
bash Cheat Sheet
by gregcheater via cheatography.com/26582/cs/7469/

basic bash commands

 pwd : print working directory

 cd /path/ ​to/dir : change direcotry

 ls /dir/t ​o/list : list directory content (default is
.)

 ​ ​ ​ -1 : display the content on one column

 ​ ​ ​ -l : display the content with long listing format

 ​ ​ ​ -a : display the content of the directory
(including hidden files)

 ​ ​ ​ -R : Display the content of the directory and
the content of subdirectories

 mv /path/ ​to/file /path/ ​whe ​re/ ​to/move : move
or rename a file or a directory

 cp /path/ ​to/file /path/ ​whe ​re/ ​to/copy : copy a
file

 ​ ​ ​ -r : copy recurs ​ively (used to copy directory)

 rm /path/ ​to/file : remove a file

 ​ ​ ​ -r : remove recurs ​ively (used to remove
direct ​ories)

 ​ ​ ​ -f : force remove

 mkdir /path/ ​dirName : create an empty
directory

 rmdir /path/ ​to/dir : remove a directory (works
only if the direcotry is empty)

bash redire ​ctions

 command > file : redirect stdout to file.
(creates the file if it doesn't exist and overwrite
it if it does exist)

 command >> file : redirect stdout to file.
(creates the file if it doesn't exist and append to
the end it if it does exist)

 command 2> file : redirect stderr to file
(creates the file if it doesn't exist and overwrite
it if it does exist)

 command 2>> file : redirect stdout to file.
(creates the file if it doesn't exist and append to
the end it if it does exist)

 command &> file : redirect stdout and stderr
to file (creates the file if it doesn't exist and
overwrite it if it does exist)

bash redire ​ctions (cont)

 command &>> file : redirect stdout and
stderr to file. (creates the file if it doesn't exist
and append to the end it if it does exist)

 command < file : redirect stdin to file.

 command1 | command 2 : uses the output
of command1 as the input of command2

file globbing regex

 \ : escape character. It deletes the
signif ​ication of a special character

 ? : Any character, once.

 * : Any character, 0, 1 or many time.

 [...] : Any character that is in the class. ex:
[abc], [a-z], [0-9]

 [^...]: Any character that is not in the class.
ex: [^abc], [^a-z], [^0-9]

 {s1, s2, sN} : match s1 or s2 or sN

control structure (if)

if <expression>; then

 ​ ​ ​ ​[st ​ate ​ments]
elif <ex ​pre ​ssi ​on>; then
 ​ ​ ​ ​[st ​ate ​ments]
else

 ​ ​ ​ ​[st ​ate ​ments]
fi

control structure (while)

while <expression>; do

 ​ ​ ​ ​[st ​ate ​ments]
done

control structure (for)

for var in <expression>; do

 ​ ​ ​ echo $var
 ​ ​ ​ ​[st ​ate ​ments]
done

control structure (case)

patterns are file globing regex

case <ex ​pre ​ssi ​on> in
 ​ ​ ​ ​pat ​tern1)
 ​ ​ ​ ​ ​ ​ ​ ​[st ​ate ​ments]
 ​ ​ ​ ​ ​ ​ ​ ;;
 ​ ​ ​ ​pat ​tern2)
 ​ ​ ​ ​ ​ ​ ​ ​[st ​ate ​ments]
 ​ ​ ​ ​ ​ ​ ​ ;;
 ​ ​ ​ *)
 ​ ​ ​ ​ ​ ​ ​ ​[st ​ate ​ments]
 ​ ​ ​ ​ ​ ​ ​ ;;
esac

function definition

function functionName {

 ​ ​ ​ ​[st ​ate ​ments]
 ​ ​ ​ ​[return X]
}

condit ​ional expres ​sions

 && : logical and operator

 || : logical or operator

 [[string]] : return 0 if string is not empty

 [[-z string]] : return 0 if the string is empty

 [[string1 == string2]] : return 0 if the string
are equivalent

 [[string1 != string2]] : return 0 if the string
are not equivalent

 [[string =~ pattern]] : return 0 if the string
matches the pattern (extended regex)

 [[-e file]] : return 0 if the file exists

 [[-d file]] : return 0 if file is a directory

 [[-f file]] : return 0 if file is a file

 [[-x file]] : return 0 if file is executable

 [[$n1 -eq $n2]] : return 0 if $n1 == $n2

 [[$n1 -lt $n2]] : return 0 if $n1 < $n2

 [[$n1 -gt $n2]] : return 0 if $n1 > $n2

 [[$n1 -ge $n2]] : return 0 if $n1 >= $n2

 [[$n1 -le $n2]] : return 0 if $n1 <= $n2

 [[$n1 -ne $n2]] : return 0 if $n1 != $n2

By gregcheater
cheatography.com/gregcheater/

Published 14th March, 2016.
Last updated 12th April, 2016.
Page 1 of 3.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/gregcheater/
http://www.cheatography.com/gregcheater/cheat-sheets/bash
http://www.cheatography.com/gregcheater/
https://readability-score.com

bash Cheat Sheet
by gregcheater via cheatography.com/26582/cs/7469/

more basic bash commands

 passwd : change your password

 history : consult the history of your command

 jobs : list of your pending proccesses

 cat file1 file2 ... : concat ​enate files and print
to stdout

 more / less file1 file2 .. : diplsay a file page
by page on stdout

 tail / head number : display the " ​num ​ber ​" first
or last line of a file on stdout

 touch file1 file2 ... : change the modifi ​cation
date of the files

 chmod : change the privileges of a file /
directory

 echo " ​tex ​t" : display a line of text to stdout

 sort file1 file2 ... : sort the file (combine files if
many are specified) and print the result to
stdout (files aren't impacted)

 ​ ​ ​ -r : sort in reverse order

 ​ ​ ​ -n : numerical sort

 ​ ​ ​ -u : delete duplicated lines

 wc file1 file2 ... : print to stdout the number of
charac ​ters, words and lines of files

 ​ ​ ​ -l : number of lines only

 ​ ​ ​ -w : number of words only

 ​ ​ ​ -w : number of characters only

 diff file1 file1 : compare file1 and file 2 for
differ ​ences

 ​ ​ ​ -i : ignore the character case

 ​ ​ ​ -B : ignore empty lines

 ​ ​ ​ -w : ignore whites ​paces

 ​ ​ ​ -c : add context to the output (good for
readability)

 which comman ​dName : print the path of a
command

 pushd / popd /path/ ​to/dir : change directory
using the directory stack

 dirs : print the directory stack

 find /path/ ​to/dir -name pattern : find every
files and directory that have a name that
matches " ​pat ​ter ​n" in the directory specified and
its subdir ​ect ​ories

more basic bash commands (cont)

 man comman ​dName : Display the manual
for command comman ​dName

 sudo command : run the command as
superuser

 command1 | xargs -i command2 : uses the
output of the command1 as the input of the
command2. output will be accessible via {} in
command2

grep (simple regex)

 grep " ​pat ​ter ​n" file1 file2 ... : print the lines
that matched the pattern

 ​ ​ ​ -v : print lines that didn't match the pattern

 ​ ​ ​ -i : ignore the character case

 ​ ​ ​ -l : print the name of the files that have at
least one match

 ​ ​ ​ -o : print only the piece of line that matched
the pattern

 ​ ​ ​ -E : uses the extended regex

 ​ ​ ​ -q : quiet. returns 0 in $? if at least one line
has been matched. 1 if no line matched

variables

 VAR=VARVALUE : create a variable VAR.
the variable can be accessed like so: $VAR or
${VAR}

 VAR="$VAR2" : $VAR will contains the value
of $VAR2

 VAR='$VAR2' : $VAR will contains $VAR2

 VAR=$(command) : $VAR will contains the
output of the command

 ((VAR = $VAR + 1)): the double
parent ​heses must be used when doing
arithm ​etics

 ${VAR#pattern} : return a substring of VAR
where the smallest string (starting from the
beginning) matching “pattern” will be cut

 ${VAR##pattern} : return a substring of VAR
where the longest string (starting from the
beginning) matching “pattern” will be cut

 ${VAR%pattern} : return a substring of VAR
where the smallest string (starting from the end)
matching “pattern” will be cut

variables (cont)

 ${VAR%%pattern} : return a substring of
VAR where the longest string (starting from the
end) matching “pattern” will be cut

 $? : the exit status of the last command /
function executed. usually 0 when everything
went right.

 $# : the number of args passed to the script /
function

 $0 : the name of the script

 $n : the nth argument passed to the script /
function

 $@ : the list of all the argument passde to
the script / function

 Arrays

 ​ ​ ​ ​myA ​rra ​y=(​value1 value2 value3): declare an
array

 ​ ​ ​ ​declare -a myArra ​y=(​value1 value2 value3):
declare an array

 ​ ​ ​ ​${m ​yAr ​ray ​[in ​dex]} : access an element
(index starts at 0)

 ​ ​ ​ ​myA ​rra ​y[i ​ndex]= : add or modify the element
at index

 ​ ​ ​ ​${# ​myA ​rra ​y[*]} : return the lenght of the array

 ​ ​ ​ ​${m ​yAr ​ray ​[*]}: all the elements of the array

simple regex

 \ : escape character. It deletes the
signif ​ication of a special character

 . : joker. It represents any characters

 * : 0, 1 or many repetition of the last
character / sequence of character

 ^ : The beginning of the line

 $: The end of the line

 [...] : Any character that is in the class. ex:
[abc], [a-z], [0-9]

 [^...]: Any character that is not in the class.
ex: [^abc], [^a-z], [^0-9]

 \(...\) : Capture the pattern. The pattern can
then be accessed with \1, \2 ... \n depending on
the number of capture in the regex

 \{n\} : n repeti ​tions of the last character /
sequence of character

By gregcheater
cheatography.com/gregcheater/

Published 14th March, 2016.
Last updated 12th April, 2016.
Page 2 of 3.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/gregcheater/
http://www.cheatography.com/gregcheater/cheat-sheets/bash
http://www.cheatography.com/gregcheater/
https://readability-score.com

bash Cheat Sheet
by gregcheater via cheatography.com/26582/cs/7469/

simple regex (cont)

 \{n,\} : At least n repeti ​tions of the last
character / sequence of character

 \{n, m\} : Between n and m repeti ​tions of the
last character / sequence of character

extended regex

 \ : escape character. It deletes the
signif ​ication of a special character

 . : joker. It represents any characters

 * : 0, 1 or many repetition of the last
character / sequence of character

 + : 1 or more repetition of the last character /
sequence of character

 ? : The last character / sequence of character
can appear or not

 ^ : The beginning of the line

 $: The end of the line

 [...] : Any character that is in the class. ex:
[abc], [a-z], [0-9]

 [^...]: Any character that is not in the class.
ex: [^abc], [^a-z], [^0-9]

 s1|s2 : Either s1 or s2 but not both

 (...) : change the priority

 {n} : n repeti ​tions of the last character /
sequence of character

 {n,} : At least n repeti ​tions of the last
character / sequence of character

 {n, m} : Between n and m repeti ​tions of the
last character / sequence of character

sed (simple regex)

 sed 'sed script' file : execute the script on
every line of " ​fil ​e"

 ​ ​ ​ ​s/p ​att ​ern ​/ne ​wSt ​ring/gI : Substitute the piece
of the line that matches " ​pat ​ter ​n" by
" ​new ​Str ​ing ​". g (optio ​nal): global, I (optio ​nal):
ignore case

 ​ ​ ​ ​/pa ​ttern/d : delete the line if " ​pat ​ter ​n" is
matched

 ​ ​ ​ ​/pa ​ttern/p : print the line if " ​pat ​ter ​n" is
matched

sed (simple regex) (cont)

 ​ ​ ​ ​/pa ​tte ​rn1 ​/,/ ​pat ​tern2/ : print every lines
between the first line that matches " ​pat ​ter ​n1" to
the first line that matches " ​pat ​ter ​n2"

 ​ ​ ​ ​-i.ext : Modifi ​cations done " ​in- ​pla ​ce". A
backup file will be created with .ext extension (it
is optional)

 ​ ​ ​ -n : print only the lines that matched the
pattern

awk (extended regex)

 awk -Fc 'awk script' file1 file2 ... (where " ​c" is
the delimiter)

 typical awk script: 'BEGIN {state ​ments}
/pattern/ {script statem ​ents} END {statements}'

 ​ ​ ​ ​BEGIN {} : Will be executed once at the start

 ​ ​ ​ END {} : Will be executed once at the end

 ​ ​ ​ ​/pa ​ttern/ : only lines that matched the pattern
will be processed

 ​ ​ ​ ​/pa ​tte ​rn1 ​/,/ ​pat ​tern2/ : every line from the first
line that matches pattern1 to the first line that
matches pattern2 will be processed

 ​ ​ ​ ​{script statem ​ents} : core of the script

 ​ ​ ​ ​ ​ ​printf: C-style formatter (man printf)

 ​ ​ ​ ​ ​ ​ ​ $n : the nth field of the line

 ​ ​ ​ ​ ​ ​ ​ $0 : the entire line

 ​ ​ ​ ​ ​ ​ ​ NR : the record number

 ​ ​ ​ ​ ​ ​ ​ NF : the number of fields in the record

 ​ ​ ​ ​ ​ ​ ​ FS: The field separator (the delimiter)

By gregcheater
cheatography.com/gregcheater/

Published 14th March, 2016.
Last updated 12th April, 2016.
Page 3 of 3.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/gregcheater/
http://www.cheatography.com/gregcheater/cheat-sheets/bash
http://www.cheatography.com/gregcheater/
https://readability-score.com

	bash Cheat Sheet - Page 1
	basic bash commands
	control structure (case)
	file globbing regex
	function definition
	control structure (if)
	condit­ional expres­sions
	bash redire­ctions
	control structure (while)
	control structure (for)

	bash Cheat Sheet - Page 2
	more basic bash commands
	grep (simple regex)
	variables
	simple regex

	bash Cheat Sheet - Page 3
	extended regex
	awk (extended regex)
	sed (simple regex)

