() method. If we
can be lazy about this call, then we won’t run into issues.

Reaching for the Stars
Earlier we saw how lazy Streams are. They don’t do any real work until we ask
them for the results—kinda like my kids. We can rely on that laziness to
easily create a lazy, infinite collection.

When we create a Stream, from a collection or though other means, we quickly
receive a façade that has the potential to return an infinite list. But it’s
wickedly clever; it returns to us only as many elements as we ask for, produc-
ing the elements just in time. We can use that capability to express an infinite
collection and generate as many (finite) elements as we like from that list.
Let’s see how.

The Stream interface has a static method iterate() that can create an infinite Stream.
It takes two parameters, a seed value to start the collection, and an instance
of a UnaryOperator interface, which is the supplier of data in the collection. The
Stream the iterate() method returns will postpone creating the elements until
we ask for them using a terminating method. To get the first element, for
example, we could call the findFirst() method. To get ten elements we could call
the limit() method on the Stream, like so: limit(10).

Let’s see how all these ideas shape up in code.

lazy/fpij/Primes.java
public class Primes {
private static int primeAfter(final int number) {

if(isPrime(number + 1))
return number + 1;

else
return primeAfter(number + 1);

}

public static List<Integer> primes(final int fromNumber, final int count) {
return Stream.iterate(primeAfter(fromNumber - 1), Primes::primeAfter)

.limit(count)

.collect(Collectors.<Integer>toList());
}
//...

}

report erratum • discuss

Creating Infinite, Lazy Collections • 117

http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/Primes.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We first defined a convenience method, primeAfter(), that returns a prime
number that’s after the given number. If the number next to the given number
is prime, it is immediately returned; otherwise, the method recursively asks
for the prime number that follows. The code that deals with the infinite series
is in the primes() method. It’s quite short for what it does; the real complexity
is hidden within the iterate() method and the Stream.

The primes() method will create an infinite series of prime numbers, starting
with the first prime greater than or equal to the number given as parameter.
In the call to the iterate() method, the first parameter provides the seed for the
infinite series. If the given number is prime, it’s used as the seed. Otherwise
the first prime after the number is used. The second parameter, a method ref-
erence, stands in for a UnaryOperator that takes in a parameter and returns a
value. In this example, since we refer to the primeAfter() method, it takes in a
number and returns a prime after the number.

The result of the call to the iterate() method is a Stream that caches the UnaryOp-
erator it’s given. When we ask for a particular number of elements, and only
then, the Stream will feed the current element (the given seed value is used as
the first element) to the cached UnaryOperator to get the next element, and then
feed that element back to the UnaryOperator to get the subsequent element. This
sequence will repeat as many times as necessary to get the number of elements
we asked for, as we see in the next figure.

Streamlimit(5)

UnaryOperator

apply--- call primeAfter(number)

feed current
element

get next
element

Execute only on demand

Figure 8—Creating an infinite Stream of prime numbers

Let’s call the primes() method first to get ten primes starting at 1, and then five
primes starting at 100.

lazy/fpij/Primes.java
System.out.println("10 primes from 1: " + primes(1, 10));

System.out.println("5 primes from 100: " + primes(100, 5));

Chapter 6. Being Lazy • 118

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/lazy/fpij/Primes.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The primes() method creates a Stream of an infinite collection of primes, starting
at the given input. To get a particular number of elements from the collection
we call the limit() method. Then we convert the returned collection of elements
into a list and print it. This call to collect() triggers the evaluation of the
sequence. The method limit() is also an intermediate operation that lazily notes
the number of elements needed for later evaluation! Let’s look at this code’s
output.

10 primes from 1: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
5 primes from 100: [101, 103, 107, 109, 113]

The code produced two series of primes, one starting at 1 and the other
starting at 100. These were extracted from the infinite series we created so
succinctly within the primes() method, thanks to the laziness of Streams and
the power of lambda expressions/method references.

We saw how lambda expressions and the Stream implementations work in
tandem to make the execution quite efficient. While lambda expressions and
method references make code elegant, expressive, and concise, the real per-
formance gains in Java 8 applications will come from Streams. Lambda
expressions are the gateway drug to Java 8, but Streams are the real addiction
—be ready to get hooked on them as you develop Java 8 applications.

We got quite a lot done within just a few lines of code; it’s perfectly fine to
take a few minutes to admire the power of lambda expressions, functional
interfaces, and the efficiency of Streams. In the next chapter, we’re ready to
take the use of lambda expressions up another notch to make recursions
more efficient.

Recap
Efficiency got a boost in Java 8; we can be lazy and postpone execution of
code until we need it. We can delay initialization of heavyweight resources
and easily implement the virtual proxy pattern. Likewise, we can delay evalu-
ation of method arguments to make the calls more efficient. The real heroes
of the improved JDK are the Stream interface and the related classes. We can
exploit their lazy behaviors to create infinite collections with just a few lines
of code. That means highly expressive, concise code to perform complex
operations that we couldn’t even imagine in Java before.

In the next chapter we’ll look at the roles lambda expressions play in optimiz-
ing recursions.

report erratum • discuss

Recap • 119

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

CHAPTER 7

Divide each difficulty into as many parts as is feasible and
necessary to resolve it.

 ➤ René Descartes

Optimizing Recursions
Recursion is a powerful and charming way to solve problems. It’s highly
expressive—using recursion we can provide a solution to a problem by
applying the same solution to its subproblems, an approach known as divide
and conquer. Various applications employ recursion, such as for finding the
shortest distances on a map, computing minimum cost or maximum profit,
or reducing waste.

Most languages in use today support recursion. Unfortunately, problems that
truly benefit from recursion tend to be fairly large and a simple implementation
will quickly result in a stack overflow. In this chapter we’ll look at the tail-call
optimization (TCO) technique to make recursions feasible for large inputs.
Then we’ll look into problems that can be expressed using highly recursive
overlapping solutions and examine how to make them blazingly fast using
the memoization technique.

Using Tail-Call Optimization
The biggest hurdle to using recursion is the risk of stack overflow for problems
with large inputs. The brilliant TCO technique can remove that concern. A
tail call is a recursive call in which the last operation performed is a call to
itself. This is different from a regular recursion, where the function, in addition
to making a call to itself, often performs further computations on the result
of the recursive call(s). TCO lets us convert regular recursive calls into tail
calls to make recursions practical for large inputs.

Java does not directly support TCO at the compiler level, but we can use
lambda expressions to implement it in a few lines of code. With this solution,
sometimes called trampoline calls, we can enjoy the power of recursion without
the concern of blowing up the stack.

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We’ll implement TCO using a very simple and common example, computing
a number’s factorial.

Starting with an Unoptimized Recursion
Let’s start with a piece of code for computing a factorial using a simple
unoptimized recursion.

recur/fpij/Factorial.java
Line 1 public class Factorial {

2 public static int factorialRec(final int number) {
if(number == 1)3

return number;4

else5

return number * factorialRec(number - 1);6

}7

}8

The recursion terminates when we reach down to the value of 1. For higher
values, we recursively call the number times the factorial of number minus 1.
Let’s try out this method using the number 5.

recur/fpij/Factorial.java
System.out.println(factorialRec(5));

Here’s the output for the factorial value.

120

That seems to work, but let’s try it again, this time with a larger input value.

recur/fpij/Factorial.java
try {

System.out.println(factorialRec(20000));
} catch(StackOverflowError ex) {

System.out.println(ex);
}

We coded that call defensively; let’s look at the output to see how it turned
out.

java.lang.StackOverflowError

The recursion didn’t handle the large input size. It went down with a bang.
This is a showstopper in adopting this powerful and expressive technique.

The problem isn’t the recursion itself. It’s caused by holding the partial result
of computations while waiting for the recursion to complete. Let’s take a
closer look at line 6 in the factorialRec() method. The last operation we perform
on that line is multiplication (*). While we hold on to the given number, we

Chapter 7. Optimizing Recursions • 122

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/recur/fpij/Factorial.java
http://media.pragprog.com/titles/vsjava8/code/recur/fpij/Factorial.java
http://media.pragprog.com/titles/vsjava8/code/recur/fpij/Factorial.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

wait for the result of the next call to factorialRec() to return. As a consequence
we climb the call stack for each call, and the execution of code will eventually
blow up if the input size keeps growing. We need a way to be recursive without
holding on to the stack.

In Structure and Interpretation of Computer Programs [AS96], Abelson and
Sussman discuss the TCO technique, where they convert a recursion into a
pure iteration under the hood. Ideally we would like to rely on the compiler
to provide such optimization, but since it doesn’t, we can use lambda
expressions to do this manually, as we’ll see next.

Turning to Tail Recursion
Before we can use the TCO technique, we have to redesign our code so it
doesn’t build up the stack. Instead of waiting to perform the multiplication
on line 6 in the factorialRec() method, we can compute the partial product with
what we have so far, and pass that on as an extra parameter to the subsequent
call. This will remove the need to perform any arithmetic when we return from
the recursive call. That’s a good first step, but it’s not adequate. In addition,
we have to step down from the current level of the stack before we recursively
call the method. In other words, we need to turn an eager call to factorialRec()
into a lazy call. We’ll use a TailCall functional interface and a companion TailCalls
class for this purpose. We’ll soon design these two, but let’s pretend for now
that they already exist.

First let’s add static imports to the methods of the TailCalls class.

recur/fpij/Factorial.java
import static fpij.TailCalls.done;
import static fpij.TailCalls.call;

We’ll use these two methods in the new recursive version to compute a facto-
rial, the factorialTailRec() method.

recur/fpij/Factorial.java
public static TailCall<Integer> factorialTailRec(
final int factorial, final int number) {
if (number == 1)

return done(factorial);
else
return call(() -> factorialTailRec(factorial * number, number - 1));

}

This version to compute the factorial is tail recursive; that is, the last operation
is a (delayed/lazy) call to itself, and there’s no further computation to carry out
on the result upon return. Furthermore, rather than calling the method factorial-
TailRec() eagerly, we wrapped it into a lambda expression for lazy/later execution.

report erratum • discuss

Using Tail-Call Optimization • 123

http://media.pragprog.com/titles/vsjava8/code/recur/fpij/Factorial.java
http://media.pragprog.com/titles/vsjava8/code/recur/fpij/Factorial.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Creating the TailCall Functional Interface
When we call the factorialTailRec() method, it returns immediately with an
instance of TailCall. The key idea here is that if we call the done() method, we
signal the recursion’s termination. On the other hand, if we were to go through
the call() method, we would be asking for the recursion to continue, but only
after we step down from the current stack level. To fully understand how this
works, we have to look inside these methods, so let’s drill down into the TailCall
interface and the TailCalls companion class. We’ll start with the interface.

recur/fpij/TailCall.java
@FunctionalInterface
public interface TailCall<T> {

TailCall<T> apply();

default boolean isComplete() { return false; }

default T result() { throw new Error("not implemented"); }

default T invoke() {
return Stream.iterate(this, TailCall::apply)

.filter(TailCall::isComplete)

.findFirst()

.get()

.result();
}

}

We have four methods in this interface, one abstract and the remaining default.
The isComplete() method simply returns a false value. The default implementation
of the result() method blows up if called—we would never call this method as
long as the recursion is in progress; an alternate implementation of the TailCall
interface will take care of the situation when the recursion does terminate.

Critical work is done in the short code within the invoke() method. This method
collaborates with the apply() method, which will return the next TailCall instance
waiting for execution. The invoke() method has two responsibilities: One, it has
to repeatedly iterate through the pending TailCall recursions until it reaches
the end of the recursion. Two, upon reaching the end, it has to return the
final result (available in the result() method of the terminal TailCall instance).

The invoke() method is short, but there’s a lot going on here, so let’s slow down
and dig into it.

We have no clue how many recursions will be evaluated; it’s not infinite, but
we can treat it as a series of unknown length. Once we get our heads around

Chapter 7. Optimizing Recursions • 124

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/recur/fpij/TailCall.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

treating this as a series of TailCall objects, we can easily use lazy iteration over
a Stream of pending TailCall instances. The technique we used in Creating Infinite,
Lazy Collections, on page 115, will help us here to lazily produce the next
pending TailCall instance. Let’s take a closer look at how.

To create a lazy list of pending TailCall instances, we use the Stream interface’s
iterate() static method. This method takes an initial seed value and a generator.
We use the current TailCall instance, this, as the seed. The generator, a UnaryOp-
erator, takes in the current element and produces the next element. For the
generator to return the next pending TailCall instance it can use the apply()
method of the current TailCall. We use the method reference TailCall::apply for this
purpose to create the generator.

In short, we’ve designed the invoke() method so that the iteration will start at
the seed, the first instance of TailCall, and iterate through subsequent instances
of TailCall produced by the generator until it finds an instance of TailCall that
signals the termination of recursion.

Creating the TailCalls Convenience Class
The iteration continues until the isComplete() method reports a completion. But
the default() implementation of this method in the TailCall interface always returns
a false value. This is where the companion TailCalls class comes in. It provides
two different implementations of the TailCall functional interface: one in the
call() method and the other in the done() method.

recur/fpij/TailCalls.java
public class TailCalls {

public static <T> TailCall<T> call(final TailCall<T> nextCall) {
return nextCall;

}
public static <T> TailCall<T> done(final T value) {

return new TailCall<T>() {
@Override public boolean isComplete() { return true; }
@Override public T result() { return value; }
@Override public TailCall<T> apply() {

throw new Error("not implemented");
}

};
}

}

In this class we implement two static methods, call() and done(). The call() method
simply receives a TailCall instance and passes it along. It’s a convenience method
so the recursive calls (such as factorialTailRec()) can nicely end with a symmetric
call to either done or call.

report erratum • discuss

Using Tail-Call Optimization • 125

http://media.pragprog.com/titles/vsjava8/code/recur/fpij/TailCalls.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

In the done() method we return a specialized version of TailCall to indicate the
recursion’s termination. In this method, we wrap the received value into the
specialized instance’s overridden result() method. The specialized version’s
isComplete() will report the end of the recursion by returning a true value.
Finally, the apply() method throws an exception because this method will
never be called on this terminal implementation of TailCall, which signals the
end of the recursion.

We can see in this design how the TailCall returned through call() continues
recursion, and the one returned from done() terminates it. Also, the recursive
calls are all evaluated lazily in a loop in the invoke() default method, thus never
increasing the stack level like a simple recursion would.

We designed TailCall and TailCalls for use with factorialTailRec(), but they’re reusable
for any tail-recursive function.

Using the Tail-Recursive Function
We saw a tail-recursive function factorialTailRec(), a functional interface TailCall,
and a convenience class TailCalls. Let’s walk through a scenario to understand
how all these work together.

Let’s start with a call to the factorialTailRec() to compute the factorial of 2, like
so:

factorialTailRec(1, 2).invoke();

The first argument, 1, is the initial value for the factorial; the second argument,
2, is the value for which we’d like to find the factorial. The call to factorialTailRec()
will check if the given number is equal to 1 and, since it’s not, will use the call()
method and pass a lambda expression that synthesizes an instance of TailCall.

This synthesized instance will lazily call the factorialTailRec() with two arguments,
2 and 1, respectively. Back outside the call to the factorialTailRec() method, the
call to the invoke() method will create a lazy collection with this first instance
of TailCall as the seed and explore the collection until a terminating instance
of TailCall is received. When the apply method of the seed TailCall is called, it will
result in a call to the factorialTailRec() with the two arguments we mentioned
previously. This second call to factorialTailRec() will result in a call to the done()
method.

The call to done() will return a terminating specialized instance of TailCall, sig-
naling the recursion’s termination. The invoke() method now will return the
final result of the computation, 2 in this case.

Chapter 7. Optimizing Recursions • 126

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The TCO of the factorial recursion is complete. Let’s take the factorialTailRec()
method for a spin. We’ll call it with a small value for the input parameter first.

recur/fpij/Factorial.java
System.out.println(factorialTailRec(1, 5).invoke());

We seed the factorialTailRec() with an initial factorial value, 1 and the number.
The result of this call is a TailCall instance and we call the invoke() method on
it. That call’s result should be the same as the unoptimized recursion version
we saw earlier.

120

Let’s run this version with the large input value.

recur/fpij/Factorial.java
System.out.println(factorialTailRec(1, 20000).invoke());

The previous version ran into a stack overflow. Let’s check this version’s fate.

0

The operation succeeded, but the patient died.

Our efforts paid off. We averted blowing up the stack, but the result was 0
due to arithmetic overflow; the factorial result is a very large number. We’ll
soon fix that—we need to use BigInteger instead of int. Before we address that
let’s revisit the solution. We have some cleaning up to do.

Cleaning Up the Recursion
The implementation of the factorialTailRec() is alluringly simple. It has one
downside, though: we polluted the method’s interface. Rather than passing
a nice and simple input number, now we have to pass two arguments. We rely
on the callers to supply 1 for the first parameter; an argument like 0 would
derail the result. Furthermore, we have to call invoke() on the result of the call
to factorialTailRec()—not pleasant. We can easily fix these issues by introducing
one more level of indirection.

We can turn factorialTailRec() into a private method and introduce a public method
that calls it.

recur/fpij/Factorial.java
public static int factorial(final int number) {

return factorialTailRec(1, number).invoke();
}

report erratum • discuss

Using Tail-Call Optimization • 127

http://media.pragprog.com/titles/vsjava8/code/recur/fpij/Factorial.java
http://media.pragprog.com/titles/vsjava8/code/recur/fpij/Factorial.java
http://media.pragprog.com/titles/vsjava8/code/recur/fpij/Factorial.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

This method brings back the simple interface and encapsulates the details
of tail recursion. It deals with the extra parameter and takes care of calling
the necessary invoke() method in the end. Let’s use this modified version.

recur/fpij/Factorial.java
System.out.println(factorial(5));
System.out.println(factorial(20000));

We ran the latest version with a small value and the preposterously large
value; let’s check out the output.

120
0

The result was good for the small value, but the large value requires a fix.
Let’s attend to that as the last step.

Fixing the Arithmetic Overflow
The factorial code was nice and sweet with the int primitive type. To avert the
arithmetic overflow, however, we have to switch to BigInteger. Sadly, we’ll lose
the fluency of simple arithmetic operators like * and - and have to use methods
on BigInteger to perform these. We will reduce clutter in the code by creating
small functions for these operations in a BigFactorial class.

recur/fpij/BigFactorial.java
public class BigFactorial {
public static BigInteger decrement(final BigInteger number) {
return number.subtract(BigInteger.ONE);

}

public static BigInteger multiply(
final BigInteger first, final BigInteger second) {
return first.multiply(second);

}

final static BigInteger ONE = BigInteger.ONE;
final static BigInteger FIVE = new BigInteger("5");
final static BigInteger TWENTYK = new BigInteger("20000");

//...
}

We wrote some convenience methods and fields to work with BigInteger. Now
let’s look at the important parts, the encapsulated tail-recursive function and
the fluent wrapper around it.

recur/fpij/BigFactorial.java
private static TailCall<BigInteger> factorialTailRec(
final BigInteger factorial, final BigInteger number) {

Chapter 7. Optimizing Recursions • 128

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/recur/fpij/Factorial.java
http://media.pragprog.com/titles/vsjava8/code/recur/fpij/BigFactorial.java
http://media.pragprog.com/titles/vsjava8/code/recur/fpij/BigFactorial.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

if(number.equals(BigInteger.ONE))
return done(factorial);

else
return call(() ->

factorialTailRec(multiply(factorial, number), decrement(number)));
}

public static BigInteger factorial(final BigInteger number) {
return factorialTailRec(BigInteger.ONE, number).invoke();

}

Where we used int in the earlier version, we used BigInteger in this version. The
rest of the code is pretty much the same, using the TailCall interface, the TailCalls
class, and the TCO technique.

Let’s call this modified version of factorial().

recur/fpij/BigFactorial.java
public static void main(final String[] args) {

System.out.println(factorial(FIVE));
System.out.println(String.format("%.10s...", factorial(TWENTYK)));

}

Now that we used BigInteger, the operation should go well. Let’s visit the patient
in recovery.

120
1819206320...

We see the correct value of the factorial for the number 5, and the trimmed
output value for the large input.

With only a few lines of code we turned an unoptimized recursion into a tail
recursion and averted stack overflow, thanks to lambda expressions, functional
interfaces, and infinite Streams. With this technique on hand we can boldly
implement recursive solutions, with a minor redesign to turn them into tail
calls.

The approach we used here made recursions feasible for large input. Next
we’ll see how to make them practical from a performance point of view.

Speeding Up with Memoization
There’s a technique to turn excessively recursive problems into incredibly
fast execution. We’ll explore the problem here and use lambda expressions
to implement a solution.

report erratum • discuss

Speeding Up with Memoization • 129

http://media.pragprog.com/titles/vsjava8/code/recur/fpij/BigFactorial.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

An Optimization Problem
We can see optimization problems in various domains, such as economics,
finance, and resource allocation, where an optimal solution is selected from
several feasible ones. For example, we may have to find the maximum profit
from sales of assets or the shortest route between locations. In an algorithmic
technique called dynamic programming we apply recursion extensively to solve
a problem. This takes recursion to the next level; the solution to a problem
overlaps with solutions to subproblems.

If we naively implement such recursion, we’d end up with computations that
take exponentially increasing amounts of time to run for increasing input
sizes. This is where memoization comes in. In this technique we look up
solutions if they already exist, and perform and store computations just once.
The redundancy that exists in repeatedly asking for the overlapping solutions
does not translate into recomputations, but instead turns into a quick lookup
for the results. This technique transforms the exponential time complexity to
mere linear time. Let’s implement this using an example: the rod-cutting
problem.1

We’ll employ a solution for a company that buys rods at wholesale and sells
them at retail. They figured that by cutting the rods into different sizes, they
could maximize profits. The price that the company can charge for different
lengths of rod changes often, so the company wants us to write a program to
reveal what the maximum profit would be for a given size of rod. Let’s find a
simple solution, and then improve on it.

We’ll start with a class that stores the prices for different lengths of rod.

recur/fpij/RodCutterBasic.java
public class RodCutterBasic {
final List<Integer> prices;
public RodCutterBasic(final List<Integer> pricesForLength) {

prices = pricesForLength;
}

//...

Let’s work with some sample prices for different lengths, starting with 1 inch.

recur/fpij/RodCutterBasic.java
final List<Integer> priceValues =
Arrays.asList(2, 1, 1, 2, 2, 2, 1, 8, 9, 15);

final RodCutterBasic rodCutter = new RodCutterBasic(priceValues);

1. http://en.wikipedia.org/wiki/Cutting_stock_problem

Chapter 7. Optimizing Recursions • 130

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/recur/fpij/RodCutterBasic.java
http://media.pragprog.com/titles/vsjava8/code/recur/fpij/RodCutterBasic.java
http://en.wikipedia.org/wiki/Cutting_stock_problem
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Plain-Vanilla Recursion
We can solve the problem using a simple recursion. If we’re given a 5" rod,
we can look up the price for that length. In this example, that would get us
$2. We can do better than that—after all, a 4" rod also would fetch $2, so we
could cut the rod into two pieces—4" and 1"—to increase profit. Continuing
with this approach, we find that the profit for an arbitrary length n is the
maximum of the profits from each of the possible 2n-1 cuts of that length. That
is, max(no cut, cut(1, n - 1), cut(2, n - 2), ...), for a given length n. The next figure is an
example of profits from all possible cuts for a 5" rod.

1

5 1 4 2 3 23 4 1

1 1 3 1 2 2 1 13 1 1

3

1 2 1 1 12

1 1 12

1 1 1 1 1

12 2 12 2 11 12 1

$2

$5

$7

$10

$4

$5

$2

$4

$4

$4

$7

$7

$2

$5

$7

$4

Figure 9—Calculating the maximum profit for a 5" rod by exploring 16 possible cuts

To compute the profit for 5" we need to compute the profit for 4", 3", 2", and
1". Likewise, to compute the profit for 4" we need to compute the profit for
the smaller sizes. The solution nicely introduces overlapping recursion; we’ll
implement this without any optimization first, and then improve on it.

Let’s implement the logic for maximum profit.

recur/fpij/RodCutterBasic.java
public int maxProfit(final int length) {
int profit = (length <= prices.size()) ? prices.get(length - 1) : 0;
for(int i = 1; i < length; i++) {

int priceWhenCut = maxProfit(i) + maxProfit(length - i);
if(profit < priceWhenCut) profit = priceWhenCut;

}

return profit;
}

In the maxProfit() method we look up the price for a particular length. Then we
recursively find the profit for lengths that add up to the given length, and

report erratum • discuss

Speeding Up with Memoization • 131

http://media.pragprog.com/titles/vsjava8/code/recur/fpij/RodCutterBasic.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

pick the maximum from them. The implementation turns out to be quite
simple. Let’s try it for a few lengths.

recur/fpij/RodCutterBasic.java
System.out.println(rodCutter.maxProfit(5));
System.out.println(rodCutter.maxProfit(22));

Let’s look at the output for the different lengths.

10
44

The output seems reasonable, but the computation for this would take a long
time, like 45 seconds, depending on system speed. If we increase the length
slightly from 22, the program will slow a lot, into minutes and hours. That’s
because the time complexity of this computation is exponential—O(2n-1)—we’re
performing the computations redundantly for various lengths. We need to
memoize the results to speed up execution—a lot.

Memoizing the Results
Memoization is a simple yet smart technique to make recursive overlapping
computations really fast. Using this technique, as the program runs we make
calculations only if they have not been made already. Each time a new calcu-
lation happens, we cache the results and reuse those for subsequent calls
for the same input. This technique is useful only if the computations are
expected to return the same result each time for a given input. Our rod-cutting
problem fits that requirement: the profit is the same for a given length and a
given set of prices, no matter how many times we ask. Let’s memoize the
result of the profit calculation.

When seeking the profit for a sublength, we can skip the computation if the
profit for that length has been already been computed. This will speed up the
program, as the redundant calls to find the profit will turn into a quick lookup
of a hashmap. Sounds good, but it would be nice to have reusable code for that.
Let’s create a reusable class; we’ll call it the Memoizer. It does not yet exist, but
we’ll pretend it does and write the code to use it. Let’s refactor the maxProfit() method
to use a static method, callMemoized(), of the Memoizer class.

public int maxProfit(final int rodLength) {
BiFunction<Function<Integer, Integer>, Integer, Integer> compute =

(func, length) -> {
int profit = (length <= prices.size()) ? prices.get(length - 1) : 0;
for(int i = 1; i < length; i++) {

int priceWhenCut = func.apply(i) + func.apply(length - i);
if(profit < priceWhenCut) profit = priceWhenCut;

}

Chapter 7. Optimizing Recursions • 132

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/recur/fpij/RodCutterBasic.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

return profit;
};

return callMemoized(compute, rodLength);
}

Let’s look at the crux of the design before we dig into the code. We create a
function and memoize it. The memoized version will look up values before
making a call to the actual implementation. Let’s figure out how we achieve
this.

In the maxProfit() method we call the (yet-to-be-implemented) Memoizer’s
callMemoized() method. This function takes a lambda expression as an argument.
This lambda expression has two parameters, a reference to the memoized
version of the function and the incoming parameter. Within the lambda
expression, we perform our task, and when it’s time to recurse we route the
call to the memoized reference. This will return quickly if the value has been
cached or memoized. Otherwise, it will recursively route the call to this
lambda expression to compute for that length.

The missing piece of the puzzle is the memoized reference we receive from
the callMemoized() method, so let’s look at the Memoizer class’s implementation.

recur/fpij/Memoizer.java
public class Memoizer {
public static <T, R> R callMemoized(
final BiFunction<Function<T,R>, T, R> function, final T input) {
Function<T, R> memoized = new Function<T, R>() {
private final Map<T, R> store = new HashMap<>();
public R apply(final T input) {
return store.computeIfAbsent(input, key -> function.apply(this, key));

}
};
return memoized.apply(input);

}
}

The Memoizer has just one short function. In callMemoized() we create an imple-
mentation of Function in which we check to see if the solution for a given input
is already present. We use the newly added computeIfAbsent() method of Map. If
a value is present for the given input, we return it; otherwise we forward the
call to the intended function and send a reference to the memoized function
so the intended function can swing back here for subsequent computations.

This version of the maxProfit() method nicely encapsulates the details of memo-
ization. The call to this method looks the same as the previous version:

System.out.println(rodCutter.maxProfit(5));
System.out.println(rodCutter.maxProfit(22));

report erratum • discuss

Speeding Up with Memoization • 133

http://media.pragprog.com/titles/vsjava8/code/recur/fpij/Memoizer.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Let’s run the memoized version and ensure the profit reported is the same as
in the previous version.

10
44

The profit is consistent between the versions, but the execution speeds are a
world apart. The memoized version took less than 0.15 seconds, compared
to around 45 seconds for the previous version. With this memoized version,
we can easily bump up our rod lengths to large values and still take only a
fraction of a second to get the results. For example, a length of 500" makes
no dent on the execution time; it’s blazingly fast.

In this chapter we used lambda expressions and infinite Streams to implement
TCO and memoization. The examples show us how the new features in Java
8 can come together to create powerful solutions. You can use similar tech-
niques to create nifty solutions to your own complex problems.

Recap
Recursions are a valuable tool in programming, but a simple implementation
of recursion is often not useful for practical problems. Functional interfaces,
lambda expression, and infinite Streams can help us design tail-call optimization
to make recursions feasible in such cases. Furthermore, we can combine
recursions and memoization to make execution of overlapping recursions
really fast.

In the next chapter we’ll explore a practical example that employs lambda
expressions and then we’ll parallelize it with little effort.

Chapter 7. Optimizing Recursions • 134

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

CHAPTER 8

Programs must be written for people to read, and only
incidentally for machines to execute.1

 ➤ Hal Abelson and Jerry Sussman

Composing with Lambda Expressions
With Java 8 we have two powerful tools: the object-oriented approach and
the functional style. They are not mutually exclusive; they can work together
for the greater good.

In OOP we often mutate state. If we combine OOP with the functional style,
we can instead transform objects by passing lightweight objects through a
series of cohesive functions. This can help us create code that’s easier to
extend—to produce a different result we simply alter the way the functions
are composed. We can use the functions, in addition to the objects, as com-
ponents to program with.

In this chapter we look into function composition. Then we use that to create
a practical working example of the popular MapReduce pattern, where we
scatter independent calculations, and gather the results to create the solution.
As a final step, we parallelize those calculations almost effortlessly, thanks
to the ubiquitous JDK library.

Using Function Composition
The OOP paradigm helps us realize abstraction, encapsulation, and polymor-
phism; inheritance is the weakest link in the paradigm. When programming
in the functional style we compose higher-order functions, and as much as
possible, promote immutability and functions. We can leverage our experience
with OOP, and at the same time use the elegant functional style that is new
in Java.

Let’s get a feel for object transformation. Suppose we need change, and we
ask a friend to break a $10 bill. We don’t expect our buddy to tear up the bill
and return the pieces. Instead, we’d like the bill to disappear into our friend’s

1. Structure and Interpretation of Computer Programs [AS96] (http://mitpress.mit.edu/sicp)

report erratum • discuss

http://mitpress.mit.edu/sicp
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

pocket and some smaller bills to appear. Mixing OOP and functional style is
like that; we send lightweight objects to functions and expect other objects
to emerge.

In this combined approach, to achieve a task we chain a series of appropriate
functions. As objects pass through the functions in the series, they transform
into new objects to produce the desired result. We can see the difference
between a pure OOP and a mixed OOP-functional style in the following figure.
In pure OOP, at least the way it’s used in Java, over time an object’s state
goes through transitions. In the combined approach, we see lightweight objects
transform into other objects rather than transition state.

Object State

Time

Object's state is mutated and goes through state transition

F1O1 F2O2 F3O3 O4

Figure 10—Pure OOP vs. hybrid OOP-functional style

Let’s work with an example to get a better feel for this. We’ll start with a list
of ticker symbols and, from it, create a sorted list, with each item correspond-
ing stock valued over $100. In the habitual approach we’d walk through the
list using an external iterator and update a mutable collection. Instead we’ll
transform objects. We’ll filter the tickers list into a list of tickers priced over
$100, then sort the list, and finally report.

We need a sample list of ticker symbols, so let’s start with that.

applying/fpij/Tickers.java
public class Tickers {

public static final List<String> symbols = Arrays.asList(
"AMD", "HPQ", "IBM", "TXN", "VMW", "XRX", "AAPL", "ADBE",
"AMZN", "CRAY", "CSCO", "SNE", "GOOG", "INTC", "INTU",
"MSFT", "ORCL", "TIBX", "VRSN", "YHOO");

}

Chapter 8. Composing with Lambda Expressions • 136

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/applying/fpij/Tickers.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We have some twenty symbols in this sample list. We need to determine the
price for each stock. We saw the code to fetch the latest price from Yahoo! in
Integrating with the Web Service, on page 71; we can reuse that here. Let’s
revisit that code to refresh our memory.

designing/fpij/YahooFinance.java
public class YahooFinance {
public static BigDecimal getPrice(final String ticker) {

try {
final URL url =
new URL("http://ichart.finance.yahoo.com/table.csv?s=" + ticker);

final BufferedReader reader =
new BufferedReader(new InputStreamReader(url.openStream()));

final String data = reader.lines().skip(1).findFirst().get();
final String[] dataItems = data.split(",");
return new BigDecimal(dataItems[dataItems.length - 1]);

} catch(Exception ex) {
throw new RuntimeException(ex);

}
}

}

The getPrice() method will return the latest price for a given stock. Since we’re
looking for only stocks valued over $100, we can use Stream’s filter() method to
trim down the list. Once we get the short list, we can sort it easily using
Stream’s sorted() method. Finally we can concatenate the symbols to print. These
are all operations we’ve seen before, coming together here to help with this
task. Let’s look at the code.

applying/fpij/Stocks100.java
final BigDecimal HUNDRED = new BigDecimal("100");
System.out.println("Stocks priced over $100 are " +

Tickers.symbols
.stream()
.filter(
symbol -> YahooFinance.getPrice(symbol).compareTo(HUNDRED) > 0)

.sorted()

.collect(joining(", ")));

The series of operations flows nicely in a chain. The operations are associative;
the stream of ticker symbols is filtered, sorted, and concatenated. As we move
through the composed functions, the original list of symbols is left unmodified,
but we transform from that into a filtered stream of symbols, then into a
stream of sorted symbols. We finally join the symbols in this last stream for
printing. If instead of sorting we want to pick a particular symbol, let’s say
the first, we only have to slightly alter the chain; we can reuse most of the

report erratum • discuss

Using Function Composition • 137

http://media.pragprog.com/titles/vsjava8/code/designing/fpij/YahooFinance.java
http://media.pragprog.com/titles/vsjava8/code/applying/fpij/Stocks100.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

functions. Let’s visit the stock market to see which stocks in the list are valued
at over $100.

Stocks priced over $100 are AAPL, AMZN, GOOG, IBM

The ability to compose functions into a chain of operations is powerful and
has quite a few benefits. It makes the code easier to understand. The lack of
mutability reduces the chance of errors and makes it easier to parallelize the
code. We can alter a few links in the chain and easily alter the behavior along
the way. We’ll see these benefits come to life in the next examples.

Using MapReduce
In the MapReduce pattern we express two sets of operations, one to perform
on each element in a collection and one to combine these results to arrive at
a final result. This pattern is gaining attention due to its simplicity and power
to exploit multicore processors.

The JVM is all geared up to utilize multicore processors. To fully benefit from
the true power of the JVM and multicore processors, however, we have to
change the way we code. In this section we’ll explore the MapReduce pattern
with an example, and in the next section we’ll build on that example to
parallelize it.

Let’s continue with the example we’ve been using. Given a list of ticker sym-
bols, let’s pick the highest-priced stock whose value is less than $500. Let’s
work this example first using the imperative style and quickly evolve it to the
functional style. This will help us see the difference in style and how to tran-
sition from the familiar style to functional style in a more of a real-world
scenario.

Preparing the Computations
To start we need some utility functions to get the prices, compare them, and
so forth. Let’s cover those first.

To help easily work with the stock names and prices, let’s create a class with
immutable fields.

applying/fpij/StockInfo.java
public class StockInfo {

public final String ticker;
public final BigDecimal price;
public StockInfo(final String symbol, final BigDecimal thePrice) {

ticker = symbol;
price = thePrice;

}

Chapter 8. Composing with Lambda Expressions • 138

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/applying/fpij/StockInfo.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

public String toString() {
return String.format("ticker: %s price: %g", ticker, price);

}
}

The StockInfo is simply a value object; it holds a ticker symbol and its price.
Given a ticker, we need a function to create an instance of StockInfo with the
price information filled in. We’ll reuse YahooFinance’s getPrice() method in the
implementation of this function.

applying/fpij/StockUtil.java
public class StockUtil {

public static StockInfo getPrice(final String ticker) {
return new StockInfo(ticker, YahooFinance.getPrice(ticker));

}
//...

}

The getPrice() method is simply a wrapper, a convenience method. We need a
method to tell us if the price is less than the desired amount, so let’s create
that.

applying/fpij/StockUtil.java
public static Predicate<StockInfo> isPriceLessThan(final int price) {
return
stockInfo -> stockInfo.price.compareTo(BigDecimal.valueOf(price)) < 0;

}

This is a higher-order method. It takes a price value and returns a Predicate
that can be evaluated later to check if a given instance of StockInfo is less than
the price value cached in the lambda expression. The last convenience method
will help us pick the highest-priced stock from a pair.

applying/fpij/StockUtil.java
public static StockInfo pickHigh(
final StockInfo stock1, final StockInfo stock2) {
return stock1.price.compareTo(stock2.price) > 0 ? stock1 : stock2;

}

pickHigh() simply returns an instance of StockInfo with the highest price from the
pair of instances given to it. We’ve created the functions we need and we’re
all set to put them to work. Let’s create the imperative version of the code to
get the highest-priced stock in the range.

Moving from the Imperative Style…
We’re accustomed to imperative programming, but as we’ll see here, it can
be a lot of work.

report erratum • discuss

Using MapReduce • 139

http://media.pragprog.com/titles/vsjava8/code/applying/fpij/StockUtil.java
http://media.pragprog.com/titles/vsjava8/code/applying/fpij/StockUtil.java
http://media.pragprog.com/titles/vsjava8/code/applying/fpij/StockUtil.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

applying/fpij/PickStockImperative.java
final List<StockInfo> stocks = new ArrayList<>();
for(String symbol : Tickers.symbols) {
stocks.add(StockUtil.getPrice(symbol));

}

final List<StockInfo> stocksPricedUnder500 = new ArrayList<>();
final Predicate<StockInfo> isPriceLessThan500 = StockUtil.isPriceLessThan(500);
for(StockInfo stock : stocks) {

if(isPriceLessThan500.test(stock))
stocksPricedUnder500.add(stock);

}

StockInfo highPriced = new StockInfo("", BigDecimal.ZERO);
for(StockInfo stock : stocksPricedUnder500) {

highPriced = StockUtil.pickHigh(highPriced, stock);
}

System.out.println("High priced under $500 is " + highPriced);

We created three loops. In the first one we made a list of StockInfo filled with
the price for each of the symbols. In the second loop we made a trimmed-
down list of stock info, restricting it to stocks under $500. In the final loop
we picked the highest-priced stock among the candidates. Let’s see which
stock gets picked.

High priced under $500 is ticker: AMZN price: 376.640

In that code, we see three distinct steps, from symbols to stocks, then to
selected stocks, and finally to the highest priced among the selected stocks.
We can combine the operations all into one loop if we like. Here’s the clubbed
imperative version:

applying/fpij/PickStockImperativeClubbed.java
StockInfo highPriced = new StockInfo("", BigDecimal.ZERO);
final Predicate<StockInfo> isPriceLessThan500 = StockUtil.isPriceLessThan(500);

for(String symbol : Tickers.symbols) {
StockInfo stockInfo = StockUtil.getPrice(symbol);

if(isPriceLessThan500.test(stockInfo))
highPriced = StockUtil.pickHigh(highPriced, stockInfo);

}
System.out.println("High priced under $500 is " + highPriced);

With this step, we gained some and lost some. We reduced the code and
removed a few loops; less code is better. But we’re still being imperative,
mutating variables. Furthermore, if we want to change the logic—say we want
to pick the highest-priced stock under $1,000—we have to modify this code.

Chapter 8. Composing with Lambda Expressions • 140

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/applying/fpij/PickStockImperative.java
http://media.pragprog.com/titles/vsjava8/code/applying/fpij/PickStockImperativeClubbed.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

No part of it is reusable. Going back to our three-step version of the code, we
could modularize each part into a function for reuse. Rather than combining
the steps, if we keep them as distinct steps we can convert them easily from
the imperative style to the functional style, as we’ll see next.

…To the Functional Style
We used three different loops in the imperative version, but the JDK provides
specialized functional-style methods for each of those steps. We can easily
use those convenience methods and we won’t have to manually create any
internal iterators to program the logic in the functional style. Let’s refactor
the code into the functional style; this version is declarative, preserves
immutability, is concise, and uses function composition.

applying/fpij/PickStockFunctional.java
public static void findHighPriced(final Stream<String> symbols) {
final StockInfo highPriced =

symbols.map(StockUtil::getPrice)
.filter(StockUtil.isPriceLessThan(500))
.reduce(StockUtil::pickHigh)
.get();

System.out.println("High priced under $500 is " + highPriced);
}

In the method findHighPriced(), we employ method chaining and transform objects.
We start with a Stream of symbols and flow into streams of stocks. We first
map the symbols into stocks filled with prices. Following the map operation,
we trim down the list and reduce it to a single value. The reduce() function
gives us some extra control, but if we simply want to pick the highest value,
we could instead use the max() method on the Stream.

This version has about half as many lines as the multistep imperative version.
It has about the same number of lines as the clubbed imperative version. In
addition to being concise, this code has a few benefits. The biggest gain is
that the ability to parallelize this code comes for free, as we’ll see in the next
section. We derive this benefit by using function composition and higher-order
functions, and avoiding mutability. This version of code is easier to understand
—the symbols are mapped into StockInfo, then filtered to the desired range,
and finally reduced to a single object containing the highest value and the
corresponding ticker symbol.

We need to convert from the List of symbols, in Tickers, to a Stream of symbols
before we call the findHighPriced() method.

report erratum • discuss

Using MapReduce • 141

http://media.pragprog.com/titles/vsjava8/code/applying/fpij/PickStockFunctional.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

applying/fpij/PickStockFunctional.java
findHighPriced(Tickers.symbols.stream());

Let’s run the code and ensure the result is the same as the imperative version.

High priced under $500 is ticker: AMZN price: 376.640

The code is quite concise and this version picked the same stock, at the same
price, as the previous version.

Let’s take a minute to visualize, in the following figure, the operations we
performed in this example.

symbols Stock
Infos

Stock
Infos

map filter reduce

StockInfo

getPrice price < 500 pickHigh

Figure 11—Map-filter-reduce operation

In the figure we see the map operation applies the function to fetch the stock
prices on each element in the symbols collection. This gives us the stream of
StockInfo instances, which we then filter to select stocks, and finally we apply
the reduce operation to distill this to one StockInfo object. The layout of the
operations in the figure shows the potential for parallelization. We’ll dig into
that next.

Chapter 8. Composing with Lambda Expressions • 142

report erratum • discuss

http://media.pragprog.com/titles/vsjava8/code/applying/fpij/PickStockFunctional.java
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Taking a Leap to Parallelize
We can easily parallelize the previous example to speed up the execution.

Let’s take a closer look at the code before we make any changes. We send the
tickers though the map() method, which sequentially invokes the attached
function to get the price from Yahoo! Once all the prices arrive, we sequentially
trim the list to stocks within the desired price range. In the last step, which
is also sequential, we pick the highest priced among them.

Of these three operations, the first is the slowest. It involves a call to the web
service, incurs a network delay, and has to perform the operation 20 times—once
for each ticker symbol. The remaining operations involve light arithmetic and
hardly take any time. Thankfully, in this problem the slowest parts are indepen-
dent of each other and can be performed all at once.

We don’t have to wait for Yahoo! to respond to the price for one ticker symbol
before we send out the request for the next. Web services are quite capable
of handling multiple requests concurrently, barring any limits imposed by a
particular vendor to set free-of-charge or basic service apart from premium
services they may sell.

Let’s run the previous version once more to see how long it took to pick the
highest-priced stock valued under $500. The following output was produced
by running the program with the UNIX-based time utility.

High priced under $500 is ticker: AMZN price: 376.640

real 0m17.688s
user 0m0.269s
sys 0m0.053s

The time it takes to run will vary, depending on the quality of the network
connection. On my wireless network it took a little more than 17 seconds for
the imperative, sequential version to pick the appropriate stock. Let’s paral-
lelize the code and see how that fares.

Making code concurrent is a big topic—where do we start and how do we
proceed? We have to distribute the tasks onto multiple threads, then collect
the results, then move on to the sequential steps. While we’re at it, we must
ensure there are no race conditions; we don’t want threads to collide with
other threads’ updates and mess up the data.

There are two concerns here: one is how to do it and the other is how to do it
properly. For the first concern, we can seek the help of libraries to manage threads.
The responsibility for doing it right falls on us. Race conditions arise largely from

report erratum • discuss

Taking a Leap to Parallelize • 143

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

shared mutability. If multiple threads try to update an object or a variable at the
same time, we have to ensure thread safety. This concern disappears if we follow
good functional style and honor immutability.

Surprisingly, with the design we created the code is only one step away from
running parallel rather than sequentially. We need to switch only one call,
from this:

findHighPriced(Tickers.symbols.stream());

to this:

findHighPriced(Tickers.symbols.parallelStream());

stream() and parallelStream() have the same return type, but the instances they
return are quite different. parallelStream()’s returned instance runs methods like
map() and filter() in parallel across multiple threads, managed by a thread pool
under the hood. The benefit is that we can easily switch between sequential
and concurrent versions, and methods like findHighPriced() can be oblivious to
parallelism.

Let’s run the parallelized version of the code and look at the time it takes to
run. Again, I produced the following output using the time utility.

High priced under $500 is ticker: AMZN price: 376.640

real 0m3.022s
user 0m0.266s
sys 0m0.049s

The first bit of good news is that this version picked the same stock as the
sequential version. After all, there’s no point running really fast in the wrong
direction. The second bit of good news is the speed of execution. The paral-
lelized version took about 3 seconds on the same wireless network used for
the previous version. Again, the network speed has an impact on the execution
time we would observe on each run.

When deciding whether to call stream() or parallelStream(), we have to consider a
few issues. First, do we really want to run the lambda expressions concur-
rently? Second, the code should be able to run independently without causing
any side effects or race conditions. Third, the correctness of the solution
should not depend on the order of execution of the lambda expressions that
are scheduled to run concurrently. For example, it would not make sense to
parallelize calls to the forEach() method and print results from within the
lambda expression we provide. Since the order of execution is not predictable,
the order of output may be quite confusing. On the other hand, methods like

Chapter 8. Composing with Lambda Expressions • 144

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

map() and filter() that can perform computations and forward their results for
further processing are good candidates; see the following sidebar.

Joe asks:

Should We Choose Parallel Streams?
The library makes it easy to go parallel, but sometimes that’s not the right choice. It
depends on your data and your computation. Sometimes a parallel computation may
be slower than its sequential counterpart.

We often look to concurrency to speed up execution. However, there is a cost—execu-
tion time—to make things concurrent. We have to evaluate to make sure that the
time savings far outweighs the cost of using concurrency.

For small collections, if the tasks per element are fairly short and quick, the
sequential execution may beat any concurrent solution. The benefits of concurrency
will shine only if the tasks are time consuming and the collection is fairly large.

Even though parallel streams in Java 8 make it pretty easy to make code concurrent,
we still have to evaluate based on the problem at hand and the data size to decide if
there’s an execution-time savings.

The change from sequential to parallel was effortless, but we did quite a
number of things to make this possible. First, we avoided mutability and kept
the functions pure, with no side effects. We avoided race conditions and
thread-safety issues, which is critical for correctness—there’s no point being
fast and incorrect. We should take extreme care to ensure that lambda
expressions passed to stream operations are side effect–free.

Second, the way we composed the functions helped. The decision to run
sequentially or in parallel was made upstream, when we transformed the List
to a Stream. The rest of the code in the findHighPriced() method didn’t change; the
two versions share it in common. Going from sequential to parallel was as
simple as toggling a switch.

Recap
Lambda expressions help compose functions into a chain of operations, which
lets us put problems into an associative series of object transformations. In
addition, by preserving immutability and avoiding side effects we can easily
parallelize execution of parts of the chain’s operations and gain on speed.

In the next chapter we wrap up with a discussion of making good use of the
functional style, and address some limitations.

report erratum • discuss

Recap • 145

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

CHAPTER 9

Any intelligent fool can make things bigger, more complex, and
more violent. It takes a touch of genius—and a lot of courage—
to move in the opposite direction.

 ➤ Albert Einstein

Bringing It All Together
We explored Java 8 lambda expressions throughout this book, using them
to iterate over collections, to achieve better lightweight design, and to easily
compose and parallelize code. In this final chapter we’ll bring it all together.
We’ll review the practices we have to hone to fully benefit from functional
style, then discuss the performance impact of this style and conclude with
some recommendations on how we can successfully adopt the functional
style.

Essential Practices to Succeed with the Functional Style
The new features in Java 8 do not just change the syntax we type. To benefit
fully and create highly concise and lightweight applications, we need to change
the designs, the code, and our thinking; it’s different from the imperative and
object-oriented paradigm we’re used to in Java. Let’s go over some of the
fundamental ways we have to change how we develop applications, and the
benefits we’ll receive in return.

More Declarative, Less Imperative
We have to raise the level of abstraction. Rather than imperatively focusing
on the steps to take, we have to think and express declaratively the bigger
goals we want to achieve. For example, instead of commanding the computer
to step through each element in a collection, we ask it to filter out the elements
we want or to map or transform it into yet another collection. This can help
take the “Tell, Don’t Ask” principle further and make the code more concise
and expressive.1

1. http://pragprog.com/articles/tell-dont-ask

report erratum • discuss

http://pragprog.com/articles/tell-dont-ask
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

For example, let’s say we’re given a list of stock prices and asked to pick the
maximum value. From experience, our first instinct may be to write it
imperatively like this:

int max = 0;
for(int price : prices) {

if(max < price) max = price;
}

Instead let’s think declaratively. We’ll tell the program to pick the max rather
than ask it to walk through each step:

final int max = prices.stream()
.reduce(0, Math::max);

The benefits go far beyond having fewer lines of code. We have fewer chances
to introduce errors—the code we don’t write has the fewest bugs. Having
fewer lines of understandable code is simpler than many lines of fluffy code.

Imperative code is primitive and involves more mutability. On the other hand,
declarative code raises the level of abstraction and reduces the need for
mutable variables. This also lowers the chances of errors in code.

Favor Immutability
Mutable variables are in poor taste, and shared mutable variables are pure
evil. We often get confused or overlook change to variables. As a result, code
with more mutable variables tends to have more errors. Code with shared
mutable variables is very hard to parallelize correctly. One way to reduce
errors is simply to avoid mutability where possible, and the functional style
makes that easier.

Purely functional languages have only values: write-once variables that can’t
change after initialization. Since Java does not enforce immutability, the onus
is on us to favor immutability. When we encounter mutable variables, we can
examine the libraries to see if there’s a functional-style equivalent that will
eliminate them.

Reduce Side Effects
A function with no side effects is not affected by anything outside and does
not affect anything outside of its bounds. Functions or methods with side
effects are hard to understand, hard to maintain, more error prone, and diffi-
cult to parallelize.

If we remove side effects, then as long as the input to a function remains
unchanged, the output will always be the same. This makes it easier to

Chapter 9. Bringing It All Together • 148

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

understand the code and makes us need fewer test cases to ensure the
proper behavior.

Having no side effects is critical for referential transparency, which means an
invocation or a call to a function can be replaced by its result value without
affecting a program’s correctness. The functional style greatly favors creating
functions with no side effects, and the benefits are far reaching.

The javac compiler and the JVM just-in-time compiler can easily optimize calls
to functions with no side effects. Functions that have side effects impose
ordering and restrict optimization. On the other hand, calls to functions with
no side effects can be moved around and reordered more freely. For example,
in the next figure F1 and F2 are two independent function calls. The compiler
can change the order of their sequential execution or even schedule them to
run concurrently on multiple cores, thanks to their referential transparent
behavior.

F1 F2

Time

F2

F1

called sequentially called sequentially called concurrently

F2 F1

Figure 12—We can easily reorder functions that have no side effects.

When working with lambda expressions, we should ensure that the code is
without side effects. Doing so will not only reduce the chance of errors, but
also help us easily parallelize the code, as we saw in Taking a Leap to Paral-
lelize, on page 143. It’s critical to eliminate side effects if we want to use
techniques like the tail-call optimization we saw in Using Tail-Call Optimization,
on page 121.

report erratum • discuss

Essential Practices to Succeed with the Functional Style • 149

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Prefer Expressions Over Statements
Both expressions and statements are commands we write in programs to
instruct the computer to perform some action or do some work. Statements
perform actions but don’t return anything, whereas expressions perform
actions and return a result. When programming with lambda expressions we
can reap benefits by leaning toward creating expressions more than
statements.

First, since statements don’t return anything, they have to cause side effects
and mutate memory to fulfill their purpose. Expressions, on the other hand,
can be designed to favor referential transparency, giving us the benefits we
discussed previously.

The other benefit is that unlike statements, expressions can be composed.
This can help us use a very powerful pattern in the functional style of pro-
gramming—function chaining. We can create a chain of functions so the
results of computations flow smoothly from one function into the next. The
code begins to read like the problem statement, making it easier to follow.

We saw a benefit of this in …To the Functional Style, on page 141, where we
sent a list of stock-ticker symbols through a chain of functions to determine
the highest-priced stock and its price. This pattern can also help us create
fluent interfaces, as we saw in Creating Fluent Interfaces Using Lambda
Expressions, on page 80.

Design with Higher-Order Functions
In Java 8, one of the biggest changes we have to make is to design with
higher-order functions. We’re used to passing objects to methods, but now
we also have the ability to pass functions as arguments. This gives us more
concise code: anywhere we passed anonymous inner classes to single method
interfaces, we can now pass lambda expressions or method references.

For example, to register a simple event handler for a Swing button, we had
to jump through hoops before, like in the next example.

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {

JOptionPane.showMessageDialog(frame, "you clicked!");
}

});

We can trade such clunky code in for more concise code, like this:

button.addActionListener(event ->
JOptionPane.showMessageDialog(frame, "you clicked!"));

Chapter 9. Bringing It All Together • 150

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The ceremony and the clutter are gone, leaving behind just the essence. Not
only did we write fewer lines of code here, but we also needed fewer imports in
the code. That’s because we no longer have to refer to the ActionListener interface
by name, and the reference to ActionEvent is optional since we used type
inference.

Once we get used to lambda expressions, they will have a lot of impact on
our designs. We can design our methods to receive functional interfaces as
parameters. This will enable the callers to pass in either lambda expressions
or method references as arguments, which will help us take a lightweight
approach to separating concerns from methods and classes, like we discussed
in Chapter 4, Designing with Lambda Expressions, on page 63. The common,
familiar design patterns are more approachable when we design with lambda
expressions; we need fewer lines of code, classes, and interfaces, and far less
ceremony to implement our designs.

Performance Concerns
Java has come a long way and is used in a vast number of enterprise applica-
tions where performance is critical. It’s reasonable to ask if the new features
will affect performance. The answer is yes, but mostly for the better!

Before we dig into that, let’s recall Donald Knuth’s wise words: “We should
forget about small efficiencies, say about 97% of the time: premature optimiza-
tion is the root of all evil.”2 With that in mind, we should boldly try out the
new style where it makes sense. If the performance we get is adequate for the
needs of the application, we can move on. Otherwise, we have to critically
evaluate the design and profile the code to figure out the real bottlenecks.

The Java 8 specification provides a great amount of flexibility to facilitate
compiler optimizations. This, in combination with the relatively new invoke-
dynamic optimized bytecode instruction, can make the calls using lambda
expressions quite fast.3 Let’s look at the performance.

Here’s imperative code to count the number of primes in a collection of
numbers.

long primesCount = 0;
for(long number : numbers) {
if(isPrime(number)) primesCount += 1;

}

2. http://c2.com/cgi/wiki?PrematureOptimization
3. See Brian Goetz’s JavaOne 2012 presentation “Lambda: A Peek under the Hood”—

http://tinyurl.com/abbonw4.

report erratum • discuss

Performance Concerns • 151

http://c2.com/cgi/wiki?PrematureOptimization
http://tinyurl.com/abbonw4
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We’re using the habitual for loop to invoke a method isPrime() to determine if
each number in the collection is prime. If a number is prime, we increment
the primesCount mutable variable. Let’s measure the time to run this code for
a large collection, say 100,000 numbers.

0.0250944 seconds

That took about 0.02 second, but the code is in the style we want to curtail;
let’s see if the new style we want to adopt will stand up to this performance.
Let’s refactor that code to our favorite functional style: code that’s declarative,
is created in favor of immutability, has no side effects, and is composed of
higher-order functions chained together.

final long primesCount =
numbers.stream()

.filter(number -> isPrime(number))

.count();

We transformed the collection into a Stream and then used the filter() method
to pick only primes from the collection. Then we got the size of the filtered
collection. In essence we asked the code to filter out just the primes in the
collection. Let’s see how much time this version takes to run on the same
collection as the previous version.

0.0253816 seconds

From the output we see that the performance using lambda expression is about
the same; we did not lose anything, but we have gained quite a bit. It’s trivial to
parallelize the functional-style version. To parallelize the imperative version, on
the other hand, we have to…um…that’s a slippery slope we want to avoid.

Let’s waste no time. Here’s the parallelized functional-style version:

final long primesCount =
numbers.parallelStream()

.filter(number -> isPrime(number))

.count();

That was hardly any effort. Let’s see the gain in speed by running the code.

0.00649266 seconds

The parallelized version, running on a quad-core processor, took about 0.006
second.

Before we run off to celebrate this glorious performance, let’s admit that a
large number of performance metrics are contrived and we can’t blindly rely
on them. If nothing else, this example simply shows that using lambda
expressions and the functional style does not have to mean poor performance.

Chapter 9. Bringing It All Together • 152

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

When creating real code for enterprise applications, we have to keep an eye
on performance and address concerns where they arise.

Adopting the Functional Style
Picking up new syntax is relatively easy, but changing the way we design and
think takes more effort. Programming in the functional style in Java is a
paradigm shift, and we’ve seen examples that show this change is good. Let’s
discuss some ways in which we can make an easy and successful transition
to this exciting new world in Java.

Following a few practices we discussed in Essential Practices to Succeed with
the Functional Style, on page 147, will help us get better at functional-style
coding. Java is now a mixed-paradigm language with support for imperative,
object-oriented, and functional programming. We have to judiciously balance
them, but the ability to do so comes from experience, trying out designs, and
evaluating the trade-offs.

At the beginning of the transition to this paradigm, it’s quite natural to con-
tinue to think in the most familiar ways. That’s fine; we can implement and
quickly refactor the code; “Make it work, then make it better (real soon)” is a
good mantra to follow. With experience, the need for these refactoring efforts
will diminish and more functional-style code will flow more naturally.

To get better at what we do, we have to be willing to change our ways. This
means we have to fearlessly try out our ideas and then improve based on
feedback from our colleagues. We can benefit a great deal from tactical code
reviews, pair-programming sessions, and brown-bag sessions at work. Outside
of work, special-interest groups like the local Java user groups are great
places for us to expand our knowledge. We can participate in local study
groups or help organize one if none exist.

Java 8 and lambda expressions will improve the way we develop software. These
powerful features have breathed new life into today’s most popular language. It’s
an exciting time to be a programmer.

Program well, and in style.

report erratum • discuss

Adopting the Functional Style • 153

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

APPENDIX 1

Starter Set of Functional Interfaces
JDK 8 has a number of functional interfaces. Here we review the starter set—the
interfaces we frequently encounter and need to get familiar with. All the interfaces
we see here are part of the java.util.function package.

Consumer<T>
Represents an operation that will accept an input
and returns nothing. For this to be useful, it will
have to cause side effects.

Description

accept()Abstract method

andThen()default method(s)

As a parameter to the forEach() methodPopular usage

IntConsumer, LongConsumer, DoubleConsumer, …Primitive specializations

Supplier<T>
A factory that’s expected to return either a new
instance or a precreated instance

Description

get()Abstract method

—default method(s)

To create lazy infinite Streams and as the parameter
to the Optional class’s orElseGet() method

Popular usage

IntSupplier, LongSupplier, DoubleSupplier, …Primitive specializations

Predicate<T>
Useful for checking if an input argument satisfies
some condition

Description

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

test()Abstract method

and(), negate(), and or()default method(s)

As a parameter to Stream’s methods, like filter() and
anyMatch()

Popular usage

IntPredicate, LongPredicate, DoublePredicate, …Primitive specializations

Function<T, R>
A transformational interface that represents an
operation intended to take in an argument and
return an appropriate result

Description

apply()Abstract method

andThen(), compose()default method(s)

As a parameter to Stream’s map() methodPopular usage

IntFunction, LongFunction, DoubleFunction, IntToDoubleFunction,
DoubleToIntFunction, …

Primitive specializations

Appendix 1. Starter Set of Functional Interfaces • 156

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

APPENDIX 2

Syntax Overview
We’ve played with the new syntax for functional interfaces, lambda expres-
sions, method references, and constructor references throughout this book.
This appendix is a quick reference for syntax, using sample code selected
from various parts of the book.

Defining a Functional Interface

@FunctionalInterface
public interface TailCall<T> {

TailCall<T> apply();

default boolean isComplete() { return false; }
//...

}

A functional interface must have one abstract—unimplemented—method. It
may have zero or more default or implemented methods. It may also have static
methods.

Creating No-Parameter Lambda Expressions

lazyEvaluator(() -> evaluate(1), () -> evaluate(2));

The parentheses () around the empty parameters list are required if the
lambda expression takes no parameters. The -> separates the parameters
from the body of a lambda expression.

Creating a Single-Parameter Lambda Expression

friends.forEach((final String name) -> System.out.println(name));

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

The Java compiler can infer the type of lambda expression based on the
context. In some situations where the context is not adequate for it to infer
or we want better clarity, we can specify the type in front of the parameter
names.

Inferring a Lambda Expression’s Parameter Type

friends.forEach((name) -> System.out.println(name));

The Java compiler will try to infer the types for parameters if we don’t provide
them. Using inferred types is less noisy and requires less effort, but if we
specify the type for one parameter, we have to specify it for all parameters in
a lambda expression.

Dropping Parentheses for a Single-Parameter Inferred
Type

friends.forEach(name -> System.out.println(name));

The parentheses () around the parameter are optional if the lambda expression
takes only one parameter and its type is inferred. We could write name -> ... or
(name) -> ...; lean toward the first since it’s less noisy.

Creating a Multi-Parameter Lambda Expression

friends.stream()
.reduce((name1, name2) ->

name1.length() >= name2.length() ? name1 : name2);

The parentheses () around the parameter list are required if the lambda
expression takes multiple parameters or no parameters.

Calling a Method with Mixed Parameters

friends.stream()
.reduce("Steve", (name1, name2) ->

name1.length() >= name2.length() ? name1 : name2);

Methods can have a mixture of regular classes, primitive types, and functional
interfaces as parameters. Any parameter of a method may be a functional
interface, and we can send a lambda expression or a method reference as an
argument in its place.

Appendix 2. Syntax Overview • 158

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Storing a Lambda Expression

final Predicate<String> startsWithN = name -> name.startsWith("N");

To aid reuse and to avoid duplication, we often want to store lambda expres-
sions in variables.

Creating a Multiline Lambda Expression

FileWriterEAM.use("eam2.txt", writerEAM -> {
writerEAM.writeStuff("how");
writerEAM.writeStuff("sweet");

});

We should keep the lambda expressions short, but it’s easy to sneak in a few
lines of code. We have to pay penance by using curly braces {}, and the return
keyword is required if the lambda expression is expected to return a value.

Returning a Lambda Expression

public static Predicate<String> checkIfStartsWith(final String letter) {
return name -> name.startsWith(letter);

}

If a method’s return type is a functional interface, we can return a lambda
expression from within its implementation.

Returning a Lambda Expression from a Lambda
Expression

final Function<String, Predicate<String>> startsWithLetter =
letter -> name -> name.startsWith(letter);

We can build lambda expressions that themselves return lambda expressions.
The implementation of the Function interface here takes in a String letter and
returns a lambda expression that conforms to the Predicate interface.

Lexical Scoping in Closures

public static Predicate<String> checkIfStartsWith(final String letter) {
return name -> name.startsWith(letter);

}

From within a lambda expression we can access variables that are in the
enclosing method’s scope. For example, the variable letter in the checkIfStartsWith()

report erratum • discuss

Storing a Lambda Expression • 159

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

is accessed within the lambda expression. Lambda expressions that bind to
variables in enclosing scopes are called closures.

Passing a Method Reference of an Instance Method

friends.stream()
.map(String::toUpperCase);

We can replace a lambda expression with a method reference if it directly
routes the parameter as a target to a simple method call. The preceding
sample code is equivalent to this:

friends.stream()
.map(name -> name.toUpperCase());

Passing a Method Reference to a static Method

str.chars()
.filter(Character::isDigit);

We can replace a lambda expression with a method reference if it directly
routes the parameter as an argument to a static method. The preceding sample
code is equivalent to this:

str.chars()
.filter(ch -> Character.isDigit(ch));

Passing a Method Reference to a Method on Another
Instance

str.chars()
.forEach(System.out::println);

We can replace a lambda expression with a method reference if it directly
routes the parameter as an argument to a method on another instance; for
example, println() on System.out. The preceding sample code is equivalent to this:

str.chars()
.forEach(ch -> System.out.println(ch));

Passing a Reference of a Method That Takes Parameters

people.stream()
.sorted(Person::ageDifference)

Appendix 2. Syntax Overview • 160

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

We can replace a lambda expression with a method reference if it directly
routes the first parameter as a target of a method call, and the remaining
parameters as this method’s arguments. The preceding sample code is
equivalent to this:

people.stream()
.sorted((person1, person2) -> person1.ageDifference(person2))

Using a Constructor Reference

Supplier<Heavy> supplier = Heavy::new;

Instead of invoking a constructor, we can ask the Java compiler to create the
calls to the appropriate constructor from the concise constructor-reference syntax.
These work much like method references, except they refer to a constructor and
they result in object instantiation. The preceding sample code is equivalent to
this:

Supplier<Heavy> supplier = () -> new Heavy();

Function Composition

symbols.map(StockUtil::getPrice)
.filter(StockUtil.isPriceLessThan(500))
.reduce(StockUtil::pickHigh)
.get();

We can compose functions to transform objects through a series of operations
like in this example. In the functional style of programming, function compo-
sition or chaining is a very powerful construct to implement associative
operations.

report erratum • discuss

Using a Constructor Reference • 161

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

APPENDIX 3

Web Resources
Cutting-stock problem http://en.wikipedia.org/wiki/Cutting_stock_problem

An optimization problem that can use the memoization technique.

Dependency inversion principle . . http://c2.com/cgi/wiki?DependencyInversionPrinciple

Describes a way to realize extensibility by coupling a class to an abstraction
(interface) rather than to its implementation.

Don’t Repeat Yourself http://c2.com/cgi/wiki?DontRepeatYourself

I’ll let the reader refer to that URL, in the spirit of DRY.

Essence vs. ceremony http://tinyurl.com/b99g2fl

Stuart Halloway discusses essence versus ceremony in this excellent blog
entry. The direct URL is http://thinkrelevance.com/blog/2008/04/01/ending-legacy-code-in-
our-lifetime.

Execute around method pattern . . . http://c2.com/cgi/wiki?ExecuteAroundMethod

Describes a pattern to control the flow of logic through pre and post operations.

Java 8 JDK . https://jdk8.java.net/download.html

Download link for the Java 8 JDK for various operating systems.

Java 8 JDK Documentation http://download.java.net/jdk8/docs/api

JDK documentation with updates for Java 8.

JDK 8 source code . http://hg.openjdk.java.net

JDK 8 source-code download page.

report erratum • discuss

http://en.wikipedia.org/wiki/Cutting_stock_problem
http://c2.com/cgi/wiki?DependencyInversionPrinciple
http://c2.com/cgi/wiki?DontRepeatYourself
http://tinyurl.com/b99g2fl
http://thinkrelevance.com/blog/2008/04/01/ending-legacy-code-in-our-lifetime
http://thinkrelevance.com/blog/2008/04/01/ending-legacy-code-in-our-lifetime
http://c2.com/cgi/wiki?ExecuteAroundMethod
https://jdk8.java.net/download.html
http://download.java.net/jdk8/docs/api
http://hg.openjdk.java.net
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

“Lambda: A Peek under the Hood” http://tinyurl.com/abbonw4

A presentation by Brian Goetz at the JavaOne 2012 conference. The direct
URL is https://oracleus.activeevents.com/connect/search.ww?event=javaone#loadSearch-
event=javaone&searchPhrase=Goetz&searchType=session.

Loan pattern https://wiki.scala-lang.org/display/SYGN/Loan

A discussion of the loan pattern in Scala.

MapReduce http://research.google.com/archive/mapreduce.html

“MapReduce: Simplified Data Processing on Large Clusters”—a paper by Jeffrey
Dean and Sanjay Ghemawat that discusses this programming model.

Open/closed principle http://en.wikipedia.org/wiki/Open/closed_principle

Describes Bertrand Meyer’s open/closed principle, which states that software
modules must be open for extension, but without having to go through a code
change.

Premature optimization http://c2.com/cgi/wiki?PrematureOptimization

A web page that discusses the perils of premature optimization.

Tell, Don’t Ask http://pragprog.com/articles/tell-dont-ask

A column that discusses the “Tell, Don’t Ask” principle.

“Test Driving Multithreaded Code” http://tinyurl.com/ab5up2w

Code samples from a presentation on unit testing for thread safety. The direct
URL is https://www.agiledeveloper.com/presentations/TestDrivingMultiThreadedCode.zip.

Web page for this book http://www.pragprog.com/titles/vsjava8

This book’s web page, with full source-code listings.

Appendix 3. Web Resources • 164

report erratum • discuss

http://tinyurl.com/abbonw4
https://oracleus.activeevents.com/connect/search.ww?event=javaone#loadSearch-event=javaone&searchPhrase=Goetz&searchType=session
https://oracleus.activeevents.com/connect/search.ww?event=javaone#loadSearch-event=javaone&searchPhrase=Goetz&searchType=session
https://wiki.scala-lang.org/display/SYGN/Loan
http://research.google.com/archive/mapreduce.html
http://en.wikipedia.org/wiki/Open/closed_principle
http://c2.com/cgi/wiki?PrematureOptimization
http://pragprog.com/articles/tell-dont-ask
http://tinyurl.com/ab5up2w
https://www.agiledeveloper.com/presentations/TestDrivingMultiThreadedCode.zip
http://www.pragprog.com/titles/vsjava8
http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Bibliography
[AS96] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of

Computer Programs. MIT Press, Cambridge, MA, 2nd, 1996.

[Blo08] Joshua Bloch. Effective Java. Addison-Wesley, Reading, MA, 2008.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

[Goe06] Brian Goetz. Java Concurrency in Practice. Addison-Wesley, Reading, MA,
2006.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Jour-
neyman to Master. Addison-Wesley, Reading, MA, 2000.

[Sub11] Venkat Subramaniam. Programming Concurrency on the JVM: Mastering
Synchronization, STM, and Actors. The Pragmatic Bookshelf, Raleigh, NC
and Dallas, TX, 2011.

[Zin01] William Zinsser. On Writing Well, 25th Anniversary: The Classic Guide to
Writing Nonfiction. HarperResource, New York, NY, USA, 2001.

report erratum • discuss

http://pragprog.com/titles/vsjava8/errata/add
http://forums.pragprog.com/forums/vsjava8

Index
SYMBOLS
-> (arrow), preceding function

body, 14

{ } (braces), enclosing multi-
line lambda expressions,
159

:: (colon, double), in method
references, 42

A
Abelson, Harold (author),

Structure and Interpretation
of Computer Programs, 123

abstract classes, 80

abstract methods, 15–17, 46,
72, 80

anonymous functions,
see lambda expressions

arithmetic overflow, recursion
causing, 128–129

ARM (automatic resource
management), 90–91

ArrayList class, 52–56

arrow (->), preceding function
body, 14

asset-values example, 63–68

automatic resource manage-
ment, see ARM

average() method, streams, 36

B
books and publications

Design Patterns: Elements
of Reusable Object-Ori-
ented Software (Gam-
ma et al.), 73

Java Concurrency in
Practice (Goetz), 105

The Pragmatic Program-
mer: From Journeyman
to Master (Hunt;
Thomas), 29

Structure and Interpreta-
tion of Computer Pro-
grams (Abelson; Suss-
man), 123

braces ({ }), enclosing multi-
line lambda expressions,
159

C
camera-filters example, 73–77

cascade method pattern, 81–
82

ceremony, see essence versus
ceremony

chars() method, strings, 41–44

classes
interface design for, 80–

83
separation of concerns in,

68–72

classifier functions, 54

close() method, 89–90

CloseableStream interface, 56

closures, 29–33, 159

code examples
asset-values example,

63–68
camera-filters example,

73–77
factorials example, 122–

129
package containing, xviii
prime-numbers example,

116–119, 151–153

rod-cutting example,
130–134, 163

structure of, xviii
ticker-symbols example,

136–145
web-service financials ex-

ample, 69–72
website for, xviii

collect() method, streams, 27,
39, 52–56

collections
concatenating, 38–40
contains() method, 2, 12
finding elements in, 26–

27
finding one element in,

33–35
infinite, 115–119
iterating through, 19–23
manipulating, 23–25
reducing to a single val-

ue, 35–38
stream() method, 4, 24–25
transforming, 52–56

collectors, 52–56
groupingBy() method, 54–56
joining() method, 54
mapping() method, 55
toList() method, 53–54
toMap() method, 54
toSet() method, 54

colon, double (::), in method
references, 42

comparators, 44–50
compareTo() method, 46
comparing() method, 51
reusing, 48–50
reversed() method, 48
sorting using, 45–52
thenComparing() method, 51

compareTo() method, compara-
tors, 46

comparing() method, compara-
tors, 51

conciseness of code, 5, 7,
147–148

concurrency, see paralleliza-
tion

constructor references, 106,
161

Consumer<T> interface, 155

contains() method, collections,
2, 12

curly braces ({ }), enclosing
multiline lambda expres-
sions, 159

cutting-stock problem,
see rod-cutting example

D
declarative code, 12, 147–148

decorator pattern, 72–77

default methods, 74, 77–80

delayed evaluation, 11, 103–
111

delegation
chaining delegates, 72–77
creating delegates, 69–72

dependency inversion princi-
ple, 69, 163

design patterns and princi-
ples

cascade method pattern,
81–82

decorator pattern, 72–77
delegation, 68–77
dependency inversion

principle, 69, 163
divide and conquer ap-

proach, 121
DRY principle, 29, 163
EAM pattern, 95
essence versus ceremony,

7, 15, 97, 163
execute around method

(EAM) pattern, 87, 93–
97, 163

loan pattern, 83, 164
MapReduce pattern, 36,

138–142, 164
open/closed principle,

68, 164
separation of concerns,

10, 63–72
strategy pattern, 66–68

Tell, Don’t Ask principle,
147, 164

virtual proxy pattern, 108

Design Patterns: Elements of
Reusable Object-Oriented
Software (Gamma et al.), 73

directories
listing all files in, 56–57
listing immediate subdi-

rectories in, 59–60
listing select files in, 57–

59

DirectoryStream interface, 57–58

divide and conquer approach,
121

DRY (Don’t Repeat Yourself)
principle, 29, 163

duplication, avoiding,
see reusing code

dynamic programming, 130

E
EAM (execute around method)

pattern, 95

essence versus ceremony, 7,
15, 97, 163

evaluation, delayed, 11, 103–
111

examples, see code examples

exception handling, 72, 83–
86

exception tests, 97–101

execute around method (EAM)
pattern, 87, 163

garbage collection using,
93–95

lock management using,
95–97

expressions, 13, 150

external iteration, 20

F
factorials example, 122–129

FileFilter interface, 58

files
list() method, 56–57
listFiles() method, 56, 58
listing all files in a direc-

tory, 56–57
listing select files in a di-

rectory, 57–59
observing for changes,

60–62

filter() method, streams, 4, 27,
34

filters, camera, 73–77

finalize() method, 87–88

findFirst() method, streams, 34

flatMap() method, streams, 59–
60

fluent interfaces, 82–83

for loop, 19–20, 23

forEach() method, Iterable inter-
face, 20–24, 41

fpij package, xviii

function composition, 135–
138, 161

Function<T, R> interface, 32–33,
156

functional interfaces, 15–17
list of, 155–156
syntax for, 157

functional programming
benefits of, 5–12
combining with object-

oriented programming,
6, 135–138

compared to imperative
programming, 1–6

practices for, 12–15, 147–
151

transitioning to, 153

@FunctionalInterface annotation,
16, 93

functions
classifier functions, 54
higher-order functions,

14–15, 150–151
passing to another func-

tion, 14–15
returning functions from,

30–32

fusing operation, 114

G
Gamma, Erich (author), De-

sign Patterns: Elements of
Reusable Object-Oriented
Software, 73

GC (garbage collection), 87–
95

ARM for, 90–91
closing resources explicit-

ly, 89–90
lambda expressions for,

91–95

get() method, paths, 56

Index • 168

Goetz, Brian (author), Java
Concurrency in Practice, 105

groupingBy() method, collectors,
54–56

H
heavyweight object creation,

delaying, 103–108

Helm, Richard (author), De-
sign Patterns: Elements of
Reusable Object-Oriented
Software, 73

higher-order functions, 14–
15, 150–151

Hunt, Andy (author), The
Pragmatic Programmer:
From Journeyman to Mas-
ter, 29

I
immutability, 5, 13, 148

imperative programming, 1–
6, 147–148

indirection, 106

infinite collections, 115–119

instance methods, 25, 44,
160

intermediate methods, for
streams, 111–115

internal iteration, 20–22

intuitiveness of code, 6, 10

Iterable interface, forEach()
method, 20–24, 41

iterate() method, streams, 117,
125

iteration
through collections, 19–

23
external, 20
internal, 20–22
with lambda expressions,

4, 21–23
through streams, 117,

125
through strings, 41–44
types of, 7–8

J
Java 8, 4–7, see also function-

al programming; lambda
expressions

downloading, xviii, 163
version requirements,

xviii

Java Concurrency in Practice
(Goetz), 105

JDK, documentation, 163

Johnson, Ralph (author), De-
sign Patterns: Elements of
Reusable Object-Oriented
Software, 73

join() method, strings, 39

joining() method, collectors, 54

L
lambda expressions, 14, 164

chaining delegates, 72–77
class interface design us-

ing, 82–83
closures with, 29–33
concatenating collections,

38–40
delegation using, 68–72
exception handling using,

72, 83–86
exception tests using, 97–

101
finding elements in collec-

tions, 26–27
finding one element in a

collection, 33–35
garbage collection using,

91–95
iteration using, 4, 21–23
lexical scoping with, 29–

33
lock management using,

95–97
manipulating collections,

24–25
memoization using, 133
method references as al-

ternative to, 26, 160
multiline, 159
with multiple parameters,

158
with no parameters, 157
with one parameter, 158
parameter types, infer-

ring, 158
passing to a method, for

functional interface, 16
reducing collections to a

single value, 35–38
returning a value from,

159
returning from methods,

159
returning lambda expres-

sions from, 159
reusing, 27–33
separation of concerns

using, 63–72

storing in functions, 32–
33

storing in predicates, 28–
29, 159

syntax for, 157–159
TCO using, 121, 123, 126
tests using, 11–12

laziness
delaying method evalua-

tion, 108–111
delaying object creation,

103–108
with infinite collections,

115–119
of streams, 111–115

lexical scoping, 29–33, 159

list() method, files, 56–57

listFiles() method, files, 56, 58

lists, see collections

loan pattern, 83, 164

Lock interface, 95–96

lock management, 95–97

looping, see iteration

M
map() method, streams, 4, 24–

25

mapToInt() method, streams, 36

mapping() method, collectors,
55

MapReduce pattern, 36, 138–
142, 164

max() method, streams, 36, 50

memoization, 129–134, 163

method chaining, 81–82

method reference
parameter routing conven-

tion, 48
parameters split, 47

method references, 23
delegation using, 68–72
exception handling using,

72
for instance methods,

25, 160
method collisions with,

44
for static methods, 42, 44,

160
when to use, 26

methods
abstract methods, 15–17,

46, 72, 80
calling with mixed param-

eters, 158

Index • 169

default methods, 74, 77–80
delaying evaluation of,

108–111
instance methods, 25,

44, 160
returning lambda expres-

sions from, 159
separation of concerns in,

63–68
static methods, 42, 44,

74, 160
for streams, evaluation

order of, 112–114

min() method, streams, 36, 50

monadic composition, 60

multicore processors, 138

multithreading, see paral-
lelization; thread safety

mutation, avoiding, see im-
mutability

O
object-oriented programming,

see OOP

objects
delaying creation of, 103–

108
transformation of, 135–

138

office-space pattern, 26, 47

online resources, xviii, 163–
164

code examples, xviii
dependency inversion

principle, 163
DRY principle, 163
essence versus ceremony,

163
execute around method

(EAM) pattern, 163
Java 8, xviii, 163
Java 8 JDK, 163
lambda expressions, 164
loan pattern, 164
MapReduce pattern, 164
memoization, 163
open/closed principle,

164
premature optimization,

164
Tell, Don’t Ask principle,

164
for this book, xviii, 164
thread safety, 164

OOP (object-oriented program-
ming), 6, 135–138

open/closed principle, 68,
164

optimization
memoization, 129–134,

163
premature, 151, 164
TCO (tail-call optimiza-

tion), 121–129

Optional class, 11, 34

P
packages, for code examples

in this book, xviii

parallel streams, 144–145

parallelization, 5, 9–10, 143–
145, see also thread safety

exception handling with,
85

performance with, 152–
153

when to use, 145

paths, get() method, 56

performance, 151–153, see
also optimization

policies, 8–9

The Pragmatic Programmer:
From Journeyman to Master
(Hunt; Thomas), 29

Predicate class
compared to Function class,

33
lambda expressions in,

28–29
lexical scoping in, 31–32
returning from a func-

tion, 30

Predicate<T> interface, 155

prime-numbers example,
116–119, 151–153

R
race conditions, 13, 31, 105–

106, 143–145, see also par-
allelization; thread safety

rangeClosed() method, streams,
116

recursion, 121–134
memoization for, 129–134
TCO technique for, 121–

129

reduce() method, streams, 4,
36–38

referential transparency, 149

resources, see books and
publications; online re-
sources

return keyword, 159

reusing code, 27–33

reversed() method, compara-
tors, 48

rod-cutting example, 130–
134, 163

runWithinTransaction() method, 8

S
separation of concerns, 10,

63–72
with classes, 68–72
with methods, 63–68

side effects, avoiding, 13,
148–149

sorted() method, streams, 36,
46

sorting, with comparators,
45–52

stack overflow, recursion
causing, 121–123

static methods, 42, 44, 74, 160

strategy pattern, 66–68

stream() method, collections,
4, 24–25

streams
average() method, 36
collect() method, 27, 39,

52–56
filter() method, 4, 27, 34
findFirst() method, 34
flatMap() method, 59–60
infinite collections using,

115–119, 125
intermediate methods for,

111–115
iterate() method, 117, 125
lazy evaluation used by,

111–115
map() method, 4, 24–25
mapToInt() method, 36
max() method, 36, 50
method evaluation order

for, 112–114
min() method, 36, 50
parallel streams, 144–145
rangeClosed() method, 116
reduce() method, 4, 36–38
sorted() method, 36, 46
sum() method, 36
terminal methods for,

111–115

Index • 170

strings
chars() method, 41–44
as immutable, 23
iterating, 41–44
join() method, 39
toUpperCase() method, 25

Structure and Interpretation of
Computer Programs (Abel-
son; Sussman), 123

sum() method, streams, 36

Supplier<T> interface, 106,
110, 155

Sussman, Gerald Jay (au-
thor), Structure and Interpre-
tation of Computer Pro-
grams, 123

synchronized keyword, 95, 105,
107

T
TCO (tail-call optimization),

121–129
arithmetic overflow with,

fixing, 128–129

designing code for, 123
functional interface for,

124–126
indirection in, 127–128

Tell, Don’t Ask principle,
147, 164

terminal methods, for
streams, 111–115

testing
exception tests, 97–101
lambda expressions used

in, 11–12
stubbing a web service

for, 70–71

thenComparing() method, com-
parators, 51

Thomas, Dave (author), The
Pragmatic Programmer:
From Journeyman to Mas-
ter, 29

thread safety, 105–107, 164,
see also parallelization

ticker-symbols example, 136–
145

toList() method, collectors, 53–
54

toMap() method, collectors, 54

toSet() method, collectors, 54

toUpperCase() method, strings,
25

trampoline calls, 121

transactions, 8–9

V
virtual proxy pattern, 108

Vlissides, John (author), De-
sign Patterns: Elements of
Reusable Object-Oriented
Software, 73

W
WatchService interface, 60–62

web-service financials exam-
ple, 69–72

website resources, see online
resources

Index • 171

More JVM Languages
Check out these other groovy languages for the JVM environment, including Groovy, Scala,
and Clojure.

Programming Groovy 2
Groovy brings you the best of both worlds: a flexible,
highly productive, agile, dynamic language that runs
on the rich framework of the Java Platform. Groovy
preserves the Java semantics and extends the JDK to
give you true dynamic language capabilities. Program-
ming Groovy 2 will help you, the experienced Java de-
veloper, learn and take advantage of the latest version
of this rich dynamic language. You’ll go from the basics
of Groovy to the latest advances in the language, in-
cluding options for type checking, tail-call and memo-
ization optimizations, compile time metaprogramming,
and fluent interfaces to create DSLs.

Venkat Subramaniam
(370 pages) ISBN: 9781937785307. $35
http://pragprog.com/book/vslg2

Functional Programming Patterns in Scala and Clojure
Solve real-life programming problems with a fraction
of the code that pure object-oriented programming re-
quires. Use Scala and Clojure to solve in-depth prob-
lems and see how familiar object-oriented patterns can
become more concise with functional programming
and patterns. Your code will be more declarative, with
fewer bugs and lower maintenance costs.

Michael Bevilacqua-Linn
(250 pages) ISBN: 9781937785475. $36
http://pragprog.com/book/mbfpp

http://pragprog.com/book/vslg2
http://pragprog.com/book/mbfpp

Seven in Seven
From web frameworks to concurrency models, see what the rest of the world is doing with
this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks
Whether you need a new tool or just inspiration, Seven
Web Frameworks in Seven Weeks explores modern
options, giving you a taste of each with ideas that will
help you create better apps. You’ll see frameworks that
leverage modern programming languages, employ
unique architectures, live client-side instead of server-
side, or embrace type systems. You’ll see everything
from familiar Ruby and JavaScript to the more exotic
Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud
(302 pages) ISBN: 9781937785635. $38
http://pragprog.com/book/7web

Seven Concurrency Models in Seven Weeks
Your software needs to leverage multiple cores, handle
thousands of users and terabytes of data, and continue
working in the face of both hardware and software
failure. Concurrency and parallelism are the keys, and
Seven Concurrency Models in Seven Weeks equips you
for this new world. See how emerging technologies
such as actors and functional programming address
issues with traditional threads and locks development.
Learn how to exploit the parallelism in your computer’s
GPU and leverage clusters of machines with Map-Re-
duce and Stream Processing. And do it all with the
confidence that comes from using tools that help you
write crystal clear, high-quality code.

Paul Butcher
(300 pages) ISBN: 9781937785659. $38
http://pragprog.com/book/pb7con

http://pragprog.com/book/7web
http://pragprog.com/book/pb7con

Put the “Fun” in Functional
Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang.

Programming Elixir
You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Dave Thomas
(240 pages) ISBN: 9781937785581. $36
http://pragprog.com/book/elixir

Programming Erlang (2nd edition)
A multi-user game, web site, cloud application, or
networked database can have thousands of users all
interacting at the same time. You need a powerful, in-
dustrial-strength tool to handle the really hard prob-
lems inherent in parallel, concurrent environments.
You need Erlang. In this second edition of the best-
selling Programming Erlang, you’ll learn how to write
parallel programs that scale effortlessly on multicore
systems.

Joe Armstrong
(548 pages) ISBN: 9781937785536. $42
http://pragprog.com/book/jaerlang2

http://pragprog.com/book/elixir
http://pragprog.com/book/jaerlang2

Be Agile
Don’t just “do” agile; you want to be agile. We’ll show you how.

Practices of an Agile Developer
Want to be a better developer? This book collects the
personal habits, ideas, and approaches of successful
agile software developers and presents them in a series
of short, easy-to-digest tips.

You’ll learn how to improve your software development
process, see what real agile practices feel like, avoid
the common temptations that kill projects, and keep
agile practices in balance.

Venkat Subramaniam and Andy Hunt
(208 pages) ISBN: 9780974514086. $29.95
http://pragprog.com/book/pad

The Agile Samurai
Here are three simple truths about software develop-
ment:

1. You can’t gather all the requirements up front.
2. The requirements you do gather will change.
3. There is always more to do than time and money

will allow.

Those are the facts of life. But you can deal with those
facts (and more) by becoming a fierce software-delivery
professional, capable of dispatching the most dire of
software projects and the toughest delivery schedules
with ease and grace.

This title is also available as an audio book.

Jonathan Rasmusson
(280 pages) ISBN: 9781934356586. $34.95
http://pragprog.com/book/jtrap

http://pragprog.com/book/pad
http://pragprog.com/book/jtrap

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/vsjava8
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/book/vsjava8

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/book/vsjava8
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/vsjava8
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Foreword
	Acknowledgments
	Preface
	Who's This Book For
	What's in This Book
	Java Version Used in This Book
	How to Read the Code Examples
	Online Resources

	1. Hello, Lambda Expressions!
	Change the Way You Think
	The Big Gains of Functional-Style Code
	Why Code in the Functional Style?
	Evolution, Not Revolution
	A Little Sugar to Sweeten
	Recap

	2. Using Collections
	Iterating through a List
	Transforming a List
	Finding Elements
	Reusing Lambda Expressions
	Using Lexical Scoping and Closures
	Picking an Element
	Reducing a Collection to a Single Value
	Joining Elements
	Recap

	3. Strings, Comparators, and Filters
	Iterating a String
	Implementing the Comparator Interface
	Multiple and Fluent Comparisons
	Using the collect Method and the Collectors Class
	Listing All Files in a Directory
	Listing Select Files in a Directory
	Listing Immediate Subdirectories Using flatMap
	Watching a File Change
	Recap

	4. Designing with Lambda Expressions
	Separating Concerns Using Lambda Expressions
	Delegating Using Lambda Expressions
	Decorating Using Lambda Expressions
	A Peek into the default Methods
	Creating Fluent Interfaces Using Lambda Expressions
	Dealing with Exceptions
	Recap

	5. Working with Resources
	Cleaning Up Resources
	Using Lambda Expressions to Clean Up Resources
	Managing Locks
	Creating Concise Exception Tests
	Recap

	6. Being Lazy
	Delayed Initialization
	Lazy Evaluations
	Leveraging the Laziness of Streams
	Creating Infinite, Lazy Collections
	Recap

	7. Optimizing Recursions
	Using Tail-Call Optimization
	Speeding Up with Memoization
	Recap

	8. Composing with Lambda Expressions
	Using Function Composition
	Using MapReduce
	Taking a Leap to Parallelize
	Recap

	9. Bringing It All Together
	Essential Practices to Succeed with the Functional Style
	Performance Concerns
	Adopting the Functional Style

	A1. Starter Set of Functional Interfaces
	A2. Syntax Overview
	A3. Web Resources
	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– L –
	– M –
	– O –
	– P –
	– R –
	– S –
	– T –
	– V –
	– W –

