Cheatography

by

basic bash commands

Opwd : print working directory
Ocd /path/to/dir : change direcotry
Ols /dir/to/list : list directory content (default is
)
-1 : display the content on one column
-l : display the content with long listing format

-a : display the content of the directory
(including hidden files)

-R : Display the content of the directory and
the content of subdirectories

Omv /path/toffile /path/where/to/move : move
or rename a file or a directory

O cp /path/to/file /path/where/to/copy : copy a
file

-r : copy recursively (used to copy directory)
O rm /path/to/file : remove a file

-r : remove recursively (used to remove
directories)

-f : force remove

O mkdir /path/dirName : create an empty
directory

O rmdir /path/to/dir : remove a directory (works
only if the direcotry is empty)

bash redirections

Ocommand > file : redirect stdout to file.
(creates the file if it doesn't exist and overwrite
it if it does exist)

Ocommand >> file : redirect stdout to file.
(creates the file if it doesn't exist and append to
the end it if it does exist)

Ocommand 2> file : redirect stderr to file
(creates the file if it doesn't exist and overwrite
it if it does exist)

Ocommand 25> file : redirect stdout to file.
(creates the file if it doesn't exist and append to
the end it if it does exist)

Ocommand &> file : redirect stdout and stderr
to file (creates the file if it doesn't exist and
overwrite it if it does exist)

By gregcheater

via

bash redirections (cont)

Ocommand &> > file : redirect stdout and

stderr to file. (creates the file if it doesn't exist

and append to the end it if it does exist)

O command < file : redirect stdin to file.

O command1 | command 2 : uses the output

of command1 as the input of command2

file globbing regex

O\ : escape character. It deletes the
signification of a special character

O? : Any character, once.

O* : Any character, 0, 1 or many time.

OI...] : Any character that is in the class. ex:
[abc], [a-z], [0-9]

O[*...]: Any character that is not in the class.

ex: [*abc], [*a-z], [*0-9]

O{s1, s2, sN} : match s1 or s2 or sN

control structure (if)

if <expression>; then
[statements]

elif <expression>; then
[statements]

else

[statements]

control structure (while)

while <expression>; do
[statements]

done

control structure (for)

for var in <expression>; do
echo $var
[statements]

done

Published 14th March, 2016.
Last updated 12th April, 2016.
Page 1 of 3.

control structure (case)

patterns are file globing regex
case <expression> in
patternl)
[statements]
pattern2)
[statements]

i

[statements]

esac

function definition

function functionName {
[statements]

[return X]

conditional expressions

0O && : logical and operator

O|| : logical or operator

OJ[string]] : return 0 if string is not empty
OI[-z string]] : return 0 if the string is empty

O[[string1 == string2]] : return 0 if the string
are equivalent

O[[string1 != string2]] : return 0 if the string
are not equivalent

O[[string =~ pattern]] : return 0 if the string
matches the pattern (extended regex)

OI[-e file]] : return 0 if the file exists

OI[-d file]] : return O if file is a directory
Ol[-f file]] : return 0 if file is a file

O[[-x file]] : return 0 if file is executable
O[[$n1 -eq $n2]] : return 0 if $n1 == $n2
O[[$n1 -It $n2]] : return 0 if $n1 < $n2
O[[$n1 -gt $n2 1] : return 0 if $n1 > $n2
O[[$n1 -ge $n2]] : return 0 if $n1 >= $n2
O[[$n1 -le $n2]] : return 0 if $n1 <= $n2
O[[$n1 -ne $n2]] : return O if $n1 != $n2

Sponsored by Readability-Score.com

Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/gregcheater/
http://www.cheatography.com/gregcheater/cheat-sheets/bash
http://www.cheatography.com/gregcheater/
https://readability-score.com

Cheatography

by

more basic bash commands

O passwd : change your password
Ohistory : consult the history of your command
Ojobs : list of your pending proccesses

Ocat filet file2 ... : concatenate files and print
to stdout

O more / less file1 file2 .. : diplsay a file page
by page on stdout

Otail / head number : display the "number" first
or last line of a file on stdout

Otouch file1 file2 ... : change the modification
date of the files

Ochmod : change the privileges of a file /
directory

Oecho "text" : display a line of text to stdout

Osort file1 file2 ... : sort the file (combine files if
many are specified) and print the result to
stdout (files aren't impacted)

-r : sort in reverse order
-n : numerical sort
-u : delete duplicated lines

Owc filet file2 ... : print to stdout the number of
characters, words and lines of files

-1 : number of lines only
-w : number of words only
-w : number of characters only

O diff file1 file1 : compare file1 and file 2 for
differences

-i - ignore the character case
-B : ignore empty lines
-w : ignore whitespaces

-c : add context to the output (good for
readability)

Owhich commandName : print the path of a
command

O pushd / popd /path/to/dir : change directory
using the directory stack

Odirs : print the directory stack

Ofind /path/to/dir -name pattern : find every
files and directory that have a name that
matches "pattern” in the directory specified and
its subdirectories

By gregcheater

via

more basic bash commands (cont)

Oman commandName : Display the manual
for command commandName

O sudo command : run the command as
superuser

Ocommand1 | xargs -i command?2 : uses the
output of the command1 as the input of the
command2. output will be accessible via {} in
command2

grep (simple regex)

O grep "pattern" file1 file2 ... : print the lines
that matched the pattern

-v : print lines that didn't match the pattern
-i : ignore the character case

-l : print the name of the files that have at
least one match

-0 : print only the piece of line that matched
the pattern

-E : uses the extended regex

-g : quiet. returns 0 in $? if at least one line
has been matched. 1 if no line matched

variables

O VAR=VARVALUE : create a variable VAR.
the variable can be accessed like so: $VAR or
${VAR}

OVAR="$VAR2" : $VAR will contains the value
of $VAR2

OVAR='$VAR2' : $VAR will contains $VAR2

O VAR=$(command) : $VAR will contains the
output of the command

O((VAR = $VAR + 1)): the double
parentheses must be used when doing
arithmetics

O ${VAR#pattern} : return a substring of VAR
where the smallest string (starting from the
beginning) matching “pattern” will be cut

O ${VAR#t#pattern} : return a substring of VAR
where the longest string (starting from the
beginning) matching “pattern” will be cut

O ${VAR%pattern} : return a substring of VAR
where the smallest string (starting from the end)
matching “pattern” will be cut

Published 14th March, 2016.
Last updated 12th April, 2016.
Page 2 of 3.

variables (cont)

O ${VAR%%pattern} : return a substring of
VAR where the longest string (starting from the
end) matching “pattern” will be cut

($7 : the exit status of the last command /
function executed. usually 0 when everything
went right.

O $# : the number of args passed to the script /
function

%0 : the name of the script

O$n : the nth argument passed to the script /
function

O%$@ : the list of all the argument passde to
the script / function

O Arrays

myArray=(value1 value2 value3): declare an
array

declare -a myArray=(value1 value2 value3):
declare an array

${myArray[index]} : access an element
(index starts at 0)

myArray[index]= : add or modify the element
at index

${#myArray[*]} : return the lenght of the array

${myArray[*]}: all the elements of the array

simple regex

O\ : escape character. It deletes the
signification of a special character

O. : joker. It represents any characters

0O*:0, 1 or many repetition of the last
character / sequence of character

O~ : The beginning of the line
O$: The end of the line

OI...] : Any character that is in the class. ex:
[abc], [a-z], [0-9]

O[*...]: Any character that is not in the class.
ex: [*abc], [*a-z], [*0-9]

O\(...\) : Capture the pattern. The pattern can
then be accessed with \1,\2 ... \n depending on
the number of capture in the regex

O\{n\} : n repetitions of the last character /
sequence of character

Sponsored by Readability-Score.com

Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/gregcheater/
http://www.cheatography.com/gregcheater/cheat-sheets/bash
http://www.cheatography.com/gregcheater/
https://readability-score.com

Cheatography

by

simple regex (cont)
O\{n,\} : At least n repetitions of the last
character / sequence of character

O\{n, m\} : Between n and m repetitions of the
last character / sequence of character

extended regex

O\ : escape character. It deletes the
signification of a special character

O. : joker. It represents any characters

0O*:0, 1 or many repetition of the last
character / sequence of character

O+ : 1 or more repetition of the last character /
sequence of character

0O ? : The last character / sequence of character
can appear or not

O~ : The beginning of the line
O$: The end of the line

OI...] : Any character that is in the class. ex:
[abc], [a-z], [0-9]

O[*...]: Any character that is not in the class.
ex: [*abc], [*a-z], [*0-9]

Os1|s2 : Either s1 or s2 but not both
O(...) : change the priority

O{n} : n repetitions of the last character /
sequence of character

O{n,} : At least n repetitions of the last
character / sequence of character

O{n, m} : Between n and m repetitions of the
last character / sequence of character

sed (simple regex)

Osed 'sed script' file : execute the script on
every line of "file"

s/pattern/newString/gl : Substitute the piece
of the line that matches "pattern” by
"newString". g (optional): global, | (optional):
ignore case

/pattern/d : delete the line if "pattern” is
matched

/pattern/p : print the line if "pattern” is
matched

By gregcheater

via

sed (simple regex) (cont)

/pattern1/,/pattern2/ : print every lines
between the first line that matches "pattern1" to
the first line that matches "pattern2”

-i.ext : Modifications done "in-place". A
backup file will be created with .ext extension (it
is optional)

-n : print only the lines that matched the
pattern

awk (extended regex)
O awk -Fc 'awk script' filet file2 ... (where "c" is
the delimiter)

Otypical awk script: 'BEGIN {statements}
/pattern/ {script statements} END {statements}'

BEGIN {} : Will be executed once at the start
END {} : Will be executed once at the end

/pattern/ : only lines that matched the pattern
will be processed

/pattern1/,/pattern2/ : every line from the first
line that matches patterni to the first line that
matches pattern2 will be processed

{script statements} : core of the script
printf: C-style formatter (man printf)
$n : the nth field of the line
$0 : the entire line
NR : the record number
NF : the number of fields in the record

FS: The field separator (the delimiter)

Published 14th March, 2016.
Last updated 12th April, 2016.
Page 3 of 3.

Sponsored by Readability-Score.com

Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/gregcheater/
http://www.cheatography.com/gregcheater/cheat-sheets/bash
http://www.cheatography.com/gregcheater/
https://readability-score.com

	bash Cheat Sheet - Page 1
	basic bash commands
	control structure (case)
	file globbing regex
	function definition
	control structure (if)
	condit­ional expres­sions
	bash redire­ctions
	control structure (while)
	control structure (for)

	bash Cheat Sheet - Page 2
	more basic bash commands
	grep (simple regex)
	variables
	simple regex

	bash Cheat Sheet - Page 3
	extended regex
	awk (extended regex)
	sed (simple regex)

