
Measurable goals for this chapter include that you should be able to

describe the List ADT at a logical level

classify list operations into the categories constructor, iterator, observer, and transformer

identify the pre- and postconditions of a given list operation

use the list operations to implement utility routines such as the following application-level tasks:

Print the list of elements

Create a list of elements from a file of element information

Store a list of elements on a file

implement the following list operations for both unsorted lists and sorted lists:

Create a list

Determine whether the list is full

Determine the size of the list

Insert an element

Retrieve an element

Delete an element

Reset the list and repeatedly return the next item from the list

explain the use of Big-O notation to describe the amount of work done by an algorithm

compare the unsorted list operations and the sorted list operations in terms of Big-O approximations

describe uses of Java’s abstract class and interface constructs with respect to defining ADTs

design and create classes for use with a generic list

use a List ADT as a component of a solution to an application problem

ADTs Unsorted List
and Sorted List

G
oals
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This chapter centers on the List ADT: its definition, its implementation, and its use in
problem solving. In addition to learning about this important data structure, this mate-
rial should help you understand the relationships among the logical, application, and
implementation levels of an ADT. In the course of the exploration of these topics, sev-
eral Java constructs for supporting abstraction are introduced. Seeing how these con-
structs are used should enhance your appreciation for the power of abstraction. We also
introduce in this chapter an analysis tool, Big-O notation, which allows us to compare
the efficiency of different ADT implementations.

3.1 Lists

We all know intuitively what a list is; in our everyday lives we use lists all the time—
grocery lists, lists of things to do, lists of addresses, lists of party guests.

In computer programs, lists are very useful abstract data types. They are members of
a general category of abstract data types called containers; containers hold other objects.
There are languages in which the list is a built-in structure. In Lisp, for example, the list
is the main data type provided in the language. Although list classes are provided in the
Java Class Library, the techniques for building lists and other abstract data types are so

important that we show you how to design and write
your own.

From a programming point of view, a list is a
homogeneous collection of elements, with a linear rela-
tionship between its elements. A linear relationship
means that, at the logical level, each element on the list
except the first one has a unique predecessor and each
element except the last one has a unique successor. (At
the implementation level, there is also a relationship
between the elements, but the physical relationship may
not be the same as the logical one.) The number of
items on the list, which we call the length of the list, is
a property of a list. That is, every list has a length.

Lists can be unsorted—their elements may be placed
into the list in no particular order—or they can be sorted.
For instance, a list of numbers can be sorted by value, a

list of strings can be sorted alphabetically, and a list of grades can be sorted numerically.
When the elements in a sorted list are of composite types, we can define their logi-

cal order in many different ways. For example, suppose we have a list of student infor-
mation, with each student represented by their first name, last name, identification
number, and three test scores. Some of the ways we can sort such a list are:

• by last name, alphabetically
• by last name, alphabetically, and then by first name, alphabetically (in other

words, the first name is used to determine relative ordering if two or more last
names are identical)

• by identification number
• by average test score

Linear relationship Each element except the first has
a unique predecessor, and each element except the last
has a unique successor

Length The number of items in a list; the length can
vary over time

Unsorted list A list in which data items are placed in
no particular order; the only relationship between data
elements is the list predecessor and successor relation-
ships

Sorted list A list that is sorted by the value in the
key; there is a semantic relationship among the keys of
the items in the list
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If the sort order is determined directly by
using the student information, such as in the
first three approaches, we say that that infor-
mation represents the key for the list element.
In the first approach, the <last name> is the
key; in the second approach, the combination of <last name – first name> is the key;
and in the third approach, the <identification number> is the key. If a list cannot con-
tain items with duplicate keys, it is said to have a unique key. In this example, the best
candidate for use as a unique key is the identification number, since it is likely to have
a unique value for each student in a school.

This chapter deals with many kinds of lists. We make the assumption that our lists
are composed of unique elements. We point out the ramifications of dropping this
assumption on our list abstractions and implementations at various places within the
chapter. When sorted, our lists are sorted from smallest to largest key value, though it is
certainly possible to sort them largest to smallest should your application need this.

There are two basic approaches to implementing container structures such as lists:
the “by copy” approach and the “by reference” approach. For our lists in this chapter,
we use the “by copy” approach. This means that when a client program inserts an item
into our lists, it is actually a copy of the item that is placed on the list. In addition,
when an item is retrieved from our list by a client program, it is a copy of the item on
the list that is returned to the program. We use the alternate approach, storing and
returning references to the items instead of copies of the items, for other container
structures starting in Chapter 4. At that point we discuss more thoroughly the important
differences between the two approaches.

Progressing through the chapter, we develop unsorted and sorted lists of strings,
sorted lists of generic elements, and in the case study, a sorted list of house informa-
tion for a real estate application. As we progress, we introduce both the Java abstract
class mechanism and the Java interface mechanism to help refine our list ADTs and
make them more generally usable. Each time we implement a new form of list, we
include the corresponding UML diagram. Each figure that displays a UML diagram
includes all of the previous diagrams, so that you easily can compare the implementa-
tion approaches.

3.2 Abstract Data Type Unsorted List

Logical Level

There are many different operations that programmers can provide for lists. For differ-
ent applications we can imagine all kinds of things users might need to do to a list of
elements. In this chapter we formally define a list and develop a set of general-purpose
operations for creating and manipulating lists. By doing this, we are building an
abstract data type.

To create the definition of a list as an abstract data type, we must identify a set of
operations that allow us to access and manipulate the list. In this section we design the
specifications for a List ADT where the items on the list are unsorted; that is, there is no

Key The attributes that are used to determine the
logical order of the items on a list
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semantic relationship between an item and its predecessor or successor. They simply
appear next to one another on the list.

Abstract Data Type Operations
Designing an ADT to be used by many applications is not the same as designing an
application program to solve a specific problem. In the latter case we can use CRC cards
to enact scenarios of the application’s use, allowing us to identify and fix holes in our
design before turning to implementation. Identifying scenarios for use of a general ADT
is not as straightforward. We must stand back and consider what operations every user
of the data type would want it to provide.

Recall that there are four categories of operations: constructors, transformers,
observers, and iterators. We begin by reviewing each category and considering which
List ADT operations fit into the respective categories.

Constructors A constructor creates a new instance of the data type. In Java, it is a
public method with the same name as the ADT’s class name. There is one piece of
information that our ADT needs from the client to construct an instance of the list
data type: the maximum number of items to be on the list. As this information varies
from application to application, it is logical for the client to have to provide it. We can
also define a default list size to be used in case the client does not provide the
information.

At the end of the previous chapter we suggested that it is a good idea to include a
copy constructor when defining an ADT. A copy constructor accepts an instance of the
ADT as a parameter and creates a copy of it. Copy constructors are most appropriate
when the ADT implements an unstructured composite type, such as the Date and Cir-
cle examples of the previous chapters. Although there can be situations in which a
copy constructor can be helpful for an application programmer who is using a struc-
tured composite type such as a list, these situations are rare. We do not define a copy
constructor for our List ADTs.

Transformers Transformers are operations that change the content of the structure in
some way. A common transformer is one that makes the structure empty. However, in
Java, the constructor methods associate a new, empty structure with the current
instance of the ADT, effectively making it empty. Therefore, we do not need another
method for making the list empty. We do need transformers to put an item into the
structure, or to remove a specific item from the structure. For our Unsorted List ADT,
let’s call these transformers insert and delete.

Note that, since we implement our operations as object methods, the list is the
object through which the method is invoked, and therefore the list itself is available to
the method for manipulation. The insert and delete methods need an additional
parameter: the item to be inserted or deleted. For this Unsorted List ADT, let’s assume
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1A method that returns a boolean value defined on a set of objects is sometimes called a predicate, with the
term observer used for methods that inquire about an instance variable of an object.

that the item to be inserted is not currently on the list and the item to be deleted is on
the list.

A transformer that takes two sorted lists and merges them into one sorted list or
appends one list to another is a binary transformer. The specification for such an opera-
tion is given in the exercises, where you are asked to implement it.

Observers Observers also come in several forms. They ask true/false questions1 about
the ADT (Is the structure empty?). They select or access a particular item (Give me a
copy of the last item.). Or they return a property of the structure (How many items are
in the structure?). The Unsorted List ADT needs at least two observers: isFull and
lengthIs. The isFull observer method returns true if the list is full, false
otherwise; lengthIs tells us how many items are on the list, as opposed to the
maximum capacity of the list.

If an abstract data type places limits on the component type, we could define other
observers. For example, if we know that our abstract data type is a list of numerical val-
ues, we could define statistical observers such as minimum, maximum, and average.
Here, at the logical level, we are interested in generality; we know nothing about the
type of the items on the list, so we use only general observers.

If we make the client responsible for checking for error conditions, we must make
sure that the ADT gives the user the tools with which to check for the conditions. The
operations that allow the client to determine whether an error condition occurs are
observers. Since we are assuming that our list does not include duplicate elements, we
should provide an observer that searches the list for an item with a particular key and
returns whether or not the item has been found. Let’s call this one isThere. The appli-
cation programmer can use the isThere observer to prevent insertion of a duplicate
item into the list. For example:

if (!list.isThere(item)) list.insert(item);

Iterators Iterators are used with composite types to allow the user to process an entire
structure, component by component. To give the user access to each item in sequence,
we provide two operations: one to initialize the iteration process (analogous to Reset or
Open with a file) and one to return a copy of the “next component” each time it is
called. The user can then set up a loop that processes each component. Let’s call these
operations reset and getNextItem. Note that reset is not an iterator, but is an
auxiliary operation that supports the iteration. Another type of iterator is one that takes
an operation and applies it to every element on the list.

Element Types Before we can formalize the specification for the Unsorted List ADT,
we must consider the type of items to be held on the list. Later in the chapter we
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learn how to define a generic list—a list that can hold elements of many different
types. For now, so that we can concentrate on the definition and implementation of
the list operations, we limit ourselves to working with a list of strings. Therefore, we
call our ADT UnsortedStringList. In order to keep our analysis as generally
applicable as possible, we still refer to list components as “elements” or “items,”
rather than as “strings,” and we call our ADT the Unsorted List ADT in much of our
discussion.

Unsorted List ADT Specification

Structure:

The list elements are Strings. The list contains unique elements;
i.e., no duplicate elements as defined by the key of the list. The
list has a special property called the current position—the posi-
tion of the next element to be accessed by getNextItem during
an iteration through the list. Only reset and getNextItem
affect the current position.

Definitions (provided by user):
maxItems: An integer specifying the maximum number of

items to be on this list.

Operations (provided by Unsorted List ADT):

void UnsortedStringList (int maxItems)

Effect: Instantiates this list with capacity of maxItems
and initializes this list to empty state.

Precondition: maxItems > 0
Postcondition: This list is empty.

void UnsortedStringList ()

Effect: Instantiates this list with capacity of 100 and
initializes this list to empty state.

Postcondition: This list is empty.

boolean isFull ()

Effect: Determines whether this list is full.
Postcondition: Return value = (this list is full)

int lengthIs ()

Effect: Determines the number of elements on this
list.

Postcondition: Return value = number of elements on this list
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boolean isThere (String item)

Effect: Determines item is on this list.
Postcondition: Return value = (item is on this list)

void insert (String item)

Effect: Adds copy of item to this list.
Preconditions: This list is not full.

item is not on this list.
Postcondition: item is on this list.

void delete (String item)

Effect: Deletes the element of this list whose key
matches item ’s key.

Precondition: One and only one element on this list has a
key matching item ’s key.

Postcondition: No element on this list has a key matching the
argument item ’s key.

void reset ()

Effect: Initializes current position for an iteration
through this list.

Postcondition: Current position is first element on this list.

String getNextItem ()

Effect: Returns a copy of the element at the current
position on this list and advances the value of
the current position.

Preconditions: Current position is defined.
There exists a list element at current position.
No list transformers have been called since
most recent call to reset.

Postconditions: Return value = (a copy of element at current
position)
If current position is the last element then cur-
rent position is set to the beginning of this list;
otherwise, it is updated to the next position.

In this specification, the responsibility of checking for error conditions is put on the
user through the use of preconditions that prohibit the operation’s call if these condi-
tions exist. Recall that we call this approach programming “by contract.” We have
given the user the tools, such as the isThere operation, with which to check for the
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conditions. Another alternative would be to define an error variable, have each opera-
tion record whether an error occurs, and provide operations that test this variable. A
third alternative would be to let the operations detect error conditions and throw
appropriate exceptions. We use programming by contract in this chapter so that we
can concentrate on the list abstraction and the Java constructs that support it, without
having to address the extra complexity of formally protecting the operations from mis-
use. We use other error-handling techniques in later chapters.

The specification of the list is somewhat arbitrary. For instance, the overall assump-
tion about the uniqueness of list items could be dropped. This is a design choice. If we
were designing a specification for a specific application, then the design choice would
be based on the requirements of the problem. We made an arbitrary decision not to
allow duplicates. Allowing duplicates in this ADT implies changes in several operations.
For example, instead of deleting an element based on its value, we might require a
method that deletes an element based on its position on the list. This, in turn, might
require a method that returns the position of an item on the list based on its key value.

Additionally, assumptions about specific operations could be changed—for example,
we specified in the preconditions of delete that the element to be deleted must exist on
the list. It would be just as legitimate to specify a delete operation that does not require
the element to be on the list and leaves the list unchanged if the item is not there. Per-
haps that version of the delete operation would return a boolean value, indicating
whether or not an element had been deleted. We could even design a list ADT that pro-
vided both kinds of delete operations. In the exercises you are asked to explore and
make some of these changes to the List ADTs.

Application Level

The set of operations that we are providing for the Unsorted List ADT may seem rather
small and primitive. However, this set of operations gives you the tools to create other
special-purpose routines that require knowledge of what the items on the list represent.
For instance, we have not included a print operation. Why? We don’t include it because
in order to write a good print routine, we must know what the data members represent.
The application programmer (who does know what the data members look like) can use
the lengthIs, reset, and getNextItem operations to iterate through the list, printing
each data member in a form that makes sense within the application. In the code that
follows, we assume the desired form is a simple numbered list of the string values. We
have emphasized the lines that use the list operations.

void printList(PrintWriter outFile, UnsortedStringList list)
// Effect: Prints contents of list to outFile
// Pre:    List has been instantiated
//         outFile is open for writing
// Post:   Each component in list has been written to outFile
//         outFile is still open
{
int length;
String item;
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list.reset();
length = list.lengthIs();
for (int counter = 1; counter <= length; counter++)
{
item = list.getNextItem();
outFile.println(counter + ". " + item);

}
}

For example, if the list contains the strings “Anna Jane”, “Joseph”, and “Elizabeth”,
then the output would be:

1. Anna Jane

2. Joseph

3. Elizabeth

Note that we defined a local variable length, stored the result of list.lengthIs() in
it, and used the local variable in the loop. We could have just used the method call
directly in the loop:

for (int counter = 1; counter <= list.lengthIs(); counter++)

We used the other approach for efficiency reasons. That way the lengthIs method is
called only once, saving the overhead of extra method calls.

In the printList method, we made calls to the list operations specified for the
Unsorted List ADT, printing a list without knowing how the list is implemented. At an
application level, the operations we used (reset, lengthIs, and getNextItem) are
logical operations on a list. At a lower level, these operations are implemented by Java
methods, which manipulate an array or other data-storing medium that holds the list’s
elements. There are many functionally correct ways to implement an abstract data type.
Between the user picture and the eventual representation in the computer’s memory,
there are intermediate levels of abstraction and design decisions. For instance, how is
the logical order of the list elements reflected in their physical ordering? We address
questions like this as we now turn to the implementation level of our ADT.

Implementation Level

There are two standard ways to implement a list. We look at a sequential array-based
list implementation in this chapter. The distinguishing feature of this implementation is
that the elements are stored sequentially, in adjacent slots in an array. The order of the
elements is implicit in their placement in the array.

The second approach, which we introduce in Chapter 5, is a linked-list implementa-
tion. In a linked implementation, the data elements are not constrained to be stored in
physically contiguous, sequential order; rather, the individual elements are stored
“somewhere in memory,” and their order is maintained by explicit links between them.
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Before we go on, let’s establish a design terminology for our list algorithms that’s
independent of the implementation and type of items stored on the list. Doing this
allows us to describe algorithms that are valid no matter which of the standard
approaches we use.

• List Design Terminology Assuming that location “accesses” a particular list element,

location.node( ) Refers to all the data at location, including implementation-specific
data.

location.info( ) Refers to the application data at location.
last.info( ) Refers to the application data at the last location on the list.
location.next( ) Gives the location of the node following location.node( ). If location

is the end of the list, it gives the first location of the list.

•
A few clarifications are needed. What is meant by “all the data” at a location, and “the
application data” at a location? Remember that although we are currently dealing with
lists of strings, we eventually expand the kinds of elements we can use to any kind of
data. The “application data” refers to the data from the application associated with a list
element. In addition to the application data, a list element might have certain informa-
tion associated with it, related to the implementation of the list; for example, a variable
holding the location of the next list element. By “all the data” we mean the application
data plus the implementation data, if there is any.

What then is location? For an array-based implementation, location is an index,
because we access array slots through their indexes. For example, the design state-
ment

Print location.info()

means “Print the application data in the array slot at index location;” eventually it
might be coded in Java within the array-based implementation as

outFile.println(list.info[location]);

When we look at the linked implementation in Chapter 5, the code implementing the
design statement is quite different, but the design statement itself remains the same.
Thus, using this design notation, we define implementation-independent algorithms for
our Unsorted List ADT. Hopefully, we can design our list algorithms just once using the
design notation and then implement them using either of the implementation
approaches.

What does location.next( ) mean in an array-based sequential implementation? To
answer this question, consider how we access the next list element stored in an array:
We increment the location index. The design statement

Set location to location.next()
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might be coded in Java within the array-based implementation as

if (location == numItems – 1)      // Location is an array index
location = 0;

else
location++;

We have not introduced this list design terminology just to force you to learn the syn-
tax of another computer language. We simply want to encourage you to think of the
list, and the parts of the list elements, as abstractions. At the design stage, the imple-
mentation details can be hidden. There is a lower level of detail that is encapsulated in
the “methods” node, info, and next. Using this design terminology, we hope to record
algorithms that can be coded for both array-based and linked implementations.

Instance Variables
In our implementation, the elements of a list are stored in an array of String objects.

String[] list;

There are two size-related attributes of the list: capacity and current length. The capac-
ity of the list is the maximum number of elements that can be stored on the list. We do
not need an instance variable to hold the capacity of the list since we can use the array
attribute length to determine the capacity of the list at any point within our implemen-
tation. In other words, the capacity of our list is the length of the underlying array:
list.length.

However, we do need an instance variable to keep track of the current number of
items we have stored in the array (also known as the current length of the list). We name
this variable numItems. This variable can also be used to record where the last item was
stored. Because the list items are unsorted, when we put the first item into the list, we place
it into the first slot; the second item goes in the second slot, and so forth. Because our lan-
guage is Java, we must remember that the first slot is indexed by 0, the second slot by 1,
and the last slot by list.length – 1. Now we know where the list begins—in the first
array slot. Where does the list end? The array ends at the slot with index list.length –
1, but the list ends in the slot with index numItems – 1. For example, if the list currently
holds 5 items, they are kept in array locations 0 through 4; the value of the numItems
instance variable is 5; and the next array location to insert a new item is also 5.

Is there any other information about the list that we must include? Both operations
reset and getNextItem refer to a “current position.” What is this current position? It
is the index of the last element accessed in an iteration through the list. We need an
instance variable to keep track of the current position. Let’s call it currentPos. The
method reset initializes currentPos to 0. The method getNextItem returns the value
in list[currentPos] and increments currentPos. The ADT specification states that
only reset and getNextItem affect the current position. Figure 3.1 illustrates the
instance variables of our class UnsortedStringList. Here is the beginning of the class
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file, which includes the variable declarations. Note that it also includes an introductory
comment and a package statement. The UnsortedStringList class is the first of sev-
eral string list classes we develop. We collect all these classes together into a single
package called ch03.stringLists (the class files can be found in the subdirectory
stringLists or in the subdirectory ch03 of the directory bookFiles on our web site).

//----------------------------------------------------------------------------
// UnsortedStringList.java         by Dale/Joyce/Weems               Chapter 3
//
// Defines all constructs for an array-based list of strings that is not
// kept sorted
//----------------------------------------------------------------------------

package ch03.stringLists;

public class UnsortedStringList 
{
protected String[] list;    // Array to hold list elements
protected int numItems;     // Number of elements on this list
protected int currentPos;   // Current position for iteration

�

Figure 3.1 Instance variables of Unsorted List ADT
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Notice that we use the protected visibility modifier for each of the variables. Recall
that this means that the variables can be “seen” only by the methods of the
UnsortedStringList class or its subclasses. We use this approach because we create a
subclass later in this chapter that needs access to the variables. This type of visibility
still protects the variables from direct access by the applications that use the class.

A design choice we wish to point out, but choose not to use, is to write an
ArrayList-based class for use here. Since the ArrayList class provides a variable-
sized array, we could allow the underlying implementation to shrink and grow to mirror
the changes in the size of the list. We would not have to deal with a “max items” con-
straint, so we would not need to list preconditions such as “list is not full.” You are
asked to investigate this alternative in the exercises.

Constructors
Now let’s look at the operations that we have specified for the Unsorted List ADT. The
first two operations are constructors that create empty lists. Remember that a class con-
structor is a method having the same name as the class, but having no return type. A
constructor’s purpose is to instantiate an object of the class, to initialize variables and, if
necessary, to allocate resources (usually memory) for the object being constructed. Like
any other method, a constructor has access to all variables and methods of the class. A
new list is created empty; that is, the number of items is 0.

Our first constructor requires a positive integer parameter, which indicates the size
for the underlying array.

public UnsortedStringList(int maxItems)
// Instantiates and returns a reference to an empty list object with
// room for maxItems elements
{
numItems = 0;
list = new String[maxItems];

}

The code for this constructor is straightforward and requires no further explanation. We
have decided not to include a restatement of the method preconditions and postcondi-
tions, established in the ADT specification, when listing our code. In some cases we pro-
vide multiple versions of the same method, and we believe repeated listing of these
conditions is redundant and would make for tedious reading. Therefore, we list these
conditions only when we define the logical-level view of our ADTs. Nevertheless, we
encourage you to always include preconditions and postconditions in comments at the
beginning of your methods. Code that is meant to be used needs such documentation,
but in this text, where we’re already explaining the code in great detail, the comments
aren’t as necessary.

Our second constructor does not have a parameter. In this case, the default size of
the underlying array is 100.
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public UnsortedStringList()
// Instantiates and returns a reference to an empty list object
// with room for 100 elements
{
numItems = 0;
list = new String[100];

}

Notice that these two methods have the same name: UnsortedStringList.
How is this possible? Remember that in the case of methods, Java uses more than

just the name to identify them; it also uses the
parameter list. A method’s name, the number and
type of parameters that are passed to it, and the
arrangement of the different parameter types within
the list, combine into what Java calls the signature
of the method.

Java allows us to use the name of a method as
many times as we wish, as long as each one has a dif-
ferent signature. When we use a method name more
than once, we are overloading its identifier. The Java

compiler needs to be able to look at a method call and determine which version of the
method to invoke. The two constructors in class UnsortedStringList both have dif-
ferent signatures: One takes no arguments, the other takes an int. Java decides which
version to call according to the arguments in the statement that invokes Unsorted-
StringList.

Simple Observers
The first nonconstructor operation, isFull, just checks to see whether the current num-
ber of items on the list is equal to the length of the array.

public boolean isFull()
// Returns whether this list is full
{
return (list.length == numItems);

}

The body of the observer object method lengthIs is also just one statement.

public int lengthIs()
// Returns the number of elements on this list
{
return numItems;

}

Signature The distinguishing features of a method
heading. The combination of a method name with the
number and type(s) of its parameters in their given
order

Overloading The repeated use of a method name
with a different signature
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So far, we have not used our special design terminology. The algorithms have all been
straightforward. The next operation, isThere, is more complex.

isThere Operation
The isThere operation allows the application programmer to determine whether a list
item with a specified key exists on the list. In the case of the string list, the key is sim-
ply the string value. This string value is input to the method in the parameter item. A
boolean value is returned by the method—if the string item matches a string on the
list, true is returned; otherwise, false is returned.

Because the list items are unsorted, we must use a linear search. We begin at the
first component on the list and loop until either we find a component equal to the
parameter or there are no more strings to examine. Recall from Chapter 2 that we have
two ways to see if two strings are the same; we could use the equals method of the
String class or the compareTo method of the String class. We choose to use the
compareTo method, since we also use it in other parts of the list implementation. Recall
that this method returns a 0 if the strings are equal. Therefore, we can code

if (item.compareTo(list[location]) == 0)
found = true;

But how do we know when to stop searching if we do not find the string? If we have
examined the last element of the list, we can stop. Thus, in our design terminology, we
keep looking as long as we have not examined last.info( ).We summarize these observa-
tions in the algorithm below.

isThere (item): returns boolean

Initialize location to position of first list element
Set found to false
Set moreToSearch to (have not examined last.info())

while moreToSearch AND NOT found
if item.compareTo(location.info()) == 0
Set found to true

else
Set location to location.next()
Set moreToSearch to (have not examined last.info())

return found
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Before we code this algorithm, let’s look at the cases where we find the item on the
list and where we examine last.info() without finding it. We represent these cases in Fig-
ure 3.2 in an Honor Roll list. We first retrieve Sarah (see Figure 3.2(a)). Sarah is on the
list, so when the search is completed, moreToSearch is true, found is true, and
location is 3. The loop is exited because found became true when item was equal
to the contents of location 3. Next, we retrieve Susan (see Figure 3.2(b)). Susan is not on
the list, so when the search is completed moreToSearch is false, found is false, and
location is equal to numItems. The loop is exited because moreToSearch became
false after we examined the last information on the list.

Now we are ready to code the algorithm replacing the general design notation with
the equivalent array notation. The substitutions are straightforward except for initializ-
ing location and determining whether we have examined last.info(). To initialize
location in an array-based implementation in Java, we set it to 0. We know we have
not examined last.info() as long as location is less than numItems. Be careful: Because
Java indexes arrays from 0, the last item on the list is at index numItems – 1. Here is
the coded algorithm.
public boolean isThere (String item)
// Returns true if item is on this list, otherwise returns false
{
boolean moreToSearch;
int location = 0;
boolean found = false;

Figure 3.2 Retrieving an item in an unsorted list.
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moreToSearch = (location < numItems);

while (moreToSearch && !found) 
{
if (item.compareTo(list[location]) == 0)  // If they match
found = true;

else
{
location++;
moreToSearch = (location < numItems);

}
}

return found;
}

insert Operation
Because the list elements are not sorted by value, we can put the new item anywhere. A
straightforward strategy is to place the item in the numItems position and increment
numItems.

This algorithm is translated easily into Java.

public void insert (String item)
// Adds a copy of item to this list
{
list[numItems] = new String(item);
numItems++;

}

delete Operation
The delete method takes an item whose value indicates which item to delete. There are
clearly two parts to this operation: finding the item to delete and removing it. We can
use the isThere algorithm to search the list. When compareTo returns a nonzero
value, we increment location; when compareTo returns 0, we exit the loop and
remove the element. Because the preconditions for delete state that an item with the
same key is definitely on the list, we do not need to test for reaching the end of the list.

insert (item)
Set numItems.info() to copy of item
Increment numItems
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reset

Initialize currentPos to position of first list element

getNextItem: returns String

Set next to currentPos.info()
Set currentPos to currentPos.next()
return copy of next

How do we remove the element from the list? Let’s look at the example in Figure
3.3. Removing Sarah from the list is easy, for hers is the last element on the list (see
Figures 3.3a and 3.3b). If Bobby is deleted from the original list, however, we need to
move up all the elements that follow to fill in the space—or do we? See Figure 3.3(c). If
the list is sorted by value, we would have to move all the elements up as shown in Fig-
ure 3.3(c), but because the list is unsorted, we can just swap the item in the numItems –
1 position with the item being deleted (see Figure 3.3(d)). In an array-based implementa-
tion, we do not actually remove the element; instead, we cover it up with the elements
that previously followed it (if the list is sorted) or the element in the last position (if the
list is unsorted). Finally, we decrement numItems.

public void delete (String item)
// Deletes the element that matches item from this list
{
int location = 0;

while (item.compareTo(list[location]) != 0)
location++;

list[location] = list[numItems - 1];
numItems--;

}

Iterator Operations
The reset method is analogous to the Open operation for a file in which the file pointer
is positioned at the beginning of the file so that the first input operation accesses the first
component of the file. Each successive call to an input operation gets the next item in the
file. Therefore, reset must initialize currentPos to indicate the first item on the list.

The getNextItem operation provides access to the next item on the list by returning
currentPos.info( ) and incrementing currentPos. To do this, it must first “record” current-
Pos.info( ), then increment currentPos, and finally return the recorded information.
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Figure 3.3 Deleting an item in an unsorted list
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The currentPos value always indicates the next item to be processed in an iteration.
To be safe, we decided to reset it automatically, in the getNextItem method, when the
end of the list is reached. Therefore, there are two places where currentPos can be set
to 0: in the reset method, and in the getNextItem method when the end of the list is
reached. The code for the iteration operations is as follows:

public void reset()
// Initializes current position for an iteration through this list
{
currentPos  = 0;

}

public String getNextItem ()
// Returns copy of the next element on this list
// And advances the current position 
{
String next = list[currentPos];
if (currentPos == numItems-1)
currentPos = 0;

else
currentPos++;

return new String(next);
}

The getNextItem method could also be implemented using the modulus operation:

currentPos = (currentPos++) % (numItems – 1);

The getNextItem method returns a String variable. That means that it returns a
reference to a string object. Notice that we have elected to create a new string object
using the String class’s copy constructor, and to return a reference to the new object,
rather than a reference to the string object that is actually on the list. As we stated
before, we implement our lists “by copy.” Why did we do this? The answer is that we
wish to maintain information hiding. If we return a reference into the list, we have
given the application an alias of a hidden list element. So, rather than do that, we create
a copy of the string, and return a reference to the copy. The list user is never allowed to
directly see or manipulate the contents of the list. These details of the list implementa-
tion are encapsulated by the ADT.

In this case we are being overly protective; since strings are immutable objects there
would be no potential harm in returning a reference to the actual string that is on the
list. The application program cannot change the string, so in this case the work of copy-
ing the list object is unnecessary. Nevertheless, we wish to emphasize the need for care
when returning values from within our ADTs. As mentioned previously, in Chapter 4 we
follow the alternate approach, namely, returning references to the objects contained in
our ADTs, and consider the strengths and drawbacks of each approach.
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Consider how the application programmer might use the list iteration methods. The
programmer can use the length of the list to control a loop asking to see each item in
turn. What happens if the program inserts or deletes an item in the middle of an itera-
tion? Nothing good, you can be sure! Adding and deleting items changes the length of
the list, making the termination condition of the iteration-counting loop invalid.
Depending on whether an addition or deletion occurs before or after the iteration point,
our iteration loop could end up skipping or repeating items.

We have several choices of how to handle this possibly dangerous situation. The list
can throw an exception, the list can reset the current position when inserting or delet-
ing, or the list can disallow transformer operations while an iteration is taking place.
We choose the latter here by way of a precondition in the documentation.

The UML class diagram in Figure 3.4 represents our UnsortedStringList
implementation.

Test Plan
To test our Unsorted List ADT, we create a test driver program similar to the one we cre-
ated at the end of Chapter 1 to test the IncDate ADT. That test driver accepted a
sequence of instructions from an input file that indicated which method of IncDate to
invoke next. The test input also included any parameter values required by the IncDate
methods. Results of the method invocations were printed to an output file. Meanwhile, a
final count of the number of test cases was indicated in an output window.

As we planned when we created that test driver, it is not difficult to transform it into a
test driver for a different ADT. To use it to test our Unsorted List ADT, we simply change the
value assigned to the testname variable near the start of the program, change the declara-
tion of the variables to appropriate ones for testing our list ADT, and rewrite the sequence
of if-else statements to invoke and report on the list methods instead of the date methods.

We do not go into all the details of the code for the test driver. Note that since there are
two constructors for the Unsorted List we must assign them two separate “code names” for
our test input file. We simply chose to use “UnsortedStringList1” and “Unsorted-
StringList2”. Here is the beginning of the main processing loop within the test driver:

Figure 3.4 UML diagram of UnsortedStringList
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// Process commands
while(!command.equals("quit"))
{  
if (command.equals("UnsortedStringList1"))

{
size = Integer.parseInt(dataFile.readLine());
list = new UnsortedStringList(size);
outFile.println("The list is instantiated with size " + size);

}
else
if (command.equals("UnsortedStringList2"))
{
list = new UnsortedStringList();;
outFile.println("The list is instantiated with default size");

}
else
if (command.equals("isFull"))
{
outFile.println("The list is full is " + list.isFull());

}
.
.
.

You can study the entire TDUnsortedStringList.java program (it’s on our web site).
What is important for us now is planning how to use the test driver to test our ADT.

The constructors UnsortedStringList (int maxItems) and UnsortedString-
List () can be exercised throughout our tests every time we create an Unsorted
StringList object.

lengthIs, insert, and delete can be tested together. That is, we insert several
items and check the length; we delete several items and check the length. How do we
know that insert and delete work correctly? We can make calls to the reset and
getNextItem methods to examine the structure of the list; a good approach would be to
use reset and getNextItem to create a “print list” test method (such as defined in the
application-level subsection), that could be called many times during the testing process.
A PrintList method is included in the TDUnsortedStringList.java program.

To test the isFull operation, we can instantiate a list of size 5, insert four items
and print the result of the test, and then insert the fifth item and print the result of the
test. To test isThere, we must search for items that we know are on the list and for
items that we know are not on the list.

How do we organize our test plan? We should classify our test possibilities. For
example, an item can be in the first position on the list, in the last position on the list,
or somewhere else on the list. So we must be sure that our delete can correctly delete
items in these positions. We must also check that isThere can find items in these same
positions. We should also check the lengthIs method at the boundary cases of an
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empty list and a full list. Notice that this test plan is mostly a black-box strategy. We
are looking at the list as described in the interface, not in the code.

These observations are summarized in the following test plan, which concentrates on
the observer methods and the insert method. To be complete the plan must be expanded
to use both constructors, to test the delete method, to test various combinations of
insert and delete, and, if program robustness is desired, to test how the software
responds to situations precluded by the method preconditions—for example, insertion into
a full list. The tests are shown in the order in which they should be implemented.

Operation to be Tested
and Description of
Action Input Values Expected Output

UnsortedStringList
print lengthIs 0
print isFull false
print isThere(“Tom”) false
Print List empty list

UnsortedStringList 5
insert Tom
print lengthIs 1
print isFull false
print isThere Tom true
Print List Tom

insert Julie
insert Nora
insert Maeve
print lengthIs 4
print isFull false
print isThere Tom true
print isThere Julie true
print isThere Maeve true
print isThere Kevin false
Print List Tom, Julie, Nora, Maeve

insert Kevin
print lengthIs 5
print isFull true
print isThere Tom true
print isThere Julie true
print isThere Kevin true
Print List Tom, Julie, Nora, Maeve, Kevin

etc.
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The file testlist1.dat, that accompanies the program file on our web site, pro-
vides an example of a set of test data. It is not a complete test. The file testout1.dat
shows the results of the following program invocation:

java TDUnsortedStringList testlist1.dat testout1.dat

The key to properly testing any software is in the plan: It must be carefully thought
out and it must be written. We have discussed the basic approach needed for testing the
Unsorted List ADT, listed a partial test plan, and provided a test driver (in the file
TDUnsortedStringList.java). We leave the creation of the complete written test plan
as an exercise.

3.3 Abstract Classes

We have just completed the design and implementation of an Unsorted List ADT. In the
next section we follow the same basic approach to create a Sorted List ADT. However,
before we do that we take a look at Java’s abstract class mechanism. We can use an abstract
class to take advantage of the similarities between the Unsorted and Sorted List ADTS.

Relationship between Unsorted and Sorted Lists

Suppose you are given the task of creating a Sorted List ADT. The first step you might
take is to identify the logical operations that you need to include. As you start to iden-
tify the operations, you might have the feeling that you have done this exercise before.
Let’s see, you’ll need constructors to create your list. You’ll need some way to put things
onto the list, so you need an insert method. Of course, you might want to remove
things from the list, so you need a delete method.

Sound familiar? As you think about it, you realize that all of the logical operations
we defined for the Unsorted List ADT are also needed for your Sorted List ADT. The log-
ical definition of those operations did not rely on whether or not the list was sorted. If
you look at the Unsorted List ADT specification, you can see that the entire specification
may be reused. The only changes that need to be made are to the preconditions and
postconditions of the transformer methods insert and delete: They must specify that
the list is sorted. insert and delete are the only two methods that affect the underly-
ing ordering of the list items. The condition

“The list is sorted.”

can be added to both their preconditions and postconditions, and you are all set.
Since you were able to reuse most of the specification of the Unsorted List ADT to

specify your Sorted List ADT, maybe you can also reuse some of the implementation. In
fact, assuming you again wish to use an array-based implementation, you can reuse the
entire class except the implementations of the insert and delete methods. We look at
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the implementations of these methods in the next subsection. We also look at a variant
of the isThere method. Although you can just reuse the isThere method of the
Unsorted List ADT, we are able to create a more efficient version of the method under
the assumption that the list is sorted.

Reuse Options

There are several ways we could reuse the code of the Unsorted List ADT to create the
code for the Sorted List ADT. Let’s look at three approaches.

Cut and Paste
We could create a Sorted List class completely independent of the Unsorted List ADT
class. Just create a new file called SortedStringList.java, “cut and paste” the code
that we are able to reuse into the new file, rename the constructors to match the file
name, and create the new code for the three methods that we want to change. Once we
are finished there is no longer any formal link between the two classes: Cut and paste,
direct inheritance, and abstract classes.

However, this lack of connection between the two classes can be detrimental. Con-
sider, for example, if someone using the Sorted List class discovers an error in the getNex-
Item method. Suppose they fix the method but do not realize that a “copy” of the method
exists in another class? This means that although a bug has been detected, and a solution
devised and implemented, the same bug is still plaguing another class. If we could some-
how formally link the two classes together, so that the code for the common methods only
appears in one place, then both classes would share any updates made to these methods.

Direct Inheritance
Since the Sorted List ADT class can use several of the methods of the Unsorted List
class, maybe we should make the former a subclass of the latter:

public class SortedStringList extends UnsortedStringList
...

Within the Sorted List class we can redefine the three methods that need to be changed.
With this approach we do create a formal link between the two classes, and changes to
the shared methods would affect both classes.

While this approach is probably better than the previous approach, it still has some
problems. The main problem is that the inheritance relationship just doesn’t make sense.
Recall that in Chapter 1 we stated that the inheritance relationship usually represents an
“is a” relationship. In the example in Chapter 1, an IncDate is a Date; an IncDate
object was a special kind of Date object. Here, that relationship doesn’t make sense.
Saying that a sorted list is a unsorted list sounds like nonsense.

Just because the is a relationship does not make sense doesn’t mean that you can’t
use inheritance. It does, however, often mean that using inheritance might lead to prob-
lems later. For example, due to Java’s rules for assignment of object variables, it would
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be possible for an application program to include the following code, assuming that the
Sorted List ADT inherited from the Unsorted List ADT:

UnsortedStringList unsorted;
SortedStringList sorted = new SortedStringList(10);
unsorted = sorted;

This creates the rather confusing situation in which an Unsorted List variable is refer-
encing a Sorted List object. This is completely legal in the world of Java—and it usually
makes sense if the is a relationship makes sense. But as you can see, in this case it
seems illogical. So, although using inheritance solves the problems identified in the pre-
vious subsection, another approach might be more appropriate.

Abstract Classes
Java offers another construct, called an abstract class, which resolves the deficiencies of
both of the previous approaches.

An abstract method is one that is declared without a method body. For the sake of
this discussion, let’s call a normal method that is declared with a body a concrete method.

We discussed abstract methods in Chapter 2 when we looked at the Java interface
construct. You may recall that a Java interface was not allowed to contain any concrete
methods; it could only contain abstract methods. An abstract class, on the other hand,
can contain both concrete methods and abstract methods. It must contain at least one
abstract method. To indicate that a class is abstract, we use the Java keyword abstract
in its definition. You’ll see an example of this syntax in the next subsection. An abstract
class cannot be instantiated. It must be extended by another class, which provides the
missing implementations of the abstract methods.

We previously pointed out that it does not make sense to say that a sorted list is a
unsorted list. Similarly, it doesn’t make sense to reverse that; it does not make sense to
say an unsorted list is a sorted list. What then is the relationship between a sorted list
and an unsorted list? Easy, they are both lists! We can use an abstract class to model
this relationship.

We first create an abstract list class; its concrete methods provide the operations
that our two list ADTs share in common and its abstract methods provide the operations
that are not shared. We can then create two concrete classes that extend the abstract
list class, one that implements an unsorted list and the other that implements a sorted
list. With this approach we maintain the common code for the shared methods and we
create a reasonable is a inheritance structure: an unsorted list is a list and a sorted list
is a list.

An Abstract List Class

Our abstract list class is very straightforward. It is based on the UnsortedStringList
class developed in the previous section. We simply change the name of the class, and the
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constructor, to StringList, add the keyword abstract to the header line, and remove
the method bodies from the insert, delete, and isThere methods. We now declare
these three methods as abstract, and end their declaration lines with a semicolon. You
should also notice that we have only retained one of the constructors, the one which
accepts an integer parameter maxItems. The other constructor is redundant in this
scheme, as you see when we extend this class with the concrete classes in the next sec-
tion. Finally, notice that we place StringList in the same package as we placed
UnsortedStringList.

//----------------------------------------------------------------------------
// StringList.java             by Dale/Joyce/Weems                   Chapter 3
//
// Defines all constructs for an array-based list that do not depend
// on whether or not the list is sorted
//----------------------------------------------------------------------------

package ch03.stringLists;

public abstract class StringList
{
protected String[] list;            // Array to hold this list’s elements
protected int numItems;             // Number of elements on this list
protected int currentPos;          // Current position for iteration

public StringList(int maxItems)
// Instantiates and returns a reference to an empty list object 
// with room for maxItems elements
{
numItems = 0;
list = new String[maxItems];

}

public boolean isFull()
// Returns whether this list is full 
{
return (list.length == numItems);

}

public int lengthIs()
// Returns the number of elements on this list 
{
return numItems;

}
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public abstract boolean isThere (String item);
// Returns true if item is on this list; otherwise, returns false

public abstract void insert (String item);
// Adds a copy of item to this list 

public abstract void delete (String item);
// Deletes the element that matches item from this list. 

public void reset()
// Initializes current position for an iteration through this list 
{
currentPos  = 0;

}

public String getNextItem ()
// Returns copy of the next element on this list
{
String next = list[currentPos];
if (currentPos == numItems-1)
currentPos = 0;

else
currentPos++;

return new String(next);
}

}

Extending the Abstract Class

Now we can create an Unsorted List ADT class by extending the abstract list class. To
differentiate this Unsorted List class from the one developed in the previous section, we
call it UnsortedStringList2. Since constructors cannot be inherited, we must imple-
ment our own constructors for this class. Notice how our code for the two constructors
both use the single constructor provided in the abstract list class. Additionally, we must
complete the definitions of the three abstract classes. We simply reuse the code from the
previous implementations. The code for the new unsorted string list is shown below.

//----------------------------------------------------------------------------
// UnsortedStringList2.java        by Dale/Joyce/Weems               Chapter 3
//
// Completes the definition of the StringList class under the assumption
// that the list is not kept sorted
//----------------------------------------------------------------------------

package ch03.stringLists;
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public class UnsortedStringList2 extends StringList 
{
public UnsortedStringList2(int maxItems)
// Instantiates and returns a reference to an empty list object 
// with room for maxItems elements
{
super(maxItems);

}

public UnsortedStringList2()
// Instantiates and returns a reference to an empty list object 
// with room for 100 elements
{
super(100);

}

public boolean isThere (String item)
// Returns true if item is on this list; otherwise, returns false
{
boolean moreToSearch;
int location = 0;
boolean found = false;

moreToSearch = (location < numItems);

while (moreToSearch && !found) 
{
if (item.compareTo(list[location]) == 0)  // if they match
found = true;

else
{
location++;
moreToSearch = (location < numItems);

}
}

return found;
}

public void insert (String item)
// Adds a copy of item to this list 
{
list[numItems] = new String(item);
numItems++;

}
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public void delete (String item)
// Deletes the element that matches item from this list 
{
int location = 0;

while (item.compareTo(list[location]) != 0)
location++;

list[location] = list[numItems - 1];
numItems--;

}
}

The UML class diagram in Part (b) of Figure 3.5 models both the abstract StringList
class and the UnsortedStringList2 class. Note that the diagram displays the isThere,
insert, and delete methods defined in the StringList class, and the name of the class
itself, in an italic font to indicate that they are abstract classes. Part (a) of the diagram
models our original UnsortedStringList class, to allow comparison.

Figure 3.5 UML diagrams for our list implementations
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3.4 Abstract Data Type Sorted List

At the beginning of this chapter, we said that a list is a linear sequence of items; from
any item (except the last) you can access the next one. We looked at the specifications
and implementation for the operations that manipulate a list and guarantee this property.

We now want to add an additional property: The key member of any item (except
the last) comes before the key member of the next one. We call a list with this property
a sorted list.

Logical Level

When we defined the specifications for the Unsorted List ADT, we made no requirements
with respect to the order in which the list elements are stored and maintained. Now, we
have to change the specifications to guarantee that the list is sorted. As was noted in the
section Relationship between Unsorted and Sorted Lists of Section 3.3, we must add pre-
conditions and postconditions to those operations for which order is relevant. The only
ones that must be changed are insert and delete.

We call our new class the SortedStringList class. We must define new construc-
tors, since their names are directly related to the name of the class.

Sorted List ADT Specification (partial)

Structure:

The list elements are Strings. The list contains unique elements,
i.e., no duplicate elements as defined by the key of the list. The
strings are kept in alphabetical order. The list has a special prop-
erty called the current position—the position of the next element
to be accessed by getNextItem during an iteration through the
list. Only reset and getNextItem affect the current position.

Definitions (provided by user):
maxItems: An integer specifying the maximum number of

items to be on this list.

Operations (provided by Sorted List ADT):

void SortedStringList (int maxItems)

Effect: Instantiates this list with capacity of maxItems
and initializes this list to empty state.

Precondition: maxItems > 0
Postcondition: This list is empty.

void SortedStringList ( )

Effect: Instantiates this list with capacity of 100 and
initializes this list to empty state.

Postcondition: This list is empty.
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void insert (String item)

Effect: Adds item to list.
Preconditions: List is not full.

item is not on the list.
List is sorted.

Postconditions: item is on the list.
List is still sorted

void delete (String item)

Effect: Deletes the element whose key matches item’s
key.

Preconditions: One and only one element in list has a key
matching item’s key.
List is sorted.

Postconditions: No element in list has a key matching the
argument item’s key.
List is still sorted.
The remaining operations use the same defini-
tions as the Unsorted List ADT.

Application Level

The application level for the Sorted List ADT is the same as for the Unsorted List ADT.
As far as the user is concerned, the interfaces are the same. The only functional differ-
ence is that when getNextItem() is called in the Sorted List ADT, the element returned
is the next one in order by key.

Implementation Level

We continue to use the generic list design terminology, created to describe the algo-
rithms for the Unsorted List ADT operations, to describe the algorithms in this section.

insert Operation
To add an element to a sorted list, we must first find the place where the new element
belongs, which depends on the value of its key. We use an example to illustrate the
insertion operation. Let’s say that Becca has made the Honor Roll. To add the element
Becca to the sorted list pictured in Figure 3.6(a), maintaining the alphabetic ordering,
we must accomplish three tasks:

1. Find the place where the new element belongs.

2. Create space for the new element.

3. Put the new element on the list.

The first task involves traversing the list comparing the new item to each item on the list
until we find an item where the new item (in this case, Becca) is less. Recall from Chapter 2
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that the String method compareTo takes a string as a parameter and returns 0 if the
parameter string and the object string are equal, returns a positive integer if the parameter
string is “less than” the object string, and returns a negative integer if the parameter string
is “greater than” the object string. Therefore, we set moreToSearch to false when we
reach a point where item.compareTo(location.info()) is negative. At this point,
location is where the new item should go (see Figure 3.6b). If we don’t find a place

Figure 3.6 Inserting into a sorted list
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insert (item)
Initialize location to position of first element
Set moreToSearch to (have not examined last.info())
while moreToSearch
if (item.compareTo(location.info()) < 0)
Set moreToSearch to false

else
Set location to location.next()
Set moreToSearch to (have not examined last.info())

for index going from numItems DOWNTO location + 1
Set index.info() to (index-1).info()

Set location.info() to copy of item
Increment numItems

where item.compareTo(location.info()) is negative, then the item should be put at
the end of the list. This is true when location equals numItems.

Now that we know where the element belongs, we need to create space for it.
Because the list is sequential, Becca must be put into the list at location.info( ). But this
position may be occupied. To “create space for the new element,” we must move down
all the list elements that follow it, from location through numItems – 1. Now we just
assign item to location.info( ) and increment numItems. Figure 3.6(c) shows the resulting
list.

Let’s summarize these observations in algorithmic form before we write the code.

Remember that the preconditions on insert state that item does not exist on the list, so
we do not need to check whether the compareTo method returns a zero. Translating the
design notation into the array-based implementation gives us the following method.

public void insert (String item)
// Adds a copy of item to this list 
{
int location = 0;
boolean moreToSearch = (location < numItems);

while (moreToSearch) 
{
if (item.compareTo(list[location]) < 0)  // Item is less
moreToSearch = false;
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else                                    // Item is more
{
location++;
moreToSearch = (location < numItems);

}
}

for (int index = numItems; index > location; index--)
list[index] = list[index - 1];

list[location] = new String(item);
numItems++;

}

Does this method work if the new element belongs at the beginning or end of the list?
Draw a picture to see how the method works in each of these cases.

delete Operation
When discussing the method delete for the Unsorted List ADT, we commented that if
the list is sorted, we would have to move the elements up one position to cover the one
being removed. Moving the elements up one position is the mirror image of moving the
elements down one position. The loop control for finding the item to delete is the same
as for the unsorted version.

Examine this algorithm carefully and convince yourself that it is correct. Try cases
where you are deleting the first item and the last one.

public void delete (String item)
// Deletes the element that matches item from this list 
{
int location = 0;

delete (item)
Initialize location to position of first element
while (item.compareTo(location.info()) != 0)

Set location to location.next()
for index going from location + 1 TO numItems - 1
Set (index-1).info() to index.info()

Decrement numItems
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while (item.compareTo(list[location]) != 0)   // while not a match
location++;

for (int index = location + 1; index < numItems; index++)
list[index - 1] = list[index];

numItems--;
}

Improving the isThere Operation
If the list is not sorted, the only way to search for an item is to start at the beginning
and look at each element on the list, comparing the key member of the item for which
we are searching to the key member of each element on the list in turn. This was the
algorithm used in the isThere operation in the Unsorted List ADT.

If the list is sorted by key value, there are two ways to improve the searching algo-
rithm. The first way is to stop searching when we pass the place where the item would be
if it were there. Look at Figure 3.7(a). If you are searching for Chris, a comparison with
Judy would show that Chris is less, that is, the compareTo method returns a positive inte-
ger. This means that you have passed the place where Chris would be if it were there. At
this point you can stop and return found as false. Figure 3.7(b) shows what happens
when you are searching for Susy: location is equal to 4, moreToSearch is false, and
found is false. In this case the search ends because there is nowhere left to look.

Figure 3.7 Retrieving in a sorted list
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If the item we are looking for is on the list, the search is the same for the unsorted
list and the sorted list. It is when the item is not there that this algorithm is better. We
do not have to search all of the elements to determine that the one we want is not there.
The second way to improve the algorithm, using a binary search approach, helps in both
the case when the item is on the list and the case when the item is not on the list.

Binary Search Algorithm
Think of how you might go about finding a name in a phone book, and you can get an
idea of a faster way to search. Let’s look for the name “David.” We open the phone book
to the middle and see that the names there begin with M. M is larger than (comes after)
D, so we search the first half of the phone book, the section that contains A to M. We
turn to the middle of the first half and see that the names there begin with G. G is larger
than D, so we search the first half of this section, from A to G. We turn to the middle
page of this section, and find that the names there begin with C. C is smaller than D, so
we search the second half of this section—that is, from C to G—and so on, until we are
down to the single page that contains the name “David.” This algorithm is illustrated in
Figure 3.8.

Figure 3.8 A binary search of the phone book
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isThere (item): returns boolean
Set first to 0
Set last to numItems – 1
Set found to false
Set moreToSearch to (first <= last)
while moreToSearch AND NOT found
Set midPoint to (first + last) / 2
compareResult = item.compareTo(midPoint.info())
if compareResult == 0 
Set found = true

else if compareResult < 0
Set last to midPoint – 1
Set moreToSearch to (first <= last)

else
Set first to midPoint + 1
Set moreToSearch to (first <= last)

return found

The algorithm presented here depends directly on the array-based implementation
of the list. This algorithm cannot be implemented with the linked implementation pre-
sented in Chapter 5. Therefore, in discussing this algorithm we abandon our generic list
design terminology in favor of using array-related terminology.

We begin our search with the whole list to examine; that is, our current search area
goes from list[0] through list[numItems – 1]. In each iteration, we split the cur-
rent search area in half at the midpoint, and if the item is not found there, we search the
appropriate half. The part of the list being searched at any time is the current search
area. For instance, in the first iteration of the loop, if a comparison shows that the item
comes before the element at the midpoint, the new current search area goes from index
0 through midpoint – 1. If the item comes after the element at the midpoint, the new
current search area goes from index midpoint + 1 through numItems – 1. Either
way, the current search area has been split in half. It looks as if we can keep track of the
boundaries of the current search area with a pair of indexes, first and last. In each
iteration of the loop, if an element with the same key as item is not found, one of these
indexes is reset to shrink the size of the current search area.

How do we know when to quit searching? There are two possible terminating con-
ditions: item is not on the list and item has been found. The first terminating condition
occurs when there’s no more to search in the current search area. Therefore, we only
continue searching if (first <= last). The second terminating condition occurs
when item has been found.
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Notice that when we look in the lower half or upper half, we can ignore the mid-
point because we know it is not there. Therefore, last is set to midPoint – 1, or
first is set to midPoint + 1. The coded version of our algorithm follows.

public boolean isThere (String item)
// Returns true if item is on this list; otherwise, returns false
{
int compareResult;
int midPoint;
int first = 0;
int last = numItems - 1;
boolean moreToSearch = (first <= last);
boolean found = false;

while (moreToSearch && !found) 
{
midPoint = (first + last) / 2;
compareResult = item.compareTo(list[midPoint]);

if (compareResult == 0)
found = true;

else if (compareResult < 0)  // Item is less than element at location
{
last = midPoint - 1;
moreToSearch = (first <= last);

}
else                         // Item is greater than element at location
{
first = midPoint + 1;
moreToSearch = (first <= last);

}
}

return found;
}

Let’s do a walk-through of the binary search algorithm. The item being searched for is
“bat”. Figure 3.9 (a) shows the values of first, last, and midpoint during the first
iteration. In this iteration, “bat” is compared with “dog,” the value in list[midpoint].
Because “bat” is less than (comes before) “dog,” last becomes midpoint – 1 and
first stays the same. Figure 3.9(b) shows the situation during the second iteration. This
time, “bat” is compared with “chicken,” the value in list[midpoint]. Because “bat” is
less than (comes before) “chicken,” last becomes midpoint – 1 and first again
stays the same.



178 | Chapter 3:  ADTs Unsorted List and Sorted List

Figure 3.9 Trace of the binary search algorithm
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In the third iteration (Figure 3.9c), midpoint and first are both 0. The item
“bat” is compared with “ant,” the item in list[midpoint]. Because “bat” is greater
than (comes after) “ant,” first becomes midpoint + 1. In the fourth iteration
(Figure 3.9d), first, last, and midpoint are all the same. Again, “bat” is com-
pared with the item in list[midpoint]. Because “bat” is less than “cat,” last
becomes midpoint –1. Now that last is less than first, the process stops; found
is false.

The binary search is the most complex algorithm that we have examined so far. The
following table shows first, last, midpoint, and list[midpoint] for searches of
the items “fish,” “snake,” and “zebra,” using the same data as in the previous example.
Examine the results of Table 3.1 carefully.

Notice that the loop never executes more than four times. It never executes more
than four times in a list of 11 components because the list is being cut in half each time
through the loop. Table 3.2 compares a linear search and a binary search in terms of the
average number of iterations needed to find an item.

If the binary search is so much faster, why not use it all the time? It is certainly
faster in terms of the number of times through the loop, but more computations are exe-
cuted within the binary search loop than in the other search algorithms. So if the num-
ber of components on the list is small (say, under 20), linear search algorithms are faster
because they perform less work at each iteration. As the number of components on the
list increases, the binary search algorithm becomes relatively more efficient. Remember,
however, that the binary search requires the list to be sorted and sorting takes time.

The UML diagram for the SortedStringList class is displayed in Figure 3.10,
along with the diagrams for the previous list implementations for comparison purposes.

Table 3.1 Trace of binary search algorithm
Terminating

Iteration first last midPoint list[midPoint] Condition

item: fish
First 0 10 5 dog
Second 6 10 8 horse
Third 6 7 6 fish found is true

item: snake
First 0 10 5 dog
Second 6 10 8 horse
Third 9 10 9 camel
Fourth 10 10 10 snake found is true

item: zebra
First 0 10 5 dog
Second 6 10 8 horse
Third 9 10 9 camel
Fourth 10 10 10 snake
Fifth 11 10 last < first
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Table 3.2 Comparison of linear and binary search

Average Number of Iterations

Length Linear Search Binary Search

10 5.5 2.9

100 50.5 5.8

1,000 500.5 9.0

10,000 5000.5 12.0

Figure 3.10 UML diagrams for our list implementations
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Figure 3.11 Map to Joe’s Diner
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Test Plan
We can use the same test plan that we used for the unsorted list, with the expected out-
puts changed to reflect the ordering. However, we should add some test cases to explic-
itly address the fact that the list is sorted. For example, we should insert a sequence of
strings in reverse alphabetical order and check if the ADT correctly orders them. Note
that the sorted list implementation described in this section can be found in the file
SortedStringList.java on our web site.

3.5 Comparison of Algorithms

As we have shown in this chapter, there is more than one way to solve most problems.
If you were asked for directions to Joe’s Diner (see Figure 3.11), you could give either of
two equally correct answers:

1. ”Go east on the big highway to the Y’all Come Inn, and turn left.”

2. ”Take the winding country road to Honeysuckle Lodge, and turn right.”

The two answers are not the same, but because following either route gets the traveler
to Joe’s Diner, both answers are functionally correct.

If the request for directions contained special requirements, one solution might be
preferable to the other. For instance, “I’m late for dinner. What’s the quickest route to
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Joe’s Diner?” calls for the first answer, whereas “Is there a scenic road that I can take to
get to Joe’s Diner?” suggests the second. If no special requirements are known, the
choice is a matter of personal preference—which road do you like better?

In this chapter, we have presented many algorithms. How we choose between two
algorithms that do the same task often depends on the requirements of a particular
application. If no relevant requirements exist, the choice may be based on the program-
mer’s own style.

Often the choice between algorithms comes down to a question of efficiency. Which
one takes the least amount of computing time? Which one does the job with the least
amount of work? We are talking here of the amount of work that the computer does.
Later we also compare algorithms in regard to how much work the programmer does.
(One is often minimized at the expense of the other.)

To compare the work done by competing algorithms, we must first define a set of
objective measures that can be applied to each algorithm. The analysis of algorithms is
an important area of theoretical computer science; in advanced courses students
undoubtedly see extensive work in this area. In this text you learn about a small part of
this topic, enough to let you determine which of two algorithms requires less work to
accomplish a particular task.

How do programmers measure the work that two algorithms perform? The first solu-
tion that comes to mind is simply to code the algorithms and then compare the execution
times for running the two programs. The one with the shorter execution time is clearly the
better algorithm. Or is it? Using this technique, we really can determine only that program
A is more efficient than program B on a particular computer at a particular time. Execution
times are specific to a particular computer, since different computers run at different
speeds. Sometimes they are dependent on what else the computer is doing in the back-
ground, for example if the Java run-time engine is performing garbage collection, it can
affect the execution time of the program. Of course, we could test the algorithms on many
possible computers at various times, but that would be unrealistic and too specific (new
computers are becoming available all the time). We want a more general measure.

A second possibility is to count the number of instructions or statements executed. This
measure, however, varies with the programming language used, as well as with the style of
the individual programmer. To standardize this measure somewhat, we could count the
number of passes through a critical loop in the algorithm. If each iteration involves a con-
stant amount of work, this measure gives us a meaningful yardstick of efficiency.

Another idea is to isolate a particular operation fundamental to the algorithm and
count the number of times that this operation is performed. Suppose, for example, that
we are summing the elements in an integer list. To measure the amount of work
required, we could count the integer addition operations. For a list of 100 elements,
there are 99 addition operations. Note, however, that we do not actually have to count
the number of addition operations; it is some function of the number of elements (N) on
the list. Therefore, we can express the number of addition operations in terms of N: For
a list of N elements, there are N � 1 addition operations. Now we can compare the
algorithms for the general case, not just for a specific list size.

Sometimes an operation so dominates an algorithm that the other operations fade
into the background “noise.” If we want to buy elephants and goldfish, for example, and
we are considering two pet suppliers, we only need to compare the prices of elephants;
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the cost of the goldfish is trivial in comparison. Suppose we have two files of integers,
and we want to create a new file of integers based on the sums of pairs of integers from
the existing files. In analyzing an algorithm that solves this problem, we could count
both file accesses and integer additions. However, file accessing is so much more expen-
sive than integer addition in terms of computer time, that the integer additions could be
a trivial factor in the efficiency of the whole algorithm; we might as well count only the
file accesses, ignoring the integer additions. In analyzing algorithms, we often can find
one operation that dominates the algorithm, effectively relegating the others to the
“noise” level.

Big-O

We have been talking about work as a function of the size of the input to the operation
(for instance, the number of elements on the list to be summed). We can express an
approximation of this function using a math-
ematical notation called order of magnitude,
or Big-O notation. (This is a letter O, not a
zero.) The order of magnitude of a function is
identified with the term in the function that
increases fastest relative to the size of the
problem. For instance, if

f(N) = N 4 + 100N 2+ 10N + 50

then f (N ) is of order N 4—or, in Big-O notation, O(N 4). That is, for large values of N,
some multiple of N 4 dominates the function for sufficiently large values of N.

How is it that we can just drop the low-order terms? Remember the elephants and
goldfish that we talked about earlier? The price of the elephants was so much greater
that we could just ignore the price of the goldfish. Similarly, for large values of N, N 4 is
so much larger than 50, 10N, or even 100N2 that we can ignore these other terms. This
doesn’t mean that the other terms do not contribute to the computing time; it only
means that they are not significant in our approximation when N is “large.”

What is this value N? N represents the size of the problem. Most of the rest of the
problems in this book involve data structures—lists, stacks, queues, and trees. Each
structure is composed of elements. We develop algorithms to add an element to the
structure and to modify or delete an element from the structure. We can describe
the work done by these operations in terms of N, where N is the number of elements in

Big-O notation A notation that expresses computing
time (complexity) as the term in a function that
increases most rapidly relative to the size of a problem
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Write List Elements
Open the file
while more elements in list 

Write the next element

the structure. Yes, we know. We have called the number of elements in a list the length
of the list. However, mathematicians talk in terms of N, so we use N for the length when
we are comparing algorithms using Big-O notation.

Suppose that we want to write all the elements in a list into a file. How much
work is that? The answer depends on how many elements are on the list. Our algo-
rithm is

If N is the number of elements on the list, the “time” required to do this task is

(N * time-to-write-one-element) + time-to-open-the-file

This algorithm is O(N) because the time required to perform the task is proportional to
the number of elements (N)—plus a little to open the file. How can we ignore the open
time in determining the Big-O approximation? If we assume that the time necessary to
open a file is constant, this part of the algorithm is our goldfish. If the list has only a
few elements, the time needed to open the file may seem significant, but for large val-
ues of N, writing the elements is an elephant in comparison with opening the file.

The order of magnitude of an algorithm does not tell you how long in microseconds
the solution takes to run on your computer. Sometimes we need that kind of informa-
tion. For instance, a word processor’s requirements state that the program must be able
to spell-check a 50-page document (on a particular computer) in less than 120 seconds.
For information like this, we do not use Big-O analysis; we use other measurements. We
can compare different implementations of a data structure by coding them and then
running a test, recording the time on the computer’s clock before and after. This kind of
“benchmark” test tells us how long the operations take on a particular computer, using
a particular compiler. The Big-O analysis, however, allows us to compare algorithms
without reference to these factors.

Common Orders of Magnitude

O(1) is called bounded time. The amount of work is bounded by a constant and is not
dependent on the size of the problem. Assigning a value to the ith element in an array
of N elements is O(l) because an element in an array can be accessed directly through its
index. Although bounded time is often called constant time, the amount of work is not
necessarily constant. It is, however, bounded by a constant.
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O(log2N) is called logarithmic time. The amount of work depends on the log of the
size of the problem. Algorithms that successively cut the amount of data to be processed
in half at each step typically fall into this category. Finding a value in a list of sorted
elements using the binary search algorithm is O(log2N).

O(N) is called linear time. The amount of work is some constant times the size of the
problem. Printing all the elements in a list of N elements is O(N). Searching for a partic-
ular value in a list of unsorted elements is also O(N) because you must potentially
search every element on the list to find it.

O(N log2N) is called (for lack of a better term) N log2N time. Algorithms of this type
typically involve applying a logarithmic algorithm N times. The better sorting algo-
rithms, such as Quicksort, Heapsort, and Mergesort discussed in Chapter 10, have N
log2N complexity. That is, these algorithms can transform an unsorted list into a sorted
list in O(N log2N) time.

O(N 2) is called quadratic time. Algorithms of this type typically involve applying a
linear algorithm N times. Most simple sorting algorithms are O(N 2) algorithms. (See
Chapter 10.)

O(2N ) is called exponential time. These algorithms are extremely costly. An example
of a problem for which the best known solution is exponential is the traveling salesman
problem—given a set of cities and a set of roads that connect some of them, plus the
lengths of the roads, find a route that visits every city exactly once and minimizes total
travel distance. As you can see in Table 3.3, exponential times increase dramatically in
relation to the size of N. (It also is interesting to note that the values in the last column
grow so quickly that the computation time required for problems of this order may
exceed the estimated life span of the universe!)

Note that throughout this discussion we have been talking about the amount of
work the computer must do to execute an algorithm. This determination does not neces-
sarily relate to the size of the algorithm, say, in lines of code. Consider the following
two algorithms to initialize to zero every element in an N-element array.

Both algorithms are O(N), even though they greatly differ in the number of lines
of code.

Algorithm Init1 Algorithm Init2
items[0] = 0; for (index = 0; index < N; index++)
items[1] = 0; items[index] = 0;
items[2] = 0;
items[3] = 0;
.
.
.
items[N–1] = 0;
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Algorithm Sum1
sum = 0;
for (count = 1; count <= n; count++)

sum = sum + count;

Table 3.3 Comparison of rates of growth

N log2N N log2N N2 N3 2N

1 0 1 1 1 2

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4,096 65,536

32 5 160 1,024 32,768 4,294,967,296

64 6 384 4,096 262,144 About 5 years’ worth

of instructions on a

supercomputer

128 7 896 16,384 2,097,152 About 600,000 times

greater than the age

of the universe in 

nanoseconds (for a 6-billion-

year estimate)

256 8 2,048 65,536 16,777,216 Don’t ask!

Now let’s look at two different algorithms that calculate the sum of the integers
from 1 to N. Algorithm Sum1 is a simple for loop that adds successive integers to keep a
running total:
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Algorithm Sum2
sum = ((n + 1) * n) / 2;

That seems simple enough. The second algorithm calculates the sum by using a for-
mula. To understand the formula, consider the following calculation when N = 9.

1 +  2 +  3 +  4 +  5 +  6 +  7 +  8 +  9
+ 9 +  8 +  7 +  6 +  5 +  4 +  3 +  2 +  1

10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10  =  10 * 9 = 90

We pair up each number from 1 to N with another, such that each pair adds up to N + 1.
There are N such pairs, giving us a total of (N + 1)*N. Now, because each number is
included twice, we divide the product by 2. Using this formula, we can solve the prob-
lem: ((9 + 1 ) * 9)/2 = 45. Now we have a second algorithm:

Both of the algorithms are short pieces of code. Let’s compare them using Big-O nota-
tion. The work done by Sum1 is a function of the magnitude of N; as N gets larger, the
amount of work grows proportionally. If N is 50, Sum1 works 10 times as hard as when
N is 5. Algorithm Sum1, therefore, is O(N ).

To analyze Sum2, consider the cases when N = 5 and N = 50. They should take the
same amount of time. In fact, whatever value we assign to N, the algorithm does the
same amount of work to solve the problem. Algorithm Sum2, therefore, is O(1).

Does this mean that Sum2 is always faster? Is it always a better choice than Sum1?
That depends. Sum2 might seem to do more “work,” because the formula involves multi-
plication and division, whereas Sum1 is a simple running total. In fact, for very small
values of N, Sum2 actually might do more work than Sum1. (Of course, for very large
values of N, Sum1 does a proportionally larger amount of work, whereas Sum2 stays the
same.) So the choice between the algorithms depends in part on how they are used, for
small or large values of N.

Another issue is the fact that Sum2 is not as obvious as Sum1, and thus it is harder for
the programmer (a human) to understand. Sometimes a more efficient solution to a problem
is more complicated; we may save computer time at the expense of the programmer’s time.

So, what’s the verdict? As usual in the design of computer programs, there are
tradeoffs. We must look at our program’s requirements and then decide which solution
is better. Throughout this text we examine different choices of algorithms and data
structures. We compare them using Big-O, but we also examine the program’s require-
ments and the “elegance” of the competing solutions. As programmers, we design soft-
ware solutions with many factors in mind.
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Family Laundry: An Analogy
How long does it take to do a family’s weekly laundry? We might describe the answer to this
question with the function

f (N ) = c * N

where N represents the number of family members and c is the average number of minutes that
each person’s laundry takes. We say that this function is O(N ) because the total laundry time
depends on the number of people in the family. The “constant” c may vary a little for different
families—depending on the size of their washing machine and how fast they can fold clothes, for
instance. That is, the time to do the laundry for two different families might be represented with
these functions:

f (N ) = 100 * N
g (N ) = 90 * N

But overall, we describe these functions as O(N ).
Now what happens if Grandma and Grandpa come to visit the first family for a week or

two? The laundry time function becomes

f (N ) = 100 * (N + 2)

We still say that the function is O(N ). How can that be? Doesn’t the laundry for two extra people
take any time to wash, dry, and fold? Of course it does! If N is small (the family consists of
Mother, Father, and Baby Sierra), the extra laundry for two people is significant. But as N grows
large (the family consists of Mother, Father, 8 kids, and a dog named Waldo), the extra laundry for
two people doesn’t make much difference. (The family’s laundry is the elephant; the guest’s laun-
dry is the goldfish.) When we compare algorithms using Big-O, we are concerned with what hap-
pens when N is “large.”

If we are asking the question “Can we finish the laundry in time to make the 7:05 train?” we
want a precise answer. The Big-O analysis doesn’t give us this information. It gives us an approxi-
mation. So, if 100 * N, 90 * N, and 100 * (N + 2) are all O(N ), how can we say which is better? We
can’t—in Big-O terms, they are all roughly equivalent for large values of N. Can we find a better
algorithm for getting the laundry done? If the family wins the state lottery, they can drop all their
dirty clothes at a professional laundry 15 minutes’ drive from their house (30 minutes round trip).
Now the function is

f (N ) = 30

This function is O(1). The answer is not dependent on the number of people in the family. If they
switch to a laundry 5 minutes from their house, the function becomes

f (N ) = 10

This function is also O(1). In terms of Big-O, the two professional-laundry solutions are equiva-
lent: No matter how many family members or houseguests you have, it takes a constant amount
of the family’s time to do the laundry. (We aren’t concerned with the professional laundry’s time.)
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3.6 Comparison of Unsorted and Sorted List ADT Algorithms

In order to determine the Big-O notation for the complexity of these algorithms, we
must first determine the size factor. Here we are considering algorithms to manipu-
late items in a list. Therefore, the size factor is the number of items on the list:
numItems.

Many of our algorithms are identical for the Unsorted List ADT and the Sorted
List ADT. We capitalized on this fact in Section 3.4 when we brought the correspon-
ding methods together in our abstract list class. Let’s examine these first. The
lengthIs and isFull methods each contain only one statement: return numItems
and return (list.length == numItems). Since the number of statements executed
in these methods does not depend on the number of items on the list, they have O(1)
complexity. The reset method contains one assignment statement and getNext-
Item contains an assignment statement, an if-then-else statement, and a return
statement. Neither of these methods is dependent on the number of items on the list,
so they also have O(1) complexity. The other methods are different for the two
implementations.

Unsorted List ADT

The algorithm for isThere requires that the list be searched until an item is found or
the end of the list is reached. We might find the item in any position on the list, or we
might not find it at all. How many places must we examine? At best only one, at worst
numItems. If we took the best case as our measure of complexity, then all of the opera-
tions would have O(1) complexity. But this is a rare case. What we want is the average
case or worst case, which in this instance are the same: O(numItems). True, the average
case would be O(numItems/2), but when we are using order notation, O(numItems) and
O(numItems/2) are equivalent. In some cases that we discuss later, the average and the
worst cases are not the same.

The insert algorithm has two parts: find the place to insert the item and insert the
item. In the unsorted list, the item is put in the numItems position and numItems is
incremented. Neither of these operations is dependent on the number of items on the
list, so the complexity is O(1).

The delete algorithm has two parts: find the item to delete and delete the item.
Finding the item uses essentially the same algorithm as isThere. The only difference is
that since it is guaranteed that the item is on the list, we do not have to test for the end-
of-list condition. But that difference does not affect the number of times we may have
to traverse the search loop, so the complexity of that part is O(numItems). To delete the
item, we put the value in the numItems – 1 position into the location of the item to be
deleted and decrement numItems. This store and decrement are not dependent on the
number of items on the list, so this part of the operation has complexity O(1). The entire
delete algorithm has complexity O(numItems) because O(numItems) plus O(1) is
O(numItems). (Remember, the O(1) is the goldfish.)
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Figure 3.12 Comparison of linear and binary searches
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Sorted List ADT

We looked at three different algorithms for isThere. We said that the Unsorted List
ADT algorithm would work for a sorted list but that there were two more efficient algo-
rithms: a linear search in the sorted list that exits when the place where the item would
be is passed and a binary search.

A linear search in a sorted list is faster than in an unsorted list when searching for
an item that is not on the list, but is the same when searching for an item that is on the
list. Therefore, the complexity of the linear search in a sorted list is the same as the
complexity in an unsorted list: O(numItems). Does that mean that we shouldn’t bother
taking advantage of the ordering in our search? No, it just means that the Big-O com-
plexity measures are the same.

What about the binary search algorithm? We showed a table comparing the number
of items searched in a linear search versus a binary search for certain sizes of lists. How
do we describe this algorithm using Big-O notation? To figure this out, let’s see how
many times we can split a list of N items in half. Assuming that we don’t find the item
we are looking for at one of the earlier midpoints, we have to divide the list log2N times
at the most, before we run out of elements to split. In case you aren’t familiar with logs,

2log2N = N

The definition of log2N is “the number that you raise 2 to, to get N”. So, if we raise 2 to
that number, 2log2N, the result is N. Consider, for example, that if N = 1024, log2N = 10,
and 210 = 1024. How does that apply to our searching algorithms? The sequential search
is O(N ); in the worst case, we would have to search all 1024 elements of the list. The
binary search is O(log2N ); in the worst case we would have to make log2N + 1, or 11,
search comparisons. A heuristic (a rule of thumb) tells us that a problem that is solved
by successively splitting it in half is an O(log2N ) algorithm. Figure 3.12 illustrates the
relative growth of the linear and binary searches, measured in number of comparisons.

The insert algorithm still has the same two parts: finding the place to insert the
item and inserting the item. Because the list must remain sorted, we must search for the
position into which the new item must go. Our algorithm used a linear search to find
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the appropriate location: O(numItems). Inserting requires that we move all those ele-
ments from the insertion point down one place in the array. How many items must we
move? At most numItems, giving us O(numItems). O(numItems) plus O(numItems) is
O(numItems) because we disregard the constant 2. Note, however, that the constant 2
does not actually occur here. We actually access each item on the list only once except
for the item at the insertion point: We access those to the place of insertion and we
move those items stored from numItems – 1 through that place. Therefore, only the
element in the insertion location is accessed twice: once to find the insertion point and
once to move it.

You may have thought of an even more efficient way to insert the item. You could
start at the end of the list and repeatedly test to see if that is where you need to put the
item. If the item is larger then the element at the end of the list, you just insert it fol-
lowing that element; if it is not you move the list element at the end of the list down
one array position, and check the next to last list element, repeating the same pattern of
compare and move. By the time you find out where to insert the item, you have already
shifted all of the elements that are greater than down one location in the array, and you
can just insert it into the open location. With this approach, on average, you only have
to access half of the elements in the array, instead of all of the elements. However, it is
still the same complexity as the other approach, since O(numItems/2) is equal to
O(numItems).

The delete algorithm also still has the same two parts: finding the item to
delete and deleting the item. The algorithm for finding the item is the mirror image
of finding the insertion point: O(numItems). Deleting the item in a sorted list
requires that all the elements from the deletion location to the end of the list must be
moved forward one position. This shifting algorithm is the reverse of the shifting
algorithm in the insertion and, therefore, has the same complexity: O(numItems).
Hence the complexities of the insertion and deletion algorithms are the same in the
Sorted List ADT.

Table 3.4 summarizes these complexities. We have replaced numItems with N, the
generic name for the size factor.

In the deletion operation, we could improve the efficiency by using the binary
search algorithm to find the item to delete. Would this change the complexity? No, it
would not. The find would be O(log2N ), but the removal would still be O(N ); since
O(log2N ) combined with O(N ) is O(N ) we have not changed the overall complexity of
the algorithm. (Recall that the term with the largest power of N dominates.) Does this
mean that we should not use the binary search algorithm? No, it just means that as the
length of the list grows, the cost of the removal dominates the cost of the find.

Think of the common orders of complexity as being bins into which we sort algo-
rithms (Figure 3.13). For small values of the size factor, an algorithm in one bin may
actually be faster than the equivalent algorithm in the next-more-efficient bin. As the
size factor increases, the differences among algorithms in the different bins get larger.
When choosing between algorithms within the same bin, you look at the constants to
determine which to use.
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Table 3.4 Big-O comparison of list operations

Unsorted Sorted
Operation List List

length O(1) O(1)

isFull O(1) O(1)

reset O(1) O(1)

getNextItem O(1) O(1)

isThere O(N ) O(N )

O(log2 N ) binary search

insert

Find O(1) O(N )

Put O(1) O(N )

Combined O(1) O(N )

delete

Find O(N ) O(N )

Put O(1) O(N )

Combined O(N ) O(N )

Figure 3.13 Complexity bins

•   •   •

0(1) 0(log2N) 0(N) 0(Nlog2N) 0(N*N)
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3.7 Generic ADTs

So far in this chapter we have created several variations of list ADTs: a “standalone”
unsorted string list, an unsorted string list that extended an abstract list class, and a
sorted string list, that also extended the abstract list class. These string lists are very
useful to an application programmer who is creating a system that requires lists of
strings. But what if the programmer wanted some other kind of list: a list of integers, a
list of dates, a list of circles, a list of real estate information?

The list ADTs we have constructed so far have all been constrained to holding data
of one specific type, namely strings. While useful, think of how much more useful they
would be if they could hold any kind of
information. A generic data type is one for
which the operations are defined but the
types of the items being manipulated are not.
We can make our lists generic by using Java’s
interface construct. We limited ourselves to
lists of strings up until now, because we wanted to concentrate on the list operations
without dealing with the extra complexity of interfaces. Now, however, we are ready to
see how we can construct more generally usable ADTs.

We use a new package, ch03.genericLists, to organize our files related to
generic lists. As required, the files are placed in a subdirectory genericLists of the
subdirectory ch03 of the directory bookFiles. Additionally, each of the class files must
begin with the line

package ch03.genericLists;

Lists of Objects

One approach to creating generic ADTs is to have our ADTs use variables of type Object.
Since all Java classes ultimately inherit from Object, such an ADT should be able to “hold”
a variable of any class. If you try this approach, you soon see that it has severe limitations.

Consider what happens if you redefine our SortedStringList class to hold
objects instead of strings. If you edit the file containing the class, and change every
place where you see “String” with “Object”, you have created a SortedObjectList
class. At first glance this seems to have solved our problem. The list is implemented as
an array of objects. We can insert objects into the list and delete them. Many of the
methods, like isFull and reset, are not even affected by the change. However, when
you try to compile the file you discover a few errors. For example, the following line
from the insert method of the new file is flagged with a “method not found”
message:

if (item.compareTo(list[location]) < 0)

Generic data type A type for which the operations
are defined but the types of the items being manipu-
lated are not
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Do you see why? Remember that the item referred to in the code is now of class
Object. If you check the definition of the Object class you see that it does not include
a compareTo method. Therefore, this statement, along with several other statements in
the file, is syntactically illegal. The statement was OK when item was a string, since the
String class includes a compareTo method, but it is not a legal statement when item
is an object of the more general Object class.

The String class’s compareTo method returns information about the relative
ordering of two strings. Such a method is not defined for the Object class, since it
might not always make sense to talk about the ordering of two objects. We cannot have
a sorted list of just any type of objects. We can only have a sorted list of objects for
which a relative ordering has been defined.

There is one other kind of statement that is flagged by the compiler. This statement
also appears in the insert method:

list[location] = new Object(item);

You should recall that this statement is executed after the method has shifted the array val-
ues to make room for the new item and set the value of location to the insertion location.
The previous form of this statement used the String class’s copy constructor,
String(item), to create a new string object, which was then inserted into the list. The new
form of this statement attempts to use a copy constructor from the Object class, but no
such constructor exists. The reason we wish to insert a copy of the item into the list, instead
of just inserting the item itself, is to preserve the information hiding aspect of our ADT.

To solve these problems we create a Java interface with abstract classes for compar-
ing and copying objects.

The Listable Interface

To ensure that the objects that we place on our list support the necessary methods, we
create a Java interface. Recall from Chapter 2 that an interface can only include abstract
methods, that is, methods without bodies. Once the interface is defined we can create
classes that implement the interface by supplying the missing method bodies.

For our lists we create an interface with two abstract methods; one to compare ele-
ments so that we can support sorted lists and the isThere operation, and one to support
copying of list elements, so that we can maintain information hiding. We follow the
Java convention used in the String class by naming the former method compareTo
and by having it return integer values to indicate the result of the comparison. We call
the latter method copy. It does not need any parameters; it simply returns a copy of the
object on which it is invoked. Finally, we need a name for the interface itself. Let’s call it
Listable, since classes that implement this interface provide objects that can be listed.

Here is the code for the interface:

package ch03.genericLists;

public interface Listable
// Objects of classes that implement this interface can be used with lists
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{
public abstract int compareTo(Listable other);
// Compares this Listable object to "other". If they are equal, 0 is 
//   returned
// If this is less than the argument, a negative value is returned
// If this is more than the argument, a positive value is returned

public abstract Listable copy();
// Returns a new object with the same contents as this Listable object

}

Whatever data we intend to store on a list must be contained in a class that implements the
Listable interface. For example, to support a list of circles we might define a ListCircle
class as follows (some of the code that is not pertinent to this discussion has been left out):

package ch03.genericLists;

public class ListCircle implements Listable
{
private int xvalue;      // Horizontal position of center
private int yvalue;     // Vertical position of center
private float radius;
private boolean solid;   // True means circle filled

// Code for Constructors goes here

public int compareTo(Listable otherCircle)
{
ListCircle other = (ListCircle)otherCircle;
return (int)(this.radius – other.radius);

}

public Listable copy()
{
ListCircle result = new ListCircle(this.xvalue, this.yvalue, this.radius,

this.solid);
return result;

}

// More ListCircle methods as needed

} 
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Note the use of the cast operation (ListCircle) in the compareTo method:

ListCircle other = (ListCircle)otherCircle;

This is to ensure that the parameter otherCircle is a ListCircle. The method signa-
ture allows it to be any Listable type, yet on the following line we are assuming that
it is a ListCircle, when we access its radius instance variable.

Since ListCircle implements Listable, it can be used anywhere something of
type Listable is expected. In the next section we define a class that provides a list of
Listable objects. This class could therefore be used to provide a list of ListCircle
objects.

A Generic Abstract List Class

Now we can create our generic list ADT by defining a list of Listable elements; not
just strings, not just plain objects, but objects of classes that implement the Listable
interface. We can reuse the code from our previous list definitions, but we must replace
the use of the String class with the Listable interface throughout the code; we also
must replace the use of the String class’s copy constructor with statements that use the
copy method defined in the interface.

We no longer need to use the term “string” when defining our list classes, since
they are no longer constrained to providing only lists of strings. We call our new
abstract list class simply List. Below is the code for the abstract List class. There are
several things to notice about the code. First, note the use of the term Listable, in
place of a class or type name, throughout the code. Wherever Listable is used to rep-
resent a formal parameter, you can pass an object of a class that implements Listable,
as the actual parameter. For example, you could use objects of type ListCircle, which
was defined in the previous subsection. Alternately, if you have defined other classes
that implement the Listable interface, you could use objects of those classes—perhaps
a class of ListStrings or a class of ListStudents.

Also, note the invocation of the copy method on the next object, in the very last
statement of the class. The next object is of “type” Listable, that is, it is an object of
a class that implements Listable. Therefore, we can be assured that the creator of that
class has included a definition of the copy method within the class.

Finally, you should notice the addition of a new list method, retrieve, and some
small but important changes to the comments describing the effects of the methods
isThere and delete. The switch from supporting lists of strings to lists of Listable
objects means that we now can implement and use lists of composite elements. This
raises some interesting questions about how we compare elements, and what it means
for two elements to be “equal.” These questions are discussed following the code listing.

//----------------------------------------------------------------------------
// List.java                by Dale/Joyce/Weems                      Chapter 3
//
// Defines all constructs for an array based list that do not depend
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// on whether or not the list is sorted.
//----------------------------------------------------------------------------

package ch03.genericLists;

public abstract class List
{
protected Listable[] list;          // Array to hold this list’s elements
protected int numItems;             // Number of elements on this list
protected int currentPos;           // Current position for iteration

public List(int maxItems)
// Instantiates and returns a reference to an empty list object 
// with room for maxItems elements
{
numItems = 0;
list = new Listable[maxItems];

}

public boolean isFull()
// Returns whether this list is full
{
return (list.length == numItems);

}

public int lengthIs()
// Returns the number of elements on this list 
{
return numItems;

}

public abstract boolean isThere (Listable item);
// Returns true if an element with the same key as item is on this list; 
// otherwise, returns false

public abstract Listable retrieve(Listable item);
// Returns a copy of the list element with the same key as item

public abstract void insert (Listable item);
// Adds a copy of item to this list 

public abstract void delete (Listable item);
// Deletes the element with the same key as item from this list 

public void reset()
// Initializes current position for an iteration through this list
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C1 C2 C3 C4

xvalue 3 3 6 3

yvalue 4 4 12 4

radius 10 6 10 3

solid true false false true

{
currentPos  = 0;

}

public Listable getNextItem ()
// Returns copy of the next element on this list 
{
Listable next = list[currentPos];
if (currentPos == numItems-1)
currentPos = 0;

else
currentPos++;

return next.copy();
}

}

As mentioned above, the switch from supporting lists of strings to lists of
Listable objects means that we now can implement and use lists of composite ele-
ments. This affects how we can compare elements, and what it means for two elements
to be “equal.” Consider the following ListCircle objects C1, C2, C3, and C4:

Are any of the circles equal to each other? No, not in the strict sense of the word
“equal.” But what about equality as defined by the compareTo method of the ListCir-
cle class? There, ListCircle objects are compared strictly on the basis of their radii.
Based on that definition of equality, circles C1 and C3 are “equal.” Although it might
seem strange, this definition of equality could make perfect sense for a particular appli-
cation, where the only important criteria for comparing circles is their size.

Remember that we are following the convention that our lists consist of unique
objects. Are all of the circles in the table above unique? No, not in the “world” defined
by the ListCircle class, where two circles are considered identical if they have the
same radius. The compareTo method essentially defines the key for the list. In this
case, the key is the radius. We should not insert both C1 and C3 on the same list. That
would violate the precondition of the insert operation. Again, this seems like a strange
restriction but might make sense within a particular application. (Please remember that
the approach used here is not the only approach possible. For example, list ADTs could
be developed that separate the concepts of key values and sort values.)



3.7 Generic ADTs | 199

S1 S2 S3

first Jones Jones Adams

last David Mary Mark

IDnum 1234567 7654321 1111111

test1 89 92 100

test2 92 95 99

test3 95 89 100

Let’s look at another example. Earlier in this chapter we discussed different ways we
might wish to sort a list of student records, with each record containing fields for first
name, last name, identification number, and three test scores. For example, we could
sort the list by name, or we could sort the list by identification number. Here is a table
of values for student objects S1, S2, and S3.

In our approach, the field or fields that we use as a sorting criteria is the key for the
list. If we were to define a ListStudent class—a class that allows us to maintain a list
of students—then the definition of the compareTo operation in the ListStudent class
would effectively define the key for the list elements. What would be the best choice for
the key for a list of students? If we decide the last name is the key, then we are not able
to hold both S1 and S2 on our list. That does not seem reasonable. Perhaps we could
define the key to use the first name field as a tiebreaker when two last names are identi-
cal. That is better, but we could have two students who have identical first and last
names, in which case we would be in trouble again. For this information, assuming a
unique identification number has been assigned to each student, the IDnum field would
be the best key. Therefore, the compareTo method of the ListStudent class should
base its processing on a comparison of IDnum values.

Now it is clear why we changed the comment describing the effects of the isThere and
delete operations. For example, when we were just using a list of strings the effect of
isThere was “returns true if item is on the list . . . .” Now the effect is “returns true if an ele-
ment with the same key as item is on this list . . . .” When dealing with lists of noncomposite
elements, like strings, the entire element was in effect the key. That is no longer the case.

This brings us to the new list operation introduced in this section, the retrieve
operation. Its definition in the abstract List class is

public abstract Listable retrieve(Listable item);
// Returns a copy of the list element with the same key as item

The application passes retrieve a Listable object and retrieve searches the list to
find the element on the list that is “equal” (i.e., has the same key) to it. A copy of this
element is returned. The specification of retrieve is as follows.
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Listable retrieve (Listable item)

Effect: Returns a copy of the list element with the
same key as item.

Preconditions: An element with a key that matches item’s key
is on this list.

Postcondition: Return value = (copy of list element that
matches item)

Therefore, we can store information on a list and retrieve it later based on the item’s
key. For example, to retrieve student information about a student with an IDnum of
7654321, we instantiate a ListStudent object with dummy information for all of the
fields except the IDnum field, which we initialize to 7654321. Then we pass this object
to the retrieve operation, which returns a copy of the matching list element. This
copy contains all the valid information about the student.

A Generic Sorted List ADT

Next we list the code for the generic sorted list class that completes the definition of the
list class for the case of sorted lists. You can see that we use the binary search algorithm
to implement the isThere and retrieve operations (although with the retrieve
operation we do not need the moreToSearch variable because we know the item being
retrieved is on the list). Note the use of the term Listable throughout the class, the use
of the copy method invocation in the insert and retrieve methods, and several uses
of the compareTo method. We call our new sorted list class SortedList.

//----------------------------------------------------------------------------
// SortedList.java             by Dale/Joyce/Weems                   Chapter 3
//
// Completes the definition of the List class under the assumption
// that the list is kept sorted
//----------------------------------------------------------------------------

package ch03.genericLists;

public class SortedList extends List 
{
public SortedList(int maxItems)
// Instantiates and returns a reference to an empty list object 
// with room for maxItems elements
{
super(maxItems);

}
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public SortedList()
// Instantiates and returns a reference to an empty list object 
// with room for 100 elements
{
super(100);

}

public boolean isThere (Listable item)
// Returns true if an element with the same key as item is on this list; 
// otherwise, returns false
{
int compareResult;
int midPoint;
int first = 0;
int last = numItems - 1;
boolean moreToSearch = (first <= last);
boolean found = false;

while (moreToSearch && !found) 
{
midPoint = (first + last) / 2;
compareResult = item.compareTo(list[midPoint]);

if (compareResult == 0)
found = true;

else if (compareResult < 0)  // item is less than element at location
{
last = midPoint - 1;
moreToSearch = (first <= last);

}
else                         // item is greater than element at location
{
first = midPoint + 1;
moreToSearch = (first <= last);

}
}

return found;
}

public Listable retrieve (Listable item)
// Returns a copy of the list element with the same key as item
{
int compareResult;
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int first = 0;
int last = numItems - 1;
int midPoint = (first + last) / 2;
boolean found = false;

while (!found) 
{
midPoint = (first + last) / 2;
compareResult = item.compareTo(list[midPoint]);

if (compareResult == 0)
found = true;

else if (compareResult < 0)  // item is less than element at location
last = midPoint - 1;

else                         // item is greater than element at location
first = midPoint + 1;

}

return list[midPoint].copy();
}

public void insert (Listable item)
// Adds a copy of item to this list 
{
int location = 0;
boolean moreToSearch = (location < numItems);

while (moreToSearch) 
{
if (item.compareTo(list[location]) < 0)  // item is less
moreToSearch = false;

else                                     // item is more
{
location++;
moreToSearch = (location < numItems);

}
}

for (int index = numItems; index > location; index--)
list[index] = list[index - 1];

list[location] = item.copy();
numItems++;

}
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public void delete (Listable item)
// Deletes the element that matches item from this list. 
{
int location = 0;

while (item.compareTo(list[location]) != 0)
location++;

for (int index = location + 1; index < numItems; index++)
list[index - 1] = list[index];

numItems--;
}

}

The UML diagrams for the List and SortedList classes, plus the Listable inter-
face, are displayed in Figure 3.14. Note the use of a dashed arrow labeled “uses,” with
an open arrowhead, to indicate the dependency of List and Listable. Although we

Figure 3.14 UML diagrams for our list framework

#list:Listable[]
#numItems:int
#currentPos:int

+List(in maxItems:int)
+isFull():boolean
+lengthIs():int
 isThere(in item:Listable):boolean
 retrieve(in item:Listable):Listable
 insert(in item:Listable):void
 delete(in item:Listable):void
+reset():void
+getNextItem():Listable

List

+UnsortedList(in maxItems:int)
+UnsortedList()
+isThere(in item:Listable):boolean
+retrieve(in item:Listable):Listable
+insert(in item:Listable):void
+delete(in item:Listable):void

UnsortedList

+SortedList(in maxItems:int)
+SortedList()
+isThere(in item:Listable):boolean
+retrieve(in item:Listable):Listable
+insert(in item:Listable):void
+delete(in item:Listable):void

SortedList

 compareTo(in other:Listable):int
+copy():Listable

<<interface>>
Listableuses
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did not develop it, the figure also shows an UnsortedList class that extends List.
This helps remind us that more than one class can extend the abstract list class. The
implementation of the UnsortedList class is left as an exercise.

A Listable Class

Now that we have defined a generic list, a sorted list of Listable elements, we have to
define a class that implements the Listable interface so that we have something to put
on our lists. To keep our example straightforward, we continue to work with a list of
strings. (In the case study of the next section, we provide a more complicated example
of a class that implements Listable.)

We used lists of strings in the early part of this chapter so that we could introduce
the reader gently to the topic of defining and implementing ADTs in Java. Knowing
what we know now, about how to use interfaces to create generic lists, we would not
have created a specific list implementation for lists of strings. Instead, we would use our
generic list. But how do we use our generic list to provide a list of strings? We need to
create a new class that hides a string variable and implements the Listable interface.
We call this class ListString, since it provides strings that can be placed on our
generic list.

Study the code for ListString below. Note that it contains a single object variable
key that holds a string. It provides a constructor, plus the two methods needed to
implement the Listable interface, the copy and compareTo methods. It also contains
one other method, a toString method, which makes it easy for the application pro-
grammer to use objects of the class ListString as strings. When a class implements an
interface, it must provide concrete methods for the abstract methods defined in the
interface. As you can see, it can also include definitions for other methods.

package ch03.genericLists;

public class ListString implements Listable
{
private String key;

public ListString(String inString)
{
key = new String(inString);

}

public Listable copy()
{
ListString result = new ListString(this.key);
return result;

}
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public int compareTo(Listable otherListString)
{
ListString other = (ListString)otherListString;
return this.key.compareTo(other.key); 
}

public String toString()
{
return(key);

}
}

Since ListString implements Listable, objects of class ListString can be
used anywhere a Listable object is expected. Therefore, an object of class List-
String can be passed to the insert method of the SortedList class. Furthermore, the
same object can be placed on the hidden array within the SortedList class. And so on.
We can use ListString objects with the SortedList class to provide a sorted list of
strings.

If we wished to have a list of something else we would need to create another class
that implements Listable. For example, if we wished to have a list of Circle objects
we could complete our definition of the class ListCircle. This class would also imple-
ment Listable; therefore, it would contain its own versions of the copy and com-
pareTo methods. What does it mean to compare circles? That depends on the intended
use of the list of circles. Perhaps the comparison would be based on the size of the cir-
cles or on their positions. The ListCircle class requires a constructor; but would it
require a toString method? Would it require any other methods? Again, the answers
depend on the intended use of the list of circles. Being able to reuse our generic list
ADT with list elements that have been defined for a specific application provides us
with a powerful programming tool.

Using the Generic List

To create a sorted list of strings in an application program you simply instantiate an
object of the class SortedList, using either of its constructors:

SortedList list1 = new SortedList();
SortedList list2 = new SortedList(size);

You also need to declare at least one object of class ListString, so that you have a
variable to use as a parameter with the various SortedList methods:

ListString aString;
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Once these declarations have been made you can instantiate ListString objects and
place them on the list. For example, to place the string “Amy” on the list you might code:

aString = new ListString("Amy");
list.insert(aString);

We are not going to list an entire application program that uses a sorted list of strings.
We did create a test driver (a form of application) that you can study and use; it is in the
TDSortedList.java file of the ch03 subdirectory of the bookFiles directory on our
website. Notice that it is not part of the genericLists package—instead it uses the pack-
age. So that the package classes are available to the test driver, it includes the following
import statement:

import ch03.genericLists.*;

As long as the bookFiles directory is included on your computer’s ClassPath, the
compiler will know where to find the generic list files.

In the test driver you find uses of each of the sorted list methods with a
Listable object:

outFile.println("The list is full is " + list.isFull());
outFile.println("Length of the list is " + list.lengthIs());
outFile.println(aString + " is on the list: " +
list.isThere(aString));
bString = (ListString)list.retrieve(aString);
list.insert(aString);
list.delete(aString);
list.reset();
aString = (ListString)list.getNextItem();

SortedList.java should be thoroughly tested. This job is left as an exercise.
The case study presented next shows another example of using the sorted list ADT.

In the case study a list of real estate information is manipulated.

Case Study
Real Estate Listings

Problem Write a RealEstate program to keep track of a real estate company’s residential
listings. The program needs to input and keep track of all the listing information, which is
currently stored on 3 � 5 cards in a box in their office.

The real estate salespeople must be able to perform a number of tasks using this data: add
or delete a house listing, view the information about a particular house given the lot number,
and look through a sequence of house information sorted by lot number.

We use the same design approach we described in Chapter 1 for this problem.
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Write a program to keep track of a real estate company’s residential
listings. The program needs to input and keep track of all the listing
information, which is currently stored on 3 x 5 cards in a box in their
office.

The real estate salespeople must be able to perform a number of tasks using
this data: add or delete a house listing, view the information about a 
particular house given the lot number, and look through a sequence of house 
information sorted by lot number.  

Figure 3.15 Problem statement with nouns circled and verbs underlined

Brainstorming We said that nouns in the problem statement represent objects and that verbs
describe actions. Let’s approach this problem by analyzing the problem statement in terms of
nouns and verbs. Let’s circle nouns and underline verbs. The relevant nouns in the first paragraph
are listings, information, cards, box, and office: circle them. The verbs that describe possible
program actions are keep track, input, and stored: underline them. In the second paragraph, the
nouns are salespeople, data, listing, information, house, lot number, and sequence: circle them.
Possible action verbs are perform, add, delete, view, look through, and sorted: underline them.
Figure 3.15 shows the problem statement with the nouns circled and the verbs underlined.

We did not circle program or underline write because these are instructions to the pro-
grammer and not part of the problem to be solved. Now, let’s examine these nouns and verbs
and see what insights they give us into the solution of this problem.

Filtering The first paragraph describes the current system. The objects are cards that contain
information. These cards are stored in a box. Therefore, there are two objects in the office that
we are going to have to simulate: 3 � 5 cards and a box to put them in. In the second
paragraph, we discover several synonyms for the cards: data, listing, information, and house.
We model these with the same objects that represent the cards. We also see what processing
must be done with the cards and the box in which they are stored. The noun salespeople
represents the outside world interacting with the program, so the rest of the paragraph
describes the processing options that must be provided to the user of the program. In terms of
the box of cards, the user must be able to add a new card, delete a card, view the information
on the card given the lot number, and view a sequence of card information, sorted by lot
number.

We can represent the cards by a class whose data members are the information written
on the 3 � 5 cards. How do we represent the box of cards? We have just written several ver-
sions of the Abstract Data Type List. A list is a good candidate to simulate a box and the
information on the list can be objects that represent the 3 � 5 cards. Since these objects
represent the house information, and they should be kept on a list, let’s call the class that
models a card of house information ListHouse. We must make sure that our ListHouse



208 | Chapter 3:  ADTs Unsorted List and Sorted List

class implements the Listable interface, since we wish to maintain a list of ListHouse
objects.

We now know that our program uses a list of ListHouse objects. But which version of a
list shall we use? The unsorted version or the sorted version? Because the user must be allowed
to look through the “house information sorted by lot number,” the sorted version is a better
choice. In the ListHouse class we base the definition of the compareTo method on the
house’s lot number. This ensures that the houses are kept sorted by lot number, just the way we
need them.

So far, we have ignored the noun office and the fact that the program should “input and keep
track” of the cards. A box of cards is stored permanently in the office. A list is a structure that
exists only as long as the program in which it is defined is running. But how do we keep track of
the information between runs of the program? That is, how do we simulate the office in which the
box resides? A file is the structure that is used for permanent storage of information. Hence, there
are two representations of the box of cards. When the program is running, the box is represented
as a list. When the program is not running, the box is represented as a file. The program must move
the information on the cards from a file to a list as the first action, and from a list to a file as the
last action. We relegate the responsibility of interacting with the file to a class called HouseFile.

The HouseFile class hides the file of house information from the rest of the program. In
this way, if the format of the file needs to be changed at a later time, the only part of the sys-
tem that is affected is the HouseFile class. Limiting the scope of potential future changes is
one of the main reasons we partition our systems into separate classes.

Let’s capture the decisions we have made so far on CRC cards. On each card we record the
main purpose of the class it represents, along with an initial set of responsibilities. Our cards
show that our classes are already fairly well defined. The following table captures the informa-
tion we record on the cards at this point (we display the final version of the cards after we fin-
ish the analysis section):

Class Purpose Responsibilities

RealEstate

ListHouse

SortedList

HouseFile

Main program

Hold the information about a
specific house.

Maintain a list of ListHouse
elements.

Manage the file of house
information.

Driver program, uses all the other classes to solve
the problem; provides graphical user interface;
implements actions represented by the interface
buttons

Know all of its information;
implement Listable; therefore, provide copy
and compareTo methods

See the List ADT specification.

Get house information from the file;
save house information to the file.
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User Interface Let’s assume that the information on the 3 � 5 cards includes the owner’s
first and last names, the lot number, price, number of square feet, and number of bedrooms.
The lot numbers are unique and therefore can be used as the key of the list. If an agent
attempts to add a listing that duplicates an existing lot number, an error message is printed to
the screen.

A review of the problem statement reveals that interaction with the user can take place
one “house” at a time. Therefore, we design our graphical interface to display information
about a house, and provide the user with buttons to initiate options related to that house (add,
delete, clear) or to the overall system (reset, next, find). A count of the number of data fields,
labels, and buttons needed, aided by some rough drafts drawn on scrap paper, leads us to a
9 � 2 grid layout for our interface. A sketch of our design is:

The user continues to manipulate the list of houses until he or she exits by closing the window.

Input Notice that there are three kinds of input: the file of houses saved from the last run of
the program, the commands, and the data entered from the keyboard into the text fields in
conjunction with the commands.

Output There are two kinds of output: the file of houses saved at the end of the run of the
program, and screen output directed by one or more of the commands.

Data Objects There are house objects, represented in the program as ListHouse class
objects. There are two container objects: the file of house objects retained from one run of the
program to the next and the list into which the house objects are stored when the program is
running (we call this object list). The collection of house listings is called our database.

Lot Number:

First Name:

Second Name:

Price:

Square Feet:

Number of Bedrooms:

Reset

Add

Clear

Next

Delete

Find

John

45678

96000

1200

3

Jones
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Figure 3.16 Data flow of case study
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We name the physical file in which we retain the house objects houses.dat.
The diagrams in Figures 3.16 and 3.17 show the general flow of the processing and what

the data objects look like. Note that we know the internal workings of the List ADT because we
have just written the code earlier in the chapter. When we wrote that we were acting as the
ADT programmer, creating a tool for use by application programmers. Now however, we are
changing hats; we are acting as the application programmer. We write the program only using
the interface as represented in the List ADT specification.

Scenario Analysis Where do we go from here? Scenario analysis lets us “test” our design.
Using our CRC cards we can walk through several scenarios that represent the typical expected
use of the system. This allows us to refine the responsibilities of our identified classes and
begin to add detailed information about method names and interfaces. During the course of
this analysis we may uncover holes in our identified classes or user interface.

We begin by working through a scenario in which a real estate salesperson runs the pro-
gram and tries to get information about the house on lot number 45678. We realize that the
first thing the system must do is to build the internal list of houses from the house information
contained in the file. We need to decide which class should have this responsibility. We could
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Figure 3.17 The high-level processing of the case study

houses.dat

Program processes
the menu choices

Reset Next
Add Delete
Clear Find

assign this task to the HouseFile class, since it is able to get the house information from the
file. However, we decide that such a task is outside its main purpose, which is to manage the
file of house information. Therefore, we decide that the RealEstate class should perform
this task. We add a notation to this effect to the list of responsibilities on its CRC card and
move ahead.

Now we must decide how the RealEstate class gets the house information from the
HouseFile class. Should the information be sent one field at a time or one house at a time?
We decide to use the latter approach, since we have already defined a class that encapsulates
house data, namely the ListHouse class. The HouseFile class can provide information to
the RealEstate class in the form of ListHouse objects. And vice versa at the end of the
program’s execution, the HouseFile class can receive information from the RealEstate
class in the form of ListHouse objects.
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As our scenario continues we imagine the RealEstate class requesting house infor-
mation from the HouseFile class. First it informs the HouseFile class that it wishes to
begin reading house data. A standard name for this method is reset. Next, as long as
there is more house data available, it asks the HouseFile class for data about another
house. Therefore, HouseFile must provide both a moreHouses method that returns a
boolean, and a getNextHouse method that returns an object of type ListHouse. A
similar analysis of how the data can be saved to the file at the end of the program run
leads to the identification of a rewrite method and a putToFile method. We also need
a method to inform the HouseFile class that we are finished with the file and it should
be closed. Finally, we decide to use our standard approach for reading from a file, so we
note that HouseFile must collaborate with Java’s BufferedReader, FileReader,
PrintWriter, and FileWriter classes. We update the CRC card for HouseFile, and
move ahead.

As the scenario unfolds we find that most of the operations needed for normal processing
have already been assigned to one of our classes. The user clicks on the Clear button and the
RealEstate class clears the information from the text fields; the user enters the lot number
45678 into the Lot Number text field and clicks on the Find button; the RealEstate class
creates a ListHouse object with 45678 as its lot number, uses the list isThere operation
to see if the house is on the list; if it is on the list then the list retrieve operation is used to
obtain all of the house information, which is subsequently displayed in the text fields.

But what if the house is not found on the list? When doing scenario analysis it is important
to consider all the variations of the scenario. In this case, the program should report to the user
that the house was not found. How does it do that? We have uncovered a hole in our interface
design. We need to include a way to communicate the results of operations to the user. So, we go
back and rework our draft of the interface to include a status box in the upper left corner of the
window. We decide we can use this status box to display a message in response to each option
selected by the user. For example, if the user selects the Add button and the house is successfully
added to the list, we display the message “House added to list.” Now our interface is a 10 � 2
grid.

The investigation of other scenarios is left to the reader. The final set of CRC cards, created
strictly for this application, is shown below. We do not include a card for the List ADT since that
was not created for this application. Also, we do not include a card for the RealEstate main
program, since that is the application that uses the classes represented by the other cards.
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Class Name: Superclass: Subclasses:

Responsibilities

Primary Responsibility:

Collaborations

Provide a house object to use with a list

ListHouse Object

Create itself (lastName, firstName,

lotNumber, price, squareFeet,

bedrooms)

Copy itself

return int

Compare itself to another ListHouse

(other ListHouse)

Know its information:

Know lastName, return String

Know firstName, return String

Know lotNumber, return int

Know price, return int

Know squareFeet, return int

Know bedrooms, return int

None

None

None

None

return Listable
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We now turn our attention to the design, implementation, and testing of the identified
classes. Note that the SortedList class that we use has already been created and tested, so
we can assume that it works properly. This is a prime benefit of creating ADTs—once created
and tested they can be used with confidence in other systems. We create a package,
ch03.houses, to hold the ListHouse and HouseFile classes. We use the package to hold
the “helper” classes only; therefore, we do not include the RealEstate class, which is an
application, as part of the package. You can find the RealEstate.java file in the ch03 sub-
directory of the bookFiles directory and the ListHouse.java and HouseFile.java files
in the houses subdirectory of the ch03 subdirectory. The files are available on our web site.

The ListHouse Class ListHouse must encapsulate house information and it must
implement the Listable interface, since ListHouse objects are placed on a list. Its
implementation is rather straightforward. It follows the same patterns established in the
ListCircle and ListString classes developed earlier in the chapter. We must implement
compareTo and copy, but we must also declare variables for all of the information about the
house. That is, we must have instance variables for the last name, the first name, the lot

Class Name: Superclass: Subclasses:

Responsibilities

Primary Responsibility:

Collaborations

Manage the file of house information

HouseFile Object

Set up for reading

return boolean

return ListHouse

Get the info about the next house from

the file

Set up for writing

Put info about a house to the file

(house)

PrintWriter

PrintWriter, FileWriter

Close the file

None

BufferedReader, FileReader

BufferedReader, Integer

BufferedReader, PrintWriter

know if there are more houses to read
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number, the price, the number of square feet, and the number of bedrooms. We also need to
have observer operations for each of these variables.

//----------------------------------------------------------------------------
// ListHouse.java             by Dale/Joyce/Weems                    Chapter 3
//
// Provides elements for a list of house information
//----------------------------------------------------------------------------

package ch03.houses;

import ch03.genericLists.*;

public class ListHouse implements Listable
{
// House information
private String lastName;
private String firstName;
private int lotNumber;
private int price;
private int squareFeet;
private int bedRooms;

public ListHouse(String lastName, String firstName, int lotNumber, 
int price, int squareFeet, int bedRooms )

{
this.lastName   = lastName;
this.firstName  = firstName;
this.lotNumber  = lotNumber;
this.price      = price;
this.squareFeet = squareFeet;
this.bedRooms   = bedRooms;

}

public Listable copy()
// Returns a copy of this ListHouse
{
ListHouse result = new ListHouse(lastName, firstName, lotNumber, price,

squareFeet, bedRooms);
return result;

}

public int compareTo(Listable otherListHouse)
// Houses are compared  based on their lot numbers
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{
ListHouse other = (ListHouse)otherListHouse;
return (this.lotNumber - other.lotNumber);
}

// Observers
public String lastName()
{
return lastName;

}

public String firstName()
{
return firstName;

}

public int lotNumber()
{
return lotNumber;

}

public int price()
{
return price;

}

public int squareFeet()
{
return squareFeet;

}

public int bedRooms()
{
return bedRooms;

}
}

We should test the ListHouse class by itself and integrated with the SortedList class.
We can test it by itself by creating a TDListHouse program, similar to the other test driver pro-
grams we have used. Our test cases first invoke the constructor, followed by calls to each of the
observer methods to ensure that they return the correct information. This could be followed by a
test of the copy operation, using it to create a copy of the original ListHouse and then repeat-
ing the observer method tests on the new object. Finally, the compareTo operation must be
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tested in a variety of situations: compare houses with lot numbers that are less than, equal to, or
greater than each other, compare a house to itself, compare a house to a copy of itself, and so on.

ListHouse can be tested with the SortedList class by repeating the sequence of tests
previously used to test our sorted list of strings, replacing the strings with house information.

The HouseFile Class
This class manages the houses.dat file. When requested, it pulls data from the file, encapsulates
the data into ListHouse objects, and returns the ListHouse objects to its client. Additionally, it
takes ListHouse objects from its client and saves the information to the houses.dat file.

There is no need to create numerous HouseFile objects. Since the class always deals
with the same file, we would not want to have several instances of the class interacting with
the file at the same time. If we allowed that the file could become corrupted and the system
could crash (for example if one instance of the class was trying to read from the file while
another instance of the class was trying to write to the file). Therefore, we do not support
objects of the class HouseFile. We code all of its methods as static methods. Recall that
this means that the methods are invoked directly through the class itself, as opposed to being
invoked through an object of the class. We also declare all of its variables to be static vari-
ables, that is, class variables as opposed to object variables.

A study of the CRC card for HouseFile combined with the analysis of the previous para-
graph leads to the following abstract specification of the HouseFile class:

House File Specification

Structure:

The house information is kept in a text file called houses.dat.
For each house the following information is kept, in the order
listed, one piece of information per line: last name (String),
first name (String), lot number (int), price (int), square feet
(int), and number of bedrooms (int).

Operations:

static void reset

Effect: Resets the file for reading
Throws: IOException

static void rewrite

Effect: Resets the file for writing
Throws: IOException

static boolean moreHouses

Effect: Determines whether there is still more house
information to be read

Postcondition: Return value = (there is more house informa-
tion)
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static ListHouse getNextHouse

Effect: Reads the next house information from the file
Postcondition: Return value = (a ListHouse object contain-

ing the next house information)
Throws: IOException

static void putToFile (ListHouse house)

Effect: Writes the house information to the file
Throws: IOException

static void close

Effect: Closes the file
Throws: IOException

Reading information from a file and writing information to a file was used in the TDInc-
Date program at the end of Chapter 1. The Java Input/Output feature section that accompa-
nied that program addresses the Java code used to provide those operations. That program
only needs to read and write information of type int. The HouseFile class also performs
input and output of String information. This is straightforward, since the methods provided
by the java.io class directly support strings:

firstName = inFile.readLine();       // Input of String
outFile.printLn(house.firstName());  // Output of String

The HouseFile class must keep track of whether or not the houses.dat file is closed
or opened, and if open, whether it is open for reading or open for writing. It must not allow
reading from the file when it is open for writing; nor writing to the file when it is open for
reading; nor reading or writing if the file is closed. The boolean class variables inFileOpen
and outFileOpen are used to keep track of the status of the file.

Here is the implementation:

//----------------------------------------------------------------------------
// HouseFile.java             by Dale/Joyce/Weems                    Chapter 3
//
// Manages file "houses.dat" of real estate information
//----------------------------------------------------------------------------

package ch03.houses;

import java.io.*;

public class HouseFile
// Manages file "houses.dat" of real estate information
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{
private static BufferedReader inFile;
private static PrintWriter outFile;
private static boolean inFileOpen = false;
private static boolean outFileOpen = false;
private static String inString ="";         // Holds "next" line from file

// Equals null if at end of file

public static void reset() throws IOException
// Reset file for reading
{
if (inFileOpen) inFile.close();
if (outFileOpen) outFile.close();
inFile = new BufferedReader(new FileReader("houses.dat"));
inFileOpen = true;
inString = inFile.readLine();

}

public static void rewrite() throws IOException
// Reset file for writing
{
if (inFileOpen) inFile.close();
if (outFileOpen) outFile.close();
outFile = new PrintWriter(new FileWriter("houses.dat"));
outFileOpen = true;

}

public static boolean moreHouses()
// Returns true if file open for reading and there is still more house 
// information available in it
{
if (!inFileOpen || (inString == null))
return false;

else return true;
}

public static ListHouse getNextHouse() throws IOException
// Gets and returns house information from the house info file
// Precondition: inFile is open and holds more house information
{
String lastName = "xxxxx";
String firstName = "xxxxx";
int lotNumber = 0;
int price = 0;
int squareFeet = 0;
int bedRooms =0;
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lastName = inString;      
firstName = inFile.readLine();
lotNumber = Integer.parseInt(inFile.readLine());
price = Integer.parseInt(inFile.readLine());
squareFeet = Integer.parseInt(inFile.readLine());
bedRooms = Integer.parseInt(inFile.readLine());

inString = inFile.readLine();

ListHouse house = new ListHouse(lastName, firstName, lotNumber, price, 
squareFeet, bedRooms);

return house;
}

public static void putToFile(ListHouse house) throws IOException
// Puts parameter house information into the house info file
// Precondition: outFile is open
{
outFile.println(house.lastName());
outFile.println(house.firstName());
outFile.println(house.lotNumber());
outFile.println(house.price());
outFile.println(house.squareFeet());
outFile.println(house.bedRooms());

}

public static void close() throws IOException
// Closes house info file
{
if (inFileOpen) inFile.close();
if (outFileOpen) outFile.close();
inFileOpen = false;
outFileOpen = false;

}
}

RealEstate Program We now look at the main program, the program that uses all of the
other classes to solve the problem. The main program includes the user interface code, in fact
that code makes up the majority of the program. Any input/output mechanisms used here
that have not yet been encountered in this text are addressed in the feature section, Java
Input/Output II that follows the case study. Here is a screen shot of the running program after
the user has selected the option to display the “next” house:
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Here is how the program reacts to an attempt to “find” a house that is not on the list:

This example shows what happens if the user tries to “add” a house with poorly formatted
information:
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The algorithm for the main program is as follows:

Processing begins by using the HouseFile class to obtain the house information from
the file, and using the SortList class to store the house information. This is accomplished
through the following steps:

Create a new list
Reset the house file for reading
while there are still more houses to read
Read the next house and
Insert it into the list

Get the house information from the HouseFile object and build the list of houses.
Present the initial frame
As long as the frame remains open
Listen for and respond to user choices
Reset – reset the list and display the first house from the list
Next – display the next house from the list
Add – if it is not already on the list, add the currently displayed house to the list
Delete – if it is on the list, remove the house that matches the currently displayed 

lot number from the list
Clear – clear the text fields
Find – display the house from the list that matches the currently displayed lot 

number, if possible
Send the information about the houses from the list to the HouseFile object
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The code that corresponds to this algorithm can be found in the main method, after the vari-
ous interface labels, text fields, and buttons have been set up, and the display frame has been
initialized.

So, that’s how we get the information from the file onto the list at the beginning of our
processing. How do we reverse this process. That is, how do we take the information from the
list and save it back to the file? Actually, the save algorithm is very similar:

Where should the code for this algorithm go in the program? We want this code to be one of
the last things that the program does. Remember, this is an event-driven program, so we can-
not just put the code at the end of the main method and expect it to be executed last. Instead,
we define our own WindowClosing event handler and place the corresponding code there. In
this way, when the user is finished and closes the application window, the information is saved.

Now that we have determined how we get the house information from the file to the list,
and vice versa, the only processing that remains is what occurs in response to the user press-
ing buttons in the interface. There are six buttons. The processing required by each button is
fairly well stated in the original algorithm above. Many of them require moving information
from the display (the set of text fields) to the list, or vice versa. This leads us to design three
helper methods

• showHouse – accepts a ListHouse object as a parameter and displays the informa-
tion about the object in the text fields

• getHouse – obtains the information from the textboxes, turns it into a ListHouse
object, and returns the object

• clearHouse – clears the information from the textboxes

The implementation of these methods is straightforward, and with their help we can
implement the button-processing routines without much difficulty. For example, the algorithm
to handle the Reset button is:

Reset the list
if the list is empty
clearHouse

else
Set house to the first house on the list
showHouse(house)

Report “List reset” through the status label

Reset the house file for writing
Rest the list
for each house on the list
Get the house from the list and
Store it in the file
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The code that corresponds to this algorithm is placed in the ActionHandler class, and asso-
ciated with the “Reset” event.

Study the code for the other event handlers to see how they use the helper methods to
perform their tasks. Note that each of the event handlers that depends upon the user entering
information into a text field, use Java’s exception handling mechanism to protect the applica-
tion from user input errors. For example, the algorithm for the Add event is:

Since four of the house fields require int data, if the system raises a NumberFormatException
it is because something other than an integer was listed in at least one of those fields. Therefore,
the message displayed through the status label is “Number?”, followed by an echo of the bad data.
The bad data value is available through the exception object’s getMessage method. You can see
that similar protection is provided for the Delete and Find event handlers in the code.

Here is the listing for the Real Estate application:

//----------------------------------------------------------------------------
// RealEstate.java             by Dale/Joyce/Weems                   Chapter 3
//
// Helps keep track of a company's real estate listings
//----------------------------------------------------------------------------

import java.awt.*;            
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import java.io.*;
import ch03.houses.*;
import ch03.genericLists.*;

public class RealEstate
{
// The list of house information
private static SortedList list = new SortedList();

// Text fields
private static JTextField lotText;             // Lot number field
private static JTextField firstText;            // First name field

try
Set house to getHouse
if house is already on the list
Report “Lot number already in use” through the status label

else
Insert house into the list
Report “House added to list” through the status label

catch NumberFormat Exception
Report a problem with the house data through the status label
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private static JTextField lastText;             // Last name field
private static JTextField priceText;            // Price field
private static JTextField feetText;             // Square feet field
private static JTextField bedText;             // Number of bedrooms field

// Status Label
private static JLabel statusLabel;              // Label for status info

// Display information about parameter house on screen
private static void showHouse(ListHouse house)
{
lotText.setText(Integer.toString(house.lotNumber()));
firstText.setText(house.firstName());                    
lastText.setText(house.lastName());                    
priceText.setText(Integer.toString(house.price()));                    
feetText.setText(Integer.toString(house.squareFeet()));
bedText.setText(Integer.toString(house.bedRooms()));

}

// Returns current screen information as a ListHouse
private static ListHouse getHouse()
{
String lastName;
String firstName;
int lotNumber;
int price;
int squareFeet;
int bedRooms;

lotNumber = Integer.parseInt(lotText.getText());
firstName = firstText.getText();                    
lastName = lastText.getText();                    
price = Integer.parseInt(priceText.getText()); 
squareFeet = Integer.parseInt(feetText.getText());
bedRooms = Integer.parseInt(bedText.getText());

ListHouse house = new ListHouse(lastName, firstName, lotNumber, price, 
squareFeet, bedRooms);

return house;
}

// Clears house information from screen
private static void clearHouse()
{
lotText.setText("");
firstText.setText("");                    
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lastText.setText("");                    
priceText.setText("");                    
feetText.setText("");
bedText.setText("");

}

// Define a button listener
private static class ActionHandler implements ActionListener 
{
public void actionPerformed(ActionEvent event)
// Listener for the button events
{
ListHouse house;

if (event.getActionCommand().equals("Reset"))
{ // Handles Reset event
list.reset();
if (list.lengthIs() == 0)
clearHouse();

else
{
house = (ListHouse)list.getNextItem();
showHouse(house);

}
statusLabel.setText("List reset"); 

}
else
if (event.getActionCommand().equals("Next"))
{ // Handles Next event
if (list.lengthIs() == 0)
statusLabel.setText("list is empty!");

else
{
house = (ListHouse)list.getNextItem();
showHouse(house);
statusLabel.setText("Next house displayed");

}
}
else
if (event.getActionCommand().equals("Add"))
{ // Handles Add event
try
{
house = getHouse();
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if (list.isThere(house))
statusLabel.setText("Lot number already in use"); 

else
{
list.insert(house);
statusLabel.setText("House added to list"); 

}
}
catch (NumberFormatException badHouseData)
{
// Text field info incorrectly formated
statusLabel.setText("Number? " + badHouseData.getMessage());

} 
}
else
if (event.getActionCommand().equals("Delete"))
{ // Handles Delete event
try
{
house = getHouse();
if (list.isThere(house))
{
list.delete(house);
statusLabel.setText("House deleted"); 

}
else
statusLabel.setText("Lot number not on list"); 

}
catch (NumberFormatException badHouseData)
{
// Text field info incorrectly formated
statusLabel.setText("Number? " + badHouseData.getMessage());

} 
}
else
if (event.getActionCommand().equals("Clear"))
{ // Handles Clear event
clearHouse();
statusLabel.setText(list.lengthIs() + " houses on list");

}
else
if (event.getActionCommand().equals("Find"))
{ // Handles Find event
int lotNumber;
try
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{
lotNumber = Integer.parseInt(lotText.getText());
house = new ListHouse("", "", lotNumber, 0, 0, 0);
if (list.isThere(house))
{
house = (ListHouse)list.retrieve(house);
showHouse(house);
statusLabel.setText("House found"); 

}
else
statusLabel.setText("House not found");

}
catch (NumberFormatException badHouseData)
{
// Text field info incorrectly formated
statusLabel.setText("Number? " + badHouseData.getMessage());

} 
}

}
}

public static void main(String args[]) throws IOException

{
ListHouse house;
char command;
int length;

JLabel blankLabel;        // To use up one frame slot

JLabel lotLabel;         // Labels for input fields
JLabel firstLabel;                            
JLabel lastLabel;
JLabel priceLabel;
JLabel feetLabel;
JLabel bedLabel;

JButton reset;             // Reset button
JButton next; // Next button
JButton add;              // Add button
JButton delete;            // Delete button
JButton clear;             // Clear button
JButton find;              // Find button
ActionHandler action;      // Declare listener
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// Declare/Instantiate/Initialize display frame
JFrame displayFrame = new JFrame();
displayFrame.setTitle("Real Estate Program");
displayFrame.setSize(350,400);
displayFrame.addWindowListener(new WindowAdapter()  // handle window 

//   closing
{
public void windowClosing(WindowEvent event)
{
ListHouse house;
displayFrame.dispose();                     // Close window
try 
{
// Store info from list into house file
HouseFile.rewrite();
list.reset();
int length = list.lengthIs();
for (int counter = 1; counter <= length; counter++)
{
house = (ListHouse)list.getNextItem();
HouseFile.putToFile(house);

}
HouseFile.close();

}
catch (IOException fileCloseProblem)
{
System.out.println("Exception raised concerning the house info file " 

+ "upon program termination");
}
System.exit(0);                          // Quit the program

}
});

// Instantiate content pane and information panel
Container contentPane = displayFrame.getContentPane();
JPanel infoPanel = new JPanel();

// Instantiate/initialize labels, and text fields
statusLabel = new JLabel("", JLabel.CENTER);
statusLabel.setBorder(new LineBorder(Color.red));
blankLabel = new JLabel("");    
lotLabel = new JLabel("Lot Number:  ", JLabel.RIGHT);
lotText = new JTextField("", 15);
firstLabel = new JLabel("First Name:  ", JLabel.RIGHT);
firstText = new JTextField("", 15);
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lastLabel = new JLabel("Last Name:  ", JLabel.RIGHT);
lastText = new JTextField("", 15);
priceLabel = new JLabel("Price:  ", JLabel.RIGHT);
priceText = new JTextField("", 15);
feetLabel = new JLabel("Square Feet:  ", JLabel.RIGHT);
feetText = new JTextField("", 15);
bedLabel = new JLabel("Number of Bedrooms:  ", JLabel.RIGHT);
bedText = new JTextField("", 15);

// Instantiate/register buttons
reset = new JButton("Reset");
next = new JButton("Next");
add = new JButton("Add");
delete = new JButton("Delete");
clear = new JButton("Clear");
find = new JButton("Find");

// Instantiate/register button listeners
action = new ActionHandler();
reset.addActionListener(action);
next.addActionListener(action);
add.addActionListener(action);
delete.addActionListener(action);
clear.addActionListener(action);
find.addActionListener(action);

// Load info from house file into list
HouseFile.reset();
while (HouseFile.moreHouses())
{
house = HouseFile.getNextHouse();
list.insert(house);

}

// If possible insert info about first house into text fields
list.reset();
if (list.lengthIs() != 0)
{
house = (ListHouse)list.getNextItem();
showHouse(house);

}

// Update status
statusLabel.setText(list.lengthIs() + " houses on list                ");
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// Add components to frame
infoPanel.setLayout(new GridLayout(10,2));
infoPanel.add(statusLabel);
infoPanel.add(blankLabel);
infoPanel.add(lotLabel);
infoPanel.add(lotText);
infoPanel.add(firstLabel);
infoPanel.add(firstText);
infoPanel.add(lastLabel);
infoPanel.add(lastText);
infoPanel.add(priceLabel);
infoPanel.add(priceText);
infoPanel.add(feetLabel);
infoPanel.add(feetText);
infoPanel.add(bedLabel);
infoPanel.add(bedText);
infoPanel.add(reset);
infoPanel.add(next);
infoPanel.add(add);
infoPanel.add(delete);
infoPanel.add(clear);
infoPanel.add(find);

// Set up and show the frame
contentPane.add(infoPanel);      
displayFrame.show();      

}
}

Test Plan We assume classes Listable and SortedList have been thoroughly tested. This
leaves classes ListHouse, HouseFile, and the Real Estate application program to test. To test
the two classes we could create test driver programs to call the various methods and display
results. But recall that these classes were created specifically for the Real Estate application.
Therefore, we can use the main application as the test driver to test them. In other words, we can
test everything together.

The first task is to create a master file of houses by using the Add command to input sev-
eral houses and quit. We then need to input a variety of commands to add more houses, delete
houses, find houses, and look through the list of houses with the Reset and Next buttons. We
should try the operations with good data and with bad data (for example nonintegral lot num-
bers) We should try the operations in as many different sequences as we can devise. The pro-
gram must be run several times in order to test the access and preservation of the data base
(file houses.dat). We leave the final test plan as an exercise.

In the discussion of object-oriented design in Chapter 1, we said that the code responsible
for coordinating the objects is called a driver. Now, we can see why. A driver program in test-
ing terminology is a program whose role is to call various subprograms and observe their
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behavior. In object-oriented terminology, a program is a collection of collaborating objects.
Therefore, the role of the main application is to invoke operations on certain objects, that is,
get them started collaborating, so the term driver is appropriate. In subsequent chapters, when
we use the term driver, the meaning should be clear from the context.

Java Input/Output II
Let’s look at the graphical user interface of the Real Estate program. This interface is more com-
plicated than that used by the test driver program we saw in Chapter 1. The test driver displayed
only labels, whereas the Real Estate program displays labels, text fields, and buttons. However,
the biggest difference is in how the frame is used by the user of the program. The test driver
program simply displayed a few lines of information on its frame, and then waited for the user
to close the frame. The frame for the Real Estate program, on the other hand, is changed based
on actions performed by the user. It is truly interactive.

Throughout the following discussion, please review the code from the Real Estate program
that corresponds to the particular discussion topic.

The Frame

First let’s look at how the frame is constructed. The setup of the frame is similar to that per-
formed by the test driver program. However, handling window closing is more complicated here,
since we must perform some special processing (save the information from the list to the
houses.dat file) instead of just exiting the system. We name our frame displayFrame and
set its title and size as we did before.

JFrame displayFrame = new JFrame();
displayFrame.setTitle("Real Estate Program");
displayFrame.setSize(350,400);

Next we define the needed reaction to the window-closing event with the following commands
(see the main method, after a sequence of label and button declarations):

displayFrame.addWindowListener(new WindowAdapter()  // Handle window
//   closing

{
. . .
});

The actual code executed when the window is closed is represented by the “. . . ”; it saves the
current list of house information to the data file, and then exits the program. Let’s discuss the
addWindowListener method. As you know, when the frame is displayed, it appears in its own
window. Normally, when you define a window listener from within a Java program, you must
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define how the window reacts to various events: closing the window, resizing the window, acti-
vating the window, and so on. You must define methods to handle all of these events. However,
in our program we only want to handle one of these events, the window closing event. The code
above lets us directly handle the window closing event while we accept default “do nothing”
handlers for all the other window events. In effect, a WindowAdapter object is a window that
has “do nothing” events defined for all window events. We are adding a “window closing lis-
tener” to our frame that tells the program what processing to perform when someone closes the
window, overriding the default “do nothing” event handler in this case.

As was done for the test driver, we next instantiate the content pane, and an information
panel:

Container contentPane = displayFrame.getContentPane();
JPanel infoPanel = new JPanel();

Recall that the content pane is the part of a frame that is used to display information generated
by a program, and a panel is a container, capable of holding other constructs, where the pro-
gram organizes its information for display.

Components

Next we create components that are eventually added to our panel. We create labels, text fields,
and buttons. We look at each in turn, starting with labels. You are familiar with labels from the
Chapter 1 test driver. In the Real Estate program, we exploit a little more of the functionality
provided by the JLabel class. Consider the two statements that set up the status label—the
label used in the interface to display a message describing the result of a user action:

statusLabel = new JLabel("", JLabel.CENTER);
statusLabel.setBorder(new LineBorder(Color.red));

In addition to passing the JLabel constructor an initial string, we pass it the constant CENTER,
defined in the JLabel class. This sets the label so that it displays text centered in the area allo-
cated to it. That property persists until we change it with a call to the label’s setHorizontal-
Alignment method. We follow the instantiation of statusLabel with a message to it, to set
its border to a line border with the color red. Borders can be set for any Java Swing component
that extends the JComponent class; that is, for most Swing components. Swing supports eight
kinds of borders—we have elected to use the line border in this case. Note that we pass the
LineBorder constructor a constant of the Color class. Also note, that to use borders, we must
import javax.swing.border.* into the program. Finally, note that most of the labels used by
the program are declared at the beginning of the main method, but the statusLabel label is
declared outside the main method, since it needs to be visible to some of the helper methods.

Intermingled with the label instantiations are instantiations of text fields. This is a new
construct for us. A text field is a box that allows the user to enter a single line of text. In the
Real Estate program, we use them to both gather and present information to the user. An exam-
ple of a test field instantiation is:

lotText = new JTextField("", 15);
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The string parameter sets the initial text in the text field (in this case to the empty string); the
integer parameter sets the width of the text field. Since all of our text fields are accessed by
helper methods, they are all declared outside of the main method.

The text displayed in a text field can be changed with the setText method, as is done in
the showHouse helper method to display the information about a house on the interface. Of
course, the user can directly enter text into a text field box and change its contents. The get-
Text method is used by a program to obtain the current information in a text field. See the
getHouse helper method for examples of its use.

The final construct used in our interface is the button. Buttons are used to generate events,
when pressed by the user. Button definition is easy. Just invoke the button constructor, passing
it the string to be displayed on the face of the button, as follows:

reset = new JButton("Reset");

Although button-related events are handled by helper methods, the buttons themselves are only
used within the main method, so all button declarations are at the beginning of main. There are
six buttons altogether. The Real Estate program “listens” for its user to press one of the buttons,
performs processing related to the pressed button, updates the frame appropriately, and then
resumes listening. To understand how this works, and how we implement it, we must look at the
Java event model.

The Event Model

In an event-driven Java program, there are two important entities, event sources and event lis-
teners. The sources generate an event, usually due to some action by the user. The listeners are
waiting for certain events to occur, and when they do, they react to the event by performing
some related processing. In our program, the JButton object reset is an event source, and the
ActionHandler object action is an event listener. These objects are declared and instanti-
ated by the statements:

JButton reset;
reset = new JButton("Reset");

ActionHandler action;
action = new ActionHandler();

We have already examined the JButton statements. But, what is an ActionHandler? You
won’t find it defined in any Java library documentation because it is a class created just for the
Real Estate program. It is an inner class. You can find its definition in the program listing just
after the helper methods that manage the house information displayed on the screen. It looks
like this (with many lines deleted):

private static class ActionHandler implements ActionListener 
{
public void actionPerformed(ActionEvent event)
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// Listener for the button events
{
. . .
if (event.getActionCommand().equals("Reset"))
{ // Handles Reset event
. . .

}
else
if (event.getActionCommand().equals("Next"))
{ // Handles Next event
. . .

}
. . .

}

As you can see, ActionHandler implements the ActionListener interface. Therefore,
action is also an ActionListener. Action listeners are just one of several Java listener
types. Another example is window listeners, which we use to close our frames. We use action
listeners for our user interfaces. We return to the definition of ActionHandler below. First,
let’s see how we “connect” the event source and the event listener.

The action listener is registered with the reset button with the command

reset.addActionListener(action);

As you can see in the program code, the action listener is also registered with the other five but-
tons.

The registration of an event listener with an event source means that whenever an event
occurs to the event source, such as a button being pressed, an announcement of the event is
passed to the event listener. There are all sorts of events supported by Java. In our case we are
only interested in “action” events, a subset of the set of all potential events, so we use an
ActionListener listener.

How does the event source send “an announcement” of an event to the listener? Through a
call to one of the listener’s methods, of course. In the case of action events, the source calls the
listener’s actionPerformed method, and passes it an ActionEvent object that represents
the event that occurred. The ActionListener interface declares an abstract action-
Performed method, so we know that any class that implements ActionListener, like our
ActionHandler class, must provide an implementation of actionPerformed. You do not
see a call to the actionPerformed method anywhere in our program. We do not explicitly
invoke the method in our code; it is automatically called when a button is pressed by the user.
Such a method invocation is sometimes called an implicit invocation.

Let’s review. In the Real Estate program, we have six buttons that are event sources. We
have one event listener, action, which has been registered through addActionListener to all
six buttons. When any of the buttons are pressed the actionPerformed method of the
action object is invoked, and passed an event object that represents the button-pressed
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event. At that point, the actionPerformed method must respond to the event. How does it do
that?

Look again at the code listed above for the ActionHandler class. You can see that the
actionPerformed method is implemented as a series of if-else statements.

if (event.getActionCommand().equals("Reset"))
{ // Handles Reset event
...

}
else

Each if-block handles a different button being pressed. The boolean expressions use the getAc-
tionCommand method of the ActionEvent class to obtain a string signifying the specific real
event that the event object represents. In the case of button pressing events, this string is sim-
ply the string displayed on the face of the button. Therefore, when a button is pressed, the
appropriate if-block is executed. Take a minute to browse the code in the if-blocks to see how
the program handles each of the buttons being pressed.

Presenting the Interface

Now that we have created the frame, the labels, the text fields, the buttons and associated
actions with each of the buttons, we are ready to build and display the interface. We use the
same approach we did for the Chapter 1 test driver program. First, we set up a 10 � 2 grid in
our panel:

infoPanel.setLayout(new GridLayout(10,2));

Next we add all of our components to our panel, in the order we want them to appear (left to
right, top to bottom):

infoPanel.add(statusLabel);
infoPanel.add(blankLabel);
infoPanel.add(lotLabel);
infoPanel.add(lotText);
...
infoPanel.add(find);

Finally, we add the panel to the frame’s content pane, and show the frame:

contentPane.add(infoPanel);
displayFrame.show();
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Figure 3.18 Relationships among the views of data
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Summary
In this chapter, we have created two abstract data types that represent lists. The
Unsorted List ADT assumes that the list elements are not sorted by key; the Sorted List
ADT assumes that the list elements are sorted by key. We have viewed each from three
perspectives: the logical level, the application level, and the implementation level. The
extended Case Study uses the Sorted List ADT to help solve a problem. Figure 3.18
shows the relationships among the three views of the list data in the Case Study.

As we progressed through the chapter we expanded our use of Java constructs to
support the list abstractions. In the first part of the chapter, we worked through the fol-
lowing variations of lists:

• UnsortedStringList—an unsorted list of strings
• StringList—an abstract string list specification; valid for both sorted and unsorted

lists
• UnsortedStringList2—an extension of StringList
• SortedStringList—another extension of StringList

In order to make the software as reusable as possible, we learned how to use the Java
interface mechanism to create generic ADTs. The user of the ADT must prepare a class that
defines the objects to be in each container class. In the case of the list abstraction, objects
to be contained on a list must implement the Listable interface; therefore, they must
have an appropriate compareTo and a copy method associated with them. By requiring the
user to meet this standard for the objects on the list, the code of the ADTs is very general.
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The Unsorted List or Sorted List ADT can process items of any kind; they are completely
context independent. Within the chapter we saw examples of how to create lists of circles,
strings, and houses. The ability to create generic structures led to two more list variations:

• List—an abstract list specification, no longer tied to strings; includes a retrieve
operation

• SortedList—an extension of List

We compared the operations on the two ADTs using Big-O notation. Insertion into an
unsorted list is O(1); insertion into a sorted list is O(N ). Deletions from both are O(N ).
Searching in the unsorted list is O(N ); searching in a sorted list is order O(log2N ) if a
binary search is used.

We have also seen how to write test plans for ADTs.

Summary of Classes and Support Files
The classes and files are listed in the order in which they appear in the text. Inner
classes are not included. The package a class belongs to, if any, is listed in parenthesis
under Notes. The class and support files are available on our web site. They can be
found in the ch03 subdirectory of the bookFiles directory.

Classes, Interfaces, and Support Files Defined in Chapter 3

File 1st Ref. Notes

UnsortedStringList.java page 150 (ch03.stringLists) Array-based implementation
of an unsorted string list ADT

TDUnsortedStringList.java page 160 Test driver for UnsortedStringList.java

StringList.java page 165 (ch03.stringLists) Abstract class—defines all
the constructs for an array based list of strings that
do not depend on whether or not the list is sorted

UnsortedStringList2.java page 166 (ch03.stringLists) Extends StringList under
the assumption that the list is not kept sorted

SortedStringList.java page 181 (ch03.stringLists) Extends StringList under
the assumption that the list is kept sorted

Listable.java page 194 (ch03.genericLists) Interface—objects used
with the following list classes must be derived from
classes that implement this interface

ListCircle.java page 195 (ch03.genericLists) Example of a class that
implements Listable

(continued on next page)
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The diagrams in Figure 3.19 show the relationships among the classes listed above.
Abstract classes are shown in (Italics) within parentheses, interfaces are shown within
<brackets>, and applications are boxed . Relationships are shown by arrows using
UML standard representations (solid arrow with hollow arrowhead represents the
inheritance relationship “extends,” dotted arrow with hollow arrowhead represents the
implements relationship between a class and an interface, and dotted arrow with open
arrowhead represents a “uses” relationship—the latter relationships are also labeled
“uses.”) Finally, the package groupings are indicated by “blue rectangles.”

File 1st Ref. Notes

List.java page 197 (ch03.genericLists) Abstract class—defines all
the constructs for an array-based generic list that do
not depend on whether or not the list is sorted; the
list stores objects derived from a class that imple-
ments Listable; includes a retrieve method,
that was not part of the previous lists

SortedList.java page 200 (ch03.genericLists) Extends List under the
assumption that the list is kept sorted

ListString.java page 204 (ch03.genericLists) Another example of a class
that implements Listable

TDSortedList.java page 206 Test driver for SortedList.java

ListHouse.java page 215 (ch03.houses) Implements Listable; provides
information about a house that can be stored on a
list

HouseFile.java page 218 (ch03.houses) Manages the houses.dat file

RealEstate.java page 224 The real estate application

testlist1.dat page 162 Test data for the TDUnsortedStringList pro-
gram

testout1.dat page 162 Results of using testlist1.dat as input to the
Unsorted String List test driver

testlist2.dat page 206 Test data for the TDSortedList program

testout2.dat page 206 Results of using testlist2.dat as input to the
Sorted List test driver
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On page 241 is a list of the Java Library Classes that were used in this chapter for the
first time in the textbook. The classes are listed in the order in which they are first used.
Note that in some classes the methods listed might not be defined directly in the class;
they might be defined in one of its superclasses. With the methods we also list construc-
tors, if appropriate. For more information about the library classes and methods the
reader can check Sun’s Java documentation.

Figure 3.19 Chapter 3 classes and their relationships
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Exercises
3.1 Lists

1. Give examples from the “real world” of unsorted lists, sorted lists, lists that per-
mit duplicate keys, and lists that do not permit duplicate keys.

2. Describe how the individuals in each of the following groups of people could be
uniquely identified; that is, what would make a good key value for each of the
groups.

a. Citizens of a country who are eligible to vote

b. Members of a sports team

c. Students in a school

d. E-mail users

e. Automobile drivers

f. Actors/actresses in a play

Library Classes Used in Chapter 3 for the First Time

Class Name Package Overview Methods Used Where Used

JTextField

ActionListener

ActionEvent

JButton

LineBorder

Color

RealEstate

RealEstate

RealEstate

RealEstate

RealEstate

RealEstate

getText,
JTextField,
setText

getActionCommand

ActionListener,
JButton,

LineBorder

Provides a container
for a single line of user
text

An interface for classes
that listen for and han-
dle action events

Provides objects for
passing event informa-
tion between event
sources and event lis-
teners

Provides a container
for an interface button

Sets a border for the
display of a component

Provides color con-
stants

swing

awt.event

awt.event

swing

swing

lang
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3.2 Abstract Data Type Unsorted List
3. Classify each of the Unsorted List ADT operations (UnsortedStringList,

isFull, lengthIs, isThere, insert, delete, reset, getNextItem) accord-
ing to operation type (Constructor, Iterator, Observer, Transformer).

4. The chapter specifies and implements an Unsorted List ADT (for strings).

a. Design an algorithm for an application-level routine printLast that accepts
a list as a parameter and returns a boolean. If the list is empty, the routine
prints “List is empty” and returns false. Otherwise, it prints the last item of
the list and returns true. The signature for the routine should be

boolean printLast(PrintWriter outfile, UnsortedStringList list)

b. Devise a test plan for your algorithm.

c. Implement and test your algorithm.

5. The chapter specifies and implements an Unsorted List ADT (for strings).

a. Design an algorithm for an application level routine that accepts two lists as
parameters, and returns a count of how many items from the first list are also
on the second list. The signature for the routine should be

int compareLists(UnsortedStringList list1, UnsortedStringList list2)

b. Devise a test plan for your algorithm.

c. Implement and test your algorithm.

6. What happens if the constructor for UnsortedStringList is passed a negative
parameter? How could this situation be handled by redesigning the constructor?

7. A friend suggests that since the delete operation of the Unsorted List ADT
assumes that the parameter element is already on the list, the designers may as
well assume the same thing for other operations since it would simplify things.
Your friend wants to add the assumption to both the isThere and the insert
operations! What do you think?

8. Describe the ramifications of each of the following changes to the chapter’s code
for the indicated UnsortedStringList methods.

a. isFull change “return (list.length == numItems);” to “return (list.length
= numItems);”

b. lengthIs change “return numItems;” to “return list.length;”

c. isThere change the second “moreToSearch = (location < numItems);” to
“moreToSearch = (location <= numItems);”

d. insert remove “numItems++;”

e. delete remove “numItems—;”

9. The test plan on page 181 for the UnsortedStringList class was not complete.

a. Complete the test plan.

b. Create a set of test input files that represents the completed test plan.
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c. Use the TDUnsortedStringList program, available with the rest of the
textbook’s programs, to run and verify your tests.

10. The Unsorted List ADT (for UnsortedStringList) is to be extended with a
boolean operation, isEmpty, which determines whether or not the list is empty.

a. Write the specifications for this operation.

b. Write a method to implement the operation.

11. The Unsorted List ADT (for UnsortedStringList) is to be extended with an
operation, smallest, which returns a copy of the “smallest” list element. It is
assumed that the operation will not be invoked if the list is empty.

a. Write the specifications for this operation.

b. Write a method to implement the operation.

12. Rather than enhancing the Unsorted List ADT by adding a smallest operation,
you decide to write a client method to do the same task.

a. Write the specifications for this method.

b. Write the code for the method, using the operations provided by the Unsorted
List ADT

c. Write a paragraph comparing the client method and the ADT method (Exer-
cise 11) for the same task.

13. The specifications for the Unsorted List ADT delete operation state that the
item to be deleted is in the list.

a. Create a specification for a new form of delete, called tryDelete, that leaves
the list unchanged if the item to be deleted is not in the list. The new delete
operation should return a boolean value true if the item was found and
deleted, false if the item was not on the list.

b. Implement tryDelete as specified in (a).

14. The specifications for the Unsorted List ADT state that the list contains unique
items. Suppose this assumption is dropped, and the list is allowed to contain
duplicate items.

a. How would the specification have to be changed?

b. Create a specification for a new form of delete for this new ADT, called
deleteAll, that deletes all list elements that match the parameter item’s key.
You should still assume that at least one matching item is on the list.

c. Implement deleteAll as specified in (b).

15. The text’s implementation of the delete operation for the Unsorted List ADT
(UnsortedStringList) does not maintain the order of insertions because the
algorithm swaps the last item into the position of the one being deleted and then
decrements length.

a. Would there be any advantage to having delete maintain the insertion
order? Justify your answer.
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b. Modify delete so that the insertion order is maintained. Code your algorithm,
and test it.

16. Change the specifications for the Unsorted List ADT so that insert throws an
exception if the list is full. Implement the revised specification.

17. Create a new implementation of the Unsorted List ADT (UnsortedStringList)
using the Java Library’s ArrayList class instead of plain arrays.

3.3 Abstract Classes
18. The abstract class StringList contains both abstract and concrete methods.

a. List the abstract methods.

b. List the concrete methods.

c. Explain the difference between an abstract method and a concrete method.

19. Suppose you wanted to add the operation isEmpty, as defined in Exercise 10, to
the StringList class. Would you make it an abstract method or a concrete
method? Justify your answer.

20. Suppose you wanted to add the operation smallest, as defined in Exercise 11,
to the StringList class. Would you make it an abstract method or a concrete
method? Justify your answer.

21. Consider the UML diagram in Figure 3.5.

a. What does the “+” symbol represent?

b. What does the “#” symbol represent?

c. What does the arrow represent?

d. Why are some of the method names italicized?

e. Why is the variables section of the class diagram for the Unsorted-
StringList2 class empty?

3.4 Abstract Data Type Sorted List
22. The Sorted List ADT (for SortedStringList) is to be extended with an opera-

tion, smallest, which returns a copy of the “smallest” list element. It is
assumed that the operation will not be invoked if the list is empty.

a. Write the specifications for this operation.

b. Write a method to implement the operation.

23. Rather than enhancing the Sorted List ADT by adding a smallest operation,
you decide to write a client method to do the same task.

a. Write the specifications for this method.

b. Write the code for the method, using the operations provided by the Sorted
List ADT.

c. Write a paragraph comparing the client method and the ADT method (Exer-
cise 22) for the same task.
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24. The algorithm for the Sorted List ADT insert operation starts at the beginning of the
list and looks at each item, to determine where the insertion should take place. Once
the insertion location is determined, the algorithm moves each list item between
that location and the end of the list, starting at the end of the list, over to the next
position. This creates space for the new item to be inserted. Another approach to
this algorithm is just to start at the last location, examine the item there to see if the
new item should be placed before it or after it, and shift the item in that location to
the next location if the answer is “before.” Repeating this procedure with the next
to last item, then the one next to that, and so on, will eventually move all the items
that need to be moved, so that when the answer is finally “after” (or the beginning
of the list is reached) the needed location is available for the new item.

a. Formalize this new algorithm with a pseudocode description, such as the
algorithms presented in the text.

b. Rewrite the insert method of the SortedStringList class to use the new
algorithm.

c. Test the new method.

25. The specifications for the Sorted List ADT delete operation state that the item
to be deleted is on the list.

a. Create a specification for a new form of delete, called tryDelete, that leaves
the list unchanged if the item to be deleted is not in the list. The new delete
operation should return a boolean value true if the item was found and
deleted, false if the item was not on the list.

b. Implement tryDelete as specified in (a).

26. The Sorted List ADT (for SortedStringList) is to be extended with an opera-
tion merge, which adds the contents of a list parameter to the current list.

a. Write the specifications for this operation. The signature for the routine
should be

void merge(SortedStringList list)

b. Design an algorithm for this operation.

c. Devise a test plan for your algorithm.

d. Implement and test your algorithm.

27. A String List ADT is to be extended by the addition of method trimList, which
has the following specifications:

trimList(String lower, String upper)

Effect: Removes all elements from the list that
are less than lower and greater than
upper

Postconditions: This list contains only items that are
between lower and upper inclusive
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a. Implement trimList as a method of UnsortedStringList.

b. Implement trimList as a member method of SortedStringList.

c. Compare the algorithms used in (a) and (b).

d. Implement trimList as a client method of UnsortedStringList.

e. Implement trimList as a client method of SortedStringList.

3.5 Comparison of Algorithms
28. Describe the order of magnitude of each of the following functions using Big-O

notation:

a. N 2 + 3N

b. 3N 2 + N

c. N 5 + 100N 3 + 245

d. 3N log2N + N 2

e. 1 + N + N 2 + N 3 + N 4

f. (N * (N � 1)) / 2

29. Give an example of an algorithm (other than the examples discussed in the chap-
ter) that is

a. O(1)

b. O(N )

c. O(N 2 )

30. Describe the order of magnitude of each of the following code sections using Big-O
notation:

a. count = 0;
for (i = 1; i <= N; i++)
count++;

b. count = 0;
for (i = 1; i <= N; i++)
for (j = 1; j <= N; j++)
count++;

c. value = N;
count = 0;
while (value > 1)
{
value = value / 2;
count++;

}

31. Algorithm 1 does a particular task in a “time” of N 3, where N is the number of
elements processed. Algorithm 2 does the same task in a “time” of 3N + 1000.

a. What are the Big-O requirements of each algorithm?
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b. Which algorithm is more efficient by Big-O standards?

c. Under what conditions, if any, would the “less efficient” algorithm execute
more quickly than the “more efficient” algorithm?

3.6 Comparison of Unsorted and Sorted List ADT Algorithms
32. Assume that for each of the listed exercises an optimal algorithm was written

(optimal means that it is not possible under the circumstances to write a faster
algorithm). Give a Big-O estimate of the run time for the corresponding algo-
rithms. Unless otherwise stated, let N represent the size of the list.

a. Exercise 4a: printList for UnsortedStringList

b. Exercise 5a: compareLists for UnsortedStringList (N = size of the larger
list)

c. Exercise 10: isEmpty for UnsortedStringList

d. Exercise 11: smallest for UnsortedStringList

e. Exercise 12: smallest for UnsortedStringList client

f. Exercise 13: tryDelete for UnsortedStringList

g. Exercise 22: smallest for SortedStringList

h. Exercise 23: smallest for SortedStringList client

3.7 Generic ADTs
33. We did not devise a test plan for the SortedList class.

a. Create an appropriate test plan using the ListString class to provide
objects for storing on the list. Remember to include tests of the retrieve
operation.

b. Create a set of test input files that represents the completed test plan.

c. Use the TDSortedList program to run and verify your tests.

34. Create a new concrete class, UnsortedList, that extends the List class, as dis-
cussed at the end of the section, A Generic Sorted List ADT.

35. Consider a ListNumber class that implements the Listable interface. The class
defines two instance variables, one of primitive type int and the other of type
String. The former acts as the key. The idea is that objects of the class can hold
an integer value, for example, 5, and the corresponding string, “five”. The class
exports a constructor that accepts two parameters that are used to initialize the
hidden instance variables, two observer methods that return the values of the
hidden instance variables, a toString method that returns value, and of course
the required compareTo and copy methods.

a. Create the ListNumber class.

b. Test your ListNumber class by using it with the SortedList class.
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Case Study: Real Estate Listings
36. Devise and perform a thorough test of the Real Estate application program.

37. Explain how you would have to change the Real Estate program to handle each
of the following specification changes. For each case, indicate which program
units need to be changed and a general description of how the change could be
implemented.

a. The houses.dat file is redesigned to include the owner’s first name first, and
last name second, instead of vice versa.

b. In the interface “Lot numbers” are to be referred to as “Locations”.

c. The information for each house is augmented by a “Number of bathrooms”
attribute.

d. In a surprising and unconventional move, the company decides that each
house will have a unique price, and that houses should be listed in order of
price instead of lot numbers.

38. Expand the Real Estate program so that the “blank label” field of the interface is
used to always show the total number of houses on the list.

39. Expand the Real Estate program to include two more user interface buttons:
largest and smallest. If the list of houses is empty and the user clicks on either of
the new buttons, the message “List is empty” should appear in the status label
area. Otherwise, when the user clicks on the “largest” button, the program should
display the house information for the largest house in terms of square feet; and
when the user clicks on the “smallest” button, the program should display the
house information for the smallest house in terms of square feet.


