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Support vector machine is a method of obtaining the

optimal boundary of two sets in a vector space inde-

pendently on the probabilistic distributions of training

vectors in the sets. Its fundamental idea is very simple;

locating the boundary that is most distant from the vec-

tors nearest to the boundary in both of the sets. This

simple idea is a traditional one, however, recently has

attracted much attention again. This is because of the

introduction of kernel method, which is equivalent to a

transformation of the vector space for locating a non-

linear boundary.

Basic support vector machine

We assume at first a linearly separable problem, as

shown in Fig. 1. Our aim is finding the “optimal” bound-

ary hyperplane which exactly separates one set from

the other. Note that our “optimal” boundary hyperplane

should classify not only the training vectors, but also

unknown vectors in each set. In the first session of this

topic, the classification method by estimating probabi-

listic distributions of the vectors was explained. How-

ever, an accurate estimation is difficult since the di-

mension of vectors is often much higher than the num-

ber of training vectors. It was refered as “curse of di-

mensionality” also in that session.

Now we try another simple approach without any esti-
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mation of distribution. In this approach, the “optimal”

boundary is defined as the most distant hyperplane from

both sets. In other words, this boundary passes the “mid-

point” between these sets. Although the distribution of

each set is unknown, this boundary is expected to be

the optimal classification of the sets, since this bound-

ary is the most isolated one from both of the sets. The

training vectors closest to the boundary are called sup-

port vectors.

Such boundary is defined to be passing through the mid-

point of the shortest line segment between the convex

hulls of the sets and is orthogonal to the line segment.

Let x be a vector in a vector space. A boundary hyper-

plane is expressed as one of the hyperplanes

   wTx + b = 0 , (1)

where w is a weight coefficient vector and b is a bias

term. The distance between a training vector x
i
 and the

boundary, called margin, is expressed as follows:

   wTxi + b

w
. (2)

Since the hyperplanes expressed by Eq. (1) where w

and b are multiplied by a common constant are identi-

cal, we introduce a restriction to this expression, as fol-

lows:

   min
i

wTxi + b = 1 . (3)

The optimal boundary maximizes the minimum of Eq.

(2). By the restriction of Eq. (3), this is reduced to maxi-

mization of   1 / w 2
=    1 / wTw . Consequently, the op-

timization is formalized as

    minimize wTw
subject to yi(wTxi + b) ≥ 1 , (4)

where y
i
 is 1 if x

i
 belongs to one set and –1 if x

i
 belongs

to the other set. If the boundary classifies the vectors

correctly,     yi(wTxi + b) ≥ 0 and it is identical to the mar-

gin.Fig. 1. Optimal boundary by support vector

machine.
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This conditional optimization is achieved by Lagrange's

method of indeterminate coefficient. Let us define a

function

    L(w, b, α i) = 1
2

wTw – α i[yi(wTxi + b) – 1]Σ
i

, (5)

where α
i
 ≥ 0 are the indeterminate coefficients. If w

and b take the optimal value, the partial derivatives

    ∂L
∂w

= w – α iyixiΣ
i

∂L
∂b

= – α iyiΣ
i

(6)

are zero. Setting the derivatives of Eq. (6) to zero, we

get

    w = α iyixiΣ
i

, (7)

   α iyiΣ
i

= 0 . (8)

Rewriting Eq. (5), we get

    L(w, b, α i) = 1
2

wTw – α iyiwTxiΣ
i

– b α iyiΣ
i

+ α iΣ
i

.

(9)

Substituting Eqs. (7) and (8) to Eq. (9), we get

    L(w, b, α i) = 1
2

α iyixiΣ
i

T

α jy jx jΣ
j

– α iyi α jy jx jΣ
j

T

xiΣ
i

+ α iΣ
i

= – 1
2

α iα jyiy jxi
Tx jΣΣ

i, j
+ α iΣ

i

.(10)

The contribution of the second term of Eq. (5) should

be minimum, and L should be maximized subject to α.

Consequently, the optimization is reduced to a quadratic

programming problem as follows:

    maximize – 1
2

α iα jyiy jxi
Tx jΣΣ

i, j
+ α iΣ

i

subject to α iyiΣ
i

= 0, α i ≥ 0
. (11)

Many software packages for solving the quadratic pro-

gramming problem are commercially available.

Soft margin

The above discussion is applicable to the case of lin-

early separable sets only. If the sets are not linearly

separable, a hyperplane exactly classifying the sets does

not exist, as explained in the previous session.

The method called soft margin is a solution to such

case. This method replaces the restriction in Eq. (4)

with the following:

    subject to yi(wTxi + b) ≥ 1 – ξ i . (12)

where ξ
i
, called slack variables, are positive variables

that indicate tolerances of misclassification. This re-

placement indicates that a training vector is allowed to

exist in a limited region in the erroneous side along the

boundary, as shown in Fig. 2. Several optimization func-

tions are proposed for this case, for example

    minimize wTw + C ξ iΣ
i

. (13)

The second term of the above expression is a penalty

term for misclassification, and the constant C deter-

mines the degree of contribution of the second term.

Kernel method

The soft margin method is an extension of the support

vector machine within the linear framework. The ker-

nel method explained here is a method of finding truly

nonlinear boundaries.

The fundamental concept of kernel method is a defor-

mation of the vector space itself to a higher dimensional

space. We consider the linearly nonseparable example

presented in the previous session, as shown in Fig. 3(a).

If the two-dimensional space is transformed to the three-

dimensional one as shown in Fig. 3(b), “black” vectors

and “white” vectors are linearly separable.

Let Φ be a transformation to a higher dimensional space.

tolerance

optimal boundary

Fig. 2. Linearly nonseparable case.
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The transformed space should satisfy that the distance

is defined in the transformed space and the distance

has a relationship to the distance in the original space.

The kernel function K(x, x′) is introduced for satisfy-

ing the above conditions. The kernel function satisfies

     K(x, x′) = Φ(x)TΦ(x′) . (14)

The above equation indicates that the kernel function

is equivalent to the distance between x and x′ measured

in the higher dimensional space transformed by Φ. If

we measure the margin by the kernel function and per-

form the optimization, a nonlinear boundary is obtained.

Note that the boundary in the transformed space is ob-

tained as

    wTΦ(x) + b = 0 . (15)

Substituting Eq. (7) into the above equation with re-

placing x with Φ(x), we get

    α iyiΦ(xi
T)Σ

i
Φ(x) + b = α iyiK(xi,x)Σ

i
+ b = 0 . (16)

The optimization function of Eq. (11) in the transformed

space is also obtained by substituting x
i
Tx

j
 with K(x

i
,

x
j
). These results mean that all the calculation can be

achieved by using K(x
i
, x

j
) only, and we do not need to

know what Φ or the transformed space actually is.

A sufficient condition for satisfying Eq. (14) is that K

is positive definite. Several example of such kernel func-

tions are known, as follows:

    K(x, x′) = xTx′ + 1
p

  (polynomial kernel), (17)

x1
H

x2
H

0
0 1

1

not separable by
a linear boundary

(b)(a)

linearly separable

     
K(x, x′) = exp( –

x – x′
2

σ 2 )  (Gaussian kernel). (18)

Empirical risk and expected risk

The term empirical risk means the misclassification rate

for known training vectors. It is not what we want to

minimize; Our objective is minimizing the misclassi-

fication rate for all vectors in each set, including un-

known vectors. This misclassification rate is called ex-

pected risk.

In case of linearly separable problems, there exists a

boundary hyperplane that makes the empirical risk zero.

The concept of support vector machine to find the

boundary with the largest margin is equivalent to se-

lecting a hyperplane minimizing the expected risk, from

the set of hyperplanes that makes the empirical risk zero.

This is formally explained in the framework of struc-

tural risk minimization with the concept of Vapnik-

Chervenenkis (VC) dimensionality.
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Fig. 3. Transformation to higher dimensional space.


