
Measurable goals for this chapter include that you should be able to

describe software life cycle activities

describe the goals for “quality” software

explain the following terms: software requirements, software specifications, algorithm, infor-
mation hiding, abstraction, stepwise refinement

describe four variations of stepwise refinement

explain the fundamental ideas of object-oriented design

explain the relationships among classes, objects, and inheritance and show how they are imple-
mented in Java

explain how CRC cards are used to help with software design

interpret a basic UML state diagram

identify sources of software errors

describe strategies to avoid software errors

specify the preconditions and postconditions of a program segment or method

show how deskchecking, code walk-throughs, and design and code inspections can improve soft-
ware quality and reduce effort

explain the following terms: acceptance tests, regression testing, verification, validation, functional
domain, black box testing, white box testing

state several testing goals and indicate when each would be appropriate

describe several integration-testing strategies and indicate when each would be appropriate

explain how program verification techniques can be applied throughout the software develop-
ment process

create a Java test driver program to test a simple class
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At this point you have completed at least one semester of computer science course
work. You can take a problem of medium complexity, design a set of objects that work
together to solve the problem, code the method algorithms needed to make the objects
work, and demonstrate the correctness of your solution.

In this chapter, we review the software process, object-oriented design, and the ver-
ification of software correctness.

1.1 The Software Process

When we consider computer programming, we immediately think of writing code in
some computer language. As a beginning student of computer science, you wrote pro-
grams that solved relatively simple problems. Much of your effort went into learning
the syntax of a programming language such as Java or C++: the language’s reserved
words, its data types, its constructs for selection and looping, and its input/output
mechanisms.

You learned a programming methodology that takes you from a problem descrip-
tion all the way through to the delivery of a software solution. There are many design
techniques, coding standards, and testing methods that programmers use to develop
high-quality software. Why bother with all that methodology? Why not just sit down at
a computer and enter code? Aren’t we wasting a lot of time and effort, when we could
just get started on the “real” job?

If the degree of our programming sophistication never had to rise above the level of
trivial programs (like summing a list of prices or averaging grades), we might get away
with such a code-first technique (or, rather, a lack of technique). Some new program-
mers work this way, hacking away at the code until the program works more or less
correctly—usually less!

As your programs grow larger and more complex, you must pay attention to other
software issues in addition to coding. If you become a software professional, you may
work as part of a team that develops a system containing tens of thousands, or even
millions, of lines of code. The activities involved in such a software project’s whole “life
cycle” clearly go beyond just sitting down at a computer and writing programs. These
activities include:

• Problem analysis Understanding the nature of the problem to be solved
• Requirements elicitation Determining exactly what the program must do
• Software specification Specifying what the program must do (the functional

requirements) and the constraints on the solution approach (nonfunctional
requirements, such as what language to use)

• High- and low-level design Recording how the program meets the require-
ments, from the “big picture” overview to the detailed design

• Implementation of the design Coding a program in a computer language
• Testing and verification Detecting and fixing errors and demonstrating the

correctness of the program
• Delivery Turning over the tested program to the customer or user (or instructor)
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• Operation Actually using the program
• Maintenance Making changes to fix operational errors and to add or modify

the function of the program

Software development is not simply a matter of going through these steps sequen-
tially. Many activities take place concurrently. We may be coding one part of the solu-
tion while we’re designing another part, or defining requirements for a new version of a
program while we’re still testing the current version. Often a number of people work on
different parts of the same program simultaneously. Keeping track of all these activities
requires planning.

We use the term software engineering to
refer to the discipline concerned with all
aspects of the development of high-quality
software systems. It encompasses all varia-
tions of techniques used during the software
life cycle plus supporting activities such as
documentation and teamwork. A software
process is a specific set of inter-related soft-
ware engineering techniques used by a person
or organization to create a system.

What makes our jobs as programmers or
software engineers challenging is the tendency of software to grow in size and com-
plexity and to change at every stage of its development. Part of a good software process
is the use of tools to manage this size and complexity. Usually a programmer has sev-
eral toolboxes, each containing tools that help to build and shape a software product.

Hardware
One toolbox contains the hardware itself: the computers and their peripheral devices
(such as monitors, terminals, storage devices, and printers), on which and for which we
develop software.

Software
A second toolbox contains various software tools: operating systems, editors, compilers,
interpreters, debugging programs, test-data generators, and so on. You’ve used some of
these tools already.

Ideaware
A third toolbox is filled with the knowledge that software engineers have collected over
time. This box contains the algorithms that we use to solve common programming prob-
lems, as well as data structures for modeling
the information processed by our programs.
Recall that an algorithm is a step-by-step
description of the solution to a problem.

Ideaware contains programming method-
ologies, such as object-oriented design, and

Software engineering The discipline devoted to the
design, production, and maintenance of computer pro-
grams that are developed on time and within cost esti-
mates, using tools that help to manage the size and
complexity of the resulting software products

Software process A standard, integrated set of soft-
ware engineering tools and techniques used on a proj-
ect or by an organization

Algorithm A logical sequence of discrete steps that
describes a complete solution to a given problem com-
putable in a finite amount of time and space
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software concepts, including information hiding, data encapsulation, and abstraction. It
includes aids for creating designs such as CRC (Classes, Responsibilities, and Collabora-
tions) cards and methods for describing designs such as the UML (Unified Modeling Lan-
guage). It also contains tools for measuring, evaluating, and proving the correctness of our
programs. We devote most of this book to exploring the contents of this third toolbox.

Some might argue that using these tools takes the creativity out of programming,
but we don’t believe that to be true. Artists and composers are creative, yet their inno-
vations are grounded in the basic principles of their crafts. Similarly, the most creative
programmers build high-quality software through the disciplined use of basic program-
ming tools.

Goals of Quality Software

Quality software is much more than a program that accomplishes its task. A good pro-
gram achieves the following goals:

1. It works.

2. It can be modified without excessive time and effort.

3. It is reusable.

4. It is completed on time and within budget.

It’s not easy to meet these goals, but they are all important.

Goal 1: Quality Software Works
A program must accomplish its task, and it must do it correctly and completely. Thus,
the first step is to determine exactly what the program is required to do. You need to

have a definition of the program’s requirements. For
students, the requirements often are included in the
instructor’s problem description. For programmers on
a government contract, the requirements document
may be hundreds of pages long.

We develop programs that meet the requirements
by fulfilling software specifications. The specifications
indicate the format of the input and output, details
about processing, performance measures (how fast?
how big? how accurate?), what to do in case of errors,

and so on. The specifications tell what the program does, but not how it is done. Some-
times your instructor provides detailed specifications; other times you have to write
them yourself, based on a problem description, conversations with your instructor, or
intuition.

How do you know when the program is right? A program has to be

• complete: it should “do everything” specified
• correct: it should “do it right”
• usable: its user interface should be easy to work with
• efficient: at least as efficient as “it needs to be”

Requirements A statement of what is to be provided
by a computer system or software product

Software specification A detailed description of the
function, inputs, processing, outputs, and special
requirements of a software product. It provides the
information needed to design and implement the pro-
gram.
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For example, if a desktop-publishing program cannot update the screen as rapidly as the
user can type, the program is not as efficient as it needs to be. If the software isn’t effi-
cient enough, it doesn’t meet its requirements, and thus, according to our definition, it
doesn’t work correctly.

Goal 2: Quality Software Can Be Modified
When does software need to be modified? Changes occur in every phase of its existence.

Software is changed in the design phase. When your instructor or employer gives you
a programming assignment, you begin to think of how to solve the problem. The next
time you meet, however, you may be notified of a change in the problem description.

Software is changed in the coding phase. You make changes in your program
because of compilation errors. Sometimes you see a better solution to a part of the
problem after the program has been coded, so you make changes.

Software is changed in the testing phase. If the program crashes or yields wrong
results, you must make corrections.

In an academic environment, the life of the software typically ends when a program
is turned in for grading. When software is developed for actual use, however, many
changes can be required during the maintenance phase. Someone may discover an error
that wasn’t uncovered in testing, someone else may want to include additional func-
tionality, a third party may want to change the input format, and a fourth party may
want to run the program on another system.

The point is that software changes often and in all phases of its life cycle. Knowing
this, software engineers try to develop programs that are easy to modify. Modifications
to programs often are not even made by the original authors but by subsequent mainte-
nance programmers. Someday you may be the one making the modifications to some-
one else’s program.

What makes a program easy to modify? First, it should be readable and understand-
able to humans. Before it can be changed, it must be understood. A well-designed,
clearly written, well-documented program is certainly easier for human readers to
understand. The number of pages of documentation required for “real-world” programs
usually exceeds the number of pages of code. Almost every organization has its own
policy for documentation.

Second, it should be able to withstand small changes easily. The key idea is to par-
tition your programs into manageable pieces that work together to solve the problem,
yet are relatively independent. The design methodologies reviewed later in this chapter
should help you write programs that meet this goal.

Goal 3: Quality Software Is Reusable
It takes time and effort to create quality software. Therefore, it is important to receive as
much value from the software as possible.

One way to save time and effort when building a software solution is to reuse pro-
grams, classes, methods, and so on from previous projects. By using previously designed
and tested code, you arrive at your solution sooner and with less effort. Alternatively,
when you create software to solve a problem, it is sometimes possible to structure that
software so it can help solve future, related problems. By doing this, you are gaining
more value from the software created.
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Creating reusable software does not happen automatically. It requires extra effort
during the specification and design of the software. Reusable software is well docu-
mented and easy to read, so that it is easy to tell if it can be used for a new project. It
usually has a simple interface so that it can easily be plugged into another system. It is
modifiable (Goal 2), in case a small change is needed to adapt it to the new system.

When creating software to fulfill a narrow, specific function, you can sometimes
make the software more generally useable with a minimal amount of extra effort. There-
fore, you increase the chances that you will reuse the software later. For example, if you
are creating a routine that sorts a list of integers into increasing order, you might general-
ize the routine so that it can also sort other types of data. Furthermore, you could design
the routine to accept the desired sort order, increasing or decreasing, as a parameter.

One of the main reasons for the rise in popularity of object-oriented approaches is
that they lend themselves to reuse. Previous reuse approaches were hindered by inap-
propriate units of reuse. If the unit of reuse is too small, then the work saved is not
worth the effort. If the unit of reuse is too large, then it is difficult to combine it with
other system elements. Object-oriented classes, when designed properly, can be very
appropriate units of reuse. Furthermore, object-oriented approaches simplify reuse
through class inheritance, which is described later in this chapter.

Goal 4: Quality Software Is Completed on Time and within Budget
You know what happens in school when you turn your program in late. You probably
have grieved over an otherwise perfect program that received only half credit—or no
credit at all—because you turned it in one day late. “But the network was down for five
hours last night!” you protest.

Although the consequences of tardiness may seem arbitrary in the academic world,
they are significant in the business world. The software for controlling a space launch
must be developed and tested before the launch can take place. A patient database sys-
tem for a new hospital must be installed before the hospital can open. In such cases, the
program doesn’t meet its requirements if it isn’t ready when needed.

“Time is money” may sound trite but failure to meet deadlines is expensive. A com-
pany generally budgets a certain amount of time and money for the development of a
piece of software. If part of a project is only 80% complete when the deadline arrives,
the company must pay extra to finish the work. If the program is part of a contract with
a customer, there may be monetary penalties for missed deadlines. If it is being devel-
oped for commercial sales, the company may be beaten to the market by a competitor
and be forced out of business.

Once you know what your goals are, what can you do to meet them? Where should
you start? There are many tools and techniques that software engineers use. In the next
few sections of this chapter, we focus on a review of techniques to help you understand,
design, and code programs.

Specification: Understanding the Problem

No matter what programming design technique you use, the first steps are the same.
Imagine the following situation. On the third day of class, you are given a 12-page
description of Programming Assignment 1, which must be running perfectly and turned
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in by noon, a week from yesterday. You read the assignment and realize that this pro-
gram is three times larger than any program you have ever written. Now, what is your
first step?

The responses listed here are typical of those given by a class of students in such a
situation:

1. Panic and do nothing 39%

2. Panic and drop the course 30%

3. Sit down at the computer and begin typing 27%

4. Stop and think 4%

Response 1 is a predictable reaction from students who have not learned good pro-
gramming techniques. Students who adopt Response 2 find their education progressing
rather slowly. Response 3 may seem to be a good idea, especially considering the dead-
line looming. Resist the temptation, though, to immediately begin coding; the first step
is to think. Before you can come up with a program solution, you must understand the
problem. Read the assignment, and then read it again. Ask questions of your instructor
to clarify the assignment. Starting early affords you many opportunities to ask ques-
tions; starting the night before the program is due leaves you no opportunity at all.

One problem with coding first and thinking later is that it tends to lock you into the
first solution you think of, which may not be the best approach. We have a natural ten-
dency to believe that once we’ve put something in writing, we have invested too much
in the idea to toss it out and start over.

Writing Detailed Specifications
Many writers experience a moment of terror when faced with a blank piece of paper—
where to begin? As a programmer, however, you should always have a place to start.
Using the assignment description, first write a complete definition of the problem,
including the details of the expected inputs and outputs, the processing and error han-
dling, and all the assumptions about the problem. When you finish this task, you have a
specification—a definition of the problem that tells you what the program should do. In
addition, the process of writing the specification brings to light any holes in the require-
ments. For instance, are embedded blanks in the input significant or can they be
ignored? Do you need to check for errors in the input? On what computer system(s) is
your program to run? If you get the answers to these questions at this stage, you can
design and code your program correctly from the start.

Many software engineers make use of operational scenarios to understand require-
ments. A scenario is a sequence of events for one execution of the program. Here, for
example, is a scenario that a designer might consider when developing software for a
bank’s automated teller machine (ATM).

1. The customer inserts a bankcard.

2. The ATM reads the account number on the card.

3. The ATM requests a PIN (personal identification number) from the customer.

4. The customer enters 5683.

5. The ATM successfully verifies the account number and PIN combination.
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6. The ATM asks the customer to select a transaction type (deposit, show balance,
withdrawal, or quit).

7. The customer selects show balance.

8. The ATM obtains the current account balance ($1,204.35) and displays it.

9. The ATM asks the customer to select a transaction type (deposit, show balance,
withdrawal, or quit).

10. The customer selects quit.

11. The ATM returns the customer’s bankcard.

Scenarios allow us to get a feel for the behavior expected from the system. A single
scenario cannot show all possible behaviors, however, so software engineers typically
prepare many different scenarios to gain a full understanding of the requirements.

Sometimes details that are not explicitly stated in the requirements may be handled
according to the programmer’s preference. In some cases you have only a vague
description of a problem, and it is up to you to define the entire software specification;
these projects are sometimes called open problems. In any case, you should always doc-
ument assumptions that you make about unstated or ambiguous details.

The specification clarifies the problem to be solved. However, it also serves as an
important piece of program documentation. Sometimes it acts as a contract between a
customer and a programmer. There are many ways in which specifications may be
expressed and a number of different sections that may be included. Our recommended
program specification includes the following sections:

• processing requirements
• sample inputs with expected outputs
• assumptions

If special processing is needed for unusual or error conditions, it too should be specified.
Sometimes it is helpful to include a section containing definitions of terms used. It is
also useful to list any testing requirements so that verifying the program is considered
early in the development process. In fact, a test plan can be an important part of a spec-
ification; test plans are discussed later in this chapter in the section on verification of
software correctness.

1.2 Program Design

Remember, the specification of the program tells what the program must do, but not
how it does it. Once you have clarified the goals of the program, you can begin the
design phase of the software life cycle. In this section, we review some ideaware tools
that are used for software design and present a review of object-oriented design con-
structs and methods.
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Tools

Abstraction
The universe is filled with complex systems. We learn about such systems through mod-
els. A model may be mathematical, like equations describing the motion of satellites
around the earth. A physical object such as a model airplane used in wind-tunnel tests
is another form of model. Only the characteristics of the system that are essential to the
problem being studied are modeled; minor or irrelevant details are ignored. For exam-
ple, although the earth is an oblate ellipsoid, globes (models of the earth) are spheres.
The small difference in shape is not important to us in studying the political divisions
and physical landmarks on the earth. Similarly, in-flight movies are not included in the
model airplanes used to study aerodynamics.

An abstraction is a model of a complex
system that includes only the essential details.
Abstractions are the fundamental way that we
manage complexity. Different viewers use dif-
ferent abstractions of a particular system.
Thus, while we see a car as a means of transportation, the automotive engineer may see
it as a large mass with a small contact area between it and the road (Figure 1.1).

What does abstraction have to do with software development? The programs we
write are abstractions. A spreadsheet program used by an accountant models the books
used to record debits and credits. An educational computer game about wildlife models
an ecosystem. Writing software is difficult because both the systems we model and the
processes we use to develop the software are complex. One of our major goals is to con-
vince you to use abstractions to manage the complexity of developing software. In
nearly every chapter, we make use of abstractions to simplify our work.

Abstraction A model of a complex system that
includes only the details essential to the perspective of
the viewer of the system

Figure 1.1 An abstraction includes the essential details relative to the perspective of the viewer

f=ma
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Information Hiding
Many design methods are based on decomposing a problem’s solution into modules. By
“module” we mean a cohesive system subunit that performs a share of the work. In
Java, the primary module mechanism is the class. Decomposing a system into modules
helps us manage complexity. Additionally, the modules can form the basis of assign-
ments for different programming teams working separately on a large system.

Modules act as an abstraction tool. The complexity of their internal structure can be
hidden from the rest of the system. This means that the details involved in implement-

ing a module are isolated from the details of the rest
of the system. Why is hiding the details desirable?
Shouldn’t the programmer know everything? No!
Information hiding helps manage the complexity of a
system since a programmer can concentrate on one
module at a time.

Of course, a program’s modules are interrelated, since they work together to solve
the problem. Modules provide services to each other through a carefully defined inter-
face. The interface in Java is usually provided by the public methods of a class. Program-
mers of one module do not need to know the internal details of the modules it interacts
with, but they do need to know the interfaces. Consider a driving analogy—you can start
a car without knowing how many cylinders are in the engine. You don’t need to know
these lower-level details of the car’s power subsystem in order to start it. You just have to
understand the interface; that is, you only need to know how to turn the key.

Similarly, you don’t have to know the details of other modules as you design a spe-
cific module. Such a requirement would introduce a greater risk of confusion and error
throughout the whole system. For example, imagine what it would be like if every time
we wanted to start our car, we had to think, “The key makes a connection in the igni-
tion switch that, when the transmission safety interlock is in “park,” engages the starter
motor and powers up the electronic ignition system, which adjusts the spark and the
fuel-to-air ratio of the injectors to compensate for. . . ”.

Besides helping us manage the complexity of a large system, abstraction and infor-
mation hiding support our quality goals of modifiability and reusability. In a well-
designed system, most modifications can be localized to just a few modules. Such
changes are much easier to make than changes that permeate the entire system. Addi-
tionally, a good system design results in the creation of generic modules that can be
used in other systems.

To achieve these goals, modules should be good abstractions with strong cohesion;
that is, each module should have a single purpose or identity and the module should
stick together well. A cohesive module can usually be described by a simple sentence. If
you have to use several sentences or one very convoluted sentence to describe your
module, it is probably not cohesive. Each module should also exhibit information hiding
so that changes within it do not result in changes in the modules that use it. This inde-
pendent quality of modules is known as loose coupling. If your module depends on the
internal details of other modules, it is not loosely coupled.

But what should these modules be and how do we identify them? That question is
addressed in the subsection on object-oriented design later in this chapter.

Information hiding The practice of hiding the details
of a module with the goal of controlling access to the
details from the rest of the system
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1Grady Booch, Object Oriented Design with Applications (Redwood City, CA: Benjamin Cummings, 1991).

Stepwise Refinement
In addition to concepts such as abstraction and information hiding, software developers
need practical approaches to conquer complexity. Stepwise refinement is a widely appli-
cable approach. It has many variations such as top-down, bottom-up, functional
decomposition and even “round-trip gestalt design.” Undoubtedly, you have learned a
variation of stepwise refinement in your studies, since it is a standard method for
organizing and writing essays, term papers, and books. For example, to write a book an
author first determines the main theme and the major subthemes. Next, the chapter top-
ics can be identified, followed by section and subsection topics. Outlines can be pro-
duced and further refined for each subsection. At some point the author is ready to add
detail—to actually begin writing sentences.

In general, with stepwise refinement, a problem is approached in stages. Similar
steps are followed during each stage, with the only difference being the level of detail
involved. The completion of each stage brings us closer to solving our problem. Let’s
look at some variations of stepwise refinement:

• Top-down: First the problem is broken into several large parts. Each of these
parts is in turn divided into sections, then the sections are subdivided, and so on.
The important feature is that details are deferred as long as possible as we move
from a general to a specific solution. The outline approach to writing a book is a
form of top-down stepwise refinement.

• Bottom-up: As you might guess, with this approach the details come first. It is
the opposite of the top-down approach. After the detailed components are identi-
fied and designed, they are brought together into increasingly higher-level com-
ponents. This could be used, for example, by the author of a cookbook who first
writes all the recipes and then decides how to organize them into sections and
chapters.

• Functional decomposition: This is a program design approach that encourages
programming in logical action units, called functions. The main module of the
design becomes the main program (also called the main function), and subsec-
tions develop into functions. This hierarchy of tasks forms the basis for func-
tional decomposition, with the main program or function controlling the
processing. Functional decomposition is not used for overall system design in the
object-oriented world. However, it can be used to design the algorithms that
implement object methods. The general function of the method is continually
divided into sub-functions until the level of detail is fine enough to code. Func-
tional decomposition is top-down stepwise refinement with an emphasis on
functionality.

• Round-trip gestalt design: This confusing term is used to define the stepwise
refinement approach to object-oriented design suggested by Grady Booch,1 one
of the leaders of the object movement. First, the tangible items and events in the
problem domain are identified and assigned to candidate classes and objects.
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2The official definition of the UML is maintained by the Object Management Group. Detailed information can
be found at http://www.omg.org/uml/.

Next the external properties and relationships of these classes and objects are
defined. Finally, the internal details are addressed, and unless these are trivial,
the designer must return to the first step for another round of design. This
approach is top-down stepwise refinement with an emphasis on objects and data.

Good designers typically use a combination of the stepwise refinement techniques
described here.

Visual Aids
Abstraction, information hiding, and stepwise refinement are inter-related methods for
controlling complexity during the design of a system. We will now look at some tools
that we can use to help us visualize our designs. Diagrams are used in many profes-
sions. For example, architects use blueprints, investors use market trend graphs, and
truck drivers use maps.

Software engineers use different types of diagrams and tables. Here, we introduce the
Unified Modeling Language (UML) and Class, Responsibility, and Collaboration (CRC)
cards, both of which are used throughout this text.

The UML is used to specify, visualize, construct, and document the components of a
software system. It combines the best practices that have evolved over the past several
decades for modeling systems, and is particularly well-suited to modeling object-ori-
ented designs. UML diagrams are another form of abstraction. They hide implementa-
tion details and allow us to concentrate only on the major design components. UML
includes a large variety of interrelated diagram types, each with its own set of icons and
connectors. It is a very powerful development and modeling tool.

Covering all of UML is beyond the scope of this text.2 We use only one UML dia-
gram type, detailed class diagrams, to describe some of our designs. Examples are
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Figure 1.2 A blank CRC card

Class Name: Superclass: Subclassess:

Responsibilities Collaborations

3Beck and Cunningham: http://c2.com/doc/oopsla89/paper.html.

shown beginning on pages 16. The notation of the class diagrams is introduced as
needed throughout the text.

UML class diagrams are good for modeling our designs after we have developed
them. In contrast, CRC cards help us determine our designs in the first place. CRC cards
were first described by Beck and Cunningham3 in 1989 as a means of allowing object-
oriented programmers to identify a set of cooperating classes to solve a problem.

A programmer uses a physical 4" � 6" index card to represent each class that has
been identified as part of a problem solution. Figure 1.2 shows a blank CRC card. It con-
tains room for the following information about a class:

1. Class name

2. Responsibilities of the class—usually represented by verbs and implemented by pub-
lic methods

3. Collaborations—other classes/objects that are used in fulfilling the responsibilities

Thus the name CRC card. We have added fields to the original design of the card for the
programmer to record superclass and subclass information, and the primary responsibil-
ity of the class.
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4The Java library includes a Date class, java.util.Date. However, the familiar properties of dates
make them a natural example to use in explaining object-oriented concepts. So we ignore the existence of the
library class, as if we must design our own Date class.

CRC cards are a great tool for refining an object-oriented design, especially in a
team programming environment. They provide a physical manifestation of the building
blocks of a system, allowing programmers to walk through user scenarios, identifying
and assigning responsibilities and collaborations. The example in the next subsection
demonstrates the use of CRC cards for design.

Object-Oriented Design

Review
Before describing approaches to object-oriented design, we present a short review of
object-oriented programming. We use Java code to support this review.

The object-oriented paradigm is founded on three inter-related constructs: classes,
objects, and inheritance. The inter-relationship among these constructs is so tight that it
is nearly impossible to describe them separately. Objects are the basic run-time entities
in an object-oriented system. An object is an instantiation of a class; or alternately, a
class defines the structure of its objects. Classes are organized in an “is-a” hierarchy
defined by inheritance. The definition of an object’s behavior often depends on its posi-
tion within this hierarchy. Let’s look more closely at each of these constructs, using
Java code to provide a concrete representation of the concepts. Java reserved words
(when used as such), user-defined identifiers, class and method names, and so on appear
in this font throughout the entire textbook.

Classes A class defines the structure of an object or a set of objects. A class definition
includes variables (data) and methods (actions) that determine the behavior of an object.
The following Java code defines a Date class that can be used to manipulate Date
objects, for example, in a course scheduling system. The Date class can be used to
create Date objects and to learn about the year, month, or day of any particular Date
object.4 Within the comments the word “this” is used to represent the current object.

public class Date
{
protected int year;
protected int month;
protected int day;
protected static final int MINYEAR = 1583;

public Date(int newMonth, int newDay, int newYear)
// Initializes this Date with the parameter values
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{
month = newMonth;
day = newDay;
year = newYear;
}

public int yearIs()
// Returns the year value of this Date
{
return year;

}

public int monthIs()
// Returns the month value of this Date
{
return month;

}

public int dayIs()
// Returns the day value of this Date
{
return day;

}
}

The Date class demonstrates two kinds of variables: instance variables and class
variables. The instance variables of this class are year, month, and day. Their values
vary for each different instance of an object of the class. Instance variables represent the
attributes of an object. MINYEAR is a class variable because it is defined to be static.
It is associated directly with the Date class, instead of with objects of the class. A single
copy of a static variable is maintained for all the objects of the class.

Remember that the final modifier states that a variable is in its final form and
cannot be modified; thus MINYEAR is a constant. By convention, we use only capital let-
ters when naming constants. It is standard procedure to declare constants as static vari-
ables. Since the value of the variable cannot change, there is no need to force every
object of a class to carry around its own version of the value. In addition to holding
shared constants, static variables can also be used to maintain information that is com-
mon to an entire class. For example, a Bank Account class may have a static variable
that holds the number of current accounts.

In the above example, the MINYEAR constant represents the first full year that the
widely used Gregorian calendar was in effect. The idea here is that programmers should
not use the class to represent dates that predate that year. We look at ways to enforce
this rule in Chapter 2.

The methods of the class are Date, yearIs, monthIs, and dayIs. Note that the
Date method has the same name as the class. Recall that this means it is a special type
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of method, called a class constructor. Constructors are
used to create new instances of a class—to instantiate
objects of a class. The other three methods are classi-
fied as observer methods since they “observe” and
return instance variable values. Another name for

observer methods is “accessor” methods.
Once a class such as Date has been defined, a program can create and use objects

of that class. The effect is similar to expanding the language’s set of standard types to
include a Date type—we discuss this idea further in Chapter 2. The UML class diagram
for the Date class is shown in Figure 1.3. Note that the name of the class appears in the
top section of the diagram, the variables appear in the next section, and the methods
appear in the final section. The diagram includes information about the nature of the
variables and method parameters; for example, we can see at a glance that year,
month, and day are all of type int. Note that the variable MINYEAR is underlined,
which indicates that it is a class variable rather than an instance variable. The diagram
also indicates the visibility or protection associated with each part of the class (+ is pub-
lic, # = protected)—we discuss visibility and protection in Chapter 2.

Objects Objects are created from classes at run-time. They can contain and manipulate
data. You should view an object-oriented system as a set of objects, working together
by sending each other messages to solve a problem.

To create an object in Java we use the new operator, along with the class construc-
tor as follows:

Date myDate = new Date(6, 24, 1951);
Date yourDate = new Date(10, 11, 1953);
Date ourDate = new Date(6, 15, 1985);

We say that the variables myDate, yourDate, and ourDate reference “objects of the
class Date” or simply “objects of type Date.” We could also refer to them as “Date
objects.”

Observer A method that returns an observation on
the state of an object.

Figure 1.3 UML class diagram for the Date class

Date

#year:int
#month:int
#day:int
#MINYEAR:int = 1583

+Date(in newMonth:int, in newDay:int, in newYear:int)
+yearIs():int
+monthIs():int
+dayIs():int
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In Figure 1.4 we have extended the standard UML class diagram to show the rela-
tionship between the instantiated Date objects and the Date class.

As you can see, the objects are concrete instantiations of the class. Notice that the
myDate, yourDate, and ourDate variables are not objects, but actually hold references to
the objects. The references are shown by the pointers from the variable boxes to the
objects. In reality, references are memory addresses. The memory address of the instanti-
ated object is stored in the memory location assigned to the variable. If no object has been
instantiated for a particular variable, then its memory location holds a null reference.

Object methods are invoked through the object upon which they are to act. For
example, to assign the value of the year variable of ourDate to the integer variable
theYear, a programmer would code

theYear = ourDate.yearIs();

Inheritance The object-oriented paradigm provides a powerful reuse tool called
inheritance, which allows programmers to create a new class that is a specialization of
an existing class. In this case, the new class is called a subclass of the existing class,
which in turn is the superclass of the new class.

A subclass “inherits” features from its superclass. It adds new features, as needed,
related to its specialization. It can also redefine inherited features as necessary. Contrary
to the intuitive meaning of super and sub, a subclass usually has more variables and
methods than its superclass. Super and sub refer to the relative positions of the classes

Figure 1.4 Extended UML class diagram showing Date objects

Date
#year:int
#month:int
#day:int
#MINYEAR:int = 1583

+Date(in newMonth:int, in newDay:int, in newYear:int)
+yearIs():int
+monthIs():int
+dayIs():int

ourDate:Date

year:int = 1985
month:int = 6
day:int = 15

ourDate

yourDate:Date

year:int = 1953
month:int = 10
day:int = 11

yourDate

myDate:Date

year:int = 1951
month:int = 6
day:int = 24

myDate
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in a hierarchy. A subclass is below its superclass, and a superclass is above its sub-
classes.

Suppose we already have a Date class as defined above, and we are creating a new
application to manipulate Date objects. Suppose also that in the new application we are
often required to “increment” a Date variable—to change a Date variable so that it rep-
resents the next day. For example, if the Date object represents 7/31/2001, it would
represent 8/1/2001 after being incremented. The algorithm for incrementing the date is
not trivial, especially when you consider leap-year rules. But in addition to developing
the algorithm, we must address another question: where to implement the algorithm.
There are several options:

• Implement the algorithm within the new application. The code would need to
obtain the month, day, and year from the Date object using the observer meth-
ods, calculate the new month, day, and year, instantiate a new Date object to
hold the updated month, day, and year, and assign it to the same variable. This
might appear to be a good approach, since it is the new application that requires
the new functionality. However, if future applications also need this functional-
ity, their programmers have to reimplement the solution for themselves. This
approach does not support our goal of reusability.

• Add a new method, called increment, to the Date class. The code would use
the incrementing algorithm to update the month, year, and day values of the
current object. This approach is better than the previous approach because it
allows any future programs that use the Date class to use the new functionality.
However, this also means that every application that uses the Date class can use
this method. In some cases, a programmer may have chosen to use the Date
class because of its built-in protection against changes to the object variables.
Such objects are said to be immutable. Adding an increment method to the
Date class undermines this protection, since it allows the variables to be
changed.

• Use inheritance. Create a new class, called IncDate, that inherits all the features
of the current Date class, but that also provides the increment method. This
approach resolves the drawbacks of the previous two approaches. We now look
at how to implement this third approach.

We often call the inheritance relationship an is a relationship. In this case we would say
that an object of the class IncDate is also a Date object, since it can do anything that
a Date object can do—and more. This idea can be clarified by remembering that inheri-
tance typically means specialization. IncDate is a special case of Date, but not the
other way around.

To create IncDate in Java we would code:

public class IncDate extends Date
{
public IncDate(int newMonth, int newDay, int newYear)
// Initializes this IncDate with the parameter values
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{
super(newMonth, newDay, newYear);
}

public void increment()
// Increments this IncDate to represent the next day, i.e.,
// this = (day after this)
// For example if this = 6/30/2003 then this becomes 7/1/2003
{
// Increment algorithm goes here

}
}

Note: sometimes in code listings we emphasize the sections of code most pertinent to
the current discussion by underlining them.

Inheritance is indicated by the keyword extends, which shows that IncDate
inherits from Date. It is not possible in Java to inherit constructors, so IncDate must
supply its own. In this case, the IncDate constructor simply takes the month, day, and
year parameters and passes them to the constructor of its superclass; it passes them to
the Date class constructor using the super reserved word.

The other part of the IncDate class is the new increment method, which is classi-
fied as a transformer method, because it
changes the internal state of the object.
increment changes the object’s day and
possibly the month and year values. The
increment transformer method is invoked
through the object that it is to transform. For example, the statement

ourDate.increment();

transforms the ourDate object.
Note that we have left out the details of the increment method since they are not

crucial to our current discussion.
A program with access to both of the date classes can now declare and use both

Date and IncDate objects. Consider the following program segment. (Assume output
is one of Java’s PrintWriter file objects.)

Date myDate = new Date(6, 24, 1951);
IncDate aDate = new IncDate(1, 11, 2001);

output.println("mydate day is:   " + myDate.dayIs());
output.println("aDate day is:    " + aDate.dayIs());

aDate.increment();
output.println("the day after is: " + aDate.dayIs());

Transformer A method that changes the internal
state of an object
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This program segment instantiates and initializes myDate and aDate, outputs the values
of their days, increments aDate and finally outputs the new day value of aDate. You
might ask, “How does the system resolve the use of the dayIs method by an IncDate
object when dayIs is defined in the Date class?” Understanding how inheritance is sup-
ported by Java provides the answer to this question. The extended UML diagram in Fig-
ure 1.5 shows the inheritance relationships and captures the state of the system after the
aDate object has been incremented. This figure helps us investigate the situation.

The compiler has available to it all the declaration information captured in the
extended UML diagram. Consider the dayIs method call in the statement:

output.println("aDate day is:    " + aDate.dayIs());

To resolve this method call, the compiler follows the reference from the aDate variable
to the IncDate class. Since it does not find a definition for a dayIs method in the
IncDate class, it follows the inheritance link to the superclass Date, where it finds, and
links to, the dayIs method. In this case, the dayIs method returns an int value that

Figure 1.5 Extended UML class diagram showing inheritance

Date
#year:int
#month:int
#day:int
#MINYEAR:int = 1583

+Date(in newMonth:int, in newDay:int, in newYear:int)
+yearIs():int
+monthIs():int
+dayIs():int

+IncDate(in newMonth:int, in newDay:int, in newYear:int)
+increment():void

Object

aDate:IncDate

year:int = 2001
month:int = 1
day:int = 12

aDate

myDate:Date

year:int = 1951
month:int = 6
day:int = 24

myDate

+Object():Object
#clone():Object
+equals(in arg:Object):boolean
+toString():String
+etc....()

IncDate
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represents the day value of the aDate object. During execution, the system changes the
int value to a String, concatenates it to the string “aDate day is:   ” and prints it to
output.

Note that because of the way method calls are resolved, by searching up the inheri-
tance tree, only objects of the class IncDate can use the increment method. If you tried
to use the increment method on an object of the class Date, such as the myDate object,
there would be no definition available in either the Date class or any of the classes above
Date in the inheritance tree. The compiler would report a syntax error in this situation.

Notice the Object class in the diagram. Where did it come from? In Java, any class
that does not explicitly extend another class implicitly extends the predefined Object
class. Since Date does not explicitly extend any other class, it inherits directly from
Object. The Date class is a subclass of Object. The solid arrows with the hollow
arrowheads indicate inheritance in a UML diagram.

All Java classes can trace their roots back to the Object class, which is so general
that it does almost nothing; objects of the class Object are nearly useless by them-
selves. But Object does define several basic methods: comparison for equality
(equals), conversion to a string (toString), and so on. Therefore, for example, any
object in any Java program supports the method toString, since it is inherited from
the Object class.

Just as Java automatically changes an integer value to a string in a statement like

output.println("aDate day is:    " + aDate.dayIs());

it automatically changes an object to a string in a statement like

output.println("tomorrow: " + aDate);

If you use an object as a string anywhere in a Java program, then the Java compiler
automatically looks for a toString method for that object. In this case, the toString
method is not found in the IncDate class, nor is it found in its superclass, the Date
class. However, the compiler continues looking up the inheritance hierarchy, and finds
the toString method in the Object class. Since all classes trace their roots back to
Object, the compiler is always guaranteed to find a toString method eventually.

But, wait a minute. What does it mean to “change an object to a string”? Well, that
depends on the definition of the toString method that is associated with the object.
The toString method of the Object class returns a string representing some of the
internal system implementation details about the object. This information is somewhat
cryptic and generally not useful to us. This is an example of where it is useful to rede-
fine an inherited method. We generally override the default toString method when
creating our own classes, to return a more relevant string. For example, the following
toString method could be added to the definition of the Date class:

public String toString()
{
return(month + "/" + day + "/" + year);

}
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Figure 1.6 Output from program segment

Now, when the compiler needs a toString method for a Date object (or an
IncDate object), it finds the method in the Date class and returns a more useful string.
Figure 1.6 shows the output from the following program segment.

Date myDate = new Date(6, 24, 1951);
IncDate currDate = new IncDate(1, 11, 2001);

output.println("mydate:   " + myDate);
output.println("today:    " + currDate);

currDate.increment();
output.println("tomorrow: " + currDate);

The results on the left show the output generated if the toString method of the
Object class is used by default; and on the right if the toString method above is
added to the Date class:

One last note: Remember that subclasses are assignment compatible with the superclasses
above them in the inheritance hierarchy. Therefore, in our example, the statement

myDate = currDate;

would be legal, but the statement

currDate = myDate;

would cause an “incompatible type” syntax error.

Design
The object-oriented design (OOD) methodology originated with the development of pro-
grams to simulate physical objects and processes in the real world. For example, to sim-
ulate an electronic circuit, you could develop a class for simulating each kind of
component in the circuit and then “wire-up” the simulation by having the modules pass
information among themselves in the same pattern that wires connect the electronic
components.

Object class toString Used Date class toString Used

mydate:    Date@256a7c
today:     IncDate@720eeb
tomorrow:  IncDate@720eeb

mydate:    6/24/1951
today:     1/11/2001
tomorrow:  1/12/2001
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Identifying Classes The key task in designing object-oriented systems is identification
of classes. Successful class identification and organization draws upon many of the
tools that we discussed earlier in this chapter. Top-down stepwise refinement
encourages us to start by identifying the major classes and gradually refine our system
definition to identify all the classes we need. We should use abstraction and practice
information hiding by keeping the interfaces to our classes narrow and hiding
important design decisions and requirements likely to change within our classes. CRC
cards can help us identify the responsibilities and collaborations of our classes, and
expose holes in our design. UML diagrams let us record our designs in a form that is
easy to understand.

When possible, we should organize our classes in an inheritance hierarchy, to bene-
fit from reuse. Another form of reuse is to find prewritten classes, possibly in the stan-
dard Java library, that can be used in a solution.

There is no foolproof technique for identifying classes; we just have to start brain-
storming ideas and see where they lead us. A large program is typically written by a
team of programmers, so the brainstorming process often occurs in a team setting. Team
members identify whatever objects they see in the problem and then propose classes to
represent them. The proposed classes are all written on a board. None of the ideas for
classes are discussed or rejected in this first stage.

After the brainstorming, the team goes through a process of filtering the classes.
First they eliminate duplicates. Then they discuss whether each class really represents an
object in the problem. (It’s easy to get carried away and include classes, such as “the
user,” that are beyond the scope of the problem.) The team then looks for classes that
seem to be related. Perhaps they aren’t duplicates, but they have much in common, and
so they are grouped together on the board. At the same time, the discussion may reveal
some classes that were overlooked.

Usually it is not difficult to identify an initial set of classes. In most large problems
we naturally find entities that we wish to represent as classes. For example, in designing
a program that manages a checking account, we might identify checks, deposits, an
account balance, and account statements as entities. These entities interact with each
other through messages. For example, a check could send a message to the balance
entity that tells it to deduct an amount from itself. We didn’t list the amount in our ini-
tial set of objects, but it may be another entity that we need to represent.

Our example illustrates a common approach to OOD. We begin by identifying a set
of objects that we think are important in a problem. Then we consider some scenarios in
which the objects interact to accomplish a task. In the process of envisioning how a sce-
nario plays out, we identify additional objects and messages. We keep trying new sce-
narios until we find that our set of objects and messages is sufficient to accomplish any
task that the problem requires. CRC cards help us enact such scenarios.

A standard technique for identifying classes and their methods is to look for objects
and operations in the problem statement. Objects are usually nouns and operations are
usually verbs. For example, suppose the problem statement includes the sentence: “The
student grades must be sorted from best to worst before being output.” Potential objects
are “student” and “grade,” and potential operations are “sort” and “output.” We propose
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that on a printed copy of your requirements you circle the nouns and underline the verbs.
The set of nouns are your candidate objects, and the verbs are your candidate methods. Of
course, you have to filter this list, but at least it provides a good starting point for design.

Recall that in our discussion of abstraction and information hiding we stated that
program modules should display strong cohesion. A good way to validate the cohesive-
ness of an identified class is to try to describe its main responsibility in a single coher-
ent phrase. If you cannot do this, then you should reconsider your design. Some
examples of cohesive responsibilities are:

• maintain a list of integers
• handle file interaction
• provide a date type

Some examples of “poor” responsibilities are:

• maintain a list of integers and provide special integer output routines
• handle file interaction and draw graphs on the screen

In summation, we have discussed the following approaches to identifying classes:

1. Start with the major classes and refine the design.

2. Hide important design decisions and requirements likely to change within a class.

3. Brainstorm with a group of programmers.

4. Make sure each class has one main responsibility.

5. Use CRC cards to organize classes and identify holes in the design.

6. Walk through user scenarios.

7. Look for nouns and verbs in the problem description.

Design Choices When working on design, keep in mind that there are many different
correct solutions to most problems. The techniques we use may seem imprecise,
especially in contrast with the precision that is demanded by the computer. But the
computer merely demands that we express (code) a particular solution precisely. The
process of deciding which particular solution to use is far less precise. It is our human
ability to make choices without having complete information that enables us to solve
problems. Different choices naturally lead to different solutions to a problem.

For example, in developing a simulation of an air traffic control system, we might
decide that airplanes and control towers are objects that communicate with each other.
Or we might decide that pilots and controllers are the objects that communicate. This
choice affects how we subsequently view the problem, and the responsibilities that we
assign to the objects. Either choice can lead to a working application. We may simply
prefer the one with which we are most familiar.

Some of our choices lead to designs that are more or less efficient than others. For
example, keeping a list of names in alphabetical rather than random order makes it pos-
sible for the computer to find a particular name much faster. However, choosing to
leave the list randomly ordered still produces a valid (but slower) solution, and may
even be the best solution if you do not need to search the list very often.
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Other choices affect the amount of work that is required to develop the remainder
of a problem solution. In creating a program for choreographing ballet movements, we
might begin by recognizing a dancer as the important object and then create a class for
each dancer. But in doing so, we discover that all of the dancers have certain common
responsibilities. Rather than repeat the definition of those responsibilities for each class
of dancer, we can change our initial choice and define a class for a generic dancer that
includes all the common responsibilities and then develop subclasses that add responsi-
bilities specific to each individual.

The point is, don’t hesitate to begin solving a problem because you are waiting for
some flash of genius that leads you to the perfect solution. There is no such thing. It is
better to jump in and try something, step back, and see if you like the result, and then
either proceed or make changes. In the example below we show how the CRC card tech-
nique helps you explore different design choices and keep track of them.

Design Example
In this subsection we present a sample object-oriented design process that might be fol-
lowed if we were on a small team of software engineers. Our purposes are to show the
classes that might be identified for an object-oriented system, and to demonstrate the
utility of CRC cards. We assume that our team of engineers has been given the task of
automating an address book. A user should be able to enter and retrieve information
from the address book. We have been given a sample physical address book on which to
base their product.

First our team studies the problem, inspects the physical address book, and brain-
storms that the application has the following potential objects:

Cover
Pages
Address
Name
Home phone number
Work phone number
E-mail
Fax number
Pager number
Cell-phone number
Birthday
Company name
Work Address
Calendar
Time-zone map
Owner information
Emergency number
User
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Then we enter the filtering stage. Our application doesn’t need to represent the
physical parts of an address book, so we can delete Cover and Pages. However, we
need something analogous to a page that holds all the same sort of information. Let’s
call it an Entry. The different telephone numbers can all be represented by the same
kind of object. So we can combine Home, Work, Fax, Pager, and Cell-phone into a
Phone number class. In consultation with the customer, we find that the electronic
address book doesn’t need the special pages that are often found in a printed address
book, so we delete Calendar, Time-zone map, Owner information, and Emergency
number.

Further thought reveals that the User isn’t part of the application, although this
does point to the need for a User interface that we did not originally list. A Work
Address is a specific kind of address that has additional information, so we can make it
a subclass of Address. Company names are just Strings, so there is no need to distin-
guish them, but Names have a first, last, and middle part. Our filtered list of classes now
looks like this.

For each of these classes we create a CRC card. In the case of Work Address, we list
Address as its Superclass, and on the Address card we list Work Address in its Sub-
classes space.

In doing coursework, you may be asked to work individually rather than in a col-
laborative team. You can still do your own brainstorming and filtering. However, we
recommend that you take a break after the brainstorming and do the filtering once you
have let your initial ideas rest for a while. An idea that seems brilliant in the middle of
brainstorming may lose some of its attraction after a day or even a few hours.

Initial Responsibilities Once you (or your team) have identified the classes and created
CRC cards for them, go over each card and write down its primary responsibility and an
initial list of resultant responsibilities that are obvious. For example, a Name class
manages a “Name” and has a responsibility to know its first name, its middle name, and
its last name. We would list these three responsibilities in the left column of its card, as
shown in Figure 1.7. In an implementation, they become methods that return the
corresponding part of the name. For many classes, the initial responsibilities include
knowing some value or set of values.

Entry
Name
Address
Work address
Phone number
E-mail
Birthday
User interface
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A First Scenario Walk-Through To further expand the responsibilities of the classes
and see how they collaborate, we must pretend to carry out various processing
scenarios by hand. This kind of role-playing is known as a walk-through. We ask a
question such as, “What happens when the user wants to find an address that’s in the
book?” Then we answer the question by telling how each object is involved in
accomplishing this task. In a team setting, the cards are distributed among the team
members. When an object of a class is doing something, its card is held in the air to
visually signify that it is active.

With this particular question, we might pick up the User Interface card and say, “I
have a responsibility to get the person’s name from the user.” That responsibility gets
written down on the card. Once the name is input, the User Interface must collaborate
with other objects to look up the name and get the corresponding address. What object
should it collaborate with? There is no identified object class that represents the entire
set of address book entries.

We’ve found a hole in our list of classes! The Entry objects should be organized into
a Book object. We quickly write out a Book CRC card. The User Interface card-holder
then says, “I’m going to collaborate with the Book class to get the address.” The collab-
oration is written in the right column of the card, and it remains in the air. The owner
of the Book card holds it up, saying, “I have a responsibility to find an address in the
list of Entry objects that I keep, given a name.” That responsibility gets written on the

Figure 1.7 A CRC card with initial responsibilities

Class Name: Superclass: Subclassess:

Responsibilities

Primary Responsibility:  

Collaborations

Manage a Name

Know first

Know middle

Know last

Name
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Figure 1.8 A scenario walk-through in progress

Book Card. Then the owner says, “I have to collaborate with each Entry to compare its
name with the name sent to me by the User Interface.” Figure 1.8 shows a team in the
middle of a walk-through.

Now comes a decision. What are the responsibilities of Book and Entry for carrying
out the comparison? Should Book get the name from Entry and do the comparison, or
should it send the name to Entry and receive an answer that indicates whether they are
equal? The team decides that Book should do the comparing, so the Entry card is held in
the air, and its owner says, “I have a responsibility to provide the full name as a string.
To do that I must collaborate with Name.” The responsibility and collaboration are
recorded and the Name card is raised.

Name says, “I have the responsibilities to know my first, middle, and last names.
These are already on my card, so I’m done.” And the Name card is lowered. Entry says,
“I concatenate the three names into a string with spaces between them, and return the
result to Book, so I’m done.” The Entry card is lowered.

Book says, “I keep collaborating with Entry until I find the matching name. Then I
must collaborate with Entry again to get the address.” This collaboration is placed on its
card and the Entry card is held up again, saying “I have a responsibility to provide an
address. I’m not going to collaborate with Address, but am just going to return the
object to Book.” The Entry card has this responsibility added and then goes back on the
table. Its CRC card is shown in Figure 1.9.

The scenario continues until the task of finding an address in the book and report-
ing it to the user is completed. Reading about the scenario makes it seem longer and
more complex than it really is. Once you get used to role playing, the scenarios move
quickly and the walk-through becomes more like a game. However, to keep things mov-
ing, it is important to avoid becoming bogged-down with implementation details. Book
should not be concerned with how the Entry objects are organized on the list. Address
doesn’t need to think about whether the zip code is stored as an integer or a String.
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Figure 1.9 The CRC card for Entry

Class Name: Superclass: Subclassess:

Responsibilities

Primary Responsibility:

Collaborations

Manage a ’page‘ of information

Provide name as a string Get first from Name

Get middle from Name

Get last from Name

NoneProvide Address

Entry

Only explore each responsibility far enough to decide whether a further collaboration is
needed, or if it can be solved with the available information.

The next step is to brainstorm some additional questions that produce new scenar-
ios. For example, here is list of some further scenarios.

We walk through each of the scenarios, adding responsibilities and collaborations
to the CRC cards as necessary. After several scenarios have been tried, the number of

What happens when the user
     • asks for a name that‘s not in the book?
     • wants to add an entry to the book?
     • deletes an entry?
     • tries to delete an entry that isn‘t in the book?
     • wants a phone number?
     • wants a business address?
     • wants a list of upcoming birthdays?
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additions decreases. When one or more scenarios take place without adding to any of
the cards, then we brainstorm further to see if we can come up with new scenarios
that may not be covered. When all of the scenarios that we can envision seem to be
doable with the existing classes, responsibilities, and collaborations, then the design
is done.

The next step is to implement the responsibilities for each class. The implementa-
tion may reveal details of a collaboration that weren’t obvious in the walk-through. But
knowing the collaborating classes makes it easy to change their corresponding responsi-
bilities. The implementation phase should also include a search of available class
libraries to see if any existing classes can be used. For example, the java.util.Cal-
endar class represents a date that can be used directly to implement Birthday.

Enhancing CRC Cards with Additional Information The CRC card design is informal.
There are many ways that the card can be enhanced. For example, when a responsibility
has obvious steps, we can write them below its name. Each step may have specific
collaborations, and we write these beside the steps in the right column. We often
recognize that certain data must be sent as part of the message that activates a
responsibility, and we can record this in parentheses beside the calling collaboration and
the responding responsibility. Figure 1.10 shows a CRC card that includes design
information in addition to the basic responsibilities and collaborations.

To summarize the CRC Card process, we brainstorm the objects in a problem and
abstract them into classes. Then we filter the list of classes to eliminate duplicates. For
each class we create a CRC card and list any obvious responsibilities that it should sup-
port. We then walk through a common scenario, recording responsibilities and collabo-
rations as they are discovered. After that we walk through additional scenarios, moving
from common cases to special and exceptional cases. When it appears that we have all
of the scenarios covered, we brainstorm additional scenarios that may need more
responsibilities and collaborations. When our ideas for scenarios are exhausted, and all
the scenarios are covered by the existing CRC cards, the design is done.

1.3 Verification of Software Correctness

At the beginning of this chapter, we discussed some characteristics of good programs.
The first of these was that a good program works—it accomplishes its intended function.
How do you know when your program meets that goal? The simple answer is, test it.

Let’s look at testing as it relates to the rest of the
software development process. As programmers, we
first make sure that we understand the requirements,
and then we come up with a general solution. Next we
design the solution in terms of a system of classes,

using good design principles, and finally we implement the solution, using well-struc-
tured code, with classes, comments, and so on.

Testing The process of executing a program with
data sets designed to discover errors
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Figure 1.10 A CRC card that is enhanced with additional information

Class Name: Superclass: Subclassess:

Responsibilities

Primary Responsibility:

Collaborations

Manage a ’page‘ of information

Provide name as a string

Get first name

Get middle name

Get last name

Change Name (name string)

Break name into first, middle, last

Update first name

Update middle name

Update last name

Name

Name

Name

None

String

Name, changeFirst(first)

Name, changeMiddle(middle)

Name, changeLast(last)

Provide Address

Entry

Once we have the program coded, we compile it repeatedly until the syntax errors
are gone. Then we run the program, using
carefully selected test data. If the program
doesn’t work, we say that it has a “bug” in it.
We try to pinpoint the error and fix it, a
process called debugging.

Notice the distinction between testing and debugging. Testing is running the pro-
gram with data sets designed to discover errors; debugging is removing errors once they
are discovered.

Debugging The process of removing known errors
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When the debugging is completed, the software is put into use. Before final deliv-
ery, software is sometimes installed on one or more customer sites so that it can be
tested in a real environment with real data. After passing this acceptance test phase, the
software can be installed at all of the customer sites. Is the verification process now fin-
ished? Hardly! More than half of the total life-cycle costs and effort generally occur
after the program becomes operational, in the maintenance phase. Some changes are
made to correct errors in the original program; other changes are introduced to add new
capabilities to the software system. In either case, testing must be done after any pro-
gram modification. This is called regression testing.

Testing is useful for revealing the presence of bugs in a program, but it doesn’t
prove their absence. We can only say for sure that the program worked correctly for the
cases we tested. This approach seems somewhat haphazard. How do we know which
tests or how many of them to run? Debugging a whole program at once isn’t easy. And

fixing the errors found during such testing can some-
times be a messy task. Too bad we couldn’t have
detected the errors earlier—while we were designing
the program, for instance. They would have been
much easier to fix then.

We know how program design can be improved by
using a good design methodology. Is there something
similar that we can do to improve our program verifica-
tion activities? Yes, there is. Program verification activ-
ities don’t need to start when the program is completely
coded; they can be incorporated into the whole soft-
ware development process, from the requirements phase
on. Program verification is more than just testing.

In addition to program verification—fulfilling the
requirement specifications—there is another important task for the software engineer:
making sure the specified requirements actually solve the underlying problem. There
have been countless times when a programmer finishes a large project and delivers the
verified software, only to be told, “Well, that’s what I asked for, but it’s not what I need.”

The process of determining that software accomplishes its intended task is called
program validation. Program verification asks, “Are we doing the job right?” Program
validation asks, “Are we doing the right job?”5

Can we really “debug” a program before it has ever been run—or even before it has
been written? In this section, we review a number of topics related to satisfying the cri-
terion “quality software works.” The topics include:

• designing for correctness
• performing code and design walk-throughs and inspections
• using debugging methods
• choosing test goals and data
• writing test plans
• structured integration testing

Acceptance tests The process of testing the system
in its real environment with real data

Regression testing Re-execution of program tests
after modifications have been made in order to ensure
that the program still works correctly

Program verification The process of determining the
degree to which a software product fulfills its specifi-
cations

Program validation The process of determining the
degree to which software fulfills its intended purpose
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Origin of Bugs

When Sherlock Holmes goes off to solve a case, he doesn’t start from scratch every
time; he knows from experience all kinds of things that help him find solutions. Sup-
pose Holmes finds a victim in a muddy field. He immediately looks for footprints in the
mud, for he can tell from a footprint what kind of shoe made it. The first print he finds
matches the shoes of the victim, so he keeps looking. Now he finds another, and from
his vast knowledge of footprints, he can tell that it was made by a certain type of boot.
He deduces that such a boot would be worn by a particular type of laborer, and from
the size and depth of the print, he guesses the suspect’s height and weight. Now, know-
ing something about the habits of laborers in this town, he guesses that at 6:30 P.M. the
suspect might be found in Clancy’s Pub.

In software verification we are often expected to play detective. Given certain clues,
we have to find the bugs in programs. If we know what kinds of situations produce pro-
gram errors, we are more likely to be able to detect and correct problems. We may even
be able to step in and prevent many errors entirely, just as Sherlock Holmes sometimes
intervenes in time to prevent a crime that is about to take place.

Let’s look at some types of software errors that show up at various points in pro-
gram development and testing and see how they might be avoided.

Specifications and Design Errors
What would happen if, shortly before you were supposed to turn in a major class
assignment, you discovered that some details in the professor’s program description
were incorrect? To make matters worse, you also found out that the corrections were
discussed at the beginning of class on the day you got there late, and somehow you
never knew about the problem until your tests of the class data set came up with the
wrong answers. What do you do now?

Writing a program to the wrong specifications is probably the worst kind of soft-
ware error. How bad can it be? Most studies indicate that it costs 100 times as much to
correct an error discovered after software delivery then it does if it is discovered early in
the life cycle. Figure 1.11 shows how fast the costs rise in subsequent phases of software
development. The vertical axis represents the relative cost of fixing an error; this cost
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might be in units of hours, or hundreds of dollars, or “programmer months” (the amount
of work one programmer can do in a month). The horizontal axis represents the stages
in the development of a software product. As you can see, an error that would have
taken one unit to fix when you first started designing might take a hundred units to
correct when the product is actually in operation!

Many specification errors can be prevented by good communication between the
programmers (you) and the party who originated the problem (the professor, manager,
or customer). In general, it pays to ask questions when you don’t understand something
in the program specifications. And the earlier you ask, the better.

A number of questions should come to mind as you first read a programming
assignment. What error checking is necessary? What algorithm or data structure is sup-
posed to be used in the solution? What assumptions are reasonable? If you obtain
answers to these questions when you first begin working on an assignment, you can

Figure 1.11 Cost of a specification error based on when it is discovered

Preliminary
design

Detailed
design

Code/
Debug

Integrate Validate Operation

Phase in which error is detected

100

50

20

10

5

2

1

Re
la

tiv
e 

co
st

 t
o 

co
rr

ec
t 

er
ro

r

Sources
• IBM
• TRW
• GTE
• Bell Labs



1.3 Verification of Software Correctness | 35

incorporate them into your design and implementation of the program. Later in the pro-
gram’s development, unexpected answers to these questions can cost you time and
effort. In short, in order to write a program that is correct, you must understand pre-
cisely what it is that your program is supposed to do.

Compile-Time Errors
In the process of learning your first programming language, you probably made a num-
ber of syntax errors. These resulted in error messages (for example, “TYPE MISMATCH,”
“ILLEGAL ASSIGNMENT,” “SEMICOLON EXPECTED,” and so on) when you tried to
compile the program. Now that you are more familiar with the programming language,
you can save your debugging skills for tracking down important logical errors. Try to
get the syntax right the first time. Having your program compile cleanly on the first
attempt is a reasonable goal. A syntax error wastes computing time and money, as well
as programmer time, and it is preventable.

As you progress in your college career or move into a professional computing job,
learning a new programming language is often the easiest part of a new software
assignment. This does not mean, however, that the language is the least important part.
In this book we discuss data structures and algorithms that we believe are language
independent. This means that they can be implemented in almost any general-purpose
programming language. The success of the implementation, however, depends on a
thorough understanding of the features of the programming language. What is consid-
ered acceptable programming practice in one language may be inadequate in another,
and similar syntactic constructs may be just different enough to cause serious trouble.

It is, therefore, worthwhile to develop an expert knowledge of both the control and
data constructs and the syntax of the language in which you are programming. In gen-
eral, if you have a good knowledge of your programming language—and are careful—
you can avoid syntax errors. The ones you might miss are relatively easy to locate and
correct. Once you have a “clean” compilation, you can execute your program.

Run-Time Errors
Errors that occur during the execution of a program are usually harder to detect than
syntax errors. Some run-time errors stop execution of the program. When this happens,
we say that the program “crashed” or “abnormally terminated.”

Run-time errors often occur when the programmer makes too many assumptions.
For instance,

result = dividend / divisor;

is a legitimate assignment statement, if we can assume that divisor is never zero. If
divisor is zero, however, a run-time error results.

Run-time errors also occur because of unanticipated user errors. If a user enters the
wrong data type in response to a prompt, or supplies an invalid filename to a routine,
most simple programs report a runtime error and halt; in other words, they crash.
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Well-written programs should not crash. They should
catch such errors and stay in control until the user is
ready to quit.

The ability of a program to recover when an error
occurs is called robustness. If a commercial program
is not robust, people do not buy it. Who wants a word

processor that crashes if the user says “SAVE” when there is no disk in the drive? We
want the program to tell us, “Put your disk in the drive, and press Enter.” For some
types of software, robustness is a critical requirement. An airplane’s automatic pilot sys-
tem or an intensive care unit’s patient-monitoring program just cannot afford to crash.
In such situations, a defensive posture produces good results.

In general, you should actively check for error-creating conditions rather than let
them abort your program. For instance, it is generally unwise to make too many
assumptions about the correctness of input, especially interactive input from a key-
board. A better approach is to check explicitly for the correct type and bounds of such
input. The programmer can then decide how an error should be handled (request new
input, print a message, or go on to the next data) rather than leave the decision to the
system. Even the decision to quit should be made by a program that is in control of its
own execution. If worse comes to worst, let your program die gracefully.

This does not mean that everything that the program inputs must be checked for
errors. Sometimes inputs are known to be correct—for instance, input from a file that
has been verified. The decision to include error checking must be based upon the
requirements of the program.

Some run-time errors do not stop execution but produce the wrong results. You
may have incorrectly implemented an algorithm or initialized a variable to an incorrect
value. You may have inadvertently swapped two parameters of the same type on a
method call or used a less-than sign instead of a greater-than sign. These logical errors
are often the hardest to prevent and locate. Later we talk about debugging techniques to
help pinpoint run-time errors. We also discuss structured testing methods that isolate
the part of the program being tested. But knowing that the earlier we find an error the
easier it is to fix, we turn now to ways of catching run-time errors before run time.

Designing for Correctness

It would be nice if there were some tool that would locate the errors in our design or
code without our even having to run the program. That sounds unlikely, but consider an
analogy from geometry. We wouldn’t try to prove the Pythagorean theorem by proving
that it worked on every triangle; that would only demonstrate that the theorem works
for every triangle we tried. We prove theorems in geometry mathematically. Why can’t
we do the same for computer programs?

The verification of program correctness, independent of data testing, is an impor-
tant area of theoretical computer science research. The goal of this research is to estab-
lish a method for proving programs that is analogous to the method for proving
theorems in geometry. The necessary techniques exist, but the proofs are often more
complicated than the programs themselves. Therefore, a major focus of verification

Robustness The ability of a program to recover fol-
lowing an error; the ability of a program to continue to
operate within its environment
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research is to attempt to build automated program provers—verifiable programs that
verify other programs. In the meantime, the formal verification techniques can be car-
ried out by hand.6

Preconditions and Postconditions
Suppose we want to design a module (a logical chunk of the program) to perform a spe-
cific operation. To ensure that this module fits into the program as a whole, we must
clarify what happens at its boundaries—what must be true when we enter the module
and what is true when we exit.

To make the task more concrete, picture the design module as it is usually coded, as
a method that is exported from a class. To be able to invoke the method, we must know
its exact interface: the name and the parameter list, which indicates its inputs and out-
puts. But this isn’t enough: We must also
know any assumptions that must be true for
the operation to function correctly.

We call the assumptions that must be
true when invoking the method
preconditions. The preconditions are like a
product disclaimer:

For example, the increment method of the IncDate class, described in the previous
section, might have preconditions related to legal date values and the start of the Gre-
gorian calendar. The preconditions should be listed with the method declaration:

public void increment()
// Preconditions: Values of day, month, and year represent a valid date
//                The represented date is not before minYear

Previously we discussed the quality of program robustness, the ability of a program
to catch and recover from errors. While creating robust programs is an important goal,

WARNING
If you try to execute this operation

when the preconditions are not true, 
the results are not guaranteed.

Preconditions Assumptions that must be true on
entry into an operation or method for the postcondi-
tions to be guaranteed
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it is sometimes necessary to decide at what level errors are caught and handled. Using
preconditions for a method is similar to a contract between the programmer who creates
the method and the programmers who use the method. The contract says that the pro-
grammer who creates the method is not going to try to catch the error conditions
described by the preconditions, but as long as the preconditions are met, the method
works correctly. It is up to the programmers who use the method to ensure that the
method is never called without meeting the preconditions. In other words, the robust-
ness of the system in terms of the method’s preconditions is the responsibility of the
programmers who use the class, and not the programmer who creates the class. This

approach is sometimes called “programming by con-
tract.” It can save work because trapping the same
error conditions at multiple levels of a hierarchical
system is redundant and unnecessary.

We must also know what conditions are true
when the operation is complete. The postconditions
are statements that describe the results of the opera-

tion. The postconditions do not tell us how these results are accomplished; they merely
tell us what the results should be.

Let’s consider what the preconditions and postconditions might be for another sim-
ple operation: a method that deletes the last element from a list. (We are using “list” in
an intuitive sense; we formally define it in Chapter 3.) Assuming the method is defined
within a class with the responsibility of maintaining a list, the specification for
RemoveLast is as follows:

void RemoveLast()

Effect: Removes the last element in this list.
Precondition: This list is not empty.
Postcondition: The last element has been removed from this list.

What do these preconditions and postconditions have to do with program verifica-
tion? By making explicit statements about what is expected at the interfaces between
modules, we can avoid making logical errors based on misunderstandings. For instance,
from the precondition we know that we must check outside of this operation for the
empty condition; this module assumes that there is at least one element.

Experienced software developers know that misunderstandings about interfaces to
someone else’s modules are one of the main sources of program problems. We use
preconditions and postconditions at the method level in this book, because the infor-
mation they provide helps us to design programs in a truly modular fashion. We can
then use the classes we’ve designed in our programs, confident that we are not intro-
ducing errors by making mistakes about assumptions and about what the classes actu-
ally do.

Postconditions Statements that describe what
results are to be expected at the exit of an operation or
method, assuming that the preconditions are true
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Design Review Activities
When an individual programmer is designing
and implementing a program, he or she can
find many software errors with pencil and
paper. Deskchecking the design solution is a
very common method of manually verifying a
program. The programmer writes down essential data (variables, input values, parame-
ters, and so on) and walks through the design, marking changes in the data on the
paper. Known trouble spots in the design or code should be double-checked. A checklist
of typical errors (such as loops that do not terminate, variables that are used before they
are initialized, and incorrect order of parameters on method calls) can be used to make
the deskcheck more effective. A sample checklist for deskchecking a Java program
appears in Figure 1.12. A few minutes spent deskchecking your designs can save lots of

Deskchecking Tracing an execution of a design or
program on paper

The Design

1. Does each class in the design have a clear function or purpose?
2. Can large classes be broken down into smaller pieces?
3. Do multiple classes share common code? Is it possible to write more general classes to

encapsulate the commonalities and then have the individual classes inherit from that gen-
eral class?

4. Are all the assumptions valid? Are they well documented?
5. Are the preconditions and postconditions accurate assertions about what should be happen-

ing in the method they specify?
6. Is the design correct and complete as measured against the program specification? Are there

any missing cases? Is there faulty logic?
7. Is the program designed well for understandability and maintainability?

The Code

1. Has the design been clearly and correctly implemented in the programming language? Are
features of the programming language used appropriately?

2. Are methods coded to be consistent with the interfaces shown in the design?
3. Are the actual parameters on method calls consistent with the parameters declared in the

method definition?
4. Is each data object to be initialized set correctly at the proper time? Is each data object set

correctly before its value is used?
5. Do all loops terminate?
6. Is the design free of “magic” values? (A magic value is one whose meaning is not immediately

evident to the reader. You should use constants in place of such values.)
7. Does each constant, class, variable, and method have a meaningful name? Are comments

included with the declarations to clarify the use of the data objects?

Figure 1.12 Checklist for deskchecking programs
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time and eliminate difficult problems that would otherwise surface later in the life cycle
(or even worse, would not surface until after delivery).

Have you ever been really stuck trying to debug a program and showed it to a class-
mate or colleague who detected the bug right away? It is generally acknowledged that
someone else can detect errors in a program better than the original author can. In an
extension of deskchecking, two programmers can trade code listings and check each other’s
programs. Universities, however, frequently discourage students from examining each
other’s programs for fear that this exchange leads to cheating. Thus, many students become
experienced in writing programs but don’t have much opportunity to practice reading them.

Most sizable computer programs are developed by
teams of programmers. Two extensions of deskcheck-
ing that are effectively used by programming teams
are design or code walk-throughs and inspections.
These are formal team activities, the intention of
which is to move the responsibility for uncovering
bugs from the individual programmer to the group.
Because testing is time-consuming and errors cost
more the later they are discovered, the goal is to iden-
tify errors before testing begins.

In a walk-through, the team performs a manual simulation of the design or program
with sample test inputs, keeping track of the program’s data by hand on paper or a black-
board. Unlike thorough program testing, the walk-through is not intended to simulate all
possible test cases. Instead, its purpose is to stimulate discussion about the way the pro-
grammer chose to design or implement the program’s requirements.

At an inspection, a reader (never the program’s author) goes through the require-
ments, design, or code line by line. The inspection participants are given the material in
advance and are expected to have reviewed it carefully. During the inspection, the par-
ticipants point out errors, which are recorded on an inspection report. Many of the
errors have been noted by team members during their preinspection preparation. Other
errors are uncovered just by the process of reading aloud. As with the walk-through, the
chief benefit of the team meeting is the discussion that takes place among team mem-
bers. This interaction among programmers, testers, and other team members can
uncover many program errors long before the testing stage begins.

If you look back at Figure 1.11, you see that the cost of fixing an error is relatively
inexpensive up through the coding phase. After that, the cost of fixing an error
increases dramatically. Using the formal inspection process can clearly benefit a project.

Exceptions
At the design stage, you should plan how to handle
exceptions in your program. Exceptions are just what
the name implies: exceptional situations. They are situa-
tions that alter the flow of control of the program, usu-
ally resulting in a premature end to program execution.
Working with exceptions begins at the design phase:

What are the unusual situations that the program should recognize? Where in the program
can the situations be detected? How should the situations be handled if they occur?

Walk-through A verification method in which a
team performs a manual simulation of the program or
design

Inspection A verification method in which one mem-
ber of a team reads the program or design line by line
and the others point out errors

Exception Associated with an unusual, often unpre-
dictable event, detectable by software or hardware,
that requires special processing. The event may or may
not be erroneous.
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Where—indeed whether—an exception is detected depends on the language, the soft-
ware package design, the design of the libraries being used, and the platform, that is, on
the operating system and hardware. Where an exception should be detected depends on
the type of exception, on the software package design, and on the platform. Where an
exception is detected should be well documented in the relevant code segments.

An exception may be handled any place in the software hierarchy—from the place
in the program module where the exception is first detected through the top level of the
program. In Java, as in most programming languages, unhandled built-in exceptions
carry the penalty of program termination. Where in an application an exception should
be handled is a design decision; however, exceptions should be handled at a level that
knows what the exception means.

An exception need not be fatal. For non-fatal exceptions, the thread of execution may
continue. Although the thread of execution can continue from any point in the program, the
execution should continue from the lowest level that can recover from the exception. When
an error occurs, the program may fail unexpectedly. Some of the failure conditions may
possibly be anticipated and some may not. All such errors must be detected and managed.

Exceptions can be written in any language. Java (along with some other languages)
provides built-in mechanisms to manage exceptions. All exception mechanisms have
three parts:

• Defining the exception
• Generating (raising) the exception
• Handling the exception

Once your exception plan is determined, Java gives you a clean way of implementing
these three phases using the try-catch and throw statements. We cover these statements
at the end of Chapter 2 after we have introduced some additional Java constructs.

Program Testing

Eventually, after all the design verification, deskchecking, and inspections have been
completed, it is time to execute the code. At last, we are ready to start testing with the
intention of finding any errors that may still remain.

The testing process is made up of a set of test cases that, taken together, allow us to
assert that a program works correctly. We say “assert” rather than “prove” because test-
ing does not generally provide a proof of program correctness.

The goal of each test case is to verify a particular program feature. For instance, we
may design several test cases to demonstrate that the program correctly handles various
classes of input errors. Or we may design cases to check the processing when a data struc-
ture (such as an array) is empty, or when it contains the maximum number of elements.

Within each test case, we must perform a series of component tasks:

• We determine inputs that demonstrate the goal of the test case.
• We determine the expected behavior of the program for the given input.
• We run the program and observe the resulting behavior.
• We compare the expected behavior and the actual behavior of the program. If

they are the same, the test case is successful. If not, an error exists, either in the
test case itself or in the program. In the latter case, we begin debugging.
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For now we are talking about test cases at a class,
or method, level. It’s much easier to test and debug
modules of a program one at a time, rather than try-
ing to get the whole program solution to work all at

once. Testing at this level is called unit testing.
How do we know what kinds of unit test cases are appropriate, and how many are

needed? Determining the set of test cases that is sufficient to validate a unit of a program
is in itself a difficult task. There are two approaches to specifying test cases: cases based
on testing possible data inputs and cases based on testing aspects of the code itself.

Data Coverage
In those limited cases where the set of valid inputs, or
the functional domain, is extremely small, one can
verify a program unit by testing it against every possi-
ble input element. This approach, known as exhaustive
testing, can prove conclusively that the software meets

its specifications. For instance, the functional domain of the following method consists
of the values true and false.

public void PrintBoolean(boolean boolValue)
// Prints the Boolean value to the output
{
if (boolValue)
output.println("true");

else
output.println("false");

}

It makes sense to apply exhaustive testing to this method, because there are only
two possible input values. In most cases, however, the functional domain is very large,
so exhaustive testing is almost always impractical or impossible. What is the functional
domain of the following method?

public void PrintInteger(int intValue)
// Prints the integer value intValue to the output
{
output.println(intValue);

}

It is not practical to test this method by running it with every possible data input; the
number of elements in the set of int values is clearly too large. In such cases, we do
not attempt exhaustive testing. Instead, we pick some other measurement as a testing
goal.

You can attempt program testing in a haphazard way, entering data randomly until
you cause the program to fail. Guessing doesn’t hurt, but it may not help much either. This

Unit testing Testing a class or method by itself

Functional domain The set of valid input data for a
program or method
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approach is likely to uncover some bugs in a program, but it is very unlikely to find them
all. Fortunately, however, there are strategies for detecting errors in a systematic way.

One goal-oriented approach is to cover general classes of data. You should test at
least one example of each category of inputs, as well as boundaries and other special
cases. For instance, in method PrintInteger there are three basic classes of int data:
negative values, zero, and positive values. So, you should plan three test cases, one for
each of these classes. You could try more than three, of course. For example, you might
want to try Integer.MAX_VALUE and Integer.MIN_VALUE, but because all the pro-
gram does is print the value of its input, the additional test cases don’t accomplish much.

There are other cases of data coverage. For example, if the input consists of com-
mands, you must test each command and varying sequences of commands. If the input
is a fixed-sized array containing a variable number of values, you should test the maxi-
mum number of values; this is the boundary condition. A way to test for robustness is
to try one more than the maximum number of values. It is also a good idea to try an
array in which no values have been stored or one that contains a single element. Testing
based on data coverage is called black-box
testing. The tester must know the external
interface to the module—its inputs and
expected outputs—but does not need to con-
sider what is being done inside the module
(the inside of the black box). (See Figure 1.13)

Black-box testing Testing a program or method
based on the possible input values, treating the code as
a “black box”

Figure 1.13 Testing approaches
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Code Coverage
A number of testing strategies are based on the concept of code coverage, the execution
of statements or groups of statements in the program. This testing approach is called

clear (or white) box testing. The tester must look
inside the module (through the clear box) to see the
code that is being tested.

One approach, called statement coverage, requires
that every statement in the program be executed at
least once. Another approach requires that the test
cases cause every branch, or code section, in the pro-
gram to be executed. A single test case can achieve
statement coverage of an if-then statement, but it
takes two test cases to test both branches of the state-
ment.

A similar type of code-coverage goal is to test
program paths. A path is a combination of branches
that might be traveled when the program is executed.
In path testing, we try to execute all the possible pro-

gram paths in different test cases.

Test Plans
Deciding on the goal of the test approach—data coverage, code coverage, or (most often) a
mixture of the two, precedes the development of a test plan. Some test plans are very infor-

mal—the goal and a list of test cases, written by hand on
a piece of paper. Even this type of test plan may be more
than you have ever been required to write for a class
programming project. Other test plans (particularly those
submitted to management or to a customer for approval)
are very formal, containing the details of each test case

in a standardized format.
For program testing to be effective, it must be planned. You must design your test-

ing in an organized way, and you must put your design in writing. You should deter-
mine the required or desired level of testing, and plan your general strategy and test
cases before testing begins. In fact, you should start planning for testing before writing
a single line of code.

Debugging
In the previous section we talked about checking the output from our test and
debugging when errors were detected. We can debug “on the fly” by adding output
statements in suspected trouble spots when problems are found. For example, if you
suspect an error in the IncDate increment method, you could augment the method
as follows:

Clear (white) box testing Testing a program or
method based on covering all of the branches or paths
of the code

Branch A code segment that is not always executed;
for example, a Switch statement has as many branches
as there are case labels

Path A combination of branches that might be tra-
versed when a program or method is executed

Path testing A testing technique whereby the tester
tries to execute all possible paths in a program or
method

Test plan A document showing the test cases
planned for a program or module, their purposes,
inputs, expected outputs, and criteria for success
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public void increment()
{
// For debugging
output.println("IncDate method increment entered.");
output.println("year = " + year);
output.println("month = " + month);
output.println("day = " + day);

// Increment algorithm goes here
// It updates the year, month, and day values

// For debugging
output.println("IncDate method increment exiting.");
output.println("year = " + year);
output.println("month = " + month);
output.println("day = " + day);
output.println("IncDate method increment terminated.");

}

Note that the new output is only for debugging; these output lines are meant to be
seen only by the tester, not by the user of the program. But it’s annoying for debugging
output to show up mixed with your application’s real output, and it’s difficult to debug
when the debugging output isn’t collected in one place. One way to separate the debug-
ging output from the “real” program output is to declare a separate file to receive these
debugging lines.

Usually the debugging output statements are removed from the program, or “com-
mented out,” before the program is delivered to the customer or turned in to the profes-
sor. (To “comment out” means to turn the statements into comments by preceding them
with // or enclosing them between /* and */.) An advantage of turning the debugging
statements into comments is that you can easily and selectively turn them back on for
later tests. A disadvantage of this technique is that editing is required throughout the
program to change from the testing mode (with debugging) to the operational mode
(without debugging).

Another popular technique is to make the debugging output statements dependent
on a Boolean flag, which can be turned on or off as desired. For instance, a section of
code known to be error-prone may be flagged in various spots for trace output by using
the Boolean value debugFlag:

// Set debugFlag to control debugging mode
static boolean debugFlag = true;
.
.
.
if (debugFlag)
debugOutput.println("method Complex entered.");
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This flag may be turned on or off by assignment, depending on the programmer’s
need. Changing to an operational mode (without debugging output) merely involves
redefining debugFlag as false and then recompiling the program. If a flag is used,
the debugging statements can be left in the program; only the if checks are executed
in an operational run of the program. The disadvantage of this technique is that the
code for the debugging is always there, making the compiled program larger and
slower. If there are a lot of debugging statements, they may waste needed space and
time in a large program. The debugging statements can also clutter up the program,
making it harder to read. (This is another example of the tradeoffs we face in develop-
ing software.)

Some systems have online debugging programs that provide trace outputs, making
the debugging process much simpler. If the system at your school or workplace has a
run-time debugger, use it! Any tool that makes the task easier should be welcome, but
remember that no tool replaces thinking.

A warning about debugging: Beware of the quick fix! Program bugs often travel in
swarms, so when you find a bug, don’t be too quick to fix it and run your program
again. As often as not, fixing one bug generates another. A superficial guess about the
cause of a program error usually does not produce a complete solution. In general, the
time that it takes to consider all the ramifications of the changes you are making is time
well spent.

If you constantly need to debug, there’s a deficiency in your design process. The
time that it takes to consider all the ramifications of the design you are making is time
spent best of all.

Testing Java Data Structures

The major topic of this textbook is data structures: what they are, how we use them, and
how we implement them using Java. This chapter has been an overview of software
engineering. In Chapter 2 we begin our concentration on data and how to structure it. It
seems appropriate to end this section about verification with a look at how we test the
data structures we implement in Java.

In Chapter 2, we implement a data structure using a Java class, so that many differ-
ent application programs can use the structure. When we first create the class that mod-
els the data structure, we do not necessarily have any application programs ready to use
it. We need to test it by itself first, before creating the applications.

Every data structure that we implement supports a set of operations. For each struc-
ture, we would like to create a test driver program that allows us to test the operations
in a variety of sequences. How can we write a single test driver that allows us to test
numerous operation sequences? The solution is to separate the specific set of operations
that we want to test from the test driver program itself. We list the operations, and the
necessary parameters, in a text file. The test driver program reads the operations from
the text file one line at a time, performs the listed operation by invoking the methods of
the class being tested, and reports the results to an output file. The test program also
reports its general results on the screen.
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Figure 1.14 Model of test architecture
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The testing approach described here allows us to easily change our test case—we
just have to change the contents of the input file. However, it would be even easier if
we could dynamically change the name of the input file, whenever we run the program.
Then we could organize our test cases, one per file, and easily rerun a test case when-
ever we needed. Therefore, we construct our test driver to accept the name of the input
file as a command line parameter; we do the same for the output file. Figure 1.14 dis-
plays a model of our test architecture.
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Obtain the names of the input and output files from the command line
Open the input file for reading and the output file for writing
Read the first line from the input file
Print “Results “ plus the first line of the input file to the output file
Print a blank line to the output file
Read a command line from the input file
Set numCommands to 0
While the command read is not ‘quit’

Execute the command by invoking the public methods of the data structure
Print the results to the output file
Print the data structure to the output file (if appropriate)
Increment numCommands by 1
Print “Command “ + numCommands + “ completed” to the screen
Read the next command from the input file

Close the input and output files.
Print “Testing completed” to the screen

Our test drivers all follow the same basic algorithm; here is a pseudocode description:

This algorithm provides us with maximum flexibility for minimum extra work when we
are testing our data structures. Once we implement the algorithm by creating a test
driver for a specific data structure, we can easily create a test driver for a different data
structure by changing only three steps.

Notice that the third and fourth commands copy a “header line” from the input test
file to the output file. This helps us manage our test cases by allowing us to label each
test case file with an identifying string on its first line; the same string always begins
the corresponding output file.

Suppose we want to test the IncDate class that was defined earlier in this chapter.
We first create a test plan. Let’s use a goal-oriented approach. We first test the construc-
tor and each of the observer methods. Next we test the transformer method increment.
To test increment we identify general categories of dates, with respect to the effect of
the increment method. We test dates that represent each of these categories, with spe-
cial attention given to the boundaries of the categories. Thus, we test some dates in the
middle of months, and at the beginning and end of months. We test the end of years
also. We pay careful attention to testing how the method handles leap years, by includ-
ing tests concentrated at the end of February in many different years. Several more test
cases, besides those listed below, would be needed to ensure that the increment method
works correctly.
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After identifying a test plan, we create a test driver using our algorithm. Then we
use the test driver to carry out our plan. The IncDate class supports five operations:
IncDate (the constructor), yearIs, monthIs, dayIs, and increment. We represent
these operations in the test input file simply by using their names. In that file, the word
IncDate is followed by three lines, each containing an integer, to supply the three int
parameters of the constructor. Figure 1.15 shows an example of a test input file, the
resulting output file, and the screen information that would be generated.

Study the test driver program on page 51 to make sure you understand our testing
approach. You should be able to follow the control logic of the program. Note that we
assume the inclusion of a reasonable toString method in the Date class, as described
at the end of the Object-Oriented Design section. (The Date.java file on our web site
includes a toString method.)

Operation to be Tested
and Description of
Action Input Values Expected Output

IncDate

invoke and print 5, 6, 2000 5/6/2000

Observers

print monthIs 5

print dayIs 6

print yearIs 2000

Transformer

increment and print 5/7/2000

IncDate 5,30,2000

increment and print 5/31/2000

IncDate 5,31,2000

increment and print 6/1/2000

IncDate 6,30,2000

increment and print 7/1/2000

IncDate 2,28,2002

increment and print 3/1/2002

etc.
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We realize that the students using this textbook come from a wide variety of Java
backgrounds, especially with respect to the Java I/O approach. You may have learned
Java in an environment where the Java input/output statements were “hidden” behind
a package provided with your introductory textbook. Or you may have learned graphi-
cal input/output techniques, but never learned how to do file input/output. You may
not be familiar with “command-line parameters;” or you might have been using com-
mand-line parameters since the first week you studied Java. You may have learned how
to use the Java AWT; you may have learned Swing; you may have learned neither. Our
approach to testing requires only simple file input and output, in addition to screen
output. It does not require any direct user input during execution, which can be com-
plicated in Java.

The feature section on Java Input/Output (after the following code) introduces the
input/output techniques used for our test drivers. We use these same techniques in test
drivers and example programs throughout the rest of the text, so it is a good idea for you
to study them carefully now. The only places in the text where more advanced I/O
approaches are used are in the chapter Case Studies. Beginning with Chapter 3, we
develop case studies as examples of real programs that use the data structures you are
studying. These case studies use progressively more advanced graphical interfaces, and
are accompanied by additional feature sections as needed to explain any new constructs.

Figure 1.15 Example of a test input file and resulting output file

IncDate Test Data A
IncDate
5
6
2000
monthIs
dayIs
increment
dayIs
quit

Results IncDate Test Data A
 
Constructor invoked with 5 6 2000
theDate: 5/6/2000
Month is 5
theDate: 5/6/2000
Day is 6
theDate: 5/6/2000
increment invoked
theDate: 5/7/2000
Day is 7
theDate: 5/7/2000

File: TestDataA

File: TestOutputA

Command: java TDIncDate TestDataA TestOutputA

Screen
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Therefore, the case studies not only provide examples of object-oriented design and uses
of data structures, but they also progressively introduce you to user interface techniques.

Within the following test driver code we have emphasized, with underlining, all the
commands related to input/output. As you can see, these statements make up a large
percentage of the program; this is not unusual.

//----------------------------------------------------------------------------
// TDIncDate.java             by Dale/Joyce/Weems                    Chapter 1
// 
// Test Driver for the IncDate class
//----------------------------------------------------------------------------

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import IncDate.*;

// Test Driver for the IncDate class
public class TDIncDate
{
public static void main(String[] args) throws IOException
{
String testName  = "IncDate";
String command   = null;
int numCommands  = 0;
IncDate  theDate = new IncDate(0,0,0);
int month, day, year;

//Get file name arguments from command line as entered by user
String dataFileName = args[0];
String outFileName  = args[1];

//Prepare files
BufferedReader dataFile = new BufferedReader(new FileReader(dataFileName));
PrintWriter outFile     = new PrintWriter(new FileWriter(outFileName));

//Get test file header line and echo print to outFile
String testInfo = dataFile.readLine();
outFile.println("Results " + testInfo);
outFile.println();
command = dataFile.readLine();

//Process commands
while(!command.equals("quit"))
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{
if (command.equals("IncDate"))
{
month  = Integer.parseInt(dataFile.readLine());
day    = Integer.parseInt(dataFile.readLine());
year   = Integer.parseInt(dataFile.readLine());
outFile.println("Constructor invoked with " + month + " "

+ day + " " + year);
theDate = new IncDate(month, day, year);

}
else if (command.equals("yearIs"))

{
outFile.println("Year is " + theDate.yearIs());

}
else if (command.equals("monthIs"))

{
outFile.println("Month is " + theDate.monthIs());

}
else if (command.equals("dayIs"))

{
outFile.println("Day is " + theDate.dayIs());

}
else if (command.equals("increment"))

{
theDate.increment();
outFile.println("increment invoked ");

}

outFile.println("theDate: " + theDate);
numCommands++;
command = dataFile.readLine();

}

//Close files
dataFile.close();
outFile.close();

//Set up output frame
JFrame outputFrame = new JFrame();
outputFrame.setTitle("Testing " + testName);
outputFrame.setSize(300,100);
outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
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// Instantiate content pane and information panel
Container contentPane = outputFrame.getContentPane();
JPanel infoPanel      = new JPanel();

// Set layout
infoPanel.setLayout(new GridLayout(2,1));

// Create labels
JLabel countInfo = new JLabel(numCommands + " commands completed.  ");
JLabel finishedInfo = new JLabel("Testing completed. "

+ "Close window to exit program.");

// Add information
infoPanel.add(countInfo);
infoPanel.add(finishedInfo);
contentPane.add(infoPanel);

// Show information
outputFrame.show();

}
}

Note that the test driver gets the test data and calls the methods to be tested. It also
provides written output about the effects of the method calls, so that the tester can
check the results. Sometimes test drivers are used to test hundreds or thousands of test
cases. In such situations it is best if the test driver automatically verifies whether or not
the test cases were handled successfully. Exercise 36 asks you to expand this test driver
to include automatic test-case verification.

This test driver does not do any error checking to make sure that the inputs are
valid. For instance, it doesn’t verify that the input command code is really a legal com-
mand. Furthermore, it does not handle possible I/O exceptions; instead it just throws
them out to the run-time environment (exception handling is discussed in Chapter 2).
Remember that the goal of the test driver is to act as a skeleton of the real program, not
to be the real program. Therefore, the test driver does not need to be as robust as the
program it simulates.

Java Input/Output I
The Java class libraries provide varied and robust mechanisms for input and output. Hundreds
of classes related to the user interface provide programmers with a multitude of options. I/O is
not the topic of this textbook. We use straightforward I/O approaches that support the study of
data structures.

In this feature section, we examine the I/O commands used in the TDIncDate program (we
examine more I/O commands as needed later in the text). The relevant commands are highlighted
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in the program text. As modeled in Figure 1.14, this program uses screen output and file input and
output. The program also uses command-line arguments to obtain the names of the files—this is a
form of input. Figure 1.15 shows an example of an input file, the resultant output file, the screen
output, and the corresponding command line. If you’re interested in learning more, you might
begin by studying the documentation provided on the Sun Microsystems Inc. web site of the vari-
ous classes and methods we use.

Command-Line Input

A simple way to pass string information to a Java program is with command-line arguments.
Command-line arguments are read by the program each time it is run; a different set of argu-
ments will invoke different behavior from the program. For example, suppose you want to run
the TDIncDate program using a file called TestDataA as the input file and a file called
TestOutputA as the output file. If you are working from the command line, you invoke the
Java interpreter, asking it to “execute” the TDIncDate.class file using as arguments the
strings “TestDataA” and “TestOutputA” by entering:

java TDIncDate TestDataA TestOutputA

The program runs; it takes its input from the TestDataA file; a small output window appears
on your screen informing you when the program is finished; and the TestOutputA file holds
the results of the test. You end the program by closing the output window. Now, if you want the
program to run again using different input and output files, say, TestDataB and TestOut-
putB, you simply invoke the interpreter with a different command line:

java TDIncDate TestDataB TestOutputB

Note that if you are using an integrated development environment, instead of working from the
command line, you compile and run your program using a pull-down menu or a shortcut key.
Consult your environment’s documentation to learn how to pass command-line arguments in
this situation.

How do you access the command-line arguments within your program? Through the main
method’s array of strings parameter. By convention, this parameter is usually called args, to
represent the command-line arguments. In our example, args[0] references the string “Test-
DataA” and args[1] references the string “TestOutputA”. We use these string values to initial-
ize string variables that represent the input and output files of the program:

String dataFileName = args[0];
String outFileName = args[1];

With this approach, we can change the test input and output files each time we run the pro-
gram by simply entering a different command on the command line.
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File Output

Java provides a stream output model. As an abstract concept, a stream is just a sequence of
bytes. A Java program can direct an output stream to a file, a network connection, or even a
specific block of memory. We use files.

The Java class library supports more than 60 different stream types. We use classes that
inherit from the abstract class Writer. Abstract classes are discussed in Chapter 3. For now, all
you need to know is that you cannot instantiate objects of abstract classes, but you can extend
the classes. In our program we use the PrintWriter class and the FileWriter class, both of
which are library subclasses of Writer. To make these classes available within our program, we
must include the import statement:

import java.io.*;

The Writer class and its subclasses allow us to perform text output in a standard environment.
You may recall from your previous studies that Java uses the Unicode character set as its base
character set. A Unicode character uses 16 bits; therefore, the Unicode character set can repre-
sent 65,536 unique characters. This large character set helps make Java suitable as a program-
ming language around the world, since there are many languages that do not use the standard
Western alphabet. However, most of our environments do not yet support the Unicode character
set. For example, text files, which we often use to provide input to a program or output from a
program, are based on the much smaller ASCII character set. The Writer class provides meth-
ods to translate the Unicode characters used within a Java program to the ASCII characters
required by text files.

To perform stream output using ASCII characters, we instantiate an object of the class
PrintWriter. The PrintWriter class provides methods for printing all of Java’s primitive
types, strings, generic objects (using the object’s toString method), and arrays of characters.
It also provides a method to close the output stream (close), methods to check and set errors
(checkError and setError), and a method to flush the stream (flush). The flush method
is used to force all of the current output to go immediately to the file. In TDIncDate we only
use PrintWriter, println, and close methods. The println method sends a textual rep-
resentation of its parameter to the output stream, followed by a linefeed. For example, the code:

outFile.println("Month is " + theDate.monthIs());

transforms the int returned by the monthIs method into a string, concatenates that string to
the string “Month is”, transforms the entire string into an ASCII representation, appends a line-
feed character, and sends the whole thing to the output stream. You can see many other uses of
the println method throughout the rest of the program. The close method is invoked when
processing is finished:

outFile.close();

Invoking close informs the system that we are finished using the file. It is important for system
efficiency and stability for a program to close files when it is finished using them.
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So far in this discussion, we have referred to sending textual information to the “output
stream.” But how is this output stream associated with the correct file? The answer to this ques-
tion is found by looking at the declaration of the PrintWriter object used in the program:

PrintWriter outFile = new PrintWriter(new FileWriter(outFileName));

Embedded within the PrintWriter declaration is an invocation of a FileWriter con-
structor:

new FileWriter(outFileName)

The FileWriter class is another subclass of Writer. The code invokes the FileWriter con-
structor and instantiates an object of the class Writer that is associated with the file repre-
sented by the variable outFileName. Recall that outFileName is the name of the output file
that was passed to the program as a command-line argument. By embedding this code within
the PrintWriter declaration, we associate the PrintWriter object outFile with the text
file represented by outFileName. In our example above this is the OutFileA file. Therefore, a
command such as:

outFile.println("Month is " + theDate.monthIs());

sends its output to the OutFileA file.

File Input

Most of the previous discussion about file output can be applied to file input. Instead of using the
abstract class Writer we use the abstract class Reader; instead of PrintWriter we use
BufferedReader; instead of the println method we use the readLine method; instead of
the FileWriter class we use the FileReader class. We leave it to the reader to look over the
TDIncDate program to see how the various file reading statements interact with each other. We
do, however, briefly discuss the readLine method.

The BufferedReader readLine method returns a string that holds the next line of char-
acters from the input stream. Therefore, a statement such as:

command = dataFile.readLine();

sets the string variable command to reference the next line of characters from the file associ-
ated with the object dataFile. In some cases we need to transform this line of characters into
an integer. To do this we use the parseInt method of the Integer wrapper class:

day = Integer.parseInt(dataFile.readLine());
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An alternate approach is to use the intValue method of the String class, and the valueOf
method of the Integer wrapper class as follows:

day = Integer.valueOf(dataFile.readLine()).intValue;

Wrapper classes are discussed in Chapter 2.

Frame Output

We really cannot do justice to the topic of graphical user interfaces (GUIs) in this textbook. The
topic is a nontrivial, important area of computing and deserves serious study. Nevertheless,
modern programming approaches demand the use of GUIs and we make moderate use of them
in our programs. So, without trying to explain all of the underlying concepts and supporting
classes, we look at the purpose of each of the statements related to frame output. (Figure 1.15
shows the displayed frame.)

Note that our TDIncDate class includes the following import statements:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

The first statement imports classes from the Java library awt package; the second imports
classes related to event handling, also from the Java library awt package; the third imports the
classes of the Java swing package. The AWT (Abstract Window Toolkit) was the set of graphical
interface tools included with the original version of Java. Developers found that this set of tools
was too limited for professional program development, so the Java designers included a new set
of graphical components, called the “Swing” components, when they released the Java Founda-
tion Classes in 1997. The Swing components are more portable and flexible than their AWT
counterparts. We use Java Swing components throughout the text. Note that Java Swing is built
on top of Java AWT, so we still need to import AWT classes.

The code related to the frame output begins with the comment:

//Set up output frame

and continues to the end of the program listing. First, let’s address the set-up of the frame itself.
A frame is a top-level window with a title, a border, a menu bar, a content pane, and more. We
declare our frame with the statement:

JFrame outputFrame = new JFrame();

JFrame is the Java Swing frame component (you can recognize Java Swing components since
they begin with the letter “J” to differentiate them from their AWT counterparts). Therefore, our
outputFrame object is a JFrame, and can be manipulated with the library methods defined
for JFrames.
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We immediately make use of three of these methods to set up our frame:

outputFrame.setTitle("Testing " + testName);
outputFrame.setSize(300,100);
outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

These statements set the title and size for the instantiated frame, and define how the frame
should react to the user closing the frame’s window. Setting the title and size are very straight-
forward. The title of our frame is “Testing IncDate,” since the variable testname was set to
“IncDate” at the beginning of the main method. The size of the frame is set to 300 pixels wide
by 100 pixels tall.

Defining how the frame reacts to the user closing the frame’s window is a little more com-
plicated. When the frame is eventually displayed, it appears in its own window. Normally, when
you define a window from within a Java program, you must define how the window reacts to
various events: closing the window, resizing the window, activating the window, and so on. You
must define methods to handle all of these events. However, in our program we want to handle
only one of these events, the window-closing event. Java provides a special method, just for
handling this event; the setDefaultCloseOperation method. This method tells the
JFrame what to do when its window is closed, as long the action is one of a small set of com-
mon choices. The JFrame class provides the following class constants that name these choices:

JFrame.DISPOSE_ON_CLOSE
JFrame.DO_NOTHING_ON_CLOSE
JFrame.HIDE_ON_CLOSE
JFrame.EXIT_ON_CLOSE

In our program we use the EXIT_ON_CLOSE option, so the program disposes of the window
and exits when the user closes the window.

The following two lines set up our frame output:

Container contentPane = outputFrame.getContentPane();
JPanel infoPanel      = new JPanel();

The first line provides us a “handle” for the content pane of the new frame. Remember that
frames have many parts; the part where we display information is called the “content pane.” We
now have access to the content pane of our frame through the contentPane variable. This
variable is an object of the class Container, which means we can place other objects into it
for display purposes. What can we place into it? We can place almost anything: buttons, labels,
drawings, text boxes; but to help us organize our interfaces we prefer to place yet another con-
tainer object, called a panel, into content panes. The second line instantiates a JPanel object
(the Swing version of a panel) called infoPanel. It is here where we place the information we
want to display.

We next set a particular layout scheme for the infoPanel panel with the command:

infoPanel.setLayout(new GridLayout(2,1));
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When we add items to the panel, they are organized according to the layout scheme defined in
the above statement. We have chosen to use the grid layout scheme with 2 rows and 1 column.
The Java Library provides many other layout schemes.

Next we create a new “label,” containing information we wish to display on the screen. A
label is a component that can hold one line of text; nothing fancy, just a line of text. That is all
we need here. This is accomplished by the statements:

JLabel countInfo = new JLabel(numCommands + " commands completed.  ");
JLabel finishedInfo = new JLabel("Testing completed. "

+ "Close window to exit program.");

Finally, we add our information to the panel and display it with:

infoPanel.add(countInfo);
infoPanel.add(finishedInfo);
contentPane.add(infoPanel);
outputFrame.show();

The first two add method invocations add the labels to the infoPanel. The third add method
invocations adds the infoPanel to the contentPane (which is already associated with the
outputFrame). The show method displays the outputFrame on the monitor. That’s it.

In summation, to perform frame output, the TDIncDate program does the following:

1. Imports classes from the awt and swing packages
2. Instantiates a new JFrame object
3. Obtains the content pane of the new frame
4. Creates a panel to hold information
5. Defines the layout of the panel
6. Instantiates labels with the information to display
7. Adds these labels to the panel
8. Adds the panel to the content pane
9. Shows the frame

Using this frame output approach allows us to use window output without getting bogged down
in too much detail. When we run our test driver program, it reads data from the input file and
writes results to the output file. It then creates an output frame as a separate program thread
and reports summary information about the test results there. Note that when the main thread
of the program finishes, the frame thread is still running. It will run until the user closes the
frame’s window, activating the window-closing event that we defined through the set-
DefaultCloseOperation method.

Practical Considerations

It is obvious from this chapter that program verification techniques are time-consuming
and, in a job environment, expensive. It would take a long time to do all of the things
discussed in this chapter, and a programmer has only so much time to work on any par-
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ticular program. Certainly not every program is worthy of such cost and effort. How can
you tell how much and what kind of verification effort is necessary?

A program’s requirements may provide an indication of the level of verification
needed. In the classroom, your professor may specify the verification requirements as
part of a programming assignment. For instance, you may be required to turn in a writ-
ten, implemented test plan. Part of your grade may be determined by the completeness
of your plan. In the work environment, the verification requirements are often specified
by a customer in the contract for a particular programming job. For instance, a contract
with a customer may specify that formal reviews or inspections of the software product
be held at various times during the development process.

A higher level of verification effort may be indicated for sections of a program that
are particularly complicated or error-prone. In these cases, it is wise to start the verifica-
tion process in the early stages of program development in order to prevent costly errors
in the design.

A program whose correct execution is critical to human life is obviously a candidate
for a high level of verification. For instance, a program that controls the return of astro-
nauts from a space mission would require a higher level of verification than a program
that generates a grocery list. As a more down-to-earth example, consider the potential for
disaster if a hospital’s patient database system had a bug that caused it to lose information
about patients’ allergies to medications. A similar error in a database program that man-
ages a Christmas card mailing list, however, would have much less severe consequences.

Summary
How are our quality software goals met by the strategies of abstraction and information
hiding? When we hide the details at each level, we make the code simpler and more
readable, which makes the program easier to write, modify, and reuse. Object-oriented
design processes produce modular units that are also easier to test, debug, and maintain.

One positive side effect of modular design is that modifications tend to be localized
in a small set of modules, and thus the cost of modifications is reduced. Remember that
whenever we modify a module we must retest it to make sure that it still works correctly
in the program. By localizing the modules affected by changes to the program, we limit
the extent of retesting needed.

Finally, we increase reliability by making the design conform to our logical picture
and delegating confusing details to lower levels of abstraction. By understanding the
wide range of activities involved in software development—from requirements analysis
through the maintenance of the resulting program—we gain an appreciation of a disci-
plined software engineering approach. Everyone knows some programming wizard who
can sit down and hack out a program in an evening, working alone, coding without a
formal design. But we cannot depend on wizardry to control the design, implementa-
tion, verification, and maintenance of large, complex software projects that involve the
efforts of many programmers. As computers grow larger and more powerful, the prob-
lems that people want to solve on them also become larger and more complex. Some
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Analysis Make sure that requirements are completely understood.

Understand testing requirements.

Specification Verify the identified requirements.

Perform requirements inspections with your client.

Design Design for correctness (using assertions such as preconditions and postconditions).

Perform design inspections.

Plan testing approach.

Code Understand programming language well.

Perform code inspections.

Add debugging output statements to the program.

Write test plan.

Construct test drivers.

Test Unit test according to test plan.

Debug as necessary.

Integrate tested modules.

Retest after corrections.

Delivery Execute acceptance tests of complete product.

Maintenance Execute regression test whenever delivered product is changed to add new function-
ality or to correct detected problems.

Figure 1.16 Life-cycle verification activities

people refer to this situation as a software crisis. We’d like you to think of it as a soft-
ware challenge.

It should be obvious by now that program verification is not something you begin
the night before your program is due. Design verification and program testing go on
throughout the software life cycle.

Verification activities begin when we develop the software specifications. At this
point, we formulate the overall testing approach and goals. Then, as program design
work begins, we apply these goals. We may use formal verification techniques for parts
of the program, conduct design inspections, and plan test cases. During the implementa-
tion phase, we develop test cases and generate test data to support them. Code inspec-
tions give us extra support in debugging the program before it is ever run. Figure 1.16
shows how the various types of verification activities fit into the software development
cycle. Throughout the life cycle, one thing remains the same: the earlier in this cycle we
can detect program errors, the easier (and less costly in time, effort, and money) they
are to remove. Program verification is a serious subject; a program that doesn’t work
isn’t worth the disk it’s stored on.
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Classes and Support Files Defined in Chapter 1

File First Ref. Notes

Date.java page 14 Example of a Java class with instance and class vari-
ables.

Unlike the original code in the text, the code on our
web site includes a toString method.

IncDate.java page 18 Demonstrates inheritance.

The code for the increment command is not included
(see Exercise 34).

TDIncDate.java page 51 Example of a test driver; test driver for the IncDate
class.

In Exercise 36 we ask the student to enhance the code
to include automated test verification.

TestDataA page 50 Input file for TDIncDate.

Summary of Classes and Support Files
In this section at the end of each chapter we summarize, in tabular form, the classes
defined in the chapter. The classes are listed in the order in which they appear in the
text. We also include information about any other files, such as test input files, that
support the material. The summary includes the name of the file, the page on which the
class or support file is first referenced, and a few notes. The notes explain how the class
or support file was used in the text, followed by additional notes if appropriate. The
class and support files are available on our web site. They can be found in the ch01
subdirectory of the bookFiles subdirectory.

We also include in this summary section a list of any Java library classes that were
used for the first time for the classes defined in the chapter. For each library class we
list its name, its package, any of its methods that are explicitly used, and the name of
the program/class where they are first used. The classes are listed in the order in which
they are first used. Note that in some classes the methods listed might not be defined
directly in the class; they might be defined in one of its superclasses. With the classes
we also list constructors, if appropriate. For more information about the library classes
and methods, check the Sun Java documentation.
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Library Classes Used in Chapter 1 for the First Time

Class Name Package Overview Methods Used Where Used

JFrame swing Manages a graphical addWindowListener, TDIncDate
window getContentPane, show, 

setSize, setTitle

String lang Creates and parses strings equals, String TDIncDate

BufferedReader io Provides a buffered stream BufferedReader, readLine, TDIncDate
of character data close

FileReader io Allows reading of FileReader TDIncDate
characters from a file

PrintWriter io Outputs a buffered stream PrintWriter, println, close TDIncDate
of character data

FileWriter io Allows reading of FileWriter TDIncDate
characters from a file

Container awt Provides a container that add TDIncDate
can hold other containers

Jpanel swing Provides a container for add, JPanel, setLayout TDIncDate
organizing display 
information

GridLayout awt Creates a rectangular grid GridLayout TDIncDate
scheme for output

JLabel swing Holds one line of text for JLabel TDIncDate
display

WindowAdapter awt Provides null methods for WindowAdapter TDIncDate
window events

System lang Various system-related exit TDIncDate
methods

Integer lang Wraps the primitive int parseInt TDIncDate
type
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Exercises
1.1 The Software Process

1. Explain what we mean by “software engineering.”

2. List four goals of quality software.

3. Which of these statements is always true?

a. All of the program requirements must be completely defined before design
begins.

b. All of the program design must be complete before any coding begins.

c. All of the coding must be complete before any testing can begin.

d. Different development activities often take place concurrently, overlapping in
the software life cycle.

4. Explain why software might need to be modified

a. in the design phase.

b. in the coding phase.

c. in the testing phase.

d. in the maintenance phase.

5. Goal 4 says, “Quality software is completed on time and within budget.”

a. Explain some of the consequences of not meeting this goal for a student
preparing a class programming assignment.

b. Explain some of the consequences of not meeting this goal for a team devel-
oping a highly competitive new software product.

c. Explain some of the consequences of not meeting this goal for a programmer
who is developing the user interface (the screen input/output) for a spacecraft
launch system.

6. Name three computer hardware tools that you have used.

7. Name two software tools that you have used in developing computer programs.

8. Explain what we mean by “ideaware.”

1.2 Program Design
9. For each of the following, describe at least two different abstractions for differ-

ent viewers (see Figure 1.1).

a. A dress d. A key

b. An aspirin e. A saxophone

c. A carrot f. A piece of wood

10. Describe four different kinds of stepwise refinement.

11. Explain how to use the nouns and verbs in a problem description to help iden-
tify candidate design classes and methods.

12. Find a tool that you can use to create UML class diagrams and recreate the dia-
gram of the Date class shown in Figure 1.3.
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13. What is the difference between an object and a class? Give some examples.

14. Describe the concept of inheritance, and explain how the inheritance tree is tra-
versed to bind method calls with method implementations in an object-oriented
system.

15. Make a list of potential objects from the description of the automated-teller-
machine scenario given in this chapter.

16. Given the definition of the Date and IncDate classes in this chapter, and the
following declarations:

int temp;
Date date1 = new Date(10,2,1989);
Date date2 = new Date(4,2,1992);
IncDate date3 = new IncDate(12,25,2001);

indicate which of the following statements are illegal, and which are legal.
Explain your answers.

a. temp = date1.dayIs();

b. temp = date3.yearIs();

c. date1.increment();

d. date3.increment();

e. date2 = date1;

f. date2 = date3;

g. date3 = date2;

1.3 Verification of Software Correctness

17. Have you ever written a programming assignment with an error in the specifica-
tions? If so, at what point did you catch the error? How damaging was the error to
your design and code?

18. Explain why the cost of fixing an error is increasingly higher the later in the
software cycle the error is detected.

19. Explain how an expert understanding of your programming language can reduce
the amount of time you spend debugging.

20. Explain the difference between program verification and program validation.

21. Give an example of a run-time error that might occur as the result of a program-
mer making too many assumptions.

22. Define “robustness.” How can programmers make their programs more robust by
taking a defensive approach?

23. The following program has two separate errors, each of which would cause an
infinite loop. As a member of the inspection team, you could save the programmer
a lot of testing time by finding the errors during the inspection. Can you help?
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import java.io.PrintWriter;
public class TryIncrement
{
static PrintWriter output = new PrintWriter(System.out,true);

public static void main(String[] args) throws Exception
{
int count = 1;
while(count < 10)
output.println(" The number after " + count);   /* Now we will
count = count + 1;                            add 1 to count */
output.println(" is " + count);

}
}

24. Is there any way a single programmer (for example, a student working alone on
a programming assignment) can benefit from some of the ideas behind the
inspection process?

25. When is it appropriate to start planning a program’s testing?

a. During design or even earlier

b. While coding

c. As soon as the coding is complete

26. Describe the contents of a typical test plan.

27. Devise a test plan to test the increment method of the IncDate class.

28. A programmer has created a module sameSign that accepts two int parameters
and returns true if they are both the same sign, that is, if they are both positive,
both negative, or both zero. Otherwise, it returns false. Identify a reasonable set
of test cases for this module.

29. Explain the advantages and disadvantages of the following debugging techniques:

a. Inserting output statements that may be turned off by commenting them out

b. Using a Boolean flag to turn debugging output statements on or off

c. Using a system debugger

30. Describe a realistic goal-oriented approach to data-coverage testing of the
method specified below:

public boolean FindElement(list, targetItem)

Effect: Searches list for targetItem.
Preconditions: Elements of list are in no particular

order; list may be empty.
Postcondition: Returns true if targetItem is in list; oth-

erwise, returns false.
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31. A program is to read in a numeric score (0 to 100) and display an appropriate
letter grade (A, B, C, D, or F).

a. What is the functional domain of this program?

b. Is exhaustive data coverage possible for this program?

c. Devise a test plan for this program.

32. Explain how paths and branches relate to code coverage in testing. Can we
attempt 100% path coverage?

33. Explain the phrase “life-cycle verification.”

34. Create a Date class and an IncDate class as described in this chapter (or copy
them from the web site). In the IncDate class you must create the code for the
increment method, since that was left undefined in the chapter. Remember to fol-
low the rules of the Gregorian calendar: A year is a leap year if either (i) it is divisi-
ble by 4 but not by 100 or (ii) it is divisible by 400. Include the preconditions and
postconditions for increment. Use the TDIncDate program to test your program.

35. You should experiment with the frame output of the TDIncDate program. Fol-
low the directions and record the results:

a. Create a test input file called MyTest.dat.

b. Run the program using MyTest.dat as the test input file, and MyTest.out as
the output file.

c. Change the TestDriverFrame.java class so that it sets the frame size to
500 � 300, and run the program again.

d. Change the grid layout statement from a grid of 2,1 to a grid of 1,2, and run
the program again.

e. Experiment with other layout managers; use the available resources for infor-
mation about them.

36. Enhance the TDIncDate program to include automatic test-case verification. For
each of the commands that can be listed in the test-input file, you need to identify
a test-result value, to be used to verify that the command was executed properly.
For example, the constructor command IncDate can be verified by comparing the
resultant value of the IncDate object to the date represented by the parameters of
the command; the observer command monthIs can be verified by checking the
value returned by the monthIs method to the expected month. The values needed
to verify each command should follow the command and its parameters in the test
input file. For example, a test input file could look like this:

IncDate Test Data B
IncDate
10
5
2002
10/5/2002
monthIs
10
quit
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The test driver should read a command, read the command’s parameters if nec-
essary, execute the command by invoking the appropriate method, and then
validate that the command completed successfully by comparing the results of
the command to the test result value from the input file. The results of the test
(pass or fail) should be written to the output file, and a count of the number of
test cases passed and failed should be written to the screen.

37. Create a new program that uses the same basic architecture as the test driver
program modeled in Figure 1.14, and that uses the same set of Java I/O state-
ments as TDIncDate(readLine, setLayout, and so on). This is an open prob-
lem; your program can do whatever you like. For example, the input file could
contain a list of student names plus three test grades for each student:

Smith
100
90
80
Jones
95
95
95

And the corresponding output file could contain the student’s names and aver-
ages:

Smith
90
Jones
95

Finally, the output frame could contain summary information: for example, the
number of students, the total average, the highest average, and so on. Remember
to design your program so that the user can indicate the input and output file
names through command-line parameters.


