

Advanced Mikrotik Training Traffic Control (MTCTCE)

Certified Mikrotik Training - Advanced Class (MTCTCE) Organized by: Citraweb Nusa Infomedia (Mikrotik Certified Training Partner)

• • Schedule - Module

	Sesi 1	Sesi 2	Sesi 3	Sesi 4
Hari 1	Basic Config L2 S			curity
Hari 2	Firewall			L7 Protocol
Hari 3	QOS			Test

• • • Schedule

- Sessi 1
- Coffee Break
- Sessi 2
- Lunch
- Sessi 3
- Coffee Break
- Sessi 4

- 08.30 10.15
- 10.15 10.30
- 10.30 12.15
- 12.15 13.15
- 13.15 15.00
- 15.00 15.15
- 15.15 17.00

New Training Scheme 2009

- Basic / Essential Training
 - MikroTik Certified Network Associate (MTCNA)
- Advanced Training
 - Certified Wireless Engineer (MTCWE)
 - Certified Routing Engineer (MTCRE)
 - Certified Traffic Control Engineer (MTCTCE)
 - Certified User Managing Engineer (MTCUME)
 - Certified Inter Networking Engineer (MTCINE)

• • • Certification Test

- Diadakan oleh Mikrotik.com secara online
- Dilakukan pada sesi terakhir
- Jumlah soal : 25 Waktu: 60 menit
- Nilai minimal kelulusan : 60%
- Yang mendapatkan nilai 50% hingga 59% berkesempatan mengambil "second chance"
- Yang lulus akan mendapatkan sertifikat yang diakui secara internasional

• • • Trainers

Novan Chris

- MTCNA (2006), Certified Trainer (2008)
- MTCWE (2008), MTCRE (2008)
- MTCTCE (2011)
- Pujo Dewobroto
 - MTCNA (2009), MTCTCE (2009)
 - MTCWE (2010), MTCRE (2011)
 - Certified Trainer (2011)

• • • Perkenalkan

- Perkenalkanlah :
 - Nama Anda
 - Tempat bekerja
 - Kota / domisili
 - Apa yang Anda kerjakan sehari-hari dan fiturfitur apa yang ada di Mikrotik yang Anda gunakan

Thank You !

info@mikrotik.co.id

Diijinkan menggunakan sebagian atau seluruh materi pada modul ini, baik berupa ide, foto, tulisan, konfigurasi, diagram, selama untuk kepentingan pengajaran, dan memberikan kredit dan link ke www.mikrotik.co.id

Certified Mikrotik Training - Advanced Class (MTCTCE) Organized by: Citraweb Nusa Infomedia

(Mikrotik Certified Training Partner)

Objectives

• Pada materi ini akan dibahas :

- DNS Server
- DHCP Server
- DHCP Client
- DHCP Relay
- Proxy Access Control

• • • First do First !

- Ubahlah nama Router menjadi :
 "XX-NAMA ANDA".
- Aktifkan **neighbor interface** pada WLAN1.
- Buatlah username baru dan berilah password (group full).
- Proteksilah user Admin (tanpa password) hanya bisa diakses dari 10.10.10.28/30 (grup full).
- Buatlah user "demo" dengan grup read.

• • • [LAB-1] Konfigurasi Dasar

Mikrotik Indonesia http://www.mikrotik.co.id

• • • IP Configuration

- Routerboard Setting
 - WAN IP : 10.10.10.x/24
 - Gateway : 10.10.10.100
 - LAN IP : **192.168.x.1/24**
 - DNS : 10.100.100.1
 - Services: Src-NAT and DNS Server
- Laptop Setting
 - IP Address : 192.168.x.2/24
 - Gateway : 192.168.x.1
 - DNS : **192.168.x.1**

• • • [LAB-2] NTP Client

- NTP Server: id.pool.ntp.org
- Wlan1 SSID : training (WPA=.....)
- Buatlah file backup! Dan copy file backup tersebut ke laptop

• • DNS – Domain Name System

- Adalah sebuah sistem yang menyimpan informasi Nama Host maupun Nama Domain dalam bentuk Data Base (distributed database) di dalam jaringan komputer.
- DNS menyediakan alamat IP untuk setiap nama host / server di dalam domain yang hal ini cukup penting untuk jaringan Internet,
- Bilamana perangkat keras komputer dan jaringan bekerja dengan alamat IP untuk pengalamatan dan penjaluran (routing).

• • • DNS - 2

- Manusia pada umumnya lebih memilih untuk menggunakan nama host dan nama domain karena mudah diingat.
- Analogi yang umum digunakan untuk menjelaskan fungsi DNS adalah dianggap seperti buku telepon internet dimana saat pengguna mengetikkan nama website(domain) tertentu di internet maka pengguna akan diarahkan ke alamat IP tertentu

• • • DNS Static & DNS Cache

- Fungsi DNS Static digunakan router pada aplikasi web-proxy dan juga di hotspot.
- Fungsi DNS Cache akan aktif bila konfigurasi "Allow Remote Requests" diaktifkan.
- DNS Cache dapat meminimalkan waktu request DNS dari client.

••• Konfigurasi Dasar DNS

• • • DNS Static & DNS Cache

- DNS Cache juga dapat berfungsi sebagai DNS Server sederhana.
- Untuk setiap setting static DNS, router akan menambahkan parameter "A" dan "PTR" secara otomatis.
 - "A" Memetakan Alamat Domain ke Alamat IP
 - "**PTR**" Untuk memetakan Reverse DNS
- Static DNS akan meng-override dynamic entry yang ada di DNS cache.
- Untuk mempercepat proses trace route di OS Windows, kita bia menambahkan static DNS untuk IP lokal kita.

• • • [LAB-3] Static DNS

DNS			23
Static Cache			
+- • × 7	Settings		Find
# Name	Address	TTL (s)	▼
0 • client30-1.local	192.168.30.1	1d 00:00:00	
	💷 New DNS St	atic Entry	—
	Name: client3	30-2.local	ок
	Address: 192.1	68.30.2	Cancel
	TTL: 1d 00	:00:00 s	Apply
			Disable
			Сору
			Remove
1 item (1 selected)	disabled	Regexp	

• • • Cache Lists

		15			×
	Static	Cache			
	T	Flush Cache			Find
ļ		Name	Туре	Data	TTL
i	S	1.30.168.192.in-addr.arpa	PTR	client30-1.local	23:59:59
I	S	2.30.168.192.in-addr.arpa	PTR	client30-2.local	23:59:59
I	S	client30-1.local	Α	192.168.30.1	23:59:59
I	S	client30-2.local	A	192.168.30.2	23:59:59
ľ		wa1.b.yahoo.com	NS	yfT.yahoo.com	
		wa1.b.yahoo.com	NS	yf2.yahoo.com	00:04:04
		www-real.wa1.b.yahoo.c	Α	209.131.36.158	00:00:05
		www.wa1.b.yahoo.com	CNAME	www-real.wa1.b.yahoo	00:00:04
		www.yahoo.com	CNAME	www.wa1.b.yahoo.com	00:04:04
		• yf1.yahoo.com	Α	68.142.254.15	00:25:26
		yf2.yahoo.com	A	68.180.130.15	00:25:25
	11 item	IS			

• • • DHCP

- Dynamic Host Configuration Protocol digunakan untuk secara dinamik mendistribusikan konfigurasi jaringan, seperti:
 - IP Address dan netmask
 - IP Address default gateway
 - Konfigurasi DNS dan NTP Server
 - Dan masih banyak lagi custom option (tergantung apakah DHCP client bisa support DHCP option tersebut)
- DHCP dianggap tidak terlalu aman dan hanya digunakan pada jaringan yang dipercaya.

Skema Komunikasi DHCP

- DHCP Discovery
 - src-mac=<client>, dst-mac=<broadcast>, protocol=udp, src-ip=0.0.0.0:68, dst-ip=255.255.255.255:67
- DHCP Offer
 - src-mac=<DHCP-server>, dst-mac=<broadcast>, protocol=udp, srcip=<DHCP-Server>:67, dst-ip=255.255.255.255:67
- DHCP Request
 - src-mac=<client>, dst-mac=<broadcast>, protocol=udp, src-ip=0.0.0.0:68, dst-ip=255.255.255.255:67
- DHCP Acknowledgement
 - src-mac=<DHCP-server>, dst-mac=<broadcast>, protocol=udp, srcip=<DHCP-Server>:67, dst-ip=255.255.255.255:67

Identifikasi DHCP Client

- DHCP Server dapat membedakan client berdasarkan proses identifikasi.
- Identifikasi dilakukan berdasarkan:
 - "caller-id" option (dhcp-client-identifier pada RFC2132)
 - Mac-Address, apabila "caller-id" tidak ada
- "hostname" memungkinkan client DHCP yang menggunakan RouterOS mengirimkan tambahan informasi identifikasi ke server, secara bawaan menggunakan "system identity".

OHCP Client

Bindge		
Mesh	DHCP	Client 🛛 🕅
PPP		
IP D	Addresses	ace / Use P., Add D., IP Address Expires After Status
Routing D	Routes	
Ports	Pool	New DHCP Client
Queues	ARP	DHCP Status OK
Drivers	Firewall	Interface: ether1
System D	Socks	Hostname: System identity
Files	UPnP	
Log	Traffic Flow	Client ID: Mac Address Disable
SNMP	Accounting	Use Peer DNS Copy
Users	Services	Remove
Radius	Packing	Add Default Route
Tools D	Neighbors	Default Route Distance: 0 Release
New Terminal	DNS items	Renew
Telnet	TFTP	
Password	Web Proxy	disabled
Certificates	DHCP Client	stopped
Stores	DHCP Server	

• • • DHCP Server

- Hanya boleh ada satu DHCP server per kombinasi interface/relay pada router.
- Untuk membuat DHCP Server, kita harus memiliki :
 - IP Address pada interface fisik DHCP
 - Address pool untuk client
 - Informasi jaringan lainnya
- Ketiga informasi di atas harus sesuai satu sama lain.
- "Lease on disk" adalah opsi untuk menuliskan data Lease DHCP ke harddisk.

• • • DHCP Networks & Option

- Pada menu DHCP Networks, kita dapat melakukan konfigurasi DHCP Options tertentu untuk network tertentu
- Beberapa option sudah terintegrasi dengan RouterOS, dan Option lainnya dapat dilakukan custom dalam format raw
 - http://www.iana.org/assignments/bootp-dhcp-parameters
- DHCP Server dapat memberikan option apapun
- DHCP Client hanya dapat menerima option yang dikenali

• • • DHCP Options (1)

- DHCP Options yang bisa dilakukan:
 - Subnet-mask (option 1) netmask
 - Router (option 3) gateway
 - Domain-Server (option 6) dns-server
 - NTP-Servers (option 42) ntp-server
 - NETBOIS-Name-Server (option 44) wins-server
- Custom DHCP options (contoh) :
 - Classless Static Route (option 121) "0x100A270A260101" = "network=10.39.0.0/16 gateway=10.38.1.1"

• • • DHCP Options (2)

- Raw Format :
 - 0x | 10 | 0A27 | 0A260101 |
 - 0x Hex Number
 - 10 Subnet/Prefix = 16
 - 0A27 Network = 10.39.0.0
 - 0A260101 Gateway = 10.38.1.1

• • • [LAB-4] DHCP Server

admin@00.0C.42.0	EAS:21 (WIRFOTIK) - WIN	(חוון) באטעבא ווט גיבי אסט
99		
Interfaces		
Wireless		PHCP Server
Bridge		DHCP Networks Leases Lintions Alerts
ppp		
IP N	Addresses	
Rotting	Boutes	Name ∧ I. Relay Lease Time Address Pool Add ▼
Ports	Pool	
Queues	ARP	
Drivers	Firewal	
Svstem ♪	Socks	
Files	LIPoP	
Loc	Traffic Flow	
SNMP	Accounting	
Users	Service	DHCP Setup
Badius	Packing	Select interface to run DHCP server on
Tools	Neighborn	DHCB Server Interfaces atherit
New Terminal		Uniter Server Interface.
Telet	Wah Parar	Back Next Cancel
Pareword	DUCD Client	
Certificates		
Make Suport of		
Marce Support.III	Unci Heay	▲
Fra	Hotspot	0 items
EXIL	IPsec	

Mikrotik Indonesia http://www.mikrotik.co.id

• • • DHCP Server (2)

DHCP Setup			×
Select interface to run DHC	CP server on		
DHCP Server Interface:	ther1		₹
1	Back	Next	Cancel

DHCP Setup		×
Select gateway for given network		
Gateway for DHCP Network: 192.168	8.1.1	
Back	Next	Cancel

DHCP Set	up	
Select DNS se	rvers	
DNS Servers:	192.168.1.1	¢
5	Back Ne	xt Cancel

DHCP Setup			•	
Select network for DHCP	addresses			
DHCP Address Space: 192.168.1.0/24				
Back Next Cancel				

DHCP Setup	×		
Select pool of ip addresses given out by DHCP server			
Addresses to Give Out: 192.168.1.200-192.168.1.254			
Back Next Car	ncel		

• • • [LAB-5] Custom DHCP Option

DHCP Server		23	
DHCP Networks Leases Options Alerts			
	DHCP Ser	ver	8
New DHCP Option	DHCP Netw	vorks Leases Options Alerts	
Name: Give-route-to-server	+- 6		Find
Code: 121	Address	New DHCP Network	EXE T
Value: 0x100A270A260101		Address: 192.168.0.0/24	ОК
		Gateway: 192.168.0.1 🖨	Cancel
		Netmask: 24	Apply
		DNS Servers: 192.168.0.1 \$	Comment
		DNS Domain:	Сору
		WINS Servers:	Remove
0 items		NTP Servers: 192.168.0.1 🗢	
		DHCP Options: Give-route-to-server 🗧 🖨	
	4	·	-
	Uitems		

• • • IP Address Pool

- IP address pool digunakan untuk menentukan rentang IP Address yang akan didistribusikan secara dinamik (DHCP, PPP, Hotspot)
- IP address harus selain yang digunakan untuk keperluan lain (misalnya: server)
- Dimungkinkan untuk :
 - Membuat beberapa rentang untuk satu pool
 - Menentukan pool berikut dengan "next pool"

• • • IP Address Pools

IP Pool		23
Pools Used Addresse	es	
+ - 7		Find
Name	∧ Addresses Next F	ool 🗾 🗾
🕆 pool1	192.168.1.100-192.168.1.254 pool2	
⊕pool2	192.168.2.1-192.168.2.50, 192.168.2.2 pool3	
🕆 pool3	192.168.3.1-192.168.3.100 none	
	IP Pool < pool2	OK Cancel Apply Copy Remove
3 items (1 selected)		

Distribusi Address Pool

Distribusi Address Pool

- Secara default Pembagian IP address oleh DHCP-server Mikrotik akan dimulai dari angka ip yang paling besar dari pool yang diberikan.
- Jika ternyata ip yang didapatkan adalah ip yang tekecil maka biasanya ada DHCP option di client yang aktif yang meminta ip terkecil.
• • • DHCP Server Setting

- Src-address menentukan IP Address DHCP server apabila terdapat lebih dari 1 IP Address pada interface DHCP server
- Delay Threshold memberikan prioritas DHCP server yang satu dari yang lainnya (makin besar delay, prioritas makin rendah)
- Add ARP for Leases memperbolehkan menambahkan data entri ARP dari lease DHCP jika interface ARP=reply-only
- Always Broadcast mengijinkan komunikasi dengan client yang tidak standart, misalnya pseudo-bridges

OHCP Server Setting

INew DHCP S	erver		×
Name:	server1		ОК
Interface:	ether1	₹	Cancel
Relay:		-	Apply
Lease Time:	3d 00:00:00		Disable
Address Pool:	static-only	₹	Сору
Src. Address:		-	Remove
Delay Threshold:		•	
Authoritative:	after 2s delay Bootp Support Add ARP For Leases Always Broadcast Use RADIUS	₹	
disabled			

• • • DHCP-Server Alerts!!!

- DHCP-Alerts memungkinkan DHCP server untuk mendeteksi adanya DHCP Server Tandingan (Rogue) yang ada di jaringan yang sama.
- Valid-Server Mendaftarkan mac-address dari DHCP server yang valid.
- On-Alert memungkinkan untuk menjalankan script tertentu jika terjadi adanya DHCP-Server tandingan.

• • • DHCP – Alerts !

• • • DHCP – Alerts !

DHCP Alert <ether1>

	Interface:	ether1 Ŧ
	Valid Servers:	00:0C:42:20:94:E0
	Alert Timeout:	01:00:00
	Unknown Servers:	00:0C:42:D3:95:17
		00:0C:42:E9:BB:C6
dhcp critical error dhcp alert on ether1: o dhcp critical error dhcp alert on ether1: o	di Bi	00:0C:42:E9:BB:D5
script info ono dhcp kobish script info ono dhcp kobish dhcp info DHCP server; unknown	On Alert:	
dhcp critical errordhcp alert on ether1: cdhcp critical errordhcp alert on ether1: c	log info message:	="ono dhcp kobish" 🔼
script info ono dhcp kobish script info ono dhcp kobish dhcp critical error dhcp alert on ether1: c	liscovered unknown dhcp server,	mac 6C:F0:49:CE:F8:6E, ip 192.168.130.15
script info ono dhcp kobish		

Log

00:0C:42:	dhcp alert on ether1: di	dhcp critical error	Feb/14/2012 14:18:23
	dhcp alert on ether1: di	dhep critical error	Feb/14/2012 14:18:23
	ono dhcp kobish	script info	Feb/14/2012 14:18:23
On Alert:	ono dhcp kobish	script info	Feb/14/2012 14:18:23
	DHCP server: unknown	dhcp info	Feb/14/2012 14:22:54
l :log info message="ono dhcp	dhcp alert on ether1: di	dhcp critical error	Feb/14/2012 14:22:54
	dhcp alert on ether1: di	dhcp critical error	Feb/14/2012 14:22:54
	ono dhep kobish	script info	Feb/14/2012 14:22:54
	ono dhcp kobish	script info	Feb/14/2012 14:22:54
covered unknown dhcp server, mac 6C:F0:49:CE:	dhcp alert on ether1: dis	dhcp critical error	Feb/14/2012 14:22:54
	ono dhep kobish	script info	Feb/14/2012 14:22:54

• • • Authoritative DHCP Server

- Authoritative memungkinkan DHCP server menanggapi broadcast client yang tidak dikenali dan meminta client untuk me-restart DHCP lease (client akan mengirimkan sequence broadcast hanya apabila gagal melakukan pembaruan lease)
- Digunakan untuk:
 - Menanggulangi apabila ada DHCP server "tandingan" di dalam network
 - Melakukan perubahan konfigurasi jaringan DHCP dengan lebih cepat

DHCP - Authoritative

maka aktifkan "Authoritative = yes"

• • DHCP – Delay Threshold

 Delay Threshold digunakan untuk backup jika DHCP server utama mengalami gangguan atau tidak berfungsi.

• • • [LAB-6] – DHCP Delay

- Hubungkan ether2 Anda dengan router di sebelah
- Buat bridge, masukkan ether1 dan ether2 sebagai bridge port
- Buatlah DHCP server pada interface bridge
- Mainkan delay threshold dan lihatlah apa yang terjadi

• • • DHCP Relay

- DHCP Relay bekerja seperti halnya Web-Proxy, dapat menerima DHCP discovery dan request, dan meneruskannya ke DHCP server
- Hanya bisa ada 1 DHCP relay antara DHCP server dan DHCP client
- Komunikasi DHCP server ke DHCP relay tidak membutuhkan IP Address
- Konfigurasi "local address" pada DHCP relay harus sama dengan "relay address" pada DHCP server.

• • • [LAB-7] – DHCP Relay

• • • Setting DHCP Server

DHCP Server	<dhcp1></dhcp1>	DHCP Network <192.168.32.0/24>	
Name:	dhcp1	Address: 192.168.32.0/24	[
Interface:	ether2 Ŧ	Gateway: 192.168.32.1 🖨	Ī
Relay:	192.168.32.1	Netmask:	
Lease Time:	3d 00:00:00	DNS Servers: 10.100.100.1	[
Address Pool:	dhcp_pool2 ∓	DNS Domain:	[
Src. Address:	•	WINS Servers:	ĺ
Delay Threshold:		NTP Servers:	L
Authoritative:	after 2s delav ∓	DHCP Options:	
	✓ Bootp Support	IP Pool <dhcp_pool2></dhcp_pool2>	
	Add ARP For Leases	Name: dhcp_pool2	
	Use RADIUS	Addresses: 192.168.32.2-192.168.32.254	ŧ
disabled		Next Pool: none	•

• • • Setting pada DHCP Relay

DHCP Relay < relay1>					
General Status		ОК			
Name:	relay1	Cancel			
Interface:	ether1 ∓	Apply			
DHCP Server:	172.16.30.1 🗢	Disable			
Delay Threshold:	—	Сору			
Local Address:	192.168.32.1	Remove			
		Reset Counters			
disabled					

• • • Proxy

 Pada semua level routeros, baik yang diinstall pada PC maupun yang diinstall pada routerboard, kita bisa mengaktifkan fitur proxy

• • • Konsep Proxy

• Koneksi tanpa proxy

• Koneksi dengan proxy

• • • Fitur Proxy di RouterOS

- Regular HTTP proxy
- Transparent proxy
 - Dapat berfungsi juga sebagai transparan dan sekaligus normal pada saat yang bersamaan
- Access list
 - Berdasarkan source, destination, URL dan requested method
- Cache Access list
 - Menentukan objek mana yang disimpan pada caché
- Direct Access List
 - Mengatur koneksi mana yang diakses secara langsung dan yang melalui proxy server lainnya
- Logging facility

Setup Proxy

- Aktifkanlah service web-proxy pada router Anda.
- Konfigurasi browser Anda untuk menggunakan proxy internal Mikrotik.
- Kemudian test koneksi untuk memastikan proxy sudah bisa menerima request.

Mengaktifkan Proxy

	admin@00:0C:42:1B	:5C:C1 (MikroTik) - Wir	Box v3.2 on RB500R5 (mipsle)
6	(P		
	Interfaces	Web Proxy	
	Wireless	Access Cache Dir	ect Connections
	Bridge		
	PPP		Det Address Det
	IP 🗅	Addresses	Web Proxy Settings
	Routing 1	Routes	General Status Lookups Inserts
	Ports	Pool	✓ Enabled
	Queues	ARP	Src. Address:
	Drivers	Firewall	Port: 3128
	System 🗅	Socks	
	Files	UPnP	Parent Proxy:
	Log	Traffic Flow	Parent Proxy Port:
	SNMP	Accounting	
	Users	Services	Cache Drive: system
	Radius	Packing	Cache Administrator: webmaster
	Tools 1	Neighbors	Max. Cache Size: none 🐺 KiB
	New Terminal	DNS	Cache On Disk
	Telnet	Web Proxy	Max Client Connections: 600
	Password	DHCP Client	
	Certificates	DHCP Server	Max. Server Connections: 600
	Make Supout.rif	DHCP Relay	Max Fresh Time: 3d 00:00:00
	Manual	Hotspot	
	Exit	IPsec	Always From Cache
			Cache Hit DSCP (TOS): 4

Mikrotik Indonesia http://www.mikrotik.co.id

running

• • • Statistik Web Proxy

Web Proxy Settings	Web Proxy Settings	×
General Status Lookups Inserts	General Status Lookups Inserts	ОК
Uptime: 21d 01:09:13	Successes: 1 193 715	Cancel
Requests: 2057512	Not Found: 584 591	Apply
Hits: 698936	Non Cachable: 98 718	Clear Cache
Cache Used: 21 288 493 KiB	Denied: 590 598	Format Drive
RAM Cache Used: 0 KiB	Expired: 65 681	Check Drive
Total RAM Used: 6 022 KiB	No Expiration Info: 1 090	
Beceived From Servers: 46 487 277 KiB	Web Proxy Settings	×
Sent To Clients: 50 634 819 KiB	General Status Lookups Inserts	ОК
Hits Sent To Clients: 9579179 KiB	Successes: 390 192	Cancel
	Denied: 565 257	Apply
Total Disk Size: 28 855 996 KiB	Too Large: 0	Clear Cache
Free Disk Space: 6 150 540 KiB	No Memory: 0	Format Drive
	Errors: 23	Check Drive

• • Proxy Setting: Access

- Menentukan mana yang boleh melakukan akses dan mana yang tidak, berdasarkan :
 - Layer 3 information
 - URL / Host
 - HTTP Method
- Untuk yang di-deny, kita dapat mengalihkan (redirect) akses ke URL tertentu.

Web Proxy
Access Cache Direct Connections
🕂 🗕 🖌 🙆 🕅 00 Reset Counters 00 Reset All Counters Web Proxy Settings Find
🗰 Src. Address 🛆 Dst. Address 🛆 Dst. Port Dst. Host Path Method Action Red 💌
0 ● 192.168.0.23 www.youtub deny
Web Proxy Rule <192.168.0.23>
Src. Address: 🛄 192.168.0.23 🔺 OK
Dst. Address: Cancel
Dst. Port: Apply
Local Port: Disable
Dst. Host: Www.youtube.cc Comment
Path: Copy
Method:
Action: deny
1 item (1 selected) Redirect To:
Reset All Counters
Hits: 3
disabled

URL Filtering http://www.domain.com/path1/path2/file1.jpg Destination host Destination path

- Special Characters
 - * = karakter apapun (bisa banyak)
 - ? = satu karakter
 - www.do?ai?.com
 - www.domain.*
 - *domain*

• • • Regular Expressions

- Tuliskan tanda ":" pada awal parameter untuk mengaktifkan mode regex
 - * = tidak ada simbol yang diijinkan sebelum pattern
 - \$ = tidak ada simbol yang diijinkan sesudah pattern
 - [...] = karakter pembanding
 - \ = (diikuti karakter dengan fungsi khusus) meniadakan fungsi khusus
- http://www.regular-expressions.info/reference.html

• • • [LAB] Proxy RegEx

- Untuk melakukan blok terhadap situs torrent contoh :
 - Dst-Host=":(torrent|limewire|thepiratebay| torrentz|isohunt)+.*"

Complete RegEx :

:(torrentz|torrent|thepiratebay|isohunt|entertane| demonoid|btjunkie|mininova|flixflux|torrentz|vertor| h33t|btscene|bitunity|bittoxic|thunderbytes|entertane| zoozle|vcdq|bitnova|bitsoup|meganova|fulldls|btbot| flixflux|seedpeer|fenopy|gpirate|commonbits)+.*

• • • Cache

• Pengaturan penyimpanan objek ke dalam cache

Web Proxy							
Access Cache Direct Connections							
🕂 🗕 🖌 🗶 🗂 🍸 00 Re	set Counters 00 R	eset All Counters				Find	
# Src. Address Dst. Address	Dst. Port Dst	t. Host Path	Meth	od Action	Hits	•	
0 0192.168.0.23	WW	vw.google		allow		1	
		Web	Proxy Rule <	192.168.0.2	3>	×	
		Src.	Address: 🖸 1	92.168.0.23] 🔺 🛛	ОК	
		Dst.	Address:] -	Cancel	
			Dst. Port: 🗌			Apply	
		L	.ocal Port:] 🗸 🔰	Disable	
		1	Dst. Host: 🗌 w	ww.google.co.i	•	Comment	
			Path:		-	Сору	
Terminal			Method:		-	Remove	
[admin@MKI] > ip proxy cache pr			Action: allow	V	₹		
Flags: X - disabled						Reset Counters	
H DSI-FORI DSI PAT MET 0 www	allow 1		Hits: 1			Reset All Counters	
[admin@MKI] >		🗾 disat	oled				

• • • Direct Access list

- Mengatur request dari client untuk diproses oleh parent proxy server
- Berfungsi jika Parent Proxy telah didefinisikan.
- Direct-list dst-host=* action=deny
 - Akses user akan dikontrol oleh proxy local dibantu parent proxy.
- Direct-list dst-host=* action=allow
 - Akses user akan dikontrol sepenuhnya oleh proxy local.

Layer 2 - Security

Certified Mikrotik Training - Advanced Class (MTCTCE) Organized by: Citraweb Nusa Infomedia

(Mikrotik Certified Training Partner)

• • • Outline

- LAN dan Layer 2 Network
- Keamanan di jaringan LAN
- Permasalahan yang sering terjadi di Jaringan Layer 2
- Implementasi security menggunakan Mikrotik

• • • LAN

- LAN adalah sebuah jaringan yang paling sederhana, yaitu jaringan di area lokal yang didefinisikan dan dinaungi oleh alamat network dan alamat broadcast yang sama.
- Untuk menghubungkan node (device) satu dengan yang lain pada sebuah jaringan LAN maka perlu adanya bantuan perangkat yang disebut dengan switch atau bridge.

• • • Layer 2 Network

 Komunikasi antar node di jaringan LAN secara fundamental sebenarnya banyak dilakukan di layer 2 OSI, yaitu Layer Data Link.

••• Keamanan di Jaringan LAN

- Implementasi security biasanya hanya terkonsentrasi antara jaringan public dan jaringan local (LAN).
- Aspek security di tiap layer sebenarnya berpengaruh satu sama lain. Dan biasanya kelemahan security di layer bawah akan mempengaruhi di layer atasnya.
- Tidak banyak administrator jaringan menyadari bahwa jaringan local mereka juga rentan terhadap serangan dari pihak yang tidak bertanggung jawab yang berada di sisi internal jaringan tersebut.
- Dan sebaiknya keamanan di layer Media (Fisik dan Data link) tetap menjadi pertimbangan dan prioritas implementasi keamanan di jaringan tersebut karena pasti juga berpengaruh secara keseluruhan.

 Sudah banyak orang iseng dan bermaksud tidak baik di jaringan Public dan hal tersebut juga bisa terjadi di jaringan Internal.

• • • Layer 2 Attack !

- CAM table overflow / Mac Flooding
- Neighborhood Protocols Explotation.
- DHCP Starvation
- ARP Cache poisoning MitM Attack
- Defeating users and providers Hotspot and PPPoE based

- Terdapat banyak sekali tool yang bisa digunakan untuk melakukan serangan MAC flooding.
- Mac-flooding adalah salah satu serangan terhadap jaringan bridge dengan cara memenuhi jaringan dengan banyak sekali mac-address palsu.

• • • MAC Flood

- Mac flood bisa dilakukan dari semua port yang terhubung ke jaringan bahkan bisa juga di jaringan wireless.
- Akibatnya akan terjadi lonjakan yang sangat signifikan di jumlah host yang ada di bridge host table dan ARP table.
- Network akan mengalami banyak delay, Banyak sekali paket yang tidak perlu dan Jitter (kepadatan spektral frekuensi konten).
- Tinggal menunggu waktu dan bergantung kekuatan perangkat sebelum network tersebut Fail atau crash !

- Neighbor Discovery Protocols sangat membantu dalam management sebuah jaringan.
- Mikrotik RouterOS menggunakan MNDP Mikrotik Neighbor Discovery Protocol. (Cisco juga menggunakan protocol yang mirip yaitu CDP – Cisco Discovery Protocol).
- Kedua protocol tersebut sama-sama menggunakan packet broadcast protocol UDP port 5678 setiap 60 detik di semua interface yang diaktifkan.
• • • Exploiting Neighborhood

- Tool-tool hacking yang didevelop untuk menyerang Discovery Router Cisco juga bisa menyerang router mikrotik.
- Tool tersebut bisa digunakan untuk mendapatkan informasi keseluruhan jaringan dan bisa juga untuk menyerang jaringan tersebut yang mengakibatkan Denial of Service.
- Serangan bisa datang kapan saja dari port mana saja yang terhubung ke jaringan yang kebetulan memang mengaktifkan protocol tersebut.

Neighbor List							
ighbors Discove	ry Interfaces						
		\					
Interface	/ IP Address	/ MAC Address	Identity				
▲ bridge1	0.9.158.115	10:23:7A:1D:07:0E	3YC8P4Y				
A bridge1	0.10.151.122	68:43:3D:48:9C:D	ROMIZDD				
A bridge1	0.14.242.30	A2:9F:CC:06:32:90	K3FBS70				
L bridge1	0.15.98.50	86:44:43:24:AC:14	6A7J2XA				
L bridge1	0.23.35.92	C8:38:A0:5F:C9:2B	35×TB7K				
L bridge1	0.52.49.11	E2:55:60:65:1D:A4	B7K3KBT				
A bridge1	0.55.26.46	46:78:4A:76:F8:7D	QL2HCQS				
A bridge1	0.58.197.86	CE:24:40:26:15:F4	CSPLCGC				
L bridge1	0.70.85.0	F2:56:12:21:F3:FD	R0NI1V0				
L bridge1	0.86.80.73	B6:4A:20:10:6D:D1	4HCU94				
L bridge1	0.98.36.92	AC:25:24:5E:E5:8E	FAS02X9				
L bridge1	0.98.177.28	BC:C4:04:05:9D:19	4YCUP4L				
L bridge1	0.101.225.40	30:F5:F2:59:0B:1C	TB7K3XB				
L bridge1	0.104.50.31	00:8E:C8:21:6E:51	GUQ8LHN	\			
L bridge1	0.109.219.41	78:05:E7:5F:05:15	KGUB83G	\			
L bridge1	0.141.51.66	7C:E0:D8:14:70:AE	RM1IDR0				
L bridge1	0.151.57.10	18:1E:85:31:3C:DE	IEW0611				
L bridge1	0.179.179.88	9E:96:A5:1D:58:C5	LGUB83G				
Loidge1	0.242.252.88	A6:C6:9F:0F:26:59	9MHZC9G	· · · ·			
L bridge1	1.16.84.120	98:EC:5A:64:2A:87	3FXTA7F	· · · · ·			
L bridge1	Sorono	nan toriadi '	15 dati	k dan	routor	akana	000
L bridge1	o Selali	Jan leijaul	is uell	n uall	outer	anall S	eyt
L bridge1	kehabi	san resourd	ce.				
A bridge1	Kondor	ourriooour					

- Penyerang akan menggunakan banyak sekali random mac-address untuk meminta peminjaman ip dari dari IP-pool DHCP server.
- Tidak perlu waktu lama ketika DHCP server akan kehabisan resource IP untuk dibagikan ke client yang benar-benar membutuhkan.
- Ketika DHCP server tidak lagi mampu maka penyerang bisa saja membuat **Rogue DHCP** server untuk menggangu jaringan tersebut.

OHCP Starvation

- Ada dua type serangan DHCP Starvation :
 - Penyerang mengenerate banyak sekali macaddress dan menghabiskan pool DHCP server.
 - Penyerang mengenerate banyak sekali DHCP Discovery packet tetapi tidak mengirimkan packet konfirmasi.
- Kedua teknik bisa berakibat Denial of Service karena DHCP Server kehabisan resource IP-pool. Teknik pertama memakan waktu lebih lama tetapi konsisten sedangkan teknik kedua lebih cepat tetapi tidak konsisten.

DHC	P Network	s Leases Op	otions Alerts
÷	- 0	× 🖆 🍸	Make Static Check Status
	Address 🕖	Active Address	Active MAC Addre Active Hos Expires After Status
D	1	172.16.1.250	00:16:D3:AD:25:F5 maia 2d 23:52:49 bound
D	1	172.16.1.254	3E:4D:E3:25:AC:95 00:00:20 offered
D	1	172.16.1.253	84:F3:C5:10:E6:F5 00:00:20 offered
D	1	172.16.1.252	80:FE:45:49:DC:30 00:00:20 offered
D	1	172.16.1.251	38:52:B0:3B:92:99 00:00:20 offered
D	1	172.16.1.249	9A:7F:69:51:0A:52 00:00:20 offered
D	1	172.16.1.248	E4:B1:FE:7B:FB:1D 00:00:20 offered
D	1	172.16.1.247	F2:B1:5C:36:B9:37 00:00:20 offered
D	4	172.16.1.246	FA:F6:79:0F:D8:09 00:00:20 offered
D	4	172.16.1.245	64:38:C6:48:D0:6E 00:00:20 offered

...

53 items

D	4	172.16.1.228	AA:76:E5:24:4B:9E	00:00:18 offered
D	4	172.16.1.227	D8:FD:2A:44:E7:27	00:00:18 offered
D	4	172.16.1.226	60:AE:2C:74:9F:FE	00:00:18 offered
D	4	172.16.1.225	74:6D:FF:1F:19:05	00:00:18 offered
D	4	172.16.1.224	18:87:80:08:CD:AC	00:00:18 offered
D	4	172.16.1.223	58:DF:F2:40:D1:1D	00:00:18 offered
D	4	172.16.1.222	EA:88:DC:28:DA:	00:00:18 offered
5		170 10 1 001	AC.FE.7E.EC.1D.CO	00.00.10 -8

 Kurang dari 5 detik DHCP Server sudah kehabisan ip 1 blok C

• • • ARP Poisoning / Spoofing

- Penyerang akan mengirimkan pesan ARP ke seluruh network yang menyatakan bahwa mac-address yang dimilikinya adalah mac-address yang valid dari host tertentu (Biasanya mac-address dari gateway).
- Korban pesan ARP palsu ini akan mulai mengirimkan paket data ke penyerang yang dianggap sebagai gateway.

• • • ARP Poisoning / Spoofing

- Dalam pengembangannya si penyerang bisa membuat bidirectional spoofing.
- Si penyerang tidak hanya memanipulasi ARP dari semua client bahwa dia adalah router, karena si penyerang juga bisa saja membuat pesan ARP "gratuitous" ke router bahwa macaddress nya adalah mac-address si korban
- Serangan bidirectional ini berjalan sempurna dan si penyerang bisa leluasa melakukan sniffing atau modifikasi paketnya.

- Sangat memungkinkan untuk melakukan serangan dengan metode sederhana pada jaringan Hotspot atau PPPoE.
- Hanya dengan membuat AP tandingan dengan SSID dan Band yang sama pada wifi atau membuat service server yang sama pada PPPoE.
- Walaupun jika autentikasi menggunakan RADIUS si penyerang juga bisa menggunakan Radius mode "promisciuous".

Hotspot & PPPoE Attack

- Dengan membuat AP tandingan yang sama
- Sedikit bantuan program pencuri password
- Atau Radius "Promisciuous" mode.
- Freeradius conf :

Internet

- # Log authentication requests to the log file
- # allowed values: { no, yes }

log_auth = yes

- # Log passwords with the authentication requests
- # allowed values: { no, yes }
 - log_auth_badpass = yes
 - log_auth_goodpass = yes

• • • Countermeasures

- Beberapa fungsi Mikrotik bisa menanggulangi atau setidaknya mengurangi beberapa serangan yang sudah disebutkan sebelumnya.
- Pengendalian ARP secara manual juga bisa membantu menhadapi serangan MAC-flooding dan ARP spoofing
- Mikrotik Bridge Filter (filter layer 2) Memiliki kemampuan yang hampir sama di Layer 3 Filter.
- Bridge traffic memiliki Logika IP flow tersendiri.

Mikrotik Layer 2 Filter

 Seperti halnya Firewall di Layer 3, Bridge juga memiliki packet flow tersendiri.

- Silakan download program etherflood.exe untuk melakukan simulasi flooding mac-address di jaringan bridge.
- Amati perubahan yang terjadi pada router Anda (Bridge Host, ARP, interface dan CPU).

Mac-address: 00:0C:42:00:00:00 00:0C:42:00:00:01 00:0C:42:00:00:02 00:0C:42:00:00:03 .

00:0C:42:ff:ff:ff

MAC Flood - Countermeasure

- Border Port pada Bridge dapat dimodifikasi sehingga menggunakan external FDB (Forwarding Data Base) sehingga port tersebut brfungsi seperti sebuah HUB saja.
- Jika terjadi flooding macaddress yang membanjiri port tersebut tidak akan dimasukkan ke dalam FDB.

Bridge Port <e< th=""><th>ther9></th></e<>	ther9>
General Statu	IS
Interface:	ether9
Bridge:	bridge1
Priority:	80 hex
Path Cost:	10
Horizon:	▼
Edge:	auto
Point To Point:	auto 🗧
External FDB:	yes 🗧

MAC Flood - Countermeasure

- Walaupun sudah mengamankan FDB serangan tetap terjadi dan akan membanjiri External-FDB, cepat atau lambat external-FDB akan penuh juga.
- Sangat beruntung Mikrotik memiliki filter di Bridge network yang bisa mengatasi serangan tersebut.
- Daftarkan mac-address apa saja yang memang valid pada filter (accept) dan (drop) untuk mac-address yang lain.

Bridge	Ports Filters	NAT Host	s							
+ =		27	🚝 Reset Co	ounters 00 Reset	All Counters		F	nd	all	₹
#	Chain 🗸	Interfaces	Interfaces/	Src. MAC Address	Dst. MAC Addres	MAC P	Action		Bytes	-
0	forward			00:0C:42:20:20:20			accept			0
1	forward			00:0C:42:30:30:30			accept			0
2	forward			00:0C:42:40:40:40			accept			0
3	forward						drop			0
1								/		

Countermeasure – Exploiting Neighborhood

Neighbors Discove	ry Interfaces								
T									Find
Interface /	IP Address	MAC Address	Identity	Platform	Version	Board Na	IPv6	Age (s)	
🌋 bridge-local	192.168.5.50	00:0C:42:82:52:AD	MikroTik	MikroTik	4.17	RB750	no	47	7
🌋 bridge-local	192.168.5.10	00:0C:42:0D:AA:1A	MikroTik	MikroTik	4.6	RB532	no	26	5
🌋 bridge-local	192.168.5.29	00:0C:42:40:7B:1F	RB433	MikroTik	5.0rc10	RB433HAH	DO .	59	1
🌋 ether2	192.168.200.2	00:04:C0:71:0A:D8	Switch	cisco	Ci: Neighbo	or List			
							1 🥿	7	

Countermeasure – Exploiting Neighborhood

- Ketika MNDP sudah dimatikan, serangan exploit terhadap network discovery tetap terjadi.
- Gunakan Bridge Filter untuk melakukan blok traffic MNDP.

General	Advanced	ARP	STP	Action	Statistics
	Chain:	forward			₹
- ▼ - Inte	rfaces —				
- ▼ - Brid	lges				
-▼- Src.	MAC Addre:	88			
- ▼ - Dst.	MAC Addres	ss			
- - - MA(C Protocol —				
MAC Pro	tocol-Num:	_ ip			∓ hex
- A - IP -					
Sro	c. Address:				
	Src. Port:				-
Ds	t. Address:				
	Dist. Port:	5678	\$		▲
	Protocol:	udp			₹ ▲
- - Pac	ket Mark —				
- - Inar	ess Priority –				

• • • Countermeasure – DHCP Starving

- Hampir sama seperti MAC-flooding pada serangan DHCP Starving sama-sama akan mengenerate mac-address palsu secara masive.
- Sehingga aktifkan external FDB dan juga mac filter tetap harus dilakukan.
- Gunakan static lease untuk mengamankan DHCP server.

- Download dan aktifkan program Netcut
- Lakukan serangan pada network bridge

Countermeasure - ARP Poisoning / Spoofing

- ARP Poisoning / Spoofing bisa dikurangi dengan Mengubah tingkah laku ARP.
 - ARP = Disabled semua client harus mendaftarkan mac-address dari seluruh jaringan pada masing-masing tabel ARP secara static.

New Interface	
General STP Status Traffic	
Name: bridge1	New ARP
Type: Bridge	IP Address: 192.168.0.234
MTU: 1500	MAC Address: 00:01:02:03:04:05
L2 MTU:	
MAC Address:	Interface: bridge1
ARP: disabled	
Admin. MAC Address:	

Countermeasure - ARP
 Poisoning / Spoofing

- ARP = Reply-Only pada network multipoint seperti Wireless maka pada konsentrator saja yang di configure Static-ARP.
- Konsekuensi yang didapatkan :
 - Static ARP pada semua host pasti sangat sulit untuk diimplementasikan.
 - ARP reply only tidak akan melindungi client dari serangan.

Countermeasure - ARP Poisoning / Spoofing

- Metode yang lain yang bisa dilakukan adalah mengisolasi traffic layer 2.
- Jika dilihat lebih detail pada jaringan LAN secara umum, traffic yang terjadi sebagian besar adalah dari client menuju ke gateway.
- Dengan mengisolasi traffic hanya dari client menuju ke gateway maka teknik-teknik ARP poisoning bisa dikurangi dan di cegah.

• • • Resource Sharing

- Di jaringan LAN memang sering dibutuhkan resource sharing traffic seperti sharing file atau printer.
- Bisa mulai diimplementasikan penggunaan file server terpusat atau printer server di segmen yang berbeda, tetapi masih terhubung satu sama lain dengan bantuan router.
- Selain mencegah serangan, penyebaran virus jaringan juga bisa sekaligus dikurangi.

• • • Wireless - Default Forward

Matikan Default
 Forward pada
 Wireless Mikrotik.

Interface -	<wlan2></wlan2>						
General	Wireless	WDS	Nstreme	NV2	Status		
	Мо	de: a	p bridge				₹
	Ba	nd: 2	GHz-B/G				₹
c	hannel Wid	ith: 2	OMhz				₹
	Frequen	icy: 2	462			₹	МНz
	SS	ID: o	mahku] 🔺
	Scan L	.ist:]•
Wir	eless Proto	col: 8	02.11				₹
Se	ecurity Prol	file: p	rofile1				₹
A	ntenna Mo	de: a	ntenna a				₹
Defau	lt AP Tx Ra	ate:				•	ops
Default (llient Tx Ra	ate:				•	ops
			Default A Default Fo Hide SSID Compress	uthont orwarc i	icato I		

Implementasikan Filter di bridge

Bridge		×
Bridge Ports Filters NAT Hosts		,
🕂 🖃 🖉 🔚 🖓 🔚 Rese	New Bridge Filter Rule	× F
# Chain Interfac Interfac	General Advanced ARP STP	OK Ick 🔻
	Chain: forward 🔻	Cancel
	-▲- Interfaces In. Interface: I <i>ether1</i> ∓ ▲	Apply
	Out. Interface: 🔃 ether1 ∓ 🔺	Disable
ADD STD Action Statistics	Bridges	Comment
ARP STP Action Statistics		Сору
Action: drop	-▼- Dst. MAC Address	Remove
	- - Ip	Reset Counters
	-▼- Packet Mark -▼- Ingress Priority	Reset All Counters
	disabled	

• Bridge Filter :

In-interface=!ether1 out-interface=!ether1 action=drop

• • • Forwading on SWos

Link Forwarding	Statistics	VLAN	VLANs	Static Hosts	Hosts	SNMP	ACL	System	
Pending changes									

	Port1	Port2	Port3	Port4	Port5
Forwarding					
From Port 1		2	2	2	V
From Port 2	1		×	×	X
From Port 3	1	×		×	X
From Port 4	1	×	×		X
From Port 5		×	×	×	

 Non-aktifkan forwarding pada port yang terhubung antar client di RB250GS.

• Asumsi **Port1** terhubung ke router, port lain terhubung ke client.

Hotspot & PPPoE Attack Countermeasure

- Hanya menggunakan skema enkripsi yang baik yang bisa menanggulangi serangan ini.
- Adalah pengertian yang salah bahwa network tanpa security enkripsi adalah network yang aman.
- Enkripsi bisa diimplementasikan pada wireless atau PPPoE network, dan mikrotik sudah mampu melakukan hal tersebut di Security Profile.
- Metode yang paling secure adalah EAP-TLS yang mengimplementasikan certificate SSL di semua jaringan.
- Memang tidak semua perangkat support metode enkripsi EAP-TLS tetapi perlu dipertimbangkan juga bahwa segala metode enkripsi apapun yang digunakan akan setidaknya membuat si penyerang tidak leluasa melakukan exploitasi jaringan tersebut.

• • • Encryption

New Security Profile		New Security Profile		
General RADIUS	EAP Static Keys	General RADIUS EAP Static Keys		
	Name: profile-EAP	EAP Methods: EAP-TLS		
	Mode: dynamic keys 두	TLS Mode: verify certificate		
- Authentication Types		TLS Certificate: cert1		
WPA PSK	WPA2 PSK			
VPA EAP	VPA2 EAP			
– Unicast Ciphers –		Private Key: none 🗣 0x		
🕑 tkip	✓ aes ccm	Private Pre Shared Key:		
- Group Ciphers		Management Protection Key:		
🗹 tkip	 aes ccm 			

 Wireless Mikrotik termasuk perangkat yang memiliki kemampuan implementasi security terlengkap.

Firewall

Certified Mikrotik Training - Advanced Class (MTCTCE)

Organized by: Citraweb Nusa Infomedia (Mikrotik Certified Training Partner)

Objectives

- Packet Flow
- Firewall Mangle
 - Conn Mark
 - Packet Mark
 - Routing Mark
- Firewall Filter
 - IP Address List
 - Advanced Parameter
- NAT

• • Packet Flow

- Diagram yang menunjukkan alur proses paket data yang keluar dan masuk di router
- Terdapat perbedaan cukup mendasar antara paket flow di versi 3 dengan versi sebelumnya
 - Use IP Firewall di bridge
 - Posisi routing decision
 - BROUTE dihilangkan

• • • IP Flow (simple diagram)

PREROUTING Hotspot Input Conn-Tracking Mangle Dst-NAT	INPUT Mangle Filter	FORWARD Bridge Decision TTL = TTL - 1 Mangle Filter	OUTPUT Bridge Decision Conn-Tracking Mangle Filter	POSTROUTING Mangle Global-Out Queue Global-Total Queue Source-NAT
Global-In Queue		Acounting	Routing Adjusment	Hotspot Output
Global-Total Queue				

• • Simple Packet Flow

• • • Packet Flow

- Input / Output Interface / Local Process
- Routing Decision / Routing Adjustment
- Mangle
- Filter
- NAT
- Queue / HTB on other chapter

• • • Input Interface

- Adalah interface yang dilalui oleh paket data, tepat ketika masuk di router.
- Pada saat proses "uplink" atau "request" yang dimaksud dengan input interface adalah interface yang mengarah ke client (local/lan interface).
- Pada saat proses "downlink" atau "response" yang dimaksud dengan input interface adalah interface yang mengarah ke internet (public/WAN interface)
- Jika client menggunakan IP Address publik, proses request juga bisa dilakukan dari internet, sehingga input interface adalah interface WAN.
• • • Output Interface

- Adalah interface yang dilalui oleh paket data tepat ketika keluar dari router.
- Pada saat proses "uplink" atau "request" yang dimaksud dengan output interface adalah interface yang mengarah ke internet (WAN interface).
- Pada saat proses "downlink" atau "response" yang dimaksud dengan output interface adalah interface yang mengarah ke client (lokal/LAN interface).

• • • Local Process

- Adalah router itu sendiri, jika ada paket data yang menuju ke router, misalnya:
 - Ping dari client ke IP router
 - Request Winbox dari client ke router
 - Proses response http akibat request dari web proxy
- Adalah router itu sendiri, jika ada paket data yang berasal dari router, misalnya:
 - Ping dari router ke internet atau ke client
 - Proses request http dari web proxy

• • • Routing Decision

- Adalah proses yang menentukan apakah paket data akan disalurkan ke luar router, atau menuju ke router itu sendiri.
- Proses ini juga menentukan interface mana yang akan digunakan untuk melewatkan paket data keluar dari router.
- Pada chain output (setelah mangle, dan filter) terdapat Routing Adjustment yang berfungsi memperbaiki routing decision yang diakibatkan oleh route-mark pada mangle di chain output.

Trafik Menuju Router

• • Trafik dari Router

Trafik Melalui Router

Posisi Chain / Parent

From	То	Mangle	Firewall	Queue		
Outside	Router/	Prerouting		Global-In		
	Local Process	Input	Input	Global-Total		
Router/ Local Process	Outside	Output	Output	Global-Out		
		Postrouting		Global-Total		
				Interface		
Outside	Outside	Prerouting		Global-In		
		Forward	Forward	Global-Out		
		Postrouting		Global-Total		
				Interface		

• • • Use IP Firewall – on Bridge

 Jika kita menggunakan fungsi bridge, dan ingin menggunakan logika firewall ataupun mangle (Leyer 3), kita harus mengaktifkan setting use ip firewall.

💷 Brid	ge	
Bridge	Ports Filters NAT Hosts	
+ -	- 🖉 🔀 🍸 Settings	
N	ame 🛆 Type	Tx
	Bridge Settings Use IP Firewall Use IP Firewall OK Cancel Apply	

Connection State

- Setiap paket data yang melewati router memiliki status:
 - Invalid paket tidak dimiliki oleh koneksi apapun, tidak berguna
 - New paket yang merupakan pembuka sebuah koneksi/paket pertama dari sebuah koneksi
 - Established merupakan paket kelanjutan dari paket dengan status new.
 - Related paket pembuka sebuah koneksi baru, tetapi masih berhubungan dengan koneksi sebelumnya.
 - Contoh connection Related adalah komunikasi FTP yang membuka connection related di port 20 setelah connection new di port 21 sudah dilakukan.

• • • Connection State

• • • Firewall Mangle

- Mangle adalah cara untuk menandai paketpaket data tertentu, dan kita akan menggunakan tanda (Marking) tersebut pada fitur lainnya, misalnya pada filter, routing, NAT, ataupun queue.
- Tanda mangle ini hanya bisa digunakan pada router yang sama, dan tidak terbaca pada router lainnya.
- Pembacaan / pelaksanaan rule mangle akan dilakukan dari atas ke bawah secara berurutan.

• • • Type of Mark

- Flow Mark / Packet Mark
 - Penandaan untuk setiap paket data
- Connection Mark
 - Penandaan untuk suatu koneksi (request dan response)
- Route Mark
 - Penandaan paket khusus untuk routing

Setiap paket data hanya bisa memiliki maksimal 1 conn-mark, 1 packet-mark, dan 1 route-mark

• • • Penggunaan Mangle

Mangle Action

- accept Paket data yang datang ke chain diterima dan tidak dicek lagi di rule bawahnya serta langsung keluar dari chain.
- jump Paket data akan dilempar ke chain lain sesuai parameter Jump-Target.
- return Paket data akan dikembalikan ke chain asal sesuai urutan rule firewall jump sebelumnya.
- log akan menambahkan informasi paket di system log
- passthrough mengabaikan rule dan akan diteruskan ke rule dibawahnya.
- add-dst-to-address-list menambahkan informasi dst-address dari paket ke address-list tertentu.
- add-src-to-address-list menambahkan informasi src-address dari paket ke address-list tertentu.

Penggunaan "Jump" & Chain Tambahan

Input				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				

Input 1 2 Chain 1 3a 3 11 Chain 2 12 -----5 13 13a 6 14 22 7 15 23 8 16 24 9 17 25 10 _____ 18 19 Dengan beberapa chain 20 21

Tanpa chain tambahan, hanya flat table Jika suatu trafik tidak memenuhi syarat parameter no 3a dan 13a, maka paket data tersebut tidak perlu dilewatkan rule pada chain 1 dan chain 2. Hal ini dapat menghemat beban CPU pada router.

Aplikasi Penggunaan Jump

• • • More Mangle Actions

- mark-connection melakukan penandaan paket "new" dari sebuah connection traffic.
- mark-packet Menandai semua paket data yang melewati router sesuai klasifikasinya.
- mark-routing Menandai paket data dan akan digunakan untuk menetukan routing dari paket tersebut.
- **change MSS** Mengubah besar MSS dari paket di paket header.
 - biasaya digunakan untuk menghindari adanya fragmentasi pada paket data ketika menggunakan koneksi VPN.
- change TOS Mengubah parameter TOS dari paket di paket header
- change TTL Mengubah besar TTL dari paket di paket header
- strip IPv4 options

• • Parameter Firewall (General)

• Chain Input

- Tidak bisa memilih out-interface
- Untuk trafik yang menuju router (Local Proses)

Chain Forward

- Bisa menentukan in-interface dan out-interface
- Untuk trafik yang melalui / melewati router

Chain Output

- Tidak bisa memilih in-interface
- Untuk trafik yang berasal dari router (local proces)

• • Parameter Mangle

• Chain Prerouting

- Tidak bisa memilih out-interface
- Untuk trafik yang menuju router (local proces) dan melalui router

Chain Postrouting

- Tidak bisa memilih in-interface
- Untuk trafik yang berasal dari router (local proces) dan yang melalui router

• • • Connection Mark

- Dilakukan untuk proses <u>request</u> (pada paket pertama "NEW" dalam suatu koneksi)
- "Mutlak" digunakan untuk melakukan mangle per srcaddress pada jaringan dengan src-nat jika menggunkan chain prerouting.
- Sebaiknya digunakan untuk melakukan mangle berdasarkan protocol tcp dan dst-port
- Dilakukan sebelum packet-mark atau route-mark
- Setting passthrough biasanya "yes"

• • • Packet Mark

- Untuk jaringan dengan nat, dan untuk protokol tcp (dan dst port), sebaiknya dibuat berdasarkan conn-mark.
- Mark ini Dibuat untuk digunakan pada queue tree, simple queue, dan bisa juga filter.
- Setting passthrough biasanya "no".

• • • Route-Mark

- Dilakukan untuk penandaan pada policy route / static route
- Sebaiknya dibuat berdasarkan conn-mark supaya keutuhan koneksinya terjaga
- Hanya bisa dilakukan pada chain prerouting atau output, karena harus dilakukan sebelum proses "routing decision" atau "routing adjustment"
 - untuk trafik ke router \rightarrow prerouting
 - trafik melalui router \rightarrow prerouting
 - trafik dari router \rightarrow output

• • • Passthrough on Mangle

• • Passthrough on Mangle

• • • Mangle - NTH

- NTH adalah salah satu fitur firewall yang digunakan untuk penghitung "Counter" packet atau connection (packet new).
- Parameter "every" adalah parameter penghitung, sedangkan parameter "packet" adalah penunjuk paket keberapa rule tersebut akan dijalankan.

- - - Nth	
Every:	2
Packet:	1

 Dari contoh di atas maka router akan menghitung semua paket yang lewat menjadi 1 dan 2, dan rule tersebut akan dijalankan pada paket 1.

• • NTH – Implementation Example

• • • Mangle - PCC

- PCC adalah penyempurnaan dari NTH.
- Selain melakukan counter seperti NTH, PCC juga mampu mengingat dan menjaga karakteristik dari paket atau connection tertentu (src-address,dstaddress,src-port,dst-port) untuk tetap menggunakan rule yang sama.
- Hal ini akan menjaga konsistensi dari sebuah counter.

 Implementasi PCC sngat cocok untuk load balance beberapa Koneksi Internet.

• • • [LAB-1] Mangle Protocol

- Buatlah mangle untuk mengidentifikasi trafik downstream berdasarkan protokol
- Kelompokkanlah protokol-protokol tersebut menjadi 5 grup berdasarkan prioritasnya
- Test setiap mangle traffic berdasarkan protocolnya sudah berjalan sesuai atau belum.
- Kemudian lakukan Backup !
 - /system backup save name="backup-mangleprioritas"

• • • Rencana Prioritas

• • • How to mark?

Group Priority		Service	Protocol	Dst-Port	Other Conditions	
P2P_services 8		P2P			p2p=all-p2p	
			TCP	110		
	7		TCP	995		
		Mails	TCP	143		
Download			TCP	993		
Dominouu			TCP	25		
services		HTTP downloads	TCP	80	Connection-bytes=500000-0	
		стр	TCP	20		
			TCP	21		
		SFTP	TCP	22	Packet-size=1400-1500	
	1	DNS	TCP	53		
			UDP	53		
Ensign		ICMP	ICMP	-		
		HTTPS	TCP	443		
services		Telnet	TCP	23		
		SSH	TCP	22	Packet-size=0-1400	
		HTTP requests	TCP	80	Connection-bytes=0-500000	
User requests 3 Online g		Online game servers			dst-address-list of server	
Communication services	5	VoIP				
		Skype				
		Video Conference				
		VPN				
		MSN				

Fille	rhules NAT '	nangie joen	Mee Folts Conn	ections Addin				
+		8	Reset Counters	00 Reset A	Il Counters			prerout
#	Action	Chain	I Protocol I Sre	c. Address List	Dist. Address List	New Packet Mark	P	New Connection Ma
12	🥒 mark conn	prerouting						prio_conn_p2p
13	🥒 mark packet	prerouting				prio_p2p_packet	no	
14	🥒 mark conn	prerouting	6 (tep)					prio_conn_downloa
15	🥒 mark conn	prerouting	6 (tep)					prio_conn_downloa
16	🥒 mark conn	prerouting	6 (tep)					prio_conn_downloa
17	🥒 mark conn	prerouting	6 (top)					prio_conn_downloa
18	🥒 mark conn	prerouting	6 (tep)					prio_conn_downloa
19	🥒 mark conn	prerouting	6 (top)					prio_conn_downloa
20	🥒 mark conn	prerouting	6 (top)					prio_conn_downloa
21	🥒 mark conn	prerouting	6 (top)					prio_conn_downloa
22	🥒 mark packet	prerouting				prio_download_packet	yes	
23	🥒 mark conn	prerouting	6 (top)					prio_conn_ensign_s
24	🥒 mark conn	prerouting	17 (udp)					prio_conn_ensign_s
25	🥒 mark conn	prerouting	1 (icmp)					prio_conn_ensign_s
26	🥒 mark conn	prerouting	6 (top)					prio_conn_ensign_s
27	🥒 mark conn	prerouting	6 (top)					prio_conn_ensign_s
28	🥒 mark conn	prerouting	6 (top)					prio_conn_ensign_s
29	🥒 mark conn	prerouting	6 (top)					prio_conn_ensign_s
30	🥒 mark packet	prerouting				prio_ensign_packet	no	
31	🥒 mark conn	prerouting			user_request			prio_conn_user_ser
32	🥒 mark packet	prerouting				prio_request_packet	yes	
33	🥒 mark conn	prerouting	6 (top)					prio_conn_comm_s
34	🥒 mark conn	prerouting	6 (top)					prio_conn_comm_s
35	🥒 mark conn	prerouting	4 (ipen					prio_conn_comm_s
36	🥒 mark conn	prerouting	47 (gre)					prio_conn_comm_s
37	🥒 mark conn	prerouting	94 (ipip)					prio_conn_comm_s
38	🥒 mark conn	prerouting	98 (enc					prio_conn_comm_s
39	🥒 mark packet	prerouting				prio_comm_packet	no	

• • • Firewall Filter

- Adalah cara untuk memfilter paket, dilakukan untuk meningkatkan keamanan jaringan, dan mengatur flow data dari, ke client, ataupun router
- Hanya bisa dilakukan pada chain Input, Output, Forward
- By default: policy untuk semua traffic yang melewati router adalah accept.

Filter - Packet Flow

• • • Firewall Tactics (1)

Drop all unneeded, accept everything else

	Input	
1	DROP virus	
2	DROP spam server	
3	DROP virus	
4	DROP	
5	DROP	and bills
6	DROP	
7	DROP	
8	DROP	
9	DROP	
10	DROP	
11	ACCEPT ALL	

• • Firewall Tactics (2)

Accept only needed, drop everything else

RouterOS v3 Services

	PORT	PROTOCOL	DESCRIPTION
1	20	tcp	FTP
2	21	tcp	FTP
3	22	tcp	SSH, SFTP
4	23	tcp	Telnet
5	53	tcp	DNS
6	80	tcp	HTTP
7	179	tcp	BGP
8	443	tcp	SHTTP (Hotspot)
9	646	tcp	LDP (MPLS)
10	1080	tcp	SoCKS (Hotspot)
11	1723	tcp	PPTP
12	1968	tcp	MME
13	2000	tcp	Bandwidth Server
14	2210	tcp	Dude Server
15	2211	tcp	Dude Server
16	2828	tcp	uPnP
17	3128	tcp	Web Proxy
18	8291	tcp	Winbox
19	8728	tcp	API
20		/1	ICMP
21		/2	IGMP (Multicast)
22		/4	IPIP

	PORT	PROTOCOL	DESCRIPTION
23	53	udp	DNS
24	123	udp	NTP
25	161	udp	SNMP
26	500	udp	IPSec
27	520	udp	RIP
28	521	udp	RIP
29	646	udp	LDP (MPLS)
30	1698	udp	RSVP (MPLS)
31	1699	udp	RSVP (MPLS)
32	1701	udp	L2TP
33	1812	udp	User-Manager
34	1813	udp	User-Manager
35	1900	udp	uPnP
36	1966	udp	MME
37	5678	udp	Neighbor Discovery
38		/46	RSVP (MPLS)
39		/47	PPRP, EoIP
40		/50	IPSec
41		/51	IPSec
42		/89	OSPF
43		/103	PIM (Multicast)
44		/112	VRRP

Bogon IP Address

- /ip firewall address-list
- add list=BOGONS address=192.168.0.0/16
- add list=BOGONS address=10.0.0.0/8
- add list=BOGONS address=172.16.0.0/12
- add list=BOGONS address=169.254.0.0/16
- add list=BOGONS address=127.0.0.0/8
- add list=BOGONS address=224.0.0.0/3
- add list=BOGONS address=223.0.0.0/8
- add list=BOGONS address=198.18.0.0/15
- add list=BOGONS address=192.0.2.0/24
- add list=BOGONS address=185.0.0.0/8
- add list=BOGONS address=180.0.0.0/6
- add list=BOGONS address=179.0.0.0/8
- add list=BOGONS address=176.0.0.0/7
- add list=BOGONS address=175.0.0.0/8

0	add list=BOGONS address=104.0.0.0/6
0	add list=BOGONS address=100.0.0/6
0	add list=BOGONS address=49.0.0.0/8
0	add list=BOGONS address=46.0.0.0/8
0	add list=BOGONS address=42.0.0.0/8
0	add list=BOGONS address=39.0.0.0/8
0	add list=BOGONS address=36.0.0.0/7
0	add list=BOGONS address=31.0.0.0/8
0	add list=BOGONS address=27.0.0.0/8
0	add list=BOGONS address=23.0.0.0/8
0	add list=BOGONS address=14.0.0.0/8
0	add list=BOGONS address=5.0.0.0/8
0	add list=BOGONS address=2.0.0.0/8
0	add list=BOGONS address=0.0.0.0/7

add list=BOGONS address=128.0.0.0/16

Address List

🔲 Firewall					×
Filter Rules NAT Mangle	e Service Ports	Connection	Address Lists		
+- ~ × 2				all	
Name 🗸	Address		irewall Addres	s List <not_in< td=""><td>_intern 🗙</td></not_in<>	_intern 🗙
not_in_internet	0.0.0/8		in a time in the		
not_in_internet	172.16.0.0/12	N	ame: [not_in_inte	ernet 🔳	UK
not_in_internet	192.168.0.0/16	Ade	ress: 0.0.0.0/8		Cancel
not_in_internet	10.0.0.0/8		1000. [0.0.0.010		
not_in_internet	169.254.0.0/16				Apply
not_in_internet	127.0.0.0/8				
not_in_internet	224.0.0.0/3				Disable
					Comment
					Сору
					Remove
		disa	oled		

• • • [LAB-2] IP Filtering

- Buatlah firewall filter untuk melakukan:
 - Mengijinkan paket data established dan related
 - Memblok paket data invalid
 - Mengijinkan paket menuju network apabila:
 - · dari IP Address publik yang valid
 - menuju IP Address client yang valid
 - Mengijinkan paket keluar dari network apabila:
 - menuju IP Address publik yang valid
 - dari IP Address client yang valid

• • • Penggunaan Chain tambahan

Chain tambahan dapat digunakan sebagai target jump dari beberapa chain default, sehingga kita tidak perlu menulis rule yang sama dua kali.

• • • Action Filter (1)

- accept paket diterima dan tidak melanjutkan membaca baris berikutnya
- drop menolak paket secara diam-diam (tidak mengirimkan pesan penolakan ICMP)
- reject menolak paket dan mengirimkan pesan penolakan ICMP
- tarpit menolak, tetapi tetap menjaga TCP connections yang masuk (membalas dengan SYN/ ACK untuk paket TCP SYN yang masuk)
- log menambahkan informasi paket data ke log

• • • Action Filter (2)

- add-dst-to-address-list menambahkan IP Address tujuan ke dalam daftar address-list tertentu
- add-src-to-address-list menambahkan IP Address asal ke dalam daftar address-list tertentu
- jump berpindah ke chain lainnya, sesuai dengan parameter jump-target
- return kembali ke chain sebelumnya (jika sudah mengalami jump)
- passthrough tidak melakukan action apapun, melanjutkan ke baris berikutnya

• • Parameter Filter (General) 1

- Chain input
 - Tidak bisa memilih out-interface
 - Untuk trafik yang menuju router
- Chain forward
 - Bisa menentukan in-interface dan out-interface
 - Untuk trafik yang melalui router
- Chain output
 - Tidak bisa memilih in-interface
 - Untuk trafik yang berasal dari router

• • Parameter Filter (General) 2

- Penulisan src-address dan dst-address:
 - Satu alamat IP (192.168.0.1)
 - Blok alamat IP (192.168.0.0/24)
 - IP range (192.168.0.1-192.168.0.32)

• • • Parameter Filter (General) 2

- Pemilihan port hanya bisa dilakukan pada protokol tertentu, misalnya TCP dan UDP
- Port bisa dituliskan dengan :
 - single port (contoh: 80)
 - port range (contoh: 1-1024)
 - multi port (contoh: 21,22,23,25)
- **any-port** = sesuai dengan (salah satu) src-port atau dst-port
- Contoh untuk trafik http
 - Untuk memblok request http, digunakan dst-port=80
 - Untuk memblok response http, digunakan src-port=80
 - Untuk memblok **keduanya**, digunakan **any-port=80**

• • • Parameter Filter (interface)

- Jika router menggunakan mode routing, parameter in/out bridge port tidak digunakan.
- Jika router menggunakan mode bridge:
 - In/out interface → gunakan nama bridge (contoh: bridge1)
 - In/out bridge port → gunakan nama interface fisik (contoh: ether1, ether2)

Parameter Filter (Advanced)(1)

- src-mac-address hanya dapat digunakan jika client terkoneksi langsung ke router (tidak bisa jika sudah melalui router lainnya)
- random → action hanya akan dilakukan secara random, dengan kemungkinan sesuai parameter yang ditentukan (1-99)
- ingress-priority → priority yang didapatkan dari protokol VLAN atau WMM (0-63)

• Parameter Filter (Advanced)(2)

connection-byte

- merupakan range dari besar data yang lewat di suatu koneksi, bukan angka tunggal contoh: 100000-45000000 (kita tidak pernah tahu berapa tepatnya besar connbyte yang akan lewat)
- Untuk jaringan dengan src-nat, sulit diimplementasikan untuk downlink dengan parameter IP Address client (membutuhkan connection mark), karena conn-track dilakukan sebelum pembalikan nat di prerouting.

• • Parameter Filter (Advanced)(3)

- packet-size → besarnya packet data yang lewat, untuk mendeteksi besar packet.
- L7 protocol → sesuai dengan namanya layer 7 protokol, yaitu tool untuk mengklasifikasikan paket data sesuai dengan aplikasinya (Layer OSI 7).
- L7 dijelaskan di Sesi yang lain.

Parameter Filter (Advanced)(4)

• icmp-type

- icmp type yang biasa digunakan :
 - PING message 0:0 dan 8:0
 - TRACEROUTE message 11:0 dan 3:3
 - Path MTU discovery message 3:4
- type lainnya sebaiknya di blok.

• Contoh block Traceroute only :

- /ip firewall filter chain=forward action=drop protocol=icmp icmp-options=11:0
- /ip firewall filter chain=forward action=drop protocol=icmp icmp-options=3:3

• • Parameter Filter (Extra)

- connection-limit
 - membatasi jumlah koneksi per IP Address atau per blok IP address
 - contoh:

membatasi 200 koneksi untuk setiap /26

Connection Limit		
Limit:	200	
Netmask:	26	

 Dari rule diatas maka rule akan dijalankan ketika connection dibawah 200.

• • • [LAB-3] DoS Attack

- IP Address yang memiliki 10 koneksi ke router dapat "diasumsikan" sebagai pelaku DoS Attack
- Jika kita mendrop TCP connection, berarti kita mengijinkan penyerang untuk membuat koneksi yang baru
- Untuk membloknya, kita menggunakan tarpit

IDM Detection

- Fungsi ini bisa sangat berguna untuk mendeteksi adanya program downloader yang aktif.
- /ip firewall filter add action=accept chain=forward comment="IDM Detection" connectionlimit=!15,32 dst-port=80 protocol=tcp src-address=192.168.X.0/24
- /ip firewall filter add action=add-src-to-address-list address-list=idm address-listtimeout=5m chain=forward connection-limit=100,32 dst-port=80 protocol=tcp srcaddress=192.168.X.0/24
- /ip firewall filter add action=accept chain=forward connection-limit=!8,32 dst-port=20-21 protocol=tcp src-address=192.168.X.0/24
- /ip firewall filter add action=add-src-to-address-list address-list=idm address-listtimeout=5m chain=forward connection-limit=100,32 dst-port=20-21 protocol=tcp srcaddress=192.168.X.0/24

• • • Parameter Filter (Extra)

- limit
 - membatasi paket data, biasanya untuk paket data non-connection
 - contoh: data icmp

- ≜ − Limit -		
	Rate:	1 / sec Ŧ
	Burst:	5

• • • [LAB-4] ICMP Flood Lab

- Buatlah chain baru "ICMP"
- Buatlah pada chain icmp rule untuk meng-accept 5 tipe icmp yang memang digunakan pada jaringan
- Buatlah pada chain icmp limit 5 pps dengan 5 paket burst, dan drop icmp berikutnya
- Buatlah rule jump ke chain icmp dari chain input dan chain forward
- Test flood menggunakan fungsi /tool flood-ping

• • Parameter Filter (Extra)

• dst-limit

- melimit jumlah paket per detik untuk setiap IP Address tujuan atau port tujuan
- clasifier :
 - addresses and dst-port
 - dst-address
 - dst-address and dst-port
 - src-address and dst-address
- expire :
 - waktu kapan router akan melupakan informasi per clasifier

• • Parameter Filter (Extra)

- src/dst-address-type:
 - unicast IP Address yang biasa kita gunakan
 - local jika IP Address tsb terpasang pada router
 - broadcast IP Address broadcast
 - multicast IP yang digunakan untuk transmisi multicast

• • • Parameter Filter (Extra)

• PSD (Port Scan Detection)

- untuk mengetahui adanya port scan (TCP)
- low port : 0 1023
- high port : 1024 65535

PSD		
Weight Threshold:	21	
Delay Threshold:	00:00:03	
Low Port Weight:	3	
High Port Weight:	1	

• • • NAT

- Merupakan proses manipulasi packet header, terutama pada parameter 32-bit-src-address dan 32-bit-dst-address.
- Khusus untuk src-nat, akan dilakukan proses otomatis pembalikan (dst-nat) pada pre-routing.
- Setelah paket data pertama dari sebuah connection terkena NAT, maka paket berikutnya pada connection tersebut otomatis terkena NAT

• • • NAT - Packet Flow

• • • Chain srcnat

- Untuk menyembunyikan IP Address lokal dan menggantikannya dengan IP Address publik yang sudah terpasang pada router
- src-nat
 - Kita bisa memilih IP Address publik yang digunakan untuk menggantikan.

masquerade

- Secara otomatis akan menggunakan IP Address pada interface publik.
- Digunakan untuk mempermudah instalasi dan bila IP Address publik pada interface publik menggunakan IP Address yang dinamik (misalnya DHCP, PPTP atau EoIP)

• • • Chain dstnat

- Untuk melakukan penggantian IP Address tujuan, atau mengarahkan koneksi ke localhost.
- dst-nat
 - Kita bisa mengganti IP Address dan port tujuan dari seuatu koneksi.
- redirect
 - Untuk mengalihkan koneksi yang tadinya melwati router, dan dialihkan menuju ke loclhost

NAT – netmap

• Netmap – Melakukan maping NAT 1:1 dari suatu range ip ke range ip yang lain.

Mikrotik Indonesia http://www.mikrotik.co.id

• • • NAT - same

 Same – Hampir sama dengan netmap tetapi range ip antara kedua network boleh berbeda. Router akan menjaga penggunaan kombinasi ip yang sama untuk koneksi yang sama.

• • • [LAB-5] Mangle... dan proxy

- Pada router terdapat proxy server
- Buatlah mangle trafik internet yang:
 - direct
 - melalui proxy : HIT
 - melalui proxy : MISS

Proxy (single gateway)

• • • Proxy – HIT - MISS

- Web Proxy bertugas menyimpan data file yang diakses user, dan memberikan kepada user berikutnya jika mengakses file yang sama.
 - Jika tersedia di cache Akan langsung diberikan disebut HIT
 - Jika tidak tersedia, proxy akan meminta ke server, menyimpannya di cache, dan memberikan ke client disebut MISS

• • • Pengenalan HIT

- Jika terjadi akses HIT di proxy, proxy akan memberikan nilai TOS = 4 (nilai 4 bisa diubah sesuai kebutuhan)
- Nilai TOS = 4 ini bisa digunakan sebagai parameter pada Mangle.

••• Setting Mangle

- 0 chain=prerouting action=mark-connection newconnection-mark=conn-client passthrough=yes ininterface=ether1
 - 1 chain=prerouting action=mark-packet new-packetmark=packet-client passthrough=no connectionmark=conn-client
- 2 chain=output action=mark-packet new-packetmark=packet-hit passthrough=no out-interface=ether1 connection-mark=conn-client dscp=4
- 3 chain=output action=mark-packet new-packetmark=packet-client passthrough=no outinterface=ether1 connection-mark=conn-client dscp=!4

• • • [LAB] Mangle... dual gateway

- Buatlah mangle untuk memisahkan gateway internasional dan gateway IIX.
- Pada router menjalankan web proxy.
- Koneksikan wlan2 ssid "training2" sebagai gateway IIX

Proxy dan Dual Gateway

Direct IIX
HIT IIX

Direct Internasional
MISS Internasional

3. MISS IIX6 HIT Internasional
Pengaturan Dual Gateway

- Untuk memisahkan trafik domestik dan internasional, kita menggunakan daftar IP Address List NICE
 - → www.mikrotik.co.id Download area

Script

Script IP Address NICE

Script untuk mengimport IP Address di router NICE ke Address-List NICE di RouterOS. Di generate pada 25 March 2009 17:17:34 WIB ... 631 lines. [panduan] nice.rsc (25.1 KByte, didownload 36796 kali)

• • • Address List NICE

```
# Script untuk menambahkan IP Address BGP vang terdaftar di Router NICE(OIXP)
# ke RouterOS dalam ADDRESS-LIST dengan nama "nice"
# Script created by: Valens Riyadi @ www.mikrotik.co.id
# Generated at 25 March 2009 17:17:34 WIB ... 631 lines
# Generated in 32.736 seconds
# How-to: http://www.mikrotik.co.id/artikel lihat.php?id=23
/sys note set show-at-login=yes note="Using nice.rsc from www.mikrotik.co.id, 25
/ip firewall address-list
add list=nice address="1.2.3.4"
remove [find list="nice"]
add list=nice address="114.120.0.0/13"
add list=nice address="114.56.0.0/14"
add list=nice address="125.166.0.0/15"
add list=nice address="125.162.0.0/16"
add list=nice address="125.163.0.0/16"
add list=nice address="125.160.0.0/16"
add list=nice address="125.161.0.0/16"
add list=nice address="125.164.0.0/16"
add list=nice address="125.165.0.0/16"
add list=nice address="120.163.0.0/16"
add list=nice address="120.162.0.0/16"
```

• • • Import

- Copy ke router, lalu jalankan dengan perintah "/ import nice.rsc"
- Copy-paste pada terminal
- Download otomatis : lihat di :

http://www.mikrotik.co.id/artikel_lihat.php?id=23

• • • Address-List

- Saat ini ada sekitar 1000-an baris address-list
- Daftar ini merupakan hasil optimasi dari 2000an baris pada BGP IIX
- Proses optimasi dilakukan setiap jam

E Firewall								
Filter Rules NAT	Mangle Service Ports							
+- **	T							
Name /	Address							
nice	114.120.0.0/13							
nice	114.56.0.0/14							
nice	125.166.0.0/15							
nice	125.162.0.0/16							
nice	125.163.0.0/16							
nice	125.160.0.0/16							
nice	125.161.0.0/16							
nice	125.164.0.0/16							
nice	125.165.0.0/16							
nice	120.163.0.0/16							
nice	120.162.0.0/16							
nice	120.161.0.0/16							
nice	120.160.0.0/16							
nice	124.81.0.0/16							
nice	222.124.0.0/16							
nice	61.94.0.0/16							
631 items								

• • • Mangle 1

- 0 chain=prerouting action=mark-connection new-connection-mark=connclient-int passthrough=yes dst-address-list=!nice in-interface=ether1
- 1 chain=prerouting action=mark-packet new-packet-mark=packet-client-int passthrough=no connection-mark=conn-client-int
- 2 chain=prerouting action=mark-connection new-connection-mark=connclient-iix passthrough=yes dst-address-list=nice in-interface=ether1
- 3 chain=prerouting action=mark-routing new-routing-mark=route-iix passthrough=yes dst-address-list=nice connection-mark=conn-client-iix
- 4 chain=prerouting action=mark-packet new-packet-mark=packet-client-iix passthrough=no connection-mark=conn-client-iix

• • • Mangle 2

- 5 chain=output action=mark-routing new-routing-mark=route-iix passthrough=no dst-address-list=nice
- 6 chain=output action=mark-packet new-packet-mark=packet-hit-int passthrough=no out-interface=ether1 connection-mark=conn-client-int dscp=4
- 7 chain=output action=mark-packet new-packet-mark=packet-client-int passthrough=no out-interface=ether1 connection-mark=conn-client-int dscp=!4
- 8 chain=output action=mark-packet new-packet-mark=packet-hit-iix passthrough=no out-interface=ether1 connection-mark=conn-client-iix dscp=4
- 9 chain=output action=mark-packet new-packet-mark=packet-client-iix passthrough=no out-interface=ether1 connection-mark=conn-client-iix dscp=!4

0 chain=srcnat action=masquerade outinterface=wlan1

1 chain=srcnat action=masquerade outinterface=wlan2

2 chain=dstnat action=redirect to-ports=8080 protocol=tcp in-interface=ether1 dst-port=80

• • • Route

0 dst-address=0.0.0.0/0 gateway=10.20.20.100 distance=1 scope=30 routing-mark=route-iix

1 dst-address=0.0.0/0 gateway=10.10.10.100 distance=1 scope=30

Policy Routing

Route <0.0.0.0/	/0>			×
General Attributes	;			ОК
Destination:	0.0.0/0			Cancel
Gateway:	10.10.20.100		\$	Apply
Gateway Interface.			\$	Disable
Interface:	wlan2			Comment
Check Gateway:			-	Сору
Туре:	unicast		₹	Remove
Distance:	1			
Scope:	30			
Target Scope:	10			
Routing Mark:	route-iix	₹	-	
Pref. Source:			-	
disabled		active	static	

• • • Test!

- Cek apakah ping ke IIX melalui gateway 2
- Cek apakah browsing ke IIX melalui gateway 2
- Lakukan backup !

L7 Filter

Certified Mikrotik Training - Advanced Class (MTCTCE)

Organized by: Citraweb Nusa Infomedia (Mikrotik Certified Training Partner)

• • • Outline

- Cara Kerja L7 Filter
- Regular Expression
- Implementasi di Mikrotik routerOS
- Keuntungan dan Konsekuensi penggunaan L7

• • • Traffic Clasifier

- L7 adalah sebuah packet classifier yang sebenarnya digunakan oleh Netfilter (Linux) untuk melakukan identifikasi paket data berdasarkan Layer aplikasi (Layer 7).
- Dengan menggunakan L7 packet classifier ini maka memunginkan firewall atau Bandwith limiter mengembangkan fungsinya ke level yang lebih tinggi.
- Keterbatasan logika Firewall mikrotik yang sebelumnya hanya bisa memproses packet header dijawab oleh L7 sehingga bisa memetakan paket data lebih detail.
- Firewall mikrotik sudah mampu mengenali nama domain, variasi p2p, Audio-video traffic dan masih banyak lagi

Packet Flow - Content

- L7 classifier secara default akan melakukan inspeksi berdasarkan "patern" yang diinstruksikan ke dalam 10 paket pertama atau sekitar 2KB dari sebuah connection.
- Seberapa Besar atau jumlah paket yang diinspeksi tidak dapat diubah.

• • L7 Requirement

- L7 dapat bekerja maksimal jika bisa melihat kedua arah traffic (request & response) sehingga disarankan untuk meletakkan L7 classifier di chain forward.
- Jika ingin diletakkan di chain prerouting/input maka rule yang sama juga harus diletakkan di postrouting/output.
- L7 memiliki karakteristik haus akan memory (RAM) sehingga disarankan untuk digunakan sesuai kebutuhan.

• • Layer 7 Protocol

- L7 sudah bisa mengenali berbagai traffic seperti protocol aplikasi, file-type, malware dan masih banyak lagi.
- Sekitar **150 patern** sudah bisa digunakan
- Tetapi perlu diingat juga bahwa Tidak semua koneksi bisa diidentifikasikan.
- L7 tetap belum bisa melakukan inspeksi terhadap traffic yang ter-enkripsi seperti traffic yang melewati SSL tunnel. Karena data yang terlihat pada proses handshake adalah hanya certificate ssl nya saja.

• • • Regular Expression

- L7 menggunakan Regular Expression untuk melakukan inspeksi content dari sebuah connection.
- Regular Expression adalah sebuah "string" text untuk mendeskripsikan pencarian patern yang diinginkan.
- Contoh :
 - "hello" messages such as "220 ftp server ready", "* ok", or "HTTP/1.1 200 ok".

• • • RegEx Quick Reference

- "^" (caret) Matches the begining of input
- "\$" Matches the end of input
- "." Matches any single character
- "?" 0 or 1 occurrences of proceeding string
- "*" (star) 0 or more occurrences of preceding string
- "[...]" Matches any on the enclosed characters
 e.g. ca[tr] matches cat and car
- "|" (pipe) Logical "or", match either the part on the left side, or the part on the right side

• • • RegEx – Usefull

- [\x09-\x0d -~] printable characters, including whitespace
- [\x09-\x0d] any whitespace
- [!-~] non-whitespace printable characters

• • • RegEx – How To

- Selidiki dan cari detail spesifikasi dari protocol yang ingin di-filter. Jika masih menggunakan standard Internet bisa menggunakan RFC, jika proprietary protocol maka coba cari reverse-engineering specification.
- Gunakan software sniffer jika perlu (ex. Wireshark) untuk melihat detail paket datanya.
- Gunakan patern RegEx yang bisa cocok dengan beberapa paket pertama dari koneksi protocol tersebut.
- Test telebih dahulu.

• • • RegEx - Example

- **SSH** :
 - ^ssh-[12]\.[0-9]
- **FTP** :
 - ^220[\x09-\x0d -~]*ftp
- Yahoo :
 - ^(ymsg|ypns|yhoo).?.?.?.?.?.?[lwt].*\xc0\x80

• • • RegEx Patern Resourse

- Pattern libraries can be found on:
 - http://protocolinfo.org/wiki/Main_Page
 - http://I7-filter.sourceforge.net/protocols
- Script for Mikrotik with common programs list:
 - www.mikrotik.com/download/l7-protos.rsc

• • L7 RegEx on Mikrotik

Firewall		
Filter Rules NAT	Mangle Service Ports Connections Address Lists Layer7 Protocols	
+ - 2 7	7	Find
Name 🛛	Regexp	•
o dd	^.?D.+D\$	+
quake-hal	^ÿÿÿÿget(info](_{Eirewall} L7 Protocol <ssb></ssb>	
quake1	^€□□quake□	
radmin	^□□(□□ □□ Name: ssh OK	
● rdp	rdpdr.*cliprdr.*i	
 replaytv-ivs 	^(get /ivs-IVSG Cancel	
rlogin	^[a-z][a-z0-9][{	
 rtsp 	rtsp/1.0 200 ok	
shoutcast	icy [1-5][0-9][0-	
 sip 	^(invite register	
skypeout	^(□.2.2.2.2.2.2]Copy	
skypetos	^□	
 smb 	ÿsmb[r%] Remove	
smtp	^220[□-□ -~]	
snmp		
 socks 		
soribada		•
107 items (1 selected	i)	

• • L7 for Firewall or Mangle

New Firewall Rule	
General Advanced Extra Action Statistics	
Src. Address List:	
Dst. Address List:	
Layer7 Protocol: unknown	
Content: ssl	
Connection Bytes: subspace subversion	
Connection Rate: teamspeak telnet	
Per Connection Classifier:	

• • • [LAB-1] Block Yahoo Msg

Firewall Ru	ule <>													
General	Advanced	Extra	Action	Stat	istics									
	Chain:	Ihain: forward												
Src.	Add Firewall	Rule <>												
Dst.	Ada Genera	I Adva	nced (Extra	Action	n :	statistics							
		Src. Address List:												▼
	Layer7 Protocol: 🗌 yahoo										₹ ▲			
Firewall	Rule <>													
Genera	Advance	d Extr	a Acti	on si	tatistics	s								
¢	Action: dro	p											Ŧ	

• • • [LAB-2] Limit Traffic Video

o http Video RegEx :

http/(0\.9|1\.0|1\.1)[\x09-\x0d][1-5][0-9][0-9][\x09-\x0d -~]*(content-type: video)

Firewall											
Filter Rule	s NAT	Mangle	Service Ports	Connecti	ons	Address Lists	L	ayer7 Protocols			
Name) . Nol)								
	JUDAO			22220	New	v Firewall L7 Pro	otoc	ol			
● ai	m	^((*[∟									
o ai	aimwebco user-agent:aim/					me: http video		ок			
o a∣	plejuice	ajproi			Red	nexo:					
v ar	es].(.(Ц\$ -Level							Cancel	
	magetror				11	51[0-91[0-91[\		Apply			
	SCCIEFIEL			222/00	-~]*(content-typ					
	accierieidz		1?Ш]ру. <i>с.с.с</i> .		4-					Comment	
	JP	<u>^</u> yyyyy								Commenc	
O DI		[a-z][a-zu-9]+@[1-9]	[[0-A]+&]				CODV			
9 DI	torrent		torrent protocol	lazver Lla							
o cr	iikka	^CTPV.	1.[123] Kamusta	3.*□□\$						Remove	
⊖ ci	nd		[[0-9]:[0-9]+.*C]\$					-		
🔍 🔍 ci	scovpn	^00	lő		1						
🔰 🛛 🔍 ci	:rix	28X					-		_		

• • L7 - Video Mangle

Mang	jle Ru	ile <>									
Gene	eral	Advanced	d Extra	Action	Statistics						
		Chain:	forward							₹	
	Src.	Address:								•	
	Dst.	Address:	Mangle Ru	le <>							
			General	Advance	ed Extra	Act	on Statistics				
	Src. Address List:										-
			D	st. Addre	ess List:						
Mang	jle Ru	ıle <>		Layer7 Pr	rotocol: 🗌	http	o video				₹ ▲
Gen	eral	Advance	d Extra	Action	Statistics						
		Acti	on: mark	packet						₹	
	New Packet Mark: packet-video										
			🗌 P	assthrou	gh						

L7 - Video Queue

			Simple Que							
		General	Advanced	Statistics	Traffic	Total	Total Statistic	cs		
			Name: limiter-video							
			Target Address:							\$
			Ma	× Limit: 512	Target Uplo 2k	ad :	▼ 5 12	Target Downlo 2k	oad 두 bit	:s/s
Simple Que	eue <l< th=""><th>imiter-v</th><th>/ideo></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></l<>	imiter-v	/ideo>							
General	Adva	inced	Statistics	Traffic To	tal Total S	5tatistics				
	P2P:							-		
Packet M	arks:	packet	-video				:	₹ \$		
Dst. Add	ress:							•		
Interf	face:	all						₹		

• • • L7 - Conclusion

- Keuntungan :
 - Memperkaya kemampuan firewall
 - Meningkatkan Keakurasian firewall
 - Mampu membedakan paket walau menggunakan port yang sama
- Konsekuensi :
 - CPU load tinggi
 - Haus RAM
 - Masih belum bisa mengenali traffic yang terenkripsi

Certified Mikrotik Training - Advanced Class (MTCTCE)

Organized by: Citraweb Nusa Infomedia (Mikrotik Certified Training Partner)

• • • Materi QoS

- Konsep Dasar QoS
- Queue Type
- Parent Queue
- HTB
- Burst Calculation
- Implementasi Simple Queue
- Implementasi Queue Tree

• • • Quality of Service

- QoS tidak selalu berarti pembatasan bandwidth
- Adalah cara yang digunakan untuk mengatur penggunaan bandwidth yang ada secara rasional.
- QoS tidak selalu berarti pembatasan bandwidth, Qos bisa digunakan juga untuk mengatur prioritas berdasarkan parameter yang diberikan, menghindari terjadinya trafik yang memonopoli seluruh bandwidth yang tersedia.

• • • Queue Disciplines

- Queuing disciplines dapat dibedakan menjadi
 2:
 - Scheduler queues
 - Mengatur packet flow, sesuai dengan jumlah paket data yang "menunggu di antrian", dan bukan melimit kecepatan data rate.
 - Shaper queues
 - Mengontrol kecepatan date rate.

• • • Shaper

• • • Queue Kinds

- Scheduler queues:
 - BFIFO (Bytes First-In First-Out)
 - PFIFO (Packets First-In First-Out)
 - MQ-PFIFO (Multi Queue Packets First-In First-Out)
 - RED (Random Early Detect)
 - SFQ (Stochastic Fairness Queuing)
- Shaper queues:
 - PCQ (Per Connection Queue)
 - HTB (Hierarchical Token Bucket)
- You can configure queue properties in "/queue type"
• • • Queue Kinds

Kita dapat mengatur tipe queue pada "/queue type"

III Queue List							
Simple Queues Interface Queues	Queue Tree	Queue Types					
↓ - (
		🖥 New Queue Type	×				
Type Name 🛛 🗡	Kind	General Cawinan					
cweb-webdv-down	pcq	General Settings	OK				
cweb-webdv-up	pcq	Name: guoual					
default	pfifo	Name. jqueuer	Lancel				
default-small	pfifo	Kind: pfifo	Applu				
ethernet-default	pfifo						
hotspot-default	sfq	plito	Carry				
pcq-kantor	pcq	red	Сору				
synchronous-default	red	sfg	Bemove				
warnet-down-pcq	pcq	pcq					
warnet-up-pcq	pcq						
wireless-default	sfq 📃						

FIFO (First In First Out)

- PFIFO dan BFIFO keduanya menggunakan algoritma FIFO, dengan buffer yang kecil.
- FIFO tidak mengubah urutan paket data, hanya menahan dan menyalurkan bila sudah memungkinkan.
- Jika buffer penuh maka paket data akan di drop
- FIFO baik digunakan bila jalur data tidak congested
- Parameter pfifo-limit dan bfifo-limit menentukan jumlah data yang bisa diantrikan di buffer
- MQ-FIFO adalah sebuah mekanisme fifo yang dikhususkan pada system hardware yang sudah SMP (multi core processor) dan harus pada interface yang support multiple transmit queues.

• • • RED (Random Early Detect)

- RED tidak melimit kecepatan, tetapi bila buffer sudah penuh, maka secara tidak langsung akan menyeimbangkan data rate setiap user.
- Saat ukuran queue rata-rata mencapai min-threshold, RED secara random akan memilih paket data untuk di drop
- Saat ukuran queue rata-rata mencapai max-threshold, paket data akan di drop
- Jika ukuran queue sebenarnya (bukan rata-ratanya) jauh lebih besar dari red-max-threshold, maka semua paket yang melebihi red-limit akan didrop.
- RED digunakan jika kita memiliki trafik yang congested. Sangat sesuai untuk trafik TCP, tetapi kurang baik digunakan untuk trafik UDP.

• • • Logika RED

• • • SFQ (Stochastic Fairness Queuing)

- SFQ sama sekali tidak dapat melimit trafik. Fungsi utamanya adalah menyeimbangkan flow trafik jika link telah benar-benar penuh.
- Dapat digunakan untuk TCP maupun UDP.
- SFQ menggunakan metoda hasing dan round robin.
- Total SFQ queue terdiri dari 128 paket.
- Algoritma hasing dapat membagi trafik menjadi 1024 sub queue, dan jika terdapat lebih maka akan dilewati.
- Algoritma round robin akan melakukan queue ulang sejumlah bandwidth (allot) dari setiap queue.

••• Skema SFQ

• Setelah **Perturb** detik algoritma hasing akan berganti dan membagi session trafik ke subqueue lainnya dengan **Allot** besar packet

🗱 New Queue Type	×
General Settings	ОК
Pertub: 5 s	Cancel
Allot: 1514 bytes	Apply
	Сору
	Remove

• • • PCQ (Per Connection Queue)

- PCQ dibuat sebagai penyempurnaan SFQ.
- PCQ tidak membatasi jumlah sub-queue
- PCQ membutuhkan memori yang cukup besar

- PCQ akan membuat sub-queue, berdasarkan parameter pcq-classifier, yaitu: src-address, dst-address, src-port, dst-port
- Dimungkinkan untuk membatasi maksimal data rate untuk setiap sub-queue (pcq-rate) dan jumlah paket data (pcqlimit)
- Total ukuran queue pada PCQ-sub-queue tidak bisa melebihi jumlah paket sesuai pcq-total-limit

• • • Skema PCQ

• • • PCQ in Action (1)

• Pcq-rate=128000

• • • PCQ in Action (2)

• Pcq-rate=0

• • • Burst

- Burst adalah salah satu cara menjalankan QoS
- Burst memungkinkan penggunaan data-rate yang melebihi max-limit untuk periode waktu tertentu
- Jika data rate lebih kecil dari burst-threshold, burst dapat dilakukan hingga data-rate mencapai burst-limit
- Setiap detik, router mengkalkulasi data rate rata-rata pada suatu kelas queue untuk periode waktu terakhir sesuai dengan burst-time
- Burst time tidak sama dengan waktu yang diijinkan untuk melakukan burst.

• • • Contoh Burst (1)

 Limit-at=128kbps, max-limit=256kbps, burst-time=8, burst-threshold=192kbps, burst-limit=512kbps.

• • • Contoh Burst (1)

- Pada awalnya, data rate rata-rata dalam 8 detik terakhir adalah 0 kbps. Karena data rate rata-rata ini lebih kecil dari burst-threshold, maka burst dapat dilakukan.
- Setelah 1 detik, data rate rata-rata adalah (0+0+0+0+0+0+0+512)/8=64kbps, masih lebih kecil dari burstthreshold. Burst dapat dilakukan.
- Demikian pula untuk detik kedua, data rate rata-rata adalah (0+0+0+0+0+0+512+512)/8=128kbps.
- Setelah 3 detik, tibalah pada saat di mana data rate rata-rata lebih besar dari burst-threshold. Burst tidak dapat lagi dilakukan, dan data rate turun menjadi max-limit (256kbps).

• • • Contoh Burst (2)

• • • PCQ - Burst

- Di versi 5.x pada queue-type PCQ terdapat fitur baru yaitu PCQ-Burst yang memungkinkan mengimplementasikan Burst di substream (subqueue).
- Parameter PCQ-Rate digunakan sebagai pengganti parameter Max-limit di perhitungan PCQ-Burst.
- Logika kalkulasi burt di PCQ-burst masih sama dengan fungsi Burst yang ada di queue.

Burst Rate:	1m	▲
Burst Threshold:	256k	▲
Burst Time:	00:00:30	

• • • PCQ - Burst

- Di Versi 5.x juga sudah ditambahkan fitur baru yaitu Address-mask pada PCQ.
- Parameter ini memungkinkan untuk grouping beberapa ip client di dalam satu substreamqueue
- Address-mask juga berguna jika PCQ ingin digunakan sebagai limiter di IPv6.

Src. Address Mask:	29	
Dst. Address Mask:	25	
Src. Address6 Mask:	64	
Dst. Address6 Mask:	64	

• • • [LAB-1] PCQ Burst Calculation

 Cobalah bermain dengan parameter burst untuk mendapatkan konfigurasi burst yang nyaman untuk seorang client yang ada di dalam PCQ-substream.

New Queue Type			
Type Name:	pcq-download		ОК
Kind:	pcq	₹	Cancel
Rate:	128k		Apply
Limit:	50		Сору
Total Limit:	2000		Remove
Burst Rate:	1m		
Burst Threshold:	256k	•	
Burst Time:	00:00:30		
– Classifier ———			
Src. Address	🗹 Dst. Address		
Src. Port	🗌 Dst. Port		
Src. Address Mask:	32		
Dst. Address Mask:	32		
Src. Address6 Mask:	64		
Dst. Address6 Mask:	64		

• • • Posisi Queue

• Queue pada RouterOS dilakukan pada parent:

- Interface
- Virtual:
 - . Global In
 - Global Out
 - Global Total
- Simple-Queue tidak bisa melakukan queue pada parent interface sehingga secara otomatis menggunakan Virtual Interface.

• • Simple Packet Flow

• • Penggunaan Mangle

- Parameter mangle yang digunakan adalah "packet-mark"
- Khusus untuk "global-in" mangle harus dilakukan pada chain "prerouting"

• • HTB (Hierarchical Token Bucket)

- HTB adalah classful queuing discipline yang dapat digunakan untuk mengaplikasikan handling yang berbeda untuk beberapa jenis trafik.
- Secara umum, kita hanya dapat membuat 1 tipe queue untuk setiap interface. Namun dengan HTB di RouterOS, kita dapat mengaplikasikan properti yang berbeda-beda.
- HTB dapat melakukan prioritas untuk grup yang berbeda.

• • • HTB States

• hijau

- Posisi di mana data-rate lebih kecil dari limit-at.
- Nilai limit-at pada kelas tersebut akan dilihat terlebih dahulu daripada parent classnya.
- Contoh, sebuah class memiliki limit-at 512k, dan parent-nya memiliki limit-at 128k. Maka class tersebut akan selalu mendapatkan data-rate 512k.

• kuning

- Posisi di mana data-rate lebih besar dari limit-at, namun lebih kecil dari maxlimit.
- Diijinkan atau tidaknya penambahan trafik bergantung pada :
 - posisi parent, jika prioritas class sama dengan parentnya dan parentnya dalam posisi kuning
 - posisi class itu sendiri, jika parent sudah berstatus kuning.

• merah

- Posisi di mana data-rate sudah melebihi max-limit.
- Tidak dapat lagi meminjam dari parentnya.

• • • Staged Limitation

- Pada RouterOS, dikenal 2 buah limit:
 - CIR (Committed Information Rate)
 - dalam keadaan terburuk, client akan mendapatkan bandwidth sesuai dengan
 "limit-at" (dengan asumsi bandwidth yang tersedia cukup untuk CIR semua client)
 - MIR (Maximal Information Rate)
 - jika masih ada bandwidth yang tersisa setelah semua client mencapai "limit-at", maka client bisa mendapatkan bandwidth tambahan hingga "maxlimit"

• • • Struktur HTB

- Setiap queue bisa menjadi parent untuk queue lainnya
- Semua child queue (tidak peduli berapa banyak level parentnya) akan berada pada level HTB yang sama (paling bawah)
- Semua Child queue akan mendapatkan trafik sekurang-kurangnya sebesar limit-at

Parent & Dual Limitation (1)

- Max-limit child harus kurang atau sama dengan max-limit parentnya :
 - max-limit(parent) >= max-limit(child1)
 - max-limit(parent) >= max-limit (child2)
 - max-limit(parent) >= max-limit (childN)
- Jika max-limit child lebih besar dari max-limit parent, maka child tidak akan pernah mendapatkan trafik sebesar max-limit child.

Parent & Dual Limitation (2)

- Max-limit parent harus lebih besar atau sama dengan jumlah limit-at clientnya
 - max-limit(parent) >= limit-at(child1) + + limit-at(child*)
- Contoh :
 - queue1 limit-at=512k parent=parent1
 - queue2 limit-at=512k parent=parent1
 - queue3 limit-at=512k parent=parent1
 - max-limit parent1 sekurang-kurangnya (512k*3), jika kurang, maka max-limit akan bocor

• • • Tips

- Rule untuk parent paling atas, hanya membutuhkan max-limit, tidak membutuhkan limit-at dan priority
- Priority hanya bekerja pada child paling bawah
- Priority hanya berfungsi (diperhitungkan) untuk meminjam bandwith yang tersisa dari parent setelah semua queue child mendapatkan limitat nya.

• • • HTB Distribution (1)

Jika semua menggunakan internet sebanyak-banyaknya, maka : B dan C masing-masing akan mendapatkan 2mbps. Jika C tidak menggunakan internet, maka B akan mendapatkan 4mbps.

• • • HTB Distribution (2)

Meskipun max-limit A hanya 2mbps, tetapi B dan C masing-masing akan tetap mendapatkan 2 mbps. Max Limit parent harus >= total limit-at client. Jika B tidak menggunakan internet, C tetap hanya mendapatkan 2mbps, tidak bisa naik ke 4 mbps

• • • HTB Distribution (3)

B memiliki prioritas (1) lebih tinggi dari pada C (8).

Client B, C1 dan C2, masing-masing akan mendapatkan 2mbps, sesuai dengan limit-at nya masing-masing

• • • HTB Distribution (5)

C1 dan C2 bisa naik hingga max-limit, karena parentnya (C) memiliki limit-at hingga 4mbps.
• • • HTB Distribution (6)

Priority pada parent (rule yang bukan level 0) tidak berpengaruh.

Semua child akan mendapatkan trafik 2mbps

C1, C2, C3 mendapatkan 2mbps karena priority-nya lebih tinggi dari B1 dan B2

Queue-B akan mendapatkan 4mbps karena limit-at nya.

C1 > C2 dan C1 > C3 karena priority-nya

Bandwidth dibagi rata ke semua child karena priority-nya sama

• • • [LAB-2] HTB Implementation

- Silahkan lakukan pengecekan dan percobaan untuk contoh-contoh HTB di halaman sebelumnya.
- Tambahkan ip local network di Laptop untuk simulasi client
- Gunakan bandwith test untuk simulasi trafficnya

Queu	ie Lis	t										×
Simp	ole Q	ueues Interface Queu	ies Queue Tree	Queue Ty	pes							
÷	-	🖌 🗶 🗖 🛽	00 Reset Co	unters	DO Reset	All Count	ers				Find	
#		Name 🛆	Target Address	Rx Max	Tx 🛆	Rx Li	T× Li	Parent	Priority	Rx	Tx	-
0		🚊 total bandwith		2M	2M	unlimi	unlim	none	8	889 bps	889 bps	
1		🚊 sub-total-A		2M	2M	1M	1M	total bandwith	8	889 bps	889 bps	
3		🚊 client 1-A	192.168.10.99	2M	2M	512k	512k	sub-total-A	2	444 bps	444 bps	
4		🚊 client2-A	192.168.10.98	2M	2M	512k	512k	sub-total-A	7	444 bps	444 bps	
2		🔒 sub-total-B		2M	2M	1M	1M	total bandwith	8	0 bps	0 bps	
5		🚊 client 1-B	192.168.10.97	2M	2M	512k	512k	sub-total-B	5	0 bps	0 bps	
6		🚊 client2-B	192.168.10.96	2M	2M	128k	128k	sub-total-B	1	0 bps	0 bps	
7		🗟 client3-B	192.168.10.95	2M	2M	256k	256k	sub-total-B	3	0 bps	0 bps	

• • • Simple Queue

New Simple Queue	New Simple Queue						
General Advanced Statistics Traffic Total Total Statistics	General Advanced Statistics Traffic Total Total Statistics						
Name: queue1	P2P:						
Target Address:	Packet Marks:						
✓ Target Upload ✓ Target Download	Dst. Address:						
Max Limit: unlimited 🗧 unlimited 🖛 bits/s	Interface: all						
- A - Burst Burst Limit: unlimited ∓ unlimited ∓ bits/s	Target Upload Target Download						
Burst Threshold: unlimited F unlimited F bits/s	Limit At: unlimited						
Burst Time: 0 0 s	Queue Type: default-small						
- A - Time	Parent: none						
Time: 00:00:00 - 1d 00:00:00	Priority: 8						
✓ sun ✓ mon ✓ tue ✓ wed ✓ thu ✓ fri ✓ sat							
disabled	disabled						

Simple queue is not simple anymore

• • • Simple Queue

- Hanya bisa menggunakan parent Global-in dan global-out (dan global-total)
- Dalam satu rule, bisa langsung melimit trafik up, down, dan total
- Bisa menggunakan target address, atau menunjuk interface tempat client terkoneksi
- Bisa menggunakan lebih dari satu packet-mark
- Bisa menggunakan parameter waktu

• • • Target Address

- Target address adalah IP Address yang ingin dilimit.
- Untuk 1 rule simple queue, kita bisa menentukan lebih dari 1 target address
- Router akan mengkalkulasi di interface mana terkoneksinya target address
- Jika kita menentukan target address, biasanya kita tidak perlu menentukan interface

Name:	queue1
Target Address:	192.168.0.0/28
	192.168.0.128/28
	192.168.0.192/28
	 Target Upload Target Download
Max Limit:	unlimited unlimited bits/s
-▲- Burst	

/likrotik indonesia http://www.mikrotik.co.id

• • • Interface

 Interface adalah interface terkoneksinya client.
 Kita perlu menentukan interface apabila kita tidak menyebutkan target address.

Ust. Address:		•
Interface:	all	₹
	all	
	ether1 ether2	
Limit At:	ether3	
	wlan11	
Queue Type:		

• • • [LAB-3] Simple Queue

- Lanjutkanlah membuat simple queue untuk
 LAB yang telah kita lakukan pada materi
 Firewall "Dual gateway dengan internal proxy"
- Buatlah simple queue untuk trafik direct, miss, dan hit

Proxy dan Dual Gateway

Mikrotik Indonesia http://www.mikrotik.co.id

Simple Queue

Queue List												
Simple Qu	Jeues Interface Queues Que	ue Tree Queue 1	Types									
+ -	🕂 🖃 🖉 🖾 🍸 🖾 Reset Counters 00 Reset All Counters											
#	Name	Target Address	Rx Max Limit	Tx Max Limit	Packet Marks	Rx	Tx					
0	🚊 queue-client 1-254-iix	192.168.0.254	64k	64k	packet-iix	0 bps	0 bps					
1	🚊 queue-client 1-254-iix-hit	192.168.0.254	256k	256k	packet-iix-hit	0 bps	0 bps					
2	🚊 queue-client 1-254-intl	192.168.0.254	16k	16k	packet-intl	480 bps	480 bps					
3	🚊 queue-client 1-254-intl-hit	192.168.0.254	256k	256k	packet-intl-hit	0 bps	0 bps					

Simple Queue

- 0 name="queue-client1-254-iix" targetaddresses=192.168.0.254/32 packet-marks=packet-iix max-limit=64000/64000
- 1 name="queue-client1-254-iix-hit" targetaddresses=192.168.0.254/32 packet-marks=packet-iixhit max-limit=256000/256000
- 2 name="queue-client1-254-intl" targetaddresses=192.168.0.254/32 packet-marks=packet-intl max-limit=16000/16000
- 3 name="queue-client1-254-intl-hit" targetaddresses=192.168.0.254/32 packet-marks=packet-intlhit max-limit=256000/256000

• • • Queue Tree

💷 New Queue	
General Statistic	cs
Name:	queue1
Parent:	global-in Ŧ
Packet Mark:	₹
Queue Type:	default Ŧ
Priority:	8
Limit At:	▼ bits/s
Max Limit:	▼ bits/s
Burst Limit:	▼ bits/s
Burst Threshold:	▼ bits/s
Burst Time:	▼ s
disabled	

- Konfigurasi queue tree jauh lebih sederhana daripada simple queue.
- Keunggulan queue tree, kita bisa memilih untuk menggunakan interface queue.
- Tetapi bisa menjadi lebih kompleks karena harus menggunakan Mangle.

• • • [LAB-4] Queue Tree

- Lanjutkanlah membuat queue tree untuk mengatur prioritas trafik, melanjutkan yang sudah dilakukan pada LAB di materi Firewall.
- Lakukanlah Dual Limitasi (prioritas trafik dan juga melimit koneksi user)

Mangle Client - 1

- 6 chain=forward action=mark-connection newconnection-mark=conn-client1 passthrough=yes srcaddress=192.168.5.1-192.168.5.100
- 7 chain=forward action=mark-packet new-packetmark=packet-client1-upload passthrough=no outinterface=wlan1 connection-mark=conn-client1
- 8 chain=forward action=mark-packet new-packetmark=packet-client1-download passthrough=no outinterface=ether1 connection-mark=conn-client1

Mangle Client - 2

- 9 chain=forward action=mark-connection newconnection-mark=conn-client2 passthrough=yes srcaddress=192.168.5.101-192.168.5.254
- 10 chain=forward action=mark-packet new-packetmark=packet-client2-upload passthrough=no outinterface=wlan1 connection-mark=conn-client2
- 11 chain=forward action=mark-packet new-packetmark=packet-client2-download passthrough=no outinterface=ether1 connection-mark=conn-client2

• • • Mangle Client - 3

- 12 chain=forward action=mark-connection newconnection-mark=conn-client3 passthrough=yes srcaddress=10.5.50.0/24
- 13 chain=forward action=mark-packet new-packetmark=packet-client3-upload passthrough=no outinterface=wlan1 connection-mark=conn-client3
- 14 chain=forward action=mark-packet new-packetmark=packet-client3-download passthrough=no outinterface=ether2 connection-mark=conn-client3

• • Queue-tree

Queue List										
Simple Queues Interface Queues	; Queue Tree	Queue Types								
+- ** 2 7	😂 Reset Co	unters 00 Reset All Co	unters							
Name 🛆	Parent	Packet Marks	Priority	Limit At	Max Limit	Avg. Rate	Queued Bytes	Bytes	Packets	PCQ Queues
🚊 priority browsing	global-in	packet-browsing	1			8.5 kbps	0 B	81.2 MiB	234 935	
🚊 priority email	global-in	packet-email	2			0 bps	0 B	31.5 KiB	516	
🚊 priority remote	global-in	packet-remote	3			0 bps	0 B	13.0 KiB	149	
🚊 total upload	global-out		8		10M	20.3 kbps	0 B	203.4 MiB	598 454	
🚊 queue-client1-upload	total upload	packet-client1-upload	8	ЗM	10M	19.5 kbps	0 B	36.5 MiB	170 517	5
🚊 queue-client2-upload	total upload	packet-client2-upload	8	ЗM	10M	408 bps	0 B	5.8 MiB	20 895	1
🚊 queue-client3-upload	total upload	packet-client3-upload	8	ЗM	10M	344 bps	0 B	158.8 MiB	402 901	1
🚊 total-download	global-out		8		10M	59.2 kbps	0 B	288.6 MiB	351 186	
🚊 queue-client1-downl	total-download	packet-client1-download	8	ЗM	10M	48.8 kbps	0 B	146.7 MiB	217 547	5
📃 🚊 queue-client2-downl	total-download	packet-client2-download	8	3M	10M	10.1 kbps	0 B	18.6 MiB	21 920	2
📃 🚊 queue-client3-downl	total-download	packet-client3-download	8	3M	10M	232 bps	0 B	135.3 MiB	123 661	1

Advanced Mikrotik Training Traffic Control (LAB Session)

Certified Mikrotik Training - Advanced Class (MTCTCE) Organized by: Citraweb Nusa Infomedia (Mikrotik Certified Training Partner)

• • • KONSEP

- Lab Praktek ini dibuat berkelompok, dengan memanfaatkan 4 router dan 4 Peserta.
- Tiap kelompok membuat konfigurasi beberapa router sehingga lengkap menjadi sebuah sistem kerja ISP yang sudah mengimplementasikan Materi Traffic Control.

• • R1 – Router Backbone

Router R1 sebagai Router backbone terkoneksi dengan 2 ISP menggunakan wireless.

 Konfigurasi LoadBalance ke kedua ISP menggunakan metode PCC.

 Aktifkan NAT untuk semua koneksi internet.

 Gunakan routing untuk interkoneksi seluruh network kelompok.

• • • R2 – Router BM

- **Router R2** adalah sebagai Router Bandwith Management.
- Konfigurasi routing untuk interkoneksi seluruh network kelompok.
- Pisahkan bandwith Internet dan IIX secara Merata untuk semua traffic (proxy dan client).
- Gunakan mark rotuing untuk membelokkan traffic web ke proxy.
- Bypass khusus traffic HIT dari Proxy.

• • • R3 – Router Proxy

- Router R3 adalah sebagai Router Proxy.
- Aktifkan proxy dan juga fungsi cache untuk
 menyimpan object dari
 website.
- Gunakan semua filter (proxy / firewall / DNS) untuk melakukan block website yang berhubungan dengan pornografi.

• • • R4 – Router Distribusi

 Router R4 adalah sebagai Router Distribusi.
 Konfigurasi bandwith merata di semua client berdasarkan protocol :

- TCP
- UDP
- ICMP
- Pastikan koneksi internet client (LAN) tidak bisa menggunakan free proxy contohnya menggunakan program "Ultrasurf"

Selamat Mengerjakan !

info@mikrotik.co.id

Diijinkan menggunakan sebagian atau seluruh materi pada modul ini, baik berupa ide, foto, tulisan, konfigurasi, diagram, selama untuk kepentingan pengajaran, dan memberikan kredit dan link ke www.mikrotik.co.id