
Measurable goals for this chapter include that you should be able to

describe the benefits of using an abstract data type (ADT)

explain the difference between a primitive type and a composite type

describe an ADT from three perspectives: logical level, application level, and implementation level

explain how a specification can be used to document the design of an ADT

describe, at the logical level, the component selector, and describe appropriate applications for
the Java built-in types: class and array

create code examples that demonstrate the ramifications of using references

describe several hierarchical types, including aggregate objects and multidimensional arrays

use packages to organize Java compilation units

use the Java Library classes String and ArrayList

identify the scope of a Java variable in a program

explain the difference between a deep copy and a shallow copy of an object

identify, define, and use Java exceptions when creating an ADT

list the steps to follow when creating ADTs with the Java class construct

Data Design and
Implementation

G
oals

70 | Chapter 2: Data Design and Implementation

This chapter centers on data and the language structures used to organize data. When
problem solving, the way you view the data of your problem domain and how you
structure the data that your programs manipulate greatly influence your success. Here
you learn how to deal with the complexity of your data using abstraction and how to
use the Java language mechanisms that support data abstraction.

In this chapter, we also cover the various data types supported by Java: the primi-
tive types (int, float, and so on), classes, interfaces, and the array. The Java class
mechanism is used to create data types beyond those directly provided by the language.
We review some of the class-based types that are provided in the Java Class Library and
show you how to create your own class-based types. We use the Java class mechanism
to encapsulate the data structures you are studying, as ADTs, throughout the textbook.

2.1 Different Views of Data

Data Types

When we talk about the function of a program, we usually use words like add, read,
multiply, write, do, and so on. The function of a program describes what it does in terms
of the verbs in the programming language. The data are the nouns of the programming

world: the objects that are manipulated, the informa-
tion that is processed by a computer program.

Humans have evolved many ways of encoding
information for analysis and communication, for
example letters, words, and numbers. In the context of
a programming language, the term data refers to the
representation of such information, from the problem
domain, by the data types available in the language.

A data type can be used to characterize and
manipulate a certain variety of data. It is formally
defined by describing:

1. the collection of elements that it can represent.

2. the operations that may be performed on those elements.

Most programming languages provide simple data types for representing basic informa-
tion—types like integers, real numbers, and characters. For example, an integer might
represent a person’s age; a real number might represent the amount of money in a bank
account. An integer data type in a language would be formally defined by listing the
range of numbers it can represent and the operations it supports, usually the standard
arithmetic operations.

The simple types are also called atomic types or primitive types, because they can-
not be broken into parts. Languages usually provide ways for a programmer to combine
primitive types into more complex structures, which can capture relationships among
the individual data items. For example, a programmer can combine two primitive inte-

Data The representation of information in a manner
suitable for communication or analysis by humans or
machines

Data type A category of data characterized by the
supported elements of the category and the supported
operations on those elements

Atomic or primitive type A data type whose ele-
ments are single, nondecomposable data items

2.1 Different Views of Data | 71

ger values to represent a point in the x-y
plane or create a list of real numbers to repre-
sent the scores of a class of students on an
assignment. A data type composed of multi-
ple elements is called a composite type.

Just as primitive types are partially
defined by describing their domain of values,
composite types are partially defined by the relationship among their constituent values.

Composite data types come in two forms: unstructured and structured. An unstruc-
tured composite type is a collection of components that are not organized with respect
to one another. A structured composite type is an organized collection of components in
which the organization determines the means of accessing individual data components
or subsets of the collection. In addition to describing their domain of values, primitive
types are defined by describing permitted operations. With composite types, the main
operation of interest is accessing the elements that make up the collection.

The mechanisms for building composite types in the Java language are called refer-
ence types. (We see why in the next section.) They include arrays and classes, which
you are probably familiar with, and interfaces. We review all of these mechanisms in
the next section.

In a sense, any data processed by a computer, whether it is primitive or composite,
is just a collection of bits that can be turned on or off. The computer itself needs to have
data in this form. Human beings, however, tend to think of information in terms of
somewhat larger units like numbers and lists, and thus we want at least the human-
readable portions of our programs to refer to data in a way that makes sense to us. To
separate the computer’s view of data from our own, we use data abstraction to create
another view.

Data Abstraction

Many people feel more comfortable with things that they perceive as real than with
things that they think of as abstract. Thus, data abstraction may seem more forbidding
than a more concrete entity like integer. Let’s take a closer look, however, at that very
concrete—and very abstract—integer you’ve been using since you wrote your earliest pro-
grams. Just what is an integer? Integers are physically represented in different ways on
different computers. In the memory of one machine, an integer may be a binary-coded
decimal. In a second machine, it may be a sign-and-magnitude binary. And in a third
one, it may be represented in two’s-complement binary notation. Although you may not
be familiar with these terms, that hasn’t stopped you from using integers. (You can learn
about these terms in an assembly language or computer organization course, so we do
not explain them here.) Figure 2.1 shows some different representations of an integer.

The way that integers are physically represented determines how the computer
manipulates them. As a Java programmer, however, you don’t usually get involved at
this level; you simply use integers. All you need to know is how to declare an int type
variable and what operations are allowed on integers: assignment, addition, subtraction,
multiplication, division, and modulo arithmetic.

Composite type A data type whose elements are
composed of multiple data items

Data abstraction The separation of a data type’s log-
ical properties from its implementation

72 | Chapter 2: Data Design and Implementation

Consider the statement

distance = rate * time;

It’s easy to understand the concept behind this statement. The concept of multiplication
doesn’t depend on whether the operands are, say, integers or real numbers, despite the
fact that integer multiplication and floating-point multiplication may be implemented
in very different ways on the same computer. Computers would not be very popular if
every time we wanted to multiply two numbers we had to get down to the machine-rep-
resentation level. But we don’t have to: Java has provided the int data type for us, hid-
ing all the implementation details and giving us just the information we need to create
and manipulate data of this type.

We say that Java has encapsulated integers for us. Think of the capsules surround-
ing the medicine you get from the pharmacist when you’re sick. You don’t have to
know anything about the chemical composition of the medicine inside to recognize the

big blue-and-white capsule as your antibiotic or the
little yellow capsule as your decongestant. Data
encapsulation means that the physical representation
of a program’s data is hidden by the language. The
programmer using the data doesn’t see the underlying
implementation, but deals with the data only in terms
of its logical picture—its abstraction.

But if the data are encapsulated, how can the programmer get to them? Operations
must be provided to allow the programmer to create, access, and change the data. Let’s
look at the operations Java provides for the encapsulated data type int. First of all, you
can create variables of type int using declarations in your program. Then you can
assign values to these integer variables by using the assignment operator and perform
arithmetic operations on them using +, -, *, /, and %. Figure 2.2 shows how Java has
encapsulated the type int in a nice neat black box.

Figure 2.1 The decimal equivalents of an 8-bit binary number

153 –25 –102 –103 99

Unsigned Sign and
magnitude

One's
complement

Two's
complement

Binary-coded
decimal

Decimal:

Representation:

10011001Binary:

Data encapsulation The separation of the represen-
tation of data from the applications that use the data
at a logical level; a programming language feature that
enforces information hiding

2.1 Different Views of Data | 73

The point of this discussion is that you have been dealing with a logical data
abstraction of integer since the very beginning. The advantages of doing so are clear:
you can think of the data and the operations in a logical sense and can consider their
use without having to worry about implementation details. The lower levels are still
there—they’re just hidden from you.

Remember that the goal in design is to reduce complexity through abstraction. We
extend this goal with another: to protect our data abstraction through encapsulation.
We refer to the set of all possible values (the
domain) of an encapsulated data “object,”
plus the specifications of the operations that
are provided to create and manipulate the
data, as an abstract data type (ADT for short).

In effect, all the Java built-in types are
ADTs. A Java programmer can declare variables of those types without understanding
the underlying implementation. The programmer can initialize, modify, and access the
information held by the variables using the provided operations.

In addition to the built-in ADTs, Java programmers can use the Java class mecha-
nism to build their own ADTs. For example, the Date class defined in Chapter 1 can be
viewed as an ADT. Yes, it is true that the programmers who created it need to know
about its underlying implementation; for example, they need to know that a Date is
composed of three int instance variables, and they need to know the names of the
instance variables. The application programmers who use the Date class, however, do
not need this information. They only need to know how to create a Date object and
how to invoke the exported methods to use the object.

Figure 2.2 A black box representing an integer

T ype

int

Value range: –2147483648 . . +2147483647

Operations
identity
negation
addition
subtraction
multiplication
division
remainder (modulo)
comparisons

+ prefix
- prefix
+ infix
- infix
* infix
/ infix

% infix
Relational Operators infix

(inside)

Representation of

int

(for example, 32 bits
two's complement)

+

Implementations of
Operations

Abstract data type (ADT) A data type whose proper-
ties (domain and operations) are specified independ-
ently of any particular implementation

74 | Chapter 2: Data Design and Implementation

Data Structures

A single integer can be very useful if we need a counter, a sum, or an index in a pro-
gram. But generally, we must also deal with data that have many parts and complex
interrelationships among those parts. We use a language’s composite type mechanisms

to build structures, called data structures, which mir-
ror those interrelationships. Note that the data ele-
ments that make up a data structure can be any
combination of primitive types, unstructured compos-
ite types, and structured composite types.

When designing our data structures we must con-
sider how the data is used because our decisions about
what structure to impose greatly affect how efficient it
is to use the data structure. Computer scientists have

developed classic data, such as lists, stacks, queues, trees, and graphs, through the years.
They form the major area of focus for this textbook.

In languages like Java, that provide an encapsulation mechanism, it is best to
design our data structures as ADTs. We can then hide the detail of how we implement
the data structure inside a class that exports methods for using the structure. For exam-
ple, in Chapter 3 we develop a list data structure as an ADT using the Java class and
interface constructs.

As we saw in Chapter 1, the basic operations that are performed on encapsulated
data can be classified into categories. We have already seen three of these: constructor,
transformer and observer. As we design operations for data structures, a fourth category
becomes important: iterator. Let’s take a closer look at what each category does.

• A constructor is an operation that creates a new instance (object) of the data
type. A constructor that uses the contents of an existing object to create a new
object is called a copy constructor.

• Transformers (sometimes called mutators) are operations that change the state of
one or more of the data values, such as inserting an item into an object, deleting
an item from an object, or making an object empty.

• An observer is an operation that allows us to observe the state of one or more of
the data values without changing them. Observers come in several forms: predi-
cates that ask if a certain property is true, accessor or selector methods that
return a value based on the contents of the object, and summary methods that
return information about the object as a whole. A Boolean method that returns
true if an object is empty and false if it contains any components is an exam-
ple of a predicate. A method that returns a copy of the last item put into a struc-
ture is an example of an accessor method. A method that returns the number of
items in a structure is a summary method.

• An iterator is an operation that allows us to process all the components in a data
structure sequentially. Operations that return successive list items are iterators.

Data structures have a few features worth noting. First, they can be “decomposed”
into their component elements. Second, the organization of the elements is a feature of

Data structure A collection of data elements whose
logical organization reflects a relationship among the
elements. A data structure is characterized by access-
ing operations that are used to store and retrieve the
individual data elements; the implementation of the
composite data members in an ADT

2.1 Different Views of Data | 75

the structure that affects how each element is accessed. Third, both the arrangement of
the elements and the way they are accessed can be encapsulated.

Note that although we design our data structures as ADTs, data structures and ADTs
are not equivalent. We could implement a data structure without using any data encapsu-
lation or information hididng whatsoever (but we won’t!). Also, the fact that a construct
is defined as an ADT does not make it a data structure. For example, the Date class
defined in Chapter 1 implements a Date ADT, but that is not considered to be a data
structure in the classical sense. There is no structural relationship among its components.

Data Levels

An ADT specifies the logical properties of a data type. Its implementation provides a spe-
cific representation such as a set of primitive variables, an array, or even another ADT.
A third view of a data type is how it is used in a program to solve a particular problem;
that is, its application. If we were writing a program to keep track of student grades, we
would need a list of students and a way to record the grades for each student. We might
take a by-hand grade book and model it in our program. The operations on the grade
book might include adding a name, adding a grade, averaging a student’s grades, and so
forth. Once we have written a specification for our grade-book data type, we must
choose an appropriate data structure to use to implement it and design the algorithms to
implement the operations on the structure.

In modeling data in a program, we wear many hats. We must determine the abstract
properties of the data, choose the representation of the data, and develop the operations
that encapsulate this arrangement. During this process, we consider data from three dif-
ferent perspectives, or levels:

1. Logical (or abstract) level: An abstract view of the data values (the domain) and the
set of operations to manipulate them. At this level, we define the ADT.

2. Application (or user) level: A way of modeling real-life data in a specific context;
also called the problem domain. Here the application programmer uses the ADT to
solve a problem.

3. Implementation level: A specific representation of the structure to hold the data
items, and the coding of the operations in a programming language. This is how we
actually represent and manipulate the data in memory: the underlying structure and
the algorithms for the operations that manipulate the items on the structure. For the
built-in types, this level is hidden from the programmer.

An Analogy

Let’s look at a real-life example: a library. A library can be decomposed into its compo-
nent elements: books. The collection of individual books can be arranged in a number of
ways, as shown in Figure 2.3. Obviously, the way the books are physically arranged on
the shelves determines how one would go about looking for a specific volume. The partic-
ular library we’re concerned with doesn’t let its patrons get their own books, however; if
you want a book, you must give your request to the librarian, who gets the book for you.

The library “data structure” is composed of elements (books) with a particular inter-
relationship; for instance, they might be ordered based on the Dewey decimal system.

76 | Chapter 2: Data Design and Implementation

Figure 2.3 A collection of books ordered in different ways

Advanced Algorithms
ADVENTURES IN ALGEBRA

Biology Today

Gone with the Wind

HUMAN ANATOMYIntroduction
to Calculus

Le
av

es
 o

f
G

ra
ss

Programming in Java

Programming Proverbs

Relational Databases
Romeo and Juliet

SIMPLY STATISTICSSo
ft

w
ar

e
En

gi
ne

er
in

g

in
 J

av
a

Advanced Algorithm
s

ADVENTURES IN ALGEBRA

Gone with the Wind
HUMAN ANATOMY

Program
m

ing in Java

Romeo and Juliet

SIMPLY STATISTICS

Softw
are Engineering

in Java

Leaves of
G

rass
In

trodu
ction

to C
alcu

lu
s

Biology Today

Program
m

ing Proverbs

Relational Databases

Advanced Algorithm
s

ADVENTURES IN ALGEBRA

Gone with the Wind

HUMAN ANATOMY

Program
m

ing in Java

Romeo and Juliet

SIMPLY STATISTICS

Softw
are Engineering

in Java Leaves of
G

rass

In
trodu

ction
to C

alcu
lu

s

Biology Today

Program
m

ing Proverbs

Relational Databases

All over the place (Unordered)

Alphabetical order by title

Ordered by subject
Computer Science Math Biology Literature

Accessing a particular book requires knowledge of the arrangement of the books. The
library user doesn’t have to know about the structure, though, because it has been
encapsulated: Users access books only through the librarian. The physical structure and
abstract picture of the books in the library are not the same. The online catalog provides
logical views of the library—ordered by subject, author, or title—that are different from
its underlying representation.

We use this same approach to data structures in our programs. A data structure is
defined by (1) the logical arrangement of data elements, combined with (2) the set of
operations we need to access the elements. Let’s see what our different viewpoints mean

2.1 Different Views of Data | 77

in terms of our library analogy. At the application level, there are entities like the
Library of Congress, the Dimsdale Collection of Rare Books, the Austin City Library, and
the North Amherst branch library.

At the logical level, we deal with the “what” questions. What is a library? What
services (operations) can a library perform? The library may be seen abstractly as “a col-
lection of books” for which the following operations are specified:

• Check out a book.
• Check in a book.
• Reserve a book that is currently checked out.
• Pay a fine for an overdue book.
• Pay for a lost book.

How the books are organized on the shelves is not important at the logical level,
because the patrons don’t actually have direct access to the books. The abstract viewer
of library services is not concerned with how the librarian actually organizes the books
in the library. The library user only needs to know the correct way to invoke the desired
operation. For instance, here is the user’s view of the operation to check in a book: Pre-
sent the book at the check-in window of the library from which the book was checked
out, and receive a fine slip if the book is overdue.

At the implementation level, we deal with the answers to the “how” questions. How
are the books cataloged? How are they organized on the shelf? How does the librarian
process a book when it is checked in? For instance, the implementation information
includes the fact that the books are cataloged according to the Dewey decimal system
and arranged in four levels of stacks, with 14 rows of shelves on each level. The librar-
ian needs such knowledge to be able to locate a book. This information also includes the
details of what happens when each of the operations takes place. For example, when a
book is checked back in, the librarian may use the following algorithm to implement the
check-in operation:

CheckInBook
Examine due date to see whether the book is late.
if book is late

Calculate fine.
Issue fine slip.

Update library records to show that the book has been returned.
Check reserve list to see if someone is waiting for the book.
if book is on reserve list

Put the book on the reserve shelf.
else

Replace the book on the proper shelf, according to the library’s shelf arrangement scheme.

78 | Chapter 2: Data Design and Implementation

Figure 2.4 Communication between the application level and implementation level

The User
Perspective

The Implementation
Perspective

Reserved Shelf

Check in Books

Here

To
Stacks
1 – 6

To
Stacks
7 – 13

Fine
Slip

$

PascalPlus

Application Data
Abstraction Implementation

Application
Programmer

Utility
Programmer

SPECIFICATIONS

All this, of course, is invisible to the library user. The goal of our design approach is to
hide the implementation level from the user.

Picture a wall separating the application level from the implementation level, as
shown in Figure 2.4. Imagine yourself on one side and another programmer on the
other side. How do the two of you, with your separate views of the data, communicate
across this wall? Similarly, how do the library user’s view and the librarian’s view of
the library come together? The library user and the librarian communicate through
the data abstraction. The abstract view provides the specification of the accessing
operations without telling how the operations work. It tells what but not how. For
instance, the abstract view of checking in a book can be summarized in the following
specification:

float CheckIn (book)

Effect: Accesses book and checks it into this library.
Returns a fine amount (0 if there is no fine).

Preconditions: Book was checked out of this library; book is
presented at the check-in desk.

Postconditions: return value = (amount of fine due); contents of
this library is the original contents + book

Exception: This library is not open

2.2 Java’s Built-in Types | 79

The only communication from the user into the implementation level is in terms of
input specifications and allowable assumptions—the preconditions of the accessing rou-
tines. The only output from the implementation level back to the user is the transformed
data structure described by the output specifications, or postconditions, of the routines, or
the possibility of an exception being raised. Remember that exceptions are extraordinary
situations that disrupt the normal processing of the operation. The abstract view hides the
underlying structure but provides functionality through the specified accessing operations.

Although in our example there is a clean separation, provided by the library wall,
between the use of the library and the inside organization of the library, there is one
way that the organization can affect the users—efficiency. For example, how long does a
user have to wait to check out a book? If the library shelves are kept in an organized
fashion, as described above, then it should be relatively easy for a librarian to retrieve a
book for a customer and the waiting time should be reasonable. On the other hand, if
the books are just kept in unordered piles, scattered around the building, shoved into
corners and piled on staircases, the wait time for checking out a book could be very
long. But in such a library it sure would be easy for the librarian to handle checking in
a book—just throw it on the closest pile!

The decisions we make about the way data are structured affect how efficiently we
can implement the various operations on that data. One structure leads to efficient
implementation of some operations, while another structure leads to efficient implemen-
tation of other operations. Efficiency of operations can be important to the users of the
data. As we look at data structures throughout this textbook we discuss the benefits and
drawbacks of various design structure decisions. We often study alternative organiza-
tions, with differing efficiency ramifications.

When you write a program as a class assignment, you often deal with data at each
of our three levels. In a job situation, however, you may not. Sometimes you may pro-
gram an application that uses a data type that has been implemented by another pro-
grammer. Other times you may develop “utilities” that are called by other programs. In
this book we ask you to move back and forth between these levels.

2.2 Java’s Built-In Types

Java’s classification of built-in data types is shown in Figure 2.5. As you can see, there
are eight primitive types and three composite types; of the composite types, two are
unstructured and one is structured. You are probably somewhat familiar with several of
the primitive types and the composite types class and array.

In this section, we review all of the built-in types. We discuss them from the point of
view of two of the levels defined in the previous section: the logical (or abstract) level and
the application level. We do not look at the implementation level for the built-in types,
since the Java environment hides it and we, as programmers, do not need to understand
this level in order to use the built-in types. (Note, however, that when we begin to build
our own types and structures, the implementation view becomes one of our major con-
cerns.) For the built-in types we can interpret the remaining two levels as follows:

• The logical or abstract level involves understanding the domain of the data type
and the operations that can be performed on data of that type. For the composite

80 | Chapter 2: Data Design and Implementation

Figure 2.5 Java data types

integral

compositeprimitive

byte char short int

floating point

Java data types

float

unstructured structured

doublelong

boolean

class interface array

types, the main operation of concern is how to access the various components of
the type.

• The application level—in other words, the view of how we use the data types—
includes the rules for declaring and using variables of the type, in addition to
considerations of what the type can be used to model.

Primitive Data Types

Java’s primitive types are boolean, byte, char, double, float, int, long, and
short. These primitive types share similar properties. We first look closely at the int
type from our two points of view, and then we give a summary review of all the others.
We understand that you are already familiar with the int type; we are using this oppor-
tunity to show you how we apply our two levels to the built-in types.

Logical Level
In Java, variables of type int can hold an integer value between �2147483648 and
2147483647. Java provides the standard prefix operations of unary plus (+) and unary
minus (-). Also, of course, the infix operations of addition (+), subtraction (-), multipli-
cation (*), division (/), and modulus (%). We are sure you are familiar with all of these
operations; remember that integer division results in an integer, with no fractional part.

Application Level
We declare variables of type int by using the keyword int, followed by the name of
the variable, followed by a semicolon. For example

int numStudents;

You can declare more than one variable of type int, by separating the variable names
with commas, but we prefer one variable per declaration statement. You can also pro-
vide an initial value for an int variable by following the name of the variable with an
“= value” expression. For example

int numStudents = 50;

2.2 Java’s Built-in Types | 81

If you do not initialize an int variable, the system initializes it to the value 0.
However, many compilers refuse to generate Java byte code if they determine that you
could be using an uninitialized variable, so it is always a good idea to ensure that your
variables are assigned values before they are used in your programs.

Variables of type int are handled within a program “by value.” This means the
variable name represents the location in memory of the value of the variable. This infor-
mation may seem to belong in a subsection on implementation. However, it does
directly affect how we use the variables in our programs, which is the concern of the
application level. We treat this topic more completely when we reach Java’s composite
types, which are not handled by value.

For completeness sake, we should mention what an int variable can be used to
model: Essentially anything that can be characterized by an integer value in the range
stated above. Programs that can be modeled with an integer between negative two bil-
lion and positive two billion include the number of students in a class, test grades, city
populations, and so forth.

We could repeat the analysis we made above of the int type for each of the primi-
tive data types, but the discussion would quickly become redundant. Note that byte,
short, and long types are also used to hold integer values, char is used to store Uni-
code characters, float and double are used to store “real” numbers, and the boolean
type represents either true or false. Appendix C contains a table showing, for each
primitive type, the kind of value stored by the type, the default value, the number of
bits used to implement the type, and the possible range of values.

Let’s move on to the composite types.

The Class Type

Primitive data types are the building blocks for composite types. A composite type gath-
ers together a set of component values, sometimes imposing a specific arrangement on
them (see Figure 2.6). If the composite type is a built-in type such as an array, the
accessing mechanism is provided in the syntax of the language. If the composite type is

Figure 2.6 Atomic (simple) and composite data types

Atomic
Composite

Unstructured
Composite
Structured

82 | Chapter 2: Data Design and Implementation

a user-defined type, such as the Date class defined in Chapter 1, the accessing mecha-
nism is built into the methods provided with the class.

You are already familiar with the Java class construct from your previous courses
and from the review in Chapter 1. The class can be a mechanism for creating composite
data types. A specific class has a name and is composed of named data fields (class and
instance variables—sometimes called attributes) and methods. The data elements and
methods are also known as members of the class. The members of a class and methods
can be accessed individually by name. A class is unstructured because the meaning is
not dependent on the ordering of the members within the source code. That is, the order
in which the members of the class are listed can be changed without changing the func-
tion of the class.

In object-oriented programming, classes are usually defined to hold and hide data
and to provide operations on that data. In that case, we say that the programmer has
used the class construct to build his or her own ADT—and that is the focus of this
textbook. However, in this section on built-in types, we use the class strictly to hold
data. We do not hide the data and we do not define any methods for our classes. The
class variables are public, not private. We use a class strictly to provide unstructured
composite data collections. This type of construct has classically been called a record.
The record is not available in all programming languages. FORTRAN, for instance,
historically has not supported records; newer versions may. However, COBOL, a
business-oriented language, uses records extensively. C and C++ programmers are
able to implement records. Java classes provide the Java programmer with a record
mechanism.

Many textbooks that use Java do not present this use of the Java class mechanism,
since it is not considered a pure object-oriented construct. We agree that when practic-
ing object-oriented design you should not use classes in the manner presented in this
section. However, we present the approach for several reasons:

1. Other languages support the record mechanism, and you may find yourself working
with those languages at some time.

2. Using this approach allows us to address the declaration, creation, and use of
objects without the added complexity of dealing with class methods.

3. Later, when we discuss using classes to hide data, we can compare the information-
hiding approach to the approach described here. The benefits of information hiding
might not be as obvious if you hadn’t seen any other approach.

In the following discussion, to differentiate the simple use of the class construct used
here, from its later use to create ADTs, we use the generic term record in place of class.

Logical Level
A record is a composite data type made up of a finite collection of not necessarily
homogeneous elements called fields. Accessing is done directly through a set of named
field selectors.

We illustrate the syntax and semantics of the component selector within the con-
text of the following program:

2.2 Java’s Built-in Types | 83

public class TestCircle
{
static class Circle
{
int xValue; // Horizontal position of center
int yValue; // Vertical position of center
float radius;
boolean solid; // True means circle filled

}

public static void main(String[] args)

{
Circle c1 = new Circle();
c1.xValue = 5;
c1.yValue = 3;
c1.radius = 3.5f;
c1.solid = true;

System.out.println("c1: " + c1);
System.out.println("c1 x: " + c1.xValue);

}
}

The above program declares a record structure called Circle. The main method
instantiates and initializes the fields of the Circle record c1, and then prints the record
and the xValue field of the record to the output. The output looks like this:

c1: TestCircle$Circle[at]111f71
c1 x: 5

The Circle record variable (the circle object) c1 is made up of four components (or
fields, or instance variables). The first two, xValue and yValue, are of type int. The
third, radius, is a float number. The fourth, solid, is a boolean. The names of the
components make up the set of member selectors.

The syntax of the component selector is the record variable name, followed by a
period, followed by the member selector for the component you are interested in:

If this expression is on the left-hand side of an assignment statement, a value is being
stored in that member of the record; for example:

c1.xValue = 5;

c1.xValue

member
selector

periodstruct
variable

84 | Chapter 2: Data Design and Implementation

If it is used somewhere else, a value is being extracted from that place; for example:

output.println("c1 x: " + c1.xValue);

Application Level
Records are useful for modeling objects that have a number of characteristics. Records
allow us to associate various types of data with each other in the form of a single item.
We can refer to the composite item by a single name. We also can refer to the different
members of the item by name. You probably have seen many examples of records used
in this way to represent items.

We declare and instantiate a record the same way we declare and instantiate any
Java object; we use the new command:

Circle c1 = new Circle();

Notice that we did not supply a constructor method in our definition of the Circle
class in the above program. When using the class as a record mechanism it is not neces-
sary to provide a constructor, since the record components are not hidden and can be
initialized directly from the application. Of course, you can provide your own construc-
tor if you like, and that may simplify the use of the record. If no constructor is defined,
Java provides a default constructor that initializes the constituent parts of the record to
their default values.

In the previous section we discussed how primitive types such as ints are handled
“by value.” This is in contrast to how all nonprimitive types, including records or any
objects, are handled. The variable of a primitive type holds the value of the variable,
whereas a variable of a nonprimitive type holds a reference to the value of the variable.
That is, the variable holds the address where the system can find the value of the vari-
able. We say that the nonprimitive types are handled “by reference.” This is why, in
Java, composite types are known officially as reference types. Understanding the ramifi-
cations of handling variables by reference is very important, whether we are dealing with
records, other objects, or arrays.

The differences between the ways “by value” and “by reference” variables are han-
dled is seen most dramatically in the result of a simple assignment statement. Figure 2.7
shows the result of the assignment of one int variable to another int variable, and the
result of the assignment of one Circle object to another Circle object. Actual circles
represent the Circle objects in the figure.

When we assign a variable of a primitive type to another variable of the same type,
the latter becomes a copy of the former. But, as you can see from the figure, this is not
the case with reference types. When we assign object c2 to object c1, c1 does not
become a copy of c2. Instead, the reference associated with c1 becomes a copy of the
reference associated with c2. This means that both c1 and c2 now reference the same
object. The feature section below looks at the ramifications of using references from
four perspectives: aliases, garbage, comparison, and use as parameters.

2.2 Java’s Built-in Types | 85

Figure 2.7 Results of assignment statements

intA intA = intB

intB

15

10

intA

intB

10

10

c1

c2

c1

c2

initial state final stateoperation

c1 = c2

Java includes a reserved word null that indicates an absence of reference. If a ref-
erence variable is declared without being assigned an instantiated object, it is automati-
cally initialized to the value null. You can also assign null to a variable, for example:

c1 = null;

And you can use null in a comparison:

if (c1 == null)
output.println("The Circle is not instantiated");

Ramifications of Using References

Aliases

The assignment of one object to another object, as shown in Figure 2.7, results in both object
variables referring to the same object. Thus, we have two names for the same object. In this
case we say that we have an “alias” of the object. Good programmers avoid aliases because
they make programs hard to understand. An object’s state can change, even though it appears
that the program did not access the object, when the object is accessed through the alias. For

86 | Chapter 2: Data Design and Implementation

example, consider the IncDate class that was defined in Chapter 1. If date1 and date2 are
aliases for the same IncDate object, then the code

output.println(date1);
date2.increment();
output.println(date1);

would print out two different dates, even though at first glance it would appear that it should
print out the same date twice. This type of behavior can be very confusing for a maintenance
programmer and lead to hours of frustrating testing and debugging.

Garbage

It would be fair to ask in the situation depicted in the lower half of Figure 2.7, what happens to
the space being used by the larger circle? After the assignment statement, the program has lost
its reference to the large circle, and so it can no longer be accessed. Memory space like this, that
has been allocated to a program but that can no longer be accessed by a program, is called
garbage. There are other ways that garbage can be created in a Java program. For example, the
following code would create 100 objects of class Circle; but only one of them can be accessed
through c1 after the loop is finished executing:

Circle c1;
for (n = 1; n <= 100; n++)
{
Circle c1 = new Circle();
// code to initialize and use c1 goes here

}

The other 99 objects cannot be reached by the pro-
gram. They are garbage.

When an object is unreachable, the Java run time
system marks it as garbage., The system regularly per-
forms an operation known as garbage collection, in
which it finds unreachable objects and deallocates
their storage space, making it once again available in
the free pool for the creation of new objects.

This approach, of creating and destroying objects
at different points in the application by allocating and
deallocating space in the free pool is called dynamic
memory management. Without it, the computer
would be much more likely to run out of storage space
for data.

Comparing Objects

The fact that nonprimitive types are handled by reference impacts the results returned by the ==
comparison operator. Two variables of a nonprimitive type are considered identical, in terms of

Garbage The set of currently unreachable objects

Garbage collection The process of finding all
unreachable objects and deallocating their storage
space

Deallocate To return the storage space for an object
to the pool of free memory so that it can be reallo-
cated to new objects

Dynamic memory management The allocation and
deallocation of storage space as needed while an appli-
cation is executing

2.2 Java’s Built-in Types | 87

Figure 2.8 Comparing primitive and nonprimitive variables

intA

intB

"intA == intB" evaluates to true

"c1 == c2" evaluates to false

"c1 == c2" evaluates to true

10

10

c1

c2

c1

c2

the == operator, only if they are aliases for one another. This makes sense when you consider
that the system compares the contents of the two variables. That is, it compares the two refer-
ences that those variables contain. So even if two variables of type Circle have the same
xValue values, the same yValue values, the same radius values, and the same solid val-
ues, they are not considered equal. Figure 2.8 shows the results of using the comparison opera-
tor in various situations.

Parameter Passing

When methods are invoked, they are often passed information (arguments) through their
parameters. Some programming languages allow the programmer to control whether arguments
are passed by value (a copy of the argument’s value is used) or by reference (a copy of the argu-
ment’s memory location is used). Java does not allow such control. Whenever a variable is
passed as an argument, the value stored in that variable is copied into the method’s correspon-
ding parameter. All Java arguments are passed by value. Therefore, if the variable is of a primi-
tive type, the actual value (int, double, and so on) is passed to the method; and if it is a
reference type, then the reference that it contains is passed to the method.

Notice that passing a reference variable as an argument causes the receiving method to
receive an alias of the object that is referenced by the variable. If it uses the alias to make
changes to the object, then when the method returns, an access via the variable finds the object
in its modified state.

We return many times to these subtle, but important, considerations.

88 | Chapter 2: Data Design and Implementation

Interfaces

The word interface means a common boundary shared by two interacting systems. We
use the term in many ways in computer science. For example, the user interface of a
program is the part of the program that interacts with the user, and the interface of an
object’s method is its set of parameters and the return value it provides.

In Java, the word interface has a very specific meaning. In fact, interface is a
Java keyword. We look briefly at interfaces in this subsection. Throughout the textbook
we find places to use the Java interface mechanism, at which times we expand our cov-
erage of the topic.

Logical Level
A Java looks very similar to a Java interface. It can include data, that is, variable decla-
rations, and methods. However, all variables declared in an interface must be final,
static variables; in other words, they must be constants. And only the interface

descriptions of methods are included; no method bod-
ies or implementations are allowed. Perhaps this is
why the language designers decided to call this con-
struct an interface. Methods that are declared without
bodies are called abstract methods.

Here is an example of an interface, with one constant, Pi, and three abstract meth-
ods, perimeter, area, and weight:

public interface FigureGeometry
{
public static final float Pi = 3.14;

public abstract float perimeter();
// Returns perimeter of current object

public abstract float area();
// Returns area of current object

public abstract int weight(int scale);
// Returns weight of current object

}

Java provides the keyword abstract that we must use when declaring an abstract
method in a class. But we do not need to use it when defining the methods in an inter-
face. Its use is redundant, since all methods of an interface must be abstract. We could
have omitted it from the above code segment, but chose to show how it may optionally
be used, as added documentation, to remind us that the methods are abstract.

At the logical level we look at the domain of values of a data type and the available
operations to manipulate them. The domain of values for an interface is made up of
classes! Interfaces are used by being “implemented” by classes. For example, a program-

Abstract method A method declared in a class or an
interface without a method body

2.2 Java’s Built-in Types | 89

mer has a Circle class implement the FigureGeometry interface by using the follow-
ing line to begin the Circle class:

public class Circle implements FigureGeometry

When a class implements an interface, it receives access to all of the constants
defined in the interface. It must provide an implementation, that is, a body, for all the
abstract methods declared in the interface. So, the Circle class and any other class that
implements the FigureGeometry interface, would be required to repeat the declarations
of the three methods and also provide code for their bodies. Classes that implement an
interface are not constrained to only implementing the abstract methods; they can also
add data fields and methods of their own.

There are some other issues with interfaces (relationship to abstract classes, use of
subinterfaces) that we address, when needed, later in the text.

Application Level
Interfaces are a versatile and powerful programming construct. They can be used in the
following ways.

As a contract If we have an abstract view of a class that can have several different
implementations, we can capture our abstract view in an interface. Then we can have
separate classes implement the interface, with each class providing one of the alternate
implementations. This way we are sure that all of the classes provide the same
abstraction; we should be able to use them interchangeably in our application
programs.

To share constants If there is a set of constant values that we want to use in several
different classes, we can define the constants in an interface and have each of the
classes implement the interface. Implementing the interface provides access rights to the
constants.

To replace multiple inheritance Some languages allow classes to inherit from more
than one superclass. This is called multiple inheritance. Java does not support multiple
inheritance because it can lead to obtuse programs and would greatly complicate the
underlying Java environment. However, there are many situations for which we would
like to relate the definition of a new class to more than one previously defined class. In
these cases, in Java, we use interfaces. A class can extend one superclass, but it can
implement many interfaces. So for example, we might see a declaration such as:

public class Circle extends Figure implements FigureGeometry, Comparable

Circle inherits methods and data from the Figure class, and must implement any
abstract classes defined in the FigureGeometry and Comparable interfaces. The prime
benefit of this is that objects of type Circle can be used as if they were objects of type
Figure, FigureGeometry, or Comparable.

90 | Chapter 2: Data Design and Implementation

To provide a generic type mechanism We can design and build ADTs to help us organize
data of a specific type. For example, in Chapter 3 we implement an ADT that provides a list
of strings. This ADT, and any ADT, would be more reusable if we did not limit it to a
specific contained type, in this case, strings. It would be better to have an ADT that lets us
manipulate lists of anything. Then, at our discretion, we could use it for lists of letters or
lists of integers or whatever. We call such ADTs generic structures. In the latter part of
Chapter 3 you learn how to use the Java interface construct to provide generic structures.

Arrays

Classes provide programmers a way to collect into one construct several different attrib-
utes of an entity and refer to those attributes by name. Many problems, however, have so
many components that it is difficult to process them if each one must have a unique
name. An array—the last of Java’s built-in types—is the data type that allows us to solve
problems of this kind. We are sure that you have studied and used arrays in your previous
work. Here we revisit arrays, using the terminology and views established in this chapter.

In general terminology, an array differs from a class in three fundamental ways:

1. An array is a homogeneous structure (all components in the structure are of the
same data type), whereas classes are heterogeneous structures (their components
may be of different types).

2. A component of an array is accessed by its position in the structure, whereas a
component of a class is accessed by an identifier (the name).

3. Because array components are accessed by position, an array is a structured com-
posite type.

Logical Level
A one-dimensional array is a structured composite data type made up of a finite, fixed-
size collection of ordered homogeneous elements to which there is direct access. Finite
indicates that there is a last element. Fixed size means that the size of the array must be
known at compile time, but it doesn’t mean that all of the slots in the array must con-
tain meaningful values. Ordered means that there is a first element, a second element,
and so on. (It is the relative position of the elements that is ordered, not necessarily the
values stored there.) Because the elements in an array must all be of the same type, they
are physically homogeneous; that is, they are all of the same data type. In general, it is
desirable for the array elements to be logically homogeneous as well—that is, for all of
the elements to have the same purpose. (If we kept a list of numbers in an array of inte-
gers, with the length of the list—an integer—kept in the first array slot, the array ele-
ments would be physically, but not logically, homogeneous.)

The component selection mechanism of an array is direct access, which means we can
access any element directly, without first accessing the preceding elements. The desired
element is specified using an index, which gives its relative position in the collection.

The semantics (meaning) of the component selector is “Locate the element associ-
ated with the index expression in the collection of elements identified by the array

2.2 Java’s Built-in Types | 91

name.” Suppose, for example, we are using an array of integers, called numbers, with
10 elements. The component selector can be used in two ways:

1. It can be used to specify a place into which a value is to be copied, such as

numbers[2] = 5;

2. It can be used to specify a place from which a value is to be retrieved, such as

value = numbers[4];

If the component selector is used on the left-hand side of the assignment statement, it is
being used as a transformer: the storage structure is changing. If the component selector
is used on the right-hand side of the assignment statement, it is being used as an
observer: It returns the value stored in a place in the array without changing it. Declar-
ing an array and accessing individual array elements are operations predefined in nearly
all high-level programming languages.

In addition to component selection, there is one other “operation” available for our
arrays. In Java, each array that is instantiated has a public instance variable, called
length, associated with it that contains the number of components in the array. You
access the variable using the same syntax you use to invoked object methods: You use
the name of the object followed by a period, followed by the name of the instance vari-
able. For the numbers example, the expression:

numbers.length

would have the value 10.

Application Level
A one-dimensional array is the natural structure for the storage of lists of like data ele-
ments. Some examples are grocery lists, price lists, lists of phone numbers, and lists of
student records. You have probably used one-dimensional arrays in similar ways in
some of your programs.

The declaration of a one-dimensional array is similar to the declaration of a simple
variable (a variable of a primitive data type), with one exception. You must indicate that
it is an array by putting square brackets next to the type:

int[] numbers;

Alternately, the brackets can go next to the name of the array:

int numbers[];

We prefer the former approach to declaring arrays, since it is more consistent with the
way we declare other variables in Java.

Arrays are handled by reference, just like classes. This means they need to be
treated carefully, just like classes, in terms of aliases, comparison, and their use as

92 | Chapter 2: Data Design and Implementation

parameters. And like classes, in addition to being declared, an array must be instanti-
ated. At instantiation you specify how large the array is to be:

numbers = new int[10];

As with objects, you can both declare and instantiate arrays with a single command:

int[] numbers = new int[10];

A few more questions you may have about arrays:

• What are the initial values in an array instantiated by using new? If the array
components are primitive types, they are set to their default value. If the array
components are reference types, the components are set to null.

• Can you provide initial values for an array? An alternate way to create an array
is with an initializer list. For example, the following line of code declares, instan-
tiates, and initializes the array numbers:

int numbers[] = {5, 32, –23, 57, 1, 0, 27, 13, 32, 32};

What happens if we try to execute the statement

numbers[n] = value;

when n is less than 0 or when n is greater than 9? The result is that a memory
location outside the array would be accessed, which causes an error. This error is
called an out-of-bounds error. Some languages, C++ for instance, do not check
for this error, but Java does. If your program attempts to use an index that is not
within the bounds of the array, an ArrayIndexOutOfBoundsException is
thrown. Rather than trying to catch this error, you should write your code to pre-
vent it. Exceptions are covered in more detail later in this chapter.

Type Hierarchies

In all of our examples of composite types, notably with records and arrays, we have
used composite types whose components have been primitive types. We looked at a
record, Circle, that had four primitive type fields, and an array, numbers, of the prim-
itive int type. We used this approach to simplify the discussion; it allowed us to con-
centrate on the structuring mechanism without introducing unnecessary complications.
In practice, however, the components of these types can be any Java type or class:
built-in primitive types like we have used so far, built-in nonprimitive types, or even
user-defined types.

In this subsection we introduce several ways of combining our built-in types and
classes into versatile hierarchies.

Aggregate Objects
The instance variables of our objects can themselves be references to objects. In fact, this
is a very common approach to the organization of objects in our world. For example, a

2.2 Java’s Built-in Types | 93

page object might be part of a book object that is part of a shelf that is part of a library,
and so on.

Consider the example from the section entitled The Class Type, of a class modeling
a circle that includes variables for horizontal and vertical positions. Instead of these two
instance variables, we could have defined a Point class to model a point in two-dimen-
sional space, as follows:

public class Point
{
public int xValue;
public int yValue;

}

Then, we could define a new circle class as:

public class NewCircle
{
public Point location;
public float radius;
public boolean solid;

}

An object of class NewCircle has three
instance variables, one of which is an object
of class Point, which in turn has two
instance variables. An object, like
NewCircle, made up of other objects is
called an aggregate object. We call the rela-
tionship between the classes NewCircle and
Point a “has a” relationship, as in “a NewCircle object has a Point object” as an
instance variable. The has a relationship is depicted in UML with a diamond on the
composite end of a link between the two classes, as shown in Figure 2.9.

When we instantiate and initialize an object of type NewCircle, we must remember
to also instantiate the composite Point object. For example, to create a solid circle at
position <5, 7> with a radius of 2.5, we would have to code:

NewCircle myNewCircle = new NewCircle();
myNewCircle.location = new Point();
myNewCircle.location.xValue = 5;
myNewCircle.location.yValue = 3;
myNewCircle.radius = 2.5f;
myNewCircle.solid = true;

Although this is a syntactically correct approach to structuring data, the use of compos-
ite objects in this fashion quickly becomes tedious for the application programmer. It is

Aggregate object An object whose class definition
includes variables that are themselves references to
classes.

94 | Chapter 2: Data Design and Implementation

Figure 2.9 UML diagram showing has a relationship

New Circle

+location:Point
+radius:float

+solid:boolean

Point

+xvalue:int
+yvalue:int

1 1

much easier if we define methods, such as a constructor method, to access and manipu-
late our objects. That is the approach we take below in the section on user-defined
types, when we move from using classes as records to using classes to create true ADTs.

Arrays of Objects
Although arrays with atomic components are very common, many applications require
a collection of composite objects. For example, a business may need a list of parts
records or a teacher may need a list of students in a class. Arrays are ideal for these
applications. We simply define an array whose components are objects.

Let’s define an array of NewCircle objects. Declaring and creating the array of
objects is exactly like declaring and creating an array in which the components are
atomic types:

NewCircle[] allCircles = new NewCircle[10];

allCircles is an array that can hold ten references to NewCircle objects. What are
the locations and radii of the circles? We don’t know yet. The array of circles has been
instantiated, but the NewCircle objects themselves have not. Another way of saying
this is that allCircles is an array of references to NewCircle objects, which are set to
null when the array is instantiated. The objects must be instantiated separately. The
following code segment initializes the first and second circles. It assumes that a New-
Circle object myNewCircle has been instantiated and initialized as described in the
preceding section, Aggregate Objects.

NewCircle[] allCircles = new NewCircle[10];
allCircles[0] = new NewCircle();
allCircles[0] = myNewCircle;
allCircles[1] = new NewCircle();
allCircles[1].location = new Point();
allCircles[1].location.xValue = 6;
allCircles[1].location.yValue = 6;
allCircles[1].radius = 1.3f;
allCircles[1].solid = false;

Normally an array like this would be initialized using a for loop and a constructor
method, but we used the above approach so that we could demonstrate several of the
subtleties of the construct. Figure 2.10 shows what the array looks like with values in it.

2.2 Java’s Built-in Types | 95

Figure 2.10 The allCircles array

allCircles

allCircles[0]

allCircles[1]

allCircles[2]

•
•
•

•
•
•

allCircles[9] null

null

location:

radius: 2.5

solid: true

location:

radius: 1.3

solid: false

myNewCircle

x value: 5

y value: 3

x value: 6

y value: 6

Study the code above and Figure 2.10. In particular, notice how we must instantiate
each element in the array with the new command. Also, notice that myNewCircle and
allCircles[0] are aliases.

Keep in mind that an array name with no brackets is the array object. An array
name with brackets is a component. The component can be manipulated just like any
other variable of that type. The following table demonstrates these relationships:

Expression Class/ Type

allCircles An array
allCircles[1] A NewCircle
allCircles[1].location A Point
allCircles[1].location.xValue An int

Two-Dimensional Arrays
A one-dimensional array is used to represent items in a list or a sequence of values. A
two-dimensional array is used to represent items in a table with rows and columns, pro-
vided each item in the table is of the same type or class. A component in a two-dimen-
sional array is accessed by specifying the row and column indexes of the item in the
array. This is a familiar task. For example, if you want to find a street on a map, you
look up the street name on the back of the map to find the coordinates of the street,
usually a number and a letter. The number specifies a row, and the letter specifies a col-
umn. You find the street where the row and column meet.

96 | Chapter 2: Data Design and Implementation

Figure 2.11 alpha array

[0] [1] [2] [3] [4] [5] [6] [7] [8]

[0]

[1]

alpha

Row 0, column 5

[3]

[98]

[99]

•
•
•

Row 98, column 2

[2]

•

Figure 2.11 shows a two-dimensional array with 100 rows and 9 columns. The rows
are accessed by an integer ranging from 0 through 99; the columns are accessed by an
integer ranging from 0 through 8. Each component is accessed by a row–column pair—
for example, [0][5].

A two-dimensional array variable is declared in exactly the same way as a one-
dimensional array variable, except that there are two pairs of brackets. A two-dimen-
sional array object is instantiated in exactly the same way, except that sizes must be
specified for two dimensions.

An inline figure of a map demonstrating the previous to come

2.2 Java’s Built-in Types | 97

The following code fragment would create the array shown in Figure 2.11, where
the data in the table are floating-point numbers.

double[][] alpha;
alpha = new double[100][9];

The first dimension specifies the number of rows, and the second dimension specifies
the number of columns.

To access an individual component of the alpha array, two expressions (one for
each dimension) are used to specify its position. We place each expression in its own
pair of brackets next to the name of the array:

Note that alpha.length would give the number of rows in the array. To obtain the
number of columns in a row of an array, we access the length attribute for the specific
row. For example, the statement

rowLength = alpha[30].length;

stores the length of row 30 of the array alpha, which is 9, into the int variable
rowLength.

The moral here is that in Java each row of a two-dimensional array is itself a one-
dimensional array. Many programming languages directly support two-dimensional
arrays; Java doesn’t. In Java, a two-dimensional array is an array of references to array
objects. Because of the way that Java handles two-dimensional arrays, the drawing in
Figure 2.11 is not quite accurate. Figure 2.12 shows how Java actually implements the
array alpha. From the Java programmer’s perspective, however, the two views are syn-
onymous in the majority of applications.

Multilevel Hierarchies
We have just looked at various ways of combining Java’s built-in type mechanisms to
create composite objects, arrays of objects, and two-dimensional arrays. We do not have
to stop there. We can continue along these lines to create whatever sort of structure best
matches our data. Classes can have arrays as variables, aggregate objects can be made
from other aggregate objects, and we can create arrays of three, four, or more dimensions.

Consider, for example, how a programmer might structure data that represents stu-
dents for a professor’s grading program. This professor grades each test with both a
numerical grade and a letter grade. Therefore, the programmer decides to represent a
test as a record, called test, with two fields: score of type int and grade of type
char. Each student takes a sequence of tests—these are represented by an array of
test called marks. A student also has a name and an attendance record. So a student

alpha[0][5] = 36.4;

Row
number

Column
number

98 | Chapter 2: Data Design and Implementation

Figure 2.12 Java implementation of the alpha array

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3] [4] [5] [6] [7] [8]

•
•
•

[98]

[99]

Alpha[0][5]

Alpha[98][2]

•
•
•

•
•
•

alpha

could be represented by a record with three fields: name of type String, marks of
type array of test, and attendance of type int. Since the professor has many stu-
dents in a course, the programmer creates another array, called course, that is an
array of student. Wow! We have an array of records of three fields, one of which is
itself an array of records of two fields. See Figure 2.13 for a logical view of this multi-
level structure.

The idea is to use the built-in typing mechanisms to model the real world structure
of the data. This makes it easier for us to organize our processing of the data.

In the next section we look at how we can extend Java’s built-in types by encapsu-
lating composite types with programmer-defined methods, to simplify their access and
manipulation. When we do this we are creating our own ADTs.

2.3 Class-Based Types

The class construct sits at the center of the Java programming world. In the previous
section, you learned how the Java class could be used to structure data into records. As
we stated then, that is not a proper use of the class construct when practicing object-
oriented design. In this section, you learn how to use classes to implement ADTs. This is
the correct way to use the class construct.

2.3 Class-Based Types | 99

Figure 2.13 Logical view of array of student records

course

name:

marks: score

grade

score

grade

score

grade

. . .

attendance:

name:

marks: score

grade

score

grade

score

grade

. . .

attendance:

name:

marks: score

grade

score

grade

score

grade

. . .

attendance:

100 | Chapter 2: Data Design and Implementation

Meaning of “Type”
The Java language specification reserves the word type to mean those abstract data types (ADTs)
that are built into the language, such as int, double, char, array, and class. Every ADT
that we design and implement as a class in Java is considered by the language to be a member
of the same type, which is the Java class type.

More generally, the word type is often used to refer to an ADT and its implementation in what-
ever programming language is being used. Thus, there is a potential for some minor confusion with
respect to Java’s use of the term and the use of the term in general. Wherever we use the word
type, and the context of the usage does not clarify the meaning, we modify the term to provide
clarification. Thus, we may use “Java type,” “built-in type,” or “primitive type” to indicate that we
are using the term in the strict Java sense. Elsewhere, we use the term in its more general sense, for
example, to refer to the implementation of a programmer defined ADT. Thus, we may refer to the
Date type or the Circle type.

Using Classes in Our Programs

Once a programmer has defined a class, objects of the class type can be declared,
instantiated, and used in many other classes. For purposes of this discussion, we call the

class being used the tool class, and the class using it
the client class. The client class could be an applica-
tion, that is, a class with a main method that would be
executed when we invoke the Java interpreter. For the
client class to use the tool class, the definition of the
tool class must be visible to the Java compiler/inter-
preter, when the client class is compiled or inter-
preted. There are several ways you can ensure this:

1. Insert the tool class code directly into the client class file. In this case, we call the
tool class an inner class. There are some situations, especially with respect to
dynamic event handling, where inner classes provide an elegant solution to difficult
problems. Usually, however, their use is too restrictive.

2. Computer systems that support Java have a well-defined set of subdirectories to search
when a Java class is needed. Usually an environment variable called ClassPath
defines this set of subdirectories. Place the tool class file in one of these subdirectories.

3. The Java package construct is used by programmers to collect into a single unit a
group of related classes. Put the tool class in a package and import the package into
the client that uses it. Note that the compiler/interpreter must be able to find the
package, so it must be located in an appropriate subdirectory on the ClassPath.
The feature section below describes the details of using Java packages.

Inner class A class defined as a member of another
class

Package A set of related classes, grouped together to
provide efficient access and use

2.3 Class-Based Types | 101

Java Packages
Java lets us group related classes together into a unit called a package. Packages provide several
advantages:

• They let us organize our files.
• They can be compiled separately and imported into our programs.
• They make it easier for programs to use common class files.
• They help us avoid naming conflicts (two classes can have the same name if they are in different

packages).

Package Syntax

The syntax for a package is extremely simple. All we have to do is to specify the package name
at the start of the file containing the class. The first noncomment nonblank line of the file must
contain the keyword package followed by an identifier and a semicolon. By convention, Java
programmers start a package identifier with a lowercase letter to distinguish package names
from class names:

package someName;

After this we can write import declarations, to make the contents of other packages available to
the classes inside the package we are defining, and then one or more declarations of classes.
Java calls this file a compilation unit. The classes defined in the file are members of the package.
Note that the imported classes are not members of the package.

Although we can declare multiple classes in a compilation unit, only one of them can be
declared public. The others are hidden from the world outside the package. (We investigate visi-
bility topics later in this section.) If a compilation unit can hold at most one public class, how do
we create packages with multiple public classes? We have to use multiple compilation units, as
we describe next.

Packages with Multiple Compilation Units

Each Java compilation unit is stored in its own file. The Java system identifies the file using a
combination of the package name and the name of the public class in the compilation unit. Java
restricts us to having a single public class in a file so that it can use file names to locate all pub-
lic classes. Thus, a package with multiple public classes must be implemented with multiple
compilation units, each in a separate file.

Using multiple compilation units has the further advantage that it provides us with more
flexibility in developing the classes of a package. Team programming projects would be very
cumbersome if Java made multiple programmers share a single package file.

102 | Chapter 2: Data Design and Implementation

We split a package among multiple files simply by placing its members into separate compi-
lation units with the same package name. For example, we can create one file containing the
following code (the . . . between the braces represents the code for each class):

package someName;
public class One{ ... }
class Two{ ... }

and a second file containing:

package someName;
class Three{ ... }
public class Four{ ... }

with the result that the package someName contains four classes. Two of the classes, One and
Four are public, and so are available to be imported by application code. The two file names
must match the two public class names; thus the files must be named One.java and
Four.java.

Many programmers simply place every class in its own compilation unit. Others gather the
nonpublic classes into one unit, separate from the public classes. How you organize your pack-
ages is up to you, but you should be consistent to make it easy to find a specific member of a
package among all of its files.

How does the Java compiler manage to find these pieces and put them together? The
answer is that it requires that all compilation unit files for a package be kept in a single direc-
tory or folder that matches the name of the package. For our preceding example, a Java system
would store the source code in files called One.java and Four.java, both in a directory
called someName.

The import Statement

In order to access the contents of a package from within a program, you must import it into
your program. You can use either of the following forms of import statements:

import packagename.*;
import packagename.Classname;

An import declaration begins with the keyword import, the name of a package and a dot
(period). Following the period you can either write the name of a class in the package, or an
asterisk (*). The declaration ends with a semicolon. If you know that you want to use exactly
one class in a particular package, then you can simply give its name in the import declaration.
More often, however, you want to use more than one of the classes in a package, and the aster-
isk is a shorthand notation to the compiler that says, “Import whatever classes from this pack-
age that this program uses.”

2.3 Class-Based Types | 103

Packages and Subdirectories

Many computer platforms use a hierarchical file system. The Java package rules are defined to
work seamlessly with such systems. Java package names may also be hierarchical; they may
contain periods separating different parts of the name, for example, ch03.stringLists. In
such a case, the package files must be placed underneath a set of subdirectories that match the
separate parts of the package name. Following the same example, the package files should be
placed in a directory named stringLists that is a subdirectory of a directory named ch03.
You can import the entire package into your program with the following statement:

import ch03.stringLists.*;

As long as the directory that contains the ch03 directory is on the ClassPath of your system,
the compiler will be able to find the package you requested. The compiler automatically looks in
all the directories listed in the ClassPath. In this case it will actually look in the ClassPath
directories for a subdirectory named ch03 that contains a subdirectory named stringLists,
and upon finding such a subdirectory, it will import all of the members of the
ch03.stringLists package that it finds there.

Many of the files created to support this textbook are organized into packages. They are
organized exactly as described above and can be found on our web site. All the files are found in
a directory named bookFiles. It contains a separate subdirectory for each chapter of the book:
ch01, ch02, ..., ch10. Where packages are used, you will find the corresponding subdirectories
underneath the chapter subdirectories. For example, the ch03 subdirectory does indeed contain
a subdirectory named stringLists that contains four files that define Java classes related to
a string list ADT. Each of the class files begins with the statement

package ch03.stringLists;

Thus, they are all in the ch03.stringLists package. If you write a program that needs to use
these files you simply need to import the package into your program and make sure the parent
directory of the ch03 directory, i.e., the bookFiles directory, is included in your computer’s
ClassPath.

We suggest that you copy the entire bookFiles directory to your computer’s hard drive,
ensuring easy access to all the book’s files and maintaining the crucial subdirectory structure
required by the packages. Also, make sure you extend your computer’s ClassPath to include
your new bookFiles dirctory. See the Preface for more information.

Sources for Classes

Java programs are built using a combination of the basic language and pre-existing
classes. In effect, the pre-existing classes act as extensions to the basic language; this
extended Java language is large, complex, robust, powerful and ever changing. Java
programmers should never stop learning about the nuances of the extended language—
an exciting prospect for those who like an intellectual challenge.

104 | Chapter 2: Data Design and Implementation

When designing a Java-based system to solve a problem, we first determine what
classes are needed. Next we determine if any of these classes already exist; and if not,
we try to discover classes that do exist that can be used to build the needed classes.
Additionally, we often create our own classes, “helper” classes that are used to build the
needed classes.

Where do the classes come from? There are three sources:

1. The Java Class Library—The Java language is bundled with a class library that
includes hundreds of useful classes. We look at the library in a subsection below.

2. Build your own—Suppose you determine that a certain class would be useful to aid
in solving your programming problem, but the class does not exist. Therefore, you
create the needed class, possibly using pre-existing classes in the process. The new
class becomes part of the extended language, and can be used on future projects.
We look at how to build our own classes in a later section, and throughout the rest
of the textbook.

3. Off the shelf—Software components, such as classes or packages of classes, which
are obtained from third party sources, are called off-the-shelf components. When
they are bought, we call them “commercial off-the-shelf” components, or COTS.
Java components can be bought from software shops, or even found free on the
web. When you obtain software, or anything else, from the web for your own use,
you should make sure you are not violating a copyright. You also need to use care
in determining that free components work correctly and do not contain viruses or
other code that could cause problems.

As our study of data structures, abstract data types, and Java continues, we some-
times investigate how to build a class that mirrors the functionality of a pre-existing
class, for example a class in the Java Class Library. There are two reasons we may do

Programmer

Basic Java Language

Java Class Library

Off the Shelf Components

2.3 Class-Based Types | 105

this: convenience and computer science content. It may be that the class provides a
good, convenient example of a language construct or programming approach—for
example, our use of the Date example throughout the first two chapters—even though
the library provides ways of creating and using Date objects. Alternately, it may be that
the study of the class is crucial to the content of this textbook—classic data structures.
For example, in Chapter 4 we study how to implement a Stack ADT, even though a
Stack ADT is provided in the library. Understanding the possible implementations of
stacks, and the ramifications of implementation choices, is considered crucial for serious
students of computing.

There are other reasons that a programmer might want to create his or her own
class that mimic the functionality of a library class: simplicity and control. The Java
developers designed library classes to provide robust functionality. Robustness is an
important quality for library classes. Sometimes, however, the robustness of a class
equates to complexity or inefficiency. Addi-
tionally, you must remember that the Java
Class Library is not a static construct. The
changes to the library are usually in the form
of enhancements, but there have also been
cases where features of the library have been
deprecated. A deprecated feature is one that
may not be supported in future versions of
the library. Deprecation acts as a warning to programmers—use this construct at your
own risk; it works now, but might not work later!

Consider the history of dates in Java. In the original public release of Java, JDK 1.0
in 1995, the library included a Date class that allowed a programmer to represent dates
and times. This class could be used to specify and manipulate a date/time in two forms:
the number of milliseconds between the date/time and January 1, 1970, midnight, or by
using discrete attributes of the date/time, such as month, day, year, hour. As you can
imagine, for most purposes the latter form was easier to use. Nevertheless, the latter
form of use was deprecated with the release of JDK 1.1 in 1996 because it did not sup-
port Java’s goal of internationalization. Although many countries use the Gregorian cal-
endar that the Date class is based on, there are other calendars in use around the world,
for example the Chinese calendar.

The Calendar class was introduced in Java 1.1 to support all kinds of calendars. It
provided features to replace the deprecated functionality of Date. The Calendar class is
well designed and very useful; but it is not trivial to use. The Calendar class cannot be
directly instantiated; programmers must use its getInstance method to obtain a local
instance of a calendar, and instantiate this local instance as a subclass of Calendar. To
use the “standard” solar calendar, with years numbered from the birth of Christ, a pro-
grammer would use the GregorianCalendar subclass of Calendar. The Gregorian-
Calendar class exports 28 methods and defines 42 constants for use with the methods
of the class.

Considering all of this, it is no wonder that programmers who need a simple date
class—perhaps one that allows a month, day, and year to be passed to the constructor,
provides three simple observer methods, and provides methods to increment a date and
compare two dates—might decide to implement their own class.

Deprecated A Java construct is deprecated when the
Java developers have decided that the construct might
not be supported in future releases of the language;
use of deprecated features is discouraged.

106 | Chapter 2: Data Design and Implementation

1http://java.sun.com/j2se/1.3/docs/api/index.html

The Java Class Library

Programming with an object-oriented language depends heavily on the use of classes
from the language’s standard library. The Java standard class library includes over 70
packages and subpackages, with hundreds of classes and interfaces, and thousands of
exported methods and constants. It is not our goal in this textbook to teach the stan-
dard library. However, we do encourage the reader to begin to learn about the library,
and to continue studying the library.

Sun Microsystems, Inc., the developers of Java, maintains a public web site1 where
they have provided extensive documentation about the class libraries. The list below
briefly describes some of the prominent packages and subpackages found on the Sun
site. Visit their site for more information. In this subsection, we review some of the most
important classes, especially with respect to the goals of this textbook. Throughout the
text, as we reach places where we need to use library constructs in a new way, we
expand on this coverage.

Some Important Library Packages

java.awt (Abstract Windowing Toolkit) Contains tools for creating user
interfaces, graphics, and images.

java.awt.event Provides interfaces and classes for handling the different types of
events created by AWT components.

java.io System input and output through data streams, serialization, and
the file system.

java.lang Provides basic classes for use in creating Java programs.
java.math Provides classes for performing mathematical operations.
java.text Provides classes and interfaces for handling text, dates, numbers,

and messages.
java.util Contains the collections framework, legacy collection classes, event

model, date and time facilities, internationalization, and miscella-
neous utility classes (a string tokenizer, a random-number genera-
tor, and a bit array).

java.util.jar Provides classes for reading and writing the JAR (Java ARchive)
file format, which is based on the standard ZIP file format.

Some Useful General Library Classes
As we are studying data structures with the Java language, we use various utility classes
that are available in the Java library. In this subsection, we introduce some of these
classes.

2.3 Class-Based Types | 107

The System class The System class is part of the java.lang package. All of the
System class’s methods and variables are class methods and variables. They are defined
to be static—they are unique to the class, rather than to objects of the class. We simply
use the System class methods and variables directly in our programs; we access them
through the class name rather than through the name of an instantiated object. For
example, in the TestCircle program listed above in Section 2.2, we used the System
variable out as a destination for our output:

System.out.println("c1: " + c1);

We can also use the System class to obtain current system properties, such as the
amount of available memory.

The Random class The Random class is part of the util package. Programmers use it
to generate a list of random numbers. Random numbers are useful when creating
simulations, or models of real-world situations, with our programs. We use the Random
class in Chapter 10 to generate lists of random numbers for sorting.

The DecimalFormat class The DecimalFormat class is part of the java.text
package. To use it a programmer calls one of its constructors to define a format pattern.
Then this instance can be used to format numbers for output. In Chapter 4 we use the
DecimalFormat class to format numbers so that output columns line up nicely.

The Throwable and Exception Classes We introduced the concept of exceptions in
Chapter 1. Recall that an exception is associated with an unusual, often unpredictable
event, detectable by software or hardware,
that requires special processing. One system
unit raises or throws an exception, and
another unit catches the exception and
processes it. Processing an exception is also
called handling the exception.

When a part of a Java system determines
that an exception has occurred, it “announces”
the exception using the Java throw statement.
This can occur within the Java interpreter, within a library method, or within our own
code. (We discuss how to define, and how to determine when to throw our own excep-
tions, in the section below about building our own ADTs. For now, we look at predefined
exceptions.) When an exception is thrown, it must either be caught and handled by the
surrounding block of code, or thrown again to the next outer block of code. If an excep-
tion is thrown all the way out of a method, it propagates to the calling method. An excep-
tion that is continually thrown until it makes it all the way up the chain of calling
methods and is thrown by the main method to the Java interpreter, is handled by the
interpreter: An error message is printed along with some system information (a system
stack trace) and the program exits.

Throw an exception Interrupt the normal processing
of a program to raise an exception that must be han-
dled or rethrown by the surrounding block of code

Catch an exception Code that is executed to handle
a thrown exception is said to catch the exception

108 | Chapter 2: Data Design and Implementation

All exceptions in Java are subclasses of the java.lang.Throwable class. Only
objects or instances of this class (or subclasses of this class) are thrown within a Java
system. The Throwable class provides several methods related to exceptions, notably
the getMessage method that returns the error message associated with the Throwable
object, and the printStackTrace method that prints a trace of the sequence of system
calls that led to the throw statement.

The Throwable class has two standard subclasses: java.lang.Error and
java.lang.Exception. The former is used for defining catastrophic exceptional situa-
tions that are best handled by simple program termination. We are concerned with the
latter subclass, the Exception class, which is used for defining exceptional situations
from which we may be able to recover. The Exception class extends the Throwable
class with two methods, both constructors:

Method Name Parameter Type Returns Operation Performed

Exception (none) Exception Constructs an exception with no
specified message.

Exception String Exception Constructs an exception with the
specified message.

Exceptions are defined by extending the Exception class. If you look at the Java
library information you see dozens of predefined subclasses of the Exception class,
each of which might also have many subclasses. The result is that there are hundreds of
exceptions defined in the Java library.

Let’s look at a few examples of throwing and handling predefined exceptions.
Review the IncDate test driver program, IDTestDriver, developed at the end of

Chapter 1. Notice the heading of the program’s main method:

public static void main(String[] args) throws IOException

As you can see, in the declaration of the main method we have told the system that this
method can throw the predefined IOException exception. Where would IOException
be raised in the program? This program uses the readLine method defined in the
BufferedReader class. A quick look at the documentation of the readLine method
shows that it throws an IOException “if an I/O error occurs.” Since it is possible for
that exception to be thrown by the readLine method, the surrounding code (the main
method), must either catch and handle the exception, or throw the exception. In this
case, we have decided to just throw the exception out to the interpreter, which would
terminate the program. Note that this is a perfectly valid option; in fact, if there is not
enough information to properly handle an exception at one level of a program, the best
approach is to throw the exception out to the next level, where it may be handled more
properly.

If we decided to handle the exception within the test driver program itself we would
surround the section of the program where the exception can be raised with a try-catch
statement. For example:

2.3 Class-Based Types | 109

try
{
month = Integer.parseInt(dataFile.readLine());
day = Integer.parseInt(dataFile.readLine());
year = Integer.parseInt(dataFile.readLine());

}
catch (IOException readExcp)
{
outFile.println("There was trouble reading in month, day, year.");
outFile.println("Exception: " + readExcp.getMessage());
System.exit();

}

Now, if the IOException exception is raised by any of the readLine methods
within the try block, it is handled by the code in the catch block. Notice the rather
unusual syntax of the catch statement:

catch (ExceptionClassName varName)

If the exception class referenced in the catch statement is thrown by any of the state-
ments in the try block, the catch statement defines a new object of that exception class,
and that object becomes equated with the thrown exception. So in this example, the
variable readExcp represents the exception that is caught. Because readExp is an
instantiation of a subclass of Throwable, it has a getMessage method. In the catch
block we can use readExcp.getMessage() to print the message associated with the
exception.

In this example, we are handling the exception by printing our own brief error mes-
sage, then printing the error message associated with the exception, and then terminat-
ing the program. Realistically, there is not much more we can do in this situation. Since
this is essentially the same action the interpreter does for us anyway, it is probably bet-
ter to just throw the exception. Besides, as we explained when we developed the test
driver program, it is not important that the test driver be robust, since we are only using
it to test another class; the test driver is not delivered to a customer.

There are some other nuances involved with handling predefined exceptions—for
example, the use of Java’s finally clause, and the option of handling and still
rethrowing the exception. It could quickly become confusing if we tried to cover all of
these topics at once, so we put off a discussion of other options until we reach an exam-
ple that requires their use.

One last note about predefined exceptions. The java.lang.RunTimeException
class is treated uniquely by the Java environment. Exceptions of this class are thrown
during the normal operation of the Java Virtual Machine when a standard run-time pro-
gram error occurs. Examples of run-time errors are division by zero and array-index-
out-of-bounds situations. Since run-time exceptions can happen in virtually any method
or segment of code, we are not required to explicitly handle these exceptions. If it were

110 | Chapter 2: Data Design and Implementation

required, our programs would become unreadable because of all the necessary try, catch,
and throw statements. These exceptions are classified as unchecked exceptions.

Wrappers There are situations where a Java programmer wants to use a variable of
class Object to reference many different kinds of objects. This is possible, since

Object is a superclass of all other classes. This
feature provides a powerful tool; however, it does
suffer from one limitation—the variable of class
Object cannot reference primitive type values, since
the primitive types are not objects. To resolve this
deficiency, the Java Class Library includes a wrapper
class for each of the primitive types. To store a
primitive value in the Object variable, the
programmer first “wraps” it in the appropriate
wrapper class. These classes are known as wrapper
classes since they literally wrap a primitive valued

variable in an object’s structure, as shown in Figure 2.14. The following table lists the
primitive types and the built-in class to which each corresponds.

Primitive Type Object Type

boolean Boolean

byte Byte

char Character

double Double

float Float

int Integer

long Long

short Short

As you can see, the general rule is that the class name is the same as the name of
the built-in type, except that its first letter is capitalized. The two cases that differ are
that the class corresponding to int is called Integer and the class corresponding to
char is Character.

The wrapper classes are a part of the java.lang package.
In addition to allowing us to treat a primitive type as an object, the wrapper classes

provide many useful conversion and utility methods related to their associated primitive
type. For example, we used the Integer wrapper class method parseInt in the
IDTestDriver program in Chapter 1:

month = Integer.parseInt(dataFile.readLine());
day = Integer.parseInt(dataFile.readLine());
year = Integer.parseInt(dataFile.readLine());

Unchecked exception An exception of the Run-
TimeException class, it does not have to be
explicitly handled by the method within which it might
be raised.

Wrapper class A Java class that wraps a primitive
type, letting it be manipulated as an object, and pro-
viding some useful utility methods related to the type.

2.3 Class-Based Types | 111

The parseInt method accepts a string as a parameter and transforms it into the corre-
sponding integer. For example if it is passed the string “27” it returns the int value 27.
Since the BufferedReader datafile we defined in the IDTestDriver program
returns all input in the form of strings, the parseInt method allows us to transform the
input into a more useful form.

Some Class Library ADTs
In addition to the utility classes just described, the Java Class Libraries include some
ADTs that are pertinent to your study. A class provides an ADT if its basic purpose is to
allow the programmer to store data in an abstract structure, hiding the implementation
of the structure from the programmer but allowing the programmer to access the data
through various exported methods.

In some sense the wrapper classes described at the end of the previous section provide
ADTs—but the main way we use those classes is to access their general utility class meth-
ods, such as the parseInt method of Integer. Such methods are not really acting on an
object; parseInt accepts a string parameter and returns a primitive int. It is invoked
through the Integer class and not through a specific object of the class.

Figure 2.14 The integer value 5 as an int variable value, and an Integer object value

value

value 5 as an int

value 5 as an Integer

5

value:Integer

hidden value holder:int = 5

value
Integer

–hidden value holder:int

+Integer(in num:int)
+intValue():int
+parseInt(in str:String):int

112 | Chapter 2: Data Design and Implementation

In this section we look at the Java Class Library ADTs String and ArrayList from
the logical-level and application-level viewpoints. For array lists we also take a peek at
the implementation level, since it is instructive to do so.

Strings The Java String class is part of the java.lang package. Remember that this
package provides classes that are fundamental to the design of the Java programming
language. In fact, this package is automatically imported into every Java program.

Strings are a fundamental building block for many programs. We have already been
using them extensively in this textbook, for input and output to our programs and to
indicate file names within our test drivers. We assume you have some experience using
strings in your previous programming. Nevertheless, we provide a brief review of the
Java String class here.

Logical Level The first thing we want to remind you about strings is that they are
immutable. If an object doesn’t have any methods that can change its state, it is

immutable. A string is an immutable object; we can
only retrieve its contents. There is no way to change a
string object. We can only assign a new reference to a
String variable. In other words, a String variable
references a String object. Once created, that object

cannot be changed; however, we can change the String variable so that it references a
different String object.

The Java String class provides operations for joining strings, copying portions of
strings, changing the case of letters in strings, converting numbers to strings, and con-
verting strings to numbers. Their use is straightforward and we leave it to you to review
them. Notice that, due to the immutability of strings, any operation that appears to
change a string, for example the toUpperCase method, actually returns a new String
object rather than changing the current string. For example, if the string objectnameB
has an associated value “Adam”, the statement

nameA = nameB.toUpperCase();

creates a new String object with value “ADAM”, assigns its reference to the nameA
string variable, but leaves the nameB string variable and object unchanged.

You cannot compare strings using the relational operators. Syntactically, Java lets
you write the comparisons for equality (==) and inequality (!=) between values of class
String, but the comparison that this represents is not what you typically want. Since
String is a reference type, when you compare two strings this way, Java checks to see
that they have the same address. It does not check to see whether they contain the same
sequence of characters.

Rather than using the relational operators, we compare strings with a set of value-
returning instance methods that Java supplies as part of the String class. Because they

Immutable object An object whose state cannot be
changed once it is created

2.3 Class-Based Types | 113

are instance methods, the method name is written following a String object, separated
by a dot. The string that the method name is appended to is one of the strings in the
comparison, and the string in the parameter list is the other. The two most useful com-
parison methods are summarized in the following table.

Method Name Parameter Type Returns Operation Performed

equals String boolean Tests for equality of string contents.

compareTo String int Returns 0 if equal, a positive integer
if the string in the parameter comes
before the string associated with the
method, and a negative integer if the
parameter comes after it.

For example, if lastName is a String variable, you can use

lastName.equals("Olson")

to test whether lastName equals “Olson.”

Application Level Since the use of strings in programs is so prevalent, the Java
language provides a few shortcuts for using the String class that differentiate it from
all the other classes in the Java library. We saw one of these in Chapter 1 when we
noted how a toString method is automatically applied to an object that is being used
as a string. Let’s look at two more special conventions for strings, string literals, and the
concatenation operator.

String Literals Just as Java provides literals for all of its primitive types (for example
–154 is a literal of type int and true is a literal of type boolean), it provides a literal
string mechanism. To indicate a literal string, you simply enclose the sequence of
characters between double quotation marks. For example:

"this is a literal string"

A literal string actually represents an object of class String. Enclosing a sequence of
characters in the double quotation marks is equivalent to declaring and instantiating a
new String object. Therefore, the following two code sequences are equivalent:

String myString;
myString = new String ("The Cat in the Hat");

String myString = "The Cat in the Hat";

114 | Chapter 2: Data Design and Implementation

The String Concatenation Operator The String class exports a method concat that
allows a programmer to concatenate two strings together to form a third string.
However, this operation is so prevalent in Java programs that the language designers
provide us with a shortcut, the + string operation. The result of concatenating two
strings is a new string containing the characters from both strings. For example, given
the statements

String first = "The Cat in the Hat";
String second = "Comes Back";
String third = first + second;
output.println(third);

the string “The Cat in the Hat Comes Back” appears in the output stream. Notice that
the system does not automatically insert blanks between two concatenated strings.

Concatenation works only with values of type String. However, if we try to
concatenate a value of one of Java’s built-in types to a string, Java automatically
converts the value into an equivalent string and performs the concatenation. In fact,
we can concatenate an object of any class to a string; the system looks for the
object’s toString operation to transform the object into a string before the concate-
nation.

Array Lists The ArrayList class is part of the java.util package. The functionality
of the ArrayList class is similar to that of the array. In fact, the array is the
underlying implementation structure used in the class. In contrast to an array, however,
an array list can grow and shrink; its size is not fixed for its lifetime.

The ArrayList class was added to the library with the release of Java 1.2. It
provides essentially the same functionality as the original library’s Vector class,
with which you may be familiar from a previous course. However, the Vector class
supports concurrent programming; that is, it supports programs that have more than
one active thread. A thread is a flow of control in a program. Advanced Java pro-
grams can have multiple control flows that execute simultaneously and interact
with each other. The support that is necessary to enable concurrent programming
requires extra processing whenever a Vector method is invoked, even when we
aren’t using multiple threads. The extra processing makes the Vector class a poor
choice for use with single-threaded programs, such as the programs of this text-
book. For single-threaded programs, you should use the ArrayList class instead of
the Vector class.

Logical Level We approach the logical view of array lists by comparing and
contrasting them with arrays. Like an array, an array list is a structured composite data
type, made up of a collection of ordered elements. As with an array, we can access an

2.3 Class-Based Types | 115

element of an array list directly by specifying an index. However, arrays and array lists
differ in many ways:

1. Arrays can be declared to hold data of a specific type; array lists hold variables of
type Object. Therefore, every array list can hold virtually any type of data, even a
primitive type if it is contained within a wrapper object.

2. An array remains at a fixed capacity throughout its lifetime; the capacities of array
lists grow and shrink, depending on need.

3. An array has a length; an array list has a size, indicating how many objects it is
currently holding, and a capacity, indicating how many elements the underlying
implementation could hold without having to be increased.

The following table describes some of the interesting ArrayList operations.

Method Name Parameter Type Returns Operation Performed

ArrayList (none) Constructs an empty array list of
capacity 10.

ArrayList int Constructs an empty array list of
the capacity indicated by the
parameter.

add int, Object void Inserts the specified Object at the
specified position; shifts all subse-
quent elements to the right one
place.

add Object void Inserts the specified Object at the
end.

ensureCapacity int void Increases the capacity of the array
list to at least the specified capac-
ity, if it is currently less than the
specified capacity.

get int Object Returns the element at the specified
position.

isEmpty (none) boolean Returns true if the array list is
empty, false otherwise.

remove int Object Removes the element at the speci-
fied position, shifts all subsequent
elements to the left one place, and
returns the removed element.

size (none) int Returns current size.
trimToSize (none) void Trims the capacity of the array list

to its size.

116 | Chapter 2: Data Design and Implementation

Implementation Level It is not necessary to peek at the underlying implementation of
array lists in order to use them in our programs. Nevertheless, it is an instructive
exercise, and helps us understand when to choose an array list structure over an array
and vice versa.

We can imagine a Java array list consisting of an array and two integer variables
that hold the capacity (length) and size (number of current elements) of the array. The
underlying array is always “left-justified;” in other words, any empty slots are at higher
indices then the slots being used.

It is easy to see how observer methods, like get, isEmpty, and size are imple-
mented; the appropriate information is simply calculated and returned. But what about
operations that change the contents of the array list; for example, the add operation?
These are more interesting.

First, we consider a “standard” add operation, one that does not require a change in
the size of an array list. Suppose we have an array list letters that we are using to hold
characters. Suppose its capacity is 8 and it has a current size of 6. (See the “Before” section
of Figure 2.15, which represents this situation. In the figure we follow several simplifying
conventions: we show characters inside the array locations rather than show each of them
as separate objects; we label the underlying array with the name of the array list.)

Now suppose we perform the operation

letters.add(2, 'X');

To make room for the addition of the character 'X' at index 2, the underlying imple-
mentation would first copy the elements at positions 5 down to 2 into locations 6 down
to 3. That frees location 2 so that the 'X' can be copied into it. Additionally, the size
variable would need to be updated. (See the “Processing” section of Figure 2.15, which
represents the activity taking place during the add operation, and the “After” section,
which represents the state of the array list after the operation is completed.)

Notice that inserting one element into the array list requires many steps; depending
on where the element is inserted, it could require shifting the entire contents of the
underlying array (if inserted at index 0), or it could require no shifting whatsoever (if
inserted at location size).

The processing becomes even more complicated if we try to add an element to an
array list that is already at its capacity. In this case, the underlying implementation cre-
ates a new array to hold the array list information—an array that is larger than the cur-
rent array list. It then copies the contents of the old array into the new array, leaving an
empty slot for the additional element. Finally, it copies the new element into the appro-
priate location of the new array and updates the capacity and size variables. The
new array is now the array list; the old array is garbage and is eventually reclaimed by
the run-time garbage-collection process.

There is actually more that goes on behind the scenes than we have described here;
however, we think we have covered enough for you to get the point. With an array,
memory is reserved ahead of time to hold the array elements; with an array list,
memory can be allocated “on the fly,” as needed. Array lists can be a useful construct
for saving space, but the space savings might be at the expense of extra processing
time. Time/space tradeoffs are common in computer programming.

2.3 Class-Based Types | 117

Figure 2.15 Array list implementation

0 1 2 3 4 5 6 7

A B C

X

D E F

6+1→7

8

Processing

letters

size

capacity

0 1 2 3 4 5 6 7

A B C D E F

8

Before

letters

6size

capacity

0 1 2 3 4 5 6 7

A B C D E F

8

7

letters

size

capacity

X

Operation

letters.add(2,‘X’);

After

118 | Chapter 2: Data Design and Implementation

Application Level Due to the similarities between arrays and array lists, we can use an
array list in place of an array in virtually any application. However, the differences
between arrays and array lists often mean that for a specific application, one or the
other of these structures is the appropriate choice. It is impossible to list definite rules on
when to choose one approach over the other, since there can be multiple factors to
consider, and since each application has its own requirements. Nevertheless, we offer the
following short set of guidelines:

Use an array when

1. space is not an issue.

2. execution time is an issue.

3. the amount of space required does not change much from one execution of the pro-
gram to the next.

4. the actively used size of the array does not change much during execution.

5. the position of an element in the array has relevance to the application. (For
example, the value in location n represents the profits for day n of a business
period.)

Use an array list when

1. space is an issue.

2. execution time is not an issue.

3. the amount of space required changes drastically from one execution of the pro-
gram to the next.

4. the actively used size of the array list changes a great deal during execution.

5. the position of an element in the array list has no relevance to the application.

6. most of the insertions and deletions to the array list take place at the size index.
(Therefore, no extra overhead is incurred by these operations.)

We use an array list in Chapter 4 to implement a Stack ADT.

Building Our Own ADTs

In Chapter 1 we emphasized that the central task in the object-oriented design of soft-
ware is the identification of classes. Once we identify the logical properties of the
classes that we use to solve our problem, we must either find pre-existing versions of
the classes or build them ourselves. Designing and building classes as ADTs allows us to
take advantage of the benefits of abstraction and information hiding.

Remember that ADTs can be considered at three levels: The logical level specifies
the interface and functionality, the implementation level is where the coding details
take place, and the application level is where the ADT is used. Sometimes one program-
mer is involved in all three levels of an ADT—the same individual describes it, builds it,
and uses it. At other times the design might come from one programmer, the implemen-
tation from another, and a third might be the one to use it. In the course of our discus-

2.3 Class-Based Types | 119

sions, we typically assume that the designer and implementer are the same person; we
call this person the programmer. We also assume that the same person, or perhaps other
people, are the ones to use the ADT at the application level; in that role we call them the
application programmers. Finally, there are the people who use the application pro-
grams; we call them the users.

To help us understand what makes a class an ADT, we return to two previous
examples, Circle and Date. Figure 2.16 lists a version of each of these, side by side,
so that you can easily compare their implementations. Circle is an example of a
record structure. It is not an ADT since its instance variables are not hidden. Date is
an ADT. Its instance variables are hidden and cannot be directly accessed from out-
side the class.

the Circle record the Date ADT
public class Circle public class Date
{ {
public int xValue; protected int year;
public int yValue; protected int month;
public float radius; protected int day;
public boolean solid; protected static final int MINYEAR = 1583;

}
public Date(int newMonth, int newDay, int newYear)
{
month = newMonth;
day = newDay;
year = newYear;

}

public int yearIs()
{
return year;

}

public int monthIs()
{
return month;

}

public int dayIs()
{
return day;

}
}

Figure 2.16 Circle and Date implementations

120 | Chapter 2: Data Design and Implementation

Access Modifiers
The difference in visibility of the Circle data and the Date data is due to the access
modifiers used in the declaration of the data. Java allows a wide spectrum of access
control, as summarized in the following table:

Modifier Visibility

public Within the class, subclasses in the same package, subclasses in other
packages, everywhere

protected Within the class, subclasses in the same package, subclasses in other
packages

package Within the class, subclasses in the same package
private Within the class

The public access modifier used in Circle makes its data “publicly” available;
any code that can “see” an object of the class can access and change its data. Addition-
ally, any class derived from the Circle class inherits its public parts.

Public access sits at one end of the access spectrum, allowing open access to the
data. At the other end of the spectrum is private access. When a programmer declares a
class’s variables and methods as private, they can be used only inside the class itself
and they are not inherited by subclasses. We often use private access within our ADTs
to hide their data. However, if we intend to extend our ADTs with subclasses, we may
want to use the protected or package access instead.

The protected access modifier used in Date is similar to private access, only
slightly less rigid. It “protects” its data from outside access, but allows it to be accessed
from within its own class or from any class derived from its class. You may recall that
in Chapter 1 we created a subclass of Date called IncDate that included a transformer
method increment. The increment method required access to the instance variables of
Date, since it would update the represented date to the next day. Therefore, the Date
instance variables were assigned protected access. (An even better approach might have
been to include Date and IncDate in the same package, perhaps a Calendar package,
and use package access as described in the next paragraph.)

The remaining type of access is called package access. A variable or method of a
class defaults to package access if none of the other three modifiers are used. Package
access means that the variable or method is accessible to any other class in the same
package; also the variable or method is inherited by any of its subclasses that are in the
same package.

Note that the same rules for visibility and inheritance described above for instance
variables apply equally well to the methods, constants, and inner classes of a class.

Exported Methods
If we hide the data of our ADTs, then how can other classes use the data? The answer is
through publicly available methods of the class. By restricting access of the data of a

2.3 Class-Based Types | 121

class to the methods of the class, we reap the benefits of abstraction and information
hiding that were described in Chapter 1.

Consider once again the implementation of the Date ADT in Figure 2.16. The year,
month, and day variables are all protected from outside access. This particular ADT pro-
vides one constructor method, Date, which accepts three integer parameters and initial-
izes the variables of the Date object accordingly. The Date ADT also provides three
observer methods: yearIs, monthIs, and dayIs. Using the constructor and observer
methods, another class can create Date objects and “observe” the constituent data.

It is not hard to imagine creating some more interesting methods for the Date class.
For example, as was suggested before, we could include a transformer method called
increment that would change the value of the Date to the next day. We could also
create a method that operates on more than one Date object—for example, a differ-
ence method that returns the number of days between two dates. The method could
accept one date as a parameter and use the Date instance through which it is invoked
as the other date. Its declaration might look something like this:

public int difference(Date inDate);

In that case, the following program segment would assign the value 5 to the variable
daysLeft.

Date holiday = new Date (12, 25, 2002);
Date today = new Date (12, 20, 2002);
int daysLeft;

daysLeft = holiday.difference(today);

Copying Objects
In the course of using an ADT, an application programmer might need to make a copy
of the ADT object. Since ADTs are implemented as classes, they are handled by refer-
ence; if you simply use Java’s assignment operator (=) to perform the copy, you end up
with an alias of the copied object. For example, suppose oneDate and twoDate are
both Date objects, representing the dates 10/2/1989 and 4/12/1992, respectively:

Then the statement

oneDate = twoDate;

10/2/1989

4/12/1992

oneDate

twoDate

122 | Chapter 2: Data Design and Implementation

would create aliases, and garbage, as follows:

To create a true copy, and not just an alias, a programmer could use the Date con-
structor and observer methods as follows:

oneDate = new Date (twoDate.monthIs(), twoDate.dayIs(), twoDate.yearIs());

This approach would create a new Date object with the same variable values as the
twoDate object. The result of the operation would look like this:

This approach eliminates the creation of an alias. Now, oneDate and twoDate are
separate objects, and changes to one do not affect the other.

Since creating a copy of an ADT is a common operation, it is appropriate to include
a special constructor for an ADT, called a copy constructor, which encapsulates the
above operation. We pass the copy constructor an instance of the ADT and it creates a
new instance of the ADT that is a copy of the argument. For the Date class the copy
constructor would be:

public Date (Date inDate)
{
year = inDate.year;
month = inDate.month;
day = inDate.day;

}

Notice that within the copy constructor the system has direct access to the instance
variables of the Date parameter inDate, even though those variables were declared as
protected. This works because this code resides inside the Date class and therefore has

4/12/1992

4/12/1992

10/2/1989 Garbage

oneDate

twoDate

10/2/1989

4/12/1992

GarbageoneDate

twoDate

2.3 Class-Based Types | 123

access to the private and protected members. Using the copy constructor, we can now
create a true copy as follows:

oneDate = new Date (twoDate);

Creating the copy constructor for the Date class was fairly straightforward. We
simply had to copy the variables of the Date parameter to the fields of the new Date
object. This approach works fine for a simple ADT like Date. However, we must be more
careful when working with composite ADTs.

Previously in this chapter, in the section about Aggregate Objects, we listed the fol-
lowing definitions of the Point and NewCircle classes:

public class Point public class NewCircle
{ {
public int xValue; public Point location;
public int yValue; public float radius;

} public boolean solid;
}

As you can see, an object of the class NewCircle is a composite object, since one of its
instance variables is an object of the class Point. Consider the following code that
implements a copy constructor for NewCircle in the same straightforward manner that
was used for the Date class above:

public NewCircle (NewCircle inNewCircle)
// This code is incorrect
{
location = inNewCircle.location;
radius = inNewCircle.radius;
solid = inNewCircle.solid;

}

At first glance this seems as if it would provide a reasonable copy of a Circle
object. However, upon closer scrutiny, we see that there is a hidden alias that has been
created. The line in the constructor that copies the location variable

location = inNewCircle.location;

is using the standard assignment statement on an object. Since all objects are handled
by reference, what is actually copied is the
reference to that object, rather than the con-
tents of the object. We end up with two sepa-
rate Circle objects that are both referencing
the same Point object. The NewCircle copy
constructor above is an example of a shallow
copy. Shallow copying is rarely useful.

Shallow copy An operation that copies a source class
instance to a destination class instance, simply copying
all references so that the destination instance contains
duplicate references to values that are also referred to
by the source.

124 | Chapter 2: Data Design and Implementation

To rectify the problems created with a shallow copy, we need to create new
instances of any nonprimitive variables of the object that we are copying. This approach
results in a deep copy. The correct code for the copy constructor for NewCircle is:

public NewCircle (NewCircle inNewCircle)
{
location = new Point;
location.xValue = inNewCircle.location.xValue;
location.yValue = inNewCircle.location.yValue;
radius = inNewCircle.radius;
solid = inNewCircle.solid;

}

The key statement in the code above is the first
statement where we use the new command to create a
new instance of a Point object.

Notice that in this example, since the classes we
are using have public instance variables, we were able
to just directly access the x and y values of the loca-
tion variables of the inNewCircle parameter. If we
were dealing with ADTs we would have to use the

appropriate observer methods. Alternately, if the Point class included its own copy
constructor, we could use it to create the new Point object:

location = new Point(inNewCircle.location);

Figure 2.17 summarizes our discussion of copying objects. It shows the results of all
three approaches to copying a Circle object: using a simple assignment statement,
using a shallow copy, and using a deep copy. In the figure, both oneCircle and
twoCircle are objects of type NewCircle.

Exceptions
When creating our own ADTs it is possible to identify exceptional situations that
require special processing. If it is the case that the special processing cannot be deter-
mined ahead of time. It is application dependent; we should use the Java exception
mechanism to throw the problem out of the ADT and force application programmers to
handle the exceptional situation on their own. On the other hand, if handling the excep-
tional situation can be hidden within the ADT, then there is no need to burden the
application programmers with the task of handling exceptions.

For an example of an exception created to support a programmer-defined ADT, let’s
return to our Date class. As currently defined, a Date constructor could be used to cre-
ate dates with nonexistent months—for example, 15/15/2000 or even �5/15/2000. We
could avoid the creation of such dates by checking the legality of the month argument

Deep copy An operation that copies one class
instance to another, using observer methods as neces-
sary to eliminate nested references and copy only the
primitive types that they refer to. The result is that the
two instances do not contain any duplicate references.

2.3 Class-Based Types | 125

Figure 2.17 Copying objects

oneCircle

twoCircle null

location

radius 3.7

solid true

5

7

Original Situation

oneCircle

twoCircle

location

radius 3.7

solid true

5

7

Starting from Original Situation and executing
twoCircle = oneCircle

oneCircle

twoCircle

location

radius 3.7

solid true

5

7

location

radius 3.7

solid true

5

7

Starting from Original Situation and executing
a deep copy

oneCircle

twoCircle

location

radius 3.7

solid true

5

7

location

radius 3.7

solid true

Starting from Original Situation and executing
a shallow copy

126 | Chapter 2: Data Design and Implementation

passed to the constructor. But what should our constructor do if it discovers an illegal
argument? Some options:

• Write a warning message to the output stream. That’s not a very good option
because within the Date ADT we don’t really know what output stream is being
used by the application.

• Instantiate the new Date object to some default date, perhaps 0/0/0. The problem
with this approach is that the application program may just continue processing
as if nothing is wrong, and produce erroneous results. In general it is better for a
program to “bomb” then to produce erroneous results that may be used to make
bad decisions.

• Throw an exception. This way, normal processing is interrupted and the construc-
tor does not have to return a new object; instead, the application program is forced
to acknowledge the problem and either handle it or throw it out to the next level.

Once we have decided to handle the situation with an exception, we must decide
whether to use one of the library’s predefined exceptions, or to create one of our own. A
study of the library in this case reveals a candidate exception called DataFormatEx-
ception, to be used to signal data format errors. We could use that exception but we
decide it doesn’t really fit, since its not the format of the data that is the problem in this
case, it is the values of the data.

So, we decided to create our own exception, DateOutOfBounds. We could call it
“MonthoutofBounds” but we decide that we want to use the exception to indicate
other potential problems with dates, and not just problems with the month value. For
example, in the Date class we defined a class variable MINYEAR (set to 1583), repre-
senting the first complete year in which the Gregorian calendar was in use. Applica-
tion programmers should not use our Date class to represent dates earlier than that
year. The idea is that date calculations get very complicated if you allow dates before
1583. For one thing, leap year rules were different; for another, there were 10 days
that were skipped in the middle of 1582. We are imagining that we have added meth-
ods to the class that would be affected by such things, for example a method that
returns the number of days between two dates. Therefore, we wish to disallow such
dates.

We create our DateOutOfBounds exception by extending the library Exception
class. It is customary when creating your own exceptions to define two constructors, mir-
roring the two constructors of the Exception class. In fact, the easiest thing to do is define
the constructors so that they just call the corresponding constructors of the superclass:

public class DateOutOfBoundsException extends Exception
{
public DateOutOfBoundsException()
{
super();

}

2.3 Class-Based Types | 127

public DateOutOfBoundsException(String message)
{
super(message);

}
}

The first constructor is used to create an exception without an associated message;
the second constructor creates an exception with a message equal to the string argu-
ment passed to the constructor.

Next we need to consider when, within our Date ADT, we throw the exception.
All places within our ADT where a date value is created or changed should be exam-
ined to see if the resultant value could be an illegal date. If so, we should create an
object of our exception class with an appropriate message, and throw the exception.
Here is how we might write a Date constructor to check for legal months and years.
(Checking for legal days is much more complicated and we leave that as an ex-
ercise.)

public Date(int newMonth, int newDay, int newYear) throws DateOutOfBound-
sException
{
if ((newMonth <= 0) || (newMonth > 12))
throw new DateOutOfBoundsException("month must be in range 1 to 12");

else
month = newMonth;

day = newDay;

if (newYear < MINYEAR)
throw new DateOutOfBoundsException("year " + newYear +

" is too early");
else
year = newYear;

}

Notice that the message defined for each throws clause pertains to the problem dis-
covered at that point in the code. This should help the application program that is han-
dling the exception, or at least provide pertinent information to the user of the program
if the exception is propagated all the way out to the user level.

Finally, let’s see how an application program might now use the Date class. Con-
sider a program called UseDates that prompts the user for a month, day, and year, and
create a Date object based on the user’s responses. In the following code we ignore the

128 | Chapter 2: Data Design and Implementation

details of how the prompt and response are handled, to concentrate on the topics of our
current discussion:

public class UseDates
{
public static void main(String[] args) throws DateOutOfBoundsException
{
Date theDate;
// Program prompts user for a date
// M is set equal to user’s month
// D is set equal to user’s day
// Y is set equal to user’s year
theDate = new Date(M, D, Y);

// Program continues
}

}

When this program runs, and the user responds with a legal month, day, and
year, there is no problem. However, if the user responds with an illegal value—for
example, a year value of 1051—the DateOutOfBoundsException is thrown by the
Date constructor; since it is not caught within the program, it is thrown out to the
interpreter. The interpreter stops execution of the program after displaying a message
like this:

Exception in thread "main" DateOutOfBoundsException: year 1051 is too early
at Date.<init>(Date.java:18)
at UseDates.main(UseDates.java:57)

The interpreter’s message includes the name and message string of the exception, and a
trace of what calls were made leading up to the exception being thrown.

Alternately, the UseDates class could be defined to catch and handle the exception
itself, rather than throwing it to the interpreter. The application programmer could
reprompt for the date in the case of the exception being raised. Then UseDates might
be written as follows (again we ignore the user interface details):

public class UseDates
{
public static void main(String[] args)
{
Date theDate;
boolean DateOK = false;

while (!DateOK)

2.3 Class-Based Types | 129

{
// Program prompts user for a date
// M is set equal to user’s month
// D is set equal to user’s day
// Y is set equal to user’s year
try
{
theDate = new Date(M, D, Y);
DateOK = true;

}
catch(DateOutOfBoundsException OB)
{
output.println(OB.getMessage());

}
}

// Program continues
}

}

If the new statement executes without any trouble, meaning the Date constructor
did not throw an exception, then the DateOK variable is set to true and the while loop
terminates. On the other hand, if the DateOutOfBounds exception is thrown by the
Date constructor, it is caught by the catch statement. This in turn prints out the message
associated with the exception and the while loop is re-executed, again prompting the
user for a date. The program repeatedly prompts for date information until it is given a
legal date.

Notice that the main method no longer throws DateOutOfBoundsException, since
it handles the exception itself.

There are several factors to consider when determining how to use exceptions when
creating our own ADTs. First of all, we should decide what types of events can trigger
exceptions. Remember that exceptions can be used to signal any out-of-the-ordinary
event that requires special processing—there is no language-based rule that says the
event must be error related. For example, it would be possible to break out of an input
loop in reaction to an exception you raise when you try to read past the end of a file.
Reading the end-of-file marker is not really an error; it is something we expect to hap-
pen eventually when we read files. It is, in a sense, an exceptional condition, and we
can use Java’s exception mechanisms to help us handle its occurrence.

To simplify our ADT definitions, and to support a common approach to the way we
define our ADTs, we throw programmer-defined exceptions from our ADTs only in situ-
ations involving errors. For example, unexpected date values being passed to a method
or illegal sequencing of methods calls are errors. However, this does not mean we
always use exceptions in these cases.

130 | Chapter 2: Data Design and Implementation

When dealing with error situations within our ADT methods, we have several options:

1. We can detect and handle the error within the method itself. This is the best
approach if the error can be handled internally and if it does not greatly compli-
cate design.

2. We can throw an exception related to the error and force the calling method to either
handle the exception or to rethrow it. If it is not clear how to handle a particular error
situation, the best approach might be to throw it out to a level where it can be handled.

3. We can ignore the error situation. Recall the “programming by contract” discussion,
related to preconditions, in the Designing for Correctness section of Chapter 1. If the
preconditions of a method are not met, the method is not responsible for the conse-
quences. This approach is best if we are confident that the contract is usually met
by the application classes.

Therefore, when we define our ADTs, we partition potential error situations into
three sets: those to be handled internally to the ADT, those to be thrown as an
exception back to the calling process, and those that are assumed not to occur. We
document this third approach in the preconditions of the appropriate methods. We
attempt to strike a balance between the complexity required to handle all possible
error situations internally, and the lack of safety involved with handling everything
by contract.

As a general rule, an exceptional situation should be handled at the lowest level that
“knows” how to handle it. If the information needed to handle the exception is not avail-
able at a level, then the exception should be thrown. As we create ADTs to be used in
applications we see that quite often it is the application level that can best handle the
exceptions raised within the ADTs. We see examples of this as we proceed through the text.

The feature section below suggests a sequence of steps to follow when designing and
creating ADTs. The steps include many of the techniques introduced in this subsection.

Designing ADTs
When you design and create your own ADTs you can follow these steps:

1. Determine the general purpose of the ADT; determine how the application programmers use
the ADT to help solve their problems in a general sense.

2. List the specific types of operations the application program performs with the ADT. If possi-
ble, note how often the different operations are used, that is, the expected relative fre-
quency of operation calls.

3. Identify a set of public methods to be provided by the ADT class that allow the application
program to perform the desired operations. Note that there might not be a one-to-one cor-
respondence between the desired operations and the exported methods. It may be that a
single operation requires several method invocations. For example, in Chapter 3 we define a
list ADT with methods lengthIs, reset, and getNextItem. An application program

Summary | 131

must use all three of these methods to implement a “Print List” operation. In addition, a
specific method might be needed for more than one operation. For example, the lengthIs
list method might be used by a “Print List” operation and by a “Report List Size” operation.

4. Identify other public methods, based on experience and general guidelines, which help make
the ADT generally usable. For example, the copy constructor described in the earlier section
titled Copying Objects is usually a good method to include. You might organize all your
identified methods into constructors, observers, transformers, and iterators.

5. Identify potential error situations and classify into
a. Those that are handled by throwing an exception
b. Those that are handled by contract
c. Those that are ignored

6. Define the needed exception classes.
7. Decide how to structure the data to best support the needed operations and identified

methods. Remember that alternate organizations may support some operations better than
others. This is where the frequency of operation information may be useful.

8. Decide on a protection level for the identified data. Hide the data as much as possible.
9. Identify private structures and methods that support the required public methods. Func-

tional decomposition of the required actions of the public methods may help identify com-
mon requirements that can be supported by shared private methods.

10. Implement the ADT, possibly collecting all related files into a single package.
11. Create a test driver like the one at the end of Chapter 1 and test your ADT with a wide vari-

ety of operations.

Note that the classic data structures, modeled as ADTs created in the remainder of this text have
evolved over the last 50 years. Therefore, we can draw from a great deal of previous research
and experience when designing these structures, instead of analyzing specific problem situations
as suggested above.

Summary
We have discussed how data can be viewed from multiple perspectives, and we have
seen how Java encapsulates the implementations of its predefined types and allows us
to encapsulate our own class implementations.

As we create data structures, using built-in data types such as arrays and classes to
implement them, we see that there are actually many levels of data abstraction. The
abstract view of an array might be seen as the implementation level of the program-
mer-defined data structure List, which uses an array to hold its elements. At the log-
ical level, we do not access the elements of List through their array indexes but
through a set of accessing operations defined especially for objects of List type. A
data type that is designed to hold other objects is called a container or collection
type. Moving up a level, we might see the abstract view of List as the implementa-
tion level of another programmer-defined data type, ProductInventory, and so on.

132 | Chapter 2: Data Design and Implementation

What do we gain by separating the views of the data? First, we reduce complexity
at the higher levels of the design, making the program easier to understand. Second,
we make the program more easily modifiable: The implementation can be completely
changed without affecting the program that uses the data structure. We use this
advantage in this text, developing various implementations of the same objects in
different chapters. Third, we develop software that is reusable: The structure and its
accessing operations can be used by other programs, for completely different appli-
cations, as long as the correct interfaces are maintained. You saw in the first chapter
of this book that the design, implementation, and verification of high-quality com-
puter software is a very laborious process. Being able to reuse pieces that are already
designed, coded, and tested cuts down on the amount of work we have to do.

In the chapters that follow we extend these ideas to build other container classes:
lists, stacks, queues, priority queues, trees, and graphs. While the Java Class Library
provides many of these data structures (along with generic algorithms and iterator
structures), the techniques for building these structures is so important in computer sci-
ence that we believe you should learn them now.

We consider these data structures from the logical view. What is our abstract picture
of the data, and what accessing operations can we use to create, assign to, and manipu-
late the data elements? We express our logical view as an abstract data type (ADT) and
record its description in a data specification.

Next, we take the application view of the data, using an instance of the ADT in a
short example.

Finally, we change hats and turn to the implementation view of the ADT. We con-
sider the Java type declarations that represent the data structure, as well as the design
of the methods that implement the specifications of the abstract view. Data structures
can be implemented in more than one way, so we often look at alternative representa-
tions and methods for comparing them. In some of the chapters, we include a longer
Case Study in which instances of the ADT are used to solve a problem.

Perspectives on Data

Application or user view Logical or abstract view Implementation view

Product Inventory List Array

List Array Row major access function

Array Row major access function 32-bit words

Exercises | 133

Classes Defined in Chapter 2

File First Ref. Notes

TestCircle.java page 83 Illustrates records and record component selection.

FigureGeometry.java page 88 An example of an interface.

Point.java page 93 Very small class; it is used to build an example of
an aggregate object.

NewCircle.java page 93 Example of a class that defines aggregate objects.
NewCircle includes an instance variable of the
class Point.

Summary of Classes and Support Files
Here are the classes defined in Chapter 2. The classes are listed in the order in which
they appear in the text. The summary includes the name of the class file, the page on
which the file is first referenced, and a few notes. The notes explain how the class was
used in the text, followed by additional notes if appropriate. Note that we do not include
classes defined within other classes (inner classes), such as the Circle class that was
defined within the TestCircle class, in the table. The class files are available on our
web site in the ch02 subdirectory.

Other than the Exception class, which was discussed in Section 2.3, no Java Library
Classes were used in any examples for the first time in this text within this chapter. Of
course, many library classes were discussed; but they were not used in programs.

Exercises
2.1 Different Views of Data

1. Why are primitive types sometimes called atomic types?

2. Explain what we mean by data abstraction.

3. What is data encapsulation? Explain the programming goal “to protect our data
abstraction through encapsulation.”

4. Describe the four categories of operations that can be performed on encapsulated
data. Give an example of each operation using a Library analogy.

5. Name three different perspectives from which we can view data. Using the logi-
cal data structure “a list of student academic records,” give examples of what
each perspective might tell us about the data.

6. Consider the abstract data type GroceryStore.

a. At the application level, describe GroceryStore.

b. At the logical level, what grocery store operations might be defined for the
customer?

134 | Chapter 2: Data Design and Implementation

c. Specify (at the logical level) the operation CheckOut.

d. Write an algorithm (at the implementation level) for the operation CheckOut.

e. Explain how parts (c) and (d) represent information hiding.

2.2 Java’s Built-in Types
7. What primitive types are predefined in the Java language?

8. What composite types are predefined in the Java language?

9. Describe the component selector for classes, when they are used as records.

10. Define a toString method for the circle class listed on the following pages:

a. page 83

b. page 93

11. What is an alias? Show an example of how it is created by a Java program.
Explain the dangers of aliases.

12. Assume that date1 and date2 are objects of type IncDate as defined in Chap-
ter 1. What would be the output of the following code?

date1 = new IncDate(5, 5, 2000);
date2 = date1;
System.out.println(date1);
System.out.println(date2);
date1.increment();
System.out.println(date1);
System.out.println(date2);

13. Assume that date1 and date2 are objects of type IncDate as defined in Chap-
ter 1. What would be the output of the following code?

date1 = new IncDate(5, 5, 2000);
date2 = new IncDate(5, 5, 2000);
if (date1 == date2)
System.out.println("equal");

else
System.out.println("not equal");

date1 = date2;
if (date1 == date2)
System.out.println("equal");

else
System.out.println("not equal");

date1.increment();
if (date1 == date2)
System.out.println("equal");

else
System.out.println("not equal");

Exercises | 135

14. What is garbage? Show an example of how it is created by a Java program.

15. What is an abstract method?

16. What sorts of constructs can be declared in a Java interface?

17. Briefly describe four uses for Java interfaces.

18. What are the fundamental differences between classes and arrays?

19. Describe the component selectors for one-dimensional arrays.

20. Write a program that declares a ten-element array of int, uses a for loop to ini-
tialize each element to the value of its index squared, and then uses another for
loop to print the contents of the array, one integer per line.

21. Define a three-dimensional array at the logical level.

22. Suggest some applications for three-dimensional arrays.

23. Indicate which Java types would most appropriately model each of the following
(more than one may be appropriate for each):

a. A chessboard

b. Information about a single product in an inventory-control program

c. A list of famous quotations

d. The casualty figures (number of deaths per year) for highway accidents in
Texas from 1954 to 1974

e. The casualty figures for highway accidents in each of the states from 1954 to
1974

f. The casualty figures for highway accidents in each of the states from 1954 to
1974, subdivided by month

g. An electronic address book (name, address, and phone information for all
your friends)

h. A collection of hourly temperatures for a 24-hour period

2.3 Class-Based Types
24. What Java construct is used to represent abstract data types?

25. Explain the difference between using a Java class to create a record and to cre-
ate an ADT

26. Explain how packages are used to organize Java files.

27. List and briefly describe the contents of five Java library packages.

28. List the eight Java Library “wrapper” classes that support the objectification of
Java’s primitive types.

29. List and describe five Java Library classes that are not described in this chapter.

30. Research the Java Library Random class. Use it in a program to do the following.

a. Generate a sequence of 10,000 random integers between 1 and 100 and out-
put the average value generated

136 | Chapter 2: Data Design and Implementation

b. Play the high/low guessing game with the user; the program generates a ran-
dom integer between 1 and 100,000. The user must repeatedly guess the
number until it is correct. After each guess, the program informs the user if
the secret number is higher or lower than the guess.

Be sure to carefully test your program(s).

31. Write a program that declares a ten-element array of Integer, uses a for loop to
initialize each element to the value of its index squared, and then uses another
for loop to print the contents of the array, one integer per line.

32. Describe the output of the following code that uses String variables S1, S2, and
S3.

S1 = "Alex";
S2 = "Bob";
S3 = S1 + S2;
System.out.println(S3);
S2 = S1.toUpperCase();
System.out.println(S2);
S3 = "Chris".
if (S1.compareTo(S3) < 0)
System.out.println("less than zero");

else
System.out.println("not less than zero");

33. Explain the differences between arrays and array lists.

34. For each of the following situations, state whether it is best to use an array list or
an array.

a. To hold student test grades, where the size of the class of students is always
between 15 and 20

b. To hold student test grades, where the size of classes varies widely

c. To hold the number of miles traveled each day of a month

d. To hold a list of items, where you need to repeatedly insert elements into ran-
dom locations in the list

e. To hold a list of items, where you insert and remove items only from the far
end of the list.

33. Describe each of the four levels of visibility provided by Java’s visibility modi-
fiers.

34. Illustrate with a figure the difference between a shallow copy and a deep copy of
an aggregate object.

35. Consider an ADT SquareMatrix. (A square matrix can be represented by a two-
dimensional array with n rows and n columns.)

Exercises | 137

a. Write the specification for the ADT, assuming a maximum size of 50 rows
and columns. Include the following operations:

MakeEmpty(n), which sets the first n rows and columns to zero

StoreValue(i, j, value), which stores value into the position at row i,
column j

Add, which adds two matrices together

Subtract, which subtracts one matrix from another

Copy, which copies one matrix into another

b. Convert your specification to a Java class declaration.

c. Implement the member methods.

d. Write a test plan for your class.

36. Expand your solution to Exercise 34 of Chapter 1, where you implemented
the Date and IncDate classes, to include the appropriate throwing of the
DateOutOfBoundsException, as described in this chapter.

37. Write a class Array that encapsulates an array and provides bounds
checked access. The private instance variables should be int index, and
int array[10]. The public members should be a default constructor and meth-
ods (signatures shown below) to provide read and write access to the array:

void insert(int location, int value);

int retrieve(int location);

If the location is within the correct range for the array, the insert method
should set that location of the array to the value. Likewise, if the location is
within the correct range for the array, the retrieve method should return
the value of that location of the array. In either case, if the location is not
within the correct range, the method should throw an exception of type
ArrayoutofBoundsException. Write a driver to check the array accesses.
Your driver should assign values to the array by using the insert method,
using the retrieve method to read these values back from the array. It
should also try calling both methods with illegal location values. Catch any
exceptions thrown by placing the calls in a try block with an appropriate
catch block following.

38. Describe the steps to follow when designing your own ADTs and implementing
them with the Java class mechanism.

[(H1L)] | 139

