

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of ePUB
and its many features varies across reading devices and applications. Use your
device or app settings to customize the presentation to your liking. Settings that you
can customize often include font, font size, single or double column, landscape or
portrait mode, and figures that you can click or tap to enlarge. For additional
information about the settings and features on your reading device or app, visit the
device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the
presentation of these elements, view the eBook in single-column, landscape mode
and adjust the font size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included images of the code
that mimic the presentation found in the print book; therefore, where the reflowable
format may compromise the presentation of the code listing, you will see a “Click
here to view code image” link. Click the link to view the print-fidelity code image.
To return to the previous page viewed, click the Back button on your device or app.

SQL Queries for Mere Mortals®

Third Edition

A Hands-On Guide to Data Manipulation in SQL

John L. Viescas
Michael J. Hernandez

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco •
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.
The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2014939438
Copyright © 2014 John L. Viescas and Michael J. Hernandez

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-99247-5
ISBN-10: 0-321-99247-4
Text printed in the United States on recycled paper at Edwards Brothers Malloy, Ann
Arbor, Michigan.

Fourth Printing: June 2015

Associate Publisher: Dave Dusthimer
Acquisitions Editor: Joan Murray

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com
http://informit.com/aw

Senior Development Editor: Chris Cleveland
Managing Editor: Sandra Schroeder
Senior Project Editor: Tonya Simpson
Copy Editor: Charlotte Kughen
Indexer: Lisa Stumpf
Proofreader: Anne Goebel
Technical Reviewer: Dale Wallentine
Editorial Assistant: Vanessa Evans
Cover Designer: Alan Clements
Compositor: Trina Wurst

Praise for SQL Queries for Mere Mortals®,
Third Edition

The good books show you how to do something. The great books enable you to
think clearly about how you can do it. This book is the latter. To really maximize
the potential of your database, thinking about data as a set is required and the
authors’ accessible writing really brings out the practical applications of SQL
and the set-based thinking behind it.

— Ben Clothier, Lead Developer at IT Impact, Inc., co-author of
Professional

Access 2013 Programming, and Microsoft Access MVP

Unless you are working at a very advanced level, this is the only SQL book you
will ever need. The authors have taken the mystery out of complex queries and
explained principles and techniques with such clarity that a “Mere Mortal” will
indeed be empowered to perform the superhuman. Do not walk past this book!

— Graham Mandeno, Database Consultant

It’s beyond brilliant! I have been working with SQL for a really long time and
the techniques presented in this book exposed some of the bad habits I picked up
over the years in my learning process. I wish I had learned these techniques a
long time ago and saved myself all the headaches of learning SQL the hard way.
Who said you can’t teach old dogs new tricks?

— Leo (theDBguy), Utter Access Moderator and Microsoft Access MVP

I learned SQL primarily from the first and second editions of this book, and I am
pleased to see a third edition of this book so that others can continue to benefit
from its organized presentation of the language. Starting from how to design
your tables so that SQL can be effective (a common problem for database
beginners), and then continuing through the various aspects of SQL construction
and capabilities, the reader can become a moderate expert upon completing the
book and its samples. Learning how to convert a question in English into a
meaningful SQL statement will greatly facilitate your mastery of the language.
Numerous examples from real life will help you visualize how to use SQL to
answer the questions about the data in your database. Just one of the “watch out
for this trap” items will save you more than the cost of the book when you avoid
that problem when writing your queries. I highly recommend this book if you

want to tap the full potential of your database.
— Kenneth D. Snell, Ph.D., Database Designer/Programmer

I don’t think they do this in public schools any more, and it is a shame, but do
you remember in the seventh and eighth grades when you learned to diagram a
sentence? Those of you who do may no longer remember how you did it, but all
of you do write better sentences because of it. John Viescas and Mike Hernandez
must have remembered because they take everyday English queries and literally
translate them into SQL. This is an important book for all database designers. It
takes the complexity of mathematical Set Theory and of First Order Predicate
Logic, as outlined in E. F. Codd’s original treatise on relational database design,
and makes it easy for anyone to understand. If you want an elementary through
intermediate-level course on SQL, this is the one book that is a requirement, no
matter how many others you buy.

— Arvin Meyer, MCP, MVP

SQL Queries for Mere Mortals, Third Edition, provides a step-by-step, easy-to-
read introduction to writing SQL queries. It includes hundreds of examples with
detailed explanations. This book provides the tools you need to understand,
modify, and create SQL queries.

— Keith W. Hare, Convenor, ISO/IEC JTC1 SC32 WG3
— the International SQL Standards Committee

Even in this day of wizards and code generators, successful database developers
still require a sound knowledge of Structured Query Language (SQL, the
standard language for communicating with most database systems). In this book,
John and Mike do a marvelous job of making what’s usually a dry and difficult
subject come alive, presenting the material with humor in a logical manner, with
plenty of relevant examples. I would say that this book should feature
prominently in the collection on the bookshelf of all serious developers, except
that I’m sure it’ll get so much use that it won’t spend much time on the shelf!

— Doug Steele, Microsoft Access Developer and author

I highly recommend SQL Queries for Mere Mortals to anyone working with
data. John makes it easy to learn one of the most critical aspects of working with
data: creating queries. Queries are the primary tool for selecting, sorting, and
reporting data. They can compensate for table structure, new reporting
requirements, and incorporate new data sources. SQL Queries for Mere Mortals
uses clear, easy to understand discussions and examples to take readers through

the basics and into complex problems. From novice to expert, you will find this
book to be an invaluable reference as you can apply the concepts to a myriad of
scenarios, regardless of the program.

— Teresa Hennig, Microsoft MVP-Access, and lead author of several
Access

books, including Professional Access 2013 Programming (Wrox)

Contents

Foreword

Preface

About the Authors

Introduction

Are You a Mere Mortal?
About This Book
What This Book Is Not
How to Use This Book
Reading the Diagrams Used in This Book
Sample Databases Used in This Book
“Follow the Yellow Brick Road”

Part I Relational Databases and SQL

Chapter 1 What Is Relational?
Types of Databases
A Brief History of the Relational Model

In the Beginning . . .
Relational Database Systems

Anatomy of a Relational Database
Tables
Fields
Records
Keys
Views
Relationships

What’s in It for You?
Where Do You Go from Here?

Summary

Chapter 2 Ensuring Your Database Structure Is Sound
Why Is This Chapter Here?
Why Worry about Sound Structures?
Fine-Tuning Fields

What’s in a Name? (Part One)
Smoothing Out the Rough Edges
Resolving Multipart Fields
Resolving Multivalued Fields

Fine-Tuning Tables
What’s in a Name? (Part Two)
Ensuring a Sound Structure
Resolving Unnecessary Duplicate Fields
Identification Is the Key

Establishing Solid Relationships
Establishing a Deletion Rule
Setting the Type of Participation
Setting the Degree of Participation

Is That All?
Summary

Chapter 3 A Concise History of SQL
The Origins of SQL
Early Vendor Implementations
“. . . And Then There Was a Standard”
Evolution of the ANSI/ISO Standard

Other SQL Standards
Commercial Implementations
What the Future Holds
Why Should You Learn SQL?
Which Version of SQL Does This Book Cover?
Summary

Part II SQL Basics

Chapter 4 Creating a Simple Query
Introducing SELECT
The SELECT Statement
A Quick Aside: Data versus Information
Translating Your Request into SQL

Expanding the Field of Vision
Using a Shortcut to Request All Columns

Eliminating Duplicate Rows
Sorting Information

First Things First: Collating Sequences
Let’s Now Come to Order

Saving Your Work
Sample Statements
Summary
Problems for You to Solve

Chapter 5 Getting More Than Simple Columns
What Is an Expression?
What Type of Data Are You Trying to Express?
Changing Data Types: The CAST Function
Specifying Explicit Values

Character String Literals
Numeric Literals
Datetime Literals

Types of Expressions
Concatenation
Mathematical Expressions
Date and Time Arithmetic

Using Expressions in a SELECT Clause
Working with a Concatenation Expression
Naming the Expression

Working with a Mathematical Expression
Working with a Date Expression
A Brief Digression: Value Expressions

That “Nothing” Value: Null
Introducing Null
The Problem with Nulls

Sample Statements
Summary
Problems for You to Solve

Chapter 6 Filtering Your Data
Refining What You See Using WHERE

The WHERE Clause
Using a WHERE Clause

Defining Search Conditions
Comparison
Range
Set Membership
Pattern Match
Null
Excluding Rows with NOT

Using Multiple Conditions
Introducing AND and OR
Excluding Rows: Take Two
Order of Precedence
Checking for Overlapping Ranges

Nulls Revisited: A Cautionary Note
Expressing Conditions in Different Ways
Sample Statements
Summary
Problems for You to Solve

Part III Working with Multiple Tables

Chapter 7 Thinking in Sets
What Is a Set, Anyway?
Operations on Sets
Intersection

Intersection in Set Theory
Intersection between Result Sets
Problems You Can Solve with an Intersection

Difference
Difference in Set Theory
Difference between Result Sets
Problems You Can Solve with Difference

Union
Union in Set Theory
Combining Result Sets Using a Union
Problems You Can Solve with Union

SQL Set Operations
Classic Set Operations versus SQL
Finding Common Values: INTERSECT
Finding Missing Values: EXCEPT (DIFFERENCE)
Combining Sets: UNION

Summary

Chapter 8 INNER JOINs
What Is a JOIN?
The INNER JOIN

What’s “Legal” to JOIN?
Column References
Syntax
Check Those Relationships!

Uses for INNER JOINs
Find Related Rows

Find Matching Values
Sample Statements

Two Tables
More Than Two Tables
Looking for Matching Values

Summary
Problems for You to Solve

Chapter 9 OUTER JOINs
What Is an OUTER JOIN?
The LEFT/RIGHT OUTER JOIN

Syntax
The FULL OUTER JOIN

Syntax
FULL OUTER JOIN on Non-Key Values
UNION JOIN

Uses for OUTER JOINs
Find Missing Values
Find Partially Matched Information

Sample Statements
Summary
Problems for You to Solve

Chapter 10 UNIONs
What Is a UNION?
Writing Requests with UNION

Using Simple SELECT Statements
Combining Complex SELECT Statements
Using UNION More Than Once
Sorting a UNION

Uses for UNION
Sample Statements
Summary

Problems for You to Solve

Chapter 11 Subqueries
What Is a Subquery?

Row Subqueries
Table Subqueries
Scalar Subqueries

Subqueries as Column Expressions
Syntax
An Introduction to Aggregate Functions: COUNT and MAX

Subqueries as Filters
Syntax
Special Predicate Keywords for Subqueries

Uses for Subqueries
Build Subqueries as Column Expressions
Use Subqueries as Filters

Sample Statements
Subqueries in Expressions
Subqueries in Filters

Summary
Problems for You to Solve

Part IV Summarizing and Grouping Data

Chapter 12 Simple Totals
Aggregate Functions

Counting Rows and Values with COUNT
Computing a Total with SUM
Calculating a Mean Value with AVG
Finding the Largest Value with MAX
Finding the Smallest Value with MIN
Using More Than One Function

Using Aggregate Functions in Filters

Sample Statements
Summary
Problems for You to Solve

Chapter 13 Grouping Data
Why Group Data?
The GROUP BY Clause

Syntax
Mixing Columns and Expressions
Using GROUP BY in a Subquery in a WHERE Clause
Simulating a SELECT DISTINCT Statement

“Some Restrictions Apply”
Column Restrictions
Grouping on Expressions

Uses for GROUP BY
Sample Statements
Summary
Problems for You to Solve

Chapter 14 Filtering Grouped Data
A New Meaning of “Focus Groups”
Where You Filter Makes a Difference

Should You Filter in WHERE or in HAVING?
Avoiding the HAVING COUNT Trap

Uses for HAVING
Sample Statements
Summary
Problems for You to Solve

Part V Modifying Sets of Data

Chapter 15 Updating Sets of Data
What Is an UPDATE?

The UPDATE Statement
Using a Simple UPDATE Expression
A Brief Aside: Transactions
Updating Multiple Columns
Using a Subquery to Filter Rows
Using a Subquery UPDATE Expression

Uses for UPDATE
Sample Statements
Summary
Problems for You to Solve

Chapter 16 Inserting Sets of Data
What Is an INSERT?
The INSERT Statement

Inserting Values
Generating the Next Primary Key Value
Inserting Data by Using SELECT

Uses for INSERT
Sample Statements
Summary
Problems for You to Solve

Chapter 17 Deleting Sets of Data
What Is a DELETE?
The DELETE Statement

Deleting All Rows
Deleting Some Rows

Uses for DELETE
Sample Statements
Summary
Problems for You to Solve

Part VI Introduction to Solving Tough Problems

Chapter 18 “NOT” and “AND” Problems
A Short Review of Sets

Sets with Multiple AND Criteria
Sets with Multiple NOT Criteria
Sets Including Some Criteria but Excluding Others

Finding Out the “Not” Case
Using OUTER JOIN
Using NOT IN
Using NOT EXISTS
Using GROUP BY/HAVING

Finding Multiple Matches in the Same Table
Using INNER JOIN
Using IN
Using EXISTS
Using GROUP BY/HAVING

Sample Statements
Summary
Problems for You to Solve

Chapter 19 Condition Testing
Conditional Expressions (CASE)

Why Use CASE?
Syntax

Solving Problems with CASE
Solving Problems with Simple CASE
Solving Problems with Searched CASE
Using CASE in a WHERE Clause

Sample Statements
Summary
Problems for You to Solve

Chapter 20 Using Unlinked Data and “Driver” Tables
What Is Unlinked Data?

Deciding When to Use a CROSS JOIN
Solving Problems with Unlinked Data
Solving Problems Using “Driver” Tables

Setting Up a Driver Table
Using a Driver Table

Sample Statements
Examples Using Unlinked Tables
Examples Using Driver Tables

Summary
Problems for You to Solve

In Closing

Appendices

A SQL Standard Diagrams

B Schema for the Sample Databases
Sales Orders Example Database
Sales Orders Modify Database
Entertainment Agency Example Database
Entertainment Agency Modify Database
School Scheduling Example Database
School Scheduling Modify Database
Bowling League Example Database
Bowling League Modify Database
Recipes Database

C Date and Time Types, Operations, and Functions
IBM DB2
Microsoft Office Access
Microsoft SQL Server
MySQL
Oracle

D Suggested Reading
Database Books
Books on SQL

Index

Foreword

In the 25 years since the database language SQL was adopted as an international
standard, and the 30 years since SQL database products appeared on the market,
SQL has become the predominant language for storing, modifying, retrieving, and
deleting data. Today, a significant portion of the world’s data—and the world’s
economy—is tracked using SQL databases.
SQL is everywhere because it is a very powerful tool for manipulating data. It is in
high-performance transaction processing systems. It is behind Web interfaces. I’ve
even found SQL in network monitoring tools and spam firewalls.
Today, SQL can be executed directly, embedded in programming languages, and
accessed through call interfaces. It is hidden inside GUI development tools, code
generators, and report writers. However visible or hidden, the underlying queries are
SQL. Therefore, to understand existing applications and to create new ones, you
need to understand SQL.
SQL Queries for Mere Mortals, Third Edition, provides a step-by-step, easy-to-read
introduction to writing SQL queries. It includes hundreds of examples with detailed
explanations. This book provides the tools you need to understand, modify, and
create SQL queries.
As a database consultant and a participant in both the U.S. and international SQL
standards committees, I spend a lot of time working with SQL. So, it is with a certain
amount of authority that I state, “The authors of this book not only understand SQL,
they also understand how to explain it.” Both qualities make this book a valuable
resource.

—Keith W. Hare, Senior Consultant,
JCC Consulting, Inc.Vice Chair, INCITS DM32.2

—the USA SQL Standards Committee; Convenor, ISO/IEC JTC1 SC32
WG3

—the International SQL Standards Committee

Preface

“Language is by its very nature a communal thing; that is, it expresses
never the exact thing but a compromise—that which is common to you, me,

and everybody.”

—Thomas Ernest Hulme, Speculations

Learning how to retrieve information from or manipulate information in a database is
commonly a perplexing exercise. However, it can be a relatively easy task as long as
you understand the question you’re asking or the change you’re trying to make to the
database. After you understand the problem, you can translate it into the language
used by any database system, which in most cases is Structured Query Language
(SQL). You have to translate your request into an SQL statement so that your
database system knows what information you want to retrieve or change. SQL
provides the means for you and your database system to communicate.
Throughout our many years as database consultants, we’ve found that the number of
people who merely need to retrieve information from a database or perform simple
data modifications in a database far outnumber those who are charged with the task
of creating programs and applications for a database. Unfortunately, no books focus
solely on this subject, particularly from a “mere mortals” viewpoint. There are
numerous good books on SQL, to be sure, but most are targeted to database
programming and development.
With this in mind, we decided it was time to write a book that would help people
learn how to query a database properly and effectively. We produced the first edition
of this book in 2000. We created a second edition in 2008 that introduced basic ways
to change data in your database using SQL. With this new edition, we stepped lightly
into the realm of tougher problems—the sorts of problems that make the heads of
even experienced users spin around three times. The result of our efforts is in your
hands. This book is unique among SQL books in that it focuses on SQL with little
regard to any one specific database system implementation. This third edition
includes hundreds of new examples, and we included versions of the sample
databases using Microsoft Office Access, Microsoft SQL Server, and the popular
open-source MySQL database system. When you finish reading this book, you’ll
have the skills you need to retrieve or modify any information you require.

Acknowledgments
Writing a book such as this is always a cooperative effort. There are always editors,

colleagues, friends, and relatives willing to lend their support and provide valuable
advice when we need it the most. These people continually provide us with
encouragement, help us to remain focused, and motivate us to see this project
through to the end.
First and foremost, we want to thank our acquisitions editor, Joan Murray, for
helping us get signed up to produce this third edition. Thanks also to Developmental
Editor Chris Cleveland for shepherding us along the way. And we can’t forget
Production Editor Tonya Simpson and the production staff—they’re a great team!
Finally, thanks to Associate Publisher David Dusthimer, who put this team together
and kept a watchful eye over the entire process.
Next, we’d like to acknowledge our technical editor, Dale Wallentine. We also had
help from some of our database friends—Jeff Boyce, Ben Clothier, Henry
Habermacher, Leo theDBGuy, and Doug Steele. Thanks once again to all of you for
your time and input and for helping us to make this a solid treatise on SQL queries.
Finally, another very special thanks to Keith Hare for providing the Foreword. As
the Convenor of the International SQL Standards Committee, Keith is an SQL expert
par excellence. We have a lot of respect for Keith’s knowledge and expertise on the
subject, and we’re pleased to have his thoughts and comments at the beginning of
our book.

About the Authors

John L. Viescas is an independent database consultant with more than 45 years of
experience. He began his career as a systems analyst, designing large database
applications for IBM mainframe systems. He spent 6 years at Applied Data Research
in Dallas, Texas, where he directed a staff of more than 30 people and was
responsible for research, product development, and customer support of database
products for IBM mainframe computers. While working at Applied Data Research,
John completed a degree in business finance at the University of Texas at Dallas,
graduating cum laude.
John joined Tandem Computers, Inc., in 1988, where he was responsible for the
development and implementation of database marketing programs in Tandem’s U.S.
Western Sales region. He developed and delivered technical seminars on Tandem’s
relational database management system, NonStop SQL. John wrote his first book, A
Quick Reference Guide to SQL (Microsoft Press, 1989), as a research project to
document the similarities in the syntax among the ANSI-86 SQL standard, IBM’s
DB2, Microsoft’s SQL Server, Oracle Corporation’s Oracle, and Tandem’s NonStop
SQL. He wrote the first edition of Running Microsoft Access (Microsoft Press, 1992)
while on sabbatical from Tandem. He has since written four editions of Running,
three editions of Microsoft Office Access Inside Out (Microsoft Press, 2003, 2007,
and 2010—the successor to the Running series), and Building Microsoft Access
Applications (Microsoft Press, 2005).
John formed his own company in 1993. He provides information systems
management consulting for a variety of small to large businesses around the world,
with a specialty in the Microsoft Access and SQL Server database management
products. He maintains offices in Nashua, New Hampshire, and Paris, France. He
has been recognized as a “Most Valuable Professional” (MVP) since 1993 by
Microsoft Product Support Services for his assistance with technical questions on

public support forums. He set a landmark 20 consecutive years as an MVP in 2013.
You can visit John’s Web site at www.viescas.com or contact him by e-mail at
john@viescas.com.

Michael J. Hernandez has been an independent relational database consultant
specializing in relational database design. He has more than 20 years of experience
in the technology industry, developing database applications for a wide variety of
clients. He’s been a contributing author to a wide variety of magazine columns,
white papers, books, and periodicals, and is coauthor of the best-selling SQL Queries
for Mere Mortals. Mike has been a top-rated and noted technical trainer for the
government, the military, the private sector, and companies throughout the United
States. He has spoken at numerous national and international conferences, and has
consistently been a top-rated speaker and presenter.
Aside from his technical background, Mike has a diverse set of skills and interests
that he also pursues, ranging from the artistic to the metaphysical. His greatest
interest is still the guitar, as he’s been a practicing guitarist for more than 40 years
and played professionally for 15 years. He’s also a working actor, a great cook, loves
to teach (writing, public speaking, music), has a gift for bad puns, and even reads
Tarot cards.
He says he’s never going to retire, per se, but rather just change whatever it is he’s
doing whenever he finally gets tired of it and move on to something else that
interests him.

http://www.viescas.com
mailto:john@viescas.com

Introduction

“I presume you’re mortal, and may err.”

—James Shirley, The Lady of Pleasure

If you’ve used a computer more than casually, you have probably used Structured
Query Language or SQL—perhaps without even knowing it. SQL is the standard
language for communicating with most database systems. Any time you import data
into a spreadsheet or perform a merge into a word processing program, you’re most
likely using SQL in some form or another. Every time you go online to an e-
commerce site on the Web and place an order for a book, a recording, a movie, or
any of the dozens of other products you can order, there’s a very high probability
that the code behind the web page you’re using is accessing its databases with SQL.
If you need to get information from a database system that uses SQL, you can
enhance your understanding of the language by reading this book.

Are You a Mere Mortal?
You might ask, “Who is a mere mortal? Me?” The answer is not simple. When we
started to write this book, we thought we were experts in the database language
called SQL. Along the way, we discovered we were mere mortals, too, in several
areas. We understood a few specific implementations of SQL very well, but we
unraveled many of the complex intricacies of the language as we studied how it is
used in many commercial products. So, if you fit any of the following descriptions,
you’re a mere mortal too!

• If you use computer applications that let you access information from a
database system, you’re probably a mere mortal. The first time you don’t get
the information you expected using the query tools built in to your application,
you’ll need to explore the underlying SQL statements to find out why.

• If you have recently discovered one of the many available desktop database
applications but are struggling with defining and querying the data you need,
you’re a mere mortal.

• If you’re a database programmer who needs to “think outside of the box” to
solve some complex problems, you’re a mere mortal.

• If you’re a database guru in one product but are now faced with integrating the
data from your existing system into another system that supports SQL, you’re a
mere mortal.

In short, anyone who has to use a database system that supports SQL can use this
book. As a beginning database user who has just discovered that the data you need
can be fetched using SQL, you will find that this book teaches you all the basics and
more. For an expert user who is suddenly faced with solving complex problems or
integrating multiple systems that support SQL, this book will provide insights into
leveraging the complex abilities of the SQL database language.

About This Book
Everything you read in this book is based on the current International Organization
for Standardization (ISO) Standard for the SQL database language –
SQL/Foundation (document ISO/IEC 9075-2:2011), as currently implemented in
most of the popular commercial database systems. The ISO document was also
adopted by the American National Standards Institute (ANSI), so this is truly an
international standard. The SQL you’ll learn here is not specific to any particular
software product.
As you’ll learn in more detail in Chapter 3, “A Concise History of SQL,” the SQL
Standard defines both more and less than you’ll find implemented in most
commercial database products. Most database vendors have yet to implement many
of the more advanced features, but most do support the core of the standard.
We researched a wide range of popular products to make sure that you can use what
we’re teaching in this book. Where we found parts of the core of the language not
supported by some major products, we warn you in the text and show you alternate
ways to state your database requests in standard SQL. When we found significant
parts of the SQL Standard supported by only a few vendors, we introduced you to
the syntax and then suggested alternatives.
We have organized this book into six major sections:

• Part I, “Relational Databases and SQL,” explains how modern database
systems are based on a rigorous mathematical model and provides a brief
history of the database query language that has evolved into what we know as
SQL. We also discuss some simple rules that you can use to make sure your
database design is sound.

• Part II, “SQL Basics,” introduces you to using the SELECT statement, creating
expressions, and sorting information with an ORDER BY clause. You’ll also
learn how to filter data by using a WHERE clause.

• Part III, “Working with Multiple Tables,” shows you how to formulate queries
that draw data from more than one table. Here we show you how to link tables
in a query using the INNER JOIN, OUTER JOIN, and UNION operators, and
how to work with subqueries.

• Part IV, “Summarizing and Grouping Data,” discusses how to obtain summary
information and group and filter summarized data. Here is where you’ll learn
about the GROUP BY and HAVING clauses.

• Part V, “Modifying Sets of Data,” explains how to write queries that modify a
set of rows in your tables. In the chapters in this section, you’ll learn how to
use the UPDATE, INSERT, and DELETE statements.

• Part VI, “Introduction to Solving Tough Problems,” dips your toes into more
complex problems. In the chapters in this section, you’ll expand your horizons
to include solving complex “NOT” and “AND” problems (multiple conditions
on one table), performing logical evaluations with CASE, and thinking
“outside the box” using “unlinked” tables (Cartesian Products).

At the end of the book in the appendices, you’ll find syntax diagrams for all the SQL
elements you’ve learned, layouts of the sample databases, a list of date and time
manipulation functions implemented in five of the major database systems, and book
recommendations to further your study of SQL. You can download the five sample
databases for the three database systems (Microsoft Access, Microsoft SQL Server,
and MySQL) from www.informit.com/title/9780321992475 and clicking the
Downloads tab.

What This Book Is Not
Although this book is based on the 2011 SQL Standard that was current at the time
of this writing, it does not cover every aspect of the standard. In truth, many features
in the 2011 SQL Standard won’t be implemented for many years—if at all—in the
major database system implementations. The fundamental purpose of this book is to
give you a solid grounding in writing queries in SQL. Throughout the book, you’ll
find us recommending that you “consult your database documentation” for how a
specific feature might or might not work. That’s not to say we covered only the
lowest common denominator for any feature among the major database systems. We
do try to caution you when some systems implement a feature differently or not at
all.
You’ll find it difficult to create other than simple queries using a single table if your
database design is flawed. We included a chapter on database design to help you
identify when you will have problems, but that one chapter includes only the basic
principles. A thorough discussion of database design principles and how to
implement a design in a specific database system is beyond the scope of this book.
This book is also not about how to solve a problem in the most efficient way. As you
work through many of the later chapters, you’ll find we suggest more than one way
to solve a particular problem. In some cases where writing a query in a particular

http://www.informit.com/title/9780321992475

way is likely to have performance problems on any system, we try to warn you about
it. But each database system has its own strengths and weaknesses. After you learn
the basics, you’ll be ready to move on to digging into the particular database system
you use to learn how to formulate your query solutions so that they run in a more
optimal manner.

How to Use This Book
We have designed the chapters in this book to be read in sequence. Each succeeding
chapter builds on concepts taught in earlier chapters. However, you can jump into
the middle of the book without getting lost. For example, if you are already familiar
with the basic clauses in a SELECT statement and want to learn more about JOINs,
you can jump right in to Chapters 7, “Thinking in Sets,” 8, “INNER JOINs,” and 9,
“OUTER JOINs.”
At the end of many of the chapters you’ll find an extensive set of “Sample
Statements,” their solutions, and sample result sets. We recommend that you study
several of the samples to gain a better understanding of the techniques involved and
then try working out some of the later “Problems for You to Solve” yourself without
looking at the solutions we propose.
Note that where a particular query returns dozens of rows in the result set, we show
you only the first few rows to give you an idea of how the answer should look. You
might not see the exact same result on your system, however, because each database
system that supports SQL has its own optimizer that figures out the fastest way to
solve the query. Also, the first few rows you see returned by your database system
might not exactly match the first few we show you unless the query contains an
ORDER BY clause that requires the rows to be returned in a specific sequence.
We’ve also included a complete set of problems for you to solve on your own, which
you’ll find at the end of most chapters. This gives you the opportunity to really
practice what you’ve just learned in the chapter. Don’t worry—the solutions are
included in the sample databases that you can download from the book’s website.
We’ve also included hints on those problems that might be a little tricky.
After you have worked your way through the entire book, you’ll find the complete
SQL diagrams in Appendix A, “SQL Standard Diagrams,” to be an invaluable
reference for all the SQL techniques we showed you. You will also be able to use the
sample database layouts in Appendix B, “Schema for the Sample Databases,” to help
you design your own databases.

Reading the Diagrams Used in This Book
The numerous diagrams throughout the book illustrate the proper syntax for the

statements, terms, and phrases you’ll use when you work with SQL. Each diagram
provides a clear picture of the overall construction of the SQL element currently
being discussed. You can also use any of these diagrams as templates to create your
own SQL statements or to help you acquire a clearer understanding of a specific
example.
All the diagrams are built from a set of core elements and can be divided into two
categories: statements and defined terms. A statement is always a major SQL
operation, such as the SELECT statement we discuss in this book, while a defined
term is always a component used to build part of a statement, such as a value
expression, a search condition, or a predicate. (Don’t worry—we’ll explain all these
terms later in the book.) The only difference between a syntax diagram for a
statement and a syntax diagram for a defined term is the manner in which the main
syntax line begins and ends. We designed the diagrams with these differences so that
you can clearly see whether you’re looking at the diagram for an entire statement or
a diagram for a term that you might use within a statement. Figure 1 shows the
beginning and end points for both diagram categories. Aside from this difference, the
diagrams are built from the same elements. Figure 2 shows an example of each type
of syntax diagram and is followed by a brief explanation of each diagram element.

Figure 1 Syntax line end points for statements and defined terms

Figure 2 Sample statement and defined term diagrams
1. Statement start point—denotes the beginning of the main syntax line for a

statement. Any element that appears directly on the main syntax line is a
required element, and any element that appears below it is an optional element.

2. Main syntax line—determines the order of all required and optional elements
for the statement or defined term. Follow this line from left to right (or in the
direction of the arrows) to build the syntax for the statement or defined term.

3. Keyword(s)—indicates a major word in SQL grammar that is a required part
of the syntax for a statement or defined term. In a diagram, keywords are
formatted in capital letters and bold font. (You don’t have to worry about
typing a keyword in capital letters when you actually write the statement in
your database program, but it does make the statement easier to read.)

4. Literal entry—specifies the name of a value you explicitly supply to the
statement. A literal entry is represented by a word or phrase that indicates the
type of value you need to supply. Literal entries in a diagram are formatted in
all lowercase letters.

5. Defined term—denotes a word or phrase that represents some operation that
returns a final value to be used in this statement. We’ll explain and diagram
every defined term you need to know as you work through the book. Defined

terms are always formatted in italic letters.
6. Optional element—indicates any element or group of elements that appears

below the main syntax line. An optional element can be a statement, keyword,
defined term, or literal value and, for purposes of clarity, appears on its own
line. In some cases, you can specify a set of values for a given option, with
each value separated by a comma (see number 8). Also, several optional
elements have a set of sub-optional elements (see number 7). In general, you
read the syntax line for an optional element from left to right, in the same
manner that you read the main syntax line. Always follow the directional
arrows and you’ll be in good shape. Note that some options allow you to
specify multiple values or choices, so the arrow will flow from right to left.
After you’ve entered all the items you need, however, the flow will return to
normal from left to right. Fortunately, all optional elements work the same
way. After we show you how to use an optional element later in the book,
you’ll know how to use any other optional element you encounter in a syntax
diagram.

7. Sub-optional element—denotes any element or group of elements that appears
below an optional element. Sub-optional elements allow you to fine-tune your
statements so that you can work with more complex problems.

8. Option list separator—indicates that you can specify more than one value for
this option and that each value must be separated with a comma.

9. Alternate option—denotes a keyword or defined term that can be used as an
alternative to one or more optional elements. The syntax line for an alternate
option bypasses the syntax lines of the optional elements it is meant to replace.

10. Statement end point—denotes the end of the main syntax line for a statement.
11. Defined term start point—denotes the beginning of the main syntax line for a

defined term.
12. Defined term end point—denotes the end of the main syntax line for a defined

term.
Now that you’re familiar with these elements, you’ll be able to read all the syntax
diagrams in the book. And on those occasions when a diagram requires further
explanation, we provide you with the information you need to read the diagram
clearly and easily. To help you better understand how the diagrams work, here’s a
sample SELECT statement that we built using Figure 2.
Click here to view code image

SELECT FirstName, LastName, City, DOB AS DateOfBirth
FROM Students
WHERE City = 'El Paso'

This SELECT statement retrieves four columns from the Students table, as we’ve
indicated in the SELECT and FROM clauses. As you follow the main syntax line
from left to right, you see that you have to indicate at least one value expression. A
value expression can be a column name, an expression created using column names,
or simply a constant (literal) value that you want to display. You can indicate as
many columns as you need with the value expression’s option list separator (a
comma). This is how we were able to use four column names from the Student table.
We were concerned that some people viewing the information returned by this
SELECT statement might not know what DOB means, so we assigned an alias to the
DOB column with the value expression’s AS sub-option. Finally, we used the
WHERE clause to make certain the SELECT statement shows only those students
who live in El Paso. (If this doesn’t quite make sense to you just now, there’s no
cause for alarm. You’ll learn all this in great detail throughout the remainder of the
book.)
You’ll find a full set of syntax diagrams in Appendix A. They show the complete
and proper syntax for all the statements and defined terms we discuss in the book. If
you happen to refer to these diagrams as you work through each chapter, you’ll
notice a slight disparity between some of the diagrams in a given chapter and the
corresponding diagrams in the appendix. The diagrams in the chapters are just
simplified versions of the diagrams in the appendix. These simplified versions allow
us to explain complex statements and defined terms more easily and give us the
ability to focus on particular elements as needed. But don’t worry—all the diagrams
in the appendix will make perfect sense after you work through the material in the
book.

Sample Databases Used in This Book
On the book website at www.informit.com/title/9780321992475, you’ll find a
downloadable file on the Downloads tab containing five sample databases that we
use for the example queries throughout the book. We’ve also included diagrams of
the database structures in Appendix B.

1. Sales Orders. This is a typical order entry database for a store that sells
bicycles and accessories. (Every database book needs at least one order entry
example, right?)

2. Entertainment Agency. We structured this database to manage entertainers,
agents, customers, and bookings. You would use a similar design to handle
event bookings or hotel reservations.

3. School Scheduling. You might use this database design to register students at
a high school or community college. This database tracks not only class

http://www.informit.com/title/9780321992475

registrations but also which instructors are assigned to each class and what
grades the students received.

4. Bowling League. This database tracks bowling teams, team members, the
matches they played, and the results.

5. Recipes. You can use this database to save and manage all your favorite
recipes. We even added a few that you might want to try.

In the sample files, you can find all five sample databases in three different formats:
• Because of the great popularity of the Microsoft Office Access desktop

database, we created one set of databases (.accdb file extension) using
Microsoft Access 2007 (Version 12.0). We chose Version 12 of this product
because it closely supports the current ISO/IEC SQL Standard, and you can
open database files in this format using Access 2007, 2010, 2013, and later.
You can find these files in the MSAccess subfolder.

• The second format consists of database files (.mdf file extension) created using
Microsoft SQL Server 2012 Express Edition. You can find these files in the
MSSQLServer folder, and you can attach these files to a Microsoft SQL Server
2012 or later server. We have also included SQL command files (.sql file
extension) that you can use to create the samples on a Microsoft SQL Server
from scratch. You can find these files in the SQLScripts subfolder. You can
obtain a free copy of Microsoft SQL Server 2012 Express Edition at
www.microsoft.com/en-us/sqlserver/editions/2012-editions/express.aspx.

• We created the third set of databases using the popular open-source MySQL
version 5.6 Community Edition database system. You can use the scripts (.sql
file extension) you will find in the SQLScripts subfolder to create the database
structure, load the data, and create the sample views and stored procedures in
your own MySQL data folder. You can obtain a free copy of the community
edition of the MySQL database system at www.mysql.com/.

To install the sample files, see the file ReadMe.txt included in the files you can
download from www.informit.com/title/9780321992475.

 Note
Although we were very careful to use the most common and simplest syntax
for the CREATE TABLE, CREATE INDEX, CREATE CONSTRAINT, and
INSERT commands in the sample SQL scripts, you (or your database
administrator) might need to modify these files slightly to work with your
database system. If you’re working with a database system on a remote server,
you might need to gain permission from your database administrator to build
the samples from the SQL commands we supplied.

http://www.microsoft.com/en-us/sqlserver/editions/2012-editions/express.aspx
http://www.mysql.com/
http://www.informit.com/title/9780321992475

For the chapters in Parts II, III, IV, and VI that focus on the SELECT statement,
you’ll find all the example statements and solutions in the “example” version of each
sample database (for example, SalesOrdersExample, Entertainment-
AgencyExample). Because the examples in Part V modify the sample data, we
created “modify” versions of each of the sample databases (for example, Sales-
OrdersModify, EntertainmentAgencyModify). The sample databases for Part V also
include additional columns and tables not found in the SELECT examples that
enable us to demonstrate certain features of UPDATE, INSERT, and DELETE
queries.

 Caution
Throughout the book, we use ISO-Standard SQL when we explain concepts
and show you sample statements. In many cases, we were able to use this SQL
directly to create the sample Views or Stored Procedures that you’ll find in the
sample databases. However, in many cases we had to modify the sample SQL
so that it would work correctly with the target database system. For example,
to create date expressions or calculations, we chose to use the appropriate
function supported by the target database system. (For a list of all date and
time functions supported by five of the major database systems, see Appendix
C, “Date and Time Types, Operations, and Functions.”)
Also, although we used scripts that closely match the original samples in the
book, both Microsoft SQL Server and MySQL will modify the original SQL
to “optimize” it before saving the view or stored procedure. If you use Design
in SQL Server Management Studio or Alter in MySQL Workbench to edit the
view or procedure, what you see saved in the database might differ
considerably from the script we used to define the view or procedure. When in
doubt, always refer to the companion script file to see the SQL we used.

“Follow the Yellow Brick Road”
—Munchkin to Dorothy in The Wizard of Oz
Now that you’ve read through the Introduction, you’re ready to start learning SQL,
right? Well, maybe. At this point, you’re still in the house, it’s still being tossed
about by the tornado, and you haven’t left Kansas.
Before you make that jump to Chapter 4, “Creating a Sample Query,” take our
advice and read through the first three chapters. Chapter 1, “What Is Relational?,”
will give you an idea of how the relational database was conceived and how it has
grown to be the most widely used type of database in the industry today. We hope

this will give you some amount of insight into the database system you’re currently
using. In Chapter 2, “Ensuring Your Database Structure Is Sound,” you’ll learn how
to fine-tune your data structures so that your data is reliable and, above all, accurate.
You’re going to have a tough time working with some of the SQL statements if you
have poorly designed data structures, so we suggest you read this chapter carefully.
Chapter 3, “A Concise History of SQL,” is literally the beginning of the “yellow
brick road.” Here you’ll learn the origins of SQL and how it evolved into its current
form. You’ll also learn about some of the people and companies who helped pioneer
the language and why there are so many varieties of SQL. Finally, you’ll learn how
SQL came to be a national and international standard and what the outlook for SQL
will be in the years to come.
After you’ve read these chapters, consider yourself well on your way to Oz. Just
follow the road we’ve laid out through each of the remaining chapters. When you’ve
finished the book, you’ll find that you’ve found the wizard—and he is you.

Part I: Relational Databases and SQL

1. What Is Relational?

“Knowledge is the small part of ignorance
that we arrange and classify.”

—Ambrose Bierce

Topics Covered in This Chapter
Types of Databases
A Brief History of the Relational Model
Anatomy of a Relational Database
What’s in It for You?
Summary

Before jumping right into SQL, you should understand the logic behind the structure
of the databases that SQL supports. In this chapter, you’ll learn why the relational
database was invented, how it is constructed, and why you should use it. This
information provides the foundation you need to understand what SQL really is all
about and will eventually help to clarify how you can leverage SQL to your best
advantage.

Types of Databases
What is a database? As you probably know, a database is an organized collection of
data used to model some type of organization or organizational process. It really
doesn’t matter whether you’re using paper or an application program to collect and
store the data. You have a database as long as you’re collecting and storing data in
some organized manner for a specific purpose. Throughout the remainder of this
discussion, we’ll assume that you’re using an application program to collect and
maintain your data.
Generally, two types of databases are used in database management: operational
databases and analytical databases.
Operational databases are the backbone of many companies, organizations, and
institutions throughout the world today. This type of database is primarily used to
collect, modify, and maintain data on a day-to-day basis. The type of data stored is
dynamic, meaning that it changes constantly and always reflects up-to-the-minute
information. Organizations such as retail stores, manufacturing companies, hospitals
and clinics, and publishing houses use operational databases because their data is in a
constant state of flux.

In contrast, an analytical database stores and tracks historical and time-dependent
data. It is a valuable asset for tracking trends, viewing statistical data over a long
period of time, or making tactical or strategic business projections. The type of data
stored is static, meaning that the data is never (or very rarely) modified, although
new data might often be added. The information gleaned from an analytical database
reflects a point-in-time snapshot of the data and is usually not up to date. Chemical
labs, geological companies, and marketing analysis firms are examples of
organizations that use analytical databases. Note that the data found in analytical
databases is usually gleaned from an operational database. For example, sales history
each month might be summarized and saved in an analytical database.

A Brief History of the Relational Model
Several types of database models exist. Some, such as hierarchical and network, are
used only on legacy systems, while others, such as relational, have gained wide
acceptance. You might also encounter discussions in other books about object,
object-relational, or online analytical processing (OLAP) models. In fact, there are
extensions defined in the SQL Standard that support these models, and some
commercial database systems have implemented some of these extensions. For our
purposes, however, we will focus strictly on the relational model and the core of the
international SQL Standard.

In the Beginning . . .
The relational database was first conceived in 1969 and has arguably become the
most widely used database model in database management today. The father of the
relational model, Dr. Edgar F. Codd (1923–2003), was an IBM research scientist in
the late 1960s and was at that time looking into new ways to handle large amounts of
data. His dissatisfaction with database models and database products of the time led
him to begin thinking of ways to apply the disciplines and structures of mathematics
to solve the myriad problems he had been encountering. A mathematician by
profession, he strongly believed that he could apply specific branches of
mathematics to solve problems such as data redundancy, weak data integrity, and a
database structure’s overdependence on its physical implementation.
Dr. Codd formally presented his new relational model in a landmark work titled “A
Relational Model of Data for Large Shared Databanks” in June 1970.1 He based his
new model on two branches of mathematics—set theory and first-order predicate
logic. Indeed, the name of the model itself is derived from the term relation, which is
part of set theory. (A widely held misconception is that the relational model derives
its name from the fact that tables within a relational database can be related to one
another. However, the term relation in the model is used to describe what most

relational database systems call a table. Now that you know the truth, you’ll have a
peaceful, restful sleep tonight!) Fortunately, you don’t need to know the details of set
theory or first-order predicate logic to design and use a relational database. If you
use a good database design methodology—such as the one presented in Mike
Hernandez’s Database Design for Mere Mortals, Third Edition (Addison-Wesley,
2013)—you can develop a sound and effective database structure that you can
confidently use to collect and maintain any data. (Well, OK, you do need to
understand a little bit about predicates and set theory to solve more complex
problems. We cover the essentials that you need to know about predicates—really a
fancy name for a filter—in Chapter 6, “Filtering Your Data,” and the basics of set
theory in Chapter 7, “Thinking in Sets.”)

1Communications of the ACM, June 1970, 377–87.

Relational Database Systems
A relational database management system (RDBMS) is a software application
program you use to create, maintain, modify, and manipulate a relational database.
Many RDBMS programs also provide the tools you need to create end-user
applications that interact with the data stored in the database. RDBMS programs
have continually evolved since their first appearance, and they continue to become
more full-featured and powerful as advances occur in hardware technology and
operating environments.
In the earliest days of the relational database, RDBMSs were written for use on
mainframe computers. Two RDBMS programs prevalent in the early 1970s were
System R, developed by IBM at its San Jose Research Laboratory in California, and
Interactive Graphics Retrieval System (INGRES), developed at the University of
California at Berkeley. These two programs contributed greatly to the general
appreciation of the relational model.
As the benefits of the relational database became more widely known, many
companies decided to make a slow move from hierarchical and network database
models to the relational database model, thus creating a need for more and better
mainframe RDBMS programs. The 1980s saw the development of various
commercial RDBMSs for mainframe computers by companies such as Oracle and
IBM.
The early to mid-1980s saw the rise of the personal computer, and with it, the
development of PC-based RDBMS programs. Some of the early entries in this
category, from companies such as Ashton-Tate and Fox Software, were nothing
more than elementary file-based database-management systems. True PC-based
RDBMS programs began to emerge with products developed by companies such as

Microrim and Ansa Software. These companies helped to spread the idea and
potential of database management from the mainframe-dominated domain of
information systems departments to the desktop of the common end user.
The need to share data became apparent as more and more users worked with
databases throughout the late 1980s and early 1990s. The concept of a centrally
located database that could be made available to multiple users seemed a very
promising idea. This would certainly make data management and database security
much easier to implement. Database vendors such as Microsoft and Oracle
responded to this need by developing client/server RDBMS programs.
The manner in which databases are used evolved immensely over the years, and
many organizations began to realize that a lot of useful information could be
gathered from data they stored in various relational and nonrelational databases. This
prompted them to question whether there was a way to mine the data for useful
analytical information that they could then use to make critical business decisions.
Furthermore, they wondered whether they could consolidate and integrate their data
into a viable knowledgebase for their organizations. Indeed, these would be difficult
questions to answer.
IBM proposed the idea of a data warehouse, which, as originally conceived, would
enable organizations to access data stored in any number of nonrelational databases.
It was unsuccessful in its first attempts at implementing data warehouses, primarily
because of the complexities and performance problems associated with such a task.
Only since the 1990s has the implementation of data warehouses become more
viable and practical. William H. (Bill) Inmon, widely regarded as the father of the
data warehouse, is a strong and vocal advocate of the technology and has been
instrumental in its evolution. Data warehouses are now more commonplace as
companies move to leverage the vast amounts of data they’ve stored in their
databases over the years.
The Internet has had a significant impact on the way organizations use databases.
Many companies and businesses use the Web to expand their consumer base, and
much of the data they share with and gather from these consumers is stored in a
database. Developers commonly use eXtensible Markup Language (XML) to
assemble and consolidate data from various relational and nonrelational systems.
There has been a considerable effort by various vendors to get their clients to create
databases and store data in the “cloud”; that is, a location that is completely apart
from the client’s location. The idea is that the client can access data from the cloud
database via the Internet from anywhere at any time. Given the broad emergence and
use of connected devices within the past few years (as of this writing), it will be
interesting to see how database management systems evolve within this type of
environment.

Anatomy of a Relational Database
According to the relational model, data in a relational database is stored in relations,
which are perceived by the user as tables. Each relation is composed of tuples
(records or rows) and attributes (fields or columns). A relational database has several
other characteristics, which are discussed in this section.

Tables
Tables are the main structures in the database. Each table always represents a single,
specific subject. The logical order of records and fields within a table is of absolutely
no importance. Every table contains at least one field—known as a primary key—
that uniquely identifies each of its records. (In Figure 1–1, for example, CustomerID
is the primary key of the Customers table.) In fact, data in a relational database can
exist independent of the way it is physically stored in the computer because of these
last two table characteristics. This is great news for users because they aren’t
required to know the physical location of a record in order to retrieve its data.

Figure 1–1 A sample table

The subject that a given table represents can be either an object or an event. When
the subject is an object, the table represents something that is tangible, such as a
person, place, or thing. Regardless of its type, every object has characteristics that
can be stored as data. You can then process this data in an almost infinite number of
ways. Pilots, products, machines, students, buildings, and equipment are all
examples of objects that can be represented by a table. Figure 1–1 illustrates one of
the most common examples of this type of table.
When the subject of a table is an event, the table represents something that occurs at
a given point in time and has characteristics you wish to record. These characteristics
can be stored as data and then processed as information in exactly the same manner
as a table that represents some specific object. Examples of events you might need to
record include judicial hearings, distributions of funds, lab test results, and
geological surveys. Figure 1–2 shows an example of a table representing an event

that we all have experienced at one time or another—a doctor’s appointment.

Figure 1–2 A table representing an event

Fields
A field is the smallest structure in the database, and it represents a characteristic of
the subject of the table to which it belongs. Fields are the structures that store data.
You can retrieve the data in these fields and then present it as information in almost
any configuration imaginable. Remember that the quality of the information you get
from your data is in direct proportion to the amount of time you’ve dedicated to
ensuring the structural integrity and data integrity of the fields themselves. There is
just no way to underestimate the importance of fields.
Every field in a properly designed database contains one and only one value, and its
name identifies the type of value it holds. This makes entering data into a field very
intuitive. If you see fields with names such as FirstName, LastName, City, State, and
ZipCode, you know exactly what type of value goes into each field. You’ll also find
it very easy to sort the data by state or to look for everyone whose last name is
Viescas.

Records
A record represents a unique instance of the subject of a table. It is composed of the
entire set of fields in a table, regardless of whether or not the fields contain any
values. Because of the manner in which a table is defined, each record is identified
throughout the database by a unique value in the primary key field of that record.
In Figure 1–1 (on page 8), for example, each record represents a unique customer
within the table, and the CustomerID field identifies a given customer throughout the
database. In turn, each record includes all the fields within the table, and each field
describes some aspect of the customer represented by the record. Records are a key
factor in understanding table relationships because you need to know how a record in
one table relates to other records in another table.

Keys

Keys are special fields that play very specific roles within a table. The type of key
determines its purpose within the table. Although a table might contain several types
of keys, we will limit our discussion to the two most important ones: the primary key
and the foreign key.
A primary key is a field or group of fields that uniquely identifies each record within
a table. (When a primary key is composed of two or more fields, it is known as a
composite primary key.) The primary key is the most important for two reasons: Its
value identifies a specific record throughout the entire database, and its field
identifies a given table throughout the entire database. Primary keys also enforce
table-level integrity and help establish relationships with other tables. Every table in
your database should have a primary key.
The AgentID field in Figure 1–3 is a good example of a primary key because it
uniquely identifies each agent within the Agents table and helps to guarantee table-
level integrity by ensuring nonduplicate records. It is also used to establish
relationships between the Agents table and other tables in the database, such as the
Entertainers table shown in the example.

Figure 1–3 Primary and foreign keys

When you determine that a pair of tables has a relationship to each other, you
typically establish the relationship by taking a copy of the primary key from the first
table and inserting it into the second table, where it becomes a foreign key. (The
term foreign key is derived from the fact that the second table already has a primary
key of its own, and the primary key you are introducing from the first table is foreign
to the second table.)
Figure 1–3 also shows a good example of a foreign key. In this example, Agent-ID is
the primary key of the Agents table, and it is a foreign key in the Entertainers table.
As you can see, the Entertainers table already has a primary key—EntertainerID. In
this relationship, AgentID is the field that establishes the connection between Agents
and Entertainers.

Foreign keys are important not only for the obvious reason that they help establish
relationships between pairs of tables but also because they help ensure relationship-
level integrity. This means that the records in both tables will always be properly
related because the values of a foreign key must be drawn from the values of the
primary key to which it refers. Foreign keys also help you avoid the dreaded
“orphaned records,” a classic example of which is an order record without an
associated customer. If you don’t know who placed the order, you can’t process it,
and you obviously can’t invoice it. That’ll throw off your quarterly sales!

Views
A view is a virtual table composed of fields from one or more tables in the database.
The tables that comprise the view are known as base tables. The relational model
refers to a view as virtual because it draws data from base tables rather than storing
any data on its own. In fact, the only information about a view that is stored in the
database is its structure.
Views enable you to see the information in your database from many different
perspectives, thus providing great flexibility for working with data. You can create
views in a variety of ways—they are especially useful when based on multiple
related tables. For example, you can create a view that summarizes information such
as the total number of hours worked by every carpenter within the downtown Seattle
area. Or you can create a view that groups data by specific fields. An example of this
type of view is displaying the total number of employees in each city within every
state of a specified set of regions. Figure 1–4 (on page 12) presents an example of a
typical view.

Figure 1–4 A sample view
In many RDBMS programs, a view is commonly implemented and referred to as a
saved query or, more simply, a query. In most cases, a query has all the
characteristics of a view, so the only difference is that it is referred to by a different
name. (We often wonder if someone in some marketing department had something
to do with this.) It’s important to note that some vendors refer to a query by its real
name. Regardless of what it’s called in your RDBMS program, you’ll certainly use
views in your database.
Having said that, the name of this book is SQL Queries for Mere Mortals, but we’re
really focused on teaching you how to build views. As you’ll learn in Chapter 2,
“Ensuring Your Database Structure Is Sound,” the correct way to design a relational
database is to break up your data so that you have one table per subject or event.
Most of the time, however, you’ll want to get information about related subjects or
events—which customers placed what orders or what classes are taught by which
instructors. To do that, you need to build a view, and you need to know SQL to do
that.

Relationships
If records in a given table can be associated in some way with records in another

table, the tables are said to have a relationship between them. The manner in which
the relationship is established depends on the type of relationship. Three types of
relationships can exist between a pair of tables: one-to-one, one-to-many, or many-
to-many. Understanding relationships is crucial to understanding how views work
and, by definition, how multi-table SQL queries are designed and used. (You’ll learn
more about this in Part III, “Working with Multiple Tables.”)

One-to-One
A pair of tables has a one-to-one relationship when a single record in the first table is
related to only one record in the second table, and a single record in the second table
is related to only one record in the first table. In this type of relationship, one table is
referred to as the primary table, and the other is referred to as the secondary table.
The relationship is established by taking the primary key of the primary table and
inserting it into the secondary table, where it becomes a foreign key. This is a special
type of relationship because in nearly all cases the foreign key also acts as the
primary key of the secondary table.
Figure 1-5 shows an example of a typical one-to-one relationship in which Agents is
the primary table and Compensation is the secondary table. The relationship between
these tables is such that a single record in the Agents table can be related to only one
record in the Compensation table, and a single record in the Compensation table can
be related to only one record in the Agents table. Note that AgentID is indeed the
primary key in both tables but also serves as a foreign key in the secondary table.

Figure 1–5 An example of a one-to-one relationship
The selection of the table that will play the primary role in this type of relationship is
purely arbitrary. One-to-one relationships are not very common and are usually
found in cases where a table has been split into two parts for confidentiality
purposes.

One-to-Many

When a pair of tables has a one-to-many relationship, a single record in the first table
can be related to many records in the second table, but a single record in the second
table can be related to only one record in the first table. This relationship is
established by taking the primary key of the table on the “one” side and inserting it
into the table on the “many” side, where it becomes a foreign key.
Figure 1–6 shows a typical one-to-many relationship. In this example, a single record
in the Entertainers table can be related to many records in the Engagements table, but
a single record in the Engagements table can be related to only one record in the
Entertainers table. As you probably have guessed, EntertainerID is a foreign key in
the Engagements table.

Figure 1–6 An example of a one-to-many relationship

Many-to-Many
A pair of tables is in a many-to-many relationship when a single record in the first
table can be related to many records in the second table, and a single record in the
second table can be related to many records in the first table. In order to establish this
relationship properly, you must create what is known as a linking table. This table
provides an easy way to associate records from one table with those of the other and
will help to ensure that you have no problems adding, deleting, or modifying any
related data. You define a linking table by taking a copy of the primary key of each
table in the relationship and using them to form the structure of the new table. These
fields actually serve two distinct roles: Together they form the composite primary
key of the linking table, and separately they each serve as a foreign key.
A many-to-many relationship that has not been properly established is said to be
unresolved. Figure 1–7 shows a clear example of an unresolved many-to-many
relationship. In this case, a single record in the Customers table can be related to
many records in the Entertainers table, and a single record in the Entertainers table

can be related to many records in the Customers table.

Figure 1–7 An unresolved many-to-many relationship

This relationship is unresolved because of the inherent problem with a many-to-
many relationship. The issue is this: How do you easily associate records from the
first table with records in the second table? To reframe the question in terms of the
tables shown in Figure 1–7, how do you associate a single customer with several
entertainers or a specific entertainer with several customers? (If you are running an
entertainment booking agency, you certainly hope that any one customer will book
multiple entertainers over time and that any one entertainer has more than one
customer!) Do you insert a few fields from the Customers table into the Entertainers
table? Or do you add several fields from the Entertainers table to the Customers
table? Either of these approaches is going to create a number of problems when you
try to work with related data, not least of which regards data integrity. The solution
to this dilemma is to create a linking table in the manner previously stated. By
creating and using the linking table, you can properly resolve the many-to-many
relationship. Figure 1–8 (on page 16) shows this solution in practice.

Figure 1–8 A properly resolved many-to-many relationship
The linking table in Figure 1-8 was created by taking the CustomerID from the
Customers table and the EntertainerID from the Entertainers table and using them as
the basis for a new table. As with any other table in the database, the new linking
table has its own name—Engagements. In fact, the Engagements table is a good
example of a table that stores the information about an event. Entertainer 1003 (JV &
the Deep Six) played an engagement for customer 10001 (Doris Hartwig) on
February 23. The real advantage of a linking table is that it allows you to associate
any number of records from both tables in the relationship. As the example shows,
you can now easily associate a given customer with any number of entertainers or a
specific entertainer with any number of customers.
As we stated earlier, understanding relationships will pay great dividends when you
begin to work with multi-table SQL queries, so be sure to revisit this section when
you begin working on Part III of this book.

What’s in It for You?
Why should you be concerned with understanding relational databases? Why should
you even care what kind of environment you’re using to work with your data? And
in addition to all this, what’s really in it for you? Here’s where the enlightenment

starts and the fun begins.
The time you spend learning about relational databases is an investment, and it is to
your distinct advantage to do so. You should develop a good working knowledge of
the relational database because it’s the most widely used data model in existence
today. Forget what you read in the trades and what Harry over in the Information
Technology Services department told you—a vast majority of the data being used by
businesses and organizations is being collected, maintained, and manipulated in
relational databases. Yes, there have been extensions to the model, the application
programs that work with relational databases have been injected with object
orientation, and relational databases have been thoroughly integrated into the Web.
But no matter how you slice it, dice it, and spice it, it’s still a relational database!
The relational database has been around for more than 40 years, it’s still going
strong, and it’s not going be replaced any time in the foreseeable future.
Nearly all commercial database management software used today is relational.
(However, folks such as C. J. Date and Fabian Pascal might seriously question
whether any commercial implementation is truly relational!) If you want to be
gainfully employed in the database field, you’d better know how to design a
relational database and how to implement it using one of the popular RDBMS
programs. And now that so many companies and corporations depend on the
Internet, the cloud, and connected services, you’d better have some Web
development experience under your belt as well.
Having a good working knowledge of relational databases is helpful in many ways.
For instance, the more you know about how relational databases are designed, the
easier it will be for you to develop end-user applications for a given database. You’ll
also be surprised by how intuitive your RDBMS program will become because
you’ll understand why it provides the tools it does and how to use those tools to your
best advantage. Your working knowledge will be a great asset as you learn how to
use SQL because SQL is the standard language for creating, maintaining, and
working with a relational database.

Where Do You Go from Here?
Now that you know the importance of learning about relational databases, you must
understand that there is a difference between database theory and database design.
Database theory involves the principles and rules that formulate the basis of the
relational database model. It is what is learned in the hallowed halls of academia and
then quickly dismissed in the dark dens of the real world. But theory is important,
nonetheless, because it guarantees that the relational database is structurally sound
and that all actions taken on the data in the database have predictable results. On the
other hand, database design involves the structured, organized set of processes used

to design a relational database. A good database design methodology will help you
ensure the integrity, consistency, and accuracy of the data in the database and
guarantee that any information you retrieve will be as accurate and up to date as
possible.
If you want to design and create enterprise-wide databases, or develop Web-based
Internet commerce databases, or begin to delve into data warehousing, you should
seriously think about studying database theory. This applies even if you’re not going
to explore any of these areas but are considering becoming a high-end database
consultant. For the rest of you who are going to design and create relational
databases on a variety of platforms (which, we believe, is the vast majority of the
people reading this book), learning a good, solid database design methodology will
serve you well. Always remember that designing a database is relatively easy, but
implementing a database within a specific RDBMS program on a particular platform
is another issue altogether. (Another story, another book, another time.)
There are a number of good database design books on the market. Some, such as
Mike Hernandez’s companion book Database Design for Mere Mortals, Third
Edition (Addison-Wesley, 2013), deal only with database design methodologies.
Others, such as C. J. Date’s An Introduction to Database Systems, Eighth Edition
(Addison-Wesley, 2003), mix both theory and design. (Be warned, though, that the
books dealing with theory are not necessarily light reading.) After you decide in
which direction you want to go, select and purchase the appropriate books, grab a
double espresso (or your beverage of choice), and dig right in. After you become
comfortable with relational databases in general, you’ll find that you will need to
study and become very familiar with SQL.
And that’s why you’re reading this book.

Summary
We began this chapter with a brief discussion of the different types of databases
commonly found today. You learned that organizations working with dynamic data
use operational databases, ensuring that the information retrieved is always as
accurate and up-to-the-minute as possible. You also learned that organizations
working with static data use analytical databases.
We then looked at a brief history of the relational database model. We explained that
Dr. E. F. Codd created the model based on specific branches of mathematics and that
the model has been in existence for more than 40 years. Database software, as you
now know, has been developed for various computer environments and has steadily
grown in power, performance, and capability since the 1970s. From the mainframe
to the desktop to the Web to connected services, RDBMS programs are the backbone

of many organizations today.
Next, we looked at an anatomy of a relational database. We introduced you to its
basic components and briefly explained their purpose. You learned about the three
types of relationships and now understand their importance, not only in terms of the
database structure itself but also as they relate to your understanding of SQL.
Finally, we explained why it’s to your advantage to learn about relational databases
and how to design them. You now know that the relational database is the most
common type of database in use today and that just about every database software
program you’re likely to encounter will be used to support a relational database. You
now have some ideas of how to pursue your education on relational database theory
and design a little further.
In the next chapter, you’ll learn some techniques to fine-tune your existing database
structures.

2. Ensuring Your Database Structure Is Sound

“We shape our buildings: thereafter, they shape us.”
—Sir Winston Churchill

Topics Covered in This Chapter
Why Is This Chapter Here?
Why Worry about Sound Structures?
Fine-Tuning Fields
Fine-Tuning Tables
Establishing Solid Relationships
Is That All?
Summary

Most of you reading this book are probably working with an existing database
structure implemented on your favorite (we hope) RDBMS program. It’s hard for us
to assume, at this point, whether or not you—or the person who developed the
database—really had the necessary knowledge and skills or the time to design the
database properly. Assuming the worst, you probably have a number of tables that
could use some fine-tuning. Fortunately, you’re about to learn some techniques that
will help you get your database in shape and will ensure that you can easily retrieve
the information you need from your tables.

Why Is This Chapter Here?
You might wonder why we’re discussing database design topics in this book and
why they’re included in a beginning chapter. The reason is simple: If you have a
poorly designed database structure, many of the SQL statements you’ll learn to build
in the remainder of the book will be, at best, difficult to implement or, at worst,
relatively useless. However, if you have a well-designed database structure, the skills
you learn in this book will serve you well.
This chapter will not teach you the intricacies of database design, but it will help you
get your database in relatively good shape. We highly recommend that you read
through this chapter so that you can make certain your table structures are sound.

 Note
It is important to understand that we are about to discuss the logical design of

the database. We’re not teaching you how to create or implement a database in
a database management system that supports SQL because, as we mentioned
in the Introduction, these subjects are beyond the scope of this book.

Why Worry about Sound Structures?
If your database structure isn’t sound, you’ll have problems retrieving seemingly
simple information from your database, it will be difficult to work with your data,
and you’ll cringe every time you need to add or delete fields in your tables. Other
aspects of the database, such as data integrity, table relationships, and the ability to
retrieve accurate information, are affected when you have poorly designed structures.
These issues are just the tip of the iceberg. And it goes on! Make sure you have
sound structures to avoid all this grief.
You can avoid many of these problems if you properly design your database from
the beginning. Even if you’ve already designed your database, all is not lost. You
can still apply the following techniques and gain the benefits of a sound structure.
However, you must be aware that the quality of your final structures is in direct
proportion to the amount of time you invest in fine-tuning them. The more care and
patience you give to applying the techniques, the more you can guarantee your
success.
Let’s now turn to the first order of business in shaping up your structures: working
with the fields.

Fine-Tuning Fields
Because fields are the most basic structures in a database, you must ensure that they
are in tip-top shape before you begin fine-tuning the tables as a whole. Fixing the
fields usually will eliminate a number of existing problems with a given table and
help you avoid any potential problems that might have arisen.

What’s in a Name? (Part One)
As you learned in the previous chapter, a field represents a characteristic of the
subject of the table to which it belongs. If you give the field an appropriate name,
you should be able to identify the characteristic it’s supposed to represent. A name
that is ambiguous, vague, or unclear is a sure sign of trouble and suggests that the
purpose of the field has not been carefully thought out. Use the following checklist
to test each of your field names:

• Is the name descriptive and meaningful to your entire organization? If users in
several departments are going to work with this database, make certain you

choose a name that is meaningful to everyone who accesses this field.
Semantics is a funny thing, and if you use a word that has a different meaning
to different groups of people, you’re just inviting trouble.

• Is the field name clear and unambiguous? PhoneNumber is a field name that
can be very misleading. What kind of phone number is this field supposed to
represent? A home phone? A work phone? A cellular phone? Learn to be
specific. If you need to record each of these types of phone numbers, then
create HomePhone, WorkPhone, and CellPhone fields.
In addition to making your field names clear and unambiguous, be sure that
you don’t use the same field name in several tables. Let’s say you have three
tables called Customers, Vendors, and Employees. No doubt you will have
City and State fields in each of these tables, and the fields will have the same
names in all three tables. There isn’t a problem with this until you have to refer
to one particular field. How do you distinguish between, say, the City field in
the Vendors table, the City field in the Customers table, and the City field in
the Employees table? The answer is simple: Add a short prefix to each of the
field names. For example, use the name VendCity in the Vendors table,
CustCity in the Customers table, and EmpCity in the Employees table. Now
you can easily make a clear reference to any of these fields. (You can use this
technique on any generic field such as FirstName, LastName, and Address.)
Here’s the main thing to remember: Make sure that each field in your database
has a unique name and that it appears only once in the entire database
structure. The only exception to this rule is when a field is being used to
establish a relationship between two tables.

 Note
The degree to which you use prefixes within a table is a matter of style. When
a table contains generic field names, some database designers will choose to
prefix the generic names only, while others elect to prefix all of the field
names within the table. Regardless of the prefix method you use, it is very
important that you use it consistently throughout the database structure.

• Did you use an acronym or abbreviation as a field name? If you did, change
it! Acronyms can be hard to decipher and are easily misunderstood. Imagine
seeing a field named CAD_SW. How would you know what the field
represents? Use abbreviations sparingly, and handle them with care. Use an
abbreviation only if it supplements or enhances the field name in a positive
manner. It shouldn’t detract from the meaning of the field name.

• Did you use a name that implicitly or explicitly identifies more than one
characteristic? These types of names are easy to spot because they typically
use the words and or or. Field names that contain a back slash (\), a hyphen (-),
or an ampersand (&) are dead giveaways as well. If you have fields with names
such as Phone\Fax or Area or Location, review the data that they store and
determine whether you need to deconstruct them into smaller, distinct fields.

 Note
The SQL Standard defines a regular identifier as a name that must begin with
a letter and can contain only letters, numbers, and the underscore character.
Spaces are not allowed. It also defines a delimited identifier as a name—
surrounded with double quotes—that must start with a letter and can contain
letters, numbers, the underscore character, spaces, and a very specific set of
special characters. We recommend that you use this naming convention
exclusively for your field names because many SQL implementations support
only the regular identifier naming convention.

After using this checklist to revise your field names, you have one task left: Make
certain you use the singular form of the field name. A field with a plural name such
as Categories implies that it might contain two or more values for any given record,
which is not a good idea. A field name is singular because it represents a single
characteristic of the subject of the table to which it belongs. A table name, on the
other hand, is plural because it represents a collection of similar objects or events.
You can distinguish table names from field names quite easily when you use this
naming convention.

 Note
Although we recommended that you use the SQL Standard naming
convention, keep in mind that the field names are likely to change when you
(or the database developer in charge of implementing the database) begin
implementing the database into a specific RDBMS application. The names
will need to conform to the naming convention that developers commonly use
for the RDBMS.

Smoothing Out the Rough Edges
Now that you’ve straightened out the field names, let’s focus on the structure of the
field itself. You might be fairly sure that your fields are sound, but you can still do a
few things to make certain they’re built as efficiently as possible. Test your fields

against the following checklist to determine whether or not your fields need a little
more work:

• Make sure the field represents a specific characteristic of the subject of the
table. The idea here is to determine whether the field truly belongs in the table.
If it isn’t germane to the table, remove it, or perhaps move it to another table.
The only exceptions to this rule occur when the field is being used to establish
a relationship between this table and other tables in the database or when it has
been added to the table in support of some task required by a database
application. For example, in the Classes table in Figure 2–1 (on page 26), the
StaffLastName and StaffFirstName fields are unnecessary because of the
presence of the StaffID field. StaffID is being used to establish a relationship
between the Classes table and the Staff table, and you can view data from both
tables simultaneously by using a view or an SQL SELECT query. If you have
unnecessary fields in your tables, you can either remove them completely or
use them as the basis of a new table if they don’t appear anywhere else in the
database structure. (We’ll show you how to do this later in this chapter.)

Figure 2–1 A table with unnecessary fields

• Make certain that the field contains only a single value. A field that can
potentially store several instances of the same type of value is known as a
multivalued field. (A field that contains multiple phone numbers is an example
of a multivalued field.) Likewise, a field that can potentially store two or more
distinct values is known as a multipart field. (A field that contains both an item
number and an item description is an example of a multipart field.)
Multivalued and multipart fields can wreak havoc in your database, especially
when you try to edit, delete, or sort the data. When you ensure that each field
stores only a single value, you go a long way toward guaranteeing data
integrity and accurate information. But for the time being, just try to identify
any multivalued or multipart fields and make note of them. You’ll learn how to
resolve them in the next section.

• Make sure the field does not store the result of a calculation or concatenation.
Calculated fields are not allowed in a properly designed table. The issue here is
the value of the calculated field itself. A field, unlike a cell in a spreadsheet,
does not store an actual calculation. When the value of any part of the
calculation changes, the result value stored in the field is not updated. The only
ways to update the value are to do so manually or to write some procedural
code that will do it automatically. Either way, it is incumbent on the user or
you, the developer, to make certain the value is updated. The preferred way to
work with a calculation, however, is to incorporate it into a SELECT
statement. You’ll learn the advantages of dealing with calculations in this
manner when you get to Chapter 5, “Getting More Than Simple Columns.”

• Make certain the field appears only once in the entire database. If you’ve
made the common mistake of inserting the same field (for example,
CompanyName) into several tables within the database, you’re going to have a
problem with inconsistent data. This occurs when you change the value of this
field in one table and then forget to make the same modification wherever else
the field appears. Avoid this problem entirely by ensuring that a field appears
only once in the entire database structure. (The only exception to this rule is
when you’re using a field to establish a relationship between two tables.)

 Note
The most recent versions of some commercially available database
management systems allow you to define a column that is the result of a
calculated expression. You can define calculated fields if your database
system has this feature, but be aware that the database system requires

additional resources to keep the calculated value current any time the value of
one of the fields in the expression changes.

Resolving Multipart Fields
As we mentioned earlier, multipart and multivalued fields will wreak havoc with
data integrity, so you need to resolve them in order to avoid any potential problems.
Deciding which to resolve first is purely arbitrary, so we’ll begin with multipart
fields.
You’ll know if you have a multipart field by answering some very simple questions:
“Can I take the current value of this field and break it up into smaller, more distinct
parts?” “Will I have problems extracting a specific piece of information because it is
buried in a field containing other information?” If your answer to either question is
“Yes,” you have a multipart field. Figure 2–2 shows a poorly designed table with
several multipart fields.

Figure 2–2 A table with multipart fields
The Customers table shown in the figure contains two multipart fields:
CustomerName, and Street Address. There’s also one field that is potentially
multipart: PhoneNumber. How can you sort the data by last name or ZIP Code? You
can’t because these values are embedded in fields that contain other information.
You can see that each field can be broken into smaller fields. For example,
CustomerName can be broken into two distinct fields—CustFirstName and
CustLastName. (Note that we’re using the naming convention discussed earlier in
this chapter when we add the prefix Cust to the FirstName and LastName fields.)
When you identify a multipart field in a table, determine how many parts there are to
the value it stores, and then break the field into as many smaller fields as appropriate.

Figure 2–3 shows how to resolve two of the multipart fields in the Customers table.

Figure 2–3 The resolution of the multipart fields in the Customers table

 Note
Along with breaking down CustomerName and StreetAddress, it might also
be a good idea in a database storing phone numbers in North America to break
PhoneNumber into two distinct fields—area code and the local phone number.
In other countries, separating out the city code portion of the phone number
might be useful. In truth, most business databases store a phone number as
one field, but separating out the area or city code might be important for
databases that analyze demographic data. Unfortunately, we couldn’t
demonstrate this in Figure 2–3 due to space limitations.

Sometimes you might have difficulty recognizing a multipart field. Take a look at
the Instruments table shown in Figure 2–4 (on page 30). At first glance, there do not
seem to be any multipart fields. On closer inspection, however, you will see that
InstrumentID is actually a multipart field. The value stored in this field represents
two distinct pieces of information: the category to which the instrument belongs—
such as AMP (amplifier), GUIT (guitar), and MFX (multi-effects unit)—and its
identification number. You should separate these two values and store them in their
own fields to ensure data integrity. Imagine the difficulty of updating this field if the
MFX category changed to MFU. You would have to write code to parse the value in
this field, test for the existence of MFX, and then replace it with MFU if it does exist
within the parsed value. It’s not so much that you couldn’t do this, but you’d
definitely be working harder than necessary, and you shouldn’t have to go through
this at all if your database is properly designed. When you have fields such as the
one in this example, break them into smaller fields so that you will have sound,
efficient field structures.

Figure 2–4 An example of a subtle multipart field

Resolving Multivalued Fields
Resolving multipart fields is not very hard at all, but resolving multivalued fields can
be a little more difficult and will take some work. Fortunately, identifying a
multivalued field is easy. Almost without exception, the data stored in this type of
field contains a number of commas, semicolons, or other common separator
characters. The separator characters are used to separate the various values within
the field itself. Figure 2–5 shows an example of a multivalued field.

Figure 2–5 A table with a multivalued field

In this example, each pilot is certified to fly any number of planes, and those
certifications are stored in a single field called Certifications. The manner in which
the data is stored in this field is very troublesome because you are bound to
encounter the same type of data integrity problems associated with multipart fields.
When you look at the data more closely, you’ll see that it will be difficult for you to
perform searches and sorts on this field in an SQL query. Before you can resolve this
field in the appropriate manner, you must first understand the true relationship

between a multivalued field and the table to which it is originally assigned.
The values in a multivalued field have a many-to-many relationship with every
record in its parent table: One specific value in a multivalued field can be associated
with any number of records in the parent table, and a single record in the parent table
can be associated with any number of values in the multivalued field. In Figure 2–5,
for example, a specific aircraft in the Certifications field can be associated with any
number of pilots, and a single pilot can be associated with any number of aircraft in
the Certifications field. You resolve this many-to-many relationship as you would
any other many-to-many relationship within the database—with a linking table.
You can create the linking table by using the multivalued field and a copy of the
primary key field from the original table as the basis for the new table. Give the new
linking table an appropriate name, and designate both fields as a composite primary
key. (In this case, the combination of the values of both fields will uniquely identify
each record within the new table.) Now you can associate the values of both fields in
the linking table on a one-to-one basis. Figure 2–6 (on page 32) shows an example of
this process using the Pilots table shown in Figure 2–5.

Figure 2–6 Resolving a multivalued field by using a linking table
Contrast the entries for Sam Alborous (PilotID 25100) in both the old Pilots table
and the new Pilot_Certifications table. The major advantage of the new linking table
is that you can now associate any number of certifications with a single pilot. Asking
certain types of questions is now much easier as well. For example, you can
determine which pilots are certified to fly a Boeing 747 aircraft or retrieve a list of
certifications for a specific pilot. You’ll also find that you can sort the data in any
order you wish, without any adverse effects.

 Note
Some database management systems—most notably Microsoft Office Access
2007 and later—allow you to explicitly define multivalued fields. The
database system does this, however, by creating a hidden system table similar
to the linking table shown in Figure 2–6. Frankly, we like to see and control
our table designs, so we recommend that you create the correct data structures

yourself rather than depend on a feature in your database system.

Your fields will be in good shape when you follow the procedures presented in this
section. Now that you’ve refined the fields, let’s turn to our second order of business
and take a look at the table structures.

Fine-Tuning Tables
Tables serve as the basis for any SQL query you create. You’ll soon find that poorly
designed tables pose data integrity problems and are difficult to work with when you
create multi-table SQL queries. As a result, you must make certain that your tables
are structured as efficiently as possible so that you can easily retrieve the information
you need.

What’s in a Name? (Part Two)
In the section on fields, you learned how important it is for a field to have an
appropriate name and why you should give serious thought to naming your fields.
You’ll soon learn that the same applies to tables as well. By definition, a table should
represent a single subject. If it represents more than one subject, it should be divided
into smaller tables. The name of the table must clearly identify the subject the table
represents. You can be confident that the subject of the table has not been carefully
thought out if a table name is ambiguous, vague, or unclear. Make sure your table
names are sound by checking them against the following checklist:

• Is the name unique and descriptive enough to be meaningful to your entire
organization? Giving your table a unique name ensures that each table in the
database represents a different subject and that everyone in the organization
will understand what the table represents. Defining a unique and descriptive
name does take some work on your part, but it’s well worth the effort in the
long run.

• Does the name accurately, clearly, and unambiguously identify the subject of
the table? When the table name is vague or ambiguous, you can bet that the
table represents more than one subject. For example, Dates is a vague table
name. It’s hard to determine exactly what this table represents unless you have
a description of the table at hand. Let’s say this table appears in a database
used by an entertainment agency. If you inspect this table closely, you’ll
probably find that it contains dates for client meetings and booking dates for
the agency’s stable of entertainers. This table clearly represents two subjects.
You can resolve this issue by dividing the table into two new tables and give
each table an appropriate name, such as Client_Meetings and

Entertainer_Schedules.
• Does the name contain words that convey physical characteristics? Avoid

using words such as File, Record, and Table in the table name because they
introduce a level of confusion that you don’t need. A table name that includes
this type of word is very likely to represent more than one subject. Consider
the name Employee_Record. On the surface, there doesn’t appear to be any
problem with this name. When you think about what an employee record is
supposed to represent, however, you’ll realize that there are potential
problems. The name contains a word that we’re trying hard to avoid, and it
potentially represents three subjects: employees, departments, and payroll.
With this in mind, split the original table (Employee_Record) into three new
tables, one for each of the three subjects.

• Did you use an acronym or abbreviation as a table name? If the answer to this
question is “Yes,” change the name right now! Abbreviations rarely convey the
subject of the table, and acronyms are usually hard to decipher. Suppose your
company database has a table named SC. How do you know what the table
represents without knowing the meaning of the letters themselves? The fact is
that you can’t easily identify the subject of the table. What’s more, you might
find that the table means different things to different departments in the
company. (Now, this is scary.) The folks in Personnel think it stands for
Steering_Committees; the Information Systems staff believes it to be
System_Configurations; and the people in Security insist that it represents
Security_Codes. This example clearly illustrates why you should avoid using
abbreviations and acronyms in a table name.

• Did you use a name that implicitly or explicitly identifies more than one
subject? This is one of the most common mistakes you can make with a table
name, and it is relatively easy to identify. This type of name typically contains
the words and or or and characters such as the back slash (\), hyphen (-), or
ampersand (&). Facility\Building and Department or Branch are typical
examples. When you name a table in this manner, you must clearly identify
whether it truly represents more than one subject. If it does, deconstruct it into
smaller tables, and then give the new tables appropriate names.

 Note
Remember that the SQL Standard defines a regular identifier as a name that
must begin with a letter and can contain only letters, numbers, and the
underscore character. Spaces are not allowed. It also defines a delimited
identifier as a name—surrounded with double quotes—that must start with a
letter and can contain letters, numbers, the underscore character spaces, and a

very specific set of special characters. We recommend that you use this
naming convention exclusively for your table names because many SQL
implementations support only the regular identifier naming convention.

After you’ve finished revising your table names, you have one more task to perform:
Check each table name again once more, and make certain you used the plural form
of the name. You use the plural form because a table stores a collection of instances
of the subject of the table. For example, an Employees table stores the data not for
only one employee but for many employees. Using the plural form also helps you to
distinguish a table name from a field name.

 Note
The guideline for using a plural form for a table name is a particularly good
one while you’re working on the logical design of the database. It makes it
very easy to differentiate table names from field names, especially when
you’re displaying them on a projection screen or when you’ve written them all
across a whiteboard in a conference room.
Keep in mind, however, that the table names are likely to change when you
(or the database developer in charge of implementing the database) begin
implementing the database into a specific RDBMS application. The names
will then need to conform to the naming convention that developers
commonly use for the RDBMS.

Ensuring a Sound Structure
Let’s focus on the table structures now that you’ve revised the table names. It’s
imperative that the tables are properly designed so that you can efficiently store data
and retrieve accurate information. The time you spend ensuring your tables are well
built will pay dividends when you need to create complex multi-table SQL queries.
Use the following checklist to determine whether your table structures are sound:

• Make sure the table represents a single subject. Yes, we know, we’ve said this
a number of times already, but we can’t overemphasize this point. As long as
you guarantee that each of your tables represents a single subject, you greatly
reduce the risk of potential data integrity problems. Also remember that the
subject represented by the table can be an object or event. By “object” we
mean something that is tangible, such as employees, vendors, machines,
buildings, or departments, whereas an “event” is something that happens at a
given point in time that has characteristics you want to record. The best
example of an event that everyone can relate to is a doctor’s appointment.

Although you can’t explicitly touch a doctor’s appointment, it does have
characteristics that you need to record, such as the appointment date, the
appointment time, the patient’s blood pressure, and the patient’s temperature.

• Make certain each table has a primary key. You must assign a primary key to
each table for two reasons. First, the primary key uniquely identifies each
record within a table, and second, it is used in establishing table relationships.
If you do not assign a primary key to each table, you will eventually have data
integrity problems and problems with some types of multi-table SQL queries.
You’ll learn some tips on how to define a proper primary key later in this
chapter.

• Make sure the table does not contain any multipart or multivalued fields.
Theoretically, you should have resolved these issues when you refined the field
structures. Nonetheless, it’s still a good idea to review the fields one last time
to ensure that you’ve completely removed each and every multipart or
multivalued field.

• Make sure there are no calculated fields in the table. Although you might
believe that your current table structures are free of calculated fields, you
might have overlooked one or two during the field refinement process. This is
a good time to take another look at the table structures and remove any
calculated fields you might have missed.

• Make certain the table is free of any unnecessary duplicate fields. One of the
hallmarks of a poorly designed table is the inclusion of duplicate fields from
other tables. You might feel compelled to add duplicate fields to a table for one
of two reasons: 1) to provide reference information or 2) to indicate multiple
occurrences of a particular type of value. These duplicate fields raise various
difficulties when you work with the data and attempt to retrieve information
from the table. Let’s now take a look at how to deal with duplicate fields.

Resolving Unnecessary Duplicate Fields
Possibly the hardest part of ensuring well-built structures is dealing with duplicate
fields. Here are a couple of examples that demonstrate the proper way to resolve
tables that contain duplicate fields.
Figure 2–7 illustrates an example of a table containing duplicate fields that supply
reference information.

Figure 2–7 A table with duplicate fields added for reference information
In this case, StaffLastName and StaffFirstName appear in the Classes table so that a
person viewing the table can see the name of the instructor for a given class. These
fields are unnecessary because of the one-to-many relationship that exists between
the Classes and Staff tables. (A single staff member can teach any number of classes,
but a single class is taught by one staff member.) StaffID establishes the relationship
between these tables, and the relationship itself lets you view data from both tables
simultaneously in an SQL query. With this in mind, you can confidently remove the
StaffLastName and StaffFirstName fields from the Classes table without any adverse
effects. Figure 2–8 (on page 38) shows the revised Classes table structure.

Figure 2–8 Resolving the duplicate reference fields
Keeping these unnecessary fields in the table automatically introduces a major
problem with inconsistent data. You must ensure that the values of the
StaffLastName and StaffFirstName fields in the Classes table always match their
counterparts in the Staff table. For example, say a female staff member marries and
decides to use her married name as her legal name from that day forward. Not only
do you have to be certain to make the appropriate change to her record in the Staff
table, but you must ensure that every occurrence of her name in the Classes table
changes as well. Again, it’s possible to do this (at least, technically), but you’re
working much harder than is necessary. Besides, one of the major premises behind
using a relational database is that you should enter a piece of data only once in the
entire database. (The only exception to this rule is when you’re using a field to
establish a relationship between two tables.) As always, the best course of action is
to remove all duplicate fields from the tables in your database.
Figure 2–9 shows another clear example of a table containing duplicate fields. This
example illustrates how duplicate fields are mistakenly used to indicate multiple

occurrences of a particular type of value. In this case, the three Committee fields are
ostensibly used to record the names of the committees in which the employee
participates.

Figure 2–9 A table with duplicate fields used to indicate multiple occurrences of a
particular type of value

It’s relatively easy to see why these duplicate fields will create problems. One
problem concerns the actual number of Committee fields in the table. What if a few
employees end up belonging to four committees? For that matter, how can you tell
exactly how many Committee fields you’re going to need? If it turns out that several
employees participate in more than three committees, you’ll need to add more
Committee fields to the table.
A second problem pertains to retrieving information from the table. How do you
retrieve those employees who are currently in the ISO 9000 committee? It’s not
impossible, but you’ll have difficulty retrieving this information. You must execute
three separate queries (or build a search condition that tests three separate fields) in
order to answer the question accurately because you cannot be certain in which of
the three Committee fields the value ISO 9000 is stored. Now you’re expending
more time and effort than is truly necessary.
A third problem concerns sorting the data. You cannot sort the data by committee in
any practical fashion, and there’s no way that you’ll get the committee names to line
up correctly in alphabetical order. Although these might seem like minor problems,
they can be quite frustrating when you’re trying to get an overall view of the data in
some orderly manner.
If you study the Employees table in Figure 2–9 (on page 39) closely, you’ll soon
realize that there is a many-to-many relationship between the employees and
committees to which they belong. A single employee can belong to any number of

committees, and a single committee can be composed of any number of employees.
You can, therefore, resolve these duplicate fields in the same manner that you would
resolve any other many-to-many relationship—by creating a linking table. In the
case of the Employees table, create the linking table by using a copy of the primary
key (EmployeeID) and a single Committee field. Give the new table an appropriate
name, such as Committee_Members, designate both the EmployeeID and Committee
fields as a composite primary key, remove the Committee fields from the Employees
table, and you’re done. (You’ll learn more about primary keys later in this chapter.)
Figure 2–10 shows the revised Employees table and the new Committee_Members
table.

Figure 2–10 The revised Employees table and the new Committee_Members table

You’ve resolved the duplicate fields that were in the original Employees table, but
you’re not quite finished yet. Keeping in mind that there is a many-to-many
relationship between the employees and the committees to which they belong, you
might very well ask, “Where is the Committees table?” There isn’t one—yet!
Chances are that a committee has some other characteristics that you need to record,
such as the name of the room where the committee meets and the day of the month
that the meeting is held. It would be a good idea for you to create a real Committees
table that includes fields such as CommitteeID, CommitteeName, MeetingRoom,
and MeetingDay. When you finish creating the new table, replace the Committee
field in the Committee_Members table with the CommitteeID field from the new
Committees table. The final structures appear in Figure 2–11.

Figure 2–11 The final Employees, Committee_Members, and Committees structures
You gain a real advantage by structuring the tables in this manner because you can
now associate a single member with any number of committees or a single
committee with any number of employees. You can then use an SQL query to view
information from all three tables simultaneously.
You’re now close to completing the process of fine-tuning your table structures. The
last order of business is to make certain that each record within a table can be
uniquely identified and that the table itself can be identified throughout the entire
database.

Identification Is the Key
You learned in Chapter 1, “What Is Relational?” that the primary key is one of the
most important keys in a table because it uniquely identifies each record within a
table and officially identifies that table throughout the database. It also establishes a

relationship between a pair of tables. You cannot underestimate the importance of
the primary key—every table in your database must have one!
By definition, a primary key is a field or group of fields that uniquely identifies each
record within a table. A primary key is known as a simple primary key (or just
primary key for short) when it is composed of a single field. A primary key is known
as a composite primary key when it is composed of two or more fields. Define a
simple primary key when you can because it’s more efficient and is much easier to
use when establishing a table relationship. Use a composite primary key only when
it’s appropriate, such as when you’re defining and creating a linking table.
You can use an existing field or a combination of fields as the primary key as long as
they satisfy all the criteria in the following checklist. When the field or fields that
you propose to use as the primary key do not conform to all the criteria, use a
different field or define a new field to act as the primary key for the table. Take some
time now and use this checklist to determine whether each primary key in your
database is sound:

• Do the fields uniquely identify each record in the table? Each record in a table
represents an instance of the subject of the table. A good primary key ensures
that you have a means of accurately identifying or referencing each record in
this table from other tables in the database. It also helps you to avoid having
duplicate records within the table.

• Does this field or combination of fields contain unique values? As long as the
values of the primary key are unique, you have a means of ensuring that there
are no duplicate records in the table.

• Will these fields ever contain unknown values? This is a very important
question because a primary key cannot contain unknown values. You should
disqualify this field immediately if you think it has even the slightest
possibility of containing unknown values.

• Can the value of these fields ever be optional? You cannot use this field as the
primary key if the answer to this question is “Yes.” If the value of the field can
be optional, it implies that it might be unknown at some point. As you learned
in the previous item, a primary key cannot contain unknown values.

• Is this a multipart field? It’s a good idea to ask yourself this question, although
you should have eliminated all your multipart fields by now. If you missed a
multipart field earlier, resolve it now and try to use another field as the primary
key, or use the new separate fields together as a composite primary key.

• Can the value of these fields ever be modified? The values of primary key
fields should remain static. You should never change the value of a field in a
primary key unless you have a truly compelling reason to do so. When the

value of the field is subject to arbitrary changes, it is difficult for the field to
remain in conformance with the other points in this checklist.

As we stated earlier, a field or combination of fields must pass all the points on this
checklist with flying colors before it can be used as a primary key. In Figure 2–12,
PilotID serves as the primary key of the Pilots table. But the question is this: Does
PilotID conform to all the points on the previous checklist? The primary key is sound
if it does, but if it doesn’t, you must either modify it to conform to all the points on
the checklist or select a different field as the primary key.

Figure 2–12 Is PilotID a sound primary key?
As a matter of fact, PilotID is a sound primary key because it does conform to all the
points on the checklist. But what happens when you don’t have a field that can act as
a primary key? Take the Employees table in Figure 2–13 (on page 44), for example.
Is there a field in this table that can act as a primary key?

Figure 2–13 Does this table have a primary key?

It’s very clear that this table doesn’t contain a field (or group of fields) that can be
used as a primary key. With the exception of EmpPhone, every field contains
duplicate values. EmpZip, EmpAreaCode, and EmpPhone all contain unknown
values. Although you might be tempted to use the combination of EmpLastName
and EmpFirstName, there’s no guarantee that you won’t employ a new person who is
also named Jim Wilson or David Smith. It’s evident that there is no field you can use
as the primary key for this table because the value of every field in the table is
subject to arbitrary change.
What do you do now? You might be tempted to use some sort of national identity
number associated with each employee—for example, a Social Security number in
the U.S. or the Social Insurance number in Canada. Be aware that although it is rare,
it is possible for two or more people to have the same number. When in doubt, the
solution is to create an artificial primary key. This is an arbitrary field you define and
add to the table for the sole purpose of using it as the table’s primary key. The
advantage of adding this arbitrary field is that you can ensure that it conforms to all
the points on the checklist. After you’ve added the field to the table, designate it as
the primary key, and you’re done! That’s all there is to it. Figure 2–14 shows the
Employees table with an artificial primary key called EmployeeID.

Figure 2–14 The Employees table with the new artificial primary key

 Note
Although artificial primary keys are an easy way to solve the problem, they
don’t really guarantee that you won’t get duplicate data in your table. For
example, if someone adds a new record for a person named John Kennedy and

provides a new unique artificial EmployeeID value, how do you know that
this second John Kennedy isn’t the same as the employee 98002 already in the
table?
The answer is to add a verification to your application code that checks for a
potentially duplicate name and warns the user. In many database systems, you
can write such validation code as something called a trigger that your database
system automatically runs each time a row is changed, added, or deleted.
However, discussing triggers is far beyond the scope of this book. Consult
your database system documentation for details.

At this point, you’ve done everything you can to strengthen and fine-tune your table
structures. Now we’ll take a look at how you can ensure that all your table
relationships are sound.

Establishing Solid Relationships
In Chapter 1, you learned that a relationship exists between a pair of tables if records
in the first table are in some way associated with records in the second table. You
also learned that the relationship itself can be designated as one of three types: one-
to-one, one-to-many, and many-to-many. And you learned that each type of
relationship is established in a specific manner. Let’s review this for a moment.

 Note
The diagram symbols shown in this section are part of the diagramming
method presented in Mike Hernandez’s book Database Design for Mere
Mortals, Third Edition (Addison-Wesley, 2013). PK indicates a primary key
field. FK indicates a foreign key field. CPK indicates a field that is part of a
composite primary key.

• You establish a one-to-one relationship by taking the primary key from the
primary table and inserting it into the subordinate table, where it becomes a
foreign key. This is a special type of relationship because in many cases the
foreign key will also act as the primary key of the subordinate table. Figure 2–
15 shows how to diagram this relationship.

Figure 2–15 Diagramming a one-to-one relationship
• You establish a one-to-many relationship by taking the primary key of the

table on the “one” side and inserting it into the table on the “many” side, where
it becomes a foreign key. Figure 2–16 shows how to diagram this type of
relationship.

Figure 2–16 Diagramming a one-to-many relationship
• You establish a many-to-many relationship by creating a linking table.

Define the linking table by taking a copy of the primary key of each table in
the relationship and using them to form the structure of the new table. These
fields commonly serve two distinct roles: Together, they form the composite
primary key of the linking table; separately, they each serve as a foreign key.
You would diagram this relationship as shown in Figure 2–17.

Figure 2–17 Diagramming a many-to-many relationship
In order to make certain that the relationships among the tables in your database are
really solid, you must establish relationship characteristics for each relationship. The
characteristics you’re about to define indicate what will occur when you delete a
record, the type of participation a table has within the relationship, and to what
degree each table participates within the relationship.
Before our discussion on relationship characteristics begins, we must make one point
perfectly clear: We present the following characteristics within a generic and logical
frame of reference. These characteristics are important because they allow you to
enforce relationship integrity (referred to by some database systems as referential
integrity). The manner in which you implement them, however, will vary from one
database software program to another. You will have to study your database
software’s documentation to determine whether these characteristics are supported
and, if so, how you can implement them.

Establishing a Deletion Rule
A deletion rule dictates what happens when a user makes a request to delete a record
in the primary table of a one-to-one relationship or in the table on the “one” side of a
one-to-many relationship. You can guard against orphaned records by establishing
this rule. (Orphaned records are those records in the subordinate table of a one-to-
one relationship that don’t have related records in the primary table, or records in the
table on the “many” side of a one-to-many relationship that don’t have related
records in the table on the “one” side.)
You can set two types of deletion rules for a relationship: restrict and cascade.

• The restrict deletion rule does not allow you to delete the requested record

when there are related records in the subordinate table of a one-to-one
relationship or in the table on the “many” side of a one-to-many relationship.
You must delete any related records prior to deleting the requested record.
You’ll use this type of deletion rule as a matter of course. In database systems
that allow you to define relationship rules, this is usually the default and
sometimes the only option.

• When the cascade deletion rule is in force, deleting the record on the “one”
side of a relationship causes the system to automatically delete any related
records in the subordinate table of a one-to-one relationship or in the table on
the “many” side of a one-to-many relationship. Use this rule very judiciously,
or you might wind up deleting records you really wanted to keep! Not all
database systems support cascade deletion.

Regardless of the type of deletion rule you use, always examine your relationship
very carefully in order to determine which type of rule is appropriate. You can use a
very simple question to help you decide which type of rule to use. First, select a pair
of tables, and then ask yourself the following question: “If a record in [name of
primary or ‘one’ side table] is deleted, should related records in [name of subordinate
or ‘many’ side table] be deleted as well?”
This question is framed in a generic sense so that you can understand the premise
behind it. To apply this question, substitute the phrases within the square brackets
with table names. Your question will look something like this: “If a record in the
Committees table is deleted, should related records in the Committee_Members table
be deleted as well?”
Use a restrict deletion rule if the answer to this question is “No.” Otherwise, use the
cascade deletion rule. In the end, the answer to this question greatly depends on how
you use the data stored within the database. This is why you must study the
relationship carefully and make certain you choose the right rule. Figure 2–18 shows
how to diagram the deletion rule for this relationship. Note that you’ll use (R) for a
restricted deletion rule and (C) for a cascade deletion rule.

Figure 2–18 Diagramming the deletion rule for the Committees and

Committee_Members tables

Setting the Type of Participation
When you establish a relationship between a pair of tables, each table participates in
a particular manner. The type of participation assigned to a given table determines
whether a record must exist in that table before you can enter a record into the other
table. There are two types of participation:

• Mandatory—At least one record must exist in this table before you can enter
any records into the other table.

• Optional—There is no requirement for any records to exist in this table before
you enter any records in the other table.

The type of participation you select for a pair of tables depends mostly on the
business logic of your organization. For example, let’s assume you work for a large
company consisting of several departments. Let’s also assume that you have an
Employees table, a Departments table, and a Department_Employees table in the
database you’ve created for your company. All relevant information about an
employee is in the Employees table, and all relevant information about a department
is in the Departments table. The Department_Employees table is a linking table that
allows you to associate any number of departments with a given employee. Figure 2–
19 shows these tables. (In this figure, we used simple arrows pointing to the “many”
side of the relationship.)

Figure 2–19 The Employees, Departments, and Department_Employees tables
In the last staff meeting, you were told to assign some of the staff to a new Research
and Development department. Now here’s the problem: You want to make certain
you add the new department to the Departments table so that you can assign staff to
that department in the Department_Employees table. This is where the type of
participation characteristic comes into play. Set the type of participation for the
Departments table to mandatory and the type of participation for the
Department_Employees table to optional. By establishing these settings, you ensure
that a department must exist in the Departments table before you can assign any
employees to that department in the Department_Employees table.
As with the deletion rule, study each relationship carefully to determine the
appropriate type of participation setting for each table in the relationship. You would
diagram the type of participation as shown in Figure 2–20.

Figure 2–20 Diagramming the type of participation for the Departments and
Department_Employees tables

Setting the Degree of Participation
Now that you’ve determined how each table will participate in the relationship, you
must figure out to what degree each will participate. You do this by determining the
minimum and maximum number of records in one table that can be related to a
single record in the other table. This process is known as identifying a table’s degree
of participation. The degree of participation for a given table is represented by two
numbers that are separated with a comma and enclosed within parentheses. The first
number indicates the minimum possible number of related records, and the second
number indicates the maximum possible number of related records. For example, a
degree of participation such as “(1,12)” indicates that the minimum number of
records that can be related is 1 and the maximum is 12.
The degree of participation you select for various tables in your database largely
depends on how your organization views and uses the data. Let’s say that you’re a
booking agent for a talent agency and that two of the tables in your database are
Agents and Entertainers. Let’s further assume that there is a one-to-many
relationship between these tables—one record in the Agents table can be related to
many records in the Entertainers table, but a single record in the Entertainers table
can be related to only one record in the Agents table. In this case, we’ve ensured (in
a general sense) that an entertainer is assigned to only one agent. (We definitely
avoid the possibility of the entertainer playing one agent against another. This is a
good thing.)
In nearly all cases, the maximum number of records on the “many” side of a
relationship will be infinite. However, in some cases your business rules might

dictate that you limit this participation. One example would be to limit the number of
students who can enroll in a class. In this example, let’s assume that the boss wants
to ensure that all his agents have a fair shake at making good commissions and wants
to keep the infighting between agents down to a bare minimum. So he sets a new
policy stating that a single agent can represent a maximum of six entertainers.
(Although he thinks it might not work in the long run, he wants to try it anyway.) In
order to implement his new policy, he sets the degree of participation for both tables
to the following:

Agents
(1,1)—An entertainer can be associated with one and only one
agent.

Entertainers
(0,6)—Although an agent doesn’t have to be associated with an
entertainer at all, he or she cannot be associated with more than six
entertainers at any given time.

Figure 2–21 shows how to diagram the degree of participation for these tables.

Figure 2–21 Diagramming the degree of participation for the Agents and
Entertainers tables

After setting the degree of participation, you should decide how you want your
database system to enforce the relationship. What you choose depends on the
features provided by your database system. The simplest enforcement supported by
most database systems is to restrict the values in the foreign key in the “many” table
so that the user cannot enter a value that is not in the related “one” table. You can
indicate this by placing the letter R in parentheses next to the relationship line
pointing to the “one” table, as shown in Figure 2–22.

Figure 2–22 A diagram of all the relationship characteristics for the Agents and
Entertainers tables

Some database systems allow you to define a rule that cascades (C) the key value
from the “one” table to the “many” table if the user changes the value of the primary
key in the “one” table. Essentially, the database system corrects the foreign key
value in related rows in the “many” table when you change the value of the primary
key in the “one” table. And some database systems provide a feature that
automatically deletes (D) the rows in the “many” table when you delete a row in the
“one” table. Check your database system documentation for details.

 Note
To enforce degree of participation constraints, you’ll have to define one or
more triggers or constraints in your database definition (if your database
system supports these features).

Is That All?
By using the techniques you learned in this chapter, you make the necessary
beginning steps toward ensuring a fundamental level of data integrity in your
database. The next step is to begin studying the manner in which your organization
views and uses its data so that you can establish and impose business rules for your
database. But to really get the most from your database, you should go back to the
beginning and run it through a thorough database design process using a good design
methodology. Unfortunately, these topics are beyond the scope of this book.
However, you can learn a good design methodology from books such as Database
Design for Mere Mortals, Third Edition (Addison-Wesley, 2013) by Michael J.
Hernandez or Database Systems: A Practical Approach to Design, Implementation,
and Management, Fifth Edition (Addison-Wesley, 2009) by Thomas Connolly and
Carolyn Begg. The point to remember is this: The more solid your database
structure, the easier it will be both to extract information from the data in the
database and to build applications programs for it.

Summary
We opened this chapter with a short discussion on why you should be concerned
with having sound structures in your database. You learned that poorly designed
tables can cause numerous problems, not the least of which concern data integrity.
Next we discussed fine-tuning the fields in each table. You learned that giving your
fields good names is very important because it ensures that each name is meaningful

and actually helps you to find hidden problems with the field structure itself. You
now know how to fine-tune your field structures by ensuring they conform to a few
simple rules. These rules deal with issues such as guaranteeing that each field
represents a single characteristic of the table’s subject, contains only a single value,
and never stores a calculation. We also discussed the problems found in multipart
and multivalued fields, and you learned how to resolve them properly.
Fine-tuning the tables was the next issue we addressed. You learned that the table
names are just as important an issue as field names for many of the same reasons.
You now know how to give your tables meaningful names and ensure that each table
represents only a single subject. We then discussed a set of rules you can use to
make certain each table structure is sound. Although some of the rules seemed to
duplicate some of the efforts you made in fine-tuning your field structures, you
learned that the rules used for fine-tuning the table structures actually add an extra
level of insurance in making sure that the table structures are as absolutely sound as
they can be.
The next subject we tackled was primary keys. You learned the importance of
establishing a primary key for each table in your database. You now know that a
primary key must conform to a specific set of characteristics and that the field that
will act as the primary key of a table must be chosen very carefully. You also learned
that you can create an artificial primary key if there is no field in the table that
conforms to the complete set of characteristics for a primary key.
We closed this chapter with a discussion on establishing solid relationships. After
reviewing the three types of relationships, you learned how to diagram each one.
You then learned how to establish and diagram a deletion rule for the relationship.
This rule is important because it helps you guard against orphaned records. The last
two topics we discussed were the type of participation and degree of participation for
each table within the relationship. You learned that a table’s participation can be
mandatory or optional and that you can set a specific range for the number of related
records between each table.
In the next chapter, you’ll learn a little bit about the history of SQL and how it
evolved into the current version at press time, SQL:2011.

3. A Concise History of SQL

“There is only one religion, though
there are many versions of it.”

—George Bernard Shaw
Plays Pleasant and Unpleasant

Topics Covered in This Chapter
The Origins of SQL
Early Vendor Implementations
“. . . And Then There Was a Standard”
Evolution of the ANSI/ISO Standard
Commercial Implementations
What the Future Holds
Why Should You Learn SQL?
Which Version of SQL Does This Book Cover?
Summary

The telling of history always involves vague and ambiguous accounts of various
incidents, political intrigue, and human foibles. The history of SQL is no different
than that of any other subject in this sense. SQL has been around in one form or
another since just after the dawn of the relational model, and there are several
detailed accounts of its long and spotty existence. In this chapter, however, we take a
close look at the origin, evolution, and future of this database language. We have two
goals: first, to give you an idea of how SQL matured into the language used by a
majority of relational database systems today, and second, to give you a sense of
why it is important for you to learn how to use SQL.

The Origins of SQL
As you learned in Chapter 1, “What Is Relational?” Dr. E. F. Codd presented the
relational database model to the world in 1970. Soon after this landmark moment,
organizations such as universities and research laboratories began efforts to develop
a language that could be used as the foundation to a database system that supported
the relational model. Initial work led to the development of several languages in the
mid- to early 1970s, and later efforts resulted in the development of SQL and the
SQL-based databases in use today. But just where did SQL originate? How did it

evolve? What is its future? For the answers to these questions, we must begin our
story at IBM’s Santa Teresa Research Laboratory in San Jose, California.
IBM began a major research project in the early 1970s called System/R. The goals of
this project were to prove the viability of the relational model and to gain some
experience in designing and implementing a relational database. The researchers’
initial endeavors between 1974 and 1975 proved successful, and they managed to
produce a minimal prototype of a relational database.
In addition to their efforts to develop a working relational database, researchers were
also working to define a database language. The work performed at this laboratory is
arguably the most commercially significant of the initial efforts to define such a
language. In 1974, Dr. Donald Chamberlin and his colleagues developed Structured
English Query Language (SEQUEL). The language allowed users to query a
relational database using clearly defined English-style sentences. Dr. Chamberlin
and his staff first implemented this new language in a prototype database called
SEQUEL-XRM.
The initial feedback and success of SEQUEL-XRM encouraged Dr. Chamberlin and
his staff to continue their research. They completely revised SEQUEL between 1976
and 1977 and named the new version SEQUEL/2. However, they subsequently had
to change the name SEQUEL to SQL (Structured Query Language or SQL Query
Language) for legal reasons—someone else had already used the acronym SEQUEL.
To this day, many people still pronounce SQL as sequel, although the widely
accepted “official” pronunciation is es-cue-el. SQL provided several new features,
such as support for multi-table queries and shared data access by multiple users.
Soon after the emergence of SQL, IBM began a new and more ambitious project
aimed at producing a prototype database that would further substantiate the
feasibility of the relational model. They called the new prototype System R and
based it on a large subset of SQL. After much of the initial development work was
completed, IBM installed System R in a number of internal sites and selected client
sites for testing and evaluation. Many changes were made to System R and SQL
based on the experiences and feedback of users at these sites. IBM closed the project
in 1979 and concluded that the relational model was indeed a viable database
technology with commercial potential.

 Note
One of the more important successes attributed to this project is the
development of SQL. But SQL’s roots are actually based in a research
language called Specifying Queries As Relational Expressions (SQUARE).
This language was developed in 1975 (predating the System R project) and

was designed to implement relational algebra with English-style sentences.

You might well ask, “If IBM concluded that there was commercial potential, why
did the company close the project?” John remembers seeing a demonstration of
System R in the late 1970s. It had lots of “wow” factor, but on the hardware
technology available at the time, even a simple query took minutes to run. It clearly
had potential, but it definitely needed better hardware and software to make the
product appealing to businesses.

Early Vendor Implementations
The work done at the IBM research lab during the 1970s was followed with great
interest in various technical journals, and the merits of the new relational model were
briskly debated at database technology seminars. Toward the latter part of the
decade, it became clear that IBM was keenly interested in and committed to
developing products based on relational database technology and SQL. This, of
course, led many vendors to speculate how soon IBM would roll out its first product.
Some vendors had the good sense to start work on their own products as quickly as
possible and not wait around for IBM to lead the market.
In 1977, Relational Software, Inc. was formed by a group of engineers in Menlo
Park, California, for the purpose of building a new relational database product based
on SQL. They called their product Oracle. Relational Software shipped its product in
1979, beating IBM’s first product to market by 2 years and providing the first
commercially available relational database management system (RDBMS). One of
Oracle’s advantages was that it ran on Digital’s VAX minicomputers instead of the
more expensive IBM mainframes. Relational Software has since been renamed to
Oracle Corporation and is one of the leading vendors of RDBMS software.
Meanwhile, Michael Stonebraker, Eugene Wong, and several other professors at the
University of California’s Berkeley computer laboratories were also researching
relational database technology. Like the IBM team, they developed a prototype
relational database and dubbed their product INGRES. INGRES included a database
language called Query Language (QUEL), which, in comparison to SQL, was much
more structured but made less use of English-like statements. INGRES was
eventually converted to an SQL-based RDBMS when it became clear that SQL was
emerging as the standard database language. Several professors left Berkeley in 1980
to form Relational Technology, Inc., and in 1981 they announced the first
commercial version of INGRES. Relational Technology has gone through several
transformations and is now part of Computer Associates International, Inc. INGRES
(now owned and supported by a company called Actian) is still one of the leading
database products in the industry today.

Now we come full circle back to IBM. IBM announced its own RDBMS called
SQL/Data System (SQL/DS) in 1981 and began shipping it in 1982. In 1983, the
company introduced a new version of SQL/DS for the VM/CMS operating system
(one of several offered by IBM for their mainframe systems) and announced a new
RDBMS product called Database 2 (DB2), which could be used on IBM mainframes
using IBM’s mainstream MVS operating system. First shipped in 1985, DB2 has
become IBM’s premiere RDBMS, and its technology has been incorporated into the
entire IBM product line. By the way, IBM hasn’t changed—it’s still IBM.
During the course of more than 40 years, we’ve seen what began as research for the
System R project become a force that impacts almost every level of business today
and evolve into a multibillion dollar industry.

“. . . And Then There Was a Standard”
With the flurry of activity surrounding the development of database languages, you
could easily wonder if anyone ever thought of standardization. Although the idea
was tossed about among the database community, there was never any consensus or
agreement as to who should set the standard or which dialect it should be based
upon. So each vendor continued to develop and improve its own database product in
the hope that it—and by extension, its dialect of SQL—would become the industry
standard.
Customer feedback and demand drove many vendors to include certain elements in
their SQL dialects, and in time an unofficial standard emerged. It was a small
specification by today’s standards, as it encompassed only those elements that were
similar across the various SQL dialects. However, this specification (such as it was)
did provide database customers with a core set of criteria by which to judge the
various database programs on the market, and it also gave users a small set of
knowledge that they could leverage from one database program to another.
In 1982, the American National Standards Institute (ANSI) responded to the growing
need for an official relational database language standard by commissioning its X3
organization’s database technical committee, X3H2, to develop a proposal for such a
standard. (X3 is one of many organizations overseen by ANSI.) In turn, X3H2 is
only one of many technical committees that report to X3. X3H2 was and continues
to be composed of database industry experts and representatives from almost every
major SQL-based database vendor. In the beginning, the committee reviewed and
debated the advantages and disadvantages of various proposed languages and also
began work on a standard based on QUEL, the database language for INGRES. But
market forces and the increasing commitment to SQL by IBM induced the
committee to base its proposal on SQL instead.

The X3H2 committee’s proposed standard was largely based on IBM’s DB2 SQL
dialect. The committee worked on several versions of its standard over the next 2
years and even improved SQL to some extent. However, an unfortunate
circumstance arose as a result of these improvements: This new standard became
incompatible with existing major SQL dialects. X3H2 soon realized that the changes
made to SQL did not significantly improve it enough to warrant the
incompatibilities, so the committee reverted to the original version of the standard.
ANSI ratified X3H2’s standard in 1986 as “ANSI X3.135-1986 Database Language
SQL,” which became commonly known as SQL/86. Although X3H2 made some
minor revisions to its standard before it was adopted by ANSI, SQL/86 merely
defined a minimal set of “least common denominator” requirements to which
database vendors could conform. In essence, it conferred official status on the
elements that were similar among the various SQL dialects and that had already been
implemented by many database vendors. But the new standard finally provided a
specific foundation from which the language and its implementations could be
developed further.
The International Organization for Standardization (ISO) approved its own
document (which corresponded exactly with ANSI SQL/86) as an international
standard in 1987 and published it as “ISO 9075-1987 Database Language SQL.”
(Both standards are still often referred to as just SQL/86.) The international database
vendor community could now work from the same standards as those vendors in the
United States. Despite the fact that SQL gained the status of an official standard, the
language was far from being complete.

Evolution of the ANSI/ISO Standard
SQL/86 was soon criticized in public reviews, by the government, and by industry
pundits such as C. J. Date. Some of the problems cited by these critics included
redundancy within the SQL syntax (there were several ways to define the same
query), lack of support for certain relational operators, and lack of referential
integrity. Although X3H2 knew of these problems even before SQL/86 was
published, the committee decided that it was better to release a standard now (even
though it still needed work) than to have no standard at all.
Both ISO and ANSI addressed the criticism pertaining to referential integrity by
adopting refined versions of their standards. ISO published “ISO 9075:1989
Database Language SQL with Integrity Enhancements” in mid-1989, while ANSI
adopted its “X3.135-1989 Database Language SQL with Integrity Enhancements,”
also often referred to as SQL/89, late that same year. But the ANSI committee’s
work for the year wasn’t over just yet. X3H2 was still trying to address an important
issue brought forth by the government.

Some government users complained that the specification explaining how to embed
SQL within a conventional programming language was not an explicit component of
the standard. (Although the specification was included, it was relegated to an
appendix.) Their concern was that vendors might not support portable
implementations of embedded SQL because there was no specific requirement
within the standard for them to do so. X3H2 responded by developing a second
standard that required conformance to the embedding specification, publishing it as
“ANSI X3.168-1989 Database Language Embedded SQL.” It’s interesting to note
that ISO chose not to publish a corresponding standard because of a lack of similar
concern within the international community. This meant that ISO had no
specification for embedding SQL within a programming language, a situation that
would not change until ISO’s publication of its SQL/92 Standard.
SQL/86 and SQL/89 were far from being complete standards—they lacked some of
the most fundamental features needed for commercial database systems. For
example, neither standard specified a way to make changes to the database structure
(including within the database system itself) after it was defined. No one could
modify or delete any structural components (such as tables or columns) or make any
changes to the security of the database. For example, you could CREATE a table,
but the standard included no definition of the DROP command to delete a table or
the ALTER command to change it. Also, you could GRANT security access to a
table, but the standard did not define the REVOKE command to allow removal of
access authority. Ironically, these capabilities were provided by all commercial SQL-
based databases. They were not included in either standard, however, because each
vendor implemented them in different ways. Other features were widely
implemented among many SQL-based databases but omitted from the standards.
Once again, it was an issue of varied implementations.
By the time SQL/89 was completed, both ANSI and ISO were already working on
major revisions to SQL that would make it a complete and robust language. The new
version would be referred to as SQL/92 (what else?) and would include features that
had already been widely implemented by most major database vendors. But one of
the main objectives of both ANSI and ISO was to avoid defining a “least common
denominator” standard yet again. As a result, they decided to both include features
that had not yet gained wide acceptance and add new features that were substantially
beyond those currently implemented.
ANSI and ISO published their new SQL Standards—“X3.135-1992 Database
Language SQL” and “ISO/IEC 9075:1992 Database Language SQL,” respectively—
in October 1992. (Work on these documents was completed in late 1991, but some
final fine-tuning took place during 1992.) The SQL/92 document is considerably
larger than the one for SQL/89, but it’s also much broader in scope. For example, it

provides the means to modify the database structure after it has been defined,
supports additional operations for manipulating character strings as well as dates and
times, and defines additional security features. SQL/92 was a major step forward
from any of its predecessors.
Fortunately, the standards committees anticipated this situation to some extent. In
order to facilitate a smooth and gradual conformance to the new standard, ANSI and
ISO defined SQL/92 on three levels:

ENTRY SQL
Similar to SQL/89, this level also includes features to make the
transition from SQL/89 to SQL/92 easier as well as features that
corrected errors in the SQL/89 Standard. The idea was that this level
would be the easier to implement because most of its features had
already been widely incorporated into existing products.

INTERMEDIATE SQL
This level encompasses most of the features in the new standard.
Both committees’ decisions to include certain features at this level
were based on several factors. The overall objectives were to
enhance the standard so that SQL better supported the concepts in
the relational model and to redefine syntax that was ambiguous or
unclear. It was an easy decision to include features that were already
implemented in some way by one or more vendors and that met
these objectives. Features demanded by users of SQL database
systems were given high consideration as long as they met these
objectives and were relatively easy for most vendors to implement.
This level was meant to ensure that it would be reasonably possible
for a given product to have as robust an implementation as possible.

FULL SQL
The entire SQL/92 specification is encompassed within this level. It
obviously includes the more complex features that were omitted in
the first two levels. This level includes features that, although
considered important to meet customer demands or further “purify”
the language, would be difficult for most vendors to implement
immediately. Unfortunately, compliance with Full SQL is not yet a
requirement, so it will be some time before we can expect database
products to fully implement the standard.

Although many database vendors continued work on implementing the features in
SQL/92, they also developed and implemented features of their own. The additions
they made to the SQL Standard are known as extensions. For example, a vendor

might provide more data types than the six specified in SQL/92. Although these
extensions provide more functionality within a given product and allow vendors to
differentiate themselves from one another, there are drawbacks. The main problem
with adding extensions is that it causes each vendor’s dialect of SQL to diverge
further from the original standard. This, in turn, prevents database developers from
creating portable applications that can be run from any SQL database.

Other SQL Standards
The ANSI/ISO SQL Standard is the most widely accepted standard to date. This
means, of course, that other standards in existence also incorporate SQL in one form
or another. These are some of the more significant alternate standards:

X/OPEN
A group of European vendors (collectively known as X/OPEN)
developed a set of standards that would help establish a portable
application environment based on UNIX. The ability to port an
application from one computer system to another without changing
it is an important issue in the European market. Although the
X/OPEN members have adopted SQL as part of this set of
standards, their version deviates from the ANSI/ISO Standard in
several areas.

SAA
IBM has always developed its own dialect of SQL, which the
company incorporated into its Systems Application Architecture
(SAA) specification. Integrating IBM’s SQL dialect into the
complete line of IBM database products was one of the goals of the
SAA specification. Although this goal has never been achieved,
SQL still plays an important role in unifying IBM’s database
products.

FIPS
The National Institute of Standards and Technology (NIST) made
SQL a Federal Information Processing Standard (FIPS) beginning in
1987. Originally published as “FIPS PUB 127,” it specifies the level
to which an RDBMS must conform to the ANSI/ISO Standard.
Since then, all relational database products used by the U.S.
government have been required to conform to the current FIPS
publication.

ODBC
In 1989, a group of database vendors formed the SQL Access group

to address the problem of database interoperability. Although these
vendors’ first efforts were somewhat unsuccessful, they widened
their focus to include a way to bind an SQL database to a user-
interface language. The result of their efforts was the Call-Level
Interface (CLI) specification published in 1992. That same year,
Microsoft published its Open Database Connectivity (ODBC)
specification, which was based on the CLI Standard. ODBC has
since become the de facto means of accessing and sharing data
among SQL databases that support it.

These standards continually evolve as newer versions of ANSI/ISO SQL are
adopted, and they are sometimes independently developed as well.
In 1997, ANSI’s X3 organization was renamed the National Committee for
Information Technology Standards (NCITS), and the technical committee in charge
of the SQL Standard was called ANSI NCITS-H2 and has more recently become
INCITS DM32.2. Because of the rapidly growing complexity of the SQL Standard,
the ANSI and ISO standards committees agreed to break the standard into twelve
separate numbered parts and one addendum as they began to work on SQL3 (so
named because it’s the third major revision of the standard) so that work on each part
could proceed in parallel. Since 1997, two additional parts have been defined.
Table 3–1 shows the name and description of each part of the SQL Standard, as well
as the status of each part as of SQL:2011 (ISO/IEC 9075:2011).

Table 3–1 Structure of the SQL Standard

Commercial Implementations
As you read earlier in this chapter, SQL first appeared in the mainframe
environment. Products such as DB2, INGRES, and Oracle have been around since
1979 and have legitimized the use of SQL as the preferred method of working with
relational databases. During the 1980s, relational databases hit the desktop on
personal computers, and products such as R:BASE, dBase IV, and Super Base put
the power of data in tables at the user’s fingertips. However, it wasn’t until the very
late 1980s and early 1990s that SQL became the language of choice for desktop
relational databases. The product that arguably broke the dam was Microsoft Access
version 1 in 1992.
The early 1990s also heralded the advent of client/server computing, and RDBMS
programs such as Microsoft SQL Server and Informix-SE have been designed to
provide database services to users in numerous types of multiuser environments.
Since 2000, there has been a concerted effort to make database information available

via the Internet. Businesses have caught on to the idea of e-commerce, and those
who haven’t already established a Web presence are moving quickly to do so. As a
result, database developers are demanding more powerful client/server databases and
newer versions of long-established mainframe RDBMS products that they can use to
develop and maintain the databases needed for their Web sites.
We could attempt to list all the mainstream products that support SQL, but the list
would go on for pages and pages. Suffice it to say that SQL in commercial database
systems is here to stay.

What the Future Holds
When we first wrote this book in 1999, the standards committees were just putting
the finishing touches on SQL3, which had been a long time in coming. Since then,
SQL:1999, SQL:2003, SQL:2008, and SQL:2011 have been published. As of early
2014, both the ANSI and ISO committees are hard at work on a separate SQL/MM
—Multimedia standard that has its own five parts: Framework, Full Text, Spatial,
Still Image, and Data Mining. Although the standards committees started out far
behind the commercial implementations in 1986, it’s fair to say that the SQL
Standard long ago caught up with, and in many areas is now staying ahead of,
features in available database systems.

Why Should You Learn SQL?
Learning SQL gives you the skills you need to retrieve information from any
relational database. It also helps you understand the mechanisms behind the
graphical query interfaces found in many RDBMS products. Understanding SQL
helps you craft complex queries and provides the knowledge required to troubleshoot
queries when problems occur.
Because SQL is found in a wide variety of RDBMS products, you can use your skills
across a variety of platforms. For example, after you learn SQL in a product such as
Microsoft Access, you can leverage your existing knowledge if your company
decides to move to Microsoft SQL Server, Oracle Corporation’s Oracle, or IBM’s
DB/2. You won’t have to relearn SQL—you’ll just have to learn the differences
between the first dialect that you learn and the dialect used in another product.
It bears repeating that SQL is here to stay. Many vendors have invested huge
amounts of money, time, and research to incorporate SQL into their RDBMS
products, and a vast number of businesses and organizations have built much of their
information technology infrastructures on those products. As you have probably
surmised by what you’ve learned in this chapter, SQL will continue to evolve to
meet the changing demands and requirements of the marketplace.

Which Version of SQL Does This Book Cover?
Good question! Remember, this is a “Mere Mortals” book. The current standard is
nearly 5,000 pages long, so there is no way we are going to try to teach you
everything. What we strive to do in this book is give you a really solid grounding in
the basics (as standardized in Framework and Foundation) that are supported by
virtually every commercial implementation. We also provide sample databases and
solutions to all the problems we pose using three of the most popular
implementations: Microsoft Office Access 2007, Microsoft SQL Server 2012, and
MySQL version 5.6 Community Edition. If you were learning a language, think of it
as covering the basic present, past, and future tenses. If you want to tackle the
subjunctive, pluperfect, or progressive, you’ll have to dig into more advanced books.

Summary
We began this chapter with a discussion on the origins of SQL. You learned that
SQL is a relational database language that was created soon after the introduction of
the relational model. We also explained that the early evolution of SQL was closely
tied to the evolution of the relational model itself.
Next, we discussed the initial implementations of the relational model by various
database vendors. You learned that the first relational databases were implemented
on mainframe computers. You also learned how IBM and Oracle came to be big
players in the database industry.
We then discussed the origin of the ANSI SQL Standard. You learned that there was
an unofficial standard before ANSI decided to define an official one, and we
discussed the ANSI X3H2 committee’s initial work on the specification. We
explained that although the new standard was basically a set of “least common
denominator” features, it did provide a foundation from which the language could be
further developed. You also learned that the ISO published its own standard, which
corresponded exactly with the ANSI specification.
The evolution of the ANSI/ISO Standard was the next topic of discussion, and you
learned that various people and organizations criticized the initial standards. We then
discussed how ANSI/ISO responded to the criticisms by adopting several revisions
to the standard. You learned how one version led to the next and how we arrived at
the SQL/92 Standard. We explained how that standard defined various conformance
levels that allowed vendors to implement the standard’s features into their products
as smoothly as possible. Next, we discussed the progress that the SQL Standard has
made since 1992, and we took a quick look at the evolution of commercial SQL
databases.
We closed the chapter with a short discussion on the future of SQL. You learned that

SQL:2011 is a much more complex standard than SQL/92. We also explained why
SQL will continue to be developed, gave you some good reasons for learning the
language, and explained what parts of SQL we cover in this book.

Part II: SQL Basics

4. Creating a Simple Query

“Think like a wise man but communicate
in the language of the people.”

—William Butler Yeats

Topics Covered in This Chapter
Introducing SELECT
The SELECT Statement
A Quick Aside: Data versus Information
Translating Your Request into SQL
Eliminating Duplicate Rows
Sorting Information
Saving Your Work
Sample Statements
Summary
Problems for You to Solve

Now that you’ve learned a little bit about the history of SQL, it’s time to jump right
in and learn the language itself. As we mentioned in the Introduction, we’re going to
spend most of this book covering the data manipulation portion of the language. So
our initial focus will be on the true workhorse of SQL—the SELECT statement.

Introducing SELECT
Above all other keywords, SELECT truly lies at the heart of SQL. It is the
cornerstone of the most powerful and complex statement within the language and the
means by which you retrieve information from the tables in your database. You use
SELECT in conjunction with other keywords and clauses to find and view
information in an almost limitless number of ways. Nearly any question regarding
who, what, where, when, or even what if and how many can be answered with
SELECT. As long as you’ve designed your database properly and collected the
appropriate data, you can get the answers you need to make sound decisions for your
organization. As you’ll discover when you get to Part V, “Modifying Sets of Data,”
you’ll apply many of the techniques you learn about SELECT to create UPDATE,
INSERT, and DELETE statements.
The SELECT operation in SQL can be broken down into three smaller operations,

which we will refer to as the SELECT statement, the SELECT expression, and the
SELECT query. (Breaking down the SELECT operation in this manner will make it
far easier to understand and to appreciate its complexity.) Each of these operations
provides its own set of keywords and clauses, providing you with the flexibility to
create a final SQL statement that is appropriate for the question you want to pose to
the database. As you’ll learn in later chapters, you can even combine the operations
in various ways to answer very complex questions.
In this chapter, we’ll begin our discussion of the SELECT statement and take a brief
look at the SELECT query. We’ll then examine the SELECT statement in more
detail as we work through to Chapter 5, “Getting More Than Simple Columns,” and
Chapter 6, “Filtering Your Data.”

 Note
In other books about relational databases, you’ll sometimes see the word
relation used for table, and you might encounter tuple or record for row and
perhaps attribute or field for column. However, the SQL Standard specifically
uses the terms table, row, and column to refer to these particular elements of a
database structure. We’ll stay consistent with the SQL Standard and use these
latter three terms throughout the remainder of the book.

The SELECT Statement
The SELECT statement forms the basis of every question you pose to the database.
When you create and execute a SELECT statement, you are querying the database.
(We know it sounds a little obvious, but we want to make certain that everyone
reading this starts from the same point of reference.) In fact, many RDBMS
programs allow you to save a SELECT statement as a query, view, function, or
stored procedure. Whenever someone says she is going to query the database, you
know that she’s going to execute some sort of SELECT statement. Depending on the
RDBMS program, SELECT statements can be executed directly from a command
line window, from an interactive Query by Example (QBE) grid, or from within a
block of programming code. Regardless of how you choose to define and execute it,
the syntax of the SELECT statement is always the same.

 Note
Many database systems provide extensions to the SQL Standard to allow you
to build complex programming statements (such as If . . . Then . . . Else) in
functions and stored procedures, but the specific syntax is unique to each
different product. It is far beyond the scope of this book to cover even one or

two of these programming languages—such as Microsoft SQL Server’s
Transact-SQL or Oracle’s PL/SQL. (We cover a basic form of If...Then...Else
[CASE] defined in the SQL Standard in Chapter 19, “Condition Testing.”)
You’ll still use the cornerstone SELECT statement when you build functions
and stored procedures for your particular database system. Throughout this
book, we’ll use the term view to refer to a saved SQL statement even though
you might embed your SQL statement in a function or procedure.

A SELECT statement is composed of several distinct keywords, known as clauses.
You define a SELECT statement by using various configurations of these clauses to
retrieve the information you require. Some of these clauses are required, although
others are optional. Additionally, each clause has one or more keywords that
represent required or optional values. These values are used by the clause to help
retrieve the information requested by the SELECT statement as a whole. Figure 4–1
(on page 78) shows a diagram of the SELECT statement and its clauses.

Figure 4–1 A diagram of the SELECT statement

 Note
The syntax diagram in Figure 4–1 reflects a rudimentary SELECT statement.
We’ll continue to update and modify the diagram as we introduce and work
with new keywords and clauses. So for those of you who might have some
previous experience with SQL statements, just be patient and bear with us for
the time being.

Here’s a brief summary of the clauses in a SELECT statement.
• SELECT—This is the primary clause of the SELECT statement and is

absolutely required. You use it to specify the columns you want in the result
set of your query. The columns themselves are drawn from the table or view
you specify in the FROM clause. (You can also draw them from several tables
simultaneously, but we’ll discuss this later in Part III, “Working with Multiple
Tables.”) You can also use in this clause aggregate functions, such as
Sum(HoursWorked), or mathematical expressions, such as Quantity * Price.

• FROM—This is the second most important clause in the SELECT statement
and is also required. You use the FROM clause to specify the tables or views
from which to draw the columns you’ve listed in the SELECT clause. You can
use this clause in more complex ways, but we’ll discuss this in later chapters.

• WHERE—This is an optional clause that you use to filter the rows returned
by the FROM clause. The WHERE keyword is followed by an expression,
technically known as a predicate, that evaluates to true, false, or unknown.
You can test the expression by using standard comparison operators, Boolean
operators, or special operators. We’ll discuss all the elements of the WHERE
clause in Chapter 6.

• GROUP BY—When you use aggregate functions in the SELECT clause to
produce summary information, you use the GROUP BY clause to divide the
information into distinct groups. Your database system uses any column or list
of columns following the GROUP BY keywords as grouping columns. The
GROUP BY clause is optional, and we’ll examine it further in Chapter 13,
“Grouping Data.”

• HAVING—The HAVING clause filters the result of aggregate functions in
grouped information. It is similar to the WHERE clause in that the HAVING
keyword is followed by an expression that evaluates to true, false, or unknown.
You can test the expression by using standard comparison operators, Boolean
operators, or special operators. HAVING is also an optional clause, and we’ll
take a closer look at it in Chapter 14, “Filtering Grouped Data.”

We’re going to work with a very basic SELECT statement at first, so we’ll focus on
the SELECT and FROM clauses. We’ll add the other clauses, one by one, as we
work through the other chapters to build more complex SELECT statements.

A Quick Aside: Data versus Information
Before we pose the first query to the database, one thing must be perfectly clear:
There is a distinct difference between data and information. In essence, data is what
you store in the database, and information is what you retrieve from the database.

This distinction is important for you to understand because it helps you to keep
things in proper perspective. Remember that a database is designed to provide
meaningful information to someone within your organization. However, the
information can be provided only if the appropriate data exists in the database and if
the database itself has been structured in such a way to support that information.
Let’s examine these terms in more detail.
The values that you store in the database are data. Data is static in the sense that it
remains in the same state until you modify it by some manual or automated process.
Figure 4–2 shows some sample data.

Figure 4–2 An example of basic data
On the surface, this data is meaningless. For example, there is no easy way for you to
determine what 89931 represents. Is it a ZIP Code? Is it a part number? Even if you
know it represents a customer identification number, is it associated with Katherine
Ehrlich? There’s no way to know until the data is processed. After you process the
data so that it is meaningful and useful when you work with it or view it, the data
becomes information. Information is dynamic in that it constantly changes relative to
the data stored in the database and also in its ability to be processed and presented in
an unlimited number of ways. You can show information as the result of a SELECT
statement, display it in a form on your computer screen, or print it on paper as a
report. But the point to remember is that you must process your data in a manner that
enables you to turn it into meaningful information.
Figure 4–3 shows the data from the previous example transformed into information
on a customer screen. This illustrates how the data can be manipulated in such a way
that it is now meaningful to anyone who views it.

Figure 4–3 An example of data processed into information

When you work with a SELECT statement, you use its clauses to manipulate data,
but the statement itself returns information. Get the picture?
There’s one last issue we need to address. When you execute a SELECT statement, it
usually retrieves one or more rows of information—the exact number depends on

how you construct the statement. These rows are collectively known as a result set,
which is the term we use throughout the remainder of the book. This name makes
perfect sense because you always work with sets of data whenever you use a
relational database. (Remember that the relational model is based, in part, on set
theory.) You can easily view the information in a result set and, in many cases, you
can modify its data. But, once again, it all depends on how you construct your
SELECT statement.
So let’s get down to business and start using the SELECT statement.

Translating Your Request into SQL
When you request information from the database, it’s usually in the form of a
question or a statement that implies a question. For example, you might formulate
statements such as these:

“Which cities do our customers live in?”
“Show me a current list of our employees and their phone numbers.”
“What kind of classes do we currently offer?”
“Give me the names of the folks on our staff and the dates they were hired.”

After you know what you want to ask, you can translate your request into a more
formal statement. You compose the translation using this form:

Select <item> from the <source>
Start by looking at your request and replacing words or phrases such as “list,” “show
me,” “what,” “which,” and “who” with the word “Select.” Next, identify any nouns
in your request, and determine whether a given noun represents an item you want to
see or the name of a table in which an item might be stored. If it’s an item, use it as a
replacement for <item> in the translation statement. If it’s a table name, use it as a
replacement for <source>. If you translate the first question listed earlier, your
statement looks something like this:

Select city from the customers table
After you define your translation statement, you need to turn it into a full-fledged
SELECT statement using the SQL syntax shown in Figure 4–4. The first step,
however, is to clean up your translation statement. You do so by crossing out any
word that is not a noun representing the name of a column or table or that is not a
word specifically used in the SQL syntax. Here’s how the translation statement looks
during the process of cleaning it up:

Select city from the customers table

Figure 4–4 The syntax of a simple SELECT statement
Remove the words you’ve crossed out, and you now have a complete SELECT
statement.

SELECT City FROM Customers

You can use the three-step technique we just presented on any request you send to
your database. In fact, we use this technique throughout most of the book, and we
encourage you to use it while you’re beginning to learn how to build these
statements. However, you’ll eventually merge these steps into one seamless
operation as you get more accustomed to writing SELECT statements.
Remember that you’ll work mostly with columns and tables when you’re beginning
to learn how to use SQL. The syntax diagram in Figure 4–4 reflects this fact by using
column_name in the SELECT clause and table_name in the FROM clause. In the
next chapter, you’ll learn how to use other terms in these clauses to create more
complex SELECT statements.
You probably noticed that the request we used in the previous example is relatively
straightforward. It was easy to both redefine it as a translation statement and identify
the column names that were present in the statement. But what if a request is not as
straightforward and easy to translate, and it’s difficult to identify the columns you
need for the SELECT clause? The easiest course of action is to refine your request
and make it more specific. For example, you can refine a request such as “Show me
the information on our clients” by recasting it more clearly as “List the name, city,
and phone number for each of our clients.” If refining the request doesn’t solve the
problem, you still have two other options. Your first alternative is to determine
whether the table specified in the FROM clause of the SELECT statement contains
any column names that can help to clarify the request and thus make it easier to
define a translation statement. Your second alternative is to examine the request
more closely and determine whether a word or phrase it contains implies any column
names. Whether you can use either or both alternatives depends on the request itself.
Just remember that you do have techniques available when you find it difficult to
define a translation statement. Let’s look at an example of each technique and how
you can apply it in a typical scenario.

To illustrate the first technique, let’s say you’re trying to translate the following
request:

“I need the names and addresses of all our employees.”

This looks like a straightforward request on the surface. But if you review this
request again, you’ll find one minor problem: Although you can determine the table
you need (Employees) for the translation statement, there’s nothing within the
request that helps you identify the specific columns you need for the SELECT
clause. Although the words “names” and “addresses” appear in the request, they are
terms that are general in nature. You can solve this problem by reviewing the table
you identified in the request and determining whether it contains any columns you
can substitute for these terms. If so, use the column names in the translation
statement. (You can opt to use generic versions of the column names in the
translation statement if it will help you visualize the statement more clearly.
However, you will need to use the actual column names in the SQL syntax.) In this
case, look for column names in the Employees table shown in Figure 4–5 that could
be used in place of the words “names” and “addresses.”

Figure 4–5 The structure of the Employees table
To fully satisfy the need for “names” and “addresses,” you will indeed use six
columns from this table. EmpFirstName and EmpLastName will both replace
“names” in the request, and EmpStreetAddress, EmpCity, EmpState, and
EmpZipCode will replace “addresses.” Now, apply the entire translation process to
the request, which we’ve repeated for your convenience. (We’ll use generic forms of
the column names for the translation statement and the actual column names in the
SQL syntax.)

“I need the names and addresses of all our employees.”

Translation

Select first name, last name, street address, city, state, and ZIP Code
from the employees table

Clean Up
Select first name, last name, street address, city, state, and ZIP Code
from the employees table

SQL

SELECT EmpFirstName, EmpLastName, EmpStreetAddress,
 EmpCity, EmpState, EmpZipCode
FROM Employees

 Note
This example clearly illustrates how to use multiple columns in a SELECT
clause. We’ll discuss this technique in more detail later in this section.

The next example illustrates the second technique, which involves searching for
implied columns within the request. Let’s assume you’re trying to put the following
request through the translation process:

“What kind of classes do we currently offer?”

At first glance, it might seem difficult to define a translation statement from this
request. The request doesn’t indicate any column names, and without even one item
to select, you can’t create a complete translation statement. What do you do now?
Take a closer look at each word in the request and determine whether there is one
that implies a column name within the Classes table. Before you read any further,
take a moment to study the request again. Can you find such a word?
In this case, the word “kind” might imply a column name in the Classes table. Why?
Because a kind of class can also be thought of as a category of class. If there is a
category column in the Classes table, then you have the column name you need to
complete the translation statement and, by inference, the SELECT statement. Let’s
assume that there is a category column in the Classes table and take the request
through the three-step process once again.

“What kind of classes do we currently offer?”

Translation
Select category from the classes table

Clean Up
Select category from the classes table

SQL

SELECT Category
FROM Classes

As the example shows, this technique involves using synonyms as replacements for
certain words or phrases within the request. If you identify a word or phrase that
might imply a column name, try to replace it with a synonym. The synonym you
choose might indeed identify a column that exists in the database. However, if the
first synonym that comes to mind doesn’t work, try another. Continue this process
until you either find a synonym that does identify a column name or until you’re
satisfied that neither the original word nor any of its synonyms represent a column
name.

 Note
Unless we indicate otherwise, all column names and table names used in the
SQL syntax portion of the examples are drawn from the sample databases in
Appendix B, “Schema for the Sample Databases.” This convention applies to
all examples for the remainder of the book.

Expanding the Field of Vision
You can retrieve multiple columns within a SELECT statement as easily as you can
retrieve a single column. List the names of the columns you want to use in the
SELECT clause, and separate each name in the list with a comma. In the syntax
diagram shown in Figure 4–6, the option to use more than one column is indicated
by a line that flows from right to left beneath column_name. The comma in the
middle of the line denotes that you must insert a comma before the next column
name you want to use in the SELECT clause.

Figure 4–6 The syntax for using multiple columns in a SELECT clause

The option to use multiple columns in the SELECT statement provides you with the
means to answer questions such as these:

“Show me a list of our employees and their phone numbers.”

Translation
Select the last name, first name, and phone number of all our

employees from the employees table
Clean Up

Select the last name, first name, and phone number of all our
employees from the employees table

SQL

SELECT EmpLastName, EmpFirstName, EmpPhoneNumber
FROM Employees

“What are the names and prices of the products we carry, and under what
category is each item listed?”

Translation
Select the name, price, and category of every product from the
products table

Clean Up
Select the name, price, and category of every product from the
products table

SQL

SELECT ProductName, RetailPrice, Category
FROM Products

You gain the advantage of seeing a wider spectrum of information when you work
with several columns in a SELECT statement. Incidentally, the sequence of the
columns in your SELECT clause is not important—you can list the columns in any
order you want. This gives you the flexibility to view the same information in a
variety of ways.
For example, let’s say you’re working with the table shown in Figure 4–7, and
you’re asked to pose the following request to the database:

Figure 4–7 The structure of the Subjects table

“Show me a list of subjects, the category each belongs to, and the code we use
in our catalog. But I’d like to see the name first, followed by the category, and
then the code.”

You can still transform this request into an appropriate SELECT statement, even
though the person making the request wants to see the columns in a specific order.
Just list the column names in the order specified when you define the translation
statement. Here’s how the process looks when you transform this request into a
SELECT statement:

Translation
Select the subject name, category ID, and subject code from the
subjects table

Clean Up
Select the subject name, category ID, and subject code from the
subjects table

SQL

SELECT SubjectName, CategoryID, SubjectCode
FROM Subjects

Using a Shortcut to Request All Columns
There is no limit to the number of columns you can specify in the SELECT clause—
in fact, you can list all the columns from the source table. The following example
shows the SELECT statement you use to specify all the columns from the Subjects
table in Figure 4–7:

SQL

SELECT SubjectID, CategoryID, SubjectCode,
 SubjectName, SubjectDescription
FROM Subjects

When you specify all the columns from the source table, you’ll have a lot of typing
to do if the table contains a number of columns! Fortunately, the SQL Standard
specifies the asterisk as a shortcut you can use to shorten the statement considerably.
The syntax diagram in Figure 4–8 shows that you can use the asterisk as an
alternative to a list of columns in the SELECT clause.

Figure 4–8 The syntax for the asterisk shortcut
Place the asterisk immediately after the SELECT clause when you want to specify
all the columns from the source table in the FROM clause. For example, here’s how
the preceding SELECT statement looks when you use the shortcut:

SQL

SELECT * FROM
Subjects

You’ll certainly do less typing with this statement! However, one issue arises when
you create SELECT statements in this manner: The asterisk represents all of the
columns that currently exist in the source table, and adding or deleting columns
affects what you see in the result set of the SELECT statement. (Oddly enough, the
SQL Standard states that adding or deleting columns should not affect your result
set.) This issue is important only if you must see the same columns in the result set
consistently. Your database system will not warn you if columns have been deleted
from the source table when you use the asterisk in the SELECT clause, but it will
raise a warning when it can’t find a column you explicitly specified. Although this
does not pose a real problem for our purposes, it will be an important issue when you
delve into the world of programming with SQL. Our rule of thumb is this: Use the
asterisk only when you need to create a “quick and dirty” query to see all the
information in a given table. Otherwise, specify all the columns you need for the
query. In the end, the query will return exactly the information you need and will be
more self-documenting.
The examples we’ve seen so far are based on simple requests that require columns
from only one table. You’ll learn how to work with more complex requests that
require columns from several tables in Part III.

Eliminating Duplicate Rows
When working with SELECT statements, you’ll inevitably come across result sets
with duplicate rows. There is no cause for alarm if you see such a result set. Use the
DISTINCT keyword in your SELECT statement, and the result set will be free and
clear of all duplicate rows. Figure 4–9 shows the syntax diagram for the DISTINCT
keyword.

Figure 4–9 The syntax for the DISTINCT keyword

As the diagram illustrates, DISTINCT is an optional keyword that precedes the list
of columns specified in the SELECT clause. The DISTINCT keyword asks your
database system to evaluate the values of all the columns as a single unit on a row-

by-row basis and eliminate any redundant rows it finds. The remaining unique rows
are then returned to the result set. The following example shows what a difference
the DISTINCT keyword can make under the appropriate circumstances.
Let’s say you’re posing the following request to the database:

“Which cities are represented by our bowling league membership?”

The question seems easy enough, so you take it through the translation process.
Translation

Select city from the bowlers table
Clean Up

Select city from the bowlers table
SQL

SELECT City
FROM Bowlers

The problem is that the result set for this SELECT statement shows every occurrence
of each city name found in the Bowlers table. For example, if there are 20 people
from Bellevue, 7 people from Kent, and 14 people from Seattle, the result set
displays 20 occurrences of Bellevue, 7 occurrences of Kent, and 14 occurrences of
Seattle. Clearly, this redundant information is unnecessary. All you want to see is a
single occurrence of each city name found in the Bowlers table. You resolve this
problem by using the DISTINCT keyword in the SELECT statement to eliminate the
redundant information.
Let’s run the request through the translation process once again using the DISTINCT
keyword. Note that we now include the word “distinct” in both the Translation step
and the Clean Up step.

“Which cities are represented by our bowling league membership?”

Translation
Select the distinct city values from the bowlers table

Clean Up
Select the distinct city values from the bowlers table

SQL

SELECT DISTINCT City
FROM Bowlers

The result set for this SELECT statement displays exactly what you’re looking for—

a single occurrence of each distinct (or unique) city found in the Bowlers table.
You can use the DISTINCT keyword on multiple columns as well. Let’s modify the
previous example by requesting both the city and the state from the Bowlers table.
Our new SELECT statement looks like this:
Click here to view code image

SELECT DISTINCT City, State FROM Bowlers

This SELECT statement returns a result set that contains unique records and shows
definite distinctions between cities with the same name. For example, it shows the
distinction between “Portland, ME,” “Portland, OR,” “Hollywood, CA,” and
“Hollywood, FL.” It’s worthwhile to note that most database systems sort the output
in the sequence in which you specify the columns, so you’ll see these values in the
sequence “Hollywood, CA,” “Hollywood, FL,” “Portland, ME,” and “Portland, OR.”
However, the SQL Standard does not require the result to be sorted in this order. If
you want to guarantee the sort sequence, read on to the next section to learn about
the ORDER BY clause.
The DISTINCT keyword is a very useful tool under the right circumstances. Use it
only when you really want to see unique rows in your result set.

 Caution
For database systems that include a graphical interface, you can usually
request that the result set of a query be displayed in an updatable grid of rows
and columns. You can type a new value in a column on a row, and the
database system updates the value stored in your table. (Your database system
actually executes an UPDATE query on your behalf behind the scenes—you
can read more about that in Chapter 15, “Updating Sets of Data.”)
However, in all database systems that we studied, when you include the
DISTINCT keyword, the resulting set of rows cannot be updated. To be able
to update a column in a row, your database system needs to be able to
uniquely identify the specific row and column you want to change. When you
use DISTINCT, the values you see in each row are the result of evaluating
perhaps dozens of duplicate rows. If you try to update one of the columns,
your database won’t know which specific row to change. Your database
system also doesn’t know if perhaps you mean to change all the rows with the
same duplicate value.

Sorting Information
At the beginning of this chapter, we said that the SELECT operation can be broken

down into three smaller operations: the SELECT statement, the SELECT expression,
and the SELECT query. We also stated that you can combine these operations in
various ways to answer complex requests. However, you also need to combine these
operations in order to sort the rows of a result set.
By definition, the rows of a result set returned by a SELECT statement are
unordered. The sequence in which they appear is typically based on their physical
position in the table. (The actual sequence is often determined dynamically by your
database system based on how it decides to most efficiently satisfy your request.)
The only way to sort the result set is to embed the SELECT statement within a
SELECT query, as shown in Figure 4–10. We define a SELECT query as a SELECT
statement with an ORDER BY clause. The ORDER BY clause of the SELECT query
lets you specify the sequence of rows in the final result set. As you’ll learn in later
chapters, you can actually embed a SELECT statement within another SELECT
statement or SELECT expression to answer very complex questions. However, the
SELECT query cannot be embedded at any level.

Figure 4–10 The syntax diagram for the SELECT query

 Note
Throughout this book, we use the same terms you’ll find in the SQL Standard
or in common usage in most database systems. Earlier versions of the SQL
Standard, however, defined the ORDER BY clause as part of a cursor (an
object that you define inside an application program), as part of an array (a
list of values that form a logical table such as a subquery, discussed in Chapter
11, “Subqueries”), or as part of a scalar subquery (a subquery that returns
only one value). A complete discussion of cursors and arrays is beyond the
scope of this book.
Because nearly all implementations of SQL allow you to include an ORDER
BY clause at the end of a SELECT statement that you can save in a view, we
invented the term SELECT query to describe this type of statement. This also
allows us to discuss the concept of sorting the final output of a query for
display online or for use in a report. The latest 2011 standard uses the term

<query specification> for what we call a SELECT statement and the term
<query expression> for the construct that we have called SELECT query. In
this one case, we’ll deviate (with your permission) from the names in the
standard and use our terminology.

The ORDER BY clause allows you to sort the result set of the specified SELECT
statement by one or more columns and also provides the option of specifying an
ascending or descending sort order for each column. The only columns you can use
in the ORDER BY clause are those that are currently listed in the SELECT clause.
(Although this requirement is specified in the SQL Standard, some vendor
implementations allow you to disregard it completely and include any column from
any table in the FROM clause. However, we comply with this requirement in all the
examples used throughout the book.) When you use two or more columns in an
ORDER BY clause, separate each column with a comma. The SELECT query
returns a final result set once the sort is complete.

 Note
The ORDER BY clause does not affect the physical order of the rows in a
table. If you do need to change the physical order of the rows, refer to your
database software’s documentation for the proper procedure.

First Things First: Collating Sequences
Before we look at some examples using the SELECT query, a brief word on
collating sequences is in order. The manner in which the ORDER BY clause sorts
the information depends on the collating sequence used by your database software.
The collating sequence determines the order of precedence for every character listed
in the current language character set specified by your operating system. For
example, it identifies whether lowercase letters will be sorted before uppercase
letters, or whether case will even matter. Check your database software’s
documentation, and perhaps consult your database administrator to determine the
default collating sequence for your database. For more information on collating
sequences, see the subsection “Comparing String Values: A Caution” in Chapter 6.

Let’s Now Come to Order
With the availability of the ORDER BY clause, you can present the information you
retrieve from the database in a more meaningful fashion. This applies to simple
requests as well as complex ones. You can now rephrase your requests so that they
also indicate sorting requirements. For example, a question such as “What are the

categories of classes we currently offer?” can be restated as “List the categories of
classes we offer and show them in alphabetical order.”
Before beginning to work with the SELECT query, you need to adjust the way you
define a translation statement. This involves adding a new section at the end of the
translation statement to account for the new sorting requirements specified within the
request. Use this new form to define the translation statement:

Select <item> from the <source> and order by <column(s)>
Now that your request will include phrases such as “sort the results by city,” “show
them in order by year,” or “list them by last name and first name,” study the request
closely to determine which column or columns you need to use for sorting purposes.
This is a simple exercise because most people use these types of phrases, and the
columns needed for the sort are usually self-evident. After you identify the
appropriate column or columns, use them as a replacement for <column(s)> in the
translation statement. Let’s take a look at a simple request to see how this works:

“List the categories of classes we offer and show them in alphabetical order.”

Translation
Select category from the classes table and order by category

Clean Up
Select category from the classes table and order by category

SQL

SELECT Category
FROM Classes
ORDER BY Category

In this example, you can assume that Category will be used for the sort because it’s
the only column indicated in the request. You can also assume that the sort should be
in ascending order because there’s nothing in the request to indicate the contrary.
This is a safe assumption. According to the SQL Standard, ascending order is
automatically assumed if you don’t specify a sort order. However, if you want to be
absolutely explicit, insert ASC after Category in the ORDER BY clause.
In the following request, the column needed for the sort is more clearly defined:

“Show me a list of vendor names in ZIP Code order.”

Translation
Select vendor name and ZIP Code from the vendors table and order
by ZIP Code

Clean Up
Select vendor name and ZIP Code from the vendors table and order
by ZIP Code

SQL

SELECT VendName, VendZipCode
FROM Vendors
ORDER BY VendZipCode

In general, most people will tell you if they want to see their information in
descending order. When this situation arises and you need to display the result set in
reverse order, insert the DESC keyword after the appropriate column in the ORDER
BY clause. For example, here’s how you would modify the SELECT statement in
the previous example when you want to see the information sorted by ZIP Code in
descending order:

SQL

SELECT VendName, VendZipCode
FROM Vendors
ORDER BY VendZipCode DESC

The next example illustrates a more complex request that requires a multicolumn
sort. The only difference between this example and the previous two examples is that
this example uses more columns in the ORDER BY clause. Note that the columns
are separated with commas, which is in accordance with the syntax diagram shown
earlier in Figure 4–10 (on page 91).

“Display the names of our employees, including their phone number and ID
number, and list them by last name and first name.”

Translation
Select last name, first name, phone number, and employee ID from
the employees table and order by last name and first name

Clean Up
Select last name, first name, phone number, and employee ID from
the employees table and order by last name and first name

SQL

SELECT EmpLastName, EmpFirstName,
 EmpPhoneNumber, EmployeeID
FROM Employees
ORDER BY EmpLastName, EmpFirstName

One of the interesting things you can do with the columns in an ORDER BY clause
is to specify a different sort order for each column. In the previous example, you can

specify a descending sort for the column containing the last name and an ascending
sort for the column containing the first name. Here’s how the SELECT statement
looks when you make the appropriate modifications:

SQL

SELECT EmpLastName, EmpFirstName, EmpPhoneNumber,
 EmployeeID
FROM Employees
ORDER BY EmpLastName DESC, EmpFirstName ASC

Although you don’t need to use the ASC keyword explicitly, the statement is more
self-documenting if you include it.
The previous example brings an interesting question to mind: Is any importance
placed on the sequence of the columns in the ORDER BY clause? The answer is
“Yes!” The sequence is important because your database system will evaluate the
columns in the ORDER BY clause from left to right. Also, the importance of the
sequence grows in direct proportion to the number of columns you use. Always
sequence the columns in the ORDER BY clause properly so that the result sorts in
the appropriate order.

 Note
The database products from Microsoft (Microsoft Office Access and
Microsoft SQL Server) include an interesting extension that allows you to
request a subset of rows based on your ORDER BY clause by using the TOP
keyword in the SELECT clause. For example, you can find out the five most
expensive products in the Sales Orders database by requesting:

Click here to view code image

SELECT TOP 5 ProductName, RetailPrice
 FROM Products
 ORDER BY RetailPrice DESC

The database sorts all the rows from the Products table descending by price
and then returns the top five rows. Both database systems also allow you to
specify the number of rows returned as a percentage of all the rows. For
example, you can find out the top 10 percent of products by price by
requesting:

Click here to view code image

SELECT TOP 10 PERCENT ProductName, RetailPrice
 FROM Products
 ORDER BY RetailPrice DESC

In fact, if you want to specify ORDER BY in a view, SQL Server requires that
you include the TOP keyword. If you want all rows, you must specify TOP

100 PERCENT. For this reason, you’ll see that all the sample views in SQL
Server that include an ORDER BY clause also specify TOP 100 PERCENT.
There is no such restriction in Microsoft Access.

Saving Your Work
Save your SELECT statements—every major database software program provides a
way for you to save them! Saving your statements eliminates the need to recreate
them every time you want to make the same request to the database. When you save
your SELECT statement, assign a meaningful name that will help you remember
what type of information the statement provides. And if your database software
allows you to do so, write a concise description of the statement’s purpose. The
value of the description will become quite clear when you haven’t seen a particular
SELECT statement for some time and you need to remember why you constructed it
in the first place.
A saved SELECT statement is categorized as a query in some database programs and
as a view, function, or stored procedure in others. Regardless of its designation,
every database program provides you with a means to execute, or run, the saved
statement and work with its result set.

 Note
For the remainder of this discussion, we’ll use the word query to represent the
saved SELECT statement and execute to represent the method used to work
with it.

Two common methods are used to execute a query. The first is an interactive device
(such as a command on a toolbar or query grid), and the second is a block of
programming code. You’ll use the first method quite extensively. There’s no need to
worry about the second method until you begin working with your database
software’s programming language. Although it’s our job to teach you how to create
and use SQL statements, it’s your job to learn how to create, save, and execute them
in your database software program.

Sample Statements
Now that we’ve covered the basic characteristics of the SELECT statement and
SELECT query, let’s take a look at some examples of how these operations are
applied in different scenarios. These examples encompass each of the sample
databases, and they illustrate the use of the SELECT statement, the SELECT query,

and the two supplemental techniques used to establish columns for the translation
statement. We’ve also included sample result sets that would be returned by these
operations and placed them immediately after the SQL syntax line. The name that
appears immediately above a result set has a twofold purpose: It identifies the result
set itself, and it is also the name that we assigned to the SQL statement in the
example.
In case you’re wondering why we assigned a name to each SQL statement, it’s
because we saved them! In fact, we’ve named and saved all the SQL statements that
appear in the examples here and throughout the remainder of the book. Each is
stored in the appropriate sample database (as indicated within the example), and we
prefixed the names of the queries relevant to this chapter with “CH04.” You can
follow the instructions in the Introduction of this book to load the samples onto your
computer. This gives you the opportunity to see these statements in action before you
try your hand at writing them yourself.

 Note
Just a reminder: All the column names and table names used in these
examples are drawn from the sample database structures shown in Appendix
B. Also keep in mind that for any query you run which does not have an
ORDER BY clause, the sequence of rows returned is undefined. In most
cases, the sequence of rows returned by any such query in any of our sample
databases (Microsoft SQL Server, Microsoft Office Access, or MySQL) will
match the sequence of rows we show you in this book. However, if you use
the SQL Scripts to load the samples into another database system, you will see
the same number of rows and the same data in those rows, but the sequence
might be different.

Sales Orders Database

“Show me the names of all our vendors.”

Translation
Select the vendor name from the vendors table

Clean Up
Select the vendor name from the vendors table

SQL

SELECT VendName
FROM Vendors

CH04_Vendor_Names (10 Rows)

“What are the names and prices of all the products we carry?”

Translation
Select product name, retail price from the products table

Clean Up
Select product name, retail price from the products table

SQL

SELECT ProductName, RetailPrice
FROM Products

CH04_Product_Price_List (40 Rows)

“Which states do our customers come from?”

Translation
Select the distinct state values from the customers table

Clean Up
Select the distinct state values from the customers table

SQL

SELECT DISTINCT CustState
FROM Customers

CH04_Customer_States (4 Rows)

Entertainment Agency Database

“List all entertainers and the cities they’re based in, and sort the results by city
and name in ascending order.”

Translation
Select city and stage name from the entertainers table and order by
city and stage name

Clean Up
Select city and stage name from the entertainers table and order by
city and stage name

SQL

SELECT EntCity, EntStageName
FROM Entertainers
ORDER BY EntCity ASC, EntStageName ASC

CH04_Entertainer_Locations (13 Rows)

“Give me a unique list of engagement dates. I’m not concerned with how many
engagements there are per date.”

Translation
Select the distinct start date values from the engagements table

Clean Up
Select the distinct start date values from the engagements table

SQL

SELECT DISTINCT StartDate
FROM Engagements

CH04_Engagement_Dates (64 Rows)

School Scheduling Database

“Can we view complete class information?”

Translation
Select all columns from the classes table

Clean Up
Select all columns * from the classes table

SQL

SELECT *

FROM Classes

CH04_Class_Information (132 Rows)

“Give me a list of the buildings on campus and the number of floors for each
building. Sort the list by building in ascending order.”

Translation
Select building name and number of floors from the buildings table,
ordered by building name

Clean Up
Select building name and number of floors from the buildings table,
ordered by building name

SQL

SELECT BuildingName, NumberOfFloors
FROM Buildings
ORDER BY BuildingName ASC

CH04_Building_List (6 Rows)

Bowling League Database

“Where are we holding our tournaments?”

Translation
Select the distinct tourney location values from the tournaments
table

Clean Up
Select the distinct tourney location values from the tournaments
table

SQL

SELECT DISTINCT TourneyLocation
FROM Tournaments

CH04_Tourney_Locations (7 Rows)

“Give me a list of all tournament dates and locations. I need the dates in
descending order and the locations in alphabetical order.”

Translation
Select tourney date and location from the tournaments table and
order by tourney date in descending order and location in ascending
order

Clean Up
Select tourney date and location from the tournaments table and
order by tourney date in descending order and location in ascending
order

SQL

SELECT TourneyDate, TourneyLocation
FROM Tournaments
ORDER BY TourneyDate DESC, TourneyLocation ASC

CH04_Tourney_Dates (20 Rows)

Recipes Database

“What types of recipes do we have, and what are the names of the recipes we

have for each type? Can you sort the information by type and recipe name?”

Translation
Select recipe class ID and recipe title from the recipes table and
order by recipe class ID and recipe title

Clean Up
Select recipe class ID and recipe title from the recipes table and
order by recipeclass ID and recipe title

SQL

SELECT RecipeClassID, RecipeTitle
FROM Recipes
ORDER BY RecipeClassID ASC, RecipeTitle ASC

CH04_Recipe_Classes_And_Titles (15 Rows)

“Show me a list of unique recipe class IDs in the recipes table.”

Translation
Select the distinct recipe class ID values from the recipes table

Clean Up
Select the distinct recipe class ID values from the recipes table

SQL

SELECT DISTINCT RecipeClassID
FROM Recipes

CH04_Recipe_Class_Ids (6 Rows)

Summary
In this chapter, we introduced the SELECT operation, and you learned that it is one
of four data manipulation operations in SQL. (The others are UPDATE, INSERT,
and DELETE, covered in Part V.) We also discussed how the SELECT operation
can be divided into three smaller operations: the SELECT statement, the SELECT
expression, and the SELECT query.
The discussion then turned to the SELECT statement, where you were introduced to
its component clauses. We covered the fact that the SELECT and FROM clauses are
the fundamental clauses required to retrieve information from the database and that
the remaining clauses—WHERE, GROUP BY, and HAVING—are used to
conditionally process and filter the information returned by the SELECT clause.
We briefly diverged into a discussion of the difference between data and
information. You learned that the values stored in the database are data and that
information is data that has been processed in a manner that makes it meaningful to
the person viewing it. You also learned that the rows of information returned by a
SELECT statement are known as a result set.
Retrieving information was the next topic of discussion, and we began by presenting
the basic form of the SELECT statement. You learned how to build a proper
SELECT statement by using a three-step technique that involves taking a request and

translating it into proper SQL syntax. You also learned that you could use two or
more columns in the SELECT clause to expand the scope of information you retrieve
from your database. We followed this section with a quick look at the DISTINCT
keyword, which you learned is the means for eliminating duplicate rows from a
result set.
Next, we looked at the SELECT query and how it can be combined with a SELECT
statement to sort the SELECT statement’s result set. You learned that this is
necessary because the SELECT query is the only SELECT operation that contains an
ORDER BY clause. We went on to show that the ORDER BY clause is used to sort
the information by one or more columns and that each column can have its own
ascending or descending sort specification. A brief discussion on saving your
SELECT statements followed, and you learned that you can save your statement as a
query or a view for future use.
Finally, we presented a number of examples using various tables in the sample
databases. The examples illustrated how the various concepts and techniques
presented in this chapter are used in typical scenarios and applications. In the next
chapter, we’ll take a closer look at the SELECT clause and show you how to retrieve
something besides information from a list of columns.
The following section presents a number of requests that you can work out on your
own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need
for each request and then check your answer with the query we saved in the samples.
Don’t worry if your syntax doesn’t exactly match the syntax of the queries we saved
—as long as your result set is the same.

Sales Orders Database
1. “Show me all the information on our employees.”

You can find the solution in CH04_Employee_Information (8 rows).
2. “Show me a list of cities, in alphabetical order, where our vendors are

located, and include the names of the vendors we work with in each city.”
You can find the solution in CH04_Vendor_Locations (10 rows).

Entertainment Agency Database
1. “Give me the names and phone numbers of all our agents, and list them in last

name/first name order.”

You can find the solution in CH04_Agent_Phone_List (9 rows).
2. “Give me the information on all our engagements.”

You can find the solution in CH04_Engagement_Information (111 rows).
3. “List all engagements and their associated start dates. Sort the records by

date in descending order and by engagement in ascending order.”
You can find the solution in CH04_Scheduled_Engagements (111 rows).

School Scheduling Database
1. “Show me a complete list of all the subjects we offer.”

You can find the solution in CH04_Subject_List (56 rows).
2. “What kinds of titles are associated with our faculty?”

You can find the solution in CH04_Faculty_Titles (3 rows).
3. “List the names and phone numbers of all our staff, and sort them by last

name and first name.”
You can find the solution in CH04_Staff_Phone_List (27 rows).

Bowling League Database
1. “List all of the teams in alphabetical order.”

You can find the solution in CH04_Team_List (10 rows).
2. “Show me all the bowling score information for each of our members.”

You can find the solution in CH04_Bowling_Score_Information (1,344 rows).
3. “Show me a list of bowlers and their addresses, and sort it in alphabetical

order.”
You can find the solution in CH04_Bowler_Names_Addresses (32 rows).

Recipes Database
1. “Show me a list of all the ingredients we currently keep track of.”

You can find the solution in CH04_Complete_Ingredients_List (79 rows).
2. “Show me all the main recipe information, and sort it by the name of the

recipe in alphabetical order.”
You can find the solution in CH04_Main_Recipe_Information (15 rows).

5. Getting More Than Simple Columns

“Facts are stubborn things.”
—Tobias Smollett

Gil Blas de Santillane

Topics Covered in This Chapter
What Is an Expression?
What Type of Data Are You Trying to Express?
Changing Data Types: The CAST Function
Specifying Explicit Values
Types of Expressions
Using Expressions in a SELECT Clause
That “Nothing” Value: Null
Sample Statements
Summary
Problems for You to Solve

In Chapter 4, “Creating a Simple Query,” you learned how to use a SELECT
statement to retrieve information from one or more columns in a table. This
technique is useful if you’re posing only simple requests to the database for some
basic facts. However, you’ll need to expand your SQL vocabulary when you begin
working with complex requests. In this chapter, we’ll introduce you to the concept of
an expression as a way to manipulate the data in your tables to calculate or generate
new columns of information. Next, we’ll discuss how the type of data stored in a
column can have an important impact on your queries and the expressions you
create. We’ll take a brief detour to the CAST function, which you can use to actually
change the type of data you’re including in your expressions. You’ll learn to create a
constant (or literal) value that you can use in creative ways in your queries. You’ll
learn to use literals and values from columns in your table to create expressions.
You’ll learn how to adjust the scope of information you retrieve with a SELECT
statement by using expressions to manipulate the data from which the information is
drawn. Finally, you’ll explore the special Null value and learn how it can impact
how you work with expressions that use columns from your tables.

What Is an Expression?

To get more than simple columns, you need to create an expression. An expression is
some form of operation involving numbers, character strings, or dates and times. It
can use values drawn from specific columns in a table, constant (literal) values, or a
combination of both. We’ll show you how to generate literal values later in this
chapter. After your database completes the operation defined by the expression, the
expression returns a value to the SQL statement for further processing. You can use
expressions to broaden or narrow the scope of the information you retrieve from the
database. Expressions are especially useful when you are asking “what if” questions.
Here’s a sample of the types of requests you can answer using expressions:

“What is the total amount for each line item?”
“Give me a mailing list of employees, last name first.”
“Show me the start time, end time, and duration for each class.”
“Show the difference between the handicap score and the raw score for each
bowler.”

“What is the estimated per-hour rate for each engagement?”
“What if we raised the prices of our products by 5 percent?”

As you’ll learn as you work through this chapter, expressions are a very valuable
technique to add to your knowledge of SQL. You can use expressions to “slice and
dice” the plain-vanilla data in your columns to create more meaningful results in
your queries. You’ll also find that expressions are very useful when you move on to
Chapter 6, “Filtering Your Data,” and beyond. You’ll use expressions to filter your
data or to link data from related tables.

What Type of Data Are You Trying to Express?
The type of data used in an expression impacts the value the expression returns, so
let’s first look at some of the data types the SQL Standard provides. Every column in
the database has an assigned data type that determines the kind of values the column
can store. The data type also determines the operations that can be performed on the
column’s values. You need to understand the basic data types before you can begin
to create literal values or combine columns and literals in an expression that is
meaningful and that returns a proper value.
The SQL Standard defines seven general categories of types of data—character,
national character, binary, numeric, Boolean, datetime, and interval. In turn, each
category contains one or more uniquely named data types. Here’s a brief look at each
of these categories and their data types. (In the following list, we’ve broken the
numeric category into two subcategories: exact numeric and approximate numeric.)

CHARACTER

The character data type stores a fixed- or varying-length character
string of one or more printable characters. The characters it accepts
are usually based upon the American Standard Code for Information
Interchange (ASCII) or the Extended Binary Coded Decimal
Interchange Code (EBCDIC) character sets. A fixed-length
character data type is known as CHARACTER or CHAR, and a
varying-length character data type is known as CHARACTER
VARYING, CHAR VARYING, or VARCHAR. You can define the
length of data that you want to store in a character data type, but the
maximum length that you can specify is defined by your database
system. (This rule applies to the national character data types as
well.) When the length of a character string exceeds a system-
defined maximum (usually 255 or 1,024 characters), you must use a
CHARACTER LARGE OBJECT, CHAR LARGE OBJECT, or
CLOB data type. In many systems, the alias for CLOB is TEXT or
MEMO.

NATIONAL CHARACTER

The national character data type is the same as the character data
type except that it draws its characters from ISO-defined foreign
language character sets. NATIONAL CHARACTER, NATIONAL
CHAR, and NCHAR are names used to refer to a fixed-length
national character, and NATIONAL CHARACTER VARYING,
NATIONAL CHAR VARYING, and NCHAR VARYING are
names used to refer to a varying-length national character. When the
length of a character string exceeds a system-defined maximum
(usually 255 or 1,024 characters), you must use a NATIONAL
CHARACTER LARGE OBJECT, NCHAR LARGE OBJECT, or
NCLOB data type. In many systems, the alias for NCLOB is
NTEXT.

BINARY

Use the BINARY LARGE OBJECT (or BLOB) data type to store
binary data such as images, sounds, videos, or complex embedded
documents such as word processing files or spreadsheets. In many
systems, the names used for this data type include BINARY, BIT,
and BIT VARYING.

EXACT NUMERIC

This data type stores whole numbers and numbers with decimal
places. The precision (the number of significant digits) and the scale

(the number of digits to the right of the decimal place) of an exact
numeric can be user-defined and can only be equal to or less than
the maximum limits allowed by the database system. NUMERIC,
DECIMAL, DEC, SMALLINT, INTEGER, INT, and BIGINT are
all names used to refer to this data type. One point you must
remember is that the SQL Standard—as well as most database
systems—defines a BIGINT as having a greater range of values than
INTEGER, and INTEGER as having a greater range of values than
a SMALLINT. Check your database system’s documentation for the
applicable ranges. Some systems also support a TINYINT data type
that can hold a smaller range of values than SMALLINT.

APPROXIMATE NUMERIC

This data type stores numbers with decimal places and exponential
numbers. Names used to refer to this data type include FLOAT,
REAL, and DOUBLE PRECISION. The approximate numeric data
types don’t have a precision and scale per se, but the SQL Standard
does allow a user-defined precision only for a FLOAT data type.
Any scale associated with these data types is always defined by the
database system. Note that the SQL Standard and most database
systems define the range of values for a DOUBLE PRECISION data
type to be greater than those of a REAL or FLOAT data type. Check
your documentation for these ranges as well.

BOOLEAN

This data type stores true and false values, usually in a single binary
bit. Some systems use BIT, INT, or TINYINT to store this data
type.

DATETIME

Dates, times, and combinations of both are stored in this data type.
The SQL Standard defines the date format as year-month-day and
specifies time values as being based on a 24-hour clock. Although
most database systems allow you to use the more common
month/day/year or day/month/year date format and time values
based on an A.M./P.M. clock, we use the date and time formats
specified by the SQL Standard throughout the book. The three
names used to refer to this data type are DATE, TIME, and
TIMESTAMP. You can use the TIMESTAMP data type to store a
combination of a date and time. Note that the names and usages for
these data types vary depending on the database system you are

using. Some systems store both date and time in the DATE data
type, while others use TIMESTAMP or a data type called
DATETIME. Consult your system documentation for details.

INTERVAL

This data type stores the quantity of time between two datetime
values, expressed as either year, month; year/month; day, time; or
day/time. Not all major database systems support the INTERVAL
data type, so consult your system documentation for details.

Many database systems provide additional data types known as extended data types
beyond those specified by the SQL Standard. (We listed a few of them in the
previous list of data type categories.) Examples of extended data types include
MONEY/CURRENCY and SERIAL/ROWID/AUTOINCREMENT/IDENTITY (for
unique row identifiers).
Because our primary focus is on the data manipulation portion of SQL, you need be
concerned only with the appropriate range of values for each data type your database
system supports. This knowledge will help ensure that the expressions you define
will execute properly, so be sure to familiarize yourself with the data types provided
by your RDBMS program.

Changing Data Types: The CAST Function
You must be careful when you create an expression to make sure that the data types
of the columns and literals are compatible with the operation you are requesting. For
example, it doesn’t make sense to try to add character data to a number. But if the
character column or literal contains a number, you can use the CAST function to
convert the value before trying to add another number. Figure 5–1 shows you the
CAST function, which is supported in nearly all commercial database systems.

Figure 5–1 The syntax diagram for the CAST function

The CAST function converts a literal value or the value of a column into a specific
data type. This helps to ensure that the data types of the values in the expression are
compatible. By compatible we mean that all columns or literals in an expression are
either characters, numbers, or datetime values. (As with any rule, there are
exceptions that we’ll mention later.) All the values you use in an expression must

generally be compatible in order for the operation defined within the expression to
work properly. Otherwise, your database system might raise an error message.

 Note
Although most commercial database systems support the CAST function,
some do not. Those systems that do not support CAST do have available a set
of custom functions to achieve the same result. Consult your system
documentation for details.

Converting a value in a column or a literal from one data type to another is a
relatively intuitive and straightforward task. However, you’ll have to keep the
following restrictions in mind when you convert a value from its original data type to
a different data type:

• Let’s call this the “don’t put a ten-pound sack in a five-pound box” rule. As
mentioned earlier, you can define the maximum length of the data you want to
store in a character data type. If you try to convert from one type of character
field (for example, VARCHAR) to another character type (such as
CHARACTER) and the data stored in the original column or literal is larger
than the maximum length specified in the receiving data type, your database
system will truncate the original character string. Your database system should
also give you a warning that the truncation is about to occur.

• Let’s call this the “don’t put a square peg in a round hole” rule. You can
convert a character column or literal to any other data type, but the character
data in the source column or literal must be convertible to the target data type.
For example, you can convert a five-character ZIP Code to a number, but you
will encounter an error if your ZIP Code column contains Canadian postal
codes that have letters. Note that the database system ignores any leading
and/or trailing spaces when it converts a character column value to a numeric
or datetime value. Also, most commercial systems support a wide range of
character strings that are recognizable as date or time values. Consult your
system documentation for details.

• This is the “ten-pound sack” rule, version 2. When you convert a numeric
column’s value to another numeric data type, the current contents of the
convert-from column or literal had better fit in the target data type. For
example, you will likely get an error if you attempt to convert a REAL value
greater than 32,767 to a SMALLINT. Additionally, numbers to the right of the
decimal place will be truncated or rounded as appropriate when you convert a
number that has a decimal fraction to an INTEGER or SMALLINT. The

amount of truncation or rounding is determined by the database system.
• But you can put “a square peg in a round hole” with certain limitations. When

you convert the value of a numeric column to a character data type, one of
three possible results will occur:
1. It will convert successfully.
2. Your system will pad it with blanks if its length is shorter than the defined

length of the character column.
3. The database system will raise an error if the character representation of the

numeric value is longer than the defined length of the character column.

 Note
Although the SQL Standard defines these restrictions, your database system
might allow you some leeway when you convert a value from one data type to
another. Some database systems provide automatic conversion for you without
requiring you to use the CAST function. For example, some systems allow
you to concatenate a number with text or to add text containing a number to
another number without an explicit conversion. Refer to your database
system’s documentation for details.
It’s important to note that this list does not constitute the entire set of
restrictions defined by the SQL Standard. We listed only those restrictions that
apply to the data types we use in this book. For a more in-depth discussion on
data types and data conversion issues, please refer to any of the books listed in
Appendix D, “Suggested Reading.”

Keep the CAST function in mind as you work through the rest of this book. You’ll
see us use it whenever appropriate to make sure we’re working with compatible data
types.

Specifying Explicit Values
The SQL Standard provides flexibility for enhancing the information returned from a
SELECT statement by allowing use of constant values such as character strings,
numbers, dates, times, or a suitable combination of these items, in any valid
expression used within a SELECT statement. The SQL Standard categorizes these
types of values as literal values and specifies the manner in which they are defined.

Character String Literals
A character string literal is a sequence of individual characters enclosed in single

quotes. Yes, we know that you are probably used to using double quotes to enclose
character strings, but we’re presenting these concepts as the SQL Standard defines
them. Figure 5–2 shows the diagram for a character string literal.

Figure 5–2 The syntax diagram of a character string literal

Here are a few examples of the types of character string literals you can define:
Click here to view code image

'This is a sample character string literal.'
'Here"s yet another!'
'B-28'
'Seattle'

You probably noticed what seemed to be a double quote in both the diagram and the
second line of the previous example. Actually, it’s not a double quote but two
consecutive single quotes with no space between them. The SQL Standard states that
a single quote embedded within a character string is represented by two consecutive
single quotes. The SQL Standard defines it this way so that your database system can
distinguish between a single quote that defines the beginning or end of a character
string literal and a quote that you want included within the literal. The following two
lines illustrate how this works:

SQL

'The Vendor"s name is: '

Displayed as

The Vendor’s name is:
As we mentioned earlier, you can use character string literals to enhance the
information returned by a SELECT statement. Although the information you see in a
result set is usually easy to understand, it’s very likely that the information can be
made clearer. For example, if you execute the following SELECT statement, the
result set displays only the vendor’s Web site address and the vendor’s name:

SQL SELECT VendWebPage, VendName
 FROM Vendors

In some instances you can enhance the clarity of the information by defining a

character string that provides supplementary descriptive text and then adding it to the
SELECT clause. Use this technique judiciously because the character string literal
will appear in each row of the result set. Here’s how you might modify the previous
example with a character string literal:

SQL SELECT VendWebPage, 'is the Web site for',
 VendName
 FROM Vendors

A row in the result set generated by this SELECT statement looks like this:

This somewhat clarifies the information displayed by the result set by identifying the
actual purpose of the Web address. Although this is a simple example, it illustrates
what you can do with character string literals. Later in this chapter, you’ll see how
you can use them in expressions.

 Note
You’ll find this technique especially useful when working with legacy
databases that contain cryptic column names. However, you won’t have to use
this technique very often with your own databases if you follow the
recommendations in Chapter 2, “Ensuring Your Database Structure Is Sound.”

Numeric Literals
A numeric literal is another type of literal you can use within a SELECT statement.
As the name implies, it consists of an optional sign and a number and can include a
decimal place, the exponent symbol, and an exponential number. Figure 5–3 shows
the diagram for a numeric literal.

Figure 5–3 The syntax diagram of a numeric literal
Examples of numeric literals include the following:

427
–11.253
.554
0.3E–3

Numeric literals are most useful in expressions (for example, to multiply by or to add
a fixed number value), so we’ll postpone further discussion until later in this chapter.

Datetime Literals
You can supply specific dates and times for use within a SELECT statement by
using date literals, time literals, and timestamp literals. The SQL Standard refers to
these literals collectively as datetime literals. Defining these literals is a simple task,
as Figure 5–4 shows.

Figure 5–4 The syntax diagram of date and time literals
Bear in mind a few points, however, when using datetime and interval literals:

DATE

The format for a date literal is year-month-day, which is the format
we follow throughout the book. However, many SQL databases
allow the more common month/day/year format (United States) or
day/month/year format (most non-U.S. countries). The SQL
Standard also specifies that you include the DATE keyword before
the literal, but nearly all commercial implementations allow you to
simply specify the literal value surrounded by delimiter characters—
usually single quotes. We found one case, the MySQL system, that
requires you to specify a date literal in quotes and then to use the
CAST function to convert the string to the DATE data type before
you can use it in date calculations. Microsoft Office Access requires
you to use a hash tag (#) character as the delimiter for DATE
literals.

TIME

The hour format is based on a 24-hour clock. For example, 07:00
P.M. is represented as 19:00. The SQL Standard also specifies that
you include the TIME keyword before the literal, but nearly all
commercial implementations allow you to simply specify the literal

value surrounded by delimiter characters—usually single quotes.
We found one case, the MySQL system, that requires you to specify
a time literal in quotes and then to use the CAST function to convert
the string to the TIME data type before you can use it in time
calculations. Microsoft Office Access requires you to use a hash tag
(#) character as the delimiter for TIME literals.

TIMESTAMP

A timestamp literal is simply the combination of a date and a time
separated by a single space. The rules for formatting the date and
the time within a timestamp follow the individual rules for date and
time. The SQL Standard also specifies that you include the
TIMESTAMP keyword before the literal, but all commercial
implementations that support the TIMESTAMP data type allow you
to simply specify the literal value surrounded by delimiter
characters—usually single quotes.

 Note
In some systems, you can also define an interval literal to use in calculated
expressions with datetime literals, but we won’t be covering that type of literal
in this book. See your system documentation for details.
You can find the diagrams for DATE, TIME, TIMESTAMP, and INTERVAL
as defined by the SQL Standard in Appendix A, “SQL Standard Diagrams.”

Here are some examples of datetime literals:
'2007-05-16'
'2016-11-22'
'21:00'
'03:30:25'
'2008-09-29 14:25:00'

Note that when using MySQL, you must explicitly convert any character literal
containing a date or a time or a date and a time by using the CAST function. Here
are some examples:
Click here to view code image

CAST('2016-11-22' AS DATE)
CAST('03:30:25' AS TIME)
CAST('2008-09-29 14:25:00' AS DATETIME)

As we noted previously, in order to follow the SQL Standard, you must precede each
literal with a keyword indicating the desired value. Although the DATE and TIME
keywords are defined in the SQL Standard as required components of date and time

literals, respectively, most database systems rarely support these keywords in this
particular context and require only the character string portion of the literal.
Therefore, we’ll refrain from using the keywords and instead use single quotes to
delimit a date or time literal that appears in any example throughout the remainder of
the book. We show you how to use dates and times in expressions later in this
chapter. See Appendix A for more details on forming datetime literals that follow the
SQL Standard.

Types of Expressions
You will generally use the following three types of expressions when working with
SQL statements:

CONCATENATION

Combining two or more character columns or literals into a single
character string

MATHEMATICAL

Adding, subtracting, multiplying, and dividing numeric columns or
literals

DATE AND TIME ARITHMETIC

Applying addition or subtraction to dates and times

Concatenation
The SQL Standard defines two sequential vertical bars as the concatenation operator.
You can concatenate two character items by placing a single item on either side of
the concatenation operator. The result is a single string of characters that is a
combination of both items. Figure 5–5 shows the syntax diagram for the
concatenation expression.

Figure 5–5 The syntax diagram for the concatenation expression

 Note
Of the major database systems, we found that only IBM’s DB2 and Informix
and Oracle’s Oracle support the SQL Standard operator for concatenation.
Microsoft Office Access supports & and + as concatenation operators,

Microsoft SQL Server and Ingres support +, and in MySQL you must use the
CONCAT function. In all the examples in the book, we use the SQL Standard
|| operator. In the sample databases on the Web site for the book, we use the
appropriate operator for each database type (Microsoft Access, Microsoft SQL
Server, and MySQL).

Here’s a general idea of how the concatenation operation works:
Expression

ItemOne || ItemTwo

Result
ItemOneItemTwo

Let’s start with the easiest example in the world: concatenating two character string
literals, such as a first name and a last name:

Expression

'Mike' || 'Hernandez'

Result
MikeHernandez

There are two points to consider in this example: First, single quotes are required
around each name because they are character string literals. Second, the first and last
names are right next to each other. Although the operation combined them correctly,
it might not be what you expected. The solution is to add a space between the names
by inserting another character literal that contains a single space.

Expression

'Mike' || ' ' || 'Hernandez'

Result
Mike Hernandez

The previous example shows that you can concatenate additional character values by
using more concatenation operators. There is no limit to the number of character
values you can concatenate, but there is a limit to the length of the character string
the concatenation operation returns. In general, the length of the character string
returned by a concatenation operation can be no greater than the maximum length
allowed for a varying-length character data type. Your database system might handle
this issue slightly differently, so check your documentation for further details.
Concatenating two or more character strings makes perfect sense, but you can also
concatenate the values of two or more character columns in the same fashion. For
example, suppose you have two columns called CompanyName and City. You can
create an expression that concatenates the value of each column by using the column

names within the expression. Here’s an example that concatenates the values of both
columns with a character string:

Expression

CompanyName || ' is based in ' || City

Result
DataTex Consulting Group is based in Seattle

You don’t need to surround CompanyName or City with single quotes because they
are column references. (Remember column references from the previous chapter?)
You can use a column reference in any type of expression, as you’ll see in the
examples throughout the remainder of the book.
Notice that all the concatenation examples so far concatenate characters with
characters. We suppose you might be wondering if you need to do anything special
to concatenate a number or a date. Most database systems give you some leeway in
this matter. When the system sees you trying to concatenate a character column or
literal with a number or a date, the system automatically casts the data type of the
number or date for you so that the concatenation works with compatible data types.
But you shouldn’t always depend on your database system to quietly do the
conversion for you. To concatenate a character string literal or the value of a
character column with a date literal or the value of a numeric or date column, use the
CAST function to convert the numeric or date value to a character string. Here’s an
example of using CAST to convert the value of a date column called DateEntered:

Expression

EntStageName || ' was signed with our agency on '
|| CAST(DateEntered as CHARACTER(10))

Result
Modern Dance was signed with our agency on 1995-05-16

 Note
We specified an explicit length for the CHARACTER data type because the
SQL Standard specifies that the absence of a length specification defaults to a
length of 1. We found that most major implementations give you some leeway
in this regard and generate a character string long enough to contain what
you’re converting. You can check your database documentation for details,
but if you’re in doubt, always specify an explicit length.

You should also use the CAST function to concatenate a numeric literal or the value
of a numeric column to a character data type. In the next example, we use CAST to

convert the value of a numeric column called RetailPrice:
Expression

ProductName || ' sells for ' || CAST(RetailPrice
AS CHARACTER(8))

Result
Trek 9000 Mountain Bike sells for 1200.00

A concatenation expression can use character strings, datetime values, and numeric
values simultaneously. The following example illustrates how you can use all three
data types within the same expression:

Expression

'Order Number ' || CAST(OrderNumber AS CHARACTER(2))
|| ' was placed on ' ||
CAST(OrderDate AS CHARACTER(10))

Result
Order Number 1 was placed on 2012-09-01

 Note
The SQL Standard defines a variety of functions that you can use to extract
information from a column or calculate a value across a range of rows. We’ll
cover some of these in more detail in Chapter 12, “Simple Totals.” Most
commercial database systems also provide various functions to manipulate
parts of strings or to format date, time, or currency values. Check your system
documentation for details.

Now that we’ve shown how to concatenate data from various sources into a single
character string, let’s look at the different types of expressions you can create using
numeric data.

Mathematical Expressions
The SQL Standard defines addition, subtraction, multiplication, and division as the
operations you can perform on numeric data. The standard also defines common
mathematical functions to calculate values such as absolute value, modulus,
exponentiation, and logarithms. Here are the mathematical functions defined by the
standard:

Most RDBMS programs provide these operations, as well as a wide array of
scientific, trigonometric, statistical, and mathematical functions. In this book,
however, we focus only on the four basic operations defined by the SQL Standard—
addition, subtraction, multiplication, and division.
The order in which the four basic mathematical operations are performed—known as
the order of precedence—is an important issue when you create mathematical
expressions. The SQL Standard gives equal precedence to multiplication and
division and specifies that they should be performed before any addition or
subtraction. This is slightly contrary to the order of precedence you probably learned
back in school, where multiplication is done before division, division before
addition, and addition before subtraction, but it matches the order of precedence used
in most modern programming languages. Mathematical expressions are evaluated
from left to right. This could lead to some interesting results, depending on how you
construct the expression! So, we strongly recommend that you make extensive use of
parentheses in complex mathematical expressions to ensure that they evaluate
properly.
If you remember how you created mathematical expressions back in school, then you
already know how to create them in SQL. In essence, you use an optionally signed

numeric value, a mathematical operator, and another optionally signed numeric value
to create the expression. Figure 5–6 shows a diagram of this process.

Figure 5–6 The syntax diagram for a mathematical expression

Here are some examples of mathematical expressions using numeric literal values,
column references, and combinations of both:

25 + 35
–12 * 22
RetailPrice * QuantityOnHand
TotalScore / GamesBowled
RetailPrice – 2.50
TotalScore / 12

As mentioned earlier, you need to use parentheses to ensure that a complex
mathematical expression evaluates properly. Here’s a simple example of how you
might use parentheses in such an expression:

Expression

(11 – 4) + (12 * 3)

Result
43

Pay close attention to the placement of parentheses in your expression because it
affects the expression’s resulting value. The two expressions in the following
example illustrate this quite clearly. Although both expressions have the exact same
numbers and operators, the placement of the parentheses is entirely different and
causes the expressions to return completely different values.

Expression

(23 * 11) + 12

Result

265
Expression

23 * (11 + 12)

Result
529

It’s easy to see why you need to be careful with parentheses, but don’t let this stop
you from using them. They are invaluable when working with complex expressions.
You can also use parentheses as a way to nest operations within an expression. When
you use nested parenthetical operations, your database system evaluates them left to
right and then in an “innermost to outermost” fashion. Here’s an example of an
expression that contains nested parenthetical operations:

Expression

(12 * (3 + 4)) – (24 / (10 + (6 – 4)))

Result
82

Executing the operations within the expression is not really as difficult as it seems.
Here’s the order in which your database system evaluates the expression:

1. (3 + 4) = 7
2. (12 * 7) = 84 12 times the result of the first operation
3. (6 – 4) = 2
4. (10 + 2) = 12 10 plus the result of the third operation
5. (24 / 12) = 2 24 divided by the result of the fourth operation
6. 84 – 2 = 82 84 minus the result of the second operation

As you can see, the system proceeds left to right but must evaluate inner expressions
when encountering an expression surrounded by parentheses. Effectively, (12 * (3 +
4)) and (24 / (10 + (6 – 4))) are on an equal level, so your system will completely
evaluate the leftmost expression first, innermost to outermost. It then encounters the
second expression surrounded by parentheses and evaluates that one innermost to
outermost. The final operation subtracts from the result of the left expression the
result of evaluating the right expression. (Does your head hurt yet? Ours do!)
Although we used numeric literals in the previous example, we could just as easily
have used column references or a combination of numeric literals and column
references as well. The key point to remember here is that you should plan and
define your mathematical expressions carefully so that they return the results you
seek. Use parentheses to clearly define the sequence in which you want operations to
occur, and you’ll get the result you expect.
When working with a mathematical expression, be sure that the values used in the
expression are compatible. This is especially true of an expression that contains
column references. You can use the CAST function for this purpose exactly as you
did within a concatenation expression. For example, say you have a column called
TotalLength based on an INTEGER data type that contains the whole number value
345, and a column called Distance based on a REAL data type that contains the

value 138.65. To add the value of the Distance column to the value of the
TotalLength column, you should use the CAST function to convert the Distance
column’s value into an INTEGER data type or the TotalLength column’s value into
a REAL data type, depending on whether you want the final result to be an
INTEGER or a REAL data type. Assuming you’re interested in adding only the
integer values, you would accomplish this with the following expression:

Expression

TotalLength + CAST(Distance AS INTEGER)

Resulte
483

Not the answer you expected? Maybe you thought converting 138.65 to an integer
would round the value up? Although the SQL Standard states that rounding during
conversion using the CAST function depends on your database system, most systems
truncate a value with decimal places when converting to an integer. So, we’re
assuming our system also does that and thus added 345 to 138, not the rounded value
139.
If you forget to ensure the compatibility of the column values within an expression,
your database system might raise an error message. If it does, it will probably cancel
the execution of the operations within the expression as well. Most RDBMS systems
handle such conversions automatically without warning you, but they usually
convert all numbers to the most complex data type before evaluating the expression.
In the previous example, your RDBMS would most likely convert TotalLength to
REAL (the more complex of the two data types). Your system will use REAL
because all INTEGER values can be contained within the REAL data type. However,
this might not be what you wanted. Those RDBMS programs that do not perform
this sort of automatic conversion are usually good about letting you know that it’s a
data type mismatch problem, so you’ll know what you need to do to fix your
expression.
As you just learned, creating mathematical expressions is a relatively easy task as
long as you do a little planning and know how to use the CAST function to your
advantage. In our last discussion for this section, we’ll show you how to create
expressions that add and subtract dates and times.

Date and Time Arithmetic
The SQL Standard defines addition and subtraction as the operations you can
perform on dates and times. Contrary to what you might expect, many RDBMS
programs differ in the way they implement these operations. Some database systems
allow you to define these operations as you would in a mathematical expression,

while others require you to use special built-in functions for these tasks. Refer to
your database system’s documentation for details on how your particular RDBMS
handles these operations. In this book, we discuss date and time expressions only in
general terms so that we can give you an idea of how these operations should work.

Date Expressions
Figure 5–7 (on page 130) shows the syntax for a date expression as defined by the
SQL Standard. As you can see, creating the expression is simple enough—take one
value and add it to or subtract it from a second value.

Figure 5–7 The syntax diagram for a date expression

The SQL Standard further defines the valid operations and their results as follows:
DATE plus or minus INTERVAL yields DATE
DATE minus DATE yields INTERVAL
INTERVAL plus DATE yields DATE
INTERVAL plus or minus INTERVAL yields INTERVAL
INTERVAL times or divided by NUMBER yields INTERVAL

Note that in the SQL Standard you can subtract only a DATE from a DATE or add
only a DATE to an INTERVAL.
When you use a column reference, make certain it is based on a DATE or
INTERVAL data type, as appropriate. If the column is not an acceptable data type,
you might have to use the CAST function to convert the value you are adding or
subtracting. The SQL Standard explicitly specifies that you can perform these
operations only using the indicated data types, but many database systems convert
the column’s data type for you automatically. Your RDBMS will ultimately
determine whether the conversion is required, so check your documentation.
Although only a few commercial systems support the INTERVAL data type, many
of them allow you to use an integer value (such as SMALLINT or INT) to add to or

subtract from a date value. You can think of this as adding and subtracting days. This
allows you to answer questions such as “What is the date nine days from now?” and
“What was the date five days ago?” Note also that some database systems allow you
to add to or subtract from a datetime value using a fraction. For example, adding 3.5
to a datetime value in Microsoft Access adds 3 days and 12 hours.
When you subtract a date from another date, you are calculating the interval between
the two dates. For example, you might need to subtract a hire date from the current
date to determine how long an employee has been with the company. Although the
SQL Standard indicates that you can add only an interval to a date, many database
systems (especially those that do not support the INTERVAL data type) allow you to
add either a number or a date anyway. You can use this sort of calculation to answer
questions such as “When is the employee’s next review date?”
In this book, we’ll show you simple calculations using dates and assume that you can
at least add an integer number of days to a date value. We’ll also assume that
subtracting one date from another yields an integer number of days between the two
dates. If you apply these simple concepts, you can create most of the date
expressions that you’ll need. Here are some examples of the types of date
expressions you can define:

'2012-05-16' – 5
'2012-11-14' + 12
ReviewDate + 90
EstimateDate – DaysRequired
'2012-07-22' – '2012-06-13'
ShipDate – OrderDate

Time Expressions
You can create expressions using time values as well, and Figure 5–8 shows the
syntax. Date and time expressions are very similar, and the same rules and
restrictions that apply to a date expression also apply to a time expression.

Figure 5–8 The syntax diagram for a time expression

The SQL Standard further defines the valid operations and their results as follows:
TIME plus or minus INTERVAL yields TIME
TIME minus TIME yields INTERVAL
INTERVAL plus or minus INTERVAL yields INTERVAL
INTERVAL times or divided by NUMBER yields INTERVAL

Note that in the SQL Standard you can subtract only a TIME from a TIME or add
only a TIME to an INTERVAL.
All the same “gotchas” we noted for date expressions apply to time expressions. In
addition, for systems that support a combination datetime data type, the time portion
of the value is stored as a fraction of a day accurate at least to seconds. When using
systems that support datetime, you can also usually add or subtract a decimal fraction
value to a datetime value. For example, 0.25 is 6 hours (one-fourth of a day). In this
book, we’ll assume that your system supports both adding and subtracting time
literals or columns. We make no assumption about adding or subtracting decimal
fractions. Again, check your documentation to find out what your system actually
supports.
Given our assumptions, here are some general examples of time expressions:

'14:00' + '00:22'
'19:00' – '16:30'
StartTime + '00:19'
StopTime – StartTime

We said earlier that we would present date and time expressions only in general
terms. Our goal was to make sure that you understood date and time expressions
conceptually and that you had a general idea of the types of expressions you should
be able to create. Unfortunately, most database systems do not implement the SQL
Standard’s specification for time expressions exactly, and many only partially
support the specification for the date expression. As we noted, however, all database
systems provide one or more functions that allow you to work with dates and times.
You can find a summary of these functions for five major implementations in
Appendix C, “Date and Time Types, Operations, and Functions.” We strongly
recommend that you study your database system’s documentation to learn what
types of functions your system provides.
Now that you know how to create the various types of expressions, the next step is to
learn how to use them.

 See Also
Take a look at Appendix C for an overview of how five of the most popular
database systems deal with dates and times. We list the data types and

arithmetic operations supported along with a comprehensive list of date and
time functions for each.

Using Expressions in a SELECT Clause
Knowing how to use expressions is arguably one of the most important concepts
you’ll learn in this book. You’ll use expressions for a variety of purposes when
working with SQL. For example, you would use an expression to

• Create a calculated column in a query
• Search for a specific column value
• Filter the rows in a result set
• Connect two tables in a JOIN operation

We’ll show you how to do this (and more) as we work through the rest of the book.
We begin by showing you how to use basic expressions in a SELECT clause.

 Note
Throughout this chapter, we use the “Request/Translation/Clean Up/SQL”
technique introduced in Chapter 4.

You can use basic expressions in a SELECT clause to clarify information in a result
set and to expand the result set’s scope of information. For example, you can create
expressions to concatenate first and last names, calculate the total price of a product,
determine how long it took to complete a project, or specify a date for a patient’s
next appointment. Let’s look at how you might use a concatenation expression, a
mathematical expression, and a date expression in a SELECT clause. First, we’ll
work with the concatenation expression.

Working with a Concatenation Expression
Unlike mathematical and date expressions, you use concatenation expressions only
to enhance the readability of the information contained in the result set of a SELECT
statement. Suppose you are posing the following request:

“Show me a current list of our employees and their phone numbers.”

When translating this request into a SELECT statement, you can improve the output
of the result set somewhat by concatenating the first and last names into a single
column. Here’s one way you can translate this request:

Translation

Select the first name, last name, and phone number of all our
employees from the employees table

Clean Up
Select the first name, last name, and phone number of all our
employees from the employees table

SQL

SELECT EmpFirstName || ' ' || EmpLastName,
 'Phone Number: ' || EmpPhoneNumber
FROM Employees

The result for one of the rows will look something like this:

You probably noticed that in addition to concatenating the first name column, a
space, and the last name column, we also concatenated the character literal string
“Phone Number:” with the phone number column. This example clearly shows that
you can easily use more than one concatenation expression in a SELECT clause to
enhance the readability of the information in the result set. Remember that you can
also concatenate values with different data types by using the CAST function. For
instance, we concatenate a character column value with a numeric column value in
the next example:

“Show me a list of all our vendors and their identification numbers.”

Translation
Select the vendor name and vendor ID from the vendors table

Clean Up
Select the vendor name and vendor ID from the vendors table

SQL

SELECT 'The ID Number for ' || VendName ||
 ' is ' || CAST(VendorID AS CHARACTER)
FROM Vendors

Although the concatenation expression is a useful tool in a SELECT statement, it is
one that you should use judiciously. When you use concatenation expressions
containing long character string literals, keep in mind that the literals will appear in
every row of the result set. You might end up cluttering the final result with
repetitive information instead of enhancing it. Carefully consider your use of literals
in concatenation expressions so that they work to your advantage.

Naming the Expression

When you use an expression in a SELECT clause, the result set includes a new
column that displays the result of the operation defined in the expression. This new
column is known as a calculated (or derived) column. For example, the result set for
the following SELECT statement will contain three columns—two “real” columns
and one calculated column:

SQL

SELECT EmpFirstName || ' ' || EmpLastName,
 EmpPhoneNumber, EmpCity
FROM Employees

The two real columns are, of course, EmpPhoneNumber and EmpCity, and the
calculated column is derived from the concatenation expression at the beginning of
the SELECT clause.
According to the SQL Standard, you can optionally provide a name for the new
column by using the AS keyword. (In fact, you can assign a new name to any
column using the AS clause.) Almost every database system, however, requires a
name for a calculated column. Some database systems require you to provide the
name explicitly, while others actually provide a generated name for you. Determine
how your database system handles this before you work with the examples. If you
plan to reference the result of the expression in your query, you should provide a
name.
Figure 5–9 (on page 136) shows the syntax for naming an expression. You can use
any valid character string literal (enclosed in single quotes) for the name. Some
database systems relax this requirement when you’re naming an expression and
require quotes only when your column name includes embedded spaces. However,
we strongly recommend that you not use spaces in your names because the spaces
can be difficult to deal with in some database programming languages.

Figure 5–9 The syntax diagram for naming an expression

Now we’ll modify the SELECT statement in the previous example and supply a
name for the concatenation expression:

SQL

SELECT EmpFirstName || ' ' || EmpLastName AS
 EmployeeName, EmpPhoneNumber, EmpCity
FROM Employees

The result set for this SELECT statement will now contain three columns called
EmployeeName, EmpPhoneNumber, and EmpCity.

In addition to supplying a name for expressions, you can use the AS keyword to
supply an alias for a real column name. Suppose you have a column called DOB and
are concerned that some of your users might not be familiar with this abbreviation.
You can eliminate any possible misinterpretation of the name by using an alias, as
shown here:

SQL

SELECT EmpFirstName || ' ' || EmpLastName AS
 EmployeeName, DOB AS DateOfBirth
FROM Employees

This SELECT statement produces a result set with two columns called
EmployeeName and DateOfBirth. You’ve now effectively eliminated any possible
confusion of the information displayed in the result set.
Providing names for your calculated columns has a minor effect on the translation
process. For example, here’s one possible version of the translation process for the
previous example:

“Give me a list of employee names and their dates of birth.”

Translation
Select first name and last name as employee name and DOB as date
of birth from the employees table

Clean Up
Select first name and || ‘ ’ || last name as EmployeeName and DOB
as DateOfBirth from the employees table

SQL

SELECT EmpFirstName || ' ' || EmpLastName
 AS EmployeeName, DOB AS DateOfBirth
FROM Employees

After you become accustomed to using expressions, you won’t need to state them
quite as explicitly in your translation statements as we did here. You’ll eventually be
able to easily identify and define the expressions you need as you construct the
SELECT statement itself.

 Note
Throughout the remainder of the book, we provide names for all calculated
columns within an SQL statement, as appropriate.

Working with a Mathematical Expression

Mathematical expressions are possibly the most versatile of the three types of
expressions, and you’ll probably use them quite often. For example, you can use a
mathematical expression to calculate a line item total, determine the average score
from a given set of tests, calculate the difference between two lab results, and
estimate the total seating capacity of a building. The real trick is to make certain your
expression works, and that is just a function of doing a little careful planning.
Here’s an example of how you might use a mathematical expression in a SELECT
statement:

“Display for each agent the agent name and projected income (salary plus
commission), assuming each agent will sell $50,000 worth of bookings.”

Translation
Select first name and last name as agent name and salary plus 50000
times commission rate as projected income from the agents table

Clean Up
Select first name and || ‘ ’ || last name as AgentName, and salary
plus + 50000 times * commission rate as Projected Income from the
agents table

SQL

SELECT AgtFirstName || ' ' || AgtLastName
 AS AgentName, Salary + (50000 * CommissionRate)
 AS ProjectedIncome
FROM Agents

Notice that we added parentheses to make it crystal clear that we expect the
commission rate to be multiplied by 50,000 and then add the salary, not add 50,000
to the salary and then multiply by the commission rate. As the example shows,
you’re not limited to using a single type of expression in a SELECT statement.
Rather, you can use a variety of expressions to retrieve the information you need in
the result set. Here’s another way you can write the previous SQL statement:

SQL

SELECT AgtFirstName || ' ' || AgtLastName
 || ' has a projected income of ' ||
 CAST(Salary + (50000 * CommissionRate) AS CHARACTER)
 AS ProjectedIncome
FROM Agents

The information you can provide by using mathematical expressions is virtually
limitless, but you must properly plan your expressions and use the CAST function as
appropriate.

Working with a Date Expression
Using a date expression is similar to using a mathematical expression in that you’re
simply adding or subtracting values. You can use date expressions for all sorts of
tasks. For example, you can calculate an estimated ship date, project the number of
days it will take to finish a project, or determine a follow-up appointment date for a
patient. Here’s an example of how you might use a date expression in a SELECT
clause:

“How many days did it take to ship each order?”

Translation
Select the order number and ship date minus order date as days to
ship from the orders table

Clean Up
Select the order number and ship date minus – order date as
DaysToShip from the orders table

SQL

SELECT OrderNumber, CAST(ShipDate – OrderDate
 AS INTEGER) AS DaysToShip
FROM Orders

You can use time expressions in the same manner.

“What would be the start time for each class if we began each class ten minutes
later than the current start time?”

Translation
Select the start time and start time plus 10 minutes as new start time
from the classes table

Clean Up
Select the start time and start time plus + ‘00:10’ minutes as
NewStartTime from the classes table

SQL

SELECT StartTime, StartTime + '00:10'
 AS NewStartTime
FROM Classes

As we mentioned earlier, all database systems provide a function or set of functions
for working with date values. We did want to give you an idea of how you might use
dates and times in your SELECT statements, however, and we again recommend that

you refer to your database system’s documentation for details on the date and time
functions your database system provides.

A Brief Digression: Value Expressions
You now know how to use column references, literal values, and expressions in a
SELECT clause. You also know how to assign a name to a column reference or an
expression. Now we’ll show you how this all fits into the larger scheme of things.
The SQL Standard refers to a column reference, literal value, and expression
collectively as a value expression. Figure 5–10 shows how to define a value
expression.

Figure 5–10 The syntax diagram for a value expression
Let’s take a closer look at the components of a value expression:

• The syntax begins with an optional plus or minus sign. You use either of these
signs when you want the value expression to return a signed numeric value.
The value itself can be a numeric literal, the value of a numeric column, a call
to a function that returns a numeric value (see our discussion of the CAST
function earlier in this chapter), or the return value of a mathematical
expression. You cannot use the plus or minus sign before an expression that
returns a character or date-time data type.

• You can see that the first list in the figure also includes “(Value Expression).”
This means that you can use a complex value expression comprised of other
value expressions that include concatenation or mathematical operators of their
own. The parentheses force the database system to evaluate this value
expression first. (Don’t worry about (SELECT Expression) and CASE
Expression just yet—we cover those in detail in Chapter 11, “Subqueries,” and

Chapter 19, “Condition Testing,” respectively.)
• The next item in the syntax is a list of operators. As you can see in the inset

box, the type of expression you use at the beginning of the syntax determines
which operators you can select from this list.

• No, you’re not seeing things: “Value Expression” does appear after the list of
operators as well. The fact that you can use other value expressions within a
value expression allows you to create very complex expressions.

By its very definition, a value expression returns a value that is used by some
component of an SQL statement. The SQL Standard specifies the use of a value
expression in a variety of statements and defined terms. No matter where you use it,
you’ll always define a value expression in the same manner as you’ve learned here.
We’ll put this all into some perspective by showing you how a value expression is
used in a SELECT statement. Figure 5–11 shows a modified version of the SELECT
statement syntax diagram presented in Figure 4–9 in Chapter 4. This new syntax
gives you the flexibility to use literals, column references, expressions, or any
combination of these within a single SELECT statement. You can optionally name
your value expressions with the AS keyword.

Figure 5–11 The syntax diagram for the SELECT statement that includes a value
expression

Throughout the remainder of the book, we use the term value expression to refer to a
column reference, a literal value, or an expression, as appropriate. In later chapters,
we discuss how to use a value expression in other statements and show you a couple
of other items that a value expression represents.
Now, back to our regularly scheduled program.

That “Nothing” Value: Null
As you know, a table consists of columns and rows. Each column represents a
characteristic of the subject of the table, and each row represents a unique instance of
the table’s subject. You can also think of a row as one complete set of column values
—each row contains exactly one value from each column in the table. Figure 5–12
shows an example of a typical table.

Figure 5–12 A typical Customers table

So far we’ve shown how to retrieve information from the data in a table with a
SELECT statement and how to manipulate that data by using value expressions. All
of this works just fine because we’ve continually made the assumption that each
column in the table contains data. But as Figure 5–12 clearly illustrates, a column
sometimes might not contain a value for a particular row in the table. Depending on
how you use the data, the absence of a value might adversely affect your SELECT
statements and value expressions. Before we discuss any implications, let’s first
examine how SQL regards missing values.

Introducing Null
In SQL, a Null represents a missing or an unknown value. You must understand from
the outset that a Null does not represent a zero, a character string of one or more
blank spaces, or a “zero-length” character string. The reasons are quite simple:

• A zero can have a very wide variety of meanings. It can represent the state of
an account balance, the current number of available first-class ticket upgrades,
or the current stock level of a particular product.

• Although a character string of one or more blank spaces is guaranteed to be
meaningless to most of us, it is something that is definitely meaningful to SQL.
A blank space is a valid character as far as SQL is concerned, and a character
string composed of three blank spaces (' ') is just as legitimate as a character
string composed of several letters ('a character string').

• A zero-length string—two consecutive single quotes with no space in between
('')—can be meaningful under certain circumstances. In an employee table,
for example, a zero-length string value in a column called MiddleInitial might
represent the fact that a particular employee does not have a middle initial in
her name. Note, however, that some implementations (notably Oracle) treat a
zero-length string in a VARCHAR as Null.

A Null is quite useful when used for its stated purpose, and the Customers table in
Figure 5–12 shows a clear example of this. In the CustCounty column, each blank
cell represents a missing or unknown county name for the row in which it appears—
a Null. In order to use Nulls correctly, you must understand why they occur in the
first place.
Missing values are commonly the result of human error. Consider the row for Robert
Brown, for example. If you’re entering the data for Mr. Brown and you fail to ask
him for the name of the county he lives in, that data is considered missing and is
represented in the row as a Null. After you recognize the error, however, you can
correct it by calling Mr. Brown and asking him for the county name.
Unknown values appear in a table for a variety of reasons. One reason might be that
a specific value you need for a column is as yet undefined. For example, you might
have a Categories table in a School Scheduling database that doesn’t have a category
for a new set of classes that you want to offer beginning in the fall session. Another
reason a table might contain unknown values is that the values are truly unknown.
Let’s use the Customers table in Figure 5–12 once again and consider the row for
Dean McCrae. Say that you’re entering the data for Mr. McCrae, and you ask him
for the name of the county he lives in. If neither of you knows the county that
includes the city in which he lives, then the value for the county column in his row is
truly unknown. This is represented in his row as a Null. Obviously, you can correct
the problem after either of you determines the correct county name.
A column value might also be Null if none of its values apply to a particular row.
Let’s assume for a moment that you’re working with an employee table that contains
a Salary column and an HourlyRate column. The value for one of these two columns
is always going to be Null because an employee cannot be paid both a fixed salary
and an hourly rate.
It’s important to note that there is a very slim difference between “does not apply”
and “is not applicable.” In the previous example, the value of one of the two columns
literally does not apply. But let’s assume you’re working with a patient table that
contains a column called HairColor and you’re currently updating a row for an
existing male patient. If that patient is bald, then the value for that column is
definitely not applicable. Although you could just use a Null to represent a value that
is not applicable, we recommend that you use a true value such as “N/A” or “Not

Applicable.” This will make the information clearer in the long run.
As you can see, whether you allow Nulls in a table depends on the manner in which
you’re using the data. Now that we’ve shown you the positive side of using Nulls,
let’s take a look at the negative implication of using Nulls.

The Problem with Nulls
The major drawback of Nulls is their adverse effect on mathematical operations. Any
operation involving a Null evaluates to Null. This is logically reasonable—if a
number is unknown, then the result of the operation is necessarily unknown. Note
how a Null alters the outcome of the operation in the next example:

(25 * 3) + 4 = 79
(Null * 3) + 4 = Null
(25 * Null) + 4 = Null
(25 *3) + Null = Null

The same result occurs when an operation involves columns containing Null values.
For example, suppose you execute the following SELECT statement (the statement
is just an example—it won’t work as coded in the sample database) and it returns the
result set shown in Figure 5–13.

SQL

SELECT ProductID, ProductDescription, Category,
 Price, QuantityOnHand, Price *
 QuantityOnHand AS TotalValue
FROM Products

Figure 5–13 Nulls involved in a mathematical expression
The operation represented by the TotalValue column is completed successfully as
long as both the Price and QuantityOnHand columns have valid numeric values.
Otherwise, TotalValue will contain a Null if either Price or QuantityOnHand
contains a Null. The good news is that TotalValue will contain an appropriate value
after you replace the Nulls in Price and QuantityOnHand with valid numeric values.
You can avoid this problem completely by ensuring that the columns you use in a
mathematical expression do not contain Null values.

This is not the only time we’ll be concerned with Nulls. In Chapter 12, we’ll see how
Nulls impact SELECT statements that summarize information.

Sample Statements
Now that you know how to use various types of value expressions in the SELECT
clause of a SELECT statement, let’s take a look, on the next few pages, at some
examples using the tables from four of the sample databases. These examples
illustrate the use of expressions to generate an output column.
We’ve also included sample result sets that would be returned by these operations
and placed them immediately after the SQL syntax line. The name that appears
immediately above a result set is the name we gave each query in the sample data on
the companion Web site for the book, www.informit.com/title/9780321992475. We
stored each query in the appropriate sample database (as indicated within the
example) and prefixed the names of the queries relevant to this chapter with “CH05.”
You can follow the instructions in the Introduction of this book to load the samples
onto your computer and try them.

 Note
We’ve combined the Translation and Clean Up steps in the following
examples so that you can begin to learn how to consolidate the process.
Although you’ll still work with all three steps during the body of any given
chapter, you’ll get a chance to work with the consolidated process in each
“Sample Statements” section.

Sales Orders Database

“What is the inventory value of each product?”

Translation/Clean Up
Select the product name, retail price times * quantity on hand as
InventoryValue from the products table

SQL

SELECT ProductName,
 RetailPrice * QuantityOnHand AS
 InventoryValue
FROM Products

CH05_Product_Inventory_Value (40 Rows)

http://www.informit.com/title/9780321992475

“How many days elapsed between the order date and the ship date for each
order?”

Translation/Clean Up
Select the order number, order date, ship date, ship date minus –
order date as DaysElapsed from the orders table

SQL

SELECT OrderNumber, OrderDate, ShipDate,
 CAST(ShipDate – OrderDate AS INTEGER)
 AS DaysElapsed
FROM Orders

CH05_Shipping_Days_Analysis (944 Rows)

Entertainment Agency Database

“How long is each engagement due to run?”

Translation/Clean Up
Select the engagement number, end date minus – start date plus one
+ 1 as DueToRun from the engagements table

SQL

SELECT EngagementNumber,
 CAST(CAST(EndDate – StartDate AS INTEGER) + 1
 AS CHARACTER)
 || ' day(s)' AS DueToRun
FROM Engagements

CH05_Engagement_Lengths (111 Rows)

 Note
You have to add “1” to the date expression in order to account for each date in
the engagement. Otherwise, you’ll get “0 day(s)” for an engagement that starts
and ends on the same date. You can also see that we CAST the result of
subtracting the two dates first as INTEGER so that we could add the value 1,
then CAST the result of that to CHARACTER to ensure the concatenation
works as expected.

“What is the net amount for each of our contracts?”

Translation/Clean Up
Select the engagement number, contract price, contract price times *
0.12 as OurFee, contract price minus – (contract price times * 0.12)
as NetAmount from the engagements table

SQL

SELECT EngagementNumber, ContractPrice,
 ContractPrice * 0.12 AS OurFee,
 ContractPrice -(ContractPrice * 0.12)
 AS NetAmount
FROM Engagements

CH05_Net_Amount_Per_Contract (111 Rows)

School Scheduling Database

“List how many complete years each staff member has been with the school as
of October 1, 2012, and sort the result by last name and first name.”

Translation/Clean Up
Select last name || ', ' || and first name concatenated with a comma
as Staff, date hired, and ((‘2012-10-01’ minus – date hired) divided
by / 365) as YearsWithSchool from the staff table and sort order by
last name and first name

SQL

SELECT StfLastName || ', ' || StfFirstName AS Staff,
 DateHired,
 CAST(CAST('2012-10-01' - DateHired AS INTEGER)
 / 365 AS INTEGER)
 AS YearsWithSchool
FROM Staff
ORDER BY StfLastName, StfFirstName

CH05_Length_Of_Service (27 Rows)

 Note
The objective is to calculate the number of complete years of service as of
October 1, 2012. For example, if a staff member was hired on October 10,
2010, the answer should be 1, not 2. The expression in this SELECT statement
is technically correct and works as expected, but it returns the wrong answer
when there are any leap years between the hire date and October 1, 2012.
Strangely enough, the SQL Standard does not define any functions for
performing specialized date and time calculations. The Standard defines only
basic subtraction of two dates/times, addition of a date/time and an interval,
and multiplication or division by a number to yield an interval.
You can correct this problem by using the appropriate date arithmetic function
provided by your database system. As mentioned earlier, most database
systems provide their own methods of working with dates and times, and you
can find a summary of date and time functions supported by five of the major
database systems in Appendix C. But be careful! For example, both Microsoft
SQL Server and Microsoft Office Access have a DateDiff function that lets
you calculate the difference in years, but the answer returned is simply the
difference between the year portion of the two dates. The number of years
between December 31, 2011 and January 1, 2012 is 1! We’ll show you a more

precise way to answer this problem in Chapter 19, “Condition Testing,” using
CASE.

“Show me a list of staff members, their salaries, and a proposed 7 percent
bonus for each staff member.”

Translation/Clean Up
Select the last name || ‘, ’ || and first name as StaffMember, salary,
and salary times * 0.07 as Bonus from the staff table

SQL

SELECT StfLastName || ', ' || StfFirstName
 AS Staff, Salary, Salary * 0.07 AS Bonus
FROM Staff

CH05_Proposed_Bonuses (27 Rows)

Bowling League Database

“Display a list of all bowlers and addresses formatted suitably for a mailing
list, sorted by ZIP Code.”

Translation/Clean Up
Select first name || ' ' || and last name as FullName,
BowlerAddress, city || ', ' || state || ' ' || and ZIP Code as
CityStateZip, BowlerZip from the bowlers table and order by ZIP
Code

SQL

SELECT BowlerFirstName || ' ' || BowlerLastName AS
FullName,
 Bowlers.BowlerAddress,
 BowlerCity || ', ' || BowlerState || ' ' ||
 BowlerZip AS CityStateZip, BowlerZip
FROM Bowlers
ORDER BY BowlerZip

CH05_Names_Addresses_For_Mailing (32 Rows)

 Note
Notice that we included the BowlerZip column not only in the CityStateZip
expression but also as a separate column. Remember that the SQL Standard
enables you to sort only on columns that are included in the SELECT clause.
Even though you don’t need the BowlerZip again to create your mailing list,
you should include the column so that you can use it in the ORDER BY
clause. Some database systems, notably Microsoft Office Access, do not

impose this requirement, but remember that we’re strictly following the
standard in every query we use as an example.

“What was the point spread between a bowler’s handicap and raw score for
each match and game played?”

Translation/Clean Up
Select bowler ID, match ID, game number, handicap score, raw
score, handicap score minus – raw score as PointDifference from
the bowler scores table and order by bowler ID, match ID, game
number

SQL

SELECT BowlerID, MatchID, GameNumber,
 HandiCapScore, RawScore,
 HandiCapScore - RawScore AS PointDifference
FROM Bowler_Scores
ORDER BY BowlerID, MatchID, GameNumber

CH05_Handicap_vs_RawScore (1344 Rows)

Summary
We began the chapter with a brief overview of expressions. We then explained that
you need to understand data types before you can build expressions, and we went on
to discuss each of the major data types in some detail. We next showed you the
CAST function and explained that you’ll often use it to change the data type of a

column or literal so that it’s compatible with the type of expression you’re trying to
build. We then covered all the ways that you can introduce a constant value—a
literal—into your expressions. We then introduced you to the concept of using an
expression to broaden or narrow the scope of information you retrieve from the
database. We also explained that an expression is some form of operation involving
numbers, character strings, or dates and times.
We continued our discussion of expressions and provided a concise overview of each
type of expression. We showed you how to concatenate strings of characters and
how to concatenate strings with other types of data by using the CAST function. We
then showed you how to create mathematical expressions, and we explained how the
order of precedence affects a given mathematical operation. We closed this
discussion with a look at date and time expressions. After showing you how the SQL
Standard handles dates and times, we revealed that most database systems provide
their own methods of working with dates and times.
We then proceeded to the subject of using expressions in a SELECT statement, and
we showed you how to incorporate expressions in the SELECT clause. We then
showed you how to use both literal values and columns within an expression, as well
as how to name the column that holds the result value of the expression. Before
ending this discussion, we took a brief digression and introduced you to the value
expression. We revealed that the SQL Standard uses this term to refer to a column
reference, literal value, and expression collectively and that you can use a value
expression in various clauses of an SQL statement. (More on this in later chapters, of
course!)
We closed this chapter with a discussion on Nulls. You learned that a Null represents
a missing or an unknown value. We showed you how to use a Null properly and
explained that it can be quite useful under the right circumstances. But we also
discussed how Nulls adversely affect mathematical operations. You now know that a
mathematical operation involving a Null value returns a Null value. We also showed
you how Nulls can make the information in a result set inaccurate.
In the next chapter, we’ll discuss the idea of retrieving a very specific set of
information. We’ll then show you how to use a WHERE clause to filter the
information retrieved by a SELECT statement.
The following section presents a number of requests that you can work out on your
own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL for each

request and then check your answer with the query we saved in the samples. Don’t
worry if your syntax doesn’t exactly match the syntax of the queries we saved—as
long as your result set is the same.

Sales Orders Database
1. “What if we adjusted each product price by reducing it 5 percent?”

You can find the solution in CH05_Adjusted_Wholesale_Prices (90 rows).
2. “Show me a list of orders made by each customer in descending date order.”

(Hint: You might need to order by more than one column for the information to
display properly.)
You can find the solution in CH05_Orders_By_Customer_And_Date (944
rows).

3. “Compile a complete list of vendor names and addresses in vendor name
order.”
You can find the solution in CH05_Vendor_Addresses (10 rows).

Entertainment Agency Database
1. “Give me the names of all our customers by city.”

(Hint: You’ll have to use an ORDER BY clause on one of the columns.)
You can find the solution in CH05_Customers_By_City (15 rows).

2. “List all entertainers and their Web sites.”
You can find the solution in CH05_Entertainer_Web_Sites (13 rows).

3. “Show the date of each agent’s first six-month performance review.”
(Hint: You’ll need to use date arithmetic to answer this request.)
You can find the solution in CH05_First_Performance_Review (9 rows).

School Scheduling Database
1. “Give me a list of staff members, and show them in descending order of

salary.”
You can find the solution in CH05_Staff_List_By_Salary (27 rows).

2. “Can you give me a staff member phone list?”
You can find the solution in CH05_Staff_Member_Phone_List (27 rows).

3. “List the names of all our students, and order them by the cities they live in.”
You can find the solution in CH05_Students_By_City (18 rows).

Bowling League Database
1. “Show next year’s tournament date for each tournament location.”

You can find the solution in CH05_Next_Years_Tourney_Dates (20 rows).
2. “List the name and phone number for each member of the league.”

You can find the solution in CH05_Phone_List (32 rows).
3. “Give me a listing of each team’s lineup.”

(Hint: Base this query on the Bowlers table.)
You can find the solution in CH05_Team_Lineups (32 rows).

6. Filtering Your Data

“I keep six honest-serving men
(They taught me all I knew.)

Their names are What and Why and When
and How and Where and Who.”

—Rudyard Kipling
“I keep six honest-serving men”

Topics Covered in This Chapter
Refining What You See Using WHERE
Defining Search Conditions
Using Multiple Conditions
Nulls Revisited: A Cautionary Note
Expressing Conditions in Different Ways
Sample Statements
Summary
Problems for You to Solve

In the previous two chapters, we discussed the techniques you use to see all the
information in a given table. We also discussed how to create and use expressions to
broaden or narrow the scope of that information. In this chapter, we’ll show you how
to fine-tune what you retrieve by filtering the information using a WHERE clause.

Refining What You See Using WHERE
The type of SELECT statement we’ve worked with so far retrieves all the rows from
a given table and uses them in the statement’s result set. This is great if you really do
need to see all the information the table contains. But what if you want to find only
the rows that apply to a specific person, a specific place, a particular numeric value,
or a range of dates? These are not unusual requests. In fact, they are the impetus
behind many of the questions you commonly pose to the database. You might, for
example, have a need to ask the following types of questions:

“Who are our customers in Seattle?”
“Show me a current list of our Bellevue employees and their phone numbers.”
“What kind of music classes do we currently offer?”
“Give me a list of classes that earn three credits.”

“Which entertainers maintain a Web site?”
“Give me a list of engagements for the Caroline Coie Trio.”
“Give me a list of customers who placed orders in May.”
“Give me the names of our staff members who were hired on May 16, 1985.”
“What is the current tournament schedule for Red Rooster Lanes?”
“Which bowlers are on team 5?”

In order to answer these questions, you’ll have to expand your SQL vocabulary once
again by adding another clause to our SELECT statement: the WHERE clause.

The WHERE Clause
You use a WHERE clause in a SELECT statement to filter the data the statement
draws from a table. The WHERE clause contains a search condition that it uses as
the filter. This search condition provides the mechanism needed to select only the
rows you need or exclude the ones you don’t want. Your database system applies the
search condition to each row in the logical table defined by the FROM clause. Figure
6–1 shows the syntax of the SELECT statement with the WHERE clause.

Figure 6–1 The syntax diagram for a SELECT statement with a WHERE clause

A search condition contains one or more predicates, each of which is an expression
that tests one or more value expressions and returns a true, false, or unknown
answer. As you’ll learn later, you can combine multiple predicates into a search
condition using AND or OR Boolean operators. When the entire search condition
evaluates to true for a particular row, you will see that row in the final result set.
Note that when a search condition contains only one predicate, the terms search
condition and predicate are synonymous.
Remember from Chapter 5, “Getting More Than Simple Columns,” that a value

expression can contain column names, literal values, functions, or other value
expressions. When you construct a predicate, you will typically include at least one
value expression that refers to a column from the tables you specify in the FROM
clause.
The simplest and perhaps most commonly used predicate compares one value
expression (a column) to another (a literal). For example, if you want only the rows
from the Customers table in which the value of the customer last name column is
Smith, you write a predicate that compares the last name column to the literal value
“Smith.”

SQL

SELECT CustLastName
FROM Customers
WHERE CustLastName = 'Smith'

The predicate in the WHERE clause is equivalent to asking this question for each
row in the Customers table: “Does the customer last name equal ‘Smith’?” When the
answer to this question is yes (true) for any given row in the Customers table, that
row appears in the result set.
The SQL Standard defines 18 predicates, but we’ll cover the five basic ones in this
chapter: Comparison, BETWEEN, IN, LIKE, and IS NULL.

COMPARISON

Use one of the six comparison operators to compare one value
expression to another value expression. The six operators and their
meanings are
= equal to
<> not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

BETWEEN (RANGE)
The BETWEEN predicate lets you test whether the value of a given
value expression falls within a specified range of values. You
specify the range using two value expressions separated by the
AND keyword.

IN (MEMBERSHIP)
You can test whether the value of a given value expression matches

an item in a given list of values using the IN predicate.
LIKE (PATTERN MATCH)

The LIKE predicate allows you to test whether a character string
value expression matches a specified character string pattern.

IS NULL
Use the IS NULL predicate to determine whether a value expression
evaluates to Null.

 Note
Don’t worry too much about the other 11 predicates defined in the current
SQL Standard (Similar, Regex, Unique, Normalized, Match, Overlaps,
Distinct, Member, Submultiset, Set, and Type). We could not find any
commercial implementation of 11 of them. We’ll cover the other two—
Quantified and EXISTS—in Chapter 11, “Subqueries.”

Using a WHERE Clause
Before we explore each of the basic predicates in the SQL Standard, let’s first take a
look at another example of how to construct a simple WHERE clause. This time,
we’ll give you a detailed walkthrough of the steps to build your request.

 Note
Throughout this chapter, we use the “Request/Translation/Clean Up/SQL”
technique introduced in Chapter 4, “Creating a Simple Query.”

Suppose you’re making the following request to the database:
“What are the names of our customers who live in the state of Washington?”

When composing a translation statement for this type of request, you must try to
indicate the information you want to see in the result set as explicitly and clearly as
possible. You’ll expend more effort to rephrase a request than you’ve been
accustomed to so far, but the results will be well worth the extra work. Here’s how
you translate this particular request:

Translation
Select first name and last name from the customers table for those
customers who live in Washington State

You’ll clean up this statement in the usual fashion, but you’ll also perform two extra
tasks. First, look for any words or phrases that indicate or imply some type of

restriction. Dead giveaways are the words “where,” “who,” and “for.” Here are some
examples of the types of phrases you’re trying to identify:

“. . . who live in Bellevue.”
“. . . for everyone whose ZIP Code is 98125.”
“. . . who placed orders in May.”
“. . . for suppliers in California.”
“. . . who were hired on May 16, 1985.”
“. . . where the area code is 425.”
“. . . for Mike Hernandez.”

When you find such a restriction, you’re ready for the second task. Study the phrase,
and try to determine which column is going to be tested, what value that column is
going to be tested against, and how the column is going to be tested. The answers to
these questions will help you formulate the search condition for your WHERE
clause. Let’s apply these questions to our translation statement.
Which column is going to be tested? State
What value is it going to be tested against? ‘WA’
How is the column going to be tested? Using the “equal to” operator
You need to be familiar with the structure of the table you’re using to answer the
request. If necessary, have a copy of the table structure handy before you begin to
answer these questions.

 Note
Sometimes the answers to these questions are evident, and other times the
answers are implied. We’ll show you how to make the distinction and
decipher the correct answers as we work through other examples in this
chapter.

After answering the questions, take them and create the appropriate condition. Next,
cross out the original restriction, and replace it with the word WHERE and the
search condition you just created. Here’s how your Clean Up statement will look
after you have completed this task:

Clean Up
Select first name and last name from the customers table for those
customers who live in where state is equal to = ‘WA’ Washington
State

Now you can turn this into a proper SELECT statement:

SQL

SELECT CustFirstName, CustLastName
FROM Customers
WHERE CustState = 'WA'

The result set of our completed SELECT statement will display only those customers
who live in the state of Washington.
That’s all there is to defining a WHERE clause. As we indicated at the beginning of
this section, it’s simply a matter of creating the appropriate search condition and
placing it in the WHERE clause. The real work, however, is in defining the search
conditions.

Defining Search Conditions
Now that you have an idea of how to create a simple WHERE clause, let’s take a
closer look at the five basic types of predicates you can define.

Comparison
The most common type of condition is one that uses a comparison predicate to
compare two value expressions to each other. As you can see in Figure 6–2, you can
define six different types of comparisons using the following comparison predicate
operators:

= Equal To
<> Not Equal To
< Less Than
> Greater Than
<= Less Than or Equal To
>= Greater Than or Equal To

Figure 6–2 The syntax diagram for the comparison condition

Comparing String Values: A Caution

You can easily compare numeric or datetime data, but you must pay close attention
when you compare character strings. For example, you might not get the results you
expect when you compare two seemingly similar strings such as “Mike” and
“MIKE.” The determining factor for all character string comparisons is the collating
sequence used by your database system. The collating sequence also determines how
character strings are sorted and impacts how you use other comparison conditions as
well.
Because many different vendors have implemented SQL on machines with different
architectures and for many languages other than English, the SQL Standard does not
define any default collating sequence for character string sorting or comparison.
How characters are sorted from “lowest” to “highest” depends on the database
software you are using and, in many cases, how the software was installed.
Many database systems use the ASCII collating sequence, which places numbers
before letters and all uppercase letters before all lowercase letters. If your database
supports the ASCII collating sequence, the characters are in the following sequence
from lowest value to highest value:

. . . 0123456789 . . . ABC . . . XYZ . . . abc . . . xyz . . .
Some systems, however, offer a case-insensitive option. In these, for example,
lowercase a is considered equal to uppercase A. When your database supports this
option using ASCII as a base, characters are in the following sequence from lowest
value to highest value:

. . . 0123456789 . . . {Aa}{Bb}{Cc} . . . {Xx}{Yy}{Zz} . . .
Note that the characters enclosed in braces ({}) are considered equal because no
distinction is made between uppercase and lowercase. They sort alphabetically
irrespective of the case.
Database systems running on IBM mainframe systems use the IBM-proprietary
EBCDIC sequence. In a database system that uses EBCDIC, all lowercase letters
come first, then all uppercase letters, and finally numbers. If your database supports
EBCDIC, characters are in the following sequence from lowest value to highest
value:

. . . abc . . . xyz . . . ABC . . . XYZ . . . 0123456789 . . .
To drive this point home, let’s look at a set of sample column values to see how
different collating sequences affect how your database system defines higher, lower,
or equal values.
Here is a table of column values sorted using the ASCII character set, case sensitive
(numbers first, then uppercase, and then lowercase).

Now, let’s turn off case sensitivity so that lowercase letters and their uppercase
equivalents are considered equal. The next table shows what happens.

Finally, let’s see how these values are sorted on an IBM system using the EBCDIC

collating sequence (lowercase letters, uppercase letters, and then numbers).

You can also encounter unexpected results when trying to compare two character
strings of unequal length, such as “John” and “John” or “Mitch” and “Mitchell.”
Fortunately, the SQL Standard clearly specifies how the database system must
handle this. Before your database compares two character strings of unequal length,
it must add the special default pad character to the right of the smaller string until it
is the same length as the larger string. (The default pad character is a space in most
database systems.) Your database then uses its collating sequence to determine
whether the two strings are now equal to each other. As a result, “John” and “John”
are equal (after the padding takes place) and “Mitch” and “Mitchell” are unequal.

 Note
Some database systems differ from the SQL Standard in that they ignore
trailing blanks rather than pad the shorter string with a default space.
Therefore, “John” and “John” are considered equal in some systems, but for a
different reason—because the trailing blanks in the second item are
completely disregarded. Be sure to test your database system to determine
how it handles this type of comparison and whether it returns the type of
results you expect.

In summary, check your database system’s documentation to determine how it

collates uppercase letters, lowercase letters, and numbers.

Equality and Inequality
Although we’ve already seen a couple of examples, let’s take another look at an
equality comparison condition using the “equal to” operator.
Assume we’re making this request to the database:

“Show me the first and last names of all the agents who were hired on March
14, 1977.”

Because we are going to search for a specific hire date, we can use an equality
comparison condition with an “equal to” operator to retrieve the appropriate
information. Now we’ll run this through the translation process to define the
appropriate SELECT statement:

Translation
Select first name and last name from the agents table for all agents
hired on March 14, 1977

Clean Up
Select first name and last name from the agents table for all agents
hired on where date hired = March 14, 1977 ‘1977-03-14’

SQL

SELECT AgtFirstName, AgtLastName
FROM Agents
WHERE DateHired = '1977-03-14'

In this example, we tested the values of a specific column to determine whether any
values matched a given date value. In essence, we executed an inclusive process—a
given row in the Agents table will be included in the result set only if the current
value of the DateHired column for that row matches the specified date. But what if
you wanted to do the exact opposite and exclude certain rows from the result set? In
that case, you would use a comparison condition with a “not equal to” operator.
Suppose you submit the following request:

“Give me a list of vendor names and phone numbers for all our vendors, with
the exception of those here in Bellevue.”

You’ve probably already determined that you need to exclude those vendors based in
Bellevue and that you’ll use a “not equal to” condition for the task. The phrase “with
the exception of” provides a clear indication that the “not equal to” condition is
appropriate. Keep this in mind as you look at the translation process.

Translation
Select vendor name and phone number from the vendors table for
all vendors except those based in ‘Bellevue’

Clean Up
Select vendor name and phone number from the vendors table for
all vendors except those based in where city <> ‘Bellevue’

SQL

SELECT VendName, VendPhone
FROM Vendors
WHERE VendCity <> 'Bellevue'

 Note
The SQL Standard uses the <> symbol for the “not equal to” operator. Several
RDBMS programs provide alternate notations, such as != (supported by
Microsoft SQL Server and Sybase) and ¬= (supported by IBM’s DB2). Be
sure to check your database system’s documentation for the appropriate
notation of this operator.

You’ve effectively excluded all vendors from Bellevue with this simple condition.
Later in this chapter, we’ll show you a different method for excluding rows from a
result set.

Less Than and Greater Than
Often you want rows returned where a particular value in a column is smaller or
larger than the comparison value. This type of comparison employs the “less than”
(<), “less than or equal to” (<=), “greater than” (>), or “greater than or equal to” (>=)
comparison operators. The type of data you compare determines the relationship
between those values.

CHARACTER STRINGS

This comparison determines whether the value of the first value
expression precedes (<) or follows (>) the value of the second value
expression in your database system’s collating sequence. For
example, you can interpret a < c as “Does a precede c?” For details
about collating sequences, see the previous section, “Comparing
String Values: A Caution.”

NUMBERS

This comparison determines whether the value of the first value
expression is smaller (<) or larger (>) than the value of the second

value expression. For example, you can interpret 10 > 5 as “Is 10
larger than 5?”

DATES/TIMES

This comparison determines whether the value of the first value
expression is earlier (<) or later (>) than the value of the second
value expression. For example, you can interpret ‘2007-05-16’ <
‘2007-12-15’ as “Is May 16, 2007, earlier than December 15,
2007?” Dates and times are evaluated in chronological order.

Let’s take a look at how you might use these comparison predicates to answer a
request.

“Are there any orders where the ship date was accidentally posted earlier than
the order date?”

You’ll use a “less than” comparison operator in this instance because you want to
determine whether any ship date was posted earlier than its respective order date.
Here’s how you translate this:

Translation
Select order number from the orders table where the ship date is
earlier than the order date

Clean Up
Select order number from the orders table where the ship date is
earlier than the < order date

SQL

SELECT OrderNumber
FROM Orders
WHERE ShipDate < OrderDate

The SELECT statement’s result set will include only those rows from the Orders
table where the search condition is true.
The next example requires a “greater than” comparison operator to retrieve the
appropriate information.

“Are there any classes that earn more than four credits?”

Translation
Select class ID from the classes table for all classes that earn more
than four credits

Clean Up

Select class ID from the classes table for all classes that earn more
than four where credits > 4

SQL

SELECT ClassID
FROM Classes
WHERE Credits > 4

The result set generated by this SELECT statement includes only classes that earn
five credits or more, such as Intermediate Algebra and Engineering Physics.
Now, let’s take a look at some examples where you’re interested not only in the
values that might be greater than or less than but also equal to the comparison value.

“I need the names of everyone we’ve hired since January 1, 1989.”

You use a “greater than or equal to” comparison for this because you want to retrieve
all hire dates from January 1, 1989, to the present, including employees hired on that
date. As you run through the translation process, be sure to identify all the columns
you need for the SELECT clause.

Translation
Select first name and last name as EmployeeName from the
employees table for all employees hired since January 1, 1989

Clean Up
Select first name and || ' ' || last name as EmployeeName from the
employees table for all employees hired since where date hired >=
January 1, 1989 ‘1989-01-01’

SQL

SELECT FirstName || ' ' || LastName
AS EmployeeName
FROM Employees
WHERE DateHired >= '1989-01-01'

Here’s another request you might make to the database:

“Show me a list of products with a retail price of fifty dollars or less.”

As you’ve probably deduced, you’ll use a “less than or equal to” comparison for this
request. This ensures that the SELECT statement’s result set contains only those
products that cost anywhere from one cent to exactly fifty dollars. Here’s how you
translate this request:

Translation
Select product name from the products table for all products with a

retail price of fifty dollars or less
Clean Up

Select product name from the products table for all products with a
where retail price of <= 50 fifty dollars or less

SQL

SELECT ProductName
FROM Products
WHERE RetailPrice <= 50

The examples you’ve seen so far use only a single type of comparison. Later in this
chapter, we’ll show you how to combine comparisons using AND and OR.

Range
You can test the value of a value expression against a specific range of values with a
range condition. Figure 6–3 shows the syntax for this condition.

Figure 6–3 The syntax diagram for the range condition

The range condition tests the value of a given value expression against a range of
values defined by two other value expressions. The BETWEEN . . . AND predicate
defines the range by using the value of the second value expression as the start point
and the value of the third value expression as the end point. Both the start point and
end point are part of the range. A row is included in the result set only if the value of
the first value expression falls within the specified range.
There’s one “gotcha” about using BETWEEN . . . AND. The SQL Standard actually
defines two types of BETWEEN comparisons: ASYMMETRIC and SYMMETRIC.
The default, ASYMMETRIC, dictates that Value1 BETWEEN Value2 AND Value3
is the same as Value1 >= Value2 AND Value1 <= Value3. This means that Value2
must be less than or equal to Value3 for the predicate to work properly. For example,
the SQL Standard states that

MyColumn BETWEEN 5 AND 10

should be processed as
Click here to view code image

MyColumn >= 5 AND MyColumn <= 10

So, putting the larger value first, as in
MyColumn BETWEEN 10 AND 5

is interpreted according to the SQL Standard as
Click here to view code image

MyColumn >=10 AND MyColumn <= 5

which can never be true! (The column value can’t both be greater than or equal to 10
and at the same time less than or equal to 5.) However, some database systems allow
Value2 to be greater than or equal to Value3—the equivalent of using the
SYMMETRIC keyword in the SQL Standard. (We’re not aware of any major
implementation that yet supports the ASYMMETRIC and SYMMETRIC keywords.)
Check your database system documentation for details.
Here are a couple of examples that illustrate how you use a range condition:

“Which staff members were hired in July 1986?”

The range condition is appropriate here because you want to retrieve the names of
everyone who was hired within a specific set of dates, in this case, between July 1,
1986, and July 31, 1986. Let’s now run this through the translation process and build
the appropriate SELECT statement.

Translation
Select first name and last name from the staff table where the date
hired is between July 1, 1986, and July 31, 1986

Clean Up
Select first name and last name from the staff table where the date
hired is between July 1, 1986 ‘1986-07-01’ and July 31, 1986’
1986-07-31’

SQL

SELECT FirstName, LastName
FROM Staff
WHERE DateHired
 BETWEEN '1986-07-01' AND '1986-07-31'

Notice that we stated the range of dates more explicitly in the translation statement
than in the request. Use this technique to translate the request as clearly as possible
and thus define the appropriate SELECT statement.
You can also use a range condition on character string data quite effectively, as
shown in this example:

“Give me a list of students—along with their phone numbers—whose last names
begin with the letter B.”

Translation
Select last name, first name, and phone number from the students
table for all students whose last name begins with the letter ‘B’

Clean Up
Select last name, first name, and phone number from the students
table for all students whose name begins with the letter ‘B’ where
last name between ‘B’ and ‘Bz’

SQL

SELECT StudLastName, StudFirstName, StudPhoneNumber
FROM Students
WHERE StudLastName BETWEEN 'B' AND 'Bz'

When creating a range for character string data, think carefully about the values you
want to include. For example, here are three possible ways you might have indicated
the start and end points for the required range in this request. The results are quite
different!

BETWEEN ‘A’ AND ‘C’
We know that many of you would not have indicated ‘A’ as the start
point because you know the range would then include everyone
whose name begins with that letter. However, this is a fairly typical
mistake.

BETWEEN ‘B’ AND ‘C’
Indicating the start and end points in this manner probably returns
the desired results for our example. However, you might get
unexpected results based on the character data you’re trying to
compare. Remember that the BETWEEN operator includes the start
and end points in the range. Consequently, a student whose last
name is only the letter ‘C’ will be included in the result set.

BETWEEN ‘B’ AND ‘BZ’
This is the clearest and most explicit method of indicating the start
and end points—in most cases, it will return the desired results. In
the end, you must understand your data in order to define the correct
range.

One more thing before we leave BETWEEN. Notice that the diagram in Figure 6–3
(page 170) says that you can use a value expression not only for the two values in the

BETWEEN clause but also for the first value. As we’ve explained, a value
expression can be as simple as a column name or a simple literal or as complex as a
character, mathematical, or datetime expression. When you have a table that has two
columns that define a range of values (for example, StartDate and EndDate in the
Engagements table in the Entertainment Agency sample database), you can also use
BETWEEN to search for rows that contain a value BETWEEN the values in the two
columns. Here’s an example.

“Show me all engagements that are scheduled to occur on October 10, 2012.”

Translation
Select engagement number, start date, and end date from the
engagements table for engagements where October 10, 2012, is
between the start date and the end date

Clean Up
Select engagement number, start date, and end date from the
engagements table for engagements where October 10, 2012 is
‘2012-10-10’ between the start date and the end date

SQL

SELECT EngagementNumber, StartDate, EndDate
FROM Engagements
WHERE '2012-10-10' BETWEEN StartDate AND EndDate

So far, we’ve shown you how to narrow the scope of your request using a broad
range of values and a more specific range of values. Now, let’s take a look at how
you can refine your requests even further by using an explicit list of values.

Set Membership
You’ll use the membership condition to test the value of a value expression against a
list of explicitly defined values. As you can see in Figure 6–4, the membership
condition uses the IN predicate to determine whether the value of the first value
expression matches any value within a parenthetical list of values defined by one or
more value expressions.

Figure 6–4 The syntax diagram for the membership condition

Although theoretically you can include an almost limitless number of value
expressions in the list, it makes more sense to use only a few. You already have two
conditions at your disposal that you can use to indicate broader ranges of values.
You can use the membership condition most effectively when you define a finite list
of values, as you’ll see in the following examples.
Here’s a request you might make to the database:

“I need to know which bowling lanes sponsored tournaments for the following
2012 dates: September 18, October 9, and November 6.”

This type of request lends itself to a membership condition because it focuses on
searching for a specific set of values. If the request were not so explicit, you would
most likely use a range condition instead. Here’s how to translate this request:

Translation
Select tourney location from the tournaments table where the
tourney date is in this list of dates: September 18, 2012; October 9,
2012; November 6, 2012

Clean Up
Select tourney location from the tournaments table where the
tourney date is in this list of dates: (September 18, 2012; ‘2012-09-
18’, October 9 2012; ‘2012-10-09’, November 6, 2012 ‘2012-11-
06’)

SQL

SELECT TourneyLocation
FROM Tournaments
WHERE TourneyDate
 IN ('2012-09-18', '2012-10-09',
 '2012-11-06')

Here’s another request that requires a membership condition for its answer:

“Which entertainers do we represent in Seattle, Redmond, and Bothell?”

Translation
Select stage name from the entertainers table for all entertainers
based in ‘Seattle’, ‘Redmond’, or ‘Bothell’

Clean Up
Select stage name from the entertainers table for all entertainers
based where city in (’Seattle’,’Redmond’, or ‘Bothell’)

SQL

SELECT EntStageName
FROM Entertainers
WHERE EntCity
 IN ('Seattle', 'Redmond', 'Bothell')

You might have noticed that we used the word “or” in the translation statement’s list
of cities instead of “and” as it appears in the original request. The reason and logic
for this is simple: There is only one entry in the EntCity column for a given
entertainer. A given row can’t contain Seattle and Redmond and Bothell all at the
same time, but a single row could contain Seattle or Redmond or Bothell. This might
seem a trivial point, but using the proper words and phrases helps to clarify your
Translation and Clean Up statements and ensures that you define the most
appropriate SELECT statement for your request. You’ll see that this small point
becomes even more important later in the chapter when you begin using multiple
conditions.
All the conditions you’ve learned so far use complete values as their criteria. Now
we’ll take a look at a condition that allows you to use partial values as a criterion.

Pattern Match
The pattern match condition is useful when you need to find values that are similar
to a given pattern string or when you have only a partial piece of information to use
as a search criterion. Figure 6–5 shows the syntax for this type of condition.

Figure 6–5 The syntax diagram for the pattern match condition

This condition takes the value of a value expression and uses the LIKE predicate to
test whether the value matches a defined pattern string. A pattern string can consist
of any logical combination of regular string characters and two special wildcard
characters: the percent sign (%) and the underscore (_). The percent sign represents
zero or more arbitrary regular characters, and the underscore represents a single
arbitrary regular character. The manner in which you define the pattern string
determines which values are retrieved from the value expression. Table 6–1 shows
samples of the different types of pattern strings you can define.

Table 6–1 Samples of Defined Pattern Strings

 Note
One of the most popular database systems, Microsoft Office Access, uses an
asterisk (*) instead of the percent sign (%) and a question mark (?) instead of
an underscore (_). Access also supports using an octothorp (#) to search for
numeric characters in specific positions. If you’re using Microsoft Access,
substitute these characters in your pattern strings for the LIKE predicate.

Let’s take a look at how you can use a pattern match condition by considering the
following request:

“Give me a list of customers whose last names begin with ‘Mar’.”

Requests such as this one typically use phrases that indicate the need for a pattern
match condition. Here are a few examples of the types of phrases you’re likely to
encounter:

“. . . begin with ‘Her’.”
“. . . start with ‘Ba’.”
“. . . include the word ‘Park’.”
“. . . contain the letters ‘han’.”
“. . . have ‘ave’ in the middle of it.”
“. . . with ‘son’ at the end.”
“. . . ending in ‘ez’.”

 Caution
In most database systems, string comparison is case sensitive. Several major
database systems allow system administrators to specify an option to use
either case-sensitive or case-insensitive comparison when they install database
servers. If your database system is case sensitive, LIKE '%chi%' will find
“roast chicken,” but it won’t find “Chicken a la King” because the lowercase
‘c’ in the pattern string is not equal to the uppercase ‘C’ in the column. Check
your database documentation to find out whether you need to deal with the
difference between upper- and lowercase letters.

As you can see, it can be relatively easy to determine the type of pattern string you
need for a request. After you know the type of pattern you need to create, you can
continue with the translation process.

Translation
Select last name and first name from the customers table where the
last name begins with ‘Mar’

Clean Up
Select last name and first name from the customers table where the
last name begins with like ‘Mar%’

SQL

SELECT CustLastName, CustFirstName
FROM Customers
WHERE CustLastName LIKE 'Mar%'

The result set for this SELECT statement includes names such as Marks, Marshall,
Martinez, and Marx because we were only concerned with matching the first three
letters of the last name.
Here’s how you might answer another request using a pattern match condition:

“Show me a list of vendor names where the word ‘Forest’ appears in the street

address.”

Translation
Select vendor name from the vendors table where the street address
contains the word ‘Forest’

Clean Up
Select vendor name from the vendors table where the street address
contains the word like ‘%Forest%’

SQL

SELECT VendName
FROM Vendors
WHERE VendStreetAddress LIKE '%Forest%'

In this case, a row from the Vendors table is included in the result set only if the
street address contains a street name such as Forest Park Place, Forest Ridge
Avenue, Evergreen Forest Drive, or Black Forest Road.
Although you can search for any pattern string using the appropriate wildcard
characters, you’ll run into a problem if the values you want to retrieve include a
percent sign or an underscore character. For example, you will have a problem trying
to retrieve the value MX_445 because it contains an underscore character. You can
circumvent this potential dilemma by using the ESCAPE option of the LIKE
predicate, as shown in Figure 6–5.
The ESCAPE option allows you to designate a single character string literal—known
as an escape character—to indicate how the database system should interpret a
percent sign or underscore character within a pattern string. Place the escape
character after the ESCAPE keyword and enclose it within single quotes, as you
would any character string literal. When the escape character precedes a wildcard
character in a pattern string, the database system interprets that wildcard character
literally within the pattern string.
Here’s an example of how you might use the ESCAPE option:

“Show me a list of products that have product codes beginning with ‘G_00’ and
ending in a single number or letter.”

Translation
Select product name and product code from the products table
where the product code begins with ‘G_00’ and ends in a single
number or letter

Clean Up

Select product name and product code from the products table
where the product code begins with like ‘G_00_’ and ends in a
single number or letter

SQL

SELECT ProductName, ProductCode
FROM Products
WHERE ProductCode LIKE 'G_00_' ESCAPE '\'

It’s evident that you need to use the ESCAPE option to help answer this request—
otherwise, the database system interprets the underscore character in the pattern
string as a wildcard character. Note that we included the escape character in the
Clean Up statement. You should do so in your Clean Up statements as well because
it ensures that you remember to use the ESCAPE option when you define your
SELECT statement.
This SELECT statement will retrieve product codes such as G_002 and G_00X.
Because we want to search for one of the two characters that are defined in the
standard as a wildcard, we must include the ESCAPE clause. If we ask for LIKE
‘G_00_’, the database system will return rows where the product code has a ‘G’ for
the first letter, any character in the second position (because of the wildcard
character), zeros in the third and fourth positions, and any character in the fifth
position. When we define “\” as the escape character, the database system ignores
the escape character but interprets the first underscore character literally, not as a
wildcard. Because we did not use the escape character just before the second
underscore, the database system interprets the second underscore as a true wildcard
character.
Keep in mind that the character you use as an escape character should not be part of
the values you’re trying to retrieve. It doesn’t make sense to use & as an escape
character if you’re searching for values such as Martin & Lewis, Smith & Kearns, or
Hernandez & Viescas. Also remember that the escape character affects only the
wildcard character that immediately follows it. However, you can use as many
escape characters in your pattern string as are appropriate.

Null
Now that you’ve learned how to search for complete values and partial values, let’s
discuss searching for unknown values. You learned in Chapter 5 that a Null does not
represent a zero, a character string of one or more blank spaces, or a zero-length
character string (a character string that has no characters in it) because each of these
items can be meaningful in a variety of circumstances. You also learned that a Null
does represent a missing or unknown value. To retrieve Null values from a value
expression, you use the Null condition shown in Figure 6–6.

Figure 6–6 The syntax diagram for the Null condition
This condition takes the value of the value expression and determines whether it is
Null using the IS NULL predicate. It’s quite a straightforward operation. Let’s take a
look at how you might use this condition in the following examples:

“Give me a list of customers who didn’t specify what county they live in.”

Translation
Select first name and last name as Customer from the customers
table where the county name is unspecified

Clean Up
Select first name || ' ' || and last name as Customer from the
customers table where the county name is null unspecified

SQL

SELECT CustFirstName || ' ' || CustLastName
 AS Customer
FROM Customers
WHERE CustCounty IS NULL

The only customers who appear in the result set for this SELECT statement are those
who didn’t know or couldn’t remember what county they live in, or those folks who
live in Washington, D.C. (Washington, by the way, is the only city in the entire
United States that isn’t situated within a county.)
Here’s another request you might make to the database:

“Which engagements do not yet have a contract price?”

Translation
Select engagement number and contract price from the engagements
table for any engagement that does not have a contract price

Clean Up
Select engagement number and contract price from the engagements
table for any engagement that does not have a where contract price
is null

SQL

SELECT EngagementNumber, ContractPrice
FROM Engagements
WHERE ContractPrice IS NULL

On the surface, this seems like a straightforward request—you’ll just search for any
engagement that has 0 as the contract price. But looks can be deceiving, and they can
lull you into making incorrect assumptions. If the entertainment agency in this
example uses 0 as the contract price for any promotional engagement, then zero is a
valid, meaningful value. Therefore, any contract price that is yet to be determined or
negotiated is indeed (or should be) Null.
This example illustrates the fact that you do need to understand your data in order to
make meaningful, accurate requests to the database. If you execute a SELECT
statement and then think that the information you see in a result set is erroneous,
don’t panic. Your first impulse will probably be to rewrite the entire SELECT
statement because you believe you’ve made some disastrous mistake in the syntax.
Before you do anything drastic, review the data you’re working with, and make
certain you have a clear idea of how it’s being used. After you have a better
understanding of the data, you’ll often find that you need to make only minor
changes to your SELECT statement in order for it to retrieve the proper information.

 Note
You must use the Null condition to search for Null values within a value
expression. A condition such as <ValueExpression> = Null is invalid
because the value of the value expression cannot be compared to something
that is, by definition, unknown. In fact, using Null in any comparison
predicate yields “unknown,” and because unknown is not “true,” the
comparison will fail.

Excluding Rows with NOT
Up to this point, we’ve shown you how to include specific rows in a result set. Let’s
now take a look at how you exclude rows from a result set by using the NOT
operator. We’ve already shown you one simple way to exclude rows from a result set
by using an equality comparison condition with a “not equal to” operator. You can
also exclude rows with other types of conditions by using the NOT operator. As you
can see in Figure 6–7 (on page 182), this operator is an optional component of the
BETWEEN, IN, LIKE, and IS NULL predicates. A SELECT statement will
disregard any rows that meet the condition expressed by any of these predicates
when you include the NOT operator. The rows that will be in the result set instead
are those that did not meet the condition.

Figure 6–7 The syntax diagram for the NOT operator
The following examples illustrate how you can use NOT as part of a search
condition:

“Show me a list of all the orders we’ve taken, except for those posted in July.”

A request such as this requires you to define a SELECT statement that excludes rows
meeting a specific criterion and commonly contains phrases that indicate the need for
a NOT operator as part of the search condition. The types of phrases you’ll
encounter are similar to those listed here.

“. . . that don’t begin with ‘Her’.”
“. . . that aren’t in the Administrative or Personnel departments.”
“. . . who have a fax number.”
“. . . who were hired before June 1 or after August 31.”

You have to perform a bit of deductive work sometimes in order to translate a phrase
properly. Some phrases, such as the third phrase listed above, do not explicitly
indicate the need for a NOT operator. In this case, the requirement is implied

because you want to exclude everyone who does not have a fax number. As you
begin to work with requests that contain these types of phrases, you’ll often find that
you need to analyze them carefully and possibly rewrite them in order to determine
whether you need to exclude certain rows from the result set. There’s no easy rule of
thumb we can give you here, but with a little patience and practice it will become
easier for you to determine whether you need a NOT operator for a specific request.
After you’ve determined whether you need to exclude any information from the
result set, you can continue with the translation process.

“Show me a list of all the orders we’ve taken, except for those posted in
October.”

Translation
Select order ID and order date from the orders table where the order
date does not fall between October 1, 2012, and October 31, 2012

Clean Up
Select order ID and order date from the orders table where the order
date does not fall between October 1, 2012, ‘2012-10-01’ and
October 31, 2012 ‘2012-10-31’

SQL

SELECT OrderID, OrderDate
FROM Orders
WHERE OrderDate NOT BETWEEN '2012-10-01'
 AND '2012-10-31'

This SELECT statement produces a result set that will not contain any orders posted
between October 1, 2012, and October 31, 2012. It will, however, contain every
other order in the Orders table. You can further restrict the rows sent to the result set
to only those orders taken in 2012 by using multiple conditions, which is an issue
we’ll cover in the next section.
Now let’s assume you’re working with the following request:

“I need the identification numbers of all faculty members who are not
professors or associate professors.”

Translation
Select staff ID and title from the faculty table where the title is not
‘professor’ or ‘associate professor’

Clean Up
Select staff ID and title from the faculty table where the title is not

in (’professor’, or ‘associate professor’)
SQL

SELECT StaffID, Title
FROM Faculty
WHERE Title
NOT IN ('Professor', 'Associate Professor')

In this case, you need to exclude any staff member whose title is one of those
specified within the request, so you use a membership condition with a NOT
operator to send the correct rows to the result set.
Excluding rows from a result set becomes a relatively straightforward process after
you get accustomed to analyzing and rephrasing your requests as the situation
dictates. The real key, as you’ve seen so far, is being able to determine the type of
condition you need to answer a given request.

Using Multiple Conditions
The requests we’ve worked with up to this point have been simple and have required
only a single condition to supply the answer. Now we’ll look at how you can answer
complex requests using multiple conditions. Let’s begin by considering the
following request:

“Give me the first and last names of customers who live in Seattle and whose
last names start with the letter ‘H’.”

Based on the knowledge you’ve gained thus far, you can ascertain that this request
requires an equality comparison condition and a pattern match condition to supply an
answer. You’ve identified the conditions you need, but how do you combine them
into one search condition? The answer lies in the way the SQL Standard defines the
syntax for a search condition, as shown in Figure 6–8.

Figure 6–8 The syntax diagram for the search condition

Introducing AND and OR

You can combine two or more conditions by using the AND and OR operators, and
the complete set of conditions you’ve combined to answer a given request constitutes
a single search condition. As Figure 6–8 shows, you can also combine a complete
search condition with other conditions by enclosing the search condition in
parentheses. All this allows you to create very complex WHERE clauses that
precisely control which rows are selected to be included in a result set.

Using AND
The first way you can combine two or more conditions is by using the AND
operator. You use this operator when all the conditions you combine must be met in
order for a row to be included in a result set. Let’s use the sample request we made at
the beginning of this section as an example and apply this operator during the
translation process.

“Give me the first and last names of customers who live in Seattle and whose
last names start with the letter ‘H’.”

Translation
Select first name and last name from the customers table where the
city is ‘Seattle’ and the last name begins with ‘H’

Clean Up
Select first name and last name from the customers table where the
city is = ‘Seattle’ and the last name begins with like ‘H%’

SQL

SELECT CustFirstName, CustLastName
FROM Customers
WHERE CustCity = 'Seattle'
 AND CustLastName LIKE 'H%'

You’ve accounted for both the equality comparison condition and the pattern match
condition required by the request, and you’ve ensured that they must both be met by
using the AND operator. Any row that fails to meet either condition will be excluded
from the result set.
You can chain any number of conditions you need to answer the request at hand. Just
keep in mind that all the conditions you’ve combined with ANDs must be met in
order for a row to be included in the result set. Remember that the entire search
condition must evaluate to true for a row to appear in the result set. Figure 6–9 (on
page 186) shows the result when you combine two predicate expressions using the
AND operator. If either of the expressions evaluates to false, then the row is not
selected.

Figure 6–9 The result of combining two predicate expressions with the AND
operator

Using OR
The second way to combine two or more conditions is by using the OR operator.
You use this operator when either of the conditions you combine can be met in order
for a row to be included in a result set. Here’s an example of how you might use an
OR operator in a search condition:

“I need the name, city, and state of every staff member who lives in Seattle or is
from the state of Oregon.”

Translation
Select first name, last name, city, and state from the staff table
where the city is ‘Seattle’ or the state is ‘OR’

Clean Up
Select first name, last name, city, and state from the staff table
where the city is = ‘Seattle’ or the state is = ‘OR’

SQL

SELECT StfFirstName, StfLastName, StfCity, StfState
FROM Staff
WHERE StfCity = 'Seattle' OR StfState = 'OR'

In this case, you’ve accounted for both of the equality comparison conditions you
need to answer this request, and you’ve ensured that only one of the conditions has to

be met by using the OR operator. As long as a row fulfills either condition, it will be
included in the result set. To help clarify the matter, Figure 6–10 shows the result of
combining two predicate expressions with an OR operator.

Figure 6–10 The result of combining two predicate expressions with the OR
operator

Determining whether to use an AND operator to combine conditions is relatively
easy and straightforward. However, determining whether to use an OR operator can
be tricky sometimes. For example, consider the following request:

“Show me a list of vendor names and phone numbers for all vendors based in
Washington and California.”

Your first impulse might be to use an AND operator because the condition seems
obvious—you want vendors in Washington and California. Unfortunately, you
would be wrong. If you think about it, a vendor will be based in either Washington
or California because you can enter only one state value in the state column for that
vendor. The actual condition is much clearer now, isn’t it? As we mentioned earlier
in the chapter, you must get into the habit of studying and analyzing your requests as
they become more complex. Try to look for implied conditions as best as you can.
Let’s continue and run this request through the translation process.

“Show me a list of vendor names and phone numbers for all vendors based in
Washington and California.”

Translation
Select name, phone number, and state from the vendors table where
the state is ‘WA’ or ‘CA’

Clean Up
Select name, phone number, and state from the vendors table where
the state is = ‘WA’ or state = ‘CA’

SQL

SELECT VendName, VendPhoneNumber, VendState
FROM Vendors
WHERE VendState = 'WA' OR VendState = 'CA'

You’ve accounted for both equality comparison conditions and ensured that either
one must be met by using the OR operator. Note, however, that “state” appears in the
search condition of the Clean Up and SQL statements twice. This is necessary
because each comparison condition follows the same syntax:
Click here to view code image

Value Expression <comparison operator> Value Expression

Remember that you cannot omit any clause, keyword, or defined term from the
syntax unless it is explicitly defined as an optional item. Thus, a condition such as
WHERE VendState = 'WA' OR 'CA' is completely invalid. You might ask why this is
so. We’ll explain more about the sequence in which expression operators get
evaluated—the order of precedence—later.
In this case, your database system evaluates the expression in strict left-to-right
sequence. So, VendState = 'WA' will be evaluated first. For any given row, the
result will be true if the state is Washington, and false if it is not. Next, this true or
false result gets “ORed” with the literal value 'CA'—which is not a true or false
value! Your database system might return an error at this point ('CA'—a character
string literal—is an invalid data type for the OR operator), or it might return only the
rows where the state is Washington, or it might even first evaluate ‘CA’ OR ‘WA’ as
a Boolean expression and then compare VendState to True or False!
Always make certain that your conditions are completely and correctly defined.
Otherwise, the search condition for your SELECT statement will fail.

 Note
We used this example to illustrate a common trap you’ll encounter when you
use the OR operator. However, if you thought you could use a membership
condition such as WHERE VendState IN ('WA', 'CA') to answer this request,
you are absolutely correct. In some instances, you’ll find that there’s more

than one way to express a condition.

Using AND and OR Together
You can use both AND and OR to answer particularly tricky requests. For example,
you can answer the following type of request by using both operators:

“I need to see the names of staff members who have a 425 area code and a
phone number that begins with 555, along with anyone who was hired between
October 1 and December 31 of 2007.”

It should be easy for you to decide what types of conditions you need for this request
by now. You’ve probably already determined that you need three conditions to
answer this request: an equality comparison condition to find the area code, a pattern
match condition to find the phone numbers, and a range condition to find those staff
members hired between October 1 and December 31. All you have to do now is
determine how you’re going to combine the conditions.
You need to combine the comparison and pattern match conditions with an AND
operator because they identify the phone numbers you’re searching for and because
both conditions must be met in order for a row to be included in the result set. You
then treat this combination of conditions as a single unit and combine it with the
range condition using an OR operator. Now a row will be included in the result set as
long as it meets either the combined condition or the range condition.
Here’s the request again and the translation:

“I need to see the names of staff members who have a 425 area code and a
phone number that begins with 555, along with anyone who was hired between
October 1 and December 31 of 2007.”

Translation
Select first name, last name, area code, phone number, and date
hired from the staff table where the area code is 425 and the phone
number begins with 555 or the date hired falls between October 1,
2007, and December 31, 2007

Clean Up
Select first name, last name, area code, phone number, and date
hired from the staff table where the area code is = ‘425’ and the
phone number begins with like ‘555%’ or the date hired falls
between October 1, 2007, ‘2007-10-01’ and December 31, 2007
‘2007-12-31’

SQL

SELECT StfFirstName, StfLastName, StfAreaCode,
 StfPhoneNumber, DateHired
FROM Staff
WHERE (StfAreaCode = '425'
 AND StfPhoneNumber LIKE '555%')
OR DateHired
 BETWEEN '2007-10-01' AND '2007-12-31'

The previous example clearly demonstrates a situation where you can use a search
condition within a search condition. Before you translated the request, we said that
you needed to combine the comparison and pattern match conditions with an AND
operator and then treat them as a single unit. When you treat a combined set of
conditions as a single unit, by definition it becomes a search condition, and you
should enclose it in parentheses, exactly as we did in the example. It’s worth noting,
however, that the SQL Standard and most database systems give AND precedence
over OR as well as processing left to right, so we probably could have gotten away
with not placing parentheses around the two comparisons linked with AND. Always
use parentheses to make it crystal clear how you want the comparisons to be
processed. See the topic “Order of Precedence,” later in this chapter.
Here’s another example using AND and OR:

“I need the name and title of every professor or associate professor who was
hired on May 16, 1989.”

Translation
Select first name, last name, title, and date hired from the staff table
where the title is ‘professor’ or ‘associate professor’ and the date
hired is May 16, 1989

Clean Up
Select first name, last name, title, and date hired from the staff table
where the title is = ‘professor’ or title = ‘associate professor’ and the
date hired is = May 16, 1989 ‘1989-05-16’

SQL

SELECT StfFirstName, StfLastName, Title, DateHired
FROM Staff
WHERE (Title = 'Professor' OR Title =
 'Associate Professor') AND DateHired =
 '1989-05-16'

You’ve probably guessed that the two conditions combined with the OR operator are
being treated as a single search condition. This example merely reinforces the fact
that you can define a search condition with either the AND or the OR operators. But

once again, the key is making certain that you enclose the search condition within
parentheses to make it perfectly clear how the comparisons should be processed.

Excluding Rows: Take Two
If you’re feeling a bit of déjà vu, don’t worry—we did discuss this already. Well, at
least to some extent. You learned earlier in this chapter that the NOT operator is an
option of the BETWEEN, IN, LIKE, and IS NULL predicates. But as Figure 6–11
illustrates, NOT is also an option as the first keyword of a search condition, and it
allows you to exclude rows from a result set just as you can by using NOT within a
predicate. You use this particular NOT operator before a single condition (predicate)
or an embedded search condition. Once again, you can express the same condition in
various ways.

Figure 6–11 Including the NOT operator in a search condition

Let’s assume you’re posing the following request to the database:

“Show me the location and date of any tournament not being held at Bolero
Lanes, Imperial Lanes, or Thunderbird Lanes.”

You’ve probably already determined that you’ll use a membership condition to
answer this request. Now you just need to determine how you’ll define it. One
approach you can take is using the NOT operator within the predicate.
Click here to view code image

WHERE TourneyLocation NOT IN ('Bolero Lanes',
 'Imperial Lanes', 'Thunderbird Lanes')

Another approach you might consider is using the NOT operator as the first keyword
before the search condition.
Click here to view code image

WHERE NOT TourneyLocation IN ('Bolero Lanes',
 'Imperial Lanes', 'Thunderbird Lanes')

Either condition will exclude tournaments held at Bolero Lanes, Imperial Lanes, and

Thunderbird Lanes from the result set. However, one advantage of using NOT before
a search condition is that you can apply it to a comparison condition. (Remember
that the syntax for a comparison condition does not include NOT as an optional
operator.) But now you can use a comparison condition to exclude rows from a result
set. The following example shows how you might use this type of condition:

“Show me the bowlers who live outside of Bellevue.”

Translation
Select first name, last name, and city from the bowlers table where
the city is not ‘Bellevue’

Clean Up
Select first name, last name, and city from the bowlers table where
the city is not = ‘Bellevue’

SQL

SELECT BowlerFirstName, BowlerLastName, BowlerCity
FROM Bowlers
WHERE NOT BowlerCity = 'Bellevue'

Yes, we know that you could have expressed this condition as WHERE BowlerCity
<> 'Bellevue'. This example simply emphasizes that you can express a condition in
various ways.
Now that you’ve learned how to use a NOT operator within a single condition and a
complete search condition, be aware of a problem that can occur when you define a
search condition with two NOT operators that will include rows instead of excluding
them. Here’s an example:

“Which staff members are not teachers or teacher’s aides?”

Translation
Select first name, last name, and title from the staff table where the
title is not ‘teacher’ or ‘teacher’s aide’

Clean Up
Select first name, last name, and title from the staff table where the
title is not in (’teacher’, or ‘teacher’’s aide’)

SQL

SELECT StfFirstName, StfLastName, Title
FROM Staff
WHERE NOT Title
NOT IN ('Teacher', 'Teacher''s Aide')

 Note
We bet you’re wondering about the two single quotes in the 'Teacher"s
Aide' character string literal. The SQL Standard dictates that you use a single
quote to delimit a character string or datetime literal. When you need to
embed a single quote within a character string literal, you must “clue in” your
database system by entering the single quote twice. If you don’t do that, the
single quote acts as the end delimiter of the character string. The “s Aide'”
that would occur after the second single quote would generate a syntax error!

We assume, of course, that one of the two NOT operators appears by mistake. You
can still execute this SELECT statement, but it will send the wrong rows to the result
set. In this case, the two NOT operators cancel each other—exactly like a double
negative in arithmetic or in language—and the IN predicate now determines which
rows are sent to the result set. So instead of seeing anyone other than a teacher or
teacher’s aide in the result set, you’ll see only teachers and teacher’s aides. Although
you would not consciously define a search condition in this manner, you could very
well do it accidentally. Remember that it’s often the simple mistakes that cause the
most problems.

Order of Precedence
The SQL Standard specifies how a database system should evaluate single
conditions within a search condition and the order in which those evaluations take
place. You’ve already learned in this chapter how a database evaluates each type of
condition. Now we’ll show you how the database determines when to evaluate each
single condition.
By default, the database evaluates conditions from left to right. This is particularly
true in the case of simple conditions. In the following example, the SELECT
statement first searches for rows where the ship date is equal to the order date and
then determines which of those rows contain customer number 1001. The rows that
meet both conditions are then sent to the result set.

SQL

SELECT CustomerID, OrderDate, ShipDate
FROM Orders
WHERE ShipDate = OrderDate
 AND CustomerID = 1001

To have the SELECT statement search for a specific customer number before
evaluating the ship date, just switch the position of the conditions. We’ll discuss why
you might want to do this later in this section.
When a search condition contains various types of single conditions, the database

evaluates them in a specific order based on the operator used in each condition. The
SQL Standard defines the following order of precedence for operator evaluation.

The following SELECT statement contains an example of the type of search
condition that causes the database system to follow the order of precedence. In this
case, the database performs the addition operation, executes the comparisons, and
determines whether either condition has been met. Any row that meets either
condition is then sent to the result set.

SQL

SELECT CustomerID, OrderDate,ShipDate
FROM Orders
WHERE CustomerID = 1001
 OR ShipDate = OrderDate + 4

Prioritizing Conditions
You can greatly increase the accuracy of your search conditions by understanding
the order of precedence. This knowledge will help you formulate exactly the right
condition for the request at hand. But you must be careful to avoid defining
ambiguous conditions because they can produce unexpected results.
Let’s use the following example to take a look at this potential problem:

SQL

SELECT CustFirstName, CustLastName, CustState,
 CustZipCode
FROM Orders
WHERE CustLastName = 'Patterson'
 AND CustState = 'CA'
 OR CustZipCode LIKE '%9'

In this instance, it’s difficult to determine the true intent of the search condition
because there are two ways you can interpret it.

1. You’re looking for everyone named Patterson in the state of California or
anyone with a ZIP Code that ends with a 9.

2. You’re specifically looking for everyone named Patterson and anyone who
lives in California or has a ZIP Code that ends with a 9.

If you have memorized the evaluation order table, you know that the first way is
correct because your system should evaluate AND before OR. But are you always
going to remember the evaluation sequence? You can avoid this ambiguity and make
the search condition clearer by using parentheses to combine and prioritize certain
conditions. For example, to follow the first interpretation of the search condition,
you define the WHERE clause in this manner.
Click here to view code image

WHERE (CustLastName = 'Patterson' AND CustState = 'CA')
 OR CustZipCode LIKE '%9'

The parentheses ensure that the database analyzes and evaluates the two comparison
conditions before it performs the same processes on the pattern match condition.
You could instead follow the second interpretation and define the WHERE clause in
this manner:
Click here to view code image

WHERE CustLastName = 'Patterson' AND (CustState = 'CA'
 OR CustZipCode LIKE '%9')

In this case, the database analyzes and evaluates the first comparison condition after
it performs those processes on the second comparison condition and the pattern
match condition.
The idea of enclosing conditions in parentheses should be familiar to you by now.
You learned how to do this when we discussed combining conditions earlier in this
chapter. Now we’re trying to emphasize that the placement of the parentheses can
have a serious impact on the outcome of the search condition.
You can define any number of parenthetical conditions and even embed them as
necessary. Similar to processing expressions, search conditions are processed left to
right and then innermost to outermost except that when two or more conditions are at
an equal level, the database system processes AND first and then OR. Here’s how
the database handles parenthetical search conditions:

• Parenthetical search conditions are processed before non-parenthetical search
conditions.

• Two or more parenthetical search conditions are processed from left to right.
• Embedded parenthetical search conditions within a search condition are

processed from innermost to outermost.
After the database begins to analyze a given parenthetical condition, it evaluates all
expressions within the condition using the normal order of precedence. If you
carefully translate your request and make effective use of parentheses within the
search condition, you’ll have better results.

Less Is Better Than More
We said at the beginning of this section that the database initially evaluates
conditions from left to right and that it invokes the order of precedence when you
define and use complex conditions. We also said that the manner in which you use
parentheses in a search condition has a direct impact on its outcome. Now we’ll pass
along a simple, generic tip for speeding up the search condition process: Ask for less.
That is, select only those columns you need to fulfill the request, and make the
search condition as specific as you can so that your database processes the fewest
rows possible. When you need to use multiple conditions, make certain that the
condition that excludes the most rows from the result set is processed first so that
your database can potentially find the answer faster. (Here’s where your
understanding of the order of precedence is really beneficial.)
We’ll demonstrate this tip with an example we used earlier in this section.

SQL

SELECT CustomerID, OrderDate, ShipDate
FROM Orders
WHERE ShipDate = OrderDate
 AND CustomerID = 1001

In this instance, a row must fulfill both conditions in order for it to be included in the
result set. Placing the predicates in this order tells your database to search for each
ship date that is equal to its respective order date first. Depending on the number of
rows in the table, it could take the database quite some time to evaluate this
condition. Then the database will search the rows that met the first condition to
identify which ones contain customer ID 1001.
Here’s perhaps a better way to define the condition:

SQL

SELECT CustomerID, OrderDate, ShipDate
FROM Orders
WHERE CustomerID = 1001
 AND ShipDate = OrderDate

Now the database is more likely to search for the customer ID first. This condition is
more likely to produce a small number of rows, which means that the database will
need less time to search for the rows that match the ship date predicate.

You should make this technique a common practice and apply it when you define
your search conditions. This will go a long way in helping to ensure that your
SELECT statements execute quickly and efficiently. Be sure to study your database
system’s documentation to learn what other techniques you can apply to optimize the
SELECT statement even further.

 Note
Virtually all commercial database systems include a query optimizer that
looks at your entire request and tries to figure out the fastest way to return the
answer. The indexes that your database administrator has defined on columns
in your tables have the biggest influence on what most optimizers choose to
do. But it doesn’t hurt to make it a practice to include the most exclusive
search condition first to further influence your database system’s optimizer.

Now that you understand combining search conditions, let’s take a short side trip to
something more complex. What do you do when you want to find rows that contain a
range of values compared to another range of values? Read on!

Checking for Overlapping Ranges
BETWEEN works really well when you’re looking for a value in a single column
that is within a range of values. You also learned that you can test a single value to
see whether it is within the range defined by a pair of start/end or low/high columns
in your table. But what should you do if you want to find out whether one range
overlaps with another? For example, you might want to know all the engagements
(each has a start date and an end date) that occur any time during the week of
November 12, 2012, through November 18, 2012. You might be tempted to solve the
problem using BETWEEN like this:

“Show me the engagements that occur during the week of November 12, 2012,
through November 18, 2012.”

Translation
Select engagement number, start date, and end date from the
engagements table where start date is between November 12, 2012,
and November 18, 2012 and end date is between November 12,
2012, and November 18, 2012

Clean Up
Select engagement number, start date, and end date from the
engagements table where start date is between November 12, 2007

‘2012-11-12’ and November 18, 2012 ‘2012-11-18’ and end date is
between November 12, 2012 ‘2012-11-12’ and November 18, 2012
‘2012-11-18’

SQL

SELECT EngagementNumber, StartDate, EndDate
FROM Engagements
WHERE StartDate BETWEEN '2012-11-12' AND '2012-11-18'
AND EndDate BETWEEN '2012-11-12' AND '2012-11-18'

Close, but no cigar. You really want any engagement that has any date that falls
between the two dates in November. To understand why a simple combination of
BETWEEN clauses doesn’t work, consider Figure 6–12.

Figure 6–12 Engagements that occur within the desired date span

As you can see in the figure, there are four possible engagement date spans that can
occur either entirely or partially within the week you want. Some engagements occur
entirely within the date span, as represented by line A. Some start before the date
span but end within the date span, as represented by line B. Others might start within
the date span but end after the date span, as represented by line C. And finally, some
engagements might start before the date span and not end until after the date span, as
shown in line D.
If you think about the request as originally stated, the only engagements you’ll find
are those that are like line A. B gets excluded because the start date is not between
November 12 and November 18 even though part of the engagement occurs within
the desired date span. C gets excluded because the end date is not between the two
dates of interest. And D gets excluded because both the start and end dates are
outside the range even though some dates of the engagement do occur entirely within
the date span of interest.
So, how do you solve this problem? You explicitly create a search condition for each
of the four possible scenarios, like this:
Click here to view code image

WHERE (StartDate BETWEEN '2012-11-12' AND '2012-11-18'
AND EndDate BETWEEN '2012-11-12' AND '2012-11-18')
OR (StartDate <= '2012-11-12')
AND EndDate BETWEEN '2012-11-12' AND '2012-11-18')
OR (StartDate BETWEEN '2007-11-12' AND '2012-11-18'
AND EndDate >= '2012-11-18')
OR (StartDate <= '2012-11-12'
AND EndDate >= '2012-11-18')

Not pretty, is it? But take a look at the figure again. What one thing do all the start
dates have in common? They’re all less than or equal to the end date of the span!
Likewise, the end dates are all greater than or equal to the start date of the span. So
the simple answer is as follows:

SQL

SELECT EngagementNumber, StartDate, EndDate
FROM Engagements
WHERE StartDate <= '2012-11-18'
AND EndDate >= '2012-11-12'

Isn’t that a lot simpler? Keep this solution in mind—you’ll need it to solve one of the
sample problems at the end of the chapter. Now back to our regular programming—
let’s revisit Nulls.

Nulls Revisited: A Cautionary Note
Now is as good a time as any to remind you about Nulls. You learned in Chapter 5
that a Null represents the absence of a value and that an expression processing a Null
value will return a Null value. The same holds true for search conditions as well. A
predicate that evaluates a Null value can never be true. This might seem confusing,
but the predicate can never be false either! The SQL Standard defines the result of
any predicate that evaluates a Null as unknown. Remember that a predicate must be
true for a row to be selected, so a false or unknown result will reject the row.
To help clarify the matter, let’s reexamine in Figures 6–13 and 6–14 (on page 200)
the truth tables we first showed you in Figures 6–9 and 6–10 (pages 186 and 187).
But this time, let’s include the unknown result you will get if a Null is involved.

Figure 6–13 The result of combining two predicate expressions with the AND
operator when either expression is Null (unknown)

Figure 6–14 The result of combining two predicate expressions with the OR
operator when either expression is Null (unknown)

You can see that an unknown result from evaluating a predicate on a Null column
really throws a monkey wrench into the picture! For example, let’s assume you have

a simple comparison predicate: A = B. If either A or B for a given row is the Null
value, then the result of the comparison is unknown. Because the result is not true,
the row won’t be selected. If A = B is not true, you might expect that NOT (A = B)
would be true. No! This is unknown also. Figure 6–15 helps you understand how this
is so.

Figure 6–15 The result of applying NOT to a true/false/unknown value

Suppose you’re making the following request to the database:

“Let me see the names and phone numbers of King County residents whose last
names are Hernandez.”

Translation
Select first name, last name, and phone number from the customers
table where the county name is ‘King’ and the last name is
‘Hernandez’

Clean Up
Select first name, last name, and phone number from the customers
table where the county name is = ‘King’ and the last name is =
‘Hernandez’

SQL

SELECT CustFirstName, CustLastName, CustPhoneNumber
FROM Customers
WHERE CustCounty = 'King'
 AND CustLastName = 'Hernandez'

As you know, a row must meet both conditions to be included in the result set. If
either the county name or the last name is Null, the database disregards the row

completely.
Let’s now consider this request:

“Show me the names of all staff members who are graduate counselors or were
hired on September 1, 2007.”

Translation
Select last name and first name from the staff table where the title is
‘graduate counselor’ or date hired is September 1, 2007

Clean Up
Select last name and first name from the staff table where the title is
= ‘graduate counselor’ or date hired is = September 1,2007 ‘2007-
09-01’

SQL

SELECT StfLastName, StfFirstName
FROM Staff
WHERE Title = 'Graduate Counselor'
 OR DateHired = '2007-09-01'

Although you might expect Nulls to have the same effect on conditions combined
with OR as they do on conditions combined with AND, that is not necessarily the
case. A row still has a chance of being included in the result set as long as it meets
either of these conditions. Take a look at Figure 6–14 (page 200) again. Based on the
values of Title and DateHired, Table 6–2 shows how the database determines
whether to send a row to the result set when you combine the predicates with OR.

Table 6–2 Determining the Result Set with OR

When you suspect that a result set is displaying incorrect information, test any
columns you’re using as criteria with the Null condition. This will give you the
opportunity to deal with any Null values as appropriate, and you can then execute
your original SELECT statement once again. For example, if you think there might
be a few graduate counselors missing from the result set, you could execute the
following SELECT statement to determine whether this is true:

SQL

SELECT StfLastName, StfFirstName, Title
FROM Staff
WHERE Title IS NULL

If there are Null values in the Title column, this SELECT statement will produce a
result set that contains the names of all staff members who do not have a title
specified in the database. Now you can deal with this data as appropriate and then
return to your original SELECT statement.
We’re not done dealing with Nulls just yet. We’ll revisit Nulls once more in Chapter
12, “Simple Totals,” when we discuss SELECT statements that summarize data.

Expressing Conditions in Different Ways
One side benefit to everything you’ve learned in this chapter is that you now have
the ability to express a given condition in various ways. Let’s take a look at this by
considering the following request:

“Give me the name of every employee who was hired in October 2007.”

You need to search for hire dates that fall between October 1, 2007, and October 31,
2007, in order to answer this request. Based on what you’ve already learned, you can
define the condition in two ways:
Click here to view code image

DateHired BETWEEN '2007-10-01' AND '2007-10-31'
DateHired >= '2007-10-01' AND DateHired <= '2007-10-31'

Both of these conditions will send the same rows to the result set—the condition you
choose to use is only a matter of preference. Some people find the first expression
easier to understand, although others prefer the second expression.
Here are some other examples of equivalent conditions:

“Show me the vendors who are based in California, Oregon, or Washington.”

Click here to view code image

VendState IN ('CA', 'OR', 'WA')

VendState = 'CA' OR VendState = 'OR' OR VendState = 'WA'

“Give me a list of customers whose last name begins with ‘H’.”

Click here to view code image

CustLastName >= 'H' AND CustLastName <= 'HZ'
CustLastName BETWEEN 'H' AND 'HZ'
CustLastName LIKE 'H%'

“Show me all the students who do not live in Seattle or Redmond.”

Click here to view code image

StudCity <> 'Seattle' AND StudCity <> 'Redmond'
StudCity NOT IN ('Seattle', 'Redmond')
NOT (StudCity = 'Seattle' OR StudCity = 'Redmond')

There’s no wrong way for you to define a condition, but you can define a condition
incorrectly by blatantly disregarding its syntax. (As you know, this will cause the
condition to fail.) However, some database systems optimize certain types of
conditions for speedy processing, making them preferable to other equivalent
conditions. Check your database system’s documentation to determine whether your
system has any preferred methods for defining conditions.

Sample Statements
You’ve now learned all the techniques you need to build solid search conditions.
Let’s take a look at some examples of various types of search conditions using the
tables from each of the sample databases. These examples illustrate the use of search
conditions to filter your data.
We’ve also included sample result sets that would be returned by these operations
and placed them immediately after the SQL syntax line. The name that appears
immediately above a result set is the name we gave each query in the sample data on
the companion website for the book, www.informit.com/title/9780321992475. We
stored each query in the appropriate sample database (as indicated within the
example) and prefixed the names of the queries relevant to this chapter with “CH06.”
You can follow the instructions in the Introduction of this book to load the samples
onto your computer and try them.

 Note
We’ve combined the Translation and Clean Up steps for all the examples once
again so that you can continue to learn how to consolidate the process.

http://www.informit.com/title/9780321992475

Sales Orders Database

“Show me all the orders for customer number 1001.”

Translation/Clean Up
Select the order number and customer ID from the orders table
where the customer ID is equal to = 1001

SQL

SELECT OrderNumber, CustomerID
FROM Orders
WHERE CustomerID = 1001

CH06_Orders_for_Customer_1001 (44 Rows)

“Show me an alphabetized list of products with names that begin with ‘Dog’.”

Translation/Clean Up
Select the product name from the products table where the product
name like ‘Dog%’ and order by product name

SQL

SELECT ProductName

FROM Products
WHERE ProductName LIKE 'Dog%'
ORDER BY ProductName

CH06_Products_That_Begin_With_DOG (4 Rows)

 Note
We just wanted to remind you that you place the ORDER BY clause at the
end of a SELECT statement. If necessary, review the Sorting Information
section in Chapter 4.

Entertainment Agency Database

“Show me an alphabetical list of entertainers based in Bellevue, Redmond, or
Woodinville.”

Translation/Clean Up
Select stage name, phone number, and city from the entertainers
table where the city is in (’Bellevue’, ‘Redmond’, or ‘Woodinville’)
and order by stage name

SQL

SELECT EntStageName, EntPhoneNumber, EntCity
FROM Entertainers
WHERE EntCity
IN ('Bellevue', 'Redmond', 'Woodinville')
ORDER BY EntStageName

CH06_Eastside_Entertainers (7 Rows)

“Show me all the engagements that run for four days.”

Translation/Clean Up
Select engagement number, start date, and end date from the
engagements table where the CAST(end date minus - start date AS
INTEGER) is equal to = 3

SQL

SELECT EngagementNumber, StartDate, EndDate
FROM Engagements
WHERE CAST(EndDate - StartDate AS INTEGER) = 3

CH06_Four-Day Engagements (15 Rows)

 Note
An engagement runs from the start date through the end date. When
subtracting StartDate from EndDate, we get one less day than the total number
of days for the engagement. For this reason, we compared the result of the
calculation to 3, not 4.

School Scheduling Database

“Show me an alphabetical list of all the staff members and their salaries if they
make between $40,000 and $50,000 a year.”

Translation/Clean Up
Select first name, last name, and salary from the staff table where
the salary is between 40000 and 50000, then order by last name, and
first name

SQL

SELECT StfFirstName, StfLastName, Salary
FROM Staff
WHERE Salary BETWEEN 40000 AND 50000
ORDER BY StfLastname, StfFirstName

CH06_Staff_Salaries_40K_T0_50K (14 Rows)

“Show me a list of students whose last name is ‘Kennedy’ or who live in
Seattle.”

Translation/Clean Up
Select first name, last name, and city from the students table where
the last name is = ‘Kennedy’ or the city is = ‘Seattle’

SQL

SELECT StudFirstName, StudLastName, StudCity
FROM Students
WHERE StudLastName = 'Kennedy'
OR StudCity = 'Seattle'

Seattle_Students_And_Students_Named_Kennedy (4 Rows)

Bowling League Database

“List the ID numbers of the teams that won one or more of the first ten matches
in Game 3.”

Translation/Clean Up
Select the team ID, match ID, and game number from the
match_games table where the game number is = 3 and the match ID
is between 1 and 10

SQL

SELECT WinningTeamID, MatchID, GameNumber
FROM Match_Games
WHERE GameNumber = 3 AND MatchID BETWEEN 1 AND 10

Game3_Top_Ten_Matches (10 Rows)

“List the bowlers in teams 3, 4, and 5 whose last names begin with the letter
‘H’.”

Translation/Clean Up
Select first name, last name, and team ID from the bowlers table
where the team ID is either in (3, 4, or 5) and the last name begins
with the letter like ‘H%’

SQL

SELECT BowlerFirstName, BowlerLastName, TeamID
 FROM Bowlers
 WHERE (TeamID IN (3,4,5))
 AND (BowlerLastName LIKE 'H%')

H_Bowlers_Teams_3_Through_5 (4 Rows)

Recipes Database

“List the recipes that have no notes.”

Translation/Clean Up
Select the recipe title from the recipes table where notes is empty
Null

SQL

SELECT RecipeTitle FROM Recipes
WHERE Notes IS NULL

CH06_Recipes_With_No_Notes (6 rows)

“Show the ingredients that are meats (ingredient class is 2) but that aren’t
chicken.”

Translation/Clean Up
Select ingredient name from the ingredients table where ingredient
class ID is equal to = 2 and ingredient name does not contain like
‘%chicken%’

SQL

SELECT IngredientName FROM Ingredients
 WHERE (IngredientClassID = 2)
 AND (IngredientName NOT LIKE '%chicken%')

CH06_Meats_That_Are_Not_Chicken (5 rows)

Summary
In this chapter, we introduced you to the idea of filtering the information you see in a
result set by using a search condition in a WHERE clause. You learned that a search
condition uses combinations of predicates to filter the data sent to the result set and
that predicates are specific tests you can apply to a value expression. We then
introduced you to the five basic types of predicates.
Our discussion continued with an in-depth look at each of the five basic types of
predicates you can define within a search condition of a WHERE clause. You
learned how to compare values and how to test whether a value falls within a
specified range of values. You also learned how to test whether a value matches one
of a defined list of values or is part of a specific pattern string. Additionally, you
learned that you could use the NOT operator to exclude rows from a result set.
We then discussed how to use multiple conditions by combining them with AND
and OR operators. You learned that a row must meet all conditions combined with
AND before it can be included in the result set, whereas it must meet only one of
those conditions if the conditions are combined with OR. You also learned how to
use AND and OR together to answer complex requests. We then took a second look
at using NOT to exclude rows from a result set, and you learned that NOT can be
used at two different levels in a search condition.
The order of precedence was the next topic of discussion, and you learned how the
database analyzes and evaluates conditions. You now know that the database
evaluates conditions in a specific order based on the operator used in each condition.
You also learned how to use parentheses to alter the order in which the database
evaluates certain conditions and to ensure that you avoid defining ambiguous
conditions.
We took a brief detour to show you how to search for a range across another range.
The answer is surprisingly simple, and it doesn’t involve using BETWEEN.

We next took another look at Nulls. Here you learned that Nulls affect conditions in
much the way that they affect expressions. You also know that you should test for
Null values if you suspect that a result set is displaying incorrect information.
Finally, we discussed the fact that the same condition can be expressed in various
ways. You now know, for example, that you can use three different types of
conditions to search for people whose last names begin with the letter “H.”
In the next part of the book, we’ll introduce you to the idea of sets and the types of
operations you can perform on them. After you learn about sets, you’ll be well on
your way to learning how to define SELECT statements using multiple tables.
The following section presents a number of requests that you can work out on your
own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need
for each request and then check your answer with the query we saved in the samples.
Don’t worry if your syntax doesn’t exactly match the syntax of the queries we saved
—as long as your result set is the same.

Sales Orders Database
1. “Give me the names of all vendors based in Ballard, Bellevue, and Redmond.”

You can find the solution in CH06_Ballard_Bellevue_Redmond_Vendors (3
rows).

2. “Show me an alphabetized list of products with a retail price of $125.00 or
more.”
(Hint: You’ll alphabetize the list using a clause we discussed in a previous
chapter.)
You can find the solution in CH06_Products_Priced_Over_125 (13 rows).

3. “Which vendors do we work with that don’t have a Web site?”
You can find the solution in CH06_Vendors_With_No_Website (4 rows).

Entertainment Agency Database
1. “Let me see a list of all engagements that occurred during October 2012.”

(Hint: You need to solve this problem by testing for values in a range in the
table that contain any values in another range—the first and last dates in
October.)

You can find the solution in CH06_October_2012_Engagements (23 rows).
2. “Show me any engagements in October 2012 that start between noon and 5

P.M.”
You can find the solution in CH06_October_Dates_Between_Noon_and_Five
(17 rows).

3. “List all the engagements that start and end on the same day.”
You can find the solution in CH06_Single_Day_Engagements (5 rows).

School Scheduling Database
1. “Show me which staff members use a post office box as their address.”

You can find the solution in CH06_Staff_Using_POBoxes (3 rows).
2. “Can you show me which students live outside of the Pacific Northwest?”

You can find the solution in CH06_Students_Residing_Outside_PNW (5
rows).

3. “List all the subjects that have a subject code starting ‘MUS’.”
You can find the solution in CH06_Subjects_With_MUS_In_SubjectCode (4
rows).

Bowling League Database
1. “Give me a list of the tournaments held during September 2012.”

You can find the solution in CH06_September_2012_Tournament_Schedule (4
rows).

2. “What are the tournament schedules for Bolero, Red Rooster, and
Thunderbird Lanes?”
You can find the solution in CH06_Eastside_Tournaments (9 rows).

3. “List the bowlers who live on the Eastside (you know—Bellevue, Bothell,
Duvall, Redmond, and Woodinville) and who are on teams 5, 6, 7, or 8.”
(Hint: Use IN for the city list and BETWEEN for the team numbers.)
You can find the solution in
CH06_Eastside_Bowlers_On_Teams_5_Through_8 (9 rows).

Recipes Database
1. “List all recipes that are main courses (recipe class is 1) and that have

notes.”
You can find the solution in CH06_Main_Courses_With_Notes (4 rows).

2. “Display the first five recipes.”
(Hint: Use BETWEEN on the primary key of the table.)
You can find the solution in CH06_First_5_Recipes (5 rows).

Part III: Working with Multiple Tables

7. Thinking in Sets

“Small cheer and a great welcome makes a merry feast.”
—William Shakespeare

Comedy of Errors, Act 3, scene 1

Topics Covered in This Chapter
What Is a Set, Anyway?
Operations on Sets
Intersection
Difference
Union
SQL Set Operations
Summary

By now, you know how to create a set of information by asking for specific columns
or expressions on columns (SELECT), how to sort the rows (ORDER BY), and how
to restrict the rows returned (WHERE). Up to this point, we’ve been focusing on
basic exercises involving a single table. But what if you want to know something
about information contained in multiple tables? What if you want to compare or
contrast sets of information from the same or different tables?
Creating a meal by peeling, slicing, and dicing a single pile of potatoes or a single
bunch of carrots is easy. From here on out, most of the problems we’re going to
show you how to solve will involve getting data from multiple tables. We’re not only
going to show you how to put together a good stew—we’re going to teach you how
to be a chef!
Before digging into this chapter, you need to know that it’s all about the concepts
you must understand in order to successfully link two or more sets of information.
We’re also going to give you a brief overview of some specific syntax defined in the
SQL Standard that directly supports the pure definition of these concepts. Be
forewarned, however, that many current commercial implementations of SQL do not
yet support this “pure” syntax. In later chapters, we’ll show you how to implement
the concepts you’ll learn here using SQL syntax that is commonly supported by most
major database systems. What we’re after here is not the letter of the law but rather
the spirit of the law.

What Is a Set, Anyway?

If you were a teenager any time from the mid-1960s onward, you might have studied
set theory in a mathematics course. (Remember New Math?) If you were introduced
to set algebra, you probably wondered why any of it would ever be useful.
Now you’re trying to learn about relational databases and this quirky language called
SQL to build applications, solve problems, or just get answers to your questions.
Were you paying attention in algebra class? If so, solving problems—particularly
complex ones—in SQL will be much easier.
Actually, you’ve been working with sets from the beginning of this book. In Chapter
1, “What Is Relational?,” you learned about the basic structure of a relational
database—tables containing records that are made up of one or more fields.
(Remember that in SQL, records are known as rows, and fields are known as
columns.) Each table in your database is a set of information about one subject. In
Chapter 2, “Ensuring Your Database Structure Is Sound,” you learned how to verify
that the structure of your database is sound. Each table should contain the set of
information related to one and only one subject or action.
In Chapter 4, “Creating a Simple Query,” you learned how to build a basic SELECT
statement in SQL to retrieve a result set of information that contains specific
columns from a single table and how to sort those result sets. In Chapter 5, “Getting
More Than Simple Columns,” you learned how to glean a new set of information
from a table by writing expressions that operate on one or more columns. In Chapter
6, “Filtering Your Data,” you learned how to restrict further the set of information
you retrieve from your tables by adding a filter (WHERE clause) to your query.
As you can see, a set can be as little as the data from one column from one row in
one table. Actually, you can construct a request in SQL that returns no rows—an
empty set. Sometimes it’s useful to discover that something does not exist. A set can
also be multiple columns (including columns you create with expressions) from
multiple rows fetched from multiple tables. Each row in a result set is a member of
the set. The values in the columns are specific attributes of each member—data
items that describe the member of the set. In the next several chapters, we’ll show
how to ask for information from multiple sets of data and link these sets together to
get answers to more complex questions. First, however, you need to understand more
about sets and the logical ways to combine them.

Operations on Sets
In Chapter 1, we discussed how Dr. E. F. Codd invented the relational model on
which most modern databases and SQL are based. Two branches of mathematics—
set theory and first-order predicate logic—formed the foundation of his new model.
To graduate beyond getting answers from only a single table, you need to learn how

to use result sets of information to solve more complex problems. These complex
problems usually require using one of the common set operations to link data from
two or more tables. Sometimes, you’ll need to get two different result sets from the
same table and then combine them to get your answer.
The three most common set operations are as follows:

• Intersection—You use this to find the common elements in two or more
different sets: “List all students and the classes for which they are currently
enrolled.” “Show me the recipes that contain both lamb and rice.” “Show me
the customers who ordered both bicycles and helmets.”

• Difference—You use this to find items that are in one set but not another:
“Show me the recipes that contain lamb but do not contain rice.” “Show me the
customers who ordered a bicycle but not a helmet.”

• Union—You use this to combine two or more similar sets: “Show me all the
recipes that contain either lamb or rice.” “Show me the customers who ordered
either a bicycle or a helmet.” “List the names and addresses for both staff and
students.”

In the following three sections, we’ll explain these basic set operations—the ones
you should have learned in high school algebra. The “SQL Set Operations” section
later in this chapter gives an overview of how these operations are implemented in
“pure” SQL.

Intersection
No, it’s not your local street corner. An intersection of two sets contains the common
elements of two sets. Let’s first take a look at an intersection from the pure
perspective of set theory and then see how you can use an intersection to solve
business problems.

Intersection in Set Theory
An intersection is a very powerful mathematical tool often used by scientists and
engineers. As a scientist, you might be interested in finding common points between
two sets of chemical or physical sample data. For example, a pharmaceutical
research chemist might have two compounds that seem to provide a certain
beneficial effect. Finding the commonality (the intersection) between the two
compounds might help discover what it is that makes the two compounds effective.
Or, an engineer might be interested in finding the intersection between one alloy that
is hard but brittle and another alloy that is soft but resilient.
Let’s take a look at intersection in action by examining two sets of numbers. In this
example, each single number is a member of the set. The first set of numbers is as

follows:
1, 5, 8, 9, 32, 55, 78

The second set of numbers is as follows:
3, 7, 8, 22, 55, 71, 99

The intersection of these two sets of numbers is the numbers common to both sets:
8, 55

The individual entries—the members—of each set don’t have to be just single
values. In fact, when solving problems with SQL, you’ll probably deal with sets of
rows.
According to set theory, when a member of a set is something more than a single
number or value, each member (or object) of the set has multiple attributes or bits of
data that describe the properties of each member. For example, your favorite stew
recipe is a complex member of the set of all recipes that contains many different
ingredients. Each ingredient is an attribute of your complex stew member.
To find the intersection between two sets of complex set members, you have to find
the members that match on all the attributes. Also, all the members in each set you’re
trying to compare must have the same number and type of attributes. For example,
suppose you have a complex set like the one below, in which each row represents a
member of the set (a stew recipe), and each column denotes a particular attribute (an
ingredient).

A second set might look like the following:

The intersection of these two sets is the one member whose attributes all match in
both sets:

Intersection between Result Sets
If the previous examples look like rows in a table or a result set to you, you’re on the
right track! When you’re dealing with rows in a set of data that you fetch with SQL,
the attributes are the individual columns. For example, suppose you have a set of
rows returned by a query like the following one. (These are recipes from John’s
cookbook.)

A second query result set might look like the following. (These are recipes from
Mike’s cookbook.)

The intersection of these two sets is the two members whose attributes all match in
both sets—that is, the two recipes that Mike and John have in common.

Sometimes it’s easier to see how intersection works using a set diagram. A set
diagram is an elegant yet simple way to diagram sets of information and graphically
represent how the sets intersect or overlap. You might also have heard this sort of
diagram called a Euler or Venn diagram. (By the way, Leonard Euler was an
eighteenth-century Swiss mathematician, and John Venn used this particular type of
logic diagram in 1880 in a paper he wrote while a Fellow at Cambridge University.
So you can see that “thinking in sets” is not a particularly modern concept!)
Let’s assume you have a nice database containing all your favorite recipes. You
really like the way onions enhance the flavor of beef, so you’re interested in finding
all recipes that contain both beef and onions. Figure 7–1 shows the set diagram that
helps you visualize how to solve this problem.

Figure 7–1 Finding out which recipes have both beef and onions
The upper circle represents the set of recipes that contain beef. The lower circle
represents the set of recipes that contain onions. Where the two circles overlap is
where you’ll find the recipes that contain both—the intersection of the two sets. As
you can imagine, you first ask SQL to fetch all the recipes that have beef. In the
second query, you ask SQL to fetch all the recipes that have onions. As you’ll see
later, you can use a special SQL keyword—INTERSECT—to link the two queries to
get the final answer.
Yes, we know what you’re thinking. If your recipe table looks like the samples
above, you could simply say the following:

“Show me the recipes that have beef as the meat ingredient and onions as the
vegetable ingredient.”

Translation
Select the recipe name from the recipes table where meat ingredient
is beef and vegetable ingredient is onions

Clean Up
Select the recipe name from the recipes table where meat ingredient
is = beef and vegetable ingredient is = onions

SQL

SELECT RecipeName
FROM Recipes
WHERE MeatIngredient = 'Beef'
 AND VegetableIngredient = 'Onions'

Hold on now! If you remember the lessons you learned in Chapter 2, you know that

a single Recipes table probably won’t cut it. (Pun intended!) What about recipes that
have ingredients other than meat and vegetables? What about the fact that some
recipes have many ingredients and others have only a few? A correctly designed
recipes database will have a separate Recipe_Ingredients table with one row per
recipe per ingredient. Each ingredient row will have only one ingredient, so no single
row can be both beef and onions at the same time. You’ll need to first find all the
beef rows, then find all the onions rows, and then intersect them on RecipeID. (If
you’re confused about why we’re criticizing the previous table design, be sure to go
back and read Chapter 2!)
How about a more complex problem? Let’s say you want to add carrots to the mix.
A set diagram to visualize the solution might look like Figure 7–2.

Figure 7–2 Determining which recipes have beef, onions, and carrots
Got the hang of it? The bottom line is that when you’re faced with solving a problem
involving complex criteria, a set diagram can be an invaluable way to see the
solution expressed as the intersection of SQL result sets.

Problems You Can Solve with an Intersection
As you might guess, you can use an intersection to find the matches between two or
more sets of information. Here’s just a small sample of the problems you can solve
using an intersection technique with data from the sample databases:

“Show me customers and employees who have the same name.”
“Find all the customers who ordered a bicycle and also ordered a helmet.”
“List the entertainers who played engagements for customers Bonnicksen and
Rosales.”

“Show me the students who have an average score of 85 or better in Art and
who also have an average score of 85 or better in Computer Science.”

“Find the bowlers who had a raw score of 155 or better at both Thunderbird
Lanes and Bolero Lanes.”

“Show me the recipes that have beef and garlic.”
One of the limitations of using a pure intersection is that the values must match in all
the columns in each result set. This works well if you’re intersecting two or more
sets from the same table—for example, customers who ordered bicycles and
customers who ordered helmets. It also works well when you’re intersecting sets
from tables that have similar columns—for example, customer names and employee
names. In many cases, however, you’ll want to find solutions that require a match on
only a few column values from each set. For this type of problem, SQL provides an
operation called a JOIN—an intersection on key values. Here’s a sample of problems
you can solve with a JOIN:

“Show me customers and employees who live in the same city.” (JOIN on the
city name.)

“List customers and the entertainers they booked.” (JOIN on the engagement
number.)

“Find the agents and entertainers who live in the same ZIP Code.” (JOIN on
the ZIP Code.)

“Show me the students and their teachers who have the same first name.”
(JOIN on the first name.)

“Find the bowlers who are on the same team.” (JOIN on the team ID.)
“Display all the ingredients for recipes that contain carrots.” (JOIN on the
ingredient ID.)

Never fear. In the next chapter we’ll show you all about solving these problems (and
more) by using JOINs. And because so few commercial implementations of SQL
support INTERSECT, we’ll show how to use a JOIN to solve many problems that
might otherwise require an INTERSECT.

Difference
What’s the difference between 21 and 10? If you answered 11, you’re on the right
track! A difference operation (sometimes also called subtract, minus, or except) takes
one set of values and removes the set of values from a second set. What remains is
the set of values in the first set that are not in the second set. (As you’ll see later,
EXCEPT is the keyword used in the SQL Standard.)

Difference in Set Theory
Difference is another very powerful mathematical tool. As a scientist, you might be
interested in finding what’s different about two sets of chemical or physical sample
data. For example, a pharmaceutical research chemist might have two compounds
that seem to be very similar, but one provides a certain beneficial effect and the other
does not. Finding what’s different about the two compounds might help uncover why
one works and the other does not. As an engineer, you might have two similar
designs, but one works better than the other. Finding the difference between the two
designs could be crucial to eliminating structural flaws in future buildings.
Let’s take a look at difference in action by examining two sets of numbers. The first
set of numbers is as follows:

1, 5, 8, 9, 32, 55, 78
The second set of numbers is as follows:

3, 7, 8, 22, 55, 71, 99
The difference of the first set of numbers minus the second set of numbers is the
numbers that exist in the first set but not the second:

1, 5, 9, 32, 78
Note that you can turn the previous difference operation around. Thus, the difference
of the second set minus the first set is

3, 7, 22, 71, 99
The members of each set don’t have to be single values. In fact, you’ll most likely be
dealing with sets of rows when trying to solve problems with SQL.
Earlier in this chapter we said that when a member of a set is something more than a
single number or value, each member of the set has multiple attributes (bits of
information that describe the properties of each member). For example, your favorite
stew recipe is a complex member of the set of all recipes that contains many
different ingredients. You can think of each ingredient as an attribute of your
complex stew member.
To find the difference between two sets of complex set members, you have to find
the members that match on all the attributes in the second set with members in the
first set. Don’t forget that all of the members in each set you’re trying to compare
must have the same number and type of attributes. Remove from the first set all the
matching members you find in the second set, and the result is the difference. For
example, suppose you have a complex set like the one below. Each row represents a
member of the set (a stew recipe), and each column denotes a particular attribute (an
ingredient).

A second set might look like this:

The difference of the first set minus the second set is the objects in the first set that
don’t exist in the second set:

Difference between Result Sets
When you’re dealing with rows in a set of data fetched with SQL, the attributes are
the individual columns. For example, suppose you have a set of rows returned by a
query like the following one. (These are recipes from John’s cookbook.)

A second query result set might look like the following. (These are recipes from
Mike’s cookbook.)

The difference between John’s recipes and Mike’s recipes (John’s minus Mike’s) is
all the recipes in John’s cookbook that do not appear in Mike’s cookbook.

You can also turn this problem around. Suppose you want to find the recipes in
Mike’s cookbook that are not in John’s cookbook. Here’s the answer:

Again, we can use a set diagram to help visualize how a difference operation works.

Let’s assume you have a nice database containing all your favorite recipes. You
really do not like the way onions taste with beef, so you’re interested in finding all
recipes that contain beef but not onions. Figure 7–3 shows you the set diagram that
helps you visualize how to solve this problem.

Figure 7–3 Finding out which recipes have beef but not onions

The upper full circle represents the set of recipes that contain beef. The lower full
circle represents the set of recipes that contain onions. As you remember from the
discussion about INTERSECT, where the two circles overlap is where you’ll find the
recipes that contain both. The dark-shaded part of the upper circle that’s not part of
the overlapping area represents the set of recipes that contain beef but do not contain
onions. Likewise, the part of the lower circle that’s not part of the overlapping area
represents the set of recipes that contain onions but do not contain beef.
You probably know that you first ask SQL to fetch all the recipes that have beef.
Next, you ask SQL to fetch all the recipes that have onions. (As you’ll see later in
this chapter, the special SQL keyword EXCEPT links the two queries to get the final
answer.)
Are you falling into the trap again? (You did read Chapter 2, didn’t you?) If your
recipe table looks like the samples earlier, you might think that you could simply say
the following:

“Show me the recipes that have beef as the meat ingredient and that do not have
onions as the vegetable ingredient.”

Translation
Select the recipe name from the recipes table where meat ingredient

is beef and vegetable ingredient is not onions
Clean Up

Select the recipe name from the recipes table where meat ingredient
is = beef and vegetable ingredient is not <> onions

SQL

SELECT RecipeName
FROM Recipes
WHERE MeatIngredient = 'Beef'
 AND VegetableIngredient <> 'Onions'

Again, as you learned in Chapter 2, a single Recipes table isn’t such a hot idea. (Pun
intended!) What about recipes that have ingredients other than meat and vegetables?
What about the fact that some recipes have many ingredients and others have only a
few? A correctly designed Recipes database will have a separate Recipe_Ingredients
table with one row per recipe per ingredient. Each ingredient row will have only one
ingredient, so no one row can be both beef and onions at the same time. You’ll need
to first find all the beef rows, then find all the onions rows, then difference them on
RecipeID.
How about a more complex problem? Let’s say you hate carrots, too. A set diagram
to visualize the solution might look like Figure 7–4.

Figure 7–4 Finding out which recipes have beef but no onions or carrots

First you need to find the set of recipes that have beef, and then get the difference
with either the set of recipes containing onions or the set containing carrots. Take
that result and get the difference again with the remaining set (onions or carrots) to
leave only the recipes that have beef but no carrots or onions (the light-shaded area
in the upper circle).

Problems You Can Solve with Difference
Unlike intersection (which looks for common members of two sets), difference looks
for members that are in one set but not in another set. Here’s just a small sample of
the problems you can solve using a difference technique with data from the sample
databases:

“Show me customers whose names are not the same as any employee.”
“Find all the customers who ordered a bicycle but did not order a helmet.”
“List the entertainers who played engagements for customer Bonnicksen but did
not play any engagement for customer Rosales.”

“Show me the students who have an average score of 85 or better in Art but do
not have an average score of 85 or better in Computer Science.”

“Find the bowlers who had a raw score of 155 or better at Thunderbird Lanes
but not at Bolero Lanes.”

“Show me the recipes that have beef but not garlic.”
One of the limitations of using a pure difference is that the values must match in all
the columns in each result set. This works well if you’re finding the difference
between two or more sets from the same table—for example, customers who ordered
bicycles and customers who ordered helmets. It also works well when you’re finding
the difference between sets from tables that have similar columns—for example,
customer names and employee names.
In many cases, however, you’ll want to find solutions that require a match on only a
few column values from each set. For this type of problem, SQL provides an
OUTER JOIN operation, which is an intersection on key values that includes the
unmatched values from one or both of the two sets. Here’s a sample of problems you
can solve with an OUTER JOIN:

“Show me customers who do not live in the same city as any employees.”
(OUTER JOIN on the city name.)

“List customers and the entertainers they did not book.” (OUTER JOIN on the
engagement number.)

“Find the agents who are not in the same ZIP Code as any entertainer.”
(OUTER JOIN on the ZIP Code.)

“Show me the students who do not have the same first name as any teachers.”
(OUTER JOIN on the first name.)

“Find the bowlers who have an average of 150 or higher who have never
bowled a game below 125.” (OUTER JOIN on the bowler ID from two
different tables.)

“Display all the ingredients for recipes that do not have carrots.” (OUTER
JOIN on the recipe ID.)

Don’t worry! We’ll show you all about solving these problems (and more) using
OUTER JOINs in Chapter 9, “OUTER JOINs.” Also, because few commercial
implementations of SQL support EXCEPT (the keyword for difference), we’ll show
how to use an OUTER JOIN to solve many problems that might otherwise require an
EXCEPT. In Chapter 18, “‘NOT’ and ‘AND’ Problems,” we’ll show you additional
ways to solve EXCEPT problems.

Union
So far we’ve discussed finding the items that are common in two sets (intersection)
and the items that are different (difference). The third type of set operation involves
adding two sets (union).

Union in Set Theory
Union lets you combine two sets of similar information into one set. As a scientist,
you might be interested in combining two sets of chemical or physical sample data.
For example, a pharmaceutical research chemist might have two different sets of
compounds that seem to provide a certain beneficial effect. The chemist can union
the two sets to obtain a single list of all effective compounds.
Let’s take a look at union in action by examining two sets of numbers. The first set
of numbers is as follows:

1, 5, 8, 9, 32, 55, 78
The second set of numbers is as follows:

3, 7, 8, 22, 55, 71, 99
The union of these two sets of numbers is the numbers in both sets combined into
one new set:

1, 5, 8, 9, 32, 55, 78, 3, 7, 22, 71, 99
Note that the values common to both sets, 8 and 55, appear only once in the answer.
Also, the sequence of the numbers in the result set is not necessarily in any specific
order. When you ask a database system to perform a UNION, the values returned
won’t necessarily be in sequence unless you explicitly include an ORDER BY
clause. In SQL, you can also ask for a UNION ALL if you want to see the duplicate
members.
The members of each set don’t have to be just single values. In fact, you’ll probably
deal with sets of rows when working with SQL.
To find the union of two or more sets of complex members, all the members in each

set you’re trying to union must have the same number and type of attributes. For
example, suppose you have a complex set like the one below. Each row represents a
member of the set (a stew recipe), and each column denotes a particular attribute (an
ingredient).

A second set might look like the following:

The union of these two sets is the set of objects from both sets. Duplicates are
eliminated.

Combining Result Sets Using a Union
It’s a small leap from sets of complex objects to rows in SQL result sets. When
you’re dealing with rows in a set of data that you fetch with SQL, the attributes are
the individual columns. For example, suppose you have a set of rows returned by a
query like the following one. (These are recipes from John’s cookbook.)

A second query result set might look like this one. (These are recipes from Mike’s
cookbook).

The union of these two sets is all the rows in both sets. Maybe John and Mike
decided to write a cookbook together, too!

Let’s assume you have a nice database containing all your favorite recipes. You
really like recipes with either beef or onions, so you want a list of recipes that
contain either ingredient. Figure 7–5 (on page 238) shows you the set diagram that
helps you visualize how to solve this problem.

Figure 7–5 Finding out which recipes have either beef or onions
The upper circle represents the set of recipes that contain beef. The lower circle
represents the set of recipes that contain onions. The union of the two circles gives
you all the recipes that contain either ingredient, with duplicates eliminated where
the two sets overlap. As you probably know, you first ask SQL to fetch all the
recipes that have beef. In the second query, you ask SQL to fetch all the recipes that
have onions. As you’ll see later, the SQL keyword UNION links the two queries to
get the final answer.

By now you know that it’s not a good idea to design a recipes database with a single
table. Instead, a correctly designed recipes database will have a separate
Recipe_Ingredients table with one row per recipe per ingredient. Each ingredient row
will have only one ingredient, so no one row can be both beef or onions at the same
time. You’ll need to first find all the recipes that have a beef row, then find all the
recipes that have an onions row, and then union them.

Problems You Can Solve with Union
A union lets you “mush together” rows from two similar sets—with the added
advantage of no duplicate rows. Here’s a sample of the problems you can solve using
a union technique with data from the sample databases:

“Show me all the customer and employee names and addresses.”
“List all the customers who ordered a bicycle combined with all the customers
who ordered a helmet.”

“List the entertainers who played engagements for customer Bonnicksen
combined with all the entertainers who played engagements for customer
Rosales.”

“Show me the students who have an average score of 85 or better in Art
together with the students who have an average score of 85 or better in
Computer Science.”

“Find the bowlers who had a raw score of 155 or better at Thunderbird Lanes
combined with bowlers who had a raw score of 140 or better at Bolero Lanes.”

“Show me the recipes that have beef together with the recipes that have garlic.”
As with other “pure” set operations, one of the limitations is that the values must
match in all the columns in each result set. This works well if you’re unioning two or
more sets from the same table—for example, customers who ordered bicycles and
customers who ordered helmets. It also works well when you’re performing a union
on sets from tables that have like columns—for example, customer names and
addresses and employee names and addresses. We’ll explore the uses of the SQL
UNION operator in detail in Chapter 10, “UNIONs.”
In many cases where you would otherwise union rows from the same table, you’ll
find that using DISTINCT (to eliminate the duplicate rows) with complex criteria on
joined tables will serve as well. We’ll show you all about solving problems this way
using JOINs in Chapter 8, “INNER JOINs.”

SQL Set Operations
Now that you have a basic understanding of set operations, let’s look briefly at how

they’re implemented in SQL.

Classic Set Operations versus SQL
As noted earlier, not many commercial database systems yet support set intersection
(INTERSECT) or set difference (EXCEPT) directly. The current SQL Standard,
however, clearly defines how these operations should be implemented. We think that
these set operations are important enough to at least warrant an overview of the
syntax.
As promised, we’ll show you alternative ways to solve an intersection or difference
problem in later chapters using JOINs. Because most database systems do support
UNION, Chapter 10 is devoted to its use. The remainder of this chapter gives you an
overview of all three operations.

Finding Common Values: INTERSECT
Let’s say you’re trying to solve the following seemingly simple problem:

“Show me the orders that contain both a bike and a helmet.”

Translation
Select the distinct order numbers from the order details table where
the product number is in the list of bike and helmet product numbers

Clean Up
Select the distinct order numbers from the order details table where
the product number is in the list of bike and helmet product numbers

SQL

SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 10, 11, 25, 26)

 Note
Readers familiar with SQL might ask why we didn’t JOIN Order_Details to
Products and look for bike or helmet product names. The simple answer is that
we haven’t introduced the concept of a JOIN yet, so we built this example on
a single table using IN and a list of known bike and helmet product numbers.

That seems to do the trick at first, but the answer includes orders that contain either a
bike or a helmet, and you really want to find ones that contain both a bike and a
helmet! If you visualize orders with bicycles and orders with helmets as two distinct

sets, it’s easier to understand the problem. Figure 7–6 shows one possible
relationship between the two sets of orders using a set diagram.

Figure 7–6 One possible relationship between two sets of orders

Actually, there’s no way to predict in advance what the relationship between two sets
of data might be. In Figure 7–6, some orders have a bicycle in the list of products
ordered, but no helmet. Some have a helmet, but no bicycle. The overlapping area, or
intersection, of the two sets is where you’ll find orders that have both a bicycle and a
helmet. Figure 7–7 shows another case where all orders that contain a helmet also
contain a bicycle, but some orders that contain a bicycle do not contain a helmet.

Figure 7–7 All orders for a helmet also contain an order for a bicycle.

Seeing “both” in your request suggests you’re probably going to have to break the
solution into separate sets of data and then link the two sets in some way. (Your
request also needs to be broken into two parts.)

“Show me the orders that contain a bike.”

Translation
Select the distinct order numbers from the order details table where
the product number is in the list of bike product numbers

Clean Up
Select the distinct order numbers from the order details table where
the product number is in the list of bike product numbers

SQL

SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation
Select the distinct order numbers from the order details table where
the product number is in the list of helmet product numbers

Clean Up
Select the distinct order numbers from the order details table where
the product number is in the list of helmet product numbers

SQL

SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—an intersection
of the two sets. Figure 7–8 shows the SQL syntax diagram that handles this problem.
(Note that you can use INTERSECT more than once to combine multiple SELECT
statements.)

Figure 7–8 Linking two SELECT statements with INTERSECT

You can now take the two parts of your request and link them with an INTERSECT
operator to get the correct answer:

SQL

SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)
INTERSECT
SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

The sad news is that not many commercial implementations of SQL yet support the
INTERSECT operator. But all is not lost! Remember that the primary key of a table
uniquely identifies each row. (You don’t have to match on all the fields in a row—
just the primary key—to find unique rows that intersect.) We’ll show you an
alternative method (JOIN) in Chapter 8 that can solve this type of problem in another
way. The good news is that virtually all commercial implementations of SQL do
support JOIN.

Finding Missing Values: EXCEPT (DIFFERENCE)
Okay, let’s go back to the bicycles and helmets problem again. Let’s say you’re
trying to solve this seemingly simple request as follows:

“Show me the orders that contain a bike but not a helmet.”

Translation
Select the distinct order numbers from the order details table where
the product number is in the list of bike product numbers and
product number is not in the list of helmet product numbers

Clean Up
Select the distinct order numbers from the order details table where
the product number is in the list of bike product numbers and
product number is not in the list of helmet product numbers

SQL

SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)
 AND ProductNumber NOT IN (10, 25, 26)

Unfortunately, the answer shows you orders that contain only a bike! The problem is
that the first IN clause finds detail rows containing a bicycle, but the second IN
clause simply eliminates helmet rows. If you visualize orders with bicycles and
orders with helmets as two distinct sets, you’ll find this easier to understand. Figure
7–9 shows one possible relationship between the two sets of orders.

Figure 7–9 Orders for a bicycle that do not also contain a helmet
Seeing “except” or “but not” in your request suggests you’re probably going to have
to break the solution into separate sets of data and then link the two sets in some
way. (Your request also needs to be broken into two parts.)

“Show me the orders that contain a bike.”

Translation
Select the distinct order numbers from the order details table where
the product number is in the list of bike product numbers

Clean Up
Select the distinct order numbers from the order details table where
the product number is in the list of bike product numbers

SQL

SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation
Select the distinct order numbers from the order details table where
the product number is in the list of helmet product numbers

Clean Up
Select the distinct order numbers from the order details table where
the product number is in the list of helmet product numbers

SQL

SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—a difference of
the two sets. SQL uses the EXCEPT keyword to denote a difference operation.
Figure 7–10 shows you the SQL syntax diagram that handles this problem.

Figure 7–10 Linking two SELECT statements with EXCEPT

You can now take the two parts of your request and link them with an EXCEPT
operator to get the correct answer:

SQL

SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)
EXCEPT
SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

Remember from our earlier discussion about the difference operation that the
sequence of the sets matters. In this case, you’re asking for bikes “except” helmets.
If you want to find out the opposite case—orders for helmets that do not include
bikes—you can turn it around as follows:

SQL

SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)
EXCEPT
SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

The sad news is that not many commercial implementations of SQL yet support the
EXCEPT operator. Hang on to your helmet! Remember that the primary key of a
table uniquely identifies each row. (You don’t have to match on all the fields in a
row—just the primary key—to find unique rows that are different.) We’ll show you

an alternative method (OUTER JOIN) in Chapter 9 that can solve this type of
problem in another way. The good news is that nearly all commercial
implementations of SQL do support OUTER JOIN.

Combining Sets: UNION
One more problem about bicycles and helmets, then we’ll pedal on to the next
chapter. Let’s say you’re trying to solve this request, which looks simple enough on
the surface:

“Show me the orders that contain either a bike or a helmet.”

Translation
Select the distinct order numbers from the order details table where
the product number is in the list of bike and helmet product numbers

Clean Up
Select the distinct order numbers from the order details table where
the product number is in the list of bike and helmet product numbers

SQL

SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 10, 11, 25, 26)

Actually, that works just fine! So why use a UNION to solve this problem? The truth
is, you probably would not. However, if we make the problem more complicated, a
UNION would be useful:

“List the customers who ordered a bicycle together with the vendors who
provide bicycles.”

Unfortunately, answering this request involves creating a couple of queries using
JOIN operations, then using UNION to get the final result. Because we haven’t
shown you how to do a JOIN yet, we’ll save solving this problem for Chapter 10.
Gives you something to look forward to, doesn’t it?
Let’s get back to the “bicycles or helmets” problem and solve it with a UNION. If
you visualize orders with bicycles and orders with helmets as two distinct sets, then
you’ll find it easier to understand the problem. Figure 7–11 shows you one possible
relationship between the two sets of orders.

Figure 7–11 Orders for bicycles or helmets
Seeing “either,” “or,” or “together” in your request suggests that you’ll need to break
the solution into separate sets of data and then link the two sets with a UNION. This
particular request can be broken into two parts:

“Show me the orders that contain a bike.”

Translation
Select the distinct order numbers from the order details table where
the product number is in the list of bike product numbers

Clean Up
Select the distinct order numbers from the order details table where
the product number is in the list of bike product numbers

SQL

SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)

“Show me the orders that contain a helmet.”

Translation
Select the distinct order numbers from the order details table where
the product number is in the list of helmet product numbers

Clean Up
Select the distinct order numbers from the order details table where
the product number is in the list of helmet product numbers

SQL

SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

Now you’re ready to get the final solution by using—you guessed it—a union of the
two sets. Figure 7–12 shows the SQL syntax diagram that handles this problem.

Figure 7–12 Linking two SELECT statements with UNION

You can now take the two parts of your request and link them with a UNION
operator to get the correct answer:

SQL
SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (1, 2, 6, 11)
UNION
SELECT DISTINCT OrderNumber
FROM Order_Details
WHERE ProductNumber IN (10, 25, 26)

The good news is that nearly all commercial implementations of SQL support the
UNION operator. As is perhaps obvious from the examples, a UNION might be
doing it the hard way when you want to get an “either-or” result from a single table.
UNION is most useful for compiling a list from several similarly structured but
different tables. We’ll explore UNION in much more detail in Chapter 10.

Summary
We began this chapter by discussing the concept of a set. Next, we discussed each of
the major set operations implemented in SQL in detail—intersection, difference, and
union. We showed how to use set diagrams to visualize the problem you’re trying to
solve. Finally, we introduced you to the basic SQL syntax and keywords
(INTERSECT, EXCEPT, and UNION) for all three operations just to whet your
appetite.
At this point you’re probably saying, “Wait a minute, why did you show me three
kinds of set operations—two of which I probably can’t use?” Remember the title of

the chapter: “Thinking in Sets.” If you’re going to be at all successful solving
complex problems, you’ll need to break your problem into result sets of information
that you then link back together.
So, if your problem involves “it must be this and it must be that,” you might need to
solve the “this” and then the “that” and then link them to get your final solution. The
SQL Standard defines a handy INTERSECT operation—but an INNER JOIN might
work just as well. Read on in Chapter 8.
Likewise, if your problem involves “it must be this but it must not be that,” you
might need to solve the “this” and then the “that” and then subtract the “that” from
the “this” to get your answer. We showed you the SQL Standard EXCEPT operation,
but an OUTER JOIN might also do the trick. Get the details in Chapters 9 and 18.
Finally, we showed you how to add sets of information using a UNION. As
promised, we’ll really get into UNION in Chapter 10.

8. INNER JOINs

“Do not quench your inspiration and your imagination;
do not become the slave of your model.”

—Vincent van Gogh

Topics Covered in This Chapter
What Is a JOIN?
The INNER JOIN
Uses for INNER JOINs
Sample Statements
Summary
Problems for You to Solve

Up to this point, we have primarily focused on solving problems using single tables.
You now know how to get simple answers from one table. You also know how to get
slightly more complex answers by using expressions or by sorting the result set. In
other words, you now can draw the perfect eyes, chin, mouth, or nose. In this
chapter, we’ll show you how to link or join multiple parts to form a portrait.

What Is a JOIN?
In Chapter 2, “Ensuring Your Database Structure Is Sound,” we emphasized the
importance of separating the data in your tables into individual subjects. Most
problems you need to solve in real life, however, require that you link data from
multiple tables—customers and their orders, customers and the entertainers they
booked, bowlers and their scores, students and the classes they took, or recipes and
the ingredients you need. To solve these more complex problems, you must link, or
join, multiple tables to find your answer. You use the JOIN keyword to do so.
The previous chapter showed how useful it is to intersect two sets of data to solve
problems. As you recall, however, an INTERSECT involves matching all the
columns in both result sets to get the answer. A JOIN is also an intersection, but it’s
different because you ask your database system to perform a JOIN only on the
columns you specify. Thus, a JOIN lets you intersect two very dissimilar tables on
matching column values. For example, you can use a JOIN to link customers to their
orders by matching the CustomerID in the Customers table to the CustomerID in the
Orders table.

As you’ll see later, you specify a JOIN as part of the FROM clause in an SQL
statement. A JOIN defines a “logical table” that is the result of linking two tables or
result sets. By placing the JOIN in a FROM clause, you define a linking of tables
from which the query extracts the final result set. In other words, the JOIN replaces
the single table name you learned to use in the FROM clause in earlier chapters. As
you’ll learn later in this chapter, you can also specify multiple JOIN operations to
create a complex result set on more than two tables.

The INNER JOIN
The SQL Standard defines several ways to perform a JOIN, the most common of
which is the INNER JOIN. Imagine for a moment that you’re linking students and
the classes for which they registered. You might have some students who have been
accepted to attend the school but have not yet registered for any classes, and you
might also have some classes that are on the schedule but do not yet have any
students registered.
An INNER JOIN between the Students table and the Classes table returns rows in
the Students table linked with the related rows in the Classes table (via the
Student_Schedules table)—but it returns neither students who have not yet registered
for any classes nor any classes for which no student is registered. An INNER JOIN
returns only those rows where the linking values match in both of the tables or in
result sets.

What’s “Legal” to JOIN?
Most of the time, you specify the primary key from one table and the related foreign
key from the second table as the link that JOIN uses. If you remember from Chapter
2, a foreign key must be the same data type as its related primary key. However, it’s
also “legal” to JOIN two tables or result sets on any columns that have what the SQL
Standard calls “JOIN eligible” data types.
In general, you can join a character column to another character column or
expression, any type of number column (for example, an integer) to any other type of
number column (perhaps a floating-point value), and any date column to another
date column. This allows you, for example, to JOIN rows from the Customers table
to rows from the Employees table on the city or ZIP Code columns (perhaps to find
out which Customers and Employees live in the same city or postal region).

 Note
Just because you can define a JOIN on any JOIN eligible columns in two
tables doesn’t mean you should. The linking columns must have the same data

meaning for the JOIN to make sense. For example, it doesn’t make sense to
JOIN customer name with employee address even though both columns are
character data type. You won’t get any rows in the result set unless someone
has put a name in the employee address column by mistake. Likewise, it
doesn’t make sense to JOIN StudentID with ClassID even though both are
numbers. You might get some rows in the result set, but they won’t make any
sense.
Even when it makes sense to JOIN linking columns, you might end up
constructing a request that takes a long time to solve. For example, if you ask
for a JOIN on columns for which your database administrator has not defined
an index, your database system might have to do a lot of extra work. Also, if
you ask for a JOIN on expressions—for example, a concatenation of first
name and last name from two tables—your database system must not only
form the result column from your expression for all rows but also might have
to perform multiple scans of all the data in both tables to return the correct
result.

Column References
Before we jump into the syntax for a JOIN, there’s a key bit of information that we
haven’t covered yet. Because you’ve been creating queries on a single table, you
haven’t had to worry about qualifying column names. But when you start to build
queries that include multiple tables (as you will when you use a JOIN), you’ll often
include two or more tables that each have columns with the same name. If you
remember from Chapter 2, we recommended that you create a foreign key in a
related table by copying the primary key—including its name—from one table into
another.
So, how do you make it crystal clear to your database system which copy of a field
you are talking about in your query syntax? The simple answer is that you provide a
column reference that includes the table name. Figure 8–1 shows the diagram for a
column reference.

Figure 8–1 The syntax diagram of a column reference

Although you can use only the column name by itself in any clause in a statement
that you write in SQL, you can also explicitly qualify a column name with the name
of its parent table. If the column name isn’t unique in all the tables you include in
your FROM clause, then you must qualify the column name with the name of its
parent table. Here’s how you would write a simple SELECT statement on the
Employees table to incorporate qualified column names:

SQL

SELECT Employees.FirstName, Employees.LastName,
 Employees.PhoneNumber
FROM Employees

Now that we’ve covered that little tidbit, you can move on to studying the syntax of
a JOIN operation.

Syntax
You can think of what you’ve studied so far as taking a nice ride down a country
lane or a quick jaunt across town to pick up some groceries. Now let’s strap on our
seat belts and venture out onto the highway—let’s examine the INNER JOIN syntax.

Using Tables
We’ll start with something simple—an INNER JOIN on two tables. Figure 8–2
shows the syntax for creating the query.

Figure 8–2 The syntax diagram of a query using an INNER JOIN on two tables

As you can see, the FROM clause is now just a little more complicated. (We left out
the WHERE and ORDER BY clauses for now to simplify things.) Instead of a single
table name, you specify two table names and link them with the JOIN keyword. Note
that the INNER keyword, which is optional, specifies the type of JOIN. As you’ll
learn in the next chapter, you can also specify an OUTER JOIN. If you don’t

explicitly state the type of JOIN you want, the default is INNER. We recommend
that you always explicitly state the type of JOIN you want so that the nature of your
request is clear.

 Note
Those who are following along with the complete syntax diagrams in
Appendix A, “SQL Standard Diagrams,” will find Table Reference JOIN
Table Reference described as part of the Joined Table defined term.
Table Reference can be either a table_name or a Joined Table, and the
FROM clause of a SELECT statement uses Table Reference. We “rolled
up” these complex definitions into a single diagram to make it easy to study a
simple two-table JOIN. We’ll be using this same simplification technique in
diagrams throughout the remainder of this chapter.

The critical part of an INNER JOIN is the ON or USING clause that follows the
second table and tells your database system how to perform the JOIN. To solve the
JOIN, your database system logically combines every row in the first table with
every row in the second table. (This combination of all rows from one table with all
rows from a second table is called a Cartesian product. We show you how to use a
Cartesian product to solve problems in Chapter 20, “Using Unlinked Data and
‘Driver’ Tables.”) It then applies the criteria in the ON or USING clauses to filter out
the actual rows to be returned.
You learned about using a search condition to form a WHERE clause in Chapter 6,
“Filtering Your Data.” You can use a search condition in the ON clause within a
JOIN to specify a logical test that must be true in order to return any two linked
rows. Keep in mind that it only makes sense to write a search condition that
compares at least one column from the first table with at least one column from the
second table. Although you can write a very complex search condition, you’ll
typically specify a simple equals comparison test on the primary key columns from
one table with the foreign key columns from the other table.
Let’s look at a simple example. In a well-designed database, you should break out
complex classification names into a second table and then link the names back to the
primary subject table via a simple key value. You do this to help prevent data entry
errors. Anyone using your database chooses from a list of classification names rather
than typing the name (and perhaps misspelling it) in each row. For example, in the
Recipes sample database, recipe classes appear in a table separate from recipes.
Figure 8–3 shows the relationship between the Recipe_Classes and Recipes tables.

Figure 8–3 Recipe class descriptions are in a table separate from the Recipes table
When you want to retrieve information about recipes and the related
RecipeClassDescription from the database, you don’t want to see the RecipeClassID
code numbers from the Recipes table. Let’s see how to approach this problem with a
JOIN.

 Note
Throughout this chapter, we use the “Request/Translation/Clean Up/SQL”
technique introduced in Chapter 4, “Creating a Simple Query.”

“Show me the recipe title, preparation, and recipe class description of all
recipes in my database.”

Translation
Select recipe title, preparation, and recipe class description from the
recipe classes table joined with the recipes table on recipe class ID
in the recipe classes table matching recipe class ID in the recipes
table

Clean Up
Select recipe title, preparation, and recipe class description from the
recipe classes table inner joined with the recipes table on
recipe_classes.recipe class ID in the recipe classes table matching =
recipes.recipe class ID in the recipes table

SQL

SELECT RecipeTitle, Preparation,
 RecipeClassDescription
FROM Recipe_Classes
INNER JOIN Recipes
ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID

 Note
You might have noticed that we’ve started to format the Clean Up step into

phrases that more closely mirror the final set of clauses we need in SQL. As
you begin to build more complex queries, we recommend this technique to
help you move from the Clean Up step to the final SQL.

When beginning to use multiple tables in your FROM clause, you should always
fully qualify each column name with the table name, wherever you use it, to make
absolutely clear what column from what table you want. (Now you know why we
took a minute to explain a column reference!) Note that we had to qualify the name
of RecipeClassID in the ON clause because there are two columns named
RecipeClassID—one in the Recipes table and one in the Recipe_Classes table. We
didn’t have to qualify RecipeTitle, Preparation, or RecipeClassDescription in the
SELECT clause because each of these column names appears only once in all the
tables. If we want to include RecipeClassID in the output, we must tell the database
system which RecipeClassID we want—the one from Recipe_Classes or the one
from Recipes. To write the query with all the names fully qualified, we should say
this:

SQL

SELECT Recipes.RecipeTitle,
 Recipes.Preparation,
 Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes
INNER JOIN Recipes
ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID

 Note
Although most commercial implementations of SQL support the JOIN
keyword, some do not. If your database does not support JOIN, you can still
solve the previous problem by listing all the tables you need in the FROM
clause and then moving your search condition from the ON clause to the
WHERE clause. In databases that do not support JOIN, you solve our example
problem like this:

Click here to view code image

SELECT Recipes.RecipeTitle, Recipes.Preparation,
 Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID

For a beginner, this syntax is probably much more intuitive for simple queries.
However, the SQL Standard syntax allows you to fully define the source for
the final result set entirely within the FROM clause. Think of the FROM

clause as fully defining a linked result set from which the database system
obtains your answer. In the SQL Standard, you use the WHERE clause only to
filter rows out of the result set defined by the FROM clause.

Not too difficult, is it? But what happened to the USING clause that we showed you
in Figure 8–2? If the matching columns in the two tables have the same name and all
you want to do is join on equal values, use the USING clause and list the column
names. Let’s do the previous problem again with USING.

“Show me the recipe title, preparation, and recipe class description of all
recipes in my database.”

Translation
Select recipe title, preparation, and recipe class description from the
recipe classes table joined with the recipes table using recipe class
ID

Clean Up
Select recipe title, preparation, and recipe class description from the
recipe classes table inner joined with the recipes table using recipe
class ID

SQL

SELECT Recipes.RecipeTitle, Recipes.Preparation,
 Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes
INNER JOIN Recipes
USING (RecipeClassID)

Some database systems do not yet support USING. If you find that you can’t use
USING with your database, you can always get the same result with an ON clause
and an equals comparison.

 Note
The SQL Standard also defines a NATURAL JOIN, which links the two
specified tables by matching all the columns with the same name. If the only
common columns are the linking columns and your database supports
NATURAL JOIN, you can solve our example problem like this:

Click here to view code image

SELECT Recipes.RecipeTitle, Recipes.Preparation,
 Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes
NATURAL INNER JOIN Recipes

Do not specify an ON or USING clause when using the NATURAL keyword.
Keep in mind that the INNER keyword is optional. If you specify NATURAL
JOIN, an INNER join is assumed.

As mentioned earlier in this section, your database system logically creates the
combination of every row in the first table with every row in the second table and
then applies the criteria you specify in ON or USING. This sounds like a lot of extra
work for your database to first build all the combinations and then filter out the
potentially few matching rows.
Rest assured that all modern relational database systems evaluate the entire JOIN
clause before starting to fetch rows. In the example we have been using so far, many
database systems begin to solve this request by first fetching a row from
Recipe_Classes. The database then uses an internal link—an index (if one has been
defined by the designer of the tables)—to quickly find any matching rows in the
Recipes table for the first row in the Recipe_Classes table before moving on to the
next row in Recipe_Classes. In other words, your database uses a smart or optimized
plan to fetch only the rows that match. This won’t seem important when your
database tables contain only a few hundred rows, but it makes a big difference when
your database has to deal with hundreds of thousands of rows!

Assigning Correlation (Alias) Names to Tables
The SQL Standard defines a way to assign an alias name—known as a correlation
name in the Standard—to any table you list in your FROM clause. This feature can
be very handy for building complex queries using tables that have long, descriptive
names. You can assign a short correlation name to a table to make it easier to
explicitly reference columns in a table with a long name.
Figure 8–4 shows how to assign a correlation name to a table in a FROM clause.

Figure 8–4 Assigning a correlation (alias) name to a table in a FROM clause
To assign a correlation name to a table, follow the table name with the optional
keyword AS and then the correlation name you want to assign. (As with all optional
keywords, we recommend including AS in order to make the query easier to read
and understand.) After you have assigned a correlation name to a table, you use that
name in place of the original table name in all other clauses, including the SELECT
clause, the search conditions in the ON and WHERE clauses, and the ORDER BY
clause. This can be confusing because you tend to write the SELECT clause before
you write the FROM clause. If you plan to give a table an alias in the FROM clause,
you must use that alias when you qualify column names in the SELECT clause.
Let’s reformulate the sample query we’ve been using with correlation names just to
see how it looks. The query using R as the correlation name for the Recipes table and
RC as the correlation name for the Recipe_Classes table is shown here:

SQL

SELECT R.RecipeTitle, R.Preparation,
 RC.RecipeClassDescription
FROM Recipe_Classes AS RC
INNER JOIN Recipes AS R
ON RC.RecipeClassID = R.RecipeClassID

Suppose you want to add a filter to see only recipes of class Main course or Dessert.
(See Chapter 6 for details about defining filters.) After you assign a correlation
name, you must continue to use the new name in all references to the table. Here’s
the SQL:

SQL

SELECT R.RecipeTitle, R.Preparation,
 RC.RecipeClassDescription
FROM Recipe_Classes AS RC
INNER JOIN Recipes AS R
ON RC.RecipeClassID = R.RecipeClassID
WHERE RC.RecipeClassDescription = 'Main course'
OR RC.RecipeClassDescription = 'Dessert'

You don’t have to assign a correlation name to all tables. In the previous example,
we could have assigned a correlation name only to Recipes or only to
Recipe_Classes.
In some cases, you must assign a correlation name to a table in a complex JOIN.
Let’s hop over to the Bowling League database to examine a case where this is true.
Figure 8–5 shows you the relationship between the Teams and Bowlers tables.

Figure 8–5 The relationships between Teams and Bowlers

As you can see, TeamID is a foreign key in the Bowlers table that lets you find the
information for all bowlers on a team. One of the bowlers on a team is the team
captain, so there’s also a link from BowlerID in the Bowlers table to CaptainID in
the Teams table.
If you want to list the team name, the name of the team captain, and the names of all
the bowlers in one request, you must include two copies of the Bowlers table in your
query—one to link to CaptainID to retrieve the name of the team captain and another
to link to TeamID to get a list of all the team members. In this case, you must assign
an alias name to one or both copies of the Bowlers table so that your database system
can differentiate between the copy that links in the captain’s name and the copy that
provides the list of all team members. Later in this chapter, we’ll show an example
that requires including multiple copies of one table and assigning alias names. You
can find this example using the Bowling League database in the “More Than Two
Tables” subsection of “Sample Statements.”

Embedding a SELECT Statement

Let’s make it more interesting. In most implementations of SQL, you can substitute
an entire SELECT statement for any table name in your FROM clause. In the SQL
Standard, an embedded SELECT statement like this is called a derived table. If you
think about it, using a SELECT statement is simply a way to derive a subset of data
from one or more tables. Of course, you must assign a correlation name so that the
result of evaluating your embedded query has a name. Figure 8–6 shows how to
assemble a JOIN clause using embedded SELECT statements.

Figure 8–6 Replacing table names with SELECT statements in a JOIN

Notice in the figure that a SELECT statement can include all query clauses except an
ORDER BY clause. Also, you can mix and match SELECT statements with table
names on either side of the INNER JOIN keywords.
Let’s look at the Recipes and Recipe_Classes tables again. We’ll assume that your
request still needs only main courses and desserts. Here’s the query again with the
Recipe_Classes table filtered in a SELECT statement that’s part of the INNER JOIN:

SQL

SELECT R.RecipeTitle, R.Preparation,
 RCFiltered.ClassName
FROM (SELECT RecipeClassID,
 RecipeClassDescription AS ClassName
 FROM Recipe_Classes AS RC
 WHERE RC.ClassName = 'Main course' OR
 RC.ClassName = 'Dessert') AS RCFiltered
INNER JOIN Recipes AS R
ON RCFiltered.RecipeClassID = R.RecipeClassID

 Note
Some database systems do not support embedding a SELECT statement inside
a FROM clause. If your system does not support this feature, you can often
save the inner SELECT statement as a view, and use the view name in place
of the select statement.
We built one of the sets of sample databases that you’ll find on the website for
the book using the MySQL database system, which does not support
embedded SELECT statements in Views. (You can build and execute a query
in the Query Window containing embedded SELECT statements, but you
cannot save it as a View.) When you look at those MySQL databases on the
website for the book, you’ll find that queries requiring an embedded SELECT
statement are solved by saving a view and using the view name in the final
solution query.

Watch out! First, when you decide to substitute a SELECT statement for a table
name, be sure to include not only the columns you want to appear in the final result
but also any linking columns needed to perform the JOIN. That’s why you see both
RecipeClassID and RecipeClassDescription in the embedded statement. Just for fun,
we gave RecipeClassDescription an alias name of Class-Name in the embedded
statement. As a result, the SELECT clause asks for ClassName rather than
RecipeClassDescription. Note that the ON clause now references the correlation
name of the embedded SELECT statement—RCFiltered—rather than the original
name of the table or the correlation name we assigned the table inside the embedded
SELECT statement.
If your database system has a very smart optimizer, defining your request this way
should be just as fast as the previous example where the filter on
RecipeClassDescription was applied via a WHERE clause after the JOIN. You
would like to think that your database system, in order to answer your request most
efficiently, would first filter the rows from Recipe_Classes before attempting to find
any matching rows in Recipes. It could be much slower to first join all rows from
Recipe_Classes with matching rows from Recipes and then apply the filter. If you
find it’s taking longer to solve this request than it should, moving the WHERE
clause into a SELECT statement within the JOIN might force your database system
to do the filtering on Recipe_Classes first.

Embedding JOINs within JOINs
Although you can solve many problems by linking only two tables, you’ll often need
to link three, four, or more tables to get all the data you require. For example, you
might want to fetch all the relevant information about recipes—the type of recipe,

the recipe name, and all the ingredients for the recipe—in one query. Figure 8–7
shows the tables required to answer this request.

Figure 8–7 The tables needed from the Recipes sample database to fetch all the
information about recipes

Looks like you need to get data from five different tables! Never fear—you can do
this by constructing a more complex FROM clause, embedding JOIN clauses within
JOIN clauses. Here’s the trick: Everywhere you can specify a table name, you can
also specify an entire JOIN clause surrounded with parentheses. Figure 8–8 is a
simplified version of Figure 8–4 (on page 258). (We’ve left off correlation name
clauses and chosen the ON clause to form a simple JOIN of two tables.)

Figure 8–8 A simple INNER JOIN of two tables

To add a third table to the mix, just place an open parenthesis before the first table
name, add a close parenthesis after the search condition, and insert INNER JOIN, a
table name, the ON keyword, and another search condition. Figure 8–9 shows how to
do this.

Figure 8–9 A simple INNER JOIN of three tables
If you think about it, the INNER JOIN of two tables inside the parentheses forms a
logical table, or inner result set. This result set now takes the place of the first simple
table name in Figure 8–8. You can continue this process of enclosing an entire JOIN
clause in parentheses and then adding another JOIN keyword, table name, ON
keyword, and search condition until you have all the result sets you need. Let’s make
a request that needs data from all the tables shown in Figure 8–7 and see how it turns
out:

“I need the recipe type, recipe name, preparation instructions, ingredient
names, ingredient step numbers, ingredient quantities, and ingredient
measurements from my recipes database, sorted in step number sequence.”

Translation
Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number, amount, and
measurement description from the recipe classes table joined with
the recipes table on recipe class ID in the recipe classes table
matching recipe class ID in the recipes table, then joined with the
recipe ingredients table on recipe ID in the recipes table matching
recipe ID in the recipe ingredients table, then joined with the
ingredients table on ingredient ID in the ingredients table matching
ingredient ID in the recipe ingredients table, and then finally joined
with the measurements table on measurement amount ID in the

measurements table matching measurement amount ID in the recipe
ingredients table, order by recipe title and recipe sequence number

Clean up
Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number, amount, and
measurement description from the recipe classes table inner joined
with the recipes table on recipe_classes.recipe class ID in the recipe
classes table matching = recipes.recipe class ID in the recipes table,
then inner joined with the recipe ingredients table on recipes.recipe
ID in the recipes table matching = recipe_ingredients.recipe ID in
the recipe ingredients table, then inner joined with the ingredients
table on ingredients.ingredient ID in the ingredients table matching
= ingredients.ingredient ID in the recipe ingredients table, and then
finally inner joined with the measurements table on
measurements.measurement amount ID in the measurements table
matching = recipe ingredients.measurement amount ID in the recipe
ingredients table, order by recipe title and recipe sequence number

SQL

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle, Recipes.Preparation,
 Ingredients.IngredientName,
 Recipe_Ingredients.RecipeSeqNo,
 Recipe_Ingredients.Amount,
 Measurements.MeasurementDescription
FROM (((Recipe_Classes
INNER JOIN Recipes
ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID)
INNER JOIN Recipe_Ingredients
ON Recipes.RecipeID =
 Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID)
INNER JOIN Measurements
ON Measurements.MeasureAmountID =
 Recipe_Ingredients.MeasureAmountID
ORDER BY RecipeTitle, RecipeSeqNo

Wow! Anyone care to jump in and add a filter for recipe class Main courses? If you
said you need to add the WHERE clause just before the ORDER BY clause, you
guessed the correct way to do it.
In truth, you can substitute an entire JOIN of two tables anywhere you could
otherwise place only a table name. In Figure 8–9, we implied that you must first join
the first table with the second table and then join that result with the third table. You
could also join the second and third tables first (as long as the third table is, in fact,

related to the second table and not the first one) and then perform the final join with
the first table. Figure 8–10 shows this alternate method.

Figure 8–10 Joining more than two tables in an alternate sequence

Let’s look at the problem from a painting perspective. If you’re trying to get pastel
green, the mixing sequence doesn’t matter that much. You can mix white with blue
to get pastel blue and then mix in some yellow, or you can mix blue with yellow to
get green and then add some white to get the final color.
To solve the request we just showed you using five tables, we could also have stated
the SQL as follows:

SQL

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle, Recipes.Preparation,
 Ingredients.IngredientName,
 Recipe_Ingredients.RecipeSeqNo,
 Recipe_Ingredients.Amount,
 Measurements.MeasurementDescription
FROM Recipe_Classes
INNER JOIN (((Recipes
INNER JOIN Recipe_Ingredients
ON Recipes.RecipeID =
 Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID)
INNER JOIN Measurements
ON Measurements.MeasureAmountID =
 Recipe_Ingredients.MeasureAmountID)
ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID
ORDER BY RecipeTitle, RecipeSeqNo

You need to be aware of this feature because you might run into this sort of
construction either in queries others have written or in the SQL built for you by
Query By Example software. Also, the optimizers in some database systems are
sensitive to the sequence of the JOIN definitions. If you find your query using many
JOINs is taking a long time to execute on a large database, you might be able to get
it to run faster by changing the sequence of JOINs in your SQL statement. For
simplicity, we’ll build most of the examples later in this chapter using a direct
construction of JOINs by following a simple path from left to right and top to
bottom, using the diagrams that you can find in Appendix B, “Schema for the
Sample Databases.”

Check Those Relationships!
It should be obvious at this point that knowing the relationships between your tables
is of utmost importance. When you find that the columns of data you need reside in
different tables, you might need to construct a FROM clause as complicated as the
one we just showed you to be able to gather all the pieces in a way that logically
makes sense. If you don’t know the relationships between your tables and the linking
columns that form the relationships, you’ll paint yourself into a corner!
In many cases, you might have to follow a path through several relationships to get
the data you want. For example, let’s simplify the previous request and just ask for
recipe name and ingredient names:

“Show me the names of all my recipes and the names of all the ingredients for
each of those recipes.”

Translation
Select the recipe title and the ingredient name from the recipes table
joined with the recipe ingredients table on recipe ID in the recipes
table matching recipe ID in the recipe ingredients table, and then
joined with the ingredients table on ingredient ID in the ingredients
table matching ingredient ID in the recipe ingredients table

Clean Up
Select the recipe title and the ingredient name from the recipes table
inner joined with the recipe ingredients table on recipes.recipe ID in
the recipes table matching = recipe_ingredients.recipe ID in the
recipe ingredients table, and then inner joined with the ingredients
table on ingredients.ingredient ID in the ingredients table matching
= recipe_ingredients.ingredient ID in the recipe ingredients table

SQL

SELECT Recipes.RecipeTitle,
 Ingredients.IngredientName
FROM (RecipesINNER
JOIN Recipe_Ingredients
ON Recipes.RecipeID =
 Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID

Did you notice that even though you don’t need any columns from the
Recipe_Ingredients table, you still must include it in the query? You must do so
because the only way that Recipes and Ingredients are related is through the
Recipe_Ingredients table.

Uses for INNER JOINs
Now that you have a basic understanding of the mechanics for constructing an
INNER JOIN, let’s look at some of the types of problems you can solve with it.

Find Related Rows
As you know, the most common use for an INNER JOIN is to link tables so that you
can fetch columns from different tables that are related. Following is a sample list of
the kinds of requests you can solve from the sample databases using an INNER
JOIN:

“Show me the vendors and the products they supply to us.”
“List employees and the customers for whom they booked an order.”
“Display agents and the engagement dates they booked.”
“List customers and the entertainers they booked.”
“Find the entertainers who played engagements for customers Berg or
Hallmark.”

“Display buildings and all the classrooms in each building.”
“List the faculty staff and the subject each teaches.”
“Display bowling teams and the name of each team captain.”
“List the bowling teams and all the team members.”
“Show me the recipes that have beef or garlic.”
“Display all the ingredients for recipes that contain carrots.”

We’ll show how to construct queries to answer requests like these (and more) in the
Sample Statements section of this chapter.

Find Matching Values

A more esoteric use of an INNER JOIN is finding rows in two or more tables or
result sets that match on one or more values that are not the related key values.
Remember that in Chapter 7, Thinking in Sets, we promised to show you how to
perform the equivalent of an INTERSECT using an INNER JOIN. Following is a
small sample of just some of the requests you can solve using this technique:

“Show me customers and employees who have the same name.
“Show me customers and employees who live in the same city.”
“Find all the customers who ordered a bicycle and also ordered a helmet.”
“Find the agents and entertainers who live in the same postal code.”
“List the entertainers who played engagements for customers Bonnicksen and
Rosales.”

“Show me the students and their teachers who have the same first name.”
“Show me the students who have an average score of 85 or better in Art and
who also have an average score of 85 or better in Computer Science.”

“Find the bowlers who live in the same ZIP Code.”
“Find the bowlers who had a raw score of 155 or better at both Thunderbird
Lanes and Bolero Lanes.”

“Find the ingredients that use the same default measurement amount.”
“Show me the recipes that have beef and garlic.”

The next section shows how to solve several problems like these.

Sample Statements
You now know the mechanics of constructing queries using INNER JOIN and have
seen some of the types of requests you can answer with an INNER JOIN. Let’s take
a look at a fairly robust set of samples, all of which use INNER JOIN. These
examples come from each of the sample databases, and they illustrate how you can
use an INNER JOIN to fetch data from two tables, fetch data from more than two
tables, and solve a problem using matching values.
We’ve also included sample result sets that would be returned by these operations
and placed them immediately after the SQL syntax line. The name that appears
immediately above a result set is the name we gave each query in the sample data on
the companion website for the book, www.informit.com/title/9780321992475. We
stored each query in the appropriate sample database (as indicated within the
example) and prefixed the names of the queries relevant to this chapter with “CH08.”
You can follow the instructions in the Introduction of this book to load the samples
onto your computer and try them.

http://www.informit.com/title/9780321992475

 Note
Because many of these examples use complex JOINs, your database system
might choose a different way to solve these queries. For this reason, the first
few rows we show you might not exactly match the result you obtain, but the
total number of rows should be the same. To simplify the process, we have
combined the Translation and Clean Up steps for all the following examples.

Two Tables
We’ll start out with simple primary colors and show you sample requests that require
an INNER JOIN on only two tables.

Sales Orders Database

“Display all products and their categories.”

Translation/Clean Up
Select category description and product name from the categories
table inner joined with the products table on categories.category ID
in the categories table matching = products.category ID in the
products table

SQL

SELECT Categories.CategoryDescription,
 Products.ProductName
FROM Categories
INNER JOIN Products
 ON Categories.CategoryID = Products.CategoryID

CH08_Products_And_Categories (40 rows)

Entertainment Agency Database

“Show me entertainers, the start and end dates of their contracts, and the
contract price.”

Translation/Clean Up
Select entertainer stage name, start date, end date, and contract price
from the entertainers table inner joined with the engagements table
on entertainers.entertainer ID in the entertainers table matching =
engagements.entertainer ID in the engagements table

SQL

SELECT Entertainers.EntStageName,
 Engagements.StartDate, Engagements.EndDate,
 Engagements.ContractPrice
FROM Entertainers
INNER JOIN Engagements
 ON Entertainers.EntertainerID =
 Engagements.EntertainerID

CH08_Entertainers_And_Contracts (111 rows)

School Scheduling Database

“List the subjects taught on Wednesday.”

Translation/Clean Up
Select subject name from the subjects table inner joined with the
classes table on subjects.subject ID in the subjects table matching =
classes.subject ID in the classes table where Wednesday schedule is
= true

SQL

SELECT DISTINCT Subjects.SubjectName
FROM Subjects
INNER JOIN Classes
 ON Subjects.SubjectID
 = Classes.SubjectID
WHERE Classes.WednesdaySchedule = -1

 Note

Because several sections of the same class might be scheduled on the same
day of the week, we included the DISTINCT keyword to eliminate the
duplicates. Some databases do support a TRUE keyword, but we chose to use a
more universal “integer with all bits on” value: –1. If your database system
stores a true/false value as a single bit, you can also test for a true value of 1.
A false value is always the number zero (0).

CH08_Subjects_On_Wednesday (34 rows)

Bowling League Database

“Display bowling teams and the name of each team captain.”

Translation/Clean Up
Select team name and captain full name from the teams table inner
joined with the bowlers table on team captain ID equals = bowler ID

SQL

SELECT Teams.TeamName, (Bowlers.BowlerLastName
 || ', ' || Bowlers.BowlerFirstName) AS CaptainName
FROM Teams
INNER JOIN Bowlers
 ON Teams.CaptainID = Bowlers.BowlerID

CH08_Teams_And_Captains (10 rows)

Recipes Database

“Show me the recipes that have beef or garlic.”

Translation/Clean Up
Select unique distinct recipe title from the recipes table joined with
the recipe ingredients table on recipes.recipe ID in the recipes table
matching = recipe_ingredients.recipe ID in the recipe ingredients
table where ingredient ID is in the list of beef and garlic IDs (1, 9)

SQL

SELECT DISTINCT Recipes.RecipeTitle
FROM Recipes
INNER JOIN Recipe_Ingredients
 ON Recipes.RecipeID = Recipe_Ingredients.RecipeID
WHERE Recipe_Ingredients.IngredientID IN (1, 9)

 Note
Because some recipes might have both beef and garlic, we added the
DISTINCT keyword to eliminate potential duplicate rows.

CH08_Beef_Or_Garlic_Recipes (5 rows)

More Than Two Tables
Next, let’s add some spice by making requests that require a JOIN of more than two
tables.

Sales Orders Database

“Find all the customers who ever ordered a bicycle helmet.”

Translation/Clean Up
Select customer first name, customer last name from the customers
table inner joined with the orders table on customers.customer ID in
the customers table matching = orders.customer ID in the orders
table, then inner joined with the order details table on orders.order
number in the orders table matching = order_details.order number in
the order details table, then inner joined with the products table on
products.product number in the products table matching =
order_details.product number in the order details table where
product name contains LIKE ‘%Helmet%’

SQL

SELECT DISTINCT Customers.CustFirstName,
 Customers.CustLastName
FROM ((Customers
INNER JOIN Orders
 ON Customers.CustomerID = Orders.CustomerID)
INNER JOIN Order_Details
 ON Orders.OrderNumber =
 Order_Details.OrderNumber)
INNER JOIN Products
 ON Products.ProductNumber =
 Order_Details.ProductNumber
WHERE Products.ProductName LIKE '%Helmet%'

 Caution

If your database system is case sensitive when performing searches in
character fields, you must be careful to enter the search criteria using the
correct case for the letters. For example, in many database systems, ‘helmet’
is not the same as ‘Helmet’.

 Note
Because a customer might have ordered a helmet more than once, we included
the DISTINCT keyword to eliminate duplicate rows.

CH08_Customers_Who_Ordered_Helmets (25 rows)

Entertainment Agency Database

“Find the entertainers who played engagements for customers Berg or
Hallmark.”

Translation/Clean Up
Select unique distinct entertainer stage name from the entertainers
table inner joined with the engagements table on

entertainers.entertainer ID in the entertainers table matching =
engagements.entertainer ID in the engagements table, then inner
joined with the customers table on customers.customer ID in the
customers table matching = engagements.customer ID in the
engagements table where the customer last name is = ‘Berg’ or the
customer last name is = ‘Hallmark’

SQL

SELECT DISTINCT Entertainers.EntStageName
FROM (Entertainers
INNER JOIN Engagements
 ON Entertainers.EntertainerID =
 Engagements.EntertainerID)
INNER JOIN Customers
 ON Customers.CustomerID =
 Engagements.CustomerID
WHERE Customers.CustLastName = 'Berg'
 OR Customers.CustLastName = 'Hallmark'

CH08_Entertainers_For_Berg_OR_Hallmark (8 rows)

Bowling League Database

“List all the tournaments, the tournament matches, and the game results.”

Translation/Clean Up
Select tourney ID, tourney location, match ID, lanes, odd lane team,
even lane team, game number, game winner from the tournaments
table inner joined with the tourney matches table on
tournaments.tourney ID in the tournaments table matching =

tourney_matches.tourney ID in the tourney matches table, then inner
joined with the teams table aliased as odd team on oddteam.team ID
in the odd team table matches = tourney_matches.odd lane team ID
in the tourney matches table, then inner joined with the teams table
aliased as even team on eventeam.team ID in the even team table
matches = tourney_matches.even lane team ID in the tourney
matches table, then inner joined with the match games table on
match_games.match ID in the match games table matches =
tourney_matches.match ID in the tourney matches table, then inner
joined with the teams table aliased as winner on winner.team ID in
the winner table matches = match_games.winning team ID in the
match games table

SQL

SELECT Tournaments.TourneyID AS Tourney,
 Tournaments.TourneyLocation AS Location,
 Tourney_Matches.MatchID, Tourney_Matches.Lanes,
 OddTeam.TeamName AS OddLaneTeam,
 EvenTeam.TeamName AS EvenLaneTeam,
 Match_Games.GameNumber AS GameNo,
 Winner.TeamName AS Winner
FROM ((((Tournaments
 INNER JOIN Tourney_Matches
 ON Tournaments.TourneyID
 = Tourney_Matches.TourneyID)
 INNER JOIN Teams AS OddTeam
 ON OddTeam.TeamID
 = Tourney_Matches.OddLaneTeamID)
 INNER JOIN Teams AS EvenTeam
 ON EvenTeam.TeamID
 = Tourney_Matches.EvenLaneTeamID)
 INNER JOIN Match_Games
 ON Match_Games.MatchID
 = Tourney_Matches.MatchID)
 INNER JOIN Teams AS Winner
 ON Winner.TeamID
 = Match_Games.WinningTeamID

 Note
This is a really fun query because it requires three copies of one table (Teams)
to get the job done. We had to assign correlation names to at least two of the
tables to keep everything legal, but we went ahead and gave them all alias
names to reflect their specific roles in the query.

CH08_Tournament_Match_Game_Results (168 rows)

 Note
Although the records appear to be sorted by tournament and match, this is
simply the sequence in which the database system we used (in this case,
Microsoft Office Access) chose to return the records. If you want to ensure
that the records are sorted in a specific sequence, you must supply an ORDER
BY clause.

Recipes Database

“Show me the main course recipes and list all the ingredients.”

Translation/Clean Up
Select recipe title, ingredient name, measurement description, and
amount from the recipe classes table inner joined with the recipes
table on recipes.recipe class ID in the recipes table matches =
recipe_classes.recipe class ID in the recipe classes table, then inner
joined with the recipe ingredients table on recipes.recipe ID in the
recipes table matches = recipe_ingredients.recipe ID in the recipe
ingredients table, then inner joined with the ingredients table on
ingredients.ingredient ID in the ingredients table matches =
recipe_ingredients.ingredient ID in the recipe ingredients table, and
finally inner joined with the measurements table on
measurements.measure amount ID in the measurements table
matches = recipe_ingredients.measure amount ID in the recipe
ingredients table, where recipe class description is = ‘Main course’

SQL

SELECT Recipes.RecipeTitle,
 Ingredients.IngredientName,
 Measurements.MeasurementDescription,
 Recipe_Ingredients.Amount
FROM (((Recipe_Classes
INNER JOIN Recipes
ON Recipes.RecipeClassID =
 Recipe_Classes.RecipeClassID)
INNER JOIN Recipe_Ingredients
ON Recipes.RecipeID =
 Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID)
INNER JOIN Measurements
ON Measurements.MeasureAmountID =
 Recipe_Ingredients.MeasureAmountID
WHERE
Recipe_Classes.RecipeClassDescription =
 'Main course'

 Caution
You can find a MeasureAmountID in both the Ingredients and the
Recipe_Ingredients tables. If you define the final JOIN on MeasureAmountID
using the Ingredients table instead of the Recipe_Ingredients table, you’ll get
the default measurement for the ingredient rather than the one specified for the
ingredient in the recipe.

CH08_Main_Course_Ingredients (53 rows)

Looking for Matching Values
Finally, let’s add a third dimension to the picture. This last set of examples shows
requests that use a JOIN on common values from two or more result sets or tables.
(If your database supports the INTERSECT keyword, you can also solve many of
these problems by intersecting the result sets.)

Sales Orders Database
“Find all the customers who ordered a bicycle and also ordered a helmet.”
This request seems simple enough—perhaps too simple. Let’s ask it a different way
so that it’s clearer what we need the database to do.

“Find all the customers who ordered a bicycle, then find all the customers who
ordered a helmet, and finally list the common customers so that we know who
ordered both a bicycle and a helmet.”

Translation 1
Select customer first name and customer last name from those
common to the set of customers who ordered bicycles and the set of
customers who ordered helmets

Translation 2/Clean Up
Select customer first name and customer last name from (Select
unique distinct customer name, customer first name, customer last

name from the customers table inner joined with the orders table on
customers.customer ID in the customers table matches =
orders.customer ID in the orders table, then inner joined with the
order details table on orders.order number in the orders table
matches = order_details.order number in the order details table, then
inner joined with the products table on products.product number in
the products table matches = order_details.product number in the
order details table where product name contains LIKE ‘%Bike’) as
cust bikes inner joined with (Select unique distinct customer ID
from the customers table inner joined with the orders table on
customers.customer ID in the customers table matches =
orders.customer ID in the orders table, then inner joined with the
order details table on orders.order number in the orders table
matches = order_details.order number in the order details table, then
joined with the products table on products.product number in the
products table matches = order_details.product number in the order
details table where product name contains LIKE ‘%Helmet’) as cust
helmets on cust bikes.customer ID in the cust bikes table matches =
cust helmets.customer ID in the cust helmets table

SQL

SELECT CustBikes.CustFirstName,
 CustBikes.CustLastName
FROM
 (SELECT DISTINCT Customers.CustomerID,
 Customers.CustFirstName,
 Customers.CustLastName
 FROM ((Customers
 INNER JOIN Orders
 ON Customers.CustomerID
 = Orders.CustomerID)
 INNER JOIN Order_Details
 ON Orders.OrderNumber =
 Order_Details.OrderNumber)
 INNER JOIN Products
 ON Products.ProductNumber =
 Order_Details.ProductNumber
 WHERE Products.ProductName LIKE '%Bike')
 AS CustBikes
INNER JOIN
 (SELECT DISTINCT Customers.CustomerID
 FROM ((Customers
 INNER JOIN Orders
 ON Customers.CustomerID = Orders.CustomerID)
 INNER JOIN Order_Details
 ON Orders.OrderNumber =
 Order_Details.OrderNumber)
 INNER JOIN Products
 ON Products.ProductNumber =
 Order_Details.ProductNumber
 WHERE Products.ProductName LIKE '%Helmet')

 AS CustHelmets
ON CustBikes.CustomerID =
 CustHelmets.CustomerID

 Note
We simplified the second embedded SELECT statement to fetch only the
CustomerID because that’s the only column we need for the INNER JOIN of
the two sets to work. We could have actually eliminated the JOIN to the
Customers table and fetched the CustomerID from the Orders table.
Remember that you can think of a SELECT Statement embedded in a FROM
clause as a “logical table,” and we assigned a unique name to each statement
so that we could write the final ON clause.
You could also solve this problem as the INTERSECT of the two sets, but you
would need to include all the output columns in both of the result sets that you
intersect. Quite frankly, this might not be the best way to solve this problem.
We’ll show you how to solve this problem more efficiently in Chapter 11,
“Subqueries,” when we teach you how to use subqueries.

CH08_Customers_Both_Bikes_And_Helmets (21 rows)

Entertainment Agency Database

“List the entertainers who played engagements for both customers Berg and
Hallmark.”

As you saw earlier, solving for Berg or Hallmark is easy. Let’s phrase the request a
different way so that it’s clearer what we need the database to do for us.

“Find all the entertainers who played an engagement for Berg, then find all the
entertainers who played an engagement for Hallmark, and finally list the
common entertainers so that we know who played an engagement for both.”

Translation 1
Select entertainer stage name from those common to the set of
entertainers who played for Berg and the set of entertainers who
played for Hallmark

Translation 2/Clean Up
Select entertainer stage name from (Select unique distinct
entertainer stage name from the entertainers table inner joined with
the engagements table on entertainers.entertainer ID in the
entertainers table matches = engagements.entertainer ID in the
engagements table, then inner joined with the customers table on
customers.customer ID in the customers table matches =
engagements.customer ID in the engagements table where customer
last name is = ‘Berg’) as entberg inner joined with (Select unique
distinct entertainer stage names from the entertainers table inner
joined with the engagements table on entertainers.entertainer ID in
the entertainers table matches = engagements.entertainer ID in the
engagements table, then joined with the customers table
oncustomers.customer ID in the customers table matches =
engagements.customer ID in the engagements table where customer
last name is = ‘Hallmark’) as enthallmark on entberg.entertainer ID
in the entberg table matches = enthallmark.entertainer ID in the
enthallmark table

SQL

SELECT EntBerg.EntStageName
FROM
 (SELECT DISTINCT Entertainers.EntertainerID,
 Entertainers.EntStageName
 FROM (Entertainers
 INNER JOIN Engagements
 ON Entertainers.EntertainerID =
 Engagements.EntertainerID)
 INNER JOIN Customers

 ON Customers.CustomerID =
 Engagements.CustomerID
 WHERE Customers.CustLastName = 'Berg')
 AS EntBerg
INNER JOIN
 (SELECT DISTINCT Entertainers.EntertainerID,
 Entertainers.EntStageName
 FROM (Entertainers
 INNER JOIN Engagements
 ON Entertainers.EntertainerID =
 Engagements.EntertainerID)
 INNER JOIN Customers
 ON Customers.CustomerID =
 Engagements.CustomerID
 WHERE Customers.CustLastName = 'Hallmark')
 AS EntHallmark
ON EntBerg.EntertainerID =
 EntHallmark.EntertainerID

CH08_Entertainers_Berg_AND_Hallmark(4 rows)

 Note
This is another example of a request that can also be solved with
INTERSECT. It can also be solved more efficiently with subqueries, which
you’ll learn about in Chapter 11.

School Scheduling Database

“Show me the students and teachers who have the same first name.”

Translation/Clean Up
Select student full name and staff full name from the students table
inner joined with the staff table on students.first name in the
students table matches = staff.first name in the staff table

SQL

SELECT (Students.StudFirstName || ' ' ||
 Students.StudLastName) AS StudFullName,
 (Staff.StfFirstName || ' ' ||

 Staff.StfLastName) AS StfFullName
FROM Students
INNER JOIN Staff
ON Students.StudFirstName = Staff.StfFirstName

CH08_Students_Staff_Same_FirstName (2 rows)

Bowling League Database

“Find the bowlers who had a raw score of 170 or better at both Thunderbird
Lanes and Bolero Lanes.”

Yes, this is another “solve an intersection with a JOIN” problem. Let’s ask it a
different way so that it’s clearer what we need the database to do for us:

“Find all the bowlers who had a raw score of 170 or better at Thunderbird
Lanes, then find all the bowlers who had a raw score of 170 or better at Bolero
Lanes, and finally list the common bowlers so that we know who had good
scores at both bowling alleys.”

Translation 1
Select bowler full name from those common to the set of bowlers
who have a score of 170 or better at Thunderbird Lanes and the set
of bowlers who have a score of 170 or better at Bolero Lanes

Translation 2/Clean Up
Select bowler full name from (Select unique distinct bowler ID and
bowler full name from the bowlers table inner joined with the
bowler scores table on bowlers.bowler ID in the bowlers table
matches = bowler_scores.bowler ID in the bowler scores table, then
inner joined with the tourney matches table on
tourney_matches.match ID in the tourney matches table matches =
bowler_scores.match ID in the bowler scores table, and finally inner
joined with the tournaments table on tournaments.tourney ID in the
tournaments table matches = tourney_matches.tourney ID in the
tourney matches table where tourney location is = ‘Thunderbird
Lanes’ and raw score is greater than or equal to >= 170) as
bowlertbird inner joined with (Select unique distinct bowler ID and

bowler full name from the bowlers table inner joined with the
bowler scores table on bowlers.bowler ID in the bowlers table
matches = bower_scores.bowler ID in the bowler scores table, then
inner joined with the tourney matches table on
tourney_matches.match ID in the tourney matches table matches =
bowler_scores.match ID in the bowler scores table, and finally inner
joined with the tournaments table on tournaments.tourney ID in the
tournaments table matches = tourney_matches.tourney ID in the
tourney matches table where tourney location is = ‘Bolero Lanes’
and raw score is greater than or equal to >= 170) as bowlerbolero on
bowlertbird.bowler ID in the bowlertbird table matches =
bowlerbolero.bowler ID in the bowlerbolero table

SQL

SELECT BowlerTbird.BowlerFullName
FROM
 (SELECT DISTINCT Bowlers.BowlerID,
 (Bowlers.BowlerLastName || ', ' ||
 Bowlers.BowlerFirstName) AS BowlerFullName
 FROM ((Bowlers
 INNER JOIN Bowler_Scores
 ON Bowlers.BowlerID = Bowler_Scores.BowlerID)
 INNER JOIN Tourney_Matches
 ON Tourney_Matches.MatchID =
 Bowler_Scores.MatchID)
 INNER JOIN Tournaments
 ON Tournaments.TourneyID =
 Tourney_Matches.TourneyID
 WHERE Tournaments.TourneyLocation =
 'Thunderbird Lanes'
 AND Bowler_Scores.RawScore >= 170)
 AS BowlerTbird
INNER JOIN
 (SELECT DISTINCT Bowlers.BowlerID,
 (Bowlers.BowlerLastName || ', ' ||
 Bowlers.BowlerFirstName) AS BowlerFullName
 FROM ((Bowlers
 INNER JOIN Bowler_Scores
 ON Bowlers.BowlerID = Bowler_Scores.BowlerID)
 INNER JOIN Tourney_Matches
 ON Tourney_Matches.MatchID =
 Bowler_Scores MatchID)
 INNER JOIN Tournaments
 ON Tournaments.TourneyID =
 Tourney_Matches.TourneyID
 WHERE Tournaments.TourneyLocation =
 'Bolero Lanes'
 AND Bowler_Scores.RawScore >= 170)
 AS BowlerBolero
ON BowlerTbird.BowlerID = BowlerBolero.BowlerID

 Note

Because a bowler might have had a high score at either bowling alley more
than once, we added the DISTINCT keyword to eliminate the duplicates.
Again, this is a problem that might be better solved with subqueries, which
you’ll learn about in Chapter 11.

CH08_Good_Bowlers_TBird_And_Bolero (11 rows)

Recipes Database

“Display all the ingredients for recipes that contain carrots.”

Translation/Clean Up
Select recipe ID, recipe title, and ingredient name from the recipes
table inner joined with the recipe ingredients table on recipes.recipe
ID in the recipes table matches = recipe_ingredients.recipe ID in the
recipe ingredients table, inner joined with the ingredients table on
ingredients.ingredient ID in the ingredients table matches =
recipe_ingredients.ingredient ID in the recipe ingredients table, then
finally inner joined with (Select recipe ID from the ingredients table
inner joined with the recipe ingredients table on

ingredients.ingredient ID in the ingredients table matches =
recipe_ingredients.ingredient ID in the recipe ingredients table
where ingredient name is = ‘Carrot’) as carrots on recipes.recipe ID
in the recipes table matches = carrots.recipe ID in the carrots table

SQL

SELECT Recipes.RecipeID, Recipes.RecipeTitle,
 Ingredients.IngredientName
FROM ((Recipes
INNER JOIN Recipe_Ingredients
ON Recipes.RecipeID =
 Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID)
INNER JOIN
 (SELECT Recipe_Ingredients.RecipeID
 FROM Ingredients
 INNER JOIN Recipe_Ingredients
 ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID
 WHERE Ingredients.IngredientName = 'Carrot')
 AS Carrots
ON Recipes.RecipeID = Carrots.RecipeID

 Note
This request can be solved more simply with a subquery. We’ll show you how
to do that in Chapter 11.

CH08_Recipes_Containing_Carrots (16 rows)

Summary
In this chapter, we thoroughly discussed how to link two or more tables or result sets
on matching values. We began by defining the concept of a JOIN, and then we went
into the details about forming an INNER JOIN. We discussed what is “legal” to use
as the criteria for a JOIN but cautioned you about making nonsensical JOINs.
We started out simply with examples joining two tables. We next showed how to
assign correlation (alias) names to tables within your FROM clause. You might want
to do this for convenience—or you might be required to assign correlation names
when you include the same table more than once or use an embedded SELECT
statement.
We showed how to replace a reference to a table with a SELECT statement within
your FROM clause. We next showed how to extend your horizons by joining more
than two tables or result sets. We wrapped up the discussion of the syntax of an
INNER JOIN by reemphasizing the importance of having a good database design
and understanding how your tables are related.
We discussed a number of reasons why INNER JOINs are useful and gave you
specific examples. The rest of the chapter provided more than a dozen examples of
using INNER JOIN. We broke these examples into JOINs on two tables, JOINs on

more than two tables, and JOINs on matching values. In the next chapter, we’ll
explore another variant of JOIN—an OUTER JOIN.
The following section presents a number of requests to work out on your own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need
for each request and then check your answer with the query we saved in the samples.
Don’t worry if your syntax doesn’t exactly match the syntax of the queries we saved
—as long as your result set is the same.

Sales Orders Database
1. “List customers and the dates they placed an order, sorted in order date

sequence.”
(Hint: The solution requires a JOIN of two tables.)
You can find the solution in CH08_Customers_And_OrderDates (944 rows).

2. “List employees and the customers for whom they booked an order.”
(Hint: The solution requires a JOIN of more than two tables.)
You can find the solution in CH08_Employees_And_Customers (211 rows).

3. “Display all orders, the products in each order, and the amount owed for each
product, in order number sequence.”
(Hint: The solution requires a JOIN of more than two tables.)
You can find the solution in CH08_Orders_With_Products (3,973 rows).

4. “Show me the vendors and the products they supply to us for products that
cost less than $100.”
(Hint: The solution requires a JOIN of more than two tables.)
You can find the solution in CH08_Vendors_And_Products_Less_Than_100
(66 rows).

5. “Show me customers and employees who have the same last name.”
(Hint: The solution requires a JOIN on matching values.)
You can find the solution in CH08_Customers_Employees_Same_LastName
(16 rows).

6. “Show me customers and employees who live in the same city.”
(Hint: The solution requires a JOIN on matching values.)
You can find the solution in CH08_Customers_Employees_Same_City (10

rows).

Entertainment Agency Database
1. “Display agents and the engagement dates they booked, sorted by booking

start date.”
(Hint: The solution requires a JOIN of two tables.)
You can find the solution in CH08_Agents_Booked_Dates (111 rows).

2. “List customers and the entertainers they booked.”
(Hint: The solution requires a JOIN of more than two tables.)
You can find the solution in CH08_Customers_Booked_Entertainers (75
rows).

3. “Find the agents and entertainers who live in the same postal code.”
(Hint: The solution requires a JOIN on matching values.)
You can find the solution in CH08_Agents_Entertainers_Same_Postal (10
rows).

School Scheduling Database
1. “Display buildings and all the classrooms in each building.”

(Hint: The solution requires a JOIN of two tables.)
You can find the solution in CH08_Buildings_Classrooms (47 rows).

2. “List students and all the classes in which they are currently enrolled.”
(Hint: The solution requires a JOIN of more than two tables.)
You can find the solution in CH08_Student_Enrollments (50 rows).

3. “List the faculty staff and the subject each teaches.”
(Hint: The solution requires a JOIN of more than two tables.)
You can find the solution in CH08_Staff_Subjects (110 rows).

4. “Show me the students who have a grade of 85 or better in art and who also
have a grade of 85 or better in any computer course.”
(Hint: The solution requires a JOIN on matching values.)
You can find the solution in CH08_Good_Art_CS_Students (1 row).

Bowling League Database
1. “List the bowling teams and all the team members.”

(Hint: The solution requires a JOIN of two tables.)

You can find the solution in CH08_Teams_And_Bowlers (32 rows).
2. “Display the bowlers, the matches they played in, and the bowler game

scores.”
(Hint: The solution requires a JOIN of more than two tables.)
You can find the solution in CH08_Bowler_Game_Scores (1,344 rows).

3. “Find the bowlers who live in the same ZIP Code.”
(Hint: The solution requires a JOIN on matching values, and be sure to not
match bowlers with themselves.)
You can find the solution in CH08_Bowlers_Same_ZipCode (92 rows).

Recipes Database
1. “List all the recipes for salads.”

(Hint: The solution requires a JOIN of two tables.)
You can find the solution in CH08_Salads (1 row).

2. “List all recipes that contain a dairy ingredient.”
(Hint: The solution requires a JOIN of more than two tables.)
You can find the solution in CH08_Recipes_Containing_Dairy (2 rows).

3. “Find the ingredients that use the same default measurement amount.”
(Hint: The solution requires a JOIN on matching values.)
You can find the solution in CH08_Ingredients_Same_Measure (628 rows).

4. “Show me the recipes that have beef and garlic.”
(Hint: The solution requires a JOIN on matching values.)
You can find the solution in CH08_Beef_And_Garlic_Recipes (1 row).

9. OUTER JOINs

“The only difference between a problem and a
solution is people understand the solution.”

—Charles Franklin Kettering
Inventor, 1876–1958

Topics Covered in This Chapter
What Is an OUTER JOIN?
The LEFT/RIGHT OUTER JOIN
The FULL OUTER JOIN
Uses for OUTER JOINs
Sample Statements
Summary
Problems for You to Solve

In the previous chapter, we covered all the “ins” of JOINs—linking two or more
tables or result sets using INNER JOIN to find all the rows that match. Now it’s time
to talk about the “outs”—linking tables and finding out not only the rows that match
but also the rows that don’t match.

What Is an OUTER JOIN?
As we explained in the previous chapter, the SQL Standard defines several types of
JOIN operations to link two or more tables or result sets. An OUTER JOIN asks
your database system to return not only the rows that match on the criteria you
specify but also the unmatched rows from either one or both of the two sets you want
to link.
Let’s suppose, for example, that you want to fetch information from the School
Scheduling database about students and the classes for which they’re registered. As
you learned in the previous chapter, an INNER JOIN returns only students who have
registered for a class and classes for which a student has registered. It won’t return
any students who have been accepted at the school but haven’t signed up for any
classes yet, nor will it return any classes that are on the schedule but for which no
student has yet shown an interest.
What if you want to list all students and the classes for which they are registered, if
any? Conversely, suppose you want a list of all the classes and the students who

have registered for those classes, if any. To solve this sort of problem, you need to
ask for an OUTER JOIN.
Figure 9–1 uses a set diagram to show one possible relationship between students
and classes. As you can see, a few students haven’t registered for a class yet, and a
few classes do not yet have any students signed up to take the class.

Figure 9–1 A possible relationship between students and classes
If you ask for all students and the classes for which they are registered, you’ll get a
result set resembling Figure 9–2.

Figure 9–2 All students and the classes for which they are registered
You might ask, “What will I see for the students who haven’t registered for any
classes?” If you remember the concept of a Null or “nothing” value discussed in

Chapter 5, “Getting More Than Simple Columns,” you know what you’ll see: When
you ask for all students joined with any classes, your database system will return a
Null value in all columns from the Classes table when it finds a student who is not
yet registered for any classes. If you think about the concept of a difference between
two sets (discussed in Chapter 7, “Thinking in Sets”), the rows with a Null value in
the columns from the Classes table represent the difference between the set of all
students and the set of students who have registered for a class.
Likewise, if you ask for all classes and any students who registered for classes, the
rows with Null values in the columns from the Students table represent the
difference between the set of all classes and the set of classes for which students
have registered. As we promised, using an OUTER JOIN with a test for Null values
is an alternate way to discover the difference between two sets. Unlike a true
EXCEPT operation that matches on entire rows from the two sets, you can specify
the match in a JOIN operation on just a few specific columns (usually the primary
key and the foreign key).

The LEFT/RIGHT OUTER JOIN
You’ll generally use the OUTER JOIN form that asks for all the rows from one table
or result set and any matching rows from a second table or result set. To do this, you
specify either a LEFT OUTER JOIN or a RIGHT OUTER JOIN.
What’s the difference between LEFT and RIGHT? Remember from the previous
chapter that to specify an INNER JOIN on two tables, you name the first table,
include the JOIN keyword, and then name the second table. When you begin
building queries using OUTER JOIN, the SQL Standard considers the first table you
name as the one on the “left,” and the second table as the one on the “right.” So, if
you want all the rows from the first table and any matching rows from the second
table, you’ll use a LEFT OUTER JOIN. Conversely, if you want all the rows from
the second table and any matching rows from the first table, you’ll specify a RIGHT
OUTER JOIN.

Syntax
Let’s examine the syntax needed to build either a LEFT or RIGHT OUTER JOIN.

Using Tables
We’ll start simply with defining an OUTER JOIN using tables. Figure 9–3 shows the
syntax diagram for creating a query with an OUTER JOIN on two tables.

Figure 9–3 Defining an OUTER JOIN on two tables
Just like INNER JOIN (covered in Chapter 8), all the action happens in the FROM
clause. (We left out the WHERE and ORDER BY clauses for now to simplify
things.) Instead of specifying a single table name, you specify two table names and
link them with the JOIN keyword. If you do not specify the type of JOIN you want,
your database system assumes you want an INNER JOIN. In this case, because you
want an OUTER JOIN, you must explicitly state that you want either a LEFT JOIN
or a RIGHT JOIN. The OUTER keyword is optional.

 Note
For those of you following along with the complete syntax diagrams in
Appendix A, “SQL Standard Diagrams,” note that we’ve pulled together the
applicable parts (from Select Statement, Table Reference, and Joined Table)
into simpler diagrams that explain the specific syntax we’re discussing.

The critical part of any JOIN is the ON or USING clause that follows the second
table and tells your database system how to perform the JOIN. To solve the JOIN,
your database system logically combines every row in the first table with every row
in the second table. (This combination of all rows from one table with all rows from
a second table is called a Cartesian product.) It then applies the criteria in the ON or
USING clause to find the matching rows to be returned. Because you asked for an

OUTER JOIN, your database system also returns the unmatched rows from either
the “left” or “right” table.
You learned about using a search condition to form a WHERE clause in Chapter 6,
“Filtering Your Data.” You can use a search condition in the ON clause within a
JOIN to specify a logical test that must be true in order to return any two linked
rows. It only makes sense to write a search condition that compares at least one
column from the first table with at least one column from the second table. Although
you can write a very complex search condition, you can usually specify a simple
equals comparison test on the primary key columns from one table with the foreign
key columns from the other table.
To keep things simple, let’s start with the same recipe classes and recipes example
we used in the last chapter. Remember that in a well-designed database, you should
break out complex classification names into a second table and then link the names
back to the primary subject table via a simple key value. In the Recipes sample
database, recipe classes appear in a table separate from recipes. Figure 9–4 (on page
304) shows the relationship between the Recipe_Classes and Recipes tables.

Figure 9–4 Recipe classes are in a separate table from recipes

When you originally set up the kinds of recipes to save in your database, you might
have started by entering all the recipe classes that came to mind. Now that you’ve
entered a number of recipes, you might be interested in finding out which classes
don’t have any recipes entered yet. You might also be interested in listing all the
recipe classes along with the names of recipes entered so far for each class. You can
solve either problem with an OUTER JOIN.

 Note
Throughout this chapter, we use the “Request/Translation/Clean Up/SQL”
technique introduced in Chapter 4, “Creating a Simple Query.”

“Show me all the recipe types and any matching recipes in my database.”

Translation

Select recipe class description and recipe title from the recipe
classes table left outer joined with the recipes table on recipe class
ID in the recipe classes table matching recipe class ID in the recipes
table

Clean Up
Select recipe class description and recipe title from the recipe
classes table left outer joined with the recipes table on
recipe_classes.recipe class ID in the recipe classes table matching =
recipes.recipe class ID in the recipes table

SQL

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle
FROM Recipe_Classes
LEFT OUTER JOIN Recipes
ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID

When using multiple tables in your FROM clause, remember to qualify fully each
column name with the table name wherever you use it so that it’s absolutely clear
which column from which table you want. Note that we had to qualify the name of
RecipeClassID in the ON clause because there are two columns named
RecipeClassID—one in the Recipes table and one in the Recipe_Classes table.

 Note
Although most commercial implementations of SQL support OUTER JOIN,
some do not. If your database does not support OUTER JOIN, you can still
solve the problem by listing all the tables you need in the FROM clause, then
moving your search condition from the ON clause to the WHERE clause. You
must consult your database documentation to learn the specific nonstandard
syntax that your database requires to define the OUTER JOIN. For example,
earlier versions of Microsoft SQL Server support this syntax. (Notice the
asterisk in the WHERE clause.)

Click here to view code image

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle
FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID *=
 Recipes.RecipeClassID

If you’re using Oracle, the optional syntax is as follows. (Notice the plus sign
in the WHERE clause.)

Click here to view code image

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle
FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID(+)

Quite frankly, these strange syntaxes were invented by database vendors that
wanted to provide this feature long before a clearer syntax was defined in the
SQL Standard. Thankfully, the SQL Standard syntax allows you to fully
define the source for the final result set entirely within the FROM clause.
Think of the FROM clause as fully defining a linked result set from which the
database system obtains your answer. In the SQL Standard, you use the
WHERE clause only to filter rows out of the result set defined by the FROM
clause. Also, because the specific syntax for defining an OUTER JOIN via the
WHERE clause varies by product, you might have to learn several different
syntaxes if you work with multiple nonstandard products.

If you execute our example query in the Recipes sample database, you should see 16
rows returned. Because we didn’t enter any soup recipes in the database, you’ll get a
Null value for RecipeTitle in the row where RecipeClassDescription is ‘Soup’. To
find only this one row, use this approach.

“List the recipe classes that do not yet have any recipes.”

Translation
Select recipe class description from the recipe classes table left outer
joined with the recipes table on recipe class ID where recipe ID is
empty

Clean Up
Select recipe class description from the recipe classes table left outer
joined with the recipes table on recipe_classes.recipe class ID in the
recipes table matches = recipes.recipe class ID in the recipes table
where recipe ID is empty NULL

SQL

SELECT Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes
LEFT OUTER JOIN Recipes
ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID
WHERE Recipes.RecipeID IS NULL

If you think about it, we’ve just done a difference or EXCEPT operation (see
Chapter 7) using a JOIN. It’s somewhat like saying, “Show me all the recipe classes

except the ones that already appear in the recipes table.” The set diagram in Figure
9–5 should help you visualize what’s going on.

Figure 9–5 A possible relationship between recipe classes and recipes

In Figure 9–5, all recipes have a recipe class, but some recipe classes exist for which
no recipe has yet been defined. When we add the IS NULL test, we’re asking for all
the rows in the lighter outer circle that don’t have any matches in the set of recipes
represented by the darker inner circle.
Notice that the diagram for an OUTER JOIN on tables in Figure 9–3 (on page 302)
also has the optional USING clause. If the matching columns in the two tables have
the same name and you want to join only on equal values, you can use the USING
clause and list the column names. Let’s do the previous problem again with USING.

“Display the recipe classes that do not yet have any recipes.”

Translation
Select recipe class description from the recipe classes table left outer
joined with the recipes table using recipe class ID where recipe ID is
empty

Clean Up
Select recipe class description from the recipe classes table left outer
joined with the recipes table using recipe class ID where recipe ID is
empty NULL

SQL

SELECT Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes
LEFT OUTER JOIN Recipes
USING (RecipeClassID)
WHERE Recipes.RecipeID IS NULL

The USING syntax is a lot simpler, isn’t it? There’s one small catch: Any column in

the USING clause loses its table identity because the SQL Standard dictates that the
database system must “coalesce” the two columns into a single column. In this
example, there’s only one RecipeClassID column as a result, so you can’t reference
Recipes.RecipeClassID or Recipe_Classes.RecipeClassID in the SELECT clause or
any other clause.
Be aware that some database systems do not yet support USING. If you find that you
can’t use USING with your database, you can always get the same result with an ON
clause and an equals comparison.

 Note
The SQL Standard also defines a type of JOIN operation called a NATURAL
JOIN. A NATURAL JOIN links the two specified tables by matching all the
columns with the same name. If the only common columns are the linking
columns and your database supports NATURAL JOIN, you can solve the
example problem like this:

Click here to view code image

SELECT Recipe_Classes.RecipeClassDescription
FROM Recipe_Classes
NATURAL LEFT OUTER JOIN Recipes
WHERE Recipes.RecipeID IS NULL

Do not specify an ON or USING clause if you use the NATURAL keyword.

Embedding a SELECT Statement
As you recall from Chapter 8, most SQL implementations let you substitute an entire
SELECT statement for any table name in your FROM clause. Of course, you must
then assign a correlation name (see the section “Assigning Correlation (Alias)
Names to Tables” in Chapter 8) so that the result of evaluating your embedded query
has a name. Figure 9–6 shows how to assemble an OUTER JOIN clause using
embedded SELECT statements.

Figure 9–6 An OUTER JOIN using SELECT statements
Note that a SELECT statement can include all query clauses except an ORDER BY
clause. Also, you can mix and match SELECT statements with table names on either
side of the OUTER JOIN keywords.
Let’s look at the Recipes and Recipe_Classes tables again. For this example, let’s
also assume that you are interested only in classes Salads, Soups, and Main courses.
Here’s the query with the Recipe_Classes table filtered in a SELECT statement that
participates in a LEFT OUTER JOIN with the Recipes table:

SQL

SELECT RCFiltered.ClassName, R.RecipeTitle
FROM
 (SELECT RecipeClassID,
 RecipeClassDescription AS ClassName
 FROM Recipe_Classes AS RC
 WHERE RC.ClassName = 'Salads'
 OR RC.ClassName = 'Soup'
 OR RC.ClassName = 'Main Course')
 AS RCFiltered
LEFT OUTER JOIN Recipes AS R
ON RCFiltered.RecipeClassID = R.RecipeClassID

You must be careful when using a SELECT statement in a FROM clause. First,
when you decide to substitute a SELECT statement for a table name, you must be
sure to include not only the columns you want to appear in the final result but also
any linking columns you need to perform the JOIN. That’s why you see both

RecipeClassID and RecipeClassDescription in the embedded statement. Just for fun,
we gave RecipeClassDescription an alias name of ClassName in the embedded
statement. As a result, the SELECT clause asks for ClassName rather than
RecipeClassDescription. Note that the ON clause now references the correlation
name (RCFiltered) of the embedded SELECT statement rather than the original
name of the table or the correlation name we assigned the table inside the embedded
SELECT statement.
As the query is stated for the actual Recipes sample database, you see one row with
RecipeClassDescription of Soup with a Null value returned for Recipe-Title because
there are no soup recipes in the sample database. We could just as easily have built a
SELECT statement on the Recipes table on the right side of the OUTER JOIN. For
example, we could have asked for recipes that contain the word “beef” in their titles,
as in the following statement:

SQL

SELECT RCFiltered.ClassName, R.RecipeTitle
FROM
 (SELECT RecipeClassID,
 RecipeClassDescription AS ClassName
 FROM Recipe_Classes AS RC
 WHERE RC.ClassName = 'Salads'
 OR RC.ClassName = 'Soup'
 OR RC.ClassName = 'Main Course')
 AS RCFiltered
LEFT OUTER JOIN
 (SELECT Recipes.RecipeClassID, Recipes.Recipe
 Title
 FROM Recipes
 WHERE Recipes.RecipeTitle LIKE '%beef%')
 AS R
ON RCFiltered.RecipeClassID = R.RecipeClassID

Keep in mind that the LEFT OUTER JOIN asks for all rows from the result set or
table on the left side of the JOIN, regardless of whether any matching rows exist on
the right side. The previous query not only returns a Soup row with a Null
RecipeTitle (because there are no soups in the database at all) but also a Salad row
with a Null. You might conclude that there are no salad recipes in the database.
Actually, there are salads in the database but no salads with “beef” in the title of the
recipe!

 Note
You might have noticed that you can enter a full search condition as part of
the ON clause in a JOIN. This is absolutely true, so it is perfectly legal in the
SQL Standard to solve the example problem as follows:

Click here to view code image

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle
FROM Recipe_Classes
LEFT OUTER JOIN Recipes
ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID
AND
 (Recipe_Classes.RecipeClassDescription = 'Salads'
OR Recipe_Classes.RecipeClassDescription = 'Soup'
OR Recipe_Classes.RecipeClassDescription =
 'Main Course')
AND Recipes.RecipeTitle LIKE '%beef%'

Unfortunately, we have discovered that some major implementations of SQL
solve this problem incorrectly or do not accept this syntax at all! Therefore,
we recommend that you always enter in the search condition in the ON clause
only criteria that compare columns from the two tables or result sets. If you
want to filter the rows from the underlying tables, do so with a separate search
condition in a WHERE clause in an embedded SELECT statement.

Embedding JOINs within JOINs
Although you can solve many problems by linking just two tables, many times you’ll
need to link three, four, or more tables to get all the data to solve your request. For
example, you might want to fetch all the relevant information about recipes—the
type of recipe, the recipe name, and all the ingredients for the recipe—in one query.
Now that you understand what you can do with an OUTER JOIN, you might also
want to list all recipe classes—even those that have no recipes defined yet—and all
the details about recipes and their ingredients. Figure 9–7 shows all the tables needed
to answer this request.

Figure 9–7 The tables you need from the Recipes sample database to fetch all the
information about recipes

Looks like you need data from five different tables! Just as in Chapter 8, you can do
this by constructing a more complex FROM clause, embedding JOIN clauses within
JOIN clauses. Here’s the trick: Everywhere you can specify a table name, you can

also specify an entire JOIN clause surrounded with parentheses. Figure 9–8 shows a
simplified version of joining two tables. (We’ve left off the correlation name clauses
and chosen the ON clause to form a simple INNER or OUTER JOIN of two tables.)

Figure 9–8 A simple JOIN of two tables

To add a third table to the mix, just place an open parenthesis before the first table
name, add a close parenthesis after the search condition, and then insert another
JOIN, a table name, the ON keyword, and another search condition. Figure 9–9 (on
page 312) shows how to do this.

Figure 9–9 A simple JOIN of three tables

If you think about it, the JOIN of two tables inside the parentheses forms a logical
table, or inner result set. This result set now takes the place of the first simple table
name in Figure 9–8. You can continue this process of enclosing an entire JOIN
clause in parentheses and then adding another JOIN keyword, table name, ON
keyword, and search condition until you have all the result sets you need. Let’s make
a request that needs data from all the tables shown in Figure 9–7 and see how it turns
out. (You might use this type of request for a report that lists all recipe types with
details about the recipes in each type.)

“I need all the recipe types, and then the matching recipe names, preparation
instructions, ingredient names, ingredient step numbers, ingredient quantities,
and ingredient measurements from my recipes database, sorted in recipe title
and step number sequence.”

Translation
Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number, amount, and
measurement description from the recipe classes table left outer
joined with the recipes table on recipe class ID in the recipe classes
table matching recipe ID in the recipes table, then joined with the
recipe ingredients table on recipe ID in the recipes table matching
recipe ID in the recipe ingredients table, then joined with the
ingredients table on ingredient ID in the ingredients table matching
ingredient ID in the recipe ingredients table, and then finally joined
with the measurements table on measurement amount ID in the
measurements table matching measurement amount ID in the recipe
ingredients table, order by recipe title and recipe sequence number

Clean Up
Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number, amount, and
measurement description from the recipe classes table left outer
joined with the recipes table matching = recipes.recipe class ID in
the recipes table, then inner joined with the recipe ingredients table
on recipes.recipe ID in the recipes table matching =
recipe_ingredients.recipe ID in the recipe ingredients table, then
inner joined with the ingredients table on ingredients.ingredient ID
in the ingredients table matching = recipe_ingredients.ingredient ID
in the recipe ingredients table, and then finally inner joined with the
measurements table on measurements.measurement amount ID in

the measurements table matching = recipe_ingredients.measurement
amount ID in the recipe ingredients table, order by recipe title, and
recipe sequence number

SQL

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle, Recipes.Preparation,
 Ingredients.IngredientName,
 Recipe_Ingredients.RecipeSeqNo,
 Recipe_Ingredients.Amount,
 Measurements.MeasurementDescription
FROM Recipe_Classes
LEFT OUTER JOIN (((Recipes
INNER JOIN Recipe_Ingredients
ON Recipe.RecipeID =
Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
 Ingredients.IngredientID =
Recipe_Ingredients.IngredientID)
INNER JOIN Measurements
ON Measurements.MeasureAmountID =
Recipe_Ingredients.MeasureAmountID)
 Recipe_Classes.RecipeClassID =
Recipe.RecipeClassID
ORDER BY RecipeTitle, RecipeSeqNo

Note that we added parentheses to help ensure that the database performs the INNER
JOINs first and then LEFT JOINs the result with the Recip_Classes table. In truth,
you can substitute an entire JOIN of two tables anywhere you might otherwise place
only a table name. In Figure 9–9, we implied that you must first join the first table
with the second table and then join that result with the third table. You could also
join the second and third tables first (as long as the third table is, in fact, related to
the second table and not the first one) and then perform the final JOIN with the first
table. Figure 9–10 (on page 314) shows you this alternate method.

Figure 9–10 Joining more than two tables in an alternate sequence
To solve the request we just showed you using five tables, we could have also stated
the SQL as follows:

SQL

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle, Recipes.Preparation,
 Ingredients.IngredientName,
 Recipe_Ingredients.RecipeSeqNo,
 Recipe_Ingredients.Amount,
 Measurements.MeasurementDescription
FROM Recipe_Classes
LEFT OUTER JOIN
 (((Recipes
 INNER JOIN Recipe_Ingredients
 ON Recipes.RecipeID = Recipe_Ingredients.RecipeID)
 INNER JOIN Ingredients
 ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID)
 INNER JOIN Measurements
 ON Measurements.MeasureAmountID =
 Recipe_Ingredients.MeasureAmountID)
ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID
ORDER BY RecipeTitle, RecipeSeqNo

Remember that the optimizers in some database systems are sensitive to the
sequence of the JOIN definitions. If your query with many JOINs is taking a long
time to execute on a large database, it might run faster if you change the sequence of
JOINs in your SQL statement.

You might have noticed that we used only one OUTER JOIN in the previous
multiple-JOIN examples. You’re probably wondering whether it’s possible or even
makes sense to use more than one OUTER JOIN in a complex JOIN. Let’s assume
that there are not only some recipe classes that don’t have matching recipe rows but
also some recipes that don’t have any ingredients defined yet. In the previous
example, you won’t see any rows from the Recipes table that do not have any
matching rows in the Recipe_Ingredients table because the INNER JOIN eliminates
them. Let’s ask for all recipes as well.

“I need all the recipe types, and then all the recipe names and preparation
instructions, and then any matching ingredient names, ingredient step numbers,
ingredient quantities, and ingredient measurements from my recipes database,
sorted in recipe title and step number sequence.”

Translation
Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number, amount, and
measurement description from the recipe classes table left outer
joined with the recipes table on recipe class ID in the recipe classes
table matching recipe class ID in the recipes table, then left outer
joined with the recipe ingredients table on recipe ID in the recipes
table matching recipe ID in the recipe ingredients table, then joined
with the ingredients table on ingredient ID in the ingredients table
matching ingredient ID in the recipe ingredients table, and then
finally joined with the measurements table on measurement amount
ID in the measurements table matching measurement amount ID in
the recipe ingredients table, order by recipe title and recipe sequence
number

Clean Up
Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number, amount, and
measurement description from the recipe classes table left outer
joined with the recipes table on recipe_classes.recipe class ID in the
recipe classes table matching = recipes.recipe class ID in the recipes
table, then left outer joined with the recipe ingredients table on
recipes.recipe ID in the recipes table matching =
recipe_ingredients.recipe ID in the recipe ingredients table, then
inner joined with the ingredients table on ingredients.ingredient ID
in the ingredients table matching = recipe_ingredients.ingredient ID

in the recipe ingredients table, and then finally inner joined with the
measurements table on measurement.measurement amount ID in the
measurements table matching = recipe_ingredients.measurement
amount ID in the recipe ingredients table, order by recipe title and
recipe sequence number

SQL

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle, Recipes.Preparation,
 Ingredients.IngredientName,
 Recipe_Ingredients.RecipeSeqNo,
 Recipe_Ingredients.Amount,
 Measurements.MeasurementDescription
FROM (((Recipe_Classes
LEFT OUTER JOIN Recipes
ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID)
LEFT OUTER JOIN Recipe_Ingredients
ON Recipes.RecipeID =
 Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID)
INNER JOIN Measurements
ON Measurements.MeasureAmountID =
 Recipe_Ingredients.MeasureAmountID
ORDER BY RecipeTitle, RecipeSeqNo

Be careful! This sort of multiple OUTER JOIN works as expected only if you’re
following a path of one-to-many relationships. Let’s look at the relationships
between Recipe_Classes, Recipes, and Recipe_Ingredients again, as shown in Figure
9–11.

Figure 9–11 The relationships between the Recipe_Classes, Recipes, and
Recipe_Ingredients tables

You might see a one-to-many relationship sometimes called a parent-child
relationship. Each parent row (on the “one” side of the relationship) might have zero
or more children rows (on the “many” side of the relationship). Unless you have
orphaned rows on the “many” side (for example, a row in Recipes that has a Null in
its RecipeClassID column), every row in the child table should have a matching row
in the parent table. So it makes sense to say Recipe_Classes LEFT JOIN Recipes to
pick up any parent rows in Recipe_Classes that don’t have any children yet in
Recipes. Recipe_Classes RIGHT JOIN Recipes should (barring any orphaned rows)

give you the same result as an INNER JOIN.
Likewise, it makes sense to ask for Recipes LEFT JOIN Recipe_Ingredients
because you might have some recipes for which no ingredients have yet been
entered. Recipes RIGHT JOIN Recipe_Ingredients doesn’t work because the
linking column (RecipeID) in Recipe_Ingredients is also part of that table’s
compound primary key. Therefore, you are guaranteed to have no orphaned rows in
Recipe_Ingredients because no column in a primary key can contain a Null value.
Now, let’s take it one step further and ask for all ingredients, including those not yet
included in any recipes. First, take a close look at the relationships between the
tables, including the Ingredients table, as shown in Figure 9–12.

Figure 9–12 The relationships between the Recipe_Classes, Recipes,
Recipe_Ingredients, and Ingredients tables

Let’s try this request. (Caution: There’s a trap here!)

“I need all the recipe types, and then all the recipe names and preparation
instructions, and then any matching ingredient step numbers, ingredient
quantities, and ingredient measurements, and finally all ingredient names from
my recipes database, sorted in recipe title and step number sequence.”

Translation
Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number, amount, and
measurement description from the recipe classes table left outer
joined with the recipes table on recipe class ID in the recipe classes
table matches class ID in the recipes table, then left outer joined
with the recipe ingredients table on recipe ID in the recipes table
matches recipe ID in the recipe ingredients table, then joined with
the measurements table on measurement amount ID in the
measurements table matches measurement amount ID in the

measurements table, and then finally right outer joined with the
ingredients table on ingredient ID in the ingredients table matches
ingredient ID in the recipe ingredients table, order by recipe title and
recipe sequence number

Clean Up
Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number, amount, and
measurement description from the recipe classes table left outer
joined with the recipes table on recipe_classes.recipe class ID in the
recipe classes table matches = recipes.class ID in the recipes table,
then left outer joined with the recipe ingredients table on
recipes.recipe ID in the recipes table matches =
recipe_ingredients.recipe ID in the recipe ingredients table, then
inner joined with the measurements table on
measurements.measurement amount ID in the measurements table
matches = measurements.measurement amount ID in the
measurements table, and then finally right outer joined with the
ingredients table on ingredients.ingredient ID in the ingredients
table matches = recipe_ingredients.ingredient ID in the recipe
ingredients table, order by recipe title, and recipe sequence number

SQL

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle, Recipes.Preparation,
 Ingredients.IngredientName,
 Recipe_Ingredients.RecipeSeqNo,
 Recipe_Ingredients.Amount,
 Measurements.MeasurementDescription
FROM (((Recipe_Classes
LEFT OUTER JOIN Recipes
ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID)
LEFT OUTER JOIN Recipe_Ingredients
ON Recipes.RecipeID =
 Recipe_Ingredients.RecipeID)
INNER JOIN Measurements
ON Measurements.MeasureAmountID =
 Recipe_Ingredients.MeasureAmountID)
RIGHT OUTER JOIN Ingredients
ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID
ORDER BY RecipeTitle, RecipeSeqNo

Do you think this will work? Actually, the answer is a resounding NO! Most
database systems analyze the entire FROM clause and then try to determine the most
efficient way to assemble the table links. Let’s assume, however, that the database
decides to fully honor how we’ve grouped the JOINs within parentheses. This means

that the database system will work from the innermost JOIN first (Recipe_Classes
joined with Recipes) and then work outward.
Because some rows in Recipe_Classes might not have any matching rows in
Recipes, this first JOIN returns rows that have a Null value in
Recipes.RecipeClassID. Looking back at Figure 9–12 (on page 317), you can see
that there’s a one-to-many relationship between Recipe_Classes and Recipes. Unless
some recipes exist that haven’t been assigned a recipe class, we should get all the
rows from the Recipes table anyway! The next JOIN with the Recipe_Ingredients
table also asks for a LEFT OUTER JOIN. We want all the rows, regardless of any
Null values, from the previous JOIN (of Recipe_Classes with Recipes) and any
matching rows in Recipe_Ingredients. Again, because some rows in Recipe_Classes
might not have matching rows in Recipes or some rows in Recipes might not have
matching rows in Recipe_Ingredients, several of the rows might have a Null in the
IngredientID column from the Recipe_Ingredients table. What we’re doing with both
JOINs is “walking down” the one-to-many relationships from Recipe_Classes to
Recipes and then from Recipes to Recipe_Ingredients. So far, so good. (By the way,
the final INNER JOIN with Measurements is inconsequential—we know that all
Ingredients have a valid MeasureAmountID.)
Now the trouble starts. The final RIGHT OUTER JOIN asks for all the rows from
Ingredients and any matching rows from the result of the previous JOINs. Remember
from Chapter 5 that a Null is a very special value—it cannot be equal to any other
value, not even another Null. When we ask for all the rows in Ingredients, the
IngredientID in all these rows has a non-Null value. None of the rows from the
previous JOIN that have a Null in IngredientID will match at all, so the final JOIN
throws them away! You will see any ingredient that isn’t used yet in any recipe, but
you won’t see recipe classes that have no recipes or recipes that have no ingredients.
If your database system decides to solve the query by performing the JOINs in a
different order, you might see recipe classes that have no recipes and recipes that
have no ingredients, but you won’t see ingredients not yet used in any recipe because
of the Null matching problem. Some database systems might recognize this logic
problem and refuse to solve your query at all—you’ll see something like an
“ambiguous OUTER JOINs” error message. The problem we’re now experiencing
results from trying to “walk back up” a many-to-one relationship with an OUTER
JOIN going in the other direction. Walking down the hill is easy, but walking back
up the other side requires special tools. What’s the solution to this problem? Read on
to the next section to find out!

The FULL OUTER JOIN
A FULL OUTER JOIN is neither “left” nor “right”—it’s both! It includes all the

rows from both of the tables or result sets participating in the JOIN. When no
matching rows exist for rows on the “left” side of the JOIN, you see Null values
from the result set on the “right.” Conversely, when no matching rows exist for rows
on the “right” side of the JOIN, you see Null values from the result set on the “left.”

Syntax
Now that you’ve been working with JOINs for a while, the syntax for a FULL
OUTER JOIN should be pretty obvious. You can study the syntax diagram for a
FULL OUTER JOIN in Figure 9–13.

Figure 9–13 The syntax diagram for a FULL OUTER JOIN

To simplify things, we’re now using the term table reference in place of a table
name, a SELECT statement, or the result of another JOIN. Let’s take another look at
the problem we introduced at the end of the previous section. We can now solve it
properly using a FULL OUTER JOIN.

“I need all the recipe types, and then all the recipe names and preparation
instructions, and then any matching ingredient step numbers, ingredient
quantities, and ingredient measurements, and finally all ingredient names from
my recipes database, sorted in recipe title and step number sequence.”

Translation
Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number, amount, and
measurement description from the recipe classes table full outer
joined with the recipes table on recipe class ID in the recipe classes
table matches recipe class ID in the recipes table, then left outer

joined with the recipe ingredients table on recipe ID in the recipes
table matches recipe ID in the recipe ingredients table, then joined
with the measurements table on measurement amount ID in the
measurements table matches measurement amount ID in the recipe
ingredients table, and then finally full outer joined with the
ingredients table on ingredient ID in the ingredients table matches
ingredient ID in the recipe ingredients table, order by recipe title and
recipe sequence number

Clean Up
Select the recipe class description, recipe title, preparation
instructions, ingredient name, recipe sequence number, amount, and
measurement description from the recipe classes table full outer
joined with the recipes table on recipe_classes.recipe class ID in the
recipe classes table matches = recipes.recipe class ID in the recipes
table, then left outer joined with the recipe ingredients table on
recipes.recipe ID in the recipes table matches =
recipe_ingredients.recipe ID in the recipe ingredients table, then
inner joined with the measurements table on
measurements.measurement amount ID in the measurements table
matches = recipe_ingredients.measurement amount ID in the recipe
ingredients table, and then finally full outer joined with the
ingredients table on ingredients.ingredient ID in the ingredients
table matches = recipe_ingredients.ingredient ID in the recipe
ingredients table, order by recipe title and recipe sequence number

SQL

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle, Recipes.Preparation,
 Ingredients.IngredientName,
 Recipe_Ingredients.RecipeSeqNo,
 Recipe_Ingredients.Amount,
 Measurements.MeasurementDescription
FROM (((Recipe_Classes
FULL OUTER JOIN Recipes
 ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID)
 LEFT OUTER JOIN Recipe_Ingredients
 ON Recipes.RecipeID =
 Recipe_Ingredients.RecipeID)
 INNER JOIN Measurements
 ON Measurements.MeasureAmountID =
 Recipe_Ingredients.MeasureAmountID)
 FULL OUTER JOIN Ingredients
 ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID
ORDER BY RecipeTitle, RecipeSeqNo

The first and last JOINs now ask for all rows from both sides of the JOIN, so the
problem with Nulls not matching is solved. You should now see not only recipe
classes for which there are no recipes and recipes for which there are no ingredients
but also ingredients that haven’t been used in a recipe yet. You might get away with
using a LEFT OUTER JOIN for the first JOIN, but because you can’t predict in
advance how your database system decides to nest the JOINs, you should ask for a
FULL OUTER JOIN on both ends to ensure the right answer.

 Note
As you might expect, database systems that do not support the SQL Standard
syntax for LEFT OUTER JOIN or RIGHT OUTER JOIN also have a special
syntax for FULL OUTER JOIN. You must consult your database
documentation to learn the specific nonstandard syntax that your database
requires to define the OUTER JOIN. For example, earlier versions of
Microsoft SQL Server support the following syntax. (Notice the asterisks in
the WHERE clause.)

Click here to view code image

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle
FROM Recipe_Classes, Recipes
WHERE Recipe_Classes.RecipeClassID *=*
 Recipes.RecipeClassID

Products that do not support any FULL OUTER JOIN syntax but do support
LEFT or RIGHT OUTER JOINs yield an equivalent result by performing a
UNION on a LEFT and RIGHT OUTER JOIN. We’ll discuss UNION in
more detail in the next chapter. Because the specific syntax for defining a
FULL OUTER JOIN using the WHERE clause varies by product, you might
have to learn several different syntaxes if you work with multiple nonstandard
products.

FULL OUTER JOIN on Non-Key Values
Thus far, we have beendiscussing using OUTER JOINs to link tables or result sets
on related key values. You can, however, solve some interesting problems by using
an OUTER JOIN on non-key values. For example, the previous chapter showed how
to find students and staff who have the same first name in the School Scheduling
database. Suppose you’re interested in listing all staff members and all students and
showing the ones who have the same first name as well. You can do that with a
FULL OUTER JOIN.

“Show me all the students and all the teachers and list together those who have
the same first name.”

Translation
Select student full name and staff full name from the students table
full outer joined with the staff table on first name in the students
table matches first name in the staff table

Clean Up
Select student full name and staff full name from the students table
full outer joined with the staff table on students.first name in the
students table matches = staff.first name in the staff table

SQL

SELECT (Students.StudFirstName || ' ' ||
 Students.StudLastName) AS StudFullName,
 (Staff.StfFirstName || ' ' ||
 Staff.StfLastName) AS StfFullName
FROM Students
FULL OUTER JOIN Staff
ON Students.StudFirstName =
 Staff.StfFirstName

UNION JOIN
No discussion of OUTER JOINs would be complete without at least an honorable
mention to UNION JOIN. In the SQL Standard, a UNION JOIN is a FULL OUTER
JOIN with the matching rows removed. Figure 9–14 (on page 324) shows the syntax.

Figure 9–14 The SQL syntax for a UNION JOIN

As you might expect, not many commercial implementations support a UNION

JOIN. Quite frankly, we’re hard pressed to think of a good reason why you would
want to do a UNION JOIN.

Uses for OUTER JOINs
Because an OUTER JOIN lets you see not only the matched rows but also the
unmatched ones, it’s great for finding out which, if any, rows in one table do not
have a matching related row in another table. It also helps you find rows that have
matches on a few rows but not on all. In addition, it’s useful for creating input to a
report where you want to show all categories (regardless of whether matching rows
exist in other tables) or all customers (regardless of whether a customer has placed
an order). Following is a small sample of the kinds of requests you can solve with an
OUTER JOIN.

Find Missing Values
Sometimes you just want to find what’s missing. You do so by using an OUTER
JOIN with a test for Null. Here are some “missing value” problems you can solve:

“What products have never been ordered?”
“Show me customers who have never ordered a helmet.”
“List entertainers who have never been booked.”
“Display agents who haven’t booked an entertainer.”
“Show me tournaments that haven’t been played yet.”
“List the faculty members not teaching a class.”
“Display students who have never withdrawn from a class.”
“Show me classes that have no students enrolled.”
“List ingredients not used in any recipe yet.”
“Display missing types of recipes.”

Find Partially Matched Information
Particularly for reports, it’s useful to be able to list all the rows from one or more
tables along with any matching rows from related tables. Here’s a sample of
“partially matched” problems you can solve with an OUTER JOIN:

“List all products and the dates for any orders.”
“Display all customers and any orders for bicycles.”
“Show me all entertainment styles and the customers who prefer those styles.”
“List all entertainers and any engagements they have booked.”

“List all bowlers and any games they bowled over 160.”
“Display all tournaments and any matches that have been played.”
“Show me all subject categories and any classes for all subjects.”
“List all students and the classes for which they are currently enrolled.”
“Display all faculty and the classes they are scheduled to teach.”
“List all recipe types, all recipes, and any ingredients involved.”
“Show me all ingredients and any recipes they’re used in.”

Sample Statements
You now know the mechanics of constructing queries using OUTER JOIN and have
seen some of the types of requests you can answer with an OUTER JOIN. Let’s look
at a fairly robust set of samples, all of which use OUTER JOIN. These examples
come from each of the sample databases, and they illustrate the use of the OUTER
JOIN to find either missing values or partially matched values.
We’ve also included sample result sets that would be returned by these operations
and placed them immediately after the SQL syntax line. The name that appears
immediately above a result set is the name we gave each query in the sample data on
the companion website for the book, www.informit.com/title/9780321992475. We
stored each query in the appropriate sample database (as indicated within the
example) and prefixed the names of the queries relevant to this chapter with “CH09.”
You can follow the instructions in the Introduction of this book to load the samples
onto your computer and try them.

 Note
Because many of these examples use complex JOINs, the optimizer for your
database system might choose a different way to solve these queries. For this
reason, the first few rows might not exactly match the result you obtain, but
the total number of rows should be the same. To simplify the process, we have
combined the Translation and Clean Up steps for all the following examples.

Sales Orders Database

“What products have never been ordered?”

Translation/Clean Up
Select product number and product name from the products table
left outer joined with the order details table on products.product

http://www.informit.com/title/9780321992475

number in the products table matches = order_details.product
number in the order details table where the order detail order
number is null

SQL

SELECT Products.ProductNumber,
 Products.ProductName
FROM Products LEFT OUTER JOIN Order_Details
ON Products.ProductNumber =
 Order_Details.ProductNumber
WHERE Order_Details.OrderNumber IS NULL

CH09_Products_Never_Ordered (2 rows)

“Display all customers and any orders for bicycles.”

Translation 1
Select customer full name, order date, product name, quantity
ordered, and quoted price from the customers table left outer joined
with the orders table on customer ID, then joined with the order
details table on order number, then joined with the products table on
product number, then finally joined with the categories table on
category ID where category description is ‘Bikes’

Translation 2/Clean Up
Select customer full name, order date, product name, quantity
ordered, and quoted price from the customers table left outer joined
with (Select customer ID, order date, product name, quantity
ordered, and quoted price from the orders table inner joined with the
order details table on orders.order number in the orders table
matches = order_details.order number in the order details table, then
joined with the products table on order_details.product number in
the order details table matches = products.product number in the
products table, then finally joined with the categories table on
categories.category ID in the categories table matches =
products.category ID in the products table where category
description is = “Bikes”) as rd on customers.customer ID in the
customers table matches = rd.customerID in the embedded SELECT

statement

 Note
Because we’re looking for specific orders (bicycles), we split the translation
process into two steps to show that the orders need to be filtered before
applying an OUTER JOIN.

SQL

SELECT Customers.CustFirstName || ' ' ||
 Customers.CustLastName AS CustFullName,
 RD.OrderDate, RD.ProductName,
 RD.QuantityOrdered, RD.QuotedPrice
FROM Customers
LEFT OUTER JOIN
 (SELECT Orders.CustomerID, Orders.OrderDate,
 Products.ProductName,
 Order_Details.QuantityOrdered,
 Order_Details.QuotedPrice
 FROM ((Orders
 INNER JOIN Order_Details
 ON Orders.OrderNumber =
 Order_Details.OrderNumber)
 INNER JOIN Products
 ON Order_Details.ProductNumber =
 Products.ProductNumber)
 INNER JOIN Categories
 ON Categories.CategoryID =
 Products.CategoryID
 WHERE Categories.CategoryDescription =
 'Bikes')
 AS RD
ON Customers.CustomerID = RD.CustomerID

 Note
This request is really tricky because you want to list all customers OUTER
JOINed with only the orders for bikes. If you turn Translation 1 directly into
SQL, you won’t find any of the customers who have not ordered a bike! An
OUTER JOIN from Customers to Orders will return all customers and any
orders. When you add the filter to select only bike orders, that’s all you will
get—customers who ordered bikes.
Translation 2 shows you how to do it correctly—create an inner result set that
returns only orders for bikes, and then OUTER JOIN that with Customers to
get the final answer.

CH09_All_Customers_And_Any_Bike_Orders (914 rows)

(Looks like William Thompson is a really good customer!)

Entertainment Agency Database

“List entertainers who have never been booked.”

Translation/Clean Up
Select entertainer ID and entertainer stage name from the
entertainers table left outer joined with the engagements table on
entertainers.entertainer ID in the entertainers table matches =
engagements.entertainer ID in the engagements table where
engagement number is null

SQL

SELECT Entertainers.EntertainerID,
 Entertainers.EntStageName
FROM Entertainers
LEFT OUTER JOIN Engagements
ON Entertainers.EntertainerID =
 Engagements.EntertainerID
WHERE Engagements.EngagementNumber IS NULL

CH09_Entertainers_Never_Booked (1 row)

“Show me all musical styles and the customers who prefer those styles.”

Translation/Clean Up
Select style ID, style name, customer ID, customer first name, and
customer last name from the musical styles table left outer joined
with (the musical preferences table inner joined with the customers
table on musical_preferences.customer ID in the musical
preferences table matches = customers.customer ID in the customers
table) on musical_styles.style ID in the musical styles table matches
= musical_preferences.style ID in the musical preferences table

SQL

SELECT Musical_Styles.StyleID,
 Musical_Styles.StyleName,
 Customers.CustomerID,
 Customers.CustFirstName,
 Customers.CustLastName
FROM Musical_Styles
LEFT OUTER JOIN (Musical_Preferences
 INNER JOIN Customers
 ON Musical_Preferences.CustomerID =
 Customers.CustomerID)
ON Musical_Styles.StyleID =
 Musical_Preferences.StyleID

CH09_All_Styles_And_Any_Customers (41 rows)

(Looks like nobody likes 50s music!)

 Note
We very carefully phrased the FROM clause to influence the database system
to first perform the INNER JOIN between Musical_Preferences and
Customers, and then OUTER JOINed that with Musical_Styles. If your
database tends to process JOINs from left to right, you might have to state the
FROM clause with the INNER JOIN first followed by a RIGHT OUTER
JOIN to Musical_Styles. In Microsoft Office Access, we had to state the
INNER JOIN as an embedded SELECT statement to get it to return the
correct answer.

School Scheduling Database

“List the faculty members not teaching a class.”

Translation/Clean Up
Select staff first name and staff last name from the staff table left
outer joined with the faculty classes table on staff.staff ID in the
staff table matches = faculty_classes.staff ID in the faculty classes
table where class ID is null

SQL

SELECT Staff.StfFirstName, Staff.StfLastName,
FROM Staff
LEFT OUTER JOIN Faculty_Classes
ON Staff.StaffID = Faculty_Classes.StaffID
WHERE Faculty_Classes.ClassID IS NULL

CH09_Staff_Not_Teaching (5 rows)

“Display students who have never withdrawn from a class.”

Translation/Clean Up
Select student full name from the students table left outer joined
with (Select student ID from the student schedules table inner joined
with the student class status table on student_class_status.class
status in the student class status table matches =
student_schedules.class status in the student schedules table where
class status description is = ‘withdrew’) as withdrew on
students.student ID in the students table matches = withdrew.student
ID in the embedded SELECT statement where the
student_schedules.student ID in the student schedules table is null

SQL

SELECT Students.StudLastName || ', ' ||
 Students.StudFirstName AS StudFullName
FROM Students
LEFT OUTER JOIN
 (SELECT Student_Schedules.StudentID
 FROM Student_Class_Status
 INNER JOIN Student_Schedules
 ON Student_Class_Status.ClassStatus =
 Student_Schedules.ClassStatus
 WHERE Student_Class_Status.ClassStatus
 Description = 'withdrew')
 AS Withdrew
ON Students.StudentID = Withdrew.StudentID
WHERE Withdrew.StudentID IS NULL

 Note
This is another example where you must apply the filter on “withdrew” in an
embedded SELECT statement. If you use that filter in the WHERE clause of
the main query, you will get no results. Remember that when you need to
apply a filter to the “right” side of a “left” join (or vice-versa), you must do it
in an embedded SELECT statement.

CH09_Students_Never_Withdrawn (16 rows)

“Show me all subject categories and any classes for all subjects.”

Translation/Clean Up
Select category description, subject name, classroom ID, start date,
start time, and duration from the categories table left outer joined
with the subjects table on categories.category ID in the categories
table matches = subjects.category ID in the subjects table, then left
outer joined with the classes table on subjects.subject ID in the
subjects table matches = classes.subject ID in the classes table

SQL

SELECT Categories.CategoryDescription,
 Subjects.SubjectName, Classes.ClassroomID,
 Classes.StartDate, Classes.StartTime,
 Classes.Duration
FROM (Categories
LEFT OUTER JOIN Subjects
ON Categories.CategoryID = Subjects.CategoryID)
LEFT OUTER JOIN Classes
ON Subjects.SubjectID = Classes.SubjectID

 Note
We were very careful again to construct the sequence and nesting of JOINs to
be sure we got the answer we expected.

CH09_All_Categories_All_Subjects_Any_Classes (145 rows)

Further down in the result set, you’ll find no classes scheduled for Introduction to
Business, Developing a Feasibility Plan, Introduction to Entrepreneurship, and
Information Technology I and II. You’ll also find no subjects scheduled for
categories Psychology, French, or German.

Bowling League Database

“Show me tournaments that haven’t been played yet.”

Translation/Clean Up
Select tourney ID, tourney date, and tourney location from the
tournaments table left outer joined with the tourney matches table
on tournaments.tourney ID in the tournaments table matches =
tourney_matches.tourney ID in the tourney matches table where
match ID is null

SQL

SELECT Tournaments.TourneyID,
 Tournaments.TourneyDate,
 Tournaments.TourneyLocation
FROM Tournaments
LEFT OUTER JOIN Tourney_Matches
ON Tournaments.TourneyID =
 Tourney_Matches.TourneyID
WHERE Tourney_Matches.MatchID IS NULL

CH09_Tourney_Not_Yet_Played (6 rows)

“List all bowlers and any games they bowled over 180.”

Translation 1
Select bowler name, tourney date, tourney location, match ID, and
raw score from the bowlers table left outer joined with the bowler
scores table on bowler ID, then inner joined with the tourney
matches table on match ID, then finally inner joined with the
tournaments table on tournament ID where raw score in the bowler
scores table is greater than 180

Can you see why the above translation won’t work? You need a filter on one of the
tables that is on the right side of the left join, so you need to put the filter in an
embedded SELECT statement. Let’s restate the Translation step, clean it up, and
solve the problem.

Translation 2/Clean Up
Select bowler name, tourney date, tourney location, match ID, and
raw score from the bowlers table left outer joined with (Select
tourney date, tourney location, match ID, bowler ID, and raw score
from the bowler scores table inner joined with the tourney matches
table on bowler_scores.match ID in the bowler scores table matches

= tourney_matches.match ID in the tourney matches table, then
inner joined with the tournaments table on tournaments.tournament
ID in the tournaments table matches = tourney_matches.tournament
ID in the tourney matches table where raw score is greater than >
180) as ti on bowlers.bowler ID in the bowlers table matches =
ti.bowler ID in the embedded SELECT statement

SQL

SELECT Bowlers.BowlerLastName || ', ' ||
 Bowlers.BowlerFirstName AS BowlerName,
 TI.TourneyDate, TI.TourneyLocation,
 TI.MatchID, TI.RawScore
FROM Bowlers
LEFT OUTER JOIN
 (SELECT Tournaments.TourneyDate,
 Tournaments.TourneyLocation,
 Bowler_Scores.MatchID,
 Bowler_Scores.BowlerID,
 Bowler_Scores.RawScore
 FROM (Bowler_Scores
 INNER JOIN Tourney_Matches
 ON Bowler_Scores.MatchID =
 Tourney_Matches.MatchID)
 INNER JOIN Tournaments
 ON Tournaments.TourneyID =
 Tourney_Matches.TourneyID
 WHERE Bowler_Scores.RawScore > 180)
 AS TI
ON Bowlers.BowlerID = TI.BowlerID

CH09_All_Bowlers_And_Scores_Over_180 (106 rows)

 Note
You guessed it! This is another example where you must build the filtered
INNER JOIN result set first and then OUTER JOIN that with the table from
which you want “all” rows.

Recipes Database

“List ingredients not used in any recipe yet.”

Translation/Clean Up
Select ingredient name from the ingredients table left outer joined
with the recipe ingredients table on ingredients.ingredient ID in the
ingredients table matches = recipe_ingredients.ingredient ID in the
recipe ingredients table where recipe ID is null

SQL

SELECT Ingredients.IngredientName
FROM Ingredients
LEFT OUTER JOIN Recipe_Ingredients

ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID
WHERE Recipe_Ingredients.RecipeID IS NULL

CH09_Ingredients_Not_Used (20 rows)

“I need all the recipe types, and then all the recipe names, and then any
matching ingredient step numbers, ingredient quantities, and ingredient
measurements, and finally all ingredient names from my recipes database,
sorted by recipe class description in descending order, then by recipe title and
recipe sequence number.”

Translation/Clean Up
Select the recipe class description, recipe title, ingredient name,
recipe sequence number, amount, and measurement description
from the recipes table left outer joined with the recipe ingredients
table on recipes.recipe ID in the recipes table matches =
recipe_ingredients.recipe ID in the recipe ingredients table, then
inner joined with the measurements table on
measurements.measurement amount ID in the measurements table
matches = recipe_ingredients.measurement amount ID in the recipe
ingredients table, and then full outer joined with the ingredients
table on ingredients.ingredient ID in the ingredients table matches =
recipe_ingredients.ingredient ID in the recipe ingredients table, then
finally full outer joined with the recipe classes table on

recipe_classes.recipe class ID in the recipe classes table matches =
recipes.recipe class ID, sorted order by RecipeClassDescription
descending, RecipeTitle, and RecipeSeqNo.

SQL

SELECT Recipe_Classes.RecipeClassDescription,
 Recipes.RecipeTitle,
 Ingredients.IngredientName,
 Recipe_Ingredients.RecipeSeqNo,
 Recipe_Ingredients.Amount,
 Measurements.MeasurementDescription
FROM (((Recipe_Classes
FULL OUTER JOIN Recipes
 ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID)
 LEFT OUTER JOIN Recipe_Ingredients
 ON Recipes.RecipeID =
 Recipe_Ingredients.RecipeID)
 INNER JOIN Measurements
 ON Measurements.MeasureAmountID =
 Recipe_Ingredients.MeasureAmountID)
 FULL OUTER JOIN Ingredients
 ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID
ON Recipe_Classes.RecipeClassID =
 Recipes.RecipeClassID
ORDER BY RecipeClassDescription Desc,
RecipeTitle, RecipeSeqNo

 Note
This sample is a request you saw us solve in the section on FULL OUTER
JOIN. We decided to include it here so that you can see the actual result. You
won’t find this query saved using this syntax in the Microsoft Access or
MySQL version of the sample database because neither product supports a
FULL OUTER JOIN. Instead, you can find this problem solved with a
UNION of two OUTER JOIN queries that achieves the same result. You’ll
learn about using UNION in the next chapter. The result shown here is what
you’ll see when you run the query in Microsoft SQL Server.

CH09_All_Recipe_Classes_All_Recipes (109 rows)

 Note
At the thirteenth row, you’ll find the Recipe Class “Soup” with no recipes or
ingredients, and at the end of the output, you’ll find a number of ingredients
beginning with Bacon and Blue Cheese that have no Recipe Class or Recipe.

Summary
In this chapter, we led you through the world of OUTER JOINs. We began by
defining an OUTER JOIN and comparing it to the INNER JOIN you learned about
in Chapter 8.
We next explained how to construct a LEFT or RIGHT OUTER JOIN, beginning
with simple examples using two tables, and then progressing to embedding SELECT
statements and constructing statements using multiple JOINs. We showed how an
OUTER JOIN combined with a Null test is equivalent to the difference (EXCEPT)
operation we covered in Chapter 7. We also discussed some of the difficulties you
might encounter when constructing statements using multiple OUTER JOINs. We
closed the discussion of the LEFT and RIGHT OUTER JOIN with a problem
requiring multiple OUTER JOINs that can’t be solved with only LEFT or RIGHT.
In our discussion of FULL OUTER JOIN, we showed how you might need to use

this type of JOIN in combination with other INNER and OUTER JOINs to get the
correct answer. We also briefly explained a variant of the FULL OUTER JOIN—the
UNION JOIN.
We explained how OUTER JOINs are useful and listed a variety of requests that you
can solve using OUTER JOINs. The rest of the chapter showed nearly a dozen
examples of how to use OUTER JOIN. We provided several examples for each of
the sample databases and showed you the logic behind constructing the solution
statement for each request.
The following section presents a number of requests that you can work out on your
own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need
for each request and then check your answer with the query we saved in the samples.
Don’t worry if your syntax doesn’t exactly match the syntax of the queries we saved
—as long as your result set is the same.

Sales Orders Database
1. “Show me customers who have never ordered a helmet.”

(Hint: This is another request where you must first build an INNER JOIN to
find all orders containing helmets and then do an OUTER JOIN with
Customers.)
You can find the solution in CH09_Customers_No_Helmets (3 rows).

2. “Display customers who have no sales rep (employees) in the same ZIP
Code.”
You can find the solution in CH09_Customers_No_Rep_Same_Zip (18 rows).

3. “List all products and the dates for any orders.”
You can find the solution in CH09_All_Products_Any_Order_Dates (2,681
rows).

Entertainment Agency Database
1. “Display agents who haven’t booked an entertainer.”

You can find the solution in CH09_Agents_No_Contracts (1 row).
2. “List customers with no bookings.”

You can find the solution in CH09_Customers_No_Bookings (2 rows).

3. “List all entertainers and any engagements they have booked.”
You can find the solution in CH09_All_Entertainers_And_Any_Engagements
(112 rows).

School Scheduling Database
1. “Show me classes that have no students enrolled.”

(Hint: You need only “enrolled” rows from Student_Classes, not “completed”
or “withdrew.”)
You can find the solution in CH09_Classes_No_Students_Enrolled (118 rows).

2. “Display subjects with no faculty assigned.”
You can find the solution in CH09_Subjects_No_Faculty (1 row).

3. “List students not currently enrolled in any classes.”
(Hint: You need to find which students have an “enrolled” class status in
student schedules and then find the students who are not in this set.)
You can find the solution in CH09_Students_Not_Currently_Enrolled (2
rows).

4. “Display all faculty and the classes they are scheduled to teach.”
You can find the solution in CH09_All_Faculty_And_Any_Classes (135
rows).

Bowling League Database
1. “Display matches with no game data.”

You can find the solution in CH09_Matches_Not_Played_Yet (1 row).
2. “Display all tournaments and any matches that have been played.”

You can find the solution in CH09_All_Tourneys_Match_Results (174 rows).

Recipes Database
1. “Display missing types of recipes.”

You can find the solution in CH09_Recipe_Classes_No_Recipes (1 row).
2. “Show me all ingredients and any recipes they’re used in.”

You can find the solution in CH09_All_Ingredients_Any_Recipes (108 rows).
3. “List the salad, soup, and main course categories and any recipes.”

You can find the solution in CH09_Salad_Soup_Main_Courses (9 rows).
4. “Display all recipe classes and any recipes.”

You can find the solution in
CH09_All_RecipesClasses_And_Matching_Recipes (16 rows).

10. UNIONs

“I beseech those whose piety will permit them reverently
to petition, that they will pray for this union.”

—Sam Houston, Texas hero

Topics Covered in This Chapter
What Is a UNION?
Writing Requests with UNION
Uses for UNION
Sample Statements
Summary
Problems for You to Solve

In Chapter 7, “Thinking in Sets,” we introduced three fundamental set operations—
intersection, difference, and union. Chapter 8, “INNER JOINs,” showed how to
perform the equivalent of an intersection operation by linking result sets on key
values using INNER JOIN. Chapter 9, “OUTER JOINs,” discussed how to ask for a
set difference by using an OUTER JOIN and testing for the Null value. This chapter
explains how to do the third operation, a UNION.

What Is a UNION?
A UNION lets you select the rows from two or more similar result sets and combine
them into a single result set. Notice that we said “rows,” not “columns.” In Chapters
8 and 9, you learned how to bring together columns from two or more result sets
using a JOIN. When you ask for a JOIN, the columns from the result sets appear side
by side. For example, if you ask for the RecipeClassDescription from the
Recipe_Classes table and the RecipeTitle from the Recipes table with a JOIN, you
get a result set that looks like Figure 10–1.

Figure 10–1 Fetching data from two tables using a JOIN
Let’s first take a quick look at the syntax for a basic UNION, as shown in Figure 10–
2.

Figure 10–2 The syntax diagram for a basic UNION statement
A UNION interleaves the rows from one result set with the rows from another result
set. You define each result set by writing a SELECT statement that can include not
only a complex JOIN in the FROM clause but also WHERE, HAVING, and GROUP
BY clauses. You then link them with the UNION keyword. (You’ll learn about the
GROUP BY clause in Chapter 13, “Grouping Data,” and the HAVING clause in
Chapter 14, “Filtering Grouped Data.”) If you ask for RecipeClassDescription from
the Recipe_Classes table UNION RecipeTitle from the Recipes table, you get an
answer that looks like Figure 10–3.

Figure 10–3 Fetching data from two tables using a UNION

Notice that we get only one column in the result set. The name of the column is
inherited from the column in the first table we chose to include in the SELECT
expression, but it includes information on both RecipeTitle (Asparagus) and
RecipeClassDescription (Dessert). Instead of appearing side by side, the data from
the two columns is interleaved vertically.
If you studied the diagram in Figure 10–2, you’re probably wondering what the
optional keyword ALL is about. When you leave out that keyword, your database
system eliminates any rows that have duplicate values. For example, if there’s a
RecipeClassDescription of Dessert and a RecipeTitle of Dessert, you get only one
Dessert row in the final result set. Conversely, when you include the ALL keyword,
no duplicate rows are removed. Note that UNION ALL is likely to be much more
efficient because your database system doesn’t have to do extra work to look for and
eliminate any duplicate rows. If you’re certain that the queries you are combining
with UNION don’t contain any duplicate rows (or you don’t care about duplicates),
then always use the ALL keyword.
To perform a UNION, the two result sets must meet certain requirements. First, each
of the two SELECT statements that you’re linking with a UNION must have the
same number of output columns specified after the SELECT keyword so that the
result set will have the same number of columns. Secondly, each corresponding
column must be what the SQL Standard calls “comparable.”

 Note
The full SQL:2011 Standard allows you to UNION dissimilar sets. However,
most commercial implementations support the basic or entry-level standard
we’re describing here. You might find that your database system allows you
to use UNION in more creative ways.

As discussed in Chapter 6, “Filtering Your Data,” you should compare only
character values with character values, number values with number values, or
datetime values with datetime values. Although some database systems allow mixing
data types in a comparison, it really doesn’t make sense to compare a character value
such as “John” to a numeric value such as 55. If it makes sense to compare two
columns in a WHERE clause, then the columns are comparable. This is what the
SQL Standard means when it requires that a column from one result set that you
want to UNION with a column from another result set must be of a comparable data
type.

Writing Requests with UNION
In the previous chapters on INNER JOIN and OUTER JOIN, we studied how to
construct a SELECT statement using the SELECT, FROM, and WHERE clauses.
The focus of those two chapters was on constructing complex JOINs within the
FROM clause. To construct a UNION, you now have to graduate to a SELECT
expression that links two or more SELECT statements with the UNION operator.
Each SELECT statement can have as simple or complex a FROM clause as you need
to get the job done.

Using Simple SELECT Statements
Let’s start simply by creating a UNION of two simple SELECT statements that use a
single table in the FROM clause. Figure 10–4 shows the syntax diagram for a
UNION of two simple SELECT statements.

Figure 10–4 Using a UNION to combine two simple SELECT statements

Unlike when you ask for a JOIN, all the action happens in the UNION operator that
you specify to combine the two SELECT statements. As mentioned earlier, if you
leave out the optional ALL keyword, your database system eliminates any duplicate
rows it finds. This means that the result set from your request might have fewer rows
than the sum of the number of rows returned from each result set participating in the
UNION. On the other hand, if you include the ALL keyword, the number of rows in
the result set will be equal to the sum of the number of rows in the two participating
result sets.

 Note
The SQL Standard also defines a CORRESPONDING clause that you can
place after the UNION keyword to indicate that you want the UNION
performed by comparing columns that have the same name in each result set.
You can also further restrict the comparison set by including a specific list of
column names after the CORRESPONDING keyword. We could not find a
major commercial implementation of this feature, but you might find it
supported in future releases of the product you use.

Let’s create a simple UNION—a mailing list for customers and vendors from the
Sales Orders sample database. Figure 10–5 shows the two tables needed.

Figure 10–5 The Customers and Vendors tables from the Sales Orders sample
database

Notice that there’s no “natural” relationship between these two tables, but they do
both contain columns that have similar meanings and data types. In a mailing list,
you need a name, street address, city, state, and ZIP Code. Because all these fields in
both tables are comparable character data, we don’t need to worry about data types.
(Some database designers might make ZIP Code a number, but that’s OK too, as
long as the ZIP Code column from one table is a data type that’s comparable with the
data type of the ZIP Code column from the second table.)
One problem is that the name in the Vendors table is a single column, but there are
two name fields in Customers: CustFirstName and CustLastName. In order to come
up with the same number of columns from both tables, we need to build an
expression on the two columns from Customers to create a single column expression
to UNION with the single name column from Vendors. Let’s build the query.

 Note
Throughout this chapter, we use the “Request/Translation/Clean Up/SQL”

technique introduced in Chapter 4, “Creating a Simple Query.”

“Build a single mailing list that consists of the name, address, city, state, and
ZIP Code for customers and the name, address, city, state, and ZIP Code for
vendors.”

Translation
Select customer full name, customer address, customer city,
customer state, and customer ZIP Code from the customers table
combined with vendor name, vendor address, vendor city, vendor
state, and vendor ZIP Code from the vendors table

Clean Up
Select customer full name, customer address, customer city,
customer state, and customer ZIP Code from the customers table
combined with union Select vendor name, vendor address, vendor
city, vendor state, and vendor ZIP Code from the vendors table

SQL

SELECT Customers.CustLastName || ', ' ||
 Customers.CustFirstName AS MailingName,
 Customers.CustStreetAddress, Customers.CustCity,
 Customers.CustState, Customers.CustZipCode
FROM Customers UNION SELECT Vendors.VendName,
 Vendors.VendStreetAddress, Vendors.VendCity,
 Vendors.VendState, Vendors.VendZipCode
FROM Vendors

Notice that each SELECT statement generates five columns, but we had to use an
expression to combine the two name columns in the Customers table into a single
column. All the columns from both SELECT statements are character data, so we
have no problem with their being comparable.
You might be wondering: “What are the names of the columns that are output from
this query?” Good question! The SQL Standard specifies that when the names of
respective columns are the same (for example, the name of the fourth column of the
first SELECT statement is the same as the name of the fourth column of the second
SELECT statement), that’s the name of the output column. If the column names are
different (as in the example we just constructed), the SQL Standard states: “If a
<query expression body> immediately contains UNION or INTERSECT, and the
<column name>s of a pair of corresponding columns of the operand tables are not
equivalent, then the result column has an implementation-dependent <column
name>.”
In plain English, this means that your database system decides what names to assign

to the output columns. Your system is compliant with the SQL Standard as long as
the name doesn’t appear in some other column position in one of the result sets
participating in the UNION. Most commercial database systems default to the names
of the columns in the first SELECT statement. For the previous example, this means
that you’ll see column names of MailingName, CustStreetAddress, CustCity,
CustState, and CustZipCode.
Notice that we did not include the ALL keyword in the UNION. Although it is
unlikely that a customer last name and first name will match a vendor name (never
mind the address, city, state, and ZIP Code), we wanted to avoid duplicate mailing
addresses. If you’re certain that you won’t have any duplicates in two or more
UNION sets, you can include the ALL keyword. Using ALL most likely will cause
the request to run faster because your database system won’t have to do extra work
attempting to remove duplicates.

Combining Complex SELECT Statements
As you might imagine, the SELECT statements you combine with a UNION
operator can be as complex as you need to get the job done. The only restriction is
that both SELECT statements must ultimately provide the same number of columns,
and the columns in each relative position must be comparable data types.
Suppose you want a list of all the customers and the bikes they ordered combined
with all the vendors and the bikes they supply. First, let’s identify all the tables we
need. Figure 10–6 (on page 352) shows the tables needed to link customers to
products.

Figure 10–6 Table relationships to link customers to the products they ordered

Looks like we need to JOIN four tables. If we want to find vendors and the products
they sell, we need the tables shown in Figure 10–7 (on page 352).

Figure 10–7 Table relationships to link vendors to the products they sell
As discussed in Chapter 8, you can nest multiple JOIN clauses to link several tables
to gather the information you need to solve a complex problem. For review, Figure
10–8 (on page 354) shows the syntax for nesting three tables.

Figure 10–8 The syntax for JOINing three tables
We now have all the pieces needed to solve the puzzle. We can build a compound
INNER JOIN to fetch the customer information, insert a UNION keyword, and then
build the compound INNER JOIN for the vendor information.

“List customers and the bikes they ordered combined with vendors and the bikes
they sell.”

Translation
Select customer full name and product name from the customers
table joined with the orders table on customer ID in the customers
table matches customer ID in the orders table, then joined with the
order details table on order number in the orders table matches order
number in the order details table, and then joined with the products
table on product number in the products table matches product
number in the order details table where product name contains
‘bike’, combined with select vendor name and product name from
the vendors table joined with the product vendors table on vendor
ID in the vendors table matches vendor ID in the product vendors
table, and then joined with the products table on product number in
the products table matches product number in the product vendors
table where product name contains ‘bike’

Clean Up
Select customer full name and product name from the customers
table joined with the orders table on customers.customer ID in the
customers table matches = orders.customer ID in the orders table,
then joined with the order details table on orders.order number in
the orders table matches = order_details.order number in the order
details table, and then joined with the products table on
products.product number in the products table matches =
order_details.product number in the order details table where
product name contains like ‘%bike%’, combined with union select
vendor name and product name from the vendors table joined with
the product vendors table on vendors.vendor ID in the vendors table
matches = product_vendors.vendor ID in the product vendors table,
and then joined with the products table on products.product number
in the products table matches = product_vendors.product number in
the product vendors table where product name contains like
‘%bike%’

SQL

SELECT Customers.CustLastName || ', ' ||
 Customers.CustFirstName AS FullName,
 Products.ProductName, 'Customer' AS RowID
FROM ((Customers INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID)
INNER JOIN Order_Details
ON Orders.OrderNumber = Order_Details.OrderNumber)
INNER JOIN Products
ON Products.ProductNumber =
 Order_Details.ProductNumber

WHERE Products.ProductName LIKE '%bike%'
UNION
SELECT Vendors.VendName, Products.ProductName,
 'Vendor' AS RowID
FROM (Vendors INNER JOIN Product_Vendors
ON Vendors.VendorID = Product_Vendors.VendorID)
INNER JOIN Products
ON Products.ProductNumber =
 Product_Vendors.ProductNumber
WHERE Products.ProductName LIKE '%bike%'

Well, that’s about the size of the King Ranch, but it gets the job done! Notice that we
also threw in a character string literal that we named RowID in both SELECT
statements so that it will be easy to see which rows originate from customers and
which ones come from vendors. You might be tempted to insert a DISTINCT
keyword in the first SELECT statement because a really good customer might have
ordered a particular bike model more than once. Because we didn’t use the ALL
keyword on the UNION, the request will eliminate any duplicates anyway. If you
add DISTINCT, you might be asking your database system to perform extra work to
eliminate duplicates twice!
When you need to build a UNION query, we recommend that you build the separate
SELECT statements first. It’s easy then to copy and paste the syntax for each
SELECT statement into a new query, separating each statement with the UNION
keyword.

Using UNION More Than Once
So far, we have shown you only how to use a UNION to combine two result sets. In
truth, you can follow the second SELECT statement specification with another
UNION keyword and another SELECT statement. Although some implementations
limit the number of result sets you can combine with UNION, in theory, you can
keep adding UNION SELECT to your heart’s content.
Suppose you need to build a single mailing list from three different tables—
Customers, Employees, and Vendors—perhaps to create a combined list for holiday
greeting labels. Figure 10–9 shows a diagram of the syntax to build this list.

Figure 10–9 Creating a UNION of three tables
You can see that you need to create one SELECT statement to fetch all the names
and addresses from the Customers table, UNION that with a SELECT statement for
the same information from the Employees table, and finally UNION that with a
SELECT statement for names and addresses from the Vendors table. (To simplify
the process, we have combined the Translation and Clean Up steps in this example.)

“Create a single mailing list for customers, employees, and vendors.”

Translation/Clean Up
Select customer full name, customer street address, customer city,
customer state, and customer ZIP Code from the customers table
combined with union Select employee full name, employee street
address, employee city, employee state, and employee ZIP Code
from the employees table combined with union Select vendor name,
vendor street address, vendor city, vendor state, and vendor ZIP
Code from the vendors table

SQL

SELECT Customers.CustFirstName || ' ' ||

 Customers.CustLastName AS CustFullName,
 Customers.CustStreetAddress, Customers.CustCity,
 Customers.CustState, Customers.CustZipCode
FROM Customers
UNION
SELECT Employees.EmpFirstName || ' ' ||
 Employees.EmpLastName AS EmpFullName,
 Employees.EmpStreetAddress, Employees.EmpCity,
 Employees.EmpState, Employees.EmpZipCode
FROM Employees
UNION
SELECT Vendors.VendName, Vendors.VendStreetAddress,
 Vendors.VendCity, Vendors.VendState,
 Vendors.VendZipCode
FROM Vendors

Of course, if you want to filter the mailing list for a particular city, state, or range of
ZIP Codes, you can add a WHERE clause to any or all of the SELECT statements.
If, for example, you want to create a list for the customers, employees, and vendors
only in a particular state, you must add a WHERE clause to each of the embedded
SELECT statements. You could also apply a filter to just one of the SELECT
statements, for example, to create a list for vendors in the state of Texas combined
with all customers and all employees.

Sorting a UNION
What about sorting the result of a UNION? You’ll find on many database systems
that the result set appears as though it is sorted by the output columns from left to
right. For example, in the UNION of three tables we just built in the previous
section, the rows will appear in sequence first by name, then by street address, and so
on.
To keep the postal service happy (and perhaps get a discount for a large mailing),
sort your rows by ZIP Code. You can add an ORDER BY clause to do this, but the
trick is that this clause must appear at the very end after the last SELECT statement.
The ORDER BY applies to the result of the UNION, not the last SELECT statement.
Figure 10–10 shows how to do this.

Figure 10–10 Adding a sorting specification to a UNION query

As the diagram shows, you can loop through a UNION SELECT statement as many
times as you like to pick up all the result sets you need to combine, but the ORDER
BY clause must appear at the end. You might ask, “What do I use for column_name
or column_# in the ORDER BY clause?” Remember that you’re sorting the output of
all the previous parts of the SELECT expression. As discussed earlier, the output
names of the columns are “implementation-dependent,” but most database systems
use the column names generated by the first SELECT statement.
You can also specify the relative column number, starting with 1, as the first output
column. In a query that outputs name, street address, city, state, and ZIP Code, you
need to specify a column_# of 5 (ZIP Code is the fifth column) to sort by zip.
Let’s sort the mailing list query using both techniques. Here’s the correct syntax for
sorting by column name:

SQL

SELECT Customers.CustFirstName || ' ' ||
 Customers.CustLastName AS CustFullName,
 Customers.CustStreetAddress, Customers.CustCity,
 Customers.CustState, Customers.CustZipCode
FROM Customers
UNION
SELECT Employees.EmpFirstName || ' ' ||
 Employees.EmpLastName AS EmpFullName,
 Employees.EmpStreetAddress, Employees.EmpCity,
 Employees.EmpState, Employees.EmpZipCode
FROM Employees
UNION
SELECT Vendors.VendName, Vendors.VendStreetAddress,
 Vendors.VendCity, Vendors.VendState,
 Vendors.VendZipCode
FROM Vendors
ORDER BY CustZipCode

Of course, we’re assuming that the name of the output column we want to sort is the
name of the column from the first SELECT statement. Using a relative column
number to specify the sort looks like this:

SQL

SELECT Customers.CustFirstName || ' ' ||
 Customers.CustLastName AS CustFullName,
 Customers.CustStreetAddress, Customers.CustCity,
 Customers.CustState, Customers.CustZipCode
FROM Customers
UNION
SELECT Employees.EmpFirstName || ' ' ||
 Employees.EmpLastName AS EmpFullName,
 Employees.EmpStreetAddress, Employees.EmpCity,
 Employees.EmpState, Employees.EmpZipCode
FROM Employees
UNION

SELECT Vendors.VendName, Vendors.VendStreetAddress,
 Vendors.VendCity, Vendors.VendState,
 Vendors.VendZipCode
FROM Vendors
ORDER BY 5

Uses for UNION
You probably won’t use UNION as much as INNER JOIN and OUTER JOIN. You
most likely will use UNION to combine two or more similar result sets from
different tables. Although you can use UNION to combine two result sets from the
same table or set of tables, you usually can solve those sorts of problems with a
simple SELECT statement containing a more complex WHERE clause. We include a
couple of examples in the “Sample Statements” section and show you the more
efficient way to solve the same problem with a WHERE clause instead of a UNION.
Here’s just a small sample of the types of problems you can solve with UNION
using the sample databases:

“Show me all the customer and employee names and addresses.”
“List all the customers who ordered a bicycle combined with all the customers
who ordered a helmet.” (This is one of those problems that can also be solved
with a single SELECT statement and a complex WHERE clause.)

“Produce a mailing list for customers and vendors.”
“List the customers who ordered a bicycle together with the vendors who
provide bicycles.”

“Create a list that combines agents and entertainers.”
“Display a combined list of customers and entertainers.”
“Produce a list of customers who like contemporary music together with a list
of entertainers who play contemporary music.”

“Create a mailing list for students and staff.”
“Show me the students who have an average score of 85 or better in Art
together with the faculty members who teach Art and have a proficiency rating
of 9 or better.”

“Find the bowlers who had a raw score of 155 or better at Thunderbird Lanes
combined with bowlers who had a raw score of 140 or better at Bolero Lanes.”
(This is another problem that can also be solved with a single SELECT
statement and a complex WHERE clause.)

“List the tourney matches, team names, and team captains for the teams starting
on the odd lane together with the tourney matches, team names, and team
captains for the teams starting on the even lane.”

“Create an index list of all the recipe titles and ingredients.”
“Display a list of all ingredients and their default measurement amounts
together with ingredients used in recipes and the measurement amount for each
recipe.”

Sample Statements
You now know the mechanics of constructing queries using UNION and have seen
some of the types of requests you can answer with a UNION. Let’s take a look at a
fairly robust set of samples using UNION from each of the sample databases. These
examples illustrate the use of the UNION operation to combine sets of rows.
We’ve also included sample result sets that would be returned by these operations
and placed them immediately after the SQL syntax line. The name that appears
immediately above a result set is the name we gave each query in the sample data on
the companion website for this book, www.informit.com/title/9780321992475. We
stored each query in the appropriate sample database (as indicated within the
example), and we prefixed the names of the queries relevant to this chapter with
“CH10.” You can follow the instructions in the Introduction of this book to load the
samples onto your computer and try them.

 Note
Because many of these examples use complex JOINs, the optimizer for your
database system might choose a different way to solve these queries. For this
reason, the first few rows might not exactly match the result you obtain, but
the total number of rows should be the same. To simplify the process, we have
combined the Translation and Clean Up steps for all the following examples.

Sales Orders Database
“Show me all the customer and employee names and addresses, including any
duplicates, sorted by ZIP Code.”

Translation/Clean Up
Select customer first name, customer last name, customer street
address, customer city, customer state, and customer ZIP Code from
the customers table combined with union all Select employee first
name, employee last name, employee street address, employee city,
employee state, and employee ZIP Code from the employees table,
order by ZIP Code

http://www.informit.com/title/9780321992475

SQL

SELECT Customers.CustFirstName,
 Customers.CustLastName,
 Customers.CustStreetAddress, Customers.CustCity,
 Customers.CustState, Customers.CustZipCode
FROM Customers
UNION ALL
SELECT Employees.EmpFirstName,
 Employees.EmpLastName,
 Employees.EmpStreetAddress, Employees.EmpCity,
 Employees.EmpState, Employees.EmpZipCode
FROM Employees
ORDER BY CustZipCode

CH10_Customers_UNION_ALL_Employees (35 rows)

(Notice that Kirk DeGrasse must be both a customer and an employee.)

“List all the customers who ordered a bicycle combined with all the customers
who ordered a helmet.”

Translation/Clean Up
Select customer first name, customer last name, and the constant
‘Bike’ from the customers table joined with the orders table on
customers.customer ID in the customers table matches =
orders.customer ID in the orders table, then joined with the order
details table on orders.order number in the orders table matches =
order_details.order number in the order details table, and then joined
with the products table on product number in the products table

matches = order_details.product number in the order details table
where product name contains like ‘%bike%,’ combined with union
Select customer first name, customer last name, and the constant
‘Helmet’ from the customers table joined with the orders table on
customers.customer ID in the customers table matches =
orders.customer ID in the orders table, then joined with the order
details table on orders.order number in the orders table matches =
order_details.order number in the order details table, and then joined
with the products table on product number in the products table
matches = order_details.product number in the order details table
where product name contains like ‘%helmet%’

SQL

SELECT Customers.CustFirstName,
 Customers.CustLastName, 'Bike' AS ProdType
FROM ((Customers
INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID)
INNER JOIN Order_Details
ON Orders.OrderNumber = Order_Details.OrderNumber)
INNER JOIN Products
ON Products.ProductNumber =
 Order_Details.ProductNumber
WHERE Products.ProductName LIKE '%bike%'
UNION
SELECT Customers.CustFirstName,
 Customers.CustLastName, 'Helmet' AS ProdType
FROM ((Customers INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID)
INNER JOIN Order_Details
ON Orders.OrderNumber = Order_Details.OrderNumber)
INNER JOIN Products
ON Products.ProductNumber =
 Order_Details.ProductNumber
WHERE Products.ProductName LIKE '%helmet%'

CH10_Customer_Order_Bikes_UNION_Customer_Order_Helmets (52 rows)

Notice that this is one of those problems that can also be solved with a single
SELECT statement and a slightly more complex WHERE clause. The one advantage
of using a UNION is that it’s easy to add an artificial “set identifier” column (in this
case, the ProdType column) to each result set so that you can see which customers
came from which result set. However, most database systems solve a WHERE clause
—even one with complex criteria—much faster than they solve a UNION. Following
is the SQL to solve the same problem with a WHERE clause.

SQL

SELECT DISTINCT Customers.CustFirstName,
 Customers.CustLastName
FROM
 ((Customers INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID)
INNER JOIN Order_Details
ON Orders.OrderNumber = Order_Details.OrderNumber)
INNER JOIN Products
ON Products.ProductNumber =
 Order_Details.ProductNumber
WHERE Products.ProductName LIKE '%bike%'
OR Products.ProductName LIKE '%helmet%'

CH10_Customers_Bikes_Or_Helmets (27 rows)

 Note
You can see that you need a DISTINCT keyword to eliminate duplicates when
you don’t use UNION. Remember that UNION automatically eliminates
duplicates unless you specify UNION ALL. You can specify DISTINCT in
the UNION examples, but you’re asking your database system to do more
work than necessary.

Entertainment Agency Database

“Create a list that combines agents and entertainers.”

Translation/Clean Up
Select agent full name, and the constant ‘Agent’ from the agents
table combined with union Select entertainer stage name, and the
constant ‘Entertainer’ from the entertainers table

SQL

SELECT Agents.AgtLastName || ', ' ||
 Agents.AgtFirstName AS Name, 'Agent' AS Type
FROM Agents
UNION
SELECT Entertainers.EntStageName,
 'Entertainer' AS Type
FROM Entertainers

CH10_Agents_UNION_Entertainers (22 rows)

School Scheduling Database
“Show me the students who have a grade of 85 or better in Art together with the
faculty members who teach Art and have a proficiency rating of 9 or better.”

Translation/Clean Up
Select student first name aliased as FirstName, student last name
aliased as LastName, and grade aliased as Score from the students
table joined with the student schedules table on students.student ID
in the students table matches = student_schedules.student ID in the
student schedules table, then joined with the student class status
table on student_class_status.class status in the student class status
table matches = student_schedules.class status in the student
schedules table, then joined with the classes table on classes.class
ID in the classes table matches = student_schedules.class ID in the
student schedules table, and then joined with the subjects table on
subjects.subject ID in the subjects table matches = classes.subject
ID in the classes table where class status description is =
‘completed’ and grade is greater than or equal to >= 85 and category
ID is = ‘ART’ combined with union Select staff first name, staff last
name, and proficiency rating aliased as Score from the staff table
joined with the faculty subjects table on staff.staff ID in the staff

table matches = faculty_subjects.staff ID in the faculty subjects
table, and then joined with the subjects table on subjects.subject ID
in the subjects table matches = faculty_subjects.subject ID in the
faculty subjects table where proficiency rating is greater than > 8
and category ID is = ‘ART’

SQL

SELECT Students.StudFirstName AS FirstName,
 Students.StudLastName AS LastName,
 Student_Schedules.Grade AS Score,
 'Student' AS Type
FROM (((Students INNER JOIN Student_Schedules
ON Students.StudentID =
 Student_Schedules.StudentID)
INNER JOIN Student_Class_Status
ON Student_Class_Status.ClassStatus =
 Student_Schedules.ClassStatus)
INNER JOIN Classes
ON Classes.ClassID = Student_Schedules.ClassID)
INNER JOIN Subjects
ON Subjects.SubjectID = Classes.SubjectID
WHERE Student_Class_Status.ClassStatusDescription =
 'Completed'
AND Student_Schedules.Grade >= 85
AND Subjects.CategoryID = 'ART'
UNION
SELECT Staff.StfFirstName, Staff.StfLastName,
 Faculty_Subjects.ProficiencyRating AS Score,
 'Faculty' AS Type
FROM (Staff INNER JOIN Faculty_Subjects
ON Staff.StaffID = Faculty_Subjects.StaffID)
INNER JOIN Subjects
ON Subjects.SubjectID = Faculty_Subjects.SubjectID
WHERE Faculty_Subjects.ProficiencyRating > 8
AND Subjects.CategoryID = 'ART'

CH10_Good_Art_Students_And_Faculty (12 rows)

Bowling League Database

“List the tourney matches, team names, and team captains for the teams starting
on the odd lane together with the tourney matches, team names, and team
captains for the teams starting on the even lane, and sort by tournament date
and match number.”

Translation/Clean Up
Select tourney location, tourney date, match ID, team name, captain
name and the constant ‘Odd Lane’ from the tournaments table
joined with the tourney matches table on tournaments.tourney ID in
the tournaments table equals = tourney_matches.tourney ID in the
tourney matches table, then joined with the teams table on
tourney_matches.odd lane team ID in the tourney matches table
equals = teams.team ID in the teams table, and then joined with the
bowlers table on teams.captain ID in the teams table equals =
bowlers.bowler ID in the bowlers table, combined with union all
Select tourney location, tourney date, match ID, team name, captain
name and the constant ‘Even Lane’ from the tournaments table
joined with the tourney matches table on tournaments.tourney ID in
the tournaments table equals = tourney_matches.tourney ID in the
tourney matches table, then joined with the teams table on
tourney_matches.even lane team ID in the tourney matches table
equals = teams.team ID in the teams table, and then joined with the

bowlers table on teams.captain ID in the teams table equals =
bowlers.bowler ID in the bowlers table, order by tourney date 2, and
match ID 3

SQL

SELECT Tournaments.TourneyLocation,
 Tournaments.TourneyDate,
 Tourney_Matches.MatchID, Teams.TeamName,
 Bowlers.BowlerLastName || ', ' ||
 Bowlers.BowlerFirstName AS Captain,
 'Odd Lane' AS Lane
FROM ((Tournaments INNER JOIN Tourney_Matches
ON Tournaments.TourneyID =
 Tourney_Matches.TourneyID)
INNER JOIN Teams
ON Teams.TeamID =
 Tourney_Matches.OddLaneTeamID)
INNER JOIN Bowlers
ON Bowlers.BowlerID = Teams.CaptainID
UNION ALL
SELECT Tournaments.TourneyLocation,
 Tournaments.TourneyDate,
 Tourney_Matches.MatchID, Teams.TeamName,
 Bowlers.BowlerLastName || ', ' ||
 Bowlers.BowlerFirstName AS Captain,
 'Even Lane' AS Lane
FROM ((Tournaments INNER JOIN Tourney_Matches
ON Tournaments.TourneyID =
 Tourney_Matches.TourneyID)
INNER JOIN Teams
ON Teams.TeamID =
 Tourney_Matches.EvenLaneTeamID)
INNER JOIN Bowlers
ON Bowlers.BowlerID = Teams.CaptainID
ORDER BY 2, 3

Notice that the two SELECT statements are almost identical! The only difference is
the first SELECT statement links Tourney_Matches with Teams on
OddLaneTeamID, and the second uses EvenLaneTeamID. Also note that we decided
in the final solution to sort by relative column number (the second and third
columns) rather than column name (TourneyDate and MatchID). Finally, you can
use UNION ALL because a team is never going to compete against itself.

CH10_Bowling_Schedule (114 rows)

Recipes Database

“Create an index list of all the recipe classes, recipe titles, and ingredients.”

Translation/Clean Up
Select recipe class description, and the constant ‘Recipe Class’ from
the recipe classes table combined with union Select recipe title, and
the constant ‘Recipe’ from the recipes table combined with union
Select ingredient name, and the constant ‘Ingredient’ from the
ingredients table

SQL

SELECT Recipe_Classes.RecipeClassDescription
 AS IndexName, 'Recipe Class' AS Type
FROM Recipe_Classes
UNION
SELECT Recipes.RecipeTitle, 'Recipe' AS Type
FROM Recipes
UNION
SELECT Ingredients.IngredientName,
 'Ingredient' AS Type
FROM Ingredients

CH10_Classes_Recipes_Ingredients (101 rows)

Summary
We began the chapter by defining UNION and showing you the difference between
linking two tables with a JOIN and combining two tables with a UNION.
We next explained how to construct a simple UNION using two SELECT
statements, each of which asked for columns from a single table. We explained the
significance of the ALL keyword and recommended that you use it either when you
know the queries produce no duplicates or when you don’t care. We then progressed
to combining two complex SELECT statements that each used a JOIN on multiple
tables. Next we showed how to use UNION to combine more than two result sets.
We wrapped up our discussion of UNION syntax by showing how to sort the result.
We explained how UNION is useful and listed a variety of requests that you can
solve using UNION. The “Sample Statements” section showed you one or two
examples of how to use UNION in each of the sample databases, including the logic
behind constructing these requests.
The following section presents a number of requests that you can work out on your
own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need

for each request and then check your answer with the query we saved in the samples.
Don’t worry if your syntax doesn’t exactly match the syntax of the queries we saved
—as long as your result set is the same.

Sales Orders Database
1. “List the customers who ordered a helmet together with the vendors who

provide helmets.”
(Hint: This involves creating a UNION of two complex JOINs.)
You can find the solution in CH10_Customer_Helmets_Vendor_Helmets (91
rows).

Entertainment Agency Database
1. “Display a combined list of customers and entertainers.”

(Hint: Be careful to create an expression for one of the names so that you have
the same number of columns in both SELECT statements.)
You can find the solution in CH10_Customers_UNION_Entertainers (28
rows).

2. “Produce a list of customers who like contemporary music together with a list
of entertainers who play contemporary music.”
(Hint: You need to UNION two complex JOINs to solve this one.)
You can find the solution in CH10_Customers_Entertainers_Contemporary (5
rows).

School Scheduling Database
1. “Create a mailing list for students and staff, sorted by ZIP Code.”

(Hint: Try using a relative column number for the sort.)
You can find the solution in CH10_Student_Staff_Mailing_List (45 rows).

Bowling League Database
1. “Find the bowlers who had a raw score of 165 or better at Thunderbird Lanes

combined with bowlers who had a raw score of 150 or better at Bolero
Lanes.”
(Hint: This is another of those problems that can also be solved with a single
SELECT statement and a complex WHERE clause.)
You can find the solution using UNION in
CH10_Good_Bowlers_TBird_Bolero_UNION (129 rows). You can find the

solution using WHERE in CH10_Good_Bowlers_TBird_Bolero_WHERE
(135 rows).

2. Can you explain why the row counts are different in the previous solution
queries?
(Hint: Try using UNION ALL in the first query.)

Recipes Database
1. “Display a list of all ingredients and their default measurement amounts

together with ingredients used in recipes and the measurement amount for
each recipe.”
(Hint: You need one simple JOIN and one complex JOIN to solve this.)
You can find the solution in CH10_Ingredient_Recipe_Measurements (144
rows).

11. Subqueries

“We can’t solve problems by using the same kind
of thinking we used when we created them.”

—Albert Einstein

Topics Covered in This Chapter
What Is a Subquery?
Subqueries as Column Expressions
Subqueries as Filters
Uses for Subqueries
Sample Statements
Summary
Problems for You to Solve

In the previous three chapters, we showed you many ways to work with data from
more than one table. All the techniques we’ve covered to this point have been
focused on linking subsets of information—one or more columns and one or more
rows from an entire table or a query embedded in the FROM clause. We’ve also
explored combining sets of information using the UNION operator. In this chapter,
we’ll show you effective ways to fetch a single column from a table or query and use
it as a value expression in either a SELECT clause or a WHERE clause.
There are two significant points you should learn in this chapter:

1. There’s always more than one way to solve a particular problem in SQL. In
fact, this chapter will show you new ways to solve problems already covered in
previous chapters.

2. You can build complex filters that do not rely on the tables in your FROM
clause. This is an important concept because using a subquery in a WHERE
clause is the only way to get the correct number of rows in your answer when
you want rows from one table based on the filtered contents from other related
tables. We’ll explain this in more detail later in the chapter.

 Note
This chapter covers advanced concepts and assumes that you’ve read and
thoroughly understood Chapter 7, “Thinking in Sets”; Chapter 8, “INNER
JOINs”; and Chapter 9, “OUTER JOINs.”

What Is a Subquery?
Simply put, a subquery is a SELECT expression that you embed inside one of the
clauses of a SELECT statement to form your final query statement. In this chapter,
we’ll define more formally a subquery and show how to use it other than in the
FROM clause.
The SQL Standard defines three types of subqueries:

1. Row subquery—an embedded SELECT expression that returns more than
one column and no more than one row

2. Table subquery—an embedded SELECT expression that returns one or more
columns and zero to many rows

3. Scalar subquery—an embedded SELECT expression that returns only one
column and no more than one row

Row Subqueries
You’ve already created queries that embed a SELECT statement in a FROM clause
to let you filter rows before joining that result with other tables or queries. (That’s
called a table subquery, as you’ll learn below.) A row subquery is a special form of a
SELECT statement that returns more than one column but only one row.
In the SQL Standard, you can use a row subquery to build something the standard
calls a row value constructor. When you create a WHERE clause, you build a search
condition that is typically some sort of comparison of one column from one of your
tables either with another column or with a literal. The SQL Standard, however,
allows you to build a search condition that compares multiple values as a logical row
with another set of values as a logical row (two row value constructors). You can
enter the list of comparison values either by making a list in parentheses or by using
a row subquery to fetch a single row from one of your tables. The bad news is that
not many commercial database systems support this syntax.
Why might this be useful? Consider a Products table that has a compound part
identifier in two separate fields. The first part of the identifier might be characters
that indicate the subclass of parts (SKUClass), such as CPU or DSK for a computer
parts manufacturer. The second part of the identifier could be a number that
identifies the part within the subclass (SKUNumber). Let’s say you want all parts
that have a combined identifier of DSK09775 or higher. Here’s an example of a
WHERE clause that uses a row value constructor to solve the problem:

SQL

SELECT SKUClass, SKUNumber, ProductName
FROM Products

WHERE
 (SKUClass, SKUNumber)
 >= ('DSK', 9775)

The preceding WHERE clause asks for rows where the combination of SKUClass
and SKUNumber is greater than the combination of DSK and 9775. It’s the same as
requesting the following:

SQL

SELECT SKUClass, SKUNumber, ProductName
FROM Products
WHERE (SKUClass > 'DSK')
OR ((SKUClass = 'DSK')
AND (SKUNumber >= 9775))

Here’s where you could substitute a SELECT statement that returns a single row of
two columns—a row subquery—for the second part of the comparison (probably
using a WHERE clause to limit the result to one row). Most commercial databases
support neither a row value constructor nor row subqueries. That’s all we’re going to
say about them in this chapter.

Table Subqueries
Wait a minute! Didn’t we already show you how to embed a SELECT expression
returning multiple rows and columns inside a FROM clause in the previous three
chapters? The answer is yes—we snuck it in on you! We’ve already liberally used
table subqueries in the previous chapters to specify a complex result that we then
embedded in the FROM clause of another query. In this chapter, we’ll show you how
to use a table subquery as the source for the list of comparison values for an IN
predicate—something about which you learned the basics in Chapter 6, “Filtering
Your Data.” We’ll also teach you a few new comparison predicate keywords that are
used only with table subqueries.

Scalar Subqueries
In this chapter, we’ll also show how to use a scalar subquery anywhere you might
otherwise use a value expression. A scalar subquery lets you fetch a single column or
calculated expression from another table that does not have to be in the FROM
clause of the main query. You can use the single value fetched by a scalar subquery
in the list of columns you request in a SELECT clause or as a comparison value in a
WHERE clause.

Subqueries as Column Expressions
In Chapter 5, “Getting More Than Simple Columns,” you learned a lot about using
expressions to generate calculated columns to be output by your query. We didn’t

tell you then that you can also use a special type of SELECT statement—a subquery
—to fetch data from another table, even if the table isn’t in your FROM clause.

Syntax
Let’s go back to the basics and take a look at a simple form of a SELECT statement
in Figure 11–1.

Figure 11–1 The syntax diagram for a simple SELECT statement

This looks simple, but it really isn’t! In fact, the value expression part can be quite
complex. Figure 11–2 shows all the options that can constitute a value expression.

Figure 11–2 The syntax diagram for a value expression

In Chapter 5, we showed you how to create basic value expressions using literal
values, column references, and functions. We’ll explore CASE in Chapter 19,
“Condition Testing.” Notice that SELECT expression now appears on the list. This
means that you can embed a scalar subquery in the list of expressions immediately
following the SELECT keyword. As noted earlier, a scalar subquery is a SELECT

expression that returns exactly one column and no more than one row. This makes
sense because you’re substituting the subquery where you would normally enter a
single column name or expression that results in a single column.
You might be wondering at this point, “Why is this useful?” A subquery used in this
way lets you pluck a single value from some other table or query to include in the
output of your query. You don’t need to reference the table or query that is the
source of the data in the FROM clause of the subquery at all in the FROM clause of
the outer query. In most cases, you will need to add criteria in the WHERE clause of
the subquery to make certain it returns no more than one row. You can even have the
criteria in the subquery reference a value being returned by the outer query to pluck
out the data related to the current row.
Let’s look at some simple examples using only the Customers and Orders tables
from the Sales Orders example database. Figure 11–3 (on page 380) shows the
relationship between these two tables.

Figure 11–3 The Customers and Orders tables

Now, let’s build a query that lists all the orders for a particular date and plucks the
related customer last name from the Customers table using a subquery.

 Note
Throughout this chapter, we use the “Request/Translation/Clean Up/SQL”
technique introduced in Chapter 4, “Creating a Simple Query.” In addition, we
include parentheses around the parts that are subqueries in the Clean Up step
and indent the subqueries where possible to help you see how we are using
them.

“Show me all the orders shipped on October 3, 2012, and each order’s related
customer last name.”

Translation
Select order number, order date, ship date, and also select the related
customer last name out of the customers table from the orders table
where ship date is October 3, 2012

Clean Up
Select order number, order date, ship date, and also (select the
related customer last name out of the from customers table) from the
orders table where ship date is = October 3, 2012 ‘2012-10-03’

SQL

SELECT Orders.OrderNumber, Orders.OrderDate,
 Orders.ShipDate,
 (SELECT Customers.CustLastName
 FROM Customers
 WHERE Customers.CustomerID =
 Orders.CustomerID)
FROM Orders
WHERE Orders.ShipDate = '2012-10-03'

Notice that we had to restrict the value of the CustomerID in the subquery to the
value of the CustomerID in each row we’re fetching from the Orders table.
Otherwise, we’ll get all the rows in Customers in the subquery. Remember that this
must be a scalar subquery—a query that returns only one value from one row—so
we must do something to restrict what gets returned to no more than one row.
Because CustomerID is the primary key of the Customers table, we can be confident
that the match on the CustomerID column from the Orders table will return exactly
one row.
Those of you who really caught on to the concept of INNER JOIN in Chapter 8 are
probably wondering why you would want to solve this problem as just described
rather than to JOIN Orders to Customers in the FROM clause of the outer query.
Right now we’re focusing on the concept of using a subquery to create an output
column with a very simple example. In truth, you probably should solve this
particular problem with the following query using an INNER JOIN:

SQL

SELECT Orders.OrderNumber, Orders.OrderDate,
 Orders.ShipDate, Customers.CustLastName
FROM Customers
INNER JOIN Orders
ON Customers.CustomerID = Orders.OrderID
WHERE Orders.ShipDate = '2012-10-03'

An Introduction to Aggregate Functions: COUNT and MAX
Now that you understand the basic concept of using a subquery to generate an output
column, let’s expand your horizons and see how this feature can be really useful.

First, we need to give you an overview of a couple of aggregate functions. (We’ll
cover all the aggregate functions in detail in the next chapter.)
The SQL Standard defines many functions that calculate values in a query. One
subclass of functions—aggregate functions—lets you calculate a single value for a
group of rows in a result set. For example, you can use an aggregate function to
count the rows, find the largest or smallest value within the set of rows, or calculate
the average or total of some value or expression across the result set.
Let’s take a look at a couple of these functions and then see how they can be most
useful in a subquery. Figure 11–4 (on page 382) shows the diagram for the COUNT
and MAX functions that can generate an output column in a SELECT clause.

Figure 11–4 Using the COUNT and MAX aggregate functions

You can use COUNT to determine the number of rows or non-Null values in a result
set. Use COUNT(*) to find out how many rows are in the entire set. If you specify a
particular column in the result set using COUNT(column_name), the database
system counts the number of rows with non-Null values in that column. You can also
ask to count only the unique values by adding the DISTINCT keyword.
Likewise, you can find the largest value in a column by using MAX. If the value
expression is numeric, you get the largest number value from the column or
expression you specify. If the value expression returns a character data type, the
largest value will depend on the collating sequence of your database system. If the
value expression is a date or time, you get the latest date or time value from the
column or expression.
Let’s use these functions in a subquery to solve a couple of interesting problems:

“List all the customer names and a count of the orders they placed.”

Translation
Select customer first name, customer last name, and also select the
count of orders from the orders table for this customer from the
customers table

Clean Up
Select customer first name, customer last name, and also (select the
count of orders (*) from the orders table for this customer where

orders.customer ID = customers.customer ID) from the customers
table

SQL

SELECT Customers.CustFirstName,
 Customers.CustLastName,
 (SELECT COUNT(*)
 FROM Orders
 WHERE Orders.CustomerID =
 Customers.CustomerID)
AS CountOfOrders
FROM Customers

Subqueries as output columns are starting to look interesting now! In Part IV,
“Summarizing and Grouping Data,” you’ll learn more about creative ways to use
aggregate functions. But if all you want is a count of related rows, a subquery is a
good way to do it. In fact, if you don’t want anything other than the customer name
and the count of orders, this is just about the only way to solve the problem. If you
add the Orders table to the FROM clause of the main query (FROM Customers INNER
JOIN Orders ON Customers.CustomerID = Orders.CustomerID), you’ll get
multiple rows for each customer who placed more than one order. In Chapter 13,
“Grouping Data,” you’ll learn about another way that involves grouping the rows on
customer name.
Let’s look at an interesting problem that takes advantage of another aggregate
function—MAX:

“Show me a list of customers and the last date on which they placed an order.”

Translation
Select customer first name, customer last name, and also select the
highest order date from the orders table for this customer from the
customers table

Clean Up
Select customer first name, customer last name, and also (select the
highest max(order date) from the orders table for this customer
where orders.customer ID = customers.customer ID) from the
customers table

SQL

SELECT Customers.CustFirstName,
 Customers.CustLastName,
 (SELECT MAX(OrderDate)
 FROM Orders
 WHERE Orders.CustomerID =
 Customers.CustomerID)
AS LastOrderDate

FROM Customers

As you can imagine, using MAX in this way works well for finding the highest or
most recent value from any related table. We’ll show you a number of other ways to
use these functions in the “Sample Statements” section later in this chapter.

Subqueries as Filters
In Chapter 6, you learned how to filter the information retrieved by adding a
WHERE clause. You also learned how to use both simple and complex comparisons
to get only the rows you want in your result set. Now we’ll build on your skills and
show you how to use a subquery as one of the comparison arguments to do more
sophisticated filtering.

Syntax
Let’s revisit the SELECT statement from Figure 11–1 and look at the syntax for
building a query with a simple comparison predicate in a WHERE clause. Figure 11–
5 shows the simplified diagram.

Figure 11–5 Filtering a result using a simple comparison predicate

As you remember from Figure 11–2 (on page 379), a value expression can be a
subquery. In the simple example in Figure 11–5, you’re comparing the value
expression to a single column. Thus, the value expression must be a single value—
that is, a scalar subquery that returns exactly one column and no more than one row.

Let’s solve a simple problem requiring a comparison to a value returned from a
subquery. In this example, we are going to ask for all the details about customer
orders, but we want only the last order for each customer. Figure 11–6 shows the
tables needed.

Figure 11–6 The tables required to list all the details about an order

“List customers and all the details from their last order.”

Translation
Select customer first name, customer last name, order number, order
date, product number, product name, and quantity ordered from the
customers table joined with the orders table on customer ID in the
customers table equals customer ID in the orders table, then joined
with the order details table on order number in the orders table
equals order number in the order details table, and then joined with
the products table on product number in the products table equals
product number in the order details table where the order date
equals the maximum order date from the orders table for this
customer

Clean Up
Select customer first name, customer last name, order number, order

date, product number, product name, and quantity ordered from the
customers table inner joined with the orders table on
customers.customer ID in the customers table equals =
orders.customer ID in the orders table, then inner joined with the
order details table on orders.order number in the orders table equals
= order_details.order number in the order details table, and then
inner joined with the products table on products.product number in
the products table equals = order_details.product number in the
order details table where the order date equals = (select the
maximum (order date) from the orders table for this customer where
orders.customer ID = customers.customer ID)

SQL

SELECT Customers.CustFirstName,
 Customers.CustLastName, Orders.OrderNumber,
 Orders.OrderDate,
 Order_Details.ProductNumber,
 Products.ProductName,
 Order_Details.QuantityOrdered
FROM ((Customers
INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID)
INNER JOIN Order_Details
ON Orders.OrderNumber = Order_Details.OrderNumber)
INNER JOIN Products
ON Products.ProductNumber =
 Order_Details.ProductNumber
WHERE Orders.OrderDate =
 (SELECT MAX(OrderDate)
 FROM Orders AS O2
 WHERE O2.CustomerID = Customers.CustomerID)

Did you notice that we gave an alias name to the second reference to the Orders table
(that is, the Orders table in the subquery)? Even if you leave out the alias name,
many database systems will recognize that you mean the copy of the Orders table
within the subquery. In fact, the SQL Standard dictates that any unqualified
reference should be resolved from the innermost query first. Still, we added the alias
reference to make it crystal clear that the copy of the Orders table we’re referencing
in the WHERE clause of the subquery is the one in the FROM clause of the
subquery. If you follow this practice, your request will be much easier to understand
—either by you when you come back to it some months later or by someone else
who has to figure out what your request meant.

Special Predicate Keywords for Subqueries
The SQL Standard defines a number of special predicate keywords for use in a
WHERE clause with a subquery.

Set Membership: IN
You learned in Chapter 6 how to use the IN keyword in a WHERE clause to
compare a column or expression to a list of values. You now know that each value
expression in the IN list could be a scalar subquery. How about using a subquery to
generate the entire list? As Figure 11–7 shows, you can certainly do that!

Figure 11–7 Using a subquery with an IN predicate

In this case, you can use a table subquery that returns one column and as many rows
as necessary to build the list. Let’s use the Recipes sample database for an example.
Figure 11–8 shows the tables of interest.

Figure 11–8 The tables needed to list recipes and their ingredients

Let’s suppose you’re having someone over for dinner who just adores seafood.
Although you know you have a number of recipes containing seafood ingredients,

you’re not sure of all the ingredient names in your database. You do know that you
have an IngredientClassDescription of Seafood, so you can join all the tables and
filter on IngredientClassDescription—or you can get creative and use subqueries and
the IN predicate instead.

“List all my recipes that have a seafood ingredient.”

Translation
Select recipe title from the recipes table where the recipe ID is in the
selection of recipe IDs from the recipe ingredients table where the
ingredient ID is in the selection of ingredient IDs from the
ingredients table joined with the ingredient classes table on
ingredient class ID in the ingredients table matches ingredient class
ID in the ingredient classes table where ingredient class description
is ‘seafood’

Clean Up
Select recipe title from the recipes table where the recipe ID is in the
(selection of recipe IDs from the recipe ingredients table where the
ingredient ID is in the (selection of ingredient IDs from the
ingredients table inner joined with the ingredient classes table on
ingredients.ingredient class ID in the ingredients table matches =
ingredient_classes.ingredient class ID in the ingredient classes table
where ingredient class description is = ‘seafood’))

SQL

SELECT RecipeTitle
FROM Recipes
WHERE Recipes.RecipeID IN
 (SELECT RecipeID
 FROM Recipe_Ingredients
 WHERE Recipe_Ingredients.IngredientID IN
 (SELECT IngredientID
 FROM Ingredients
 INNER JOIN Ingredient_Classes
 ON Ingredients.IngredientClassID =
 Ingredient_Classes.IngredientClassID
 WHERE
 Ingredient_Classes.IngredientClassDescription
 = 'Seafood'))

Did it occur to you that you could put a subquery within a subquery? We actually
could have gone one level deeper by eliminating the INNER JOIN from the second
subquery. We could have stated the second subquery using the following syntax:

SQL

(SELECT IngredientID

FROM Ingredients
WHERE Ingredients.IngredientClassID IN
 (SELECT IngredientClassID
 FROM Ingredient_Classes
 WHERE
 Ingredient_Classes.IngredientClassDescription
 = 'Seafood'))

That would be overkill, however, because embedding IN clauses within IN clauses
only makes the query harder to read. We did so in the previous example to show you
that you can do it. It’s worth restating, though, that just because you can do
something doesn’t mean you should! We think you’ll agree that it’s easier to see
what’s going on by using a single IN predicate and a more complex JOIN in the
subquery. Here’s another solution using this technique:

SQL

SELECT RecipeTitle
FROM Recipes
WHERE Recipes.RecipeID IN
 (SELECT RecipeID
 FROM (Recipe_Ingredients
 INNER JOIN Ingredients
 ON Recipe_Ingredients.IngredientID =
 Ingredients.IngredientID)
 INNER JOIN Ingredient_Classes
 ON Ingredients.IngredientClassID =
 Ingredient_Classes.IngredientClassID
 WHERE
 Ingredient_Classes.IngredientClassDescription
 = 'Seafood')

You might be asking at this point, “Why go to all this trouble? Why not just do the
complex JOIN in the outer query and be done with it?” The reason is that you’ll get
the wrong answer! Actually, the rows returned will all be rows from the Recipes
table for seafood recipes, but you might get some rows more than once. Let’s try to
solve this without the subquery to see why you get duplicate rows.

SQL

SELECT RecipeTitle
FROM ((Recipes
INNER JOIN Recipe_Ingredients
ON Recipes.RecipeID =
 Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
ON Recipe_Ingredients.IngredientID =
 Ingredients.IngredientID)
INNER JOIN Ingredient_Classes
ON Ingredients.IngredientClassID =
Ingredient_Classes.IngredientClassID
WHERE
Ingredient_Classes.IngredientClassDescription
 = 'Seafood')

If you look back at Figure 11–8 (on page 387), you can see that the

Recipe_Ingredients table might have many rows for each row in the Recipes table.
The result set defined by the FROM clause will contain at least as many rows as
there are in Recipe_Ingredients, with the RecipeTitle column value repeated many
times. Even when we add the filter to restrict the result to ingredients in class
Seafood, we will still get more than one row per recipe in any recipe that has more
than one seafood ingredient.
Yes, you could include the DISTINCT keyword, but the odds are your database
system will have to do more work to eliminate the duplicates. If you save this as a
view using DISTINCT and then try to update data in the view, you’ll find that the
view is not updatable because DISTINCT masks the unique identity of each
underlying row, and your database system won’t know which row to update.
Using this subquery technique also becomes really important when you want to list
more than just the recipe title. For example, suppose you also want to list all the
ingredients from any recipe that has a seafood ingredient. If you use a complex JOIN
in the outer query and filter for an ingredient class of Seafood as we just did, all you
will get is seafood ingredients—you won’t get all the other ingredients for the
recipes. Let’s ask one additional and slightly more complex request:

“List recipes and all ingredients for each recipe for recipes that have a seafood
ingredient.”

Translation
Select recipe title and ingredient name from the recipes table joined
with the recipe ingredients table on recipe ID in the recipes table
equals recipe ID in the recipe ingredients table, and then joined with
the ingredients table on ingredient ID in the ingredients table equals
ingredient ID in the recipe ingredients table where the recipe ID is
in the selection of recipe IDs from the recipe ingredients table
joined with the ingredients table on ingredient ID in the recipe
ingredients table equals ingredient ID in the ingredients table, and
then joined with the ingredient classes table on ingredient class ID
in the ingredients table equals ingredient class ID in the ingredient
classes table where ingredient class description is ‘seafood’

Clean Up
Select recipe title, and ingredient name from the recipes table inner
joined with the recipe ingredients table on recipes.recipe ID in the
recipes table equals = recipe_ingredients.recipe ID in the recipe
ingredients table, and then inner joined with the ingredients table on
ingredients.ingredient ID in the ingredients table equals =

recipe_ingredients.ingredient ID in the recipe ingredients table
where the recipe ID is in the (selection of recipe IDs from the recipe
ingredients table inner joined with the ingredients table on
recipe_ingredients.ingredient ID in the recipe ingredients table
equals = ingredients.ingredient ID in the ingredients table, and then
inner joined with the ingredient classes table on
ingredients.ingredient class ID in the ingredients table equals =
ingredient_classes.ingredient class ID in the ingredient classes table
where ingredient class description is = ‘seafood’)

SQL

SELECT Recipes.RecipeTitle,
 Ingredients.IngredientName
FROM (Recipes
INNER JOIN Recipe_Ingredients
ON Recipes.RecipeID =
 Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID
WHERE Recipes.RecipeID IN
 (SELECT RecipeID
 FROM (Recipe_Ingredients
 INNER JOIN Ingredients
 ON Recipe_Ingredients.IngredientID =
 Ingredients.IngredientID)
 INNER JOIN Ingredient_Classes
 ON Ingredients.IngredientClassID =
 Ingredient_Classes.IngredientClassID
 WHERE
 Ingredient_Classes.IngredientClassDescription
 = 'Seafood')

The key here is that the complex INNER JOIN in the main part of the query retrieves
all the ingredients for the recipes selected, and the complex subquery returns a list of
recipe IDs for just the seafood recipes. It seems like we’re doing a complex JOIN
twice, but there’s method in the madness!

Quantified: ALL, SOME, and ANY
As you have just seen, the IN predicate lets you compare a column or expression to a
list to see whether that column or expression is in the list. In other words, the column
or expression equals one of the members of the list. If you want to find out whether
the column or expression is greater than or less than any, all, or some of the items in
the list, you can use a quantified predicate. Figure 11–9 shows the syntax.

Figure 11–9 Using a quantified predicate in a SELECT statement
In this case, the SELECT expression must be a table subquery that returns exactly
one column and zero or more rows. When the subquery returns more than one row,
the values in the rows make up a list. As you can see, this predicate combines a
comparison operator with a keyword that tells your database system how to apply the
operator to the members of the list. When you use the keyword ALL, the comparison
must be true for all the values returned by the subquery. When you use either of the
keywords SOME or ANY, the comparison need be true for only one value in the list.
If you think about it, when the subquery returns multiple rows, asking for = ALL
will always be false unless all the values returned by the subquery are the same and
the value expression on the left of the comparison equals all of them. By the same
logic, you might think that <> ANY will always be false if the value expression on
the left does equal any of the values in the list. In truth, the SQL Standard treats
SOME and ANY the same. So if you say <> SOME or <> ANY, then the predicate
is true if the value expression on the left does not equal at least one of the values in
the list. Another confusing point is that if the subquery returns no rows, then any
comparison predicate with the ALL keyword is true, and any comparison predicate
with the SOME or ANY keyword is false.
Let’s work through a couple of requests to see quantified predicates in action. First,
let’s do a problem in the Recipes database. Refer to Figure 11–8 (on page 387) to see
the tables we’ll use.

“Show me the recipes that have beef or garlic.”

Translation
Select recipe title from the recipes table where recipe ID is in the
selection of recipe IDs from the recipe ingredients table where
ingredient ID equals any of the selection of ingredient IDs from the
ingredients table where ingredient name is ‘beef’ or ‘garlic’

Clean Up
Select recipe title from the recipes table where recipe ID is in the
(selection of recipe IDs from the recipe ingredients table where
ingredient ID equals = any of the (selection of ingredient IDs from
the ingredients table where ingredient name is in ‘beef’ or ‘garlic’))

SQL

SELECT Recipes.RecipeTitle
FROM Recipes
WHERE Recipes.RecipeID IN
 (SELECT Recipe_Ingredients.RecipeID
 FROM Recipe_Ingredients
 WHERE Recipe_Ingredients.IngredientID = ANY
 (SELECT Ingredients.IngredientID
 FROM Ingredients
 WHERE Ingredients.IngredientName
 IN ('Beef', 'Garlic')))

Do you get the feeling we could have also used IN instead of = ANY? If so, you’re
right! We could have also created a JOIN between Recipe_Ingredients and
Ingredients in the first subquery to return the requisite list of RecipeIDs. As we
stated at the beginning of the chapter, there’s almost always more than one way to
solve a particular problem in SQL. Sometimes, using a quantified predicate might
make your request clearer.
Let’s now solve a more complex problem to show you the real power of quantified
predicates. This example uses the Sales Orders sample database, and Figure 11–10
shows the tables involved.

Figure 11–10 The relationship of the Categories and Products tables

“Find all accessories that are priced greater than any clothing item.”

Translation
Select product name and retail price from the products table joined
with the categories table on category ID in the products table
matches category ID in the categories table where category
description is ‘accessories’ and retail price is greater than all the
selection of retail price from the products table joined with the
categories table on category ID in the products table matches
category ID in the categories table where category name is
‘clothing’

Clean Up
Select product name and retail price from the products table inner
joined with the categories table on products.category ID in the
products table matches = categories.category ID in the categories
table where category description is = ‘accessories’ and retail price is
greater than > all the (selection of retail price from the products
table inner joined with the categories table on products.category ID
in the products table matches = categories.category ID in the
categories table where category name is = ‘clothing’)

SQL

SELECT Products.ProductName,
 Products.RetailPrice
FROM Products
INNER JOIN Categories
ON Products.CategoryID
 = Categories.CategoryID
WHERE Categories.CategoryDescription =
 'Accessories'
AND Products.RetailPrice > ALL
 (SELECT Products.RetailPrice
 FROM Products
 INNER JOIN Categories
 ON Products.CategoryID =
 Categories.CategoryID
 WHERE Categories.CategoryDescription =
 'Clothing')

What’s happening here? The subquery fetches all the prices for clothing items. The
outer query then lists all accessories whose prices are greater than all the prices in
the clothing items subquery. Note that you could also solve this query by finding the
RetailPrice that is greater than the MAX price fetched in a subquery, but the point
here is to demonstrate a use of ALL.

Existence: EXISTS
Both set membership (IN) and quantified (SOME, ANY, ALL) predicates perform a
comparison with a value expression—usually a column from the source you specify

in the FROM clause of your outer query. Sometimes it’s useful to know simply that a
related row EXISTS in the result set returned by a subquery. In Chapter 8, we
showed a technique for solving AND problems using complex INNER JOINs. You
can also use EXISTS to solve those same sorts of problems. Let’s take another look
at a problem we solved in Chapter 8.

“Find all the customers who ordered a bicycle.”

Translation
Select customer ID, customer first name, and customer last name
from the customers table where there exists some row from the
orders table joined with the order details table on order ID in the
orders table equals order ID in the order details table, and then
joined with the products table on product ID in the products table
equals product ID in the order details table where category ID
equals 2 (Bikes) and the orders table customer ID equals the
customers table customer ID

Clean Up
Select customer ID, customer first name, and customer last name
from the customers table where there exists some row (select * from
the orders table inner joined with the order details table on
orders.order ID in the orders table equals = order_details.order ID in
the order details table, and then inner joined with the products table
on products.product ID in the products table equals =
order_details.product ID in the order details table where product
name category ID equals = 2 (Bikes) and the orders table customer
ID equals = the customers table customer ID)

SQL

SELECT Customers.CustomerID,
 Customers.CustFirstName,
 Customers.CustLastName
FROM Customers
WHERE EXISTS
 (SELECT *
 FROM (Orders
 INNER JOIN Order_Details
 ON Orders.OrderNumber =
 Order_Details.OrderNumber)
 INNER JOIN Products
 ON Products.ProductNumber =
 Order_Details.ProductNumber
 WHERE Products.CategoryID = 2
 AND Orders.CustomerID =
 Customers.CustomerID)

Notice that you can use any column name from any of the tables in the FROM clause
as the column to be fetched in the SELECT clause of the subquery. We chose to use
the shorthand “*” for all columns. Stated another way, this query is asking, “Give me
the customers for whom there exists some row in order details for a bike.” Because
we didn’t match on the OrderID column, we don’t care which column gets returned
by the subquery.

 Note
Because this is such an interesting query, we saved this solution as
CH11_Customer_Ordered_Bikes_EXISTS in the sample database. You can
find the INNER JOIN solution in CH11_Customers_Ordered_Bikes_JOIN.
Because the INNER JOIN depends on using DISTINCT to avoid returning
duplicate rows, the JOIN solution won’t be updatable. You can also solve this
using IN, but we’ll leave that as a challenge for you to solve!

Uses for Subqueries
At this point, you should have a pretty good understanding of the concept of using a
subquery either to generate an output column or to perform a complex comparison in
a WHERE clause. The best way to give you an idea of the wide range of uses for
subqueries is to list some problems you can solve with subqueries and then present a
robust set of examples in the “Sample Statements” section.

Build Subqueries as Column Expressions
As mentioned earlier in this chapter, using a subquery to fetch a single value from a
related table is probably more effectively done with a JOIN. When you consider
aggregate functions, however, subqueries to fetch the result of a function calculation
make the idea much more interesting. We’ll explore this use of aggregate functions
further in the next chapter. In the meantime, here are some problems you can solve
using a subquery to generate an output column:

“List vendors and a count of the products they sell to us.”
“Display products and the latest date the product was ordered.”
“Show me entertainers and the count of each entertainer’s engagements.”
“Display all customers and the date of the last booking each made.”
“List all staff members and the count of classes each teaches.”
“Display all subjects and the count of classes for each subject on Monday.”
“Show me all the bowlers and a count of games each bowled.”

“Display the bowlers and the highest game each bowled.”
“List all the meats and the count of recipes each appears in.”
“Show me the types of recipes and the count of recipes in each type.”

Use Subqueries as Filters
Now that you know about subqueries, you can really expand your kit of tools for
solving complex queries. In this chapter, we explored many interesting ways to use
subqueries as filters in a WHERE clause. In Chapter 14, “Filtering Grouped Data,”
we’ll show you how to use subqueries as filters for groups of information in a
HAVING clause.
Here’s a sample of problems you can solve using subqueries as a filter for rows in a
WHERE clause. Note that we solved many of these same problems in earlier
chapters. Now, you get to think about solving them an alternate way by using a
subquery!

 Note
As a hint, we’ve included the keyword(s) you can use to solve the problem in
parentheses after the problem statement.

“List customers who ordered bikes.” (IN)
“Display customers who ordered clothing or accessories.” (= SOME)
“Find all the customers who ever ordered a bicycle helmet.” (IN)
“What products have never been ordered?” (NOT IN)
“List customers who have booked entertainers who play country or country
rock.” (IN)

“Find the entertainers who played engagements for customers Bonnicksen or
Rosales.” (= SOME)

“Display agents who haven’t booked an entertainer.” (NOT IN)
“List the entertainers who played engagements for customer Bonnicksen.”
(EXISTS)

“Display students enrolled in a class on Tuesday.” (IN)
“Display students who have never withdrawn from a class.” (NOT IN)
“List the subjects taught on Wednesday.” (IN)
“Display team captains with a current average higher than all other members
on their team.” (> ALL)

“List all the bowlers who have a current average that’s less than all the other
bowlers on the same team.” (< ALL)

“Display all the ingredients for recipes that contain carrots.” (IN)
“List the ingredients that are used in some recipe where the measurement
amount in the recipe is not the default measurement amount.” (<> SOME)

Sample Statements
You now know the mechanics of constructing queries using subqueries and have
seen some of the types of requests you can answer with a subquery. Let’s take a look
at a fairly robust set of samples, all of which use one or more subqueries. These
examples come from each of the sample databases, and they illustrate the use of the
subqueries to either generate an output column or act as a filter.
We’ve also included sample result sets that would be returned by these operations
and placed them immediately after the SQL syntax line. The name that appears
immediately above a result set is the name we gave each query in the sample data on
the companion website for this book, www.informit.com/title/9780321992475. We
stored each query in the appropriate sample database (as indicated within the
example), and we prefixed the names of the queries relevant to this chapter with
“CH11.” You can follow the instructions in the Introduction of this book to load the
samples onto your computer and try them.

 Note
Remember that all the column names and table names used in these examples
are drawn from the sample database structures shown in Appendix B,
“Schema for the Sample Databases.” Because many of these examples use
complex JOINs, your database system might choose a different way to solve
these queries. For this reason, the first few rows might not exactly match the
result you obtain, but the total number of rows should be the same. To
simplify the process, we have combined the Translation and Clean Up steps
for all the following examples.

Subqueries in Expressions
Sales Orders Database

“List vendors and a count of the products they sell to us.”

Translation/Clean Up

http://www.informit.com/title/9780321992475

Select vendor name and also (Select the count(*) of products from
the product vendors table where the product vendor table vendor ID
equals = the vendors table vendor ID) from the vendors table

SQL

SELECT VendName,
 (SELECT COUNT(*)
 FROM Product_Vendors
 WHERE Product_Vendors.VendorID =
 Vendors.VendorID)
AS VendProductCount
FROM Vendors

 Note
We assigned an alias name to the subquery in the SELECT clause so that the
output displays a meaningful name. If you don’t do that, your database system
will generate something like Expr1.

CH11_Vendors_Product_Count (10 rows)

Entertainment Agency Database

“Display all customers and the date of the last booking each made.”

Translation/Clean Up

Select customer first name, customer last name, and also (select the
highest MAX(start date) from the engagements table where the
engagements table customer ID equals = the customers table
customer ID) from the customers table

SQL

SELECT Customers.CustFirstName,
 Customers.CustLastName,
 (SELECT MAX(StartDate)
 FROM Engagements
 WHERE Engagements.CustomerID =
 Customers.CustomerID)
AS LastBooking
FROM Customers

CH11_Customers_Last_Booking (15 rows)

 Note
The LastBooking column for some customers is blank (Null) because those
customers have no bookings.

School Scheduling Database

“Display all subjects and the count of classes for each subject on Monday.”

Translation/Clean Up
Select subject name and also (select the count(*) of classes from the
classes table where Monday schedule is = true and the classes table
subject ID equals = the subjects table subject ID) from the subjects
table

SQL

SELECT Subjects.SubjectName,
 (SELECT COUNT(*)
 FROM Classes
 WHERE MondaySchedule = 1
 AND Classes.SubjectID = Subjects.SubjectID)
AS MondayCount
FROM Subjects

 Note
Be sure to use the test for true that your database system supports. Remember
that some database systems require you to compare to a keyword TRUE or to
the integer value 1 or –1.

CH11_Subjects_Monday_Count (56 rows)

 Note
Rather than return a Null value when there are no rows, the COUNT
aggregate function returns a zero.

Bowling League Database

“Display the bowlers and the highest game each bowled.”

Translation/Clean Up
Select bowler first name, bowler last name, and also (select the
highest MAX(raw score) from the bowler scores table where the
bowler scores table bowler ID equals = the bowlers table bowler ID)
from the bowlers table

SQL

SELECT Bowlers.BowlerFirstName,
 Bowlers.BowlerLastName,
 (SELECT MAX(RawScore)
 FROM Bowler_Scores
 WHERE Bowler_Scores.BowlerID =
 Bowlers.BowlerID)
AS HighScore
FROM Bowlers

CH11_Bowler_High_Score (32 rows)

Recipes Database

“List all the meats and the count of recipes each appears in.”

Translation/Clean Up

Select ingredient class description, ingredient name, and also (select
the count(*) of rows from the recipe ingredients table where the
recipe ingredients table ingredient ID equals = the ingredients table
ingredient ID) from the ingredient classes table inner joined with the
ingredients table on ingredient_classes.ingredient class ID in the
ingredients classes table matches = ingredients.ingredient class ID
in the ingredients table where ingredient class description is =
‘meat’

SQL

SELECT Ingredient_Classes.IngredientClassDescription,
 Ingredients.IngredientName,
 (SELECT COUNT(*)
 FROM Recipe_Ingredients
 WHERE Recipe_Ingredients.IngredientID =
 Ingredients.IngredientID)
AS RecipeCount
FROM Ingredient_Classes
INNER JOIN Ingredients
ON Ingredient_Classes.IngredientClassID =
 Ingredients.IngredientClassID
WHERE
 Ingredient_Classes.IngredientClassDescription
 = 'Meat'

CH11_Meat_Ingredient_Recipe_Count (11 rows)

Subqueries in Filters
Sales Orders Database

“Display customers who ordered clothing or accessories.”

Translation/Clean Up
Select customer ID, customer first name, customer last name from
the customers table where customer ID is equal to = any of the
(selection of customer ID from the orders table inner joined with the
order details table on orders.order number in the orders table
matches = order_details.order number in the order details table, then
inner joined with the products table on products.product number in
the products table matches = order_details.product number in the
order details table, and then inner joined with the categories table on
categories.category ID in the categories table matches =
products.category ID in the products table where category
description is = ‘clothing’ or category description is = ‘accessories’)

SQL

SELECT Customers.CustomerID,
 Customers.CustFirstName,
 Customers.CustLastName
FROM Customers
WHERE Customers.CustomerID = ANY
 (SELECT Orders.CustomerID
 FROM ((Orders
 INNER JOIN Order_Details
 ON Orders.OrderNumber =
 Order_Details.OrderNumber)
 INNER JOIN Products
 ON Products.ProductNumber =
 Order_Details.ProductNumber)
 INNER JOIN Categories
 ON Categories.CategoryID =
 Products.CategoryID
 WHERE Categories.CategoryDescription
 = 'Clothing'
 OR Categories.CategoryDescription
 = 'Accessories')

CH11_Customers_Clothing_OR_Accessories (27 rows)

 Note
Just for fun, we solved this query by using = ANY. Can you think of a
solution using IN or EXISTS? You can find these solutions in the sample
database saved as CH11_Customers_Clothing_OR_Accessories_IN and
CH11_Customers_Clothing_OR_Accessories_EXISTS. If you look at the
scripts we supplied for MySQL, you’ll find that we used ANY in the script,
but if you look in the sample database, you’ll find that MySQL converted the
actual stored view to use IN. Go figure.

Entertainment Agency Database

“List the entertainers who played engagements for customer Berg.”

Translation/Clean Up
Select entertainer ID, and entertainer stage name from the
entertainers table where there exists (select * some row from the
customers table inner joined with the engagements table on
customers.customer ID in the customers table matches =
engagements.customer ID in the engagements table where customer
last name is = ‘Berg’ and the engagements table entertainer ID
equals = the entertainers table entertainer ID)

SQL

SELECT Entertainers.EntertainerID,
 Entertainers.EntStageName
FROM Entertainers
WHERE EXISTS
 (SELECT *
 FROM Customers
 INNER JOIN Engagements
 ON Customers.CustomerID =
 Engagements.CustomerID
 WHERE Customers.CustLastName = 'Berg'
 AND Engagements.EntertainerID =
 Entertainers.EntertainerID)

CH11_Entertainers_Berg_EXISTS (6 rows)

 Note
Just for a bit of challenge, we decided to solve this problem using EXISTS.
Can you solve it using IN? You can find the second solution in
CH11_Entertainers_Berg_IN.

School Scheduling Database

“Display students who have never withdrawn from a class.”

Translation/Clean Up
Select student ID, student first name, and student last name from the
students table where the student ID is not in the (selection of student
ID from the student schedules table inner joined with the student
class status table on student_schedules.class status in the student
schedules table matches = student_class_status.class status in the
student class status table where class status description is =
‘withdrew’)

SQL

SELECT Students.StudentID,
 Students.StudFirstName,
 Students.StudLastName
FROM Students
WHERE Students.StudentID NOT IN
 (SELECT Student_Schedules.StudentID
 FROM Student_Schedules
 INNER JOIN Student_Class_Status
 ON Student_Schedules.ClassStatus =
 Student_Class_Status.ClassStatus
 WHERE
 Student_Class_Status.ClassStatusDescription
 = 'Withdrew')

 Note
This is a pretty simple query that finds all the students who ever withdrew
from a class in the subquery and then asks for all the students NOT IN this
list. Can you think how you would solve this with an OUTER JOIN?

CH11_Students_Never_Withdrawn (16 rows)

Bowling League Database

“Display team captains with a handicap score higher than all other members on
their team.”

Translation/Clean Up

Select team name, bowler ID, bowler first name, bowler last name,
and handicap score from the bowlers table inner joined with the
teams table on bowlers.bowler ID in the bowlers table matches =
teams.captain ID in the teams table inner joined with the bowler
scores table on bowlers.bowler ID in the bowlers table matches =
bowler_scores.bowler ID in the bowler scores table where the
handicap score is greater than > all the (selection of handicap score
from bowlers as B2 inner joined with the bowler scores table as BS2
on B2.bowler ID in the B2 table matches = BS2.bowler ID in the
BS2 table where the B2 table bowler ID is not equal <> the bowlers
table bowler ID and the B2 table team ID is equal = to the bowlers
table team ID)

SQL

SELECT Teams.TeamName, Bowlers.BowlerID,
 Bowlers.BowlerFirstName,
 Bowlers.BowlerLastName,
 Bowler_Scores.HandiCapScore
FROM (Bowlers
INNER JOIN Teams
ON Bowlers.BowlerID = Teams.CaptainID)
INNER JOIN Bowler_Scores
ON Bowlers.BowlerID = Bowler_Scores.BowlerID
WHERE Bowler_Scores.HandiCapScore > All
 (SELECT BS2.HandiCapScore
 FROM Bowlers AS B2
 INNER JOIN Bowler_Scores AS BS2
 ON B2.BowlerID = BS2.BowlerID
 WHERE B2.BowlerID <> Bowlers.BowlerID
 AND B2.TeamID = Bowlers.TeamID)

 Note
We explicitly gave aliases to the second copy of the Bowlers table and the
second copy of the Bowler_Scores table in the subquery to make it crystal
clear what’s going on. We specifically do not want to compare against the
score of the current bowler—that would cause the > ALL predicate to fail. We
also want to compare only with the other bowlers on the same team.

CH11_Team_Captains_High_Score (1 row)

Recipes Database

“Display all the ingredients for recipes that contain carrots.”

 Note
We promised in Chapter 8 that we would show you how to solve this problem
with a subquery. We keep our promises!

Translation/Clean Up
Select recipe title and ingredient name from the recipes table inner
joined with the recipe ingredients table on recipes.recipe ID in the
recipes table matches = recipe_ingredients.recipe ID in the recipe
ingredients table, and then inner joined with the ingredients table on
ingredients.ingredient ID in the ingredients table matches =
recipe_ingredients.ingredient ID in the recipe ingredients table
where recipe ID is in the (selection of recipe ID from the ingredients
table inner joined with the recipe ingredients table on
ingredients.ingredient ID in the ingredients table matches =
recipe_ingredients.ingredient ID in the recipe ingredients table
where ingredient name is = ‘carrot’)

SQL
SELECT Recipes.RecipeTitle,
 Ingredients.IngredientName
FROM (Recipes
INNER JOIN Recipe_Ingredients
ON Recipes.RecipeID = Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID
WHERE Recipes.RecipeID
IN
 (SELECT Recipe_Ingredients.RecipeID
 FROM Ingredients
 INNER JOIN Recipe_Ingredients
 ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID
 WHERE Ingredients.IngredientName = 'carrot')

 Note
If you place the filter for ‘carrot’ in the outer query, you will see only carrot
ingredients in the output. In this problem, we want to see all the ingredients
from any recipe that uses carrots, so the subquery is a good way to solve it.
This query result appears to be sorted by recipe title even though there is no
ORDER BY clause. If you want to ensure this sequence in any database
system, be sure to include an ORDER BY clause.

CH11_Recipes_Ingredients_With_Carrots (16 rows)

Summary
We began the chapter with a definition of the three types of subqueries defined by
the SQL Standard—row, table, and scalar—and recalled that we had already covered
how to use table subqueries in a FROM clause. We also briefly described the use of
a row subquery and explained that not many commercial implementations support
this yet.
Next, we showed how to use a subquery to generate a column expression in a
SELECT clause. We discussed a simple example and then introduced two aggregate
functions that are useful for fetching related summary information from another
table. (We’ll cover all the aggregate functions in detail in the next chapter.)
We then discussed using subqueries to create complex filters in the WHERE clause.
We first covered simple comparisons and then introduced special comparison
keywords—IN, SOME, ANY, ALL, and EXISTS—that are useful for building
predicates with subqueries.
We summarized why subqueries are useful and provided a sample list of problems to
solve using subqueries. The rest of the chapter showed examples of how to use
subqueries. We broke these examples into two groups: using subqueries in column
expressions and using subqueries in filters.

The following section presents a number of requests that you can work out on your
own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need
for each request and then check your answer with the query we saved in the samples.
Don’t worry if your syntax doesn’t exactly match the syntax of the queries we saved
—as long as your result set is the same.

Sales Orders Database
1. “Display products and the latest date each product was ordered.”

(Hint: Use the MAX aggregate function.)
You can find the solution in CH11_Products_Last_Date (40 rows).
Do you see any blank dates in the result? Can you explain why?

2. “List customers who ordered bikes.”
(Hint: Build a filter using IN.)
You can find the solution in CH11_Customers_Order_Bikes_IN (23 rows).

3. “What products have never been ordered?”
(Hint: Build a filter using NOT IN.)
You can find the solution in CH11_Products_Not_Ordered (2 rows).

Entertainment Agency Database
1. “Show me all entertainers and the count of each entertainer’s engagements.”

(Hint: Use the COUNT aggregate function.)
You can find the solution in CH11_Entertainers_Engagement_Count (13
rows).

2. “List customers who have booked entertainers who play country or country
rock.”
(Hint: Build a filter using IN.)
You can find the solution in CH11_Customers_Who_Like_Country (13 rows).

3. “Find the entertainers who played engagements for customers Berg or
Hallmark.”
(Hint: Build a filter using = SOME.)
You can find the solution in CH11_Entertainers_Berg_OR_Hallmark_SOME

(8 rows).
4. “Display agents who haven’t booked an entertainer.”

(Hint: Build a filter using NOT IN.)
You can find the solution in CH11_Bad_Agents (1 row).

School Scheduling Database
1. “List all staff members and the count of classes each teaches.”

(Hint: Use the COUNT aggregate function.)
You can find the solution in CH11_Staff_Class_Count (27 rows).

2. “Display students enrolled in a class on Tuesday.”
(Hint: Build a filter using IN.)
You can find the solution in CH11_Students_In_Class_Tuesdays (18 rows).

3. “List the subjects taught on Wednesday.”
(Hint: Build a filter using IN.)
You can find the solution in CH11_Subjects_On_Wednesday (34 rows).

Bowling League Database
1. “Show me all the bowlers and a count of games each bowled.”

(Hint: Use the COUNT aggregate function.)
You can find the solution in CH11_Bowlers_And_Count_Games (32 rows).

2. “List all the bowlers who have a raw score that’s less than all of the other
bowlers on the same team.”
(Hint: Build a filter using < ALL. Also use DISTINCT in case a bowler has
multiple games with the same low score.)
You can find the solution in CH11_Bowlers_Low_Score (3 rows).

Recipes Database
1. “Show me the types of recipes and the count of recipes in each type.”

(Hint: Use the COUNT aggregate function.)
You can find the solution in CH11_Count_Of_Recipe_Types (7 rows).

2. “List the ingredients that are used in some recipe where the measurement
amount in the recipe is not the default measurement amount.”
(Hint: Build a filter using <> SOME.)
You can find the solution in CH11_Ingredients_Using_NonStandard_Measure

(21 rows).

Part IV: Summarizing and Grouping
Data

12. Simple Totals

“There are two kinds of
statistics: the kind you look up

and the kind you make up.”
—Rex Stout

Death of a Doxy:
A Nero Wolfe Novel

Topics Covered in This Chapter
Aggregate Functions
Using Aggregate Functions in Filters
Sample Statements
Summary
Problems for You to Solve

You now know how to select the columns you need for a given request, define
expressions that add extra levels of detail, join the appropriate tables that supply the
columns you require, and define conditions to filter the data sent to the result set.
We’ve shown you all these techniques so that you can learn how to retrieve detailed
information from one or more tables in the database. In this and the next two
chapters, we’ll show you how to take a step back and look at the data from a much
broader perspective, otherwise known as “seeing the big picture.”
In this chapter, you’ll learn how to use aggregate functions to produce basic
summary information. In Chapter 13, “Grouping Data,” we’ll show you how to
organize data into groups with the GROUP BY clause of the SELECT statement, and
in Chapter 14, “Filtering Grouped Data,” we’ll show you various filtering techniques
you can apply to the data after it is grouped.

Aggregate Functions
The requests you’ve been working with so far have required answers involving
individual column values from the rows returned by the FROM and WHERE
clauses. However, you’ll often encounter requests, such as the following, that require
only calculated values across multiple rows for an answer:

“How many of our customers live in Seattle?”
“What is the lowest price and highest price we’ve assigned to any item in our

inventory?”
“How many classes is Mike Hernandez teaching?”
“What time does our earliest class begin?”
“What is the average length of a class?”
“What is the total amount for order number 12?”

The SQL Standard provides a set of aggregate functions that allow you to calculate a
single value from the rows in a result set or from the values returned by a value
expression. You can apply a given function to all the rows or values, or you can use
a WHERE clause to apply the function to a specific set of rows or values. For
example, you can use an aggregate function to determine the largest or smallest
value of a value expression, count the number of rows in a result set, or calculate a
total using only distinct values from a value expression. Figure 12–1 shows the
syntax for the basic aggregate functions supported by all database systems.

Figure 12–1 The syntax diagram for aggregate functions

As you can see, aggregate functions have a very simple and straightforward syntax.
In the previous chapter, we discussed using two of the aggregate functions in a
subquery either to return a single calculated value in a SELECT clause or to fetch a
calculated value that you can use in a predicate in a WHERE clause. We’ll show you
a few more examples of this usage in this chapter.

 Note
The 2011 SQL Standard defines a dozen or more additional aggregate
operations, but many are not yet implemented in any major commercial
database system. In this chapter, we focus on the basic aggregate functions
supported by all major systems. After you learn how to work with these,
consult your database documentation to learn whether more functions are
available to use in your SQL statements.

Each aggregate function returns a single value, regardless of whether it is processing
the rows in a result set or the values returned by a value expression. With the
exception of COUNT(*), all aggregate functions automatically disregard Null
values. You can use several aggregate functions at the same time in the list of value
expressions immediately following the SELECT keyword, and you can even mix
value expressions containing aggregate functions with value expressions containing
literal values. But you need to be careful once you’ve started including aggregate
expressions.
When you include an aggregate expression, you’re asking your database system to
calculate one value across a group of rows. You’ll learn in the next chapter that you
can define the groups you want by using the GROUP BY clause. However, in this
chapter, we’re looking at simple queries that do not explicitly specify groups. In the
absence of a group specification, the group of records that your database uses to
calculate any aggregate expression is all the rows returned by your FROM and
WHERE clauses.
If you think about it, it doesn’t make sense to also include a value expression using a
column from one of your tables that isn’t inside an aggregate function. Remember
that we introduced you to the COUNT and MAX aggregate functions in Chapter 11,
“Subqueries.” Consider the following SQL:

SQL

SELECT LastName, COUNT(*) As CountOfStudents
FROM Students

Including the COUNT function without specifying any groups asks your database
system to count all the rows in the result set returned from the FROM clause.
COUNT(*) returns a single value—the count of all the rows in the Students table—
so the query should return one row. Which LastName should your database system
display? The answer is it can’t figure out which one to choose, so the above
statement is illegal.
It is valid, however, to include a literal expression to further enhance your output.
You can do this because a literal expression is simply a constant—it has the same
value for all rows. So, it’s perfectly legal to use the following SQL:

SQL

SELECT 'The number of students is: ', COUNT(*)
 As CountOfStudents
FROM Students

This returns one row:
The number of students is: 18

Now that we’ve gotten that little warning out of the way, let’s look at each of these

aggregate functions and how you might use them to answer a request.

Counting Rows and Values with COUNT
The SQL Standard defines two versions of the COUNT function. COUNT(*)
processes rows in a result set, and COUNT (value expression) processes values
returned by a value expression.

Counting All the Rows
You use COUNT(*) to determine how many rows exist in a result set. The
COUNT(*) function counts all the rows in a result set, including redundant rows and
rows containing Null values. Here’s a simple example of the type of question you
can answer with this function.

 Note
Throughout this chapter, we use the “Request/Translation/Clean Up/SQL”
technique introduced in Chapter 4, “Creating a Simple Query.” All examples
assume you have thoroughly studied and understood the concepts covered in
previous chapters, especially the chapters on JOINs and subqueries.

“Show me the total number of employees we have in our company.”

Translation
Select the count of employees from the employees table

Clean Up
Select the count of employees (*) from the employees table

SQL

SELECT COUNT(*)
FROM Employees

Note that we use “(*)” in the Clean Up statement to indicate that we want to count
all the rows in the Employees table. You should add the asterisk in your Clean Up
step when you work with this type of request because it helps ensure that you use the
correct COUNT function. The SELECT statement in this example generates a result
set consisting of a single-column row containing a numeric value that represents the
total number of rows in the Employees table.
There is no restriction on the number of rows the COUNT(*) function processes.
You can indicate which rows COUNT(*) should include by using a WHERE clause.
For example, here’s how you define a SELECT statement that counts all the rows in
the Employees table for those employees who live in Washington state:

SQL

SELECT COUNT(*)
FROM Employees
WHERE EmpState = 'WA'

As we work through this chapter, you’ll see that you can use a WHERE clause to
filter the rows or values processed by any aggregate function.
When you use an aggregate function in a SELECT statement, you might or might not
see a column name in the result set for the return value of the function. Some
database systems provide a default column name, and others do not. But you can use
the AS option of the function’s syntax to provide a meaningful column name for the
result set. Here’s how you might apply this option to the previous example:

SQL

SELECT COUNT(*) AS TotalWashingtonEmployees
FROM Employees
WHERE EmpState = 'WA'

Now the result set consists of a column called TotalWashingtonEmployees that
contains the return value of the COUNT(*) function. As the syntax diagram in
Figure 12–1 (on page 420) indicates, you can apply this technique to any aggregate
function.

Counting Values in a Column or Expression
You use the COUNT(value expression) function to count the total number of non-
Null values returned by a value expression. (This expression is more commonly
known as COUNT, which is the name we’ll use for the remainder of the book.) It
counts all values returned by a value expression, regardless of whether they are
unique or duplicate, but automatically excludes any Null values from the final count.
You can use COUNT to answer this type of request:

“How many customers were able to indicate which county they live in?”

Here you need to determine how many actual values exist in the county column.
Remember that COUNT(*) includes Null values as well, so it won’t provide you
with the correct answer. Instead, you use the COUNT function and translate the
request in this manner:

Translation
Select the count of non-Null county values as
NumberOfKnownCounties from the customers table

Clean Up
Select the count of non-Null (county) values as

NumberOfKnownCounties from the customers table
SQL

SELECT COUNT(CustCounty)
 AS NumberOfKnownCounties
FROM Customers

Note that the Translation and Clean Up statements explicitly ask for non-Null values.
Although you already know that this function processes only non-Null values, it’s a
good idea to add this to both statements so that you’ll be sure to use the correct
COUNT function. The SELECT statement defined here will generate a single row
that contains a numeric value representing the count of rows containing non-Null
county names found in the CustCounty column.
Remember that the COUNT function treats duplicate county names as though they
were unique and includes every one of them in the final count. You can, however,
use the function’s DISTINCT option to exclude duplicate values from the count. The
next example shows how you might apply it to a given request.

“How many unique county names are there in the customers table?”

Translation
Select the count of unique non-Null county names as
NumberOfUniqueCounties from the customers table

Clean Up
Select the count of unique non-Null (distinct county) names as
NumberOfUniqueCounties from the customers table

SQL

SELECT COUNT(DISTINCT CustCounty)
 AS NumberOfUniqueCounties
FROM Customers

When you use the DISTINCT option, the database retrieves all the non-Null values
from the county column, eliminates the duplicates, and then counts the values that
remain. The database goes through much of this same process whenever you use
DISTINCT with the SUM, AVG, MIN, or MAX functions.
In this next example, we use a slightly altered version of the previous request to
show that you can apply a filter to the COUNT function.

“How many unique county names are there in the customers table for the state
of Oregon?”

Translation

Select the count of unique non-Null county names as
NumberOfUniqueOregonCounties from the customers table where
the state is ‘OR’

Clean Up
Select the count of unique non-Null (distinct county) names as
NumberOfUniqueOregonCounties from the customers table where
the state is = ‘OR’

SQL

SELECT COUNT(DISTINCT CustCounty)
 AS NumberOfUniqueOregonCounties
FROM Customers
WHERE CustState = 'OR'

It’s important to note that you cannot use DISTINCT with COUNT(*). This is a
reasonable restriction because COUNT(*) counts all rows in a table, regardless of
whether any are redundant or contain Null values.

Computing a Total with SUM
You can calculate a total for a numeric value expression with the SUM function. It
processes all the non-Null values of the value expression and returns a final total to
the result set. Note that if the value expression in all the rows is Null or if the result
of evaluating the FROM and WHERE clauses is an empty set, then SUM returns a
Null. Here’s a sample request you can answer with SUM:

“What is the total amount we pay in salaries to our employees in California?”

Translation
Select the sum of salary as TotalSalaryAmount from the employees
table where the state is ‘CA’

Clean Up
Select the sum of (salary) as TotalSalaryAmount from the
employees table where the state is = ‘CA’

SQL

SELECT SUM(Salary) AS TotalSalaryAmount
FROM Employees
WHERE EmpState = 'CA'

The value expression we used here was a simple column reference. However, you
can also use SUM on a value expression consisting of a numeric expression, as we
demonstrate in the next example:

“How much is our current inventory worth?”

Translation
Select the sum of wholesale price times quantity on hand as
TotalInventoryValue from the products table

Clean Up
Select the sum of (wholesale price times * quantity on hand) as
TotalInventoryValue from the products table

SQL

SELECT SUM(WholesalePrice * QuantityOnHand)
 AS TotalInventoryValue
FROM Products

As you know, a row must contain actual values in the WholesalePrice and
QuantityOnHand columns in order for it to be processed by the SUM function. In
this instance, the database processes the expression for all qualifying rows in the
Products table, totals the results with the SUM function, and then sends the grand
total to the result set.
Here’s an example of how to use SUM to calculate a total for a unique set of
numeric values:

“Calculate a total of all unique wholesale costs for the products we sell.”

Translation
Select the sum of unique wholesale costs as
SumOfUniqueWholesaleCosts from the products table

Clean Up
Select the sum of unique (distinct wholesale costs) as
SumOfUniqueWholesaleCosts from the products table

SQL

SELECT SUM(DISTINCT WholesaleCost)
 AS SumOfUniqueWholesaleCosts
FROM Products

Calculating a Mean Value with AVG
Another function you can use on numeric values is AVG, which calculates the
arithmetic mean of all non-Null values returned by a value expression. You can use
AVG to answer a request such as this:

“What is the average contract amount for vendor number 10014?”

Translation
Select the average of contract price as AverageContractPrice from
the vendor contracts table where the vendor ID is 10014

Clean Up
Select the average of avg (contract price) as AverageContractPrice
from the vendor contracts table where the vendor ID is = 10014

SQL

SELECT AVG(ContractPrice)
 AS AverageContractPrice
FROM Vendor_Contracts
WHERE VendorID = 10014

As you work with your Clean Up statement, be sure to cross out the word “average”
and replace it with “avg” to help keep you from accidentally using “Average” in the
SELECT clause. “Average” is not a valid SQL keyword, so the SELECT statement
will fail if you try to use it.
You can also use AVG to process a numeric expression, just as you did with the
SUM function. Remember that you cannot use AVG with a value expression that is
not numeric. Most database systems will give you an error if you try to use these
functions with character string or datetime data.

“What is the average item total for order 64?”

Translation
Select the average of price times quantity ordered as
AverageItemTotal from the order details table where order ID is 64

Clean Up
Select the average of avg (price times * quantity ordered) as
AverageItemTotal from the order details table where order ID is =
64

SQL

SELECT AVG(Price * QuantityOrdered)
 AS AverageItemTotal
FROM Order_Details
WHERE OrderID = 64

Keep in mind that a row must contain actual values in the columns Price and
QuantityOrdered in order for that row to be processed by the AVG function.
Otherwise, the numeric expression evaluates to Null, and the AVG function
disregards the row entirely. As with SUM, if the value expression in all rows is Null
or the result of evaluating the FROM and WHERE clauses is an empty set, AVG

returns a Null value.
In this next example, we use the DISTINCT option to average a unique set of
numeric values:

“Calculate an average of all unique product prices.”

Translation
Select the average of unique prices as UniqueProductPrices from the
products table

Clean Up
Select the average of unique avg (distinct prices) as
UniqueProductPrices from the products table

SQL

SELECT AVG(DISTINCT Price)
 AS UniqueProductPrices
FROM Products

Finding the Largest Value with MAX
You can determine the largest value returned by a value expression with the MAX
function. The MAX function can process any type of data, and the value it returns
depends on the data it processes.

CHARACTER STRINGS

The value that MAX returns is based on the collating sequence used
by your database system or computer. For example, if your database
uses the ASCII character set and is case insensitive, it sorts
company names in this manner: “. . . 4th Dimension Productions . . .
Al’s Auto Shop . . . allegheny & associates . . . Zercon Productions .
. . zorn credit services.” In this instance, MAX will return “zorn
credit services” as the MAX value.

NUMBERS

MAX returns the largest number.
DATETIME

MAX evaluates dates and times in chronological order and returns
the most recent (or latest) date or time.

Here are a couple of examples of how you might use MAX to answer a request:

“What is the largest amount we’ve paid on a contract?”

Translation
Select the maximum contract price as LargestContractPrice from the
engagements table

Clean Up
Select the maximum (contract price) as LargestContractPrice from
the engagements table

SQL

SELECT MAX(ContractPrice)
 AS LargestContractPrice
FROM Engagements

“What was the largest line item total for order 3314?”

Translation
Select the maximum price times quantity ordered as
LargestItemTotal from the order details table where the order ID is
3314

Clean Up
Select the maximum (price times * quantity ordered) as
LargestItemTotal from the order details table where the order ID is
= 3314

SQL

SELECT MAX(Price * QuantityOrdered)
 AS LargestItemTotal
FROM Order_Details
WHERE OrderID = 3314

You might be tempted to use the DISTINCT option to return a unique instance of the
highest or most recent value. Although the SQL Standard specifies DISTINCT as an
option for the MAX function, DISTINCT has no effect on the MAX function
whatsoever. There can be only one maximum value, regardless of whether or not it is
distinct. For example, if you’re looking for the most recent hire date in the Agents
table, both of the following expressions return the same value:
Click here to view code image

SELECT MAX(DateHired) FROM Agents
SELECT MAX(DISTINCT DateHired) FROM Agents

We present both versions of the function because they are part of the current SQL
Standard, but we recommend that you use the MAX function without the DISTINCT
option. When you include DISTINCT, you’re asking your database system to do
extra and unnecessary work to first find the unique values and then figure out which

one is the largest or latest.

Finding the Smallest Value with MIN
The MIN function allows you to determine the smallest value returned by a value
expression. It works like the MAX function but returns the opposite value: the first
character string (based on the collating sequence), the smallest number, and the
earliest date or time.
You can answer requests such as these with the MIN function:

“What is the lowest price we charge for a product?”

Translation
Select the minimum price as LowestProductPrice from the products
table

Clean Up
Select the minimum (price) as LowestProductPrice from the
products table

SQL

SELECT MIN(Price) AS LowestProductPrice
FROM Products

“What was the lowest line item total for order 3314?”

Translation
Select the minimum price times quantity ordered as
LowestItemTotal from the order details table where the order ID is
3314

Clean Up
Select the minimum (price times * quantity ordered) as
LowestItemTotal from the order details table where the order ID is
= 3314

SQL

SELECT MIN(Price * QuantityOrdered)
 AS LowestItemTotal
FROM Order_Details
WHERE OrderID = 3314

It’s important to note that the DISTINCT option has no effect whatsoever on the
MIN function. (As you know, this was the case with the MAX function as well.)
There can be only one minimum value, regardless of whether or not it is distinct. For

example, both of the following expressions return the same value:
Click here to view code image

SELECT MIN(DateHired) FROM Agents
SELECT MIN(DISTINCT DateHired) FROM Agents

We present both versions of the function because they are part of the current SQL
Standard, but we recommend that you use the MIN function without the DISTINCT
option. When you include DISTINCT, you’re asking your database system to do
extra and unnecessary work to first find the unique values and then figure out which
one is the lowest or earliest.

Using More Than One Function
As we mentioned at the beginning of this section, you can use several aggregate
functions at the same time. This gives you the ability to show contrasting
information using a single SELECT statement. For example, you can use the MIN
and MAX functions to show the earliest and most recent order dates for a specific
customer, or the MAX, MIN, and AVG functions to show the highest, lowest, and
average grades for a given student. Here are other examples of how you might use
two or more aggregate functions:

“Show me the earliest and most recent review dates for the employees in the
advertising department.”

Translation
Select the minimum review date as EarliestReviewDate and the
maximum review date as RecentReviewDate from the employees
table where the department is ‘Advertising’

Clean Up
Select the minimum review date as EarliestReviewDate, and the
maximum review date as RecentReviewDate from the employees
table where the department is = ‘Advertising’

SQL

SELECT MIN(ReviewDate) AS EarliestReviewDate,
 MAX(ReviewDate) AS RecentReviewDate
FROM Employees
WHERE Department = 'Advertising'

“How many different products were ordered on order number 553, and what
was the total cost of that order?”

Translation

Select the unique count of product ID as TotalProductsPurchased
and the sum of price times quantity ordered as OrderAmount from
the order details table where the order number is 553

Clean Up
Select the unique count of (DISINCT product ID) as
TotalProductsPurchased, and the sum of (price times * quantity
ordered) as OrderAmount from the order details table where the
order number is = 553

SQL

SELECT COUNT(DISTINCT ProductID) AS
TotalProductsPurchased,
 SUM(Price * QuantityOrdered) AS OrderAmount
FROM Order_Details
WHERE OrderNumber = 553

You must keep in mind a couple of restrictions when you work with two or more
aggregate functions. The first is that you cannot embed one aggregate function
within another. This restriction makes the following expression illegal:

SUM(AVG(LineItemTotal))

The second is that you cannot use a subquery as the value expression of an aggregate
function. For example, the following expression is illegal under this restriction:
Click here to view code image

AVG((SELECT Price FROM Products WHERE Category = 'Bikes'))

Despite these restrictions, you’ve learned how easily you can use aggregate functions
in a SELECT clause to retrieve relatively complex statistical information. Let’s now
look at how you might use aggregate functions to filter the information in a result
set.

Using Aggregate Functions in Filters
Because an aggregate function returns a single value, you can use it as part of a
comparison predicate in a search condition. You have to place the aggregate function
within a subquery, however, and then use the subquery as part of the comparison
predicate. If you’re thinking that this sounds familiar, you’re right. In Chapter 11,
you learned how to use a subquery as part of a search condition in a WHERE clause
and an aggregate function within a subquery. So you already know, in a general
sense, how to use an aggregate function to filter the data sent to a result set. Now
let’s expand on that knowledge.
Using an aggregate function as part of a comparison predicate allows you to test the

value of a value expression against a single statistical value. Although you could use
a literal value for the task, a subquery gives you more flexibility and provides a more
dynamic aspect to the condition. For example, suppose you’re making the following
request to the database:

“List the engagement numbers that have a contract price greater than or equal
to the overall average contract price.”

One method you can use to answer this request is to calculate the overall average
contract price manually and then plug that specific value into a comparison
predicate.

Translation
Select the engagement number from the engagements table where
the contract price is greater than or equal to $1,266.22

Clean Up
Select the engagement number from the engagements table where
the contract price is greater than or equal to >= $1,266.22

SQL

SELECT EngagementNumber
FROM Engagements
WHERE ContractPrice >= 1266.22

Hey, why do more work than necessary? You can use an aggregate function in a
subquery and let the database system do the work for you.

Translation
Select the engagement number from the engagements table where
the contract price is greater than or equal to the overall average
contract price in the engagements table

Clean Up
Select the engagement number from the engagements table where
the contract price is greater than or equal to the >= overall (select
average avg contract price in the from engagements table)

SQL

SELECT EngagementNumber
FROM Engagements
WHERE ContractPrice >=
 (SELECT AVG(ContractPrice)
 FROM Engagements)

It should be obvious that using a subquery with an aggregate function is your best
course of action. If you use a literal value, you must be certain that you always

recalculate the average contract price before executing the SELECT statement, just
in case you’ve modified any existing contract prices. You then have to make sure
that you enter the value correctly in the comparison predicate. But you won’t have to
worry about any of this if you use a subquery instead. The AVG function is always
evaluated whenever you execute the SELECT statement, and it always returns the
correct value regardless of whether you’ve modified any of the contract prices. (This
is true for any aggregate function you use in a subquery.)
You can limit the rows that an aggregate function evaluates by using a WHERE
clause in the subquery. This allows you to narrow the scope of the statistical value
returned by the aggregate function. You already learned how to apply a WHERE
clause to a subquery back in Chapter 11, so let’s look at an example of how you
might apply this technique:

“List the engagement number and contract price of all engagements that have a
contract price larger than the total amount of all contract prices for the entire
month of September 2012.”

Translation
Select engagement number and contract price from the engagements
table where the contract price is greater than the sum of all contract
prices of engagements dated between September 1, 2012, and
September 30, 2012

Clean Up
Select engagement number, and contract price from the
engagements table where the contract price is greater than > the
(select sum of all (contract prices) from engagements where dated
start date between September 1, 2012, ‘2012-09-01’ and September
30, 2012 ‘2012-09-30’)

SQL

SELECT EngagementNumber, ContractPrice
FROM Engagements
WHERE ContractPrice >
 (SELECT SUM(ContractPrice) FROM Engagements
 WHERE StartDate BETWEEN '2012-09-01'
 AND '2012-09-30')

You might find that you rarely have a need to use aggregate functions in filters, but
they certainly come in handy when you have to answer those occasional off-the-wall
requests.

Sample Statements

In this chapter, you’ve learned how to use aggregate functions in a SELECT clause
and within a subquery being used as part of a comparison predicate. Now let’s look
at some examples of working with aggregate functions using the tables from each of
the sample databases. These examples illustrate the use of the aggregate functions as
output columns and in subqueries.
We’ve also included sample result sets that would be returned by these operations
and placed them immediately after the SQL syntax line. The name that appears
immediately above a result set is the name we gave each query in the sample data on
the companion website for this book, www.informit.com/title/9780321992475. We
stored each query in the appropriate sample database (as indicated within the
example), and we prefixed the names of the queries relevant to this chapter with
“CH12.” You can follow the instructions in the Introduction of this book to load the
samples onto your computer and try them.

 Note
Remember that all the column names and table names used in these examples
are drawn from the sample database structures shown in Appendix B,
“Schema for the Sample Databases.” To simplify the process, we have
combined the Translation and Clean Up steps for all the following examples.

Sales Orders Database
“How many customers do we have in the state of California?”

Translation/Clean Up
Select the count(*) as NumberOfCACustomers of all customers
from the customers table where the state is = ‘CA’

SQL

SELECT COUNT(*) AS NumberOfCACustomers
FROM Customers
WHERE CustState = 'CA'

CH12_Number_Of_California_Customers (1 Row)

“List the product names and numbers that have a quoted price greater than or
equal to the overall average retail price in the products table.”
Translation/Clean Up

http://www.informit.com/title/9780321992475

Select the product name, and the product number from the products
table inner joined with the order details table on products.product
number in the products table matches = order_details.product
number in the order details table where the quoted price is greater
than or equal to >= (select the average avg(retail price) in the from
products table)

SQL

SELECT DISTINCT Products.ProductName,
 Products.ProductNumber
FROM Products
INNER JOIN Order_Details
ON Products.ProductNumber =
 Order_Details.ProductNumber
WHERE Order_Details.QuotedPrice >=
 (SELECT AVG(RetailPrice)
 FROM Products)

 Note
We chose to ask for DISTINCT products because (we hope) a particular
product might have been ordered more than once. We need to see each
product name and number only once.

CH12_Quoted_Price_vs_Average_Retail_Price (4 Rows)

Entertainment Agency Database

“List the engagement number and contract price of contracts that occur on the
earliest date.”

Translation/Clean Up
Select engagement number, and contract price from the
engagements table where the start date is equal to the = earliest
(select min(start date) in the from engagements table)

SQL

SELECT EngagementNumber, ContractPrice
FROM Engagements
WHERE StartDate =
 (SELECT MIN(StartDate) FROM Engagements)

CH12_Earliest_Contracts (1 Row)

“What was the total value of all engagements booked in October 2012?”

Translation/Clean Up
Select the sum of (contract price) as TotalBookedValue from the
engagements table where the start date is between October 1, 2012
‘2012-10-01’ and October 31, 2012 ‘2012-10-31’

SQL

SELECT SUM(ContractPrice) AS TotalBookedValue
FROM Engagements
WHERE StartDate
 BETWEEN '2012-10-01' AND '2012-10-31'

CH12_Total_Booked_Value_For_October_2012 (1 Row)

School Scheduling Database
“What is the largest salary we pay to any staff member?”

Translation/Clean Up
Select the maximum (salary) as LargestStaffSalary from the staff
table

SQL

SELECT Max(Salary) AS LargestStaffSalary
FROM Staff

CH12_Largest_Staff_Salary (1 Row)

“What is the total salary amount paid to our staff in California?”
Translation/Clean Up

Select the sum of (salary) as TotalAmountPaid from the staff table
for all our California staff where state = ‘CA’

SQL

SELECT SUM(Salary) AS TotalAmountPaid
FROM Staff
WHERE StfState = 'CA'

CH12_Total_Salary_Paid_To_California_Staff (1 Row)

Bowling League Database
“How many tournaments have been played at Red Rooster Lanes?”

Translation/Clean Up
Select the count of (tourney location)s as NumberOfTournaments
from the tournaments table where the tourney location is = ‘Red
Rooster Lanes’

SQL

SELECT COUNT(TourneyLocation)
 AS NumberOfTournaments
FROM Tournaments
WHERE TourneyLocation = 'Red Rooster Lanes'

CH12_Number_Of_Tournaments_At_Red_Rooster_Lanes (1 Row)

“List the last name and first name, in alphabetical order, of every bowler whose
personal average score is greater than or equal to the overall average score.”

Translation/Clean Up

Select the last name, and first name from the bowlers table where
the (select average avg(raw score) from the bowlers scores table as
BS for the current bowler where BS.bowler ID = bowlers.bowler
ID) is greater than or equal to the >= overall (select avg(raw score)
score in the from bowler scores table) sorted order by last name, and
first name

SQL

SELECT Bowlers.BowlerLastName,
 Bowlers.BowlerFirstName
FROM Bowlers
WHERE (SELECT AVG(RawScore)
FROM Bowler_Scores AS BS
WHERE BS.BowlerID = Bowlers.BowlerID)
>=(SELECT AVG(RawScore) FROM Bowler_Scores)
ORDER BY Bowlers.BowlerLastName,
 Bowlers.BowlerFirstName

CH12_Better_Than_Overall_Average (17 Rows)

 Note
You can see that this is a creative use of two subqueries in the WHERE clause
to solve the problem.

Recipes Database

“How many recipes contain a beef ingredient?”

Translation/Clean Up

Select the count (*) of recipes as NumberOfRecipes from the
recipes table where the recipe ID is in the (selection of recipe IDs in
the from recipe ingredients table inner joined with the ingredients
table on recipe_ingredients.ingredient ID in the recipe ingredients
table matches = ingredients.ingredient ID in the ingredients table
where the ingredient name is like ‘Beef%’)

SQL

SELECT COUNT(*) AS NumberOfRecipes
FROM Recipes
WHERE Recipes.RecipeID IN
 (SELECT RecipeID
 FROM Recipe_Ingredients
 INNER JOIN Ingredients ON
 Recipe_Ingredients.IngredientID =
 Ingredients.IngredientID
 WHERE Ingredients.IngredientName
 LIKE 'Beef%')

CH12_Recipes_With_Beef_Ingredient (1 Row)

“How many ingredients are measured by the cup?”

Translation/Clean Up
Select the count (*) of ingredients as NumberOfIngredients from the
ingredients table inner joined with the measurements table on
ingredients.measure amount ID in the ingredients table matches =
measurements.measure amount ID in the measurements table where
the measurement description is = ‘Cup’

SQL

SELECT COUNT(*) AS NumberOfIngredients
FROM Ingredients
INNER JOIN Measurements
ON Ingredients.MeasureAmountID =
 Measurements.MeasureAmountID
WHERE MeasurementDescription = 'Cup'

CH12_Number_of_Ingredients_Measured_by_the_Cup (1 Row)

Summary
We began this chapter by introducing you to aggregate functions. You learned that
there are six different functions and that you can use them in the SELECT and
WHERE clauses of a SELECT statement. You also learned that each aggregate
function—except COUNT(*)—disregards all Null values as it performs its
operation.
Next we showed how to use each aggregate function. You learned how to count rows
or values with the COUNT functions, how to find the largest and smallest values
with the MAX and MIN functions, how to calculate a mean average with the AVG
function, and how to total a set of values with the SUM function. We also showed
how to use the DISTINCT option with each function and explained that DISTINCT
has no effect on the MAX and MIN functions.
We closed the chapter by showing you how to use aggregate functions in filters. You
now know that you can use an aggregate function within a subquery and then use the
subquery as part of the filter. You also learned that you can apply a filter to the
subquery as well so that the aggregate function bases its value on a specific set of
data.
We’ve only just begun to show you what you can do with aggregate functions. In the
next two chapters, we’ll show you how to provide more sophisticated statistical
information by using aggregate functions on grouped data and how to apply a filter
to aggregate calculations.
The following section presents a number of requests that you can work out on your
own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need
for each request and then check your answer with the query we saved in the samples.
Don’t worry if your syntax doesn’t exactly match the syntax of the queries we saved
—as long as your result set is the same.

Sales Orders Database
1. “What is the average retail price of a mountain bike?”

You can find the solution in CH12_Average_Price_Of_A_Mountain_Bike (1
row).

2. “What was the date of our most recent order?”
You can find the solution in CH12_Most_Recent_Order_Date (1 row).

3. “What was the total amount for order number 8?”
You can find the solution in CH12_Total_Amount_For_Order_Number_8 (1
row).

Entertainment Agency Database
1. “What is the average salary of a booking agent?”

You can find the solution in CH12_Average_Agent_Salary (1 row).
2. “Show me the engagement numbers for all engagements that have a contract

price greater than or equal to the overall average contract price.”
(Hint: You’ll have to use a subquery to answer this request.)
You can find the solution in
CH12_Contract_Price_GE_Average_Contract_Price (43 rows).

3. “How many of our entertainers are based in Bellevue?”
You can find the solution in CH12_Number_Of_Bellevue_Entertainers (1
row).

School Scheduling Database
1. “What is the current average class duration?”

You can find the solution in CH12_Average_Class_Duration (1 row).
2. “List the last name and first name of each staff member who has been with us

since the earliest hire date.”
(Hint: You’ll have to use a subquery containing an aggregate function that
evaluates the DateHired column.)
You can find the solution in CH12_Most_Senior_Staff_Members (1 row).

3. “How many classes are held in room 3346?”
You can find the solution in
CH12_Number_Of_Classes_Held_In_Room_3346 (1 row).

Bowling League Database
1. “What is the largest handicap held by any bowler at the current time?”

You can find the solution in CH12_Current_Highest_Handicap (1 row).
2. “Which locations hosted tournaments on the earliest tournament date?”

You can find the solution in CH12_Tourney_Locations_For_Earliest_Date (1
row).

3. “What is the last tournament date we have in our schedule?”

You can find the solution in CH12_Last_Tourney_Date (1 row).

Recipes Database
1. “Which recipe requires the most cloves of garlic?”

(Hint: You’ll need to use INNER JOINs and a subquery to answer this
request.)
You can find the solution in CH12_Recipe_With_Most_Cloves_of_Garlic (1
row).

2. “Count the number of main course recipes.”
(Hint: This requires a JOIN between Recipe_Classes and Recipes.)
You can find the solution in CH12_Number_Of_Main_Course_Recipes (1
row).

3. “Calculate the total number of teaspoons of salt in all recipes.”
You can find the solution in CH12_Total_Salt_Used (1 row).

13. Grouping Data

“Don’t drown yourself with details.
Look at the whole.”

—Marshal Ferdinand Foch
Commander-in-Chief,

Allied armies in France

Topics Covered in This Chapter
Why Group Data?
The GROUP BY Clause
“Some Restrictions Apply”
Uses for GROUP BY
Sample Statements
Summary
Problems for You to Solve

Chapter 12, “Simple Totals,” explained how to use the aggregate functions
(COUNT, MIN, MAX, AVG, and SUM) to ask SQL to calculate a value across all
the rows in the table defined in your FROM and WHERE clauses. We pointed out,
however, that after you include any value expression that contains an aggregate
function in your SELECT clause, all your value expressions must either be a literal
constant or contain an aggregate function. This characteristic is useful if you want to
see only one row of totals across a result set, but what if you want to see some
subtotals? In this chapter, we’ll show you how to ask for subtotals by grouping your
data.

Why Group Data?
When you’re working in the Sales Orders database, finding out the number of orders
(COUNT), the total sales (SUM), the average of sales (AVG), the smallest order
(MIN), or the largest order (MAX) is useful, indeed. And if you want to calculate
any of these values by customer, order date, or product, you can add a filter
(WHERE) to fetch the rows for one particular customer or product. But what if you
want to see subtotals for all customers, displaying the customer name along with the
subtotals? To do that, you need to ask your database system to group the rows.
Likewise, in the Entertainment Agency database, it’s easy to find out the number of

contracts, the total contract price, the smallest contract price, or the largest contract
price for all contracts. You can even filter the rows so that you see these calculations
for one particular entertainer, one particular customer, or across a specific range of
dates. Again, if you want to see one total row for each customer or entertainer, you
must group the rows.
Are you starting to get the idea? When you ask your database system to group rows
on column values or expressions, it forms subsets of rows based on matching values.
You can then ask your database to calculate aggregate values on each group. Let’s
look at a simple example from the Entertainment Agency database. First, we need to
build a query that fetches the columns of interest—entertainer name and contract
price. Here’s the SQL:

SQL

SELECT Entertainers.EntStageName,
 Engagements.ContractPrice
FROM Entertainers
INNER JOIN Engagements
ON Entertainers.EntertainerID =
 Engagements.EntertainerID
ORDER BY EntStageName

The result looks like the following table. (In the sample database, we saved this
request as CH13_Entertainers_And_ContractPrices.)

You already know that you can count all the rows, or find the smallest, largest, sum,
or average of the ContractPrice column—as long as you eliminate the EntStageName
column. However, you can keep this column if you ask your database to group on it.
If you ask to group on entertainer stage name, your database will form one group
containing the first eleven rows (“Carol Peacock Trio”), a second group containing
the next eleven rows (“Caroline Coie Cuartet”), and so on through the entire table.
You can now ask for the COUNT of the rows or the SUM, MIN, MAX, or AVG of
the ContractPrice column, and you will get one aggregate row per entertainment
group. The result looks like the following table.

Looks interesting, doesn’t it? We bet you’d like to know how we did that! We’ll
show you all the details in the following sections.

The GROUP BY Clause
As you discovered in Chapter 12, you can find out all sorts of interesting information
by using aggregate functions. However, you might have noticed that all the examples
we gave you applied the aggregate functions across all the rows returned by the
FROM and WHERE clauses. You could filter the result set down to one group using
the WHERE clause, but there was really no way to look at the results from multiple
groups in one request. To accomplish this summarizing by group in a single request,
we need to add one more major clause to your SQL vocabulary—GROUP BY.

Syntax
Let’s take a close look at the GROUP BY clause. Figure 13–1 shows the basic
diagram for a SELECT statement with GROUP BY added.

Figure 13–1 The syntax diagram of a SELECT statement with a GROUP BY clause
As you recall from earlier chapters, you define the tables that are the source of your
data in the FROM clause. Your FROM clause can be as simple as a single table
name or as complex as a JOIN of multiple tables. As discussed in Chapter 8,
“INNER JOINs,” you can even embed an entire table subquery (a SELECT
statement) as a table reference. Next, you can optionally provide a WHERE clause to
include or exclude certain rows supplied by the FROM clause. We covered the
WHERE clause in detail in Chapter 6, “Filtering Your Data.”
When you add a GROUP BY clause, you specify the columns in the logical table
formed by the FROM and WHERE clauses that you want your database system to
use as the definition for groups of rows. Rows that have the same values in the list of
columns you specify will be gathered into a group. You can use the columns that you
list in the GROUP BY clause in value expressions in your SELECT clause, and you
can use any of the aggregate functions we discussed in the previous chapter to
perform calculations across each group.
Let’s apply the GROUP BY clause to see how you can calculate information about
contract prices by entertainment group—the sample we tantalized you with earlier.
Figure 13–2 shows the tables needed to solve this problem.

Figure 13–2 The relationship between the Entertainers and Engagements tables

 Note
Throughout this chapter, we use the “Request/Translation/Clean Up/SQL”
technique introduced in Chapter 4, “Creating a Simple Query.”

“Show me for each entertainment group the group name, the count of contracts
for the group, the total price of all the contracts, the lowest contract price, the
highest contract price, and the average price of all the contracts.”

(Hint: When you see a request that wants the count, total, smallest, largest, or
average of values at a detail level [contracts] for each value at a higher level
[entertainers], you are going to need to use aggregate functions and grouping in your
request. Remember that for each entertainer there are most likely many contracts.)

Translation
Select entertainer name, the count of contracts, the sum of the
contract price, the lowest contract price, the highest contract price,
and the average contract price from the entertainers table joined
with the engagements table on entertainer ID, grouped by
entertainer name

Clean Up
Select entertainer name, the count of (*) contracts, the sum of the
(contract price), the lowest min(contract price), the highest
max(contract price), and the average avg(contract price) from the
entertainers table inner joined with the engagements table on
entertainers.entertainer ID in the entertainers table matches =
engagements.entertainer ID in the engagements table, grouped by
entertainer name

SQL

SELECT Entertainers.EntStageName,
 COUNT(*) AS NumContracts,
 SUM(Engagements.ContractPrice) AS TotPrice,
 MIN(Engagements.ContractPrice) AS MinPrice,
 MAX(Engagements.ContractPrice) AS MaxPrice,
 AVG(Engagements.ContractPrice) AS AvgPrice
FROM Entertainers
INNER JOIN Engagements
ON Entertainers.EntertainerID =
 Engagements.EntertainerID
GROUP BY Entertainers.EntStageName

Note that we substituted MIN for “lowest,” MAX for “highest,” and AVG for
“average,” as we showed you in the previous chapter. We also asked for COUNT(*)
because we want to count all the engagement (contract) rows regardless of any Null
values. Adding the GROUP BY clause is what gets us the aggregate calculations per
entertainment group. It also allows us to include the entertainer name in the
SELECT clause. (We saved this request as
CH13_Aggregate_Contract_Info_By_Entertainer in the sample database.)
Do you suppose the above query returns a row for each entertainer? What about
entertainers who have never been booked? If you remember what you learned in
Chapter 9 about OUTER JOIN, you might be tempted to solve the problem like this:

SQL

SELECT Entertainers.EntStageName,
 COUNT(*) AS NumContracts,
 SUM(Engagements.ContractPrice) AS TotPrice,
 MIN(Engagements.ContractPrice) AS MinPrice,
 MAX(Engagements.ContractPrice) AS MaxPrice,
 AVG(Engagements.ContractPrice) AS AvgPrice
FROM Entertainers
LEFT OUTER JOIN Engagements
ON Entertainers.EntertainerID =
 Engagements.EntertainerID
GROUP BY Entertainers.EntStageName

One interesting point about all the aggregate functions is that they ignore rows that
have a Null value. The above query will return a blank or Null value for TotPrice,
MinPrice, MaxPrice, and AvgPrice for the one entertainer who has no engagements,
but you’ll find that NumContracts is 1! How can that be? Well, this SQL asks for
COUNT(*)—count any row returned. The OUTER JOIN returns exactly one row for
the entertainer with no booking, so the count of 1 is correct. But if you remember
from the previous chapter, you can also COUNT(value expression), and that tells
your database system to add to the count only if it finds a non-Null value in the value
expression or column name you specify. Let’s tweak the query one more time.

SQL

SELECT Entertainers.EntStageName,

 COUNT(Engagements.EntertainerID) AS NumContracts,
 SUM(Engagements.ContractPrice) AS TotPrice,
 MIN(Engagements.ContractPrice) AS MinPrice,
 MAX(Engagements.ContractPrice) AS MaxPrice,
 AVG(Engagements.ContractPrice) AS AvgPrice
FROM Entertainers
LEFT OUTER JOIN Engagements
ON Entertainers.EntertainerID =
 Engagements.EntertainerID
GROUP BY Entertainers.EntStageName

Because the EntertainerID column from the Engagements table for the one
entertainer who has no bookings is Null, nothing gets counted. If you run this query,
you should see the correct value 0 in NumContracts for the one entertainer who has
no engagements. (We saved this request as
CH13_Aggregate_Contract_Info_All_Entertainers in the sample database.)
What if you want (or need) to group on more than one value? Let’s look at this same
problem, but from the perspective of customers rather than entertainers, and let’s
assume you want to display in your result set both the customer’s last name and first
name. Figure 13–3 shows the necessary tables.

Figure 13–3 The relationship between the Customers and Engagements tables

“Show me for each customer the customer first and last names, the count of
contracts for the customer, the total price of all the contracts, the lowest
contract price, the highest contract price, and the average price of all the
contracts.”
Translation

Select customer last name, customer first name, the count of
contracts, the sum of the contract price, the lowest contract price,
the highest contract price, and the average contract price from the
customers table joined with the engagements table on customer ID,
grouped by customer last name and customer first name

Clean Up

Select customer last name, customer first name, the count of (*)
contracts, the sum of the (contract price), the lowest min(contract
price), the highest max(contract price), and the average avg(contract
price) from the customers table inner joined with the engagements
table on customers.customer ID in the customers table matches =
engagements.customer ID in the engagements table, grouped by
customer last name, and customer first name

SQL

SELECT Customers.CustLastName,
 Customers.CustFirstName,
 COUNT(*) AS NumContracts,
 SUM(Engagements.ContractPrice) AS TotPrice,
 MIN(Engagements.ContractPrice) AS MinPrice,
 MAX(Engagements.ContractPrice) AS MaxPrice,
 AVG(Engagements.ContractPrice) AS AvgPrice
FROM Customers
INNER JOIN Engagements
ON Customers.CustomerID =
 Engagements.CustomerID
GROUP BY Customers.CustLastName,
 Customers.CustFirstName

The result looks like the following table. (In the sample database, we saved this
request as CH13_Aggregate_Contract_Info_By_Customer.)

Because it takes two columns to display the customer name, we had to include them
both in the GROUP BY clause. Remember that if you want to include a column in
the output that is not the result of an aggregate calculation, you must also include it
in the GROUP BY clause. We did not include ContractPrice in the GROUP BY
clause because that’s the column we’re using in many of the aggregate function
expressions. If we had included ContractPrice, we would have gotten unique groups

of customers and prices. MIN, MAX, and AVG will all return that grouped price.
COUNT will be greater than one only if more than one contract with the same price
exists for a given customer. If you think about it, though, grouping by customer and
price and asking for a COUNT would be a good way to find customers who have
multiple contracts at the same price.
Do you suppose this query includes customers who have no bookings? If you
answered “No,” you’re correct! To fetch data for all customers regardless of whether
they’ve booked an engagement, you must use an OUTER JOIN and be careful to
COUNT one of the columns from the Engagements table. The solution is similar to
that discussed earlier for entertainers and engagements.

Mixing Columns and Expressions
Suppose you want to list the customer name as one output column, the full customer
address as another output column, the last engagement date, and the sum of
engagement contract prices. The customer name is in two columns: CustFirstName
and CustLastName. The columns you need for a full address are CustStreetAddress,
CustCity, CustState, and CustZipCode. Let’s see how you should construct the SQL
for this request. (We saved this request as CH13_Customers_Last_Booking in the
sample database.)

“Show me for each customer the customer full name, the customer full address,
the latest contract date for the customer, and the total price of all the
contracts.”

Translation
Select customer last name and customer first name as
CustomerFullName; street address, city, state, and ZIP Code as
CustomerFullAddress; the latest contract start date; and the sum of
the contract price from the customers table joined with the
engagements table on customer ID, grouped by customer last name,
customer first name, customer street address, customer city,
customer state, and customer ZIP Code

Clean Up
Select customer last name and || ‘,’ || customer first name as
CustomerFullName, street address, || ‘, ’ || city; || ‘, ’ || state, and || ‘ ’
|| ZIP Code as CustomerFullAddress, the latest max(contract start
date) as latest date, and the sum of the (contract price) as total
contract price from the customers table inner joined with the
engagements table on customers.customer ID in the customers table

matches = engagements.customer ID in the engagements table
grouped by customer last name, customer first name, customer
street address, customer city, customer state, and customer ZIP
Code

SQL

SELECT Customers.CustLastName || ', ' ||
 Customers.CustFirstName AS CustomerFullName,
 Customers.CustStreetAddress || ', ' ||
 Customers.CustCity || ', ' ||
 Customers.CustState || ' ' ||
 Customers.CustZipCode AS CustomerFullAddress
 MAX(Engagements.StartDate) AS LatestDate,
 SUM(Engagements.ContractPrice),
 AS TotalContractPrice
FROM Customers
INNER JOIN Engagements
ON Customers.CustomerID =
 Engagements.CustomerID
GROUP BY Customers.CustLastName,
 Customers.CustFirstName,
 Customers.CustStreetAddress,
 Customers.CustCity, Customers.CustState,
 Customers.CustZipCode

Notice that we had to list each and every one of the columns we used in an output
expression that did not include an aggregate function. We used StartDate and
ContractPrice in aggregate expressions, so we don’t need to list them in the GROUP
BY clause. In fact, it doesn’t make sense to group on either StartDate or
ContractPrice because we want to use these in an aggregate calculation across
multiple customers. If, for example, we grouped on StartDate, MAX(StartDate)
would return the grouping value, and the expression SUM(ContractPrice) would
return only the sum of contract prices for a customer on any given date. You
wouldn’t get the sum of more than one contract unless a customer had more than one
contract for a given date—not likely.

Using GROUP BY in a Subquery in a WHERE Clause
In Chapter 11, “Subqueries,” we introduced the COUNT and MAX aggregate
functions to show how to filter rows using an aggregate value fetched with a
subquery. In Chapter 12 we showed how to use MIN, AVG, and SUM in a subquery
filter as well. Let’s look at a request that requires both a subquery with an aggregate
function and a GROUP BY clause in the subquery:

“Display the engagement contract whose price is greater than the sum of all
contracts for any other customer.”
Translation

Select customer first name, customer last name, engagement start

date, and engagement contract price from the customers table joined
with the engagements table on customer ID where the contract price
is greater than the sum of all contract prices from the engagements
table for customers other than the current customer, grouped by
customer ID

Clean Up
Select customer first name, customer last name, engagement start
date, and engagement contract price from the customers table inner
joined with the engagements table on customers.customer ID in the
customers table matches = engagements.customer ID in the
engagements table where the contract price is greater than > ALL
(select the sum of all (contract prices) from the engagements table
as E2 for where E2.customers ID <> other than the current
customers.customer ID, grouped by E2.customer ID)

SQL

SELECT Customers.CustFirstName,
 Customers.CustLastName,
 Engagements.StartDate,
 Engagements.ContractPrice
FROM Customers
INNER JOIN Engagements
ON Customers.CustomerID =
 Engagements.CustomerID
WHERE Engagements.ContractPrice > ALL
 (Select SUM(ContractPrice)
 FROM Engagements AS E2
 WHERE E2.CustomerID <> Customers.CustomerID
 GROUP BY E2.CustomerID)

Let’s analyze what the subquery is doing. For each engagement that the query looks
at in the JOIN of the Customers and Engagements tables, the subquery calculates the
SUM of all contract prices for all other customers and groups them by customer ID.
Because there are multiple customers in the database, the subquery will return
multiple SUM values—one for each of the other customers. For this reason, we
cannot ask for a simple greater than (>) comparison. We can, however, use the
quantified greater than all (> ALL) comparison to check a set of values as you
learned in Chapter 11. If you run this query in the sample Entertainment Agency
database for this chapter (we saved it as CH13_Biggest_Big_Contract), you’ll find
that one contract fits the bill, as shown here:

Simulating a SELECT DISTINCT Statement
Did it occur to you that you can use a GROUP BY clause and not include any
aggregate functions in your SELECT clause? Sure you can! When you do this, you
get the same effect as using the DISTINCT keyword covered in Chapter 4. (See the
“Eliminating Duplicate Rows” section in that chapter.)
Let’s look at a simple request that requires unique values and solve it using both
techniques:

“Show me the unique city names from the customers table.”

Translation 1
Select the unique city names from the customers table

Clean Up
Select the unique distinct city names from the customers table

SQL

SELECT DISTINCT Customers.CustCityName
FROM Customers

Translation 2
Select city name from the customers table, grouped by city name

Clean Up
Select city name from the customers table, grouped by city name

SQL

SELECT Customers.CustCityName
FROM Customers
GROUP BY Customers.CustCityName

Remember that GROUP BY groups all the rows on the grouping column(s) you
specify and returns one row per group. This is a slightly different way to get to the
same result that you obtain with the DISTINCT keyword. Which one is better? We
think that DISTINCT might be a clearer statement of what you want if all you want
is unique rows, but you might find that your database system solves the problem
faster when you use GROUP BY. In addition, GROUP BY lets you obtain more
information about your data. Consider the following query:

SQL

SELECT Customers.CustCityName, Count(*) as
CustPerCity
FROM Customers
GROUP BY Customers.CustCityName

With this query, you not only fetch the unique city names but also find out how
many customers are in each city. Is that cool or what?

“Some Restrictions Apply”
We already mentioned that adding a GROUP BY clause places certain restrictions on
constructing your request. Let’s review those restrictions to make sure you don’t fall
into common traps.

Column Restrictions
When you add a GROUP BY clause, you’re asking your database system to form
unique groups of rows from those returned by the tables defined in your FROM
clause and filtered by your WHERE clause. You can use as many aggregate
expressions as you like in your SELECT clause, and these expressions can use any
of the columns in the table defined by the FROM and WHERE clauses. As we
pointed out in an earlier example, it probably does not make sense to reference a
column in an aggregate expression and also include that column in your grouping
specification.
If you choose to also include expressions that reference columns but do not include
an aggregate function, you must list all columns you use this way in the GROUP BY
clause. One of the most common mistakes is to assume that you can reference
columns in nonaggregate expressions as long as the columns come from unique
rows. For example, let’s look at an incorrect request that includes a primary key
value—something that we know by definition is unique:

“Display the customer ID, customer full name, and the total of all engagement
contract prices.”

Translation
Select customer ID, customer first name, and customer last name as
CustFullName, and the sum of contract prices as TotalPrice from
the customers table joined with the engagements table on customer
ID, grouped by customer ID

Clean Up
Select customer ID, customer first name and || ‘ ’ || customer last
name as CustFullName, and the sum of (contract price)s as
TotalPrice from the customers table inner joined with the
engagements table on customers.customer ID in the customers table
matches = engagements.customer ID in the engagements table,
grouped by customer ID

SQL

SELECT Customers.CustomerID,
 Customers.CustFirstName || ' ' ||
 Customers.CustLastName AS CustFullName,
 SUM(Engagements.ContractPrice) AS TotalPrice
FROM Customers
INNER JOIN Engagements
ON Customers.CustomerID =
 Engagements.CustomerID
GROUP BY Customers.CustomerID

We know that CustomerID is unique per customer. Grouping on CustomerID alone
should be sufficient to fetch unique customer first and last name information within
the groups formed by CustomerID. However, SQL is a language based on syntax,
not semantics. In other words, SQL does not take into account any knowledge that
could be implied by the design of your database tables—including whether columns
are primary keys. SQL demands that your request be syntactically “pure” and
translatable without any knowledge of the underlying table design. So, the above
SQL statement will fail on a database system that is fully compliant with the SQL
Standard because we’ve included columns in the SELECT clause that are not in an
aggregate function and are also not in the GROUP BY clause (CustFirstName and
CustLastName). The correct SQL request is as follows:

SQL

SELECT Customers.CustomerID,
 Customers.CustFirstName || ' ' ||
 Customers.CustLastName AS CustFullName,
 SUM(Engagements.ContractPrice) AS TotalPrice
FROM Customers
INNER JOIN Engagements
ON Customers.CustomerID =
 Engagements.CustomerID
GROUP BY Customers.CustomerID,
 Customers.CustFirstName,
 Customers.CustLastName

This might seem like overkill, but it’s the correct way to do it!

 Note
In some database systems, you must exactly duplicate the expressions you use
in the SELECT clause in the GROUP BY clause. Oracle and Microsoft Office
Access are examples of systems that either support or require this. (Microsoft
Office Access lets you do it either way.) In our example, you would have to
end the SQL with this:

Click here to view code image

GROUP BY Customers.CustomerID,
 Customers.CustFirstName || ' ' ||

 Customers.CustLastName

instead of listing the separate columns. This isn’t compliant with the SQL
Standard, but you might find that this is the only way you can get your request
to work on your system.

Grouping on Expressions
We showed you earlier some correct examples of creating expressions that do not
include aggregate functions. One of the most common mistakes is to attempt to
group on the expression you create in the SELECT clause rather than on the
individual columns. Remember that the GROUP BY clause must refer to columns
created by the FROM and WHERE clauses. It cannot use an expression you create in
your SELECT clause.
Let’s take another look at an example we solved earlier to show you what we mean,
but this time, let’s make the mistake. (We’re skipping the Translation and Clean Up
steps here because we covered them earlier.)

“Show me for each customer in the state of Washington the customer full name,
the customer full address, the latest contract date for the customer, and the
total price of all the contracts.”

SQL

SELECT Customers.CustLastName || ', ' ||
 Customers.CustFirstName AS CustomerFullName,
 Customers.CustStreetAddress || ', ' ||
 Customers.CustCity || ', ' ||
 Customers.CustState || ' ' ||
 Customers.CustZip AS CustomerFullAddress
 MAX(Engagements.StartDate) AS LatestDate,
 SUM(Engagements.ContractPrice)
 AS TotalContractPrice
FROM Customers
INNER JOIN Engagements
ON Customers.CustomerID =
 Engagements.CustomerID
WHERE Customers.CustState ='WA'
GROUP BY CustomerFullName,
 CustomerFullAddress

Some database systems will let you get away with this, but it’s not correct. The
CustomerFullName and CustomerFullAddress columns don’t exist until after your
database system has evaluated the FROM, WHERE, and GROUP BY clauses. The
GROUP BY clause won’t find these columns in the result created in the FROM and
WHERE clauses, so on a database system that strictly adheres to the SQL Standard
you’ll get a syntax error.

We showed you earlier one correct way to solve this: You must list all the columns
you use in both the CustomerFullName and CustomerFullAddress expressions.
Another way is to make the FROM clause generate the calculated columns by
embedding a table subquery. Here’s what it looks like:

SQL

SELECT CE.CustomerFullName,
 CE.CustomerFullAddress,
 MAX(CE.StartDate) AS LatestDate,
 SUM(CE.ContractPrice)
 AS TotalContractPrice
FROM
 (SELECT Customers.CustLastName || ', ' ||
 Customers.CustFirstName AS CustomerFullName,
 Customers.CustStreetAddress || ', ' ||
 Customers.CustCity || ', ' ||
 Customers.CustState || ' ' ||
 Customers.CustZip AS CustomerFullAddress,
 Engagements.StartDate,
 Engagements.ContractPrice
 FROM Customers
 INNER JOIN Engagements
 ON Customers.CustomerID =
 Engagements.CustomerID
 WHERE Customers.CustState ='WA')
 AS CE
 GROUP BY CE.CustomerFullName,
 CE.CustomerFullAddress

This works now because we’ve generated the CustomerFullName and
CustomerFullAddress columns as output in the FROM clause. You have to admit,
though, that this makes the query very complex. In truth, it’s better to just list all the
individual columns you plan to use in nonaggregate expressions rather than try to
generate the expressions as columns inside the FROM clause.

Uses for GROUP BY
At this point, you should have a fairly good understanding of how to ask for
subtotals across groups using aggregate functions and the GROUP BY clause. The
best way to give you an idea of the wide range of uses for GROUP BY is to list some
problems you can solve with this new clause and then present a robust set of
examples in the “Sample Statements” section:

“Show me each vendor and the average by vendor of the number of days to
deliver products.”

“Display for each product the product name and the total sales.”
“List for each customer and order date the customer full name and the total cost
of items ordered on each date.”

“Display each entertainment group ID, entertainment group member, and the

amount of pay for each member based on the total contract price divided by the
number of members in the group.”

“Show each agent name, the sum of the contract price for the engagements
booked, and the agent’s total commission.”

“For completed classes, list by category and student the category name, the
student name, and the student’s average grade of all classes taken in that
category.”

“Display by category the category name and the count of classes offered.”
“List each staff member and the count of classes each is scheduled to teach.”
“Show me for each tournament and match the tournament ID, the tournament
location, the match number, the name of each team, and the total of the
handicap score for each team.”

“Display for each bowler the bowler name and the average of the bowler’s raw
game scores.”

“Show me how many recipes exist for each class of ingredient.”
“If I want to cook all the recipes in my cookbook, how much of each ingredient
must I have on hand?”

Sample Statements
You now know the mechanics of constructing queries using a GROUP BY clause
and have seen some of the types of requests you can answer. Let’s take a look at a
set of samples, all of which request that the information be grouped. These examples
come from each of the sample databases.
We’ve also included sample result sets that would be returned by these operations
and placed them immediately after the SQL syntax line. The name that appears
immediately above a result set is the name we gave each query in the sample data on
the companion website for this book, www.informit.com/title/9780321992475. We
stored each query in the appropriate sample database (as indicated within the
example), and we prefixed the names of the queries relevant to this chapter with
“CH13.” You can follow the instructions in the Introduction of this book to load the
samples onto your computer and try them.

 Note
Remember that all the column names and table names used in these examples
are drawn from the sample database structures shown in Appendix B,
“Schema for the Sample Databases.” To simplify the process, we have
combined the Translation and Clean Up steps for all the examples.

http://www.informit.com/title/9780321992475

These samples assume you have thoroughly studied and understood the
concepts covered in previous chapters, especially the chapters on JOINs and
subqueries.

Sales Orders Database

“List for each customer and order date the customer full name and the total cost
of items ordered on each date.”

Translation/Clean Up
Select customer first name and || ‘ ’ || customer last name as
CustFullName, order date, and the sum of (quoted price times *
quantity ordered) as TotalCost from the customers table inner joined
with the orders table on customers.customer ID in the customers
table matches = orders.customer ID in the orders table, and then
inner joined with the order details table on orders.order number in
the orders table matches = order_details.order number in the order
details table, grouped by customer first name, customer last name,
and order date

SQL

SELECT Customers.CustFirstName || ' ' ||
 Customers.CustLastName AS CustFullName,
 Orders.OrderDate,
 SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered) AS TotalCost
FROM (Customers
INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID)
INNER JOIN Order_Details
ON Orders.OrderNumber =
 Order_Details.OrderNumber
GROUP BY Customers.CustFirstName,
 Customers.CustLastName, Orders.OrderDate

CH13_Order_Totals_By_Customer_And_Date (847 rows)

Entertainment Agency Database

“Display each entertainment group ID, entertainment group member, and the
amount of pay for each member based on the total contract price divided by the
number of members in the group.”

 Note
This one is really tricky because each member might belong to more than one
entertainer group. You must sum the contract prices for each entertainer and
then divide by the count of members in that group (assuming each member
gets equal pay). Fetching the count requires a subquery filtered on the current
entertainer ID (the ID of the group, not the ID of the member), which means
you also must group on entertainer ID. Oh yes, and don’t forget to exclude
members who are not active (Status = 3).

Translation/Clean Up
Select entertainer ID, member first name, member last name, and
the sum of (contract price)s divided by / the (select count(*) of
active members from entertainer members as EM2 in the current
entertainer group where status is not equal to <> not active 3 and the
EM2 table entertainer ID equals = the entertainer members table
entertainer ID) from the members table inner joined with the

entertainer members table on members.member ID in the members
table matches = entertainer_members.member ID in the entertainer
members table, then inner joined with the entertainers table on
entertainers.entertainer ID in the entertainers table matches =
entertainer_members.entertainer ID in the entertainer members
table, and finally inner joined with the engagements table on
entertainers.entertainer ID in the entertainers table matches =
engagements.entertainer ID in the engagements table, where
member status is not equal to <> not active 3, grouped by
entertainer ID, member first name, and member last name, sorted
order by member last name

SQL

SELECT Entertainers.EntertainerID,
 Members.MbrFirstName, Members.MbrLastName,
 SUM(Engagements.ContractPrice)/
 (SELECT COUNT(*)
 FROM Entertainer_Members AS EM2
 WHERE EM2.Status <> 3
 AND EM2.EntertainerID =
 Entertainers.EntertainerID)
 AS MemberPay
FROM ((Members
INNER JOIN Entertainer_Members
ON Members.MemberID =
 Entertainer_Members.MemberID)
INNER JOIN Entertainers
ON Entertainers.EntertainerID =
 Entertainer_Members.EntertainerID)
INNER JOIN Engagements
ON Entertainers.EntertainerID =
 Engagements.EntertainerID
WHERE Entertainer_Members.Status<>3
GROUP BY Entertainers.EntertainerID,
 Members.MbrFirstName, Members.MbrLastName
ORDER BY Members.MbrLastName

CH13_Member_Pay (39 rows)

School Scheduling Database

“For completed classes, list by category and student the category name, the
student name, and the student’s average grade of all classes taken in that
category.”

Translation/Clean Up
Select category description, student first name, student last name,
and the average AVG(of grade) as AvgOfGrade from the categories
table inner joined with the subjects table on categories.category ID
in the categories table matches = subjects.category ID in the
subjects table, then inner joined with the classes table on
subjects.subject ID in the subjects table matches = classes.subject
ID in the classes table, then inner joined with the student schedules
table on classes.class ID in the classes table matches =
student_schedules.class ID in the student schedules table, then inner
joined with the student class status table on
student_class_status.class status in the student class status table
matches = student_schedules.class status in the student schedules
table, and finally inner joined with the students table on
students.student ID in the students table matches =
student_schedules.student ID in the student schedules table where
class status description is = ‘Completed,’ grouped by category
description, student first name, and student last name

SQL

SELECT Categories.CategoryDescription,
 Students.StudFirstName,
 Students.StudLastName,
 AVG(Student_Schedules.Grade) AS AvgOfGrade
FROM ((((Categories
INNER JOIN Subjects
ON Categories.CategoryID = Subjects.CategoryID)
INNER JOIN Classes
ON Subjects.SubjectID = Classes.SubjectID)
INNER JOIN Student_Schedules
ON Classes.ClassID = Student_Schedules.ClassID)
INNER JOIN Student_Class_Status
ON Student_Class_Status.ClassStatus =
 Student_Schedules.ClassStatus)
INNER JOIN Students
ON Students.StudentID =
 Student_Schedules.StudentID
WHERE Student_Class_Status.ClassStatusDescription =
 'Completed'
GROUP BY Categories.CategoryDescription,
 Students.StudFirstName,
 Students.StudLastName

CH13_Student_GradeAverage_By_Category (47 rows)

Bowling League Database

“Show me for each tournament and match the tournament ID, the tournament
location, the match number, the name of each team, and the total of the
handicap score for each team.”

Translation/Clean Up
Select tourney ID, tourney location, match ID, team name, and the
sum of (handicap score) as TotHandiCapScore from the
tournaments table inner joined with the tourney matches table on
tournaments.tourney ID in the tournaments table matches =
tourney_matches.tourney ID in the tourney matches table, then inner
joined with the match games table on tourney_matches.match ID in
the tourney matches table matches = match_games.match ID in the
match games table, then inner joined with the bowler scores table on
match_games.match ID in the match games table matches =
bowler_scores.match ID in the bowler scores table and
match_games.game number in the match games table matches =
bowler_scores.game number in the bowler scores table, then inner
joined with the bowlers table on bowlers.bowler ID in the bowlers
table matches = bowler_scores.bowler ID in the bowler scores table,
and finally inner joined with the teams table on teams.team ID in the
teams table matches = bowlers.team ID in the bowlers table,
grouped by tourney ID, tourney location, match ID, and team name

SQL

SELECT Tournaments.TourneyID,
 Tournaments.TourneyLocation,
 Tourney_Matches.MatchID, Teams.TeamName,
 SUM(Bowler_Scores.HandicapScore)
 AS TotHandiCapScore
FROM ((((Tournaments
INNER JOIN Tourney_Matches
ON Tournaments.TourneyID =
 Tourney_Matches.TourneyID)
INNER JOIN Match_Games
ON Tourney_Matches.MatchID =
 Match_Games.MatchID)
INNER JOIN Bowler_Scores
ON (Match_Games.MatchID =
 Bowler_Scores.MatchID) AND
 (Match_Games.GameNumber =
 Bowler_Scores.GameNumber))
INNER JOIN Bowlers
ON Bowlers.BowlerID = Bowler_Scores.BowlerID)
INNER JOIN Teams
ON Teams.TeamID = Bowlers.TeamID
GROUP BY Tournaments.TourneyID,
 Tournaments.TourneyLocation,
 Tourney_Matches.MatchID, Teams.TeamName

As you can see, the difficult part of this request is assembling the complex JOIN
clauses to link all the tables in the correct manner.

CH13_Tournament_Match_Team_Results (112 rows)

“Display the highest raw score for each bowler.”

Translation/Clean Up
Select bowler first name, bowler last name, and the maximum (raw
score) as HighScore from the bowlers table inner joined with the
bowler scores table on bowlers.bowler ID in the bowlers table
matches = bowler_scores.bowler ID in the bowler scores table,
grouped by bowler first name, and bowler last name

SQL

SELECT Bowlers.BowlerFirstName,
 Bowlers.BowlerLastName,
 MAX(Bowler_Scores.RawScore) AS HighScore
FROM Bowlers
INNER JOIN Bowler_Scores
ON Bowlers.BowlerID = Bowler_Scores.BowlerID
GROUP BY Bowlers.BowlerFirstName,
 Bowlers.BowlerLastName

CH13_Bowler_High_Score_Group (32 rows)

Recipes Database

“Show me how many recipes exist for each class of ingredient.”

 Note
The challenge here is that you don’t want to count a particular recipe class
more than once per recipe. For example, if a recipe contains multiple herbs or
dairy ingredients, that recipe should be counted only once per class. Sounds
like it’s time to use COUNT(DISTINCT value expression), doesn’t it?

Translation/Clean Up
Select ingredient class description, and the unique count of (distinct
recipe ID) as CountOfRecipeID from the ingredient classes table
inner joined with the ingredients table on
ingredient_classes.ingredient class ID in the ingredient classes table
matches = ingredients.ingredient class ID in the ingredients table,
and then inner joined with the recipe ingredients table on
ingredients.ingredient ID in the ingredients table matches =
recipe_ingredients.ingredient ID in the recipe ingredients table,

grouped by ingredient class description
SQL

SELECT
 Ingredient_Classes.IngredientClassDescription,
 Count(DISTINCT RecipeID) AS CountOfRecipeID
FROM (Ingredient_Classes
INNER JOIN Ingredients
ON Ingredient_Classes.IngredientClassID =
 Ingredients.IngredientClassID)
INNER JOIN Recipe_Ingredients
ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID
GROUP BY
 Ingredient_Classes.IngredientClassDescription

CH13_IngredientClass_Distinct_Recipe_Count (19 rows)

 Note
Because Microsoft Access does not support COUNT DISTINCT, you’ll find
that the query in the Access sample database first selects the DISTINCT
values of RecipeID using a table subquery in the FROM clause and then
counts the resulting rows.

Summary

We began the chapter by explaining to you why you might want to group data to get
multiple subtotals from a result set. After tantalizing you with an example, we
proceeded to show how to use the GROUP BY clause to solve the example problem
and several others. We also showed how to mix column expressions with aggregate
functions.
We next explored an interesting example of using GROUP BY in a subquery that
acts as a filter in a WHERE clause. We subsequently pointed out that constructing a
query using GROUP BY and no aggregate functions is the same as using DISTINCT
in your SELECT clause. Then we warned you to carefully construct your GROUP
BY clause to include the columns and not the expressions.
We wrapped up our discussion of the GROUP BY clause by explaining some
common pitfalls. We showed that SQL does not consider any knowledge of primary
keys. We also explained common mistakes you might make when using column
expressions in your SELECT clause.
We summarized why the GROUP BY clause is useful and gave you a sample list of
problems you can solve using GROUP BY. The rest of the chapter provided
examples of how to build requests that require the GROUP BY clause.
The following section presents a number of requests that you can work out on your
own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need
for each request and then check your answer with the query we saved in the samples.
Don’t worry if your syntax doesn’t exactly match the syntax of the queries we saved
—as long as your result set is the same.

Sales Orders Database
1. “Show me each vendor and the average by vendor of the number of days to

deliver products.”
(Hint: Use the AVG aggregate function and group on vendor.)
You can find the solution in CH13_Vendor_Avg_Delivery (10 rows).

2. “Display for each product the product name and the total sales.”
(Hint: Use SUM with a calculation of quantity times price and group on
product name.)
You can find the solution in CH13_Sales_By_Product (38 rows).

3. “List all vendors and the count of products sold by each.”

You can find the solution in CH13_Vendor_Product_Count_Group (10 rows).
4. Challenge: Now solve problem 3 by using a subquery.

You can find the solution in CH13_Vendor_Product_Count_Subquery (10
rows).

Entertainment Agency Database
1. “Show each agent’s name, the sum of the contract price for the engagements

booked, and the agent’s total commission.”
(Hint: You must multiply the sum of the contract prices by the agent’s
commission. Be sure to group on the commission rate as well!)
You can find the solution in CH13_Agent_Sales_And_Commissions (8 rows).

School Scheduling Database
1. “Display by category the category name and the count of classes offered.”

(Hint: Use COUNT and group on category name.)
You can find the solution in CH13_Category_Class_Count (15 rows).

2. “List each staff member and the count of classes each is scheduled to teach.”
(Hint: Use COUNT and group on staff name.)
You can find the solution in CH13_Staff_Class_Count (22 rows).

3. Challenge: Now solve problem 2 by using a subquery.
You can find the solution in CH13_Staff_Class_Count_Subquery (27 rows).

4. Can you explain why the subquery solution returns 5 more rows? Is it possible
to modify the query in question 2 to return 27 rows? If so, how would you do
it?
(Hint: Think about using an OUTER JOIN.)

Bowling League Database
1. “Display for each bowler the bowler name and the average of the bowler’s

raw game scores.”
(Hint: Use the AVG aggregate function and group on bowler name.)
You can find the solution in CH13_Bowler_Averages (32 rows).

2. “Calculate the current average and handicap for each bowler.”
(Hint: This is a “friendly” league, so the handicap is 90 percent of 200 minus
the raw average. Be sure to round the raw average and convert it to an integer
before subtracting it from 200, and then round and truncate the final result.

Although the SQL Standard doesn’t define a ROUND function, most
commercial database systems provide one. Check your product documentation
for details.)
You can find the solution in CH13_Bowler_Average_Handicap (32 rows).

3. Challenge: “Display the highest raw score for each bowler,” but solve it by
using a subquery.
You can find the solution in CH13_Bowler_High_Score_Subquery (32 rows).

Recipes Database
1. “If I want to cook all the recipes in my cookbook, how much of each

ingredient must I have on hand?”
(Hint: Use SUM and group on ingredient name and measurement description.)
You can find the solution in CH13_Total_Ingredients_Needed (65 rows).

2. “List all meat ingredients and the count of recipes that include each one.”
You can find the solution in CH13_Meat_Ingredient_Recipe_Count_Group (4
rows).

3. Challenge: Now solve problem 2 by using a subquery.
You can find the solution in CH13_Meat_Ingredient_Recipe_Count_Subquery
(11 rows).

4. Can you explain why the subquery solution returns 7 more rows? Is it possible
to modify the query in question 2 to return 27 rows? If so, how would you do
it?
(Hint: Think about using an OUTER JOIN.)

14. Filtering Grouped Data

“Let schoolmasters puzzle their brain,
With grammar, and nonsense, and learning;

Good liquor, I stoutly maintain,
Gives genius a better discerning.”

—Oliver Goldsmith

Topics Covered in This Chapter
A New Meaning of “Focus Groups”
Where You Filter Makes a Difference
Uses for HAVING
Sample Statements
Summary
Problems for You to Solve

In Chapter 12, “Simple Totals,” we gave you the details about all the aggregate
functions defined in the SQL Standard. We followed that up in Chapter 13,
“Grouping Data,” with a discussion of how to ask your database system to group sets
of rows and then calculate aggregate values on each group. One of the advantages to
grouping is that you can also display value expressions based on the grouping
columns to identify each group.
In this chapter, we’ll put the final piece of the summarizing and grouping puzzle into
place. After you group rows and calculate aggregate values, it’s often useful to filter
further the final result using a predicate on an aggregate calculation. As you will
soon see, you need the last piece of this puzzle—the HAVING clause—to do that.

A New Meaning of “Focus Groups”
You now know that once you’ve gathered your information into groups of rows, you
can request the MIN, MAX, AVG, SUM, or COUNT of all the values in each group.
Suppose you want to refine further the final result set—to focus the groups—by
testing one of the aggregate values. Let’s take a look at a simple request:

“Show me the entertainer groups that play in a jazz style and have more than
three members.”

Doesn’t sound too difficult, does it? Figure 14–1 shows the tables needed to solve

this request.

Figure 14–1 The tables needed to figure out which entertainers play jazz and also
have more than three members

 Note
We again use the “Request/Translation/Clean Up/SQL” technique introduced
in Chapter 4, “Creating a Simple Query.” We also use some JOIN and
subquery techniques you learned in Chapter 8, “INNER JOINs”; Chapter 9,
“OUTER JOINs”; and Chapter 11, “Subqueries.”

Without knowing about the HAVING clause, you’d probably be tempted to solve it
in the following incorrect manner:

Translation
Select the entertainer stage name and the count of members from the
entertainers table joined with the entertainer members table on
entertainer ID in the entertainers table matches entertainer ID in the
entertainer members table where the entertainer ID is in the
selection of entertainer IDs from the entertainer styles table joined
with the musical styles table on style ID in the entertainer styles
table matches style ID in the musical styles table where the
stylename is ‘Jazz’ and where the count of the members is greater
than 3, grouped by entertainer stage name

Clean Up
Select the entertainer stage name and the count(*) of members as
CountOfMembers from the entertainers table inner joined with the

entertainer members table on entertainers.entertainer ID in the
entertainers table matches = entertainer_members.entertainer ID in
the entertainer members table where the entertainer ID is in the
(selection of entertainer IDs from the entertainer styles table inner
joined with the musical styles table on entertainer_styles.style ID in
the entertainer styles table matches = musical_styles.style ID in the
musical styles table where the style name is = ‘Jazz’) and where the
count(*) of the members is greater than > 3, grouped by entertainer
stage name

SQL

SELECT Entertainers.EntStageName,
 COUNT(*) AS CountOfMembers
FROM Entertainers
INNER JOIN Entertainer_Members
ON Entertainers.EntertainerID =
 Entertainer_Members.EntertainerID
WHERE Entertainers.EntertainerID
IN
 (SELECT Entertainer_Styles.EntertainerID
 FROM Entertainer_Styles
 INNER JOIN Musical_Styles
 ON Entertainer_Styles.StyleID =
 Musical_Styles.StyleID
 WHERE Musical_Styles.StyleName = 'Jazz')
AND COUNT(*) > 3
GROUP BY Entertainers.EntStageName

What’s wrong with this picture? The key is that any column you reference in a
WHERE clause (remember Chapter 6, “Filtering Your Data”?) must be a column in
one of the tables defined in the FROM clause. Is COUNT(*) a column generated
from the FROM clause? We don’t think so! In fact, you can calculate COUNT for
each group only after the rows are grouped.
Looks like we need a new clause after GROUP BY. Figure 14–2 shows the entire
syntax for a SELECT statement, including the new HAVING clause.

Figure 14–2 The SELECT statement and all its clauses
Because the HAVING clause acts on rows after they have been grouped, the SQL
Standard defines some restrictions on the columns you reference in any predicate in
the search condition. Note that when you do not have a GROUP BY clause, the
HAVING clause operates on all rows returned by the FROM and WHERE clauses as
though they are a single group.
The restrictions are the same as those for columns referenced in the SELECT clause
of a grouped query. Any reference to a column in a predicate within the search
condition of a HAVING clause either must name a column listed in the GROUP BY
clause or must be enclosed within an aggregate function. This makes sense because
any column comparisons must use something generated from the grouped rows—
either a grouping value or an aggregate calculation across rows in each group.
Now that you know a bit about HAVING, let’s solve the earlier problem in the
correct way:

“Show me the entertainer groups that play in a jazz style and have more than
three members.”

Translation
Select the entertainer stage name and the count of members from the
entertainers table joined with the entertainer members table on

entertainer ID in the entertainers table matches entertainer ID in the
entertainer members table then inner joined with the entertainer
styles table on style ID in the entertainers table matches style ID in
the entertainer styles table, then inner joined with the musical styles
table on style ID in the entertainer styles table matches style ID in
the musical styles table where the style name is ‘Jazz,’ grouped by
entertainer stage name, and having the count of the members greater
than 3

Clean Up
Select the entertainer stage name and the count(*) of members as
CountOfMembers from the entertainers table inner joined with the
entertainer members table on entertainers.entertainer ID in the
entertainers table matches = entertainer_members.entertainer ID in
the entertainer members table then inner joined with the entertainer
styles table on entertainers.style ID in the entertainers table matches
= entertainer_styles.style ID in the entertainer styles table, then
inner joined with the musical styles table on entertainer_styles.style
ID in the entertainer styles table matches = musical_styles.style ID
in the musical styles table where the style name is = ‘Jazz’, grouped
by entertainer stage name, and having the count(*) of the members
greater than > 3

SQL

SELECT Entertainers.EntertainerID,
 Entertainers.EntStageName,
 Count(Entertainer_Members.EntertainerID)
 AS CountOfEntertainerID
FROM ((Entertainers INNER JOIN Entertainer_Members
ON Entertainers.EntertainerID =
 Entertainer_Members.EntertainerID)
INNER JOIN Entertainer_Styles
ON Entertainers.EntertainerID =
 Entertainer_Styles.EntertainerID)
INNER JOIN Musical_Styles
ON Musical_Styles.StyleID =
Entertainer_Styles.StyleID
WHERE Musical_Styles.StyleName='Jazz'
GROUP BY Entertainers.EntertainerID,
 Entertainers.EntStageName
HAVING Count(Entertainer_Members.EntertainerID)>3

Although we also included the COUNT in the final output of the request, we didn’t
need to do that in order to ask for COUNT(*) in the HAVING clause. As long as any
calculated value or column reference we use in HAVING can be derived from the
grouped rows, we’re OK. We saved this query in the Entertainment Agency sample
database as CH14_Jazz_Entertainers_More_Than_3.

Where You Filter Makes a Difference
You now know two ways to filter your final result set: WHERE and HAVING. You
also know that there are certain limitations on the predicates you can use within a
search condition in a HAVING clause. In some cases, however, you have the choice
of placing a predicate in either clause. Let’s take a look at the reasons for putting
your filter in the WHERE clause instead of the HAVING clause.

Should You Filter in WHERE or in HAVING?
You learned in Chapter 6 about five major types of predicates you can build to filter
the rows returned by the FROM clause of your request. These are comparison (=, <>,
<, >, >=, <=), range (BETWEEN), set membership (IN), pattern match (LIKE), and
Null (IS NULL). In Chapter 11, we expanded your horizons by showing you how to
use a subquery as one of the arguments in comparison and set membership
predicates, and we introduced you to two additional classes of predicates—
quantified (ANY, SOME, ALL) and existence (EXISTS)—that require a subquery as
one of the arguments.
Keep in mind that the search condition in a WHERE clause filters rows before your
database system groups them. In general, when you want to ultimately group only a
subset of rows, it’s better to eliminate unwanted rows first in the WHERE clause.
For example, let’s assume you want to solve the following problem:

“Show me the states on the west coast of the United States where the total of the
orders is greater than $1 million.”

Figure 14–3 shows the tables needed to solve this problem.

Figure 14–3 The tables needed to sum all orders by state
You could legitimately state the request in the following manner, placing the
predicate on customer state into the HAVING clause:

SQL

SELECT Customers.CustState,
 SUM(Order_Details.QuantityOrdered *
 Order_Details.QuotedPrice) AS SumOfOrders
FROM (Customers
 INNER JOIN Orders
 ON Customers.CustomerID = Orders.CustomerID)
INNER JOIN Order_Details
ON Orders.OrderNumber =
 Order_Details.OrderNumber
GROUP BY Customers.CustState
HAVING SUM(Order_Details.QuantityOrdered *
 Order_Details.QuotedPrice) > 1000000
AND CustState IN ('WA', 'OR', 'CA')

Because you are grouping on the state column, you can construct a predicate on that
column in the HAVING clause, but you might be asking your database system to do
more work than necessary. As it turns out, the total of all orders for customers in the
state of Texas also exceeds $1 million. If you place the filter on customer state in the
HAVING clause as shown here, your database will calculate the total for all the rows
in Texas as well, evaluate the first predicate in the HAVING clause and keep the
result, and then finally throw it out when the Texas group isn’t one you want. In our
sample database, we have customers only in the states of CA, TX, OR, and WA. You
can imagine how this performance problem would be compounded if you had
customers in all 50 states. Your database would do the calculation for all states and
then throw out all but three of them!
If you want to calculate a result based on grouping by customer state but want only
customers in Washington, Oregon, and California, it makes more sense to filter
down to the rows in those three states using a WHERE clause before you ask to
GROUP BY state. If you don’t do so, the FROM clause returns rows for all
customers in all states and must do extra work to group rows you’re not even going
to need. Here’s the better way to solve the problem:

Translation
Select customer state and the sum of quantity ordered times quoted
price as SumOfOrders from the customers table joined with the
orders table on customer ID in the customers table matches
customer ID in the orders table, and then joined with the order
details table on order number in the orders table matches order
number in the order details table where customer state is in the list
‘WA’, ‘OR’, ‘CA’, grouped by customer state, and having the sum
of the orders greater than $1 million

Clean Up
Select customer state, and the sum of (quantity ordered times *

quoted price) as SumOfOrders from the customers table inner joined
with the orders table on customers.customer ID in the customers
table matches = orders.customer ID in the orders table, and then
joined with the order details table on orders.order number in the
orders table matches = order_details.order number in the order
details table where customer state is in the list (‘WA’, ‘OR’, ‘CA’),
grouped by customer state, and having the sum of the orders
(quantity ordered * quoted price) greater than > $1 million 1000000

SQL

SELECT Customers.CustState,
 SUM(Order_Details.QuantityOrdered *
 Order_Details.QuotedPrice) AS SumOfOrders
FROM (Customers
 INNER JOIN Orders
 ON Customers.CustomerID = Orders.CustomerID)
INNER JOIN Order_Details
ON Orders.OrderNumber =
 Order_Details.OrderNumber
WHERE Customers.CustState IN ('WA', 'OR', 'CA')
GROUP BY Customers.CustState
HAVING SUM(Order_Details.QuantityOrdered *
 Order_Details.QuotedPrice) > 1000000

We saved this query in the sample database as
CH14_West_Coast_Big_Order_States.

Avoiding the HAVING COUNT Trap
Many times youmight want to know which categories of items have fewer than a
certain number of members. For example, you might want to know which
entertainment groups have two or fewer members, which recipes have two or fewer
dairy ingredients, or which subjects have three or fewer full-time professors
teaching. The trick here is you also want to know which categories have zero
members.
Let’s look at a request that illustrates the trap you can fall into:

“Show me the subject categories that have fewer than three full professors
teaching that subject.”

Figure 14–4 shows the tables needed to solve this problem.

Figure 14–4 The tables needed to find out which categories have fewer than three
faculty teaching in that category

Translation
Select category description and the count of staff ID as ProfCount
from the categories table joined with the faculty categories table on
category ID in the categories table matches category ID in the
faculty categories table, and then joined with the faculty table on
staff ID in the faculty table matches staff ID in the faculty categories
table where title is ‘Professor,’ grouped by category description, and
having the count of staff ID less than 3

Clean Up
Select category description and the count of (staff ID) as ProfCount
from the categories table inner joined with the faculty categories
table on categories.category ID in the categories table matches =
faculty_categories.category ID in the faculty categories table, and
then inner joined with the faculty table on faculty.staff ID in the
faculty table matches = faculty_categories.staff ID in the faculty
categories table where title is = ‘Professor,’ grouped by category
description, and having the count of (staff ID) less than < 3

SQL

SELECT Categories.CategoryDescription,
 COUNT(Faculty_Categories.StaffID) AS
 ProfCount
FROM (Categories
INNER JOIN Faculty_Categories
ON Categories.CategoryID =
 Faculty_Categories.CategoryID)
INNER JOIN Faculty
ON Faculty.StaffID = Faculty_Categories.StaffID
WHERE Faculty.Title = 'Professor'
GROUP BY Categories.CategoryDescription
HAVING COUNT(Faculty_Categories.StaffID) < 3

Looks good, doesn’t it? Below is the result set returned from this query.
CH14_Subjects_Fewer_3_Professors_WRONG

Do you notice that the result set lists no subject categories with zero professors? This
happened because the COUNT function is counting only the rows that are left in the
Faculty_Categories table after filtering for full professors. We threw away any
potential zero rows with the WHERE clause!
Just to confirm our suspicions that some categories exist with no full professors, let’s
construct a query that will test our theory. Remember that the COUNT aggregate
function will return a zero if we ask it to count an empty set, and we can get an
empty set if we force the request to consider how many rows exist for a specific
subject category. We do this by forcing the query to look at the subject categories
one at a time. We’ll be counting category rows, not faculty subject rows. Consider
the following SELECT statement:

SQL

SELECT COUNT(Faculty.StaffID)
AS BiologyProfessors
FROM (Faculty
INNER JOIN Faculty_Categories
ON Faculty.StaffID =
 Faculty_Categories.StaffID)
INNER JOIN Categories
ON Categories.CategoryID =
 Faculty_Categories.CategoryID
WHERE Categories.CategoryDescription =
 'Biology'
AND Faculty.Title = 'Professor'

We saved this query as CH14_Count_Of_Biology_Professors in the sample
database. As you can see, there really are no full professors in the School Scheduling
sample database who teach biology. We asked the query to consider just one subject
category. Because there are no rows that are both Professor and Biology, we get a
legitimate empty set. The COUNT function, therefore, returns a zero.
Now that we know this, we can embed this request as a subquery in a WHERE
clause that extracts a match on category ID from the outer query. This forces the
request to consider the categories one at a time as it fetches the category descriptions
one row at a time from the Categories table in the outer request. The SQL is as
follows:

SQL

SELECT Categories.CategoryDescription,
 (SELECT COUNT(Faculty.StaffID)
 FROM (Faculty
 INNER JOIN Faculty_Categories
 ON Faculty.StaffID =
 Faculty_Categories.StaffID)
 INNER JOIN Categories AS C2
 ON C2.CategoryID =
 Faculty_Categories.CategoryID
 WHERE C2.CategoryID = Categories.CategoryID
 AND Faculty.Title = 'Professor')
 AS ProfCount
FROM Categories
WHERE
 (SELECT COUNT(Faculty.StaffID)
 FROM (Faculty
 INNER JOIN Faculty_Categories
 ON Faculty.StaffID =
 Faculty_Categories.StaffID)
 INNER JOIN Categories AS C3
 ON C3.CategoryID =
 Faculty_Categories.CategoryID
 WHERE C3.CategoryID = Categories.CategoryID
 AND Faculty.Title = 'Professor') < 3

We saved this query as CH14_Subjects_Fewer_3_Professors_RIGHT in the sample
database. Notice that we also included a copy of the subquery in the SELECT clause
so that we can see the actual counts per category. This now works correctly because
the subquery in the WHERE clause legitimately returns zero for a category that has
no full professors. The correct result is below.

CH14_Subjects_Fewer_3_Professors_RIGHT

As you can see, many subject categories actually have no full professors assigned to
teach the subject. Although this final solution does not use HAVING at all, we
include it to make you aware that HAVING isn’t always the clear solution for this
type of problem. Keep in mind that you can still use HAVING for many “. . . having
fewer than . . .” problems. For example, if you want to see all customers who spent
less than $500 last month, but you don’t care about customers who bought nothing at
all, then the HAVING solution works just fine (and will most likely execute faster).
However, if you also need to see customers who bought nothing, you will have to
use the non-HAVING technique we just showed you.
But “having” said all that (pun intended), there actually is a way to solve this
problem using GROUP BY and HAVING. Recall from Chapter 13 that we showed
you how to get a zero count in a query that joined entertainers and engagements

using an OUTER JOIN. The trick to solve the subject categories and professors
problem is to use a subquery in the FROM clause that filters for professors. You
must do this so that the result set you use in the JOIN is already filtered before you
do the JOIN. We have left the final solution up to you in the “Problems for You to
Solve” section at the end of this chapter. Never fear—the solution is in the sample
database!

Uses for HAVING
At this point, you should have a good understanding of how to ask for subtotals
across groups using aggregate functions and the GROUP BY clause and how to filter
the grouped data using HAVING. The best way to give you an idea of the wide
range of uses for HAVING is to list some problems you can solve with this new
clause and then present a set of examples in the “Sample Statements” section.

“Show me each vendor and for each vendor the average of the number of days
to deliver products, but display only the vendors whose average number of
days to deliver is greater than the average number of delivery days for all
vendors.”

“Display for each product the product name and the total sales that are greater
than the average of sales for all products in that category.”

“List for each customer and order date the customer full name and the total cost
of items ordered that is greater than $1,000.”

“How many orders are for only one product?”
“Which agents booked more than $3,000 worth of business in December
2012?”

“Show me the entertainers who have more than two overlapped bookings.”
“Show each agent name, the sum of the contract price for the engagements
booked, and the agent’s total commission for agents whose total commission is
more than $1,000.”

“Do any team captains have a raw score that is higher than any other member
on the team?”

“Display for each bowler the bowler name and the average of the bowler’s raw
game scores for bowlers whose average is greater than 155.”

“List the bowlers whose highest raw scores are at least 20 higher than their
current averages.”

“For completed classes, list by category and student the category name, the
student name, and the student’s average grade of all classes taken in that
category for those students who have an average of 90 or better.”

“Display by category the category name and the count of classes offered for
those categories that have three or more classes.”

“List each staff member and the count of classes each is scheduled to teach for
those staff members who teach at least one but fewer than three classes.”

“List the recipes that contain both beef and garlic.”
“Sum the amount of salt by recipe class, and display those recipe classes that
require more than three teaspoons.”

“For what type of recipe do I have two or more recipes?”

Sample Statements
You now know the mechanics of constructing queries using a HAVING clause and
have seen some of the types of requests you can answer. Let’s take a look at a set of
samples, all of which request that the information be grouped and then filtered on an
aggregate value from the group. These examples come from each of the sample
databases.
We’ve also included sample result sets that would be returned by these operations
and placed them immediately after the SQL syntax line. The name that appears
immediately above a result set is the name we gave each query in the sample data on
the companion website for this book, www.informit.com/title/9780321992475. We
stored each query in the appropriate sample database (as indicated within the
example), and we prefixed the names of the queries relevant to this chapter with
“CH14.” You can follow the instructions in the Introduction of this book to load the
samples onto your computer and try them.

 Note
Remember that all the column names and table names used in these examples
are drawn from the sample database structures shown in Appendix B,
“Schema for the Sample Databases.” To simplify the process, we have
combined the Translation and Clean Up steps for all the examples. These
samples assume you have thoroughly studied and understood the concepts
covered in previous chapters, especially the chapters on JOINs and
subqueries.

Sales Orders Database
“List for each customer and order date the customer’s full name and the total
cost of items ordered that is greater than $1,000.”

http://www.informit.com/title/9780321992475

Translation/Clean Up
Select customer first name and || ‘ ’ || customer last name as
CustFullName, order date, and the sum of (quoted price times *
quantity ordered) as TotalCost from the customers table inner joined
with the orders table on customers.customer ID in the customers
table matches = orders.customer ID in the orders table, and then
inner joined with the order details table on orders.order number in
the orders table matches = order_details.order number in the order
details table, grouped by customer first name, customer last name,
and order date, having the sum of (quoted price times * quantity
ordered) greater than > 1000

SQL

SELECT Customers.CustFirstName || ' ' ||
 Customers.CustLastName AS CustFullName,
 Orders.OrderDate,
 SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered) AS TotalCost
FROM (Customers
INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID)
INNER JOIN Order_Details
ON Orders.OrderNumber =
 Order_Details.OrderNumber
GROUP BY Customers.CustFirstName,
 Customers.CustLastName, Orders.OrderDate
HAVING SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered) > 1000

CH14_Order_Totals_By_Customer_And_Date_GT1000 (649 rows)

Entertainment Agency Database

“Which agents booked more than $3,000 worth of business in December
2012?”

Translation/Clean Up
Select the agent first name, agent last name, and the sum of
(contract price) as TotalBooked from the agents table inner joined
with the engagements table on agents.agent ID in the agents table
matches = engagements.agent ID in the engagements table where
the engagement start date is between December 1, 2012, ‘2012-12-
01’ and December 31, 2012, ‘2012-12-31’, grouped by agent first
name, and agent last name, and having the sum of (contract price)
greater than > 3000

SQL

SELECT Agents.AgtFirstName, Agents.AgtLastName,
 SUM(Engagements.ContractPrice)
 AS TotalBooked
FROM Agents
INNER JOIN Engagements
ON Agents.AgentID = Engagements.AgentID
WHERE Engagements.StartDate
BETWEEN '2012-12-01' AND '2012-12-31'
GROUP BY Agents.AgtFirstName, Agents.AgtLastName
HAVING SUM(Engagements.ContractPrice) > 3000

CH14_Agents_Book_Over_3000_12_2012 (2 rows)

 Caution
If your database uses a data type that stores both dates and times, the
BETWEEN search condition might not work as expected because the user
could have entered both a date and a time value in what you expect to contain
only a date. (We entered only dates in the Microsoft Office Access samples
where we were forced to use the Date/Time data type.) When a date and time
column contains both a date and a time, the value is greater than just the date
portion. For example, 2012-12-31 12:00:00 is greater than 2012-12-31, so the
BETWEEN search condition will fail to fetch that row. If you suspect this
might be the case, you should write the above search condition as
StartDate >= '2012-12-01' AND StartDate < '2013-01-01'
The second search condition ensures that you fetch all the rows for December
31, 2012 even if some of the rows have a time value in them.

School Scheduling Database

“For completed classes, list by category and student the category name, the
student name, and the student’s average grade of all classes taken in that
category for those students who have an average higher than 90.”

Translation/Clean Up
Select category description, student first name, student last name,
and the average avg(of grade) as AvgOfGrade from the categories
table inner joined with the subjects table on categories.category ID
in the categories table matches = subjects.category ID in the
subjects table, then inner joined with the classes table on
subjects.subject ID in the subjects table matches = classes.subject
ID in the classes table, then inner joined with the student schedules
table on classes.class ID in the classes table matches =
student_schedules.class ID in the student schedules table, then inner
joined with the student class status table on

student_class_status.class status in the student class status table
matches = student_schedules.class status in the student schedules
table, and finally inner joined with the students table on
students.student ID in the students table matches =
student_schedules.student ID in the student schedules table where
class status description is = ‘Completed,’ grouped by category
description, student first name, and student last name, and having
the average avg(of grade) greater than > 90

SQL

SELECT Categories.CategoryDescription,
 Students.StudFirstName,
 Students.StudLastName,
 AVG(Student_Schedules.Grade) AS AvgOfGrade
FROM ((((Categories
INNER JOIN Subjects
ON Categories.CategoryID = Subjects.CategoryID)
INNER JOIN Classes
ON Subjects.SubjectID = Classes.SubjectID)
INNER JOIN Student_Schedules
ON Classes.ClassID = Student_Schedules.ClassID)
INNER JOIN Student_Class_Status
ON Student_Class_Status.ClassStatus =
 Student_Schedules.ClassStatus)
INNER JOIN Students
ON Students.StudentID =
 Student_Schedules.StudentID
WHERE Student_Class_Status.ClassStatusDescription =
 'Completed'
GROUP BY Categories.CategoryDescription,
 Students.StudFirstName,
 Students.StudLastName
HAVING AVG(Student_Schedules.Grade) > 90

CH14_A_Students (17 rows)

“List each staff member and the count of classes each is scheduled to teach for
those staff members who teach at least one but fewer than three classes.”

 Note
We avoided the HAVING COUNT zero problem by specifically stating that
we want staff members who teach at least one class.

Translation/Clean Up
Select staff first name, staff last name, and the count of classes (*)
as ClassCount from the staff table inner joined with the faculty
classes table on staff.staff ID in the staff table matches =
faculty_classes.staff ID in the faculty classes table, grouped by staff
first name, and staff last name, and having the count of classes (*)
less than < 3

SQL

SELECT Staff.StfFirstName, Staff.StfLastName,
 COUNT(*) AS ClassCount
FROM Staff
INNER JOIN Faculty_Classes
ON Staff.StaffID = Faculty_Classes.StaffID
GROUP BY Staff.StfFirstName, Staff.StfLastName
HAVING COUNT(*) < 3

CH14_Staff_Class_Count_1_To_3 (2 rows)

Bowling League Database

“List the bowlers whose highest raw scores are more than 20 pins higher than
their current averages.”

Translation/Clean Up
Select bowler first name, bowler last name, the average avg(raw
score) as CurrentAverage, and the maximum (raw score) as
HighGame from the bowlers table inner joined with the bowler
scores table on bowlers.bowler ID in the bowlers table matches =
bowler_scores.bowler ID in the bowler scores table, grouped by
bowler first name, and bowler last name, and having the maximum
(raw score) greater than > the average avg(raw score) plus + 20

SQL

SELECT Bowlers.BowlerFirstName,
 Bowlers.BowlerLastName,
 AVG(Bowler_Scores.RawScore) AS CurrentAverage,
 MAX(Bowler_Scores.RawScore) AS HighGame
FROM Bowlers INNER JOIN Bowler_Scores
ON Bowlers.BowlerID = Bowler_Scores.BowlerID
GROUP BY Bowlers.BowlerFirstName,
 Bowlers.BowlerLastName
HAVING MAX(Bowler_Scores.RawScore) >
 (AVG(Bowler_Scores.RawScore) + 20)

CH14_Bowlers_Big_High_Score (15 rows)

Recipes Database

“List the recipes that contain both beef and garlic.”

Translation/Clean Up
Select recipe title from the recipes table where the recipe ID is in the
(selection of recipe ID from the ingredients table inner joined with
the recipe ingredients table on recipe_ingredients.ingredient ID in
the recipe ingredients table matches = ingredients.ingredient ID in
the ingredients table where the ingredient name is = ‘Beef’ or the
ingredient name is = ‘Garlic,’ grouped by recipe ID and having the
count of the values in (recipe ID) equal to = 2)

SQL

SELECT Recipes.RecipeTitle
FROM Recipes
WHERE Recipes.RecipeID
IN (SELECT Recipe_Ingredients.RecipeID
 FROM Ingredients
 INNER JOIN Recipe_Ingredients
 ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID
 WHERE Ingredients.IngredientName = 'Beef'
 OR Ingredients.IngredientName = 'Garlic'
 GROUP BY Recipe_Ingredients.RecipeID
 HAVING COUNT(Recipe_Ingredients.RecipeID) = 2)

CH14_Recipes_Beef_And_Garlic (1 row)

 Note
This illustrates a creative use of GROUP BY and HAVING in a sub-query to
find recipes that have both ingredients. When a recipe has neither of the
ingredients, the recipe won’t appear in the subquery. When a recipe has only
one of the ingredients, the count will be 1, so the row will be eliminated. Only
when a recipe has both will the COUNT be 2. Be careful, though. If a
particular recipe calls for both minced and whole garlic but no beef, this
technique won’t work! You will get a COUNT of 2 for the two garlic entries,
so the recipe will be selected even though it has no beef.
If you wonder why we used an OR operator when we want both beef and
garlic, be sure to review the Using OR topic in the Using Multiple Conditions
section in Chapter 6. We showed you an alternative way to solve this problem
in Chapter 8. In Chapter 18, “‘Not’ and ‘And’ Problems,” we’ll show you
another creative way to solve this problem.

Summary
We started the chapter with a discussion about focusing the groups you form by
using the HAVING clause to filter out groups based on aggregate calculations. We
introduced the syntax of this final clause for a SELECT statement and explained a
simple example.
Next we showed an example of when to use the WHERE clause rather than the
HAVING clause to filter rows. We explained that when you have a choice, you’re
better off placing your filter in the WHERE clause. Before you got too comfortable
with HAVING, we showed you a common trap to avoid when counting groups that
might contain a zero result. We also showed you an alternative way to solve this type
of problem.
Finally, we summarized why the HAVING clause is useful and gave you a sample
list of problems you can solve using HAVING. The rest of the chapter provided
examples of how to build requests that require the HAVING clause.
The following section presents a number of requests that you can work out on your
own.

Problems for You to Solve

Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need
for each request and then check your answer with the query we saved in the samples.
Don’t worry if your syntax doesn’t exactly match the syntax of the queries we saved
—as long as your result set is the same.

Sales Orders Database
1. “Show me each vendor and the average by vendor of the number of days to

deliver products that is greater than the average delivery days for all
vendors.”
(Hint: You need a subquery to fetch the average delivery time for all vendors.)
You can find the solution in CH14_Vendor_Avg_Delivery_GT_Overall_Avg
(5 rows).

2. “Display for each product the product name and the total sales that is greater
than the average of sales for all products in that category.”
(Hint: To calculate the comparison value, you must first SUM the sales for
each product within a category and then AVG those sums by category.)
You can find the solution in CH14_Sales_By_Product_GT_Category_Avg (13
rows).

3. “How many orders are for only one product?”
(Hint: You need to use an inner query in the FROM clause that lists the order
numbers for orders having only one row and then COUNT those rows in the
outer SELECT clause.)
You can find the solution in CH14_Single_Item_Order_Count (1 row).

Entertainment Agency Database
1. “Show me the entertainers who have more than two overlapped bookings.”

(Hint: Use a subquery to find those entertainers with overlapped bookings
HAVING a COUNT greater than 2.)
You can find the solution in CH14_Entertainers_MoreThan_2_Overlap (1
row).

2. “Show each agent’s name, the sum of the contract price for the engagements
booked, and the agent’s total commission for agents whose total commission is
more than $1,000.”
(Hint: Use the similar problem from Chapter 13 and add a HAVING clause.)
You can find the solution in CH14_Agent_Sales_Big_Commissions (4 rows).

School Scheduling Database
1. “Display by category the category name and the count of classes offered for

those categories that have three or more classes.”
(Hint: JOIN categories to subjects and then to classes. COUNT the rows and
add a HAVING clause to get the final result.)
You can find the solution in CH14_Category_Class_Count_3_Or_More (14
rows).

2. “List each staff member and the count of classes each is scheduled to teach for
those staff members who teach fewer than three classes.”
(Hint: This is a HAVING COUNT zero trap! Use subqueries instead.)
You can find the solution in CH14_Staff_Teaching_LessThan_3 (7 rows).

3. “Show me the subject categories that have fewer than three full professors
teaching that subject.”
We did show you one way to correctly solve this problem in the section
“Avoiding the HAVING COUNT Trap” using subqueries. Now try to solve it
correctly using JOINs and GROUP BY.
(Hint: Consider using OUTER JOIN and a subquery in the FROM clause.)
You can find the solution in
CH14_Subjects_Fewer_3_Professors_Join_RIGHT (16 rows).

4. “Count the classes taught by all staff members.”
(Hint: This really isn’t a HAVING problem, but you might be tempted to solve
it incorrectly using a GROUP BY using COUNT(*).)
You can find the correct solution in CH14_Staff_Class_Count_Subquery (27
rows) and CH14_Staff_Class_Count_GROUPED_RIGHT (27 rows). The
incorrect solution is in CH14_Staff_Class_Count_GROUPED_WRONG (22
rows).

Bowling League Database
1. “Do any team captains have a raw score that is higher than any other member

on the team?”
(Hint: You find out the top raw score for captains by JOINing teams to bowlers
on captain ID and then to bowler scores. Use a HAVING clause to compare the
MAX value for all other members from a subquery.)
You can find the solution in CH14_Captains_Who_Are_Hotshots (0 rows).
(There are no captains who bowl better than their teammates!)

2. “Display for each bowler the bowler name and the average of the bowler’s
raw game scores for bowlers whose average is greater than 155.”
(Hint: You need a simple HAVING clause comparing the AVG to a numeric
literal.)
You can find the solution in CH14_Good_Bowlers (17 rows).

3. “List the last name and first name of every bowler whose average raw score is
greater than or equal to the overall average score.”
(Hint: We showed you how to solve this in Chapter 12 in the “Sample
Statements” section with a subquery in a WHERE clause. Now solve it using
HAVING!)
You can find the solution in CH14_Better_Than_Overall_Average_HAVING
(17 rows).

Recipes Database
1. “Sum the amount of salt by recipe class, and display those recipe classes that

require more than 3 teaspoons.”
(Hint: This requires a complex JOIN of five tables to filter out salt and
teaspoon, SUM the result, and then eliminate recipe classes that use more than
3 teaspoons.)
You can find the solution in CH14_Recipe_Classes_Lots_Of_Salt (1 row).

2. “For what class of recipe do I have two or more recipes?”
(Hint: JOIN recipe classes with recipes, count the result, and keep the ones
with two or more with a HAVING clause.)
You can find the solution in CH14_Recipe_Classes_Two_Or_More (4 rows).

Part V: Modifying Sets of Data

15. Updating Sets of Data

“It is change, continuing change, inevitable change,
that is the dominant factor in society today.”

—Isaac Asimov

Topics Covered in This Chapter
What Is an UPDATE?
The UPDATE Statement
Uses for UPDATE
Sample Statements
Summary
Problems for You to Solve

As you learned in Part II, “SQL Basics”; Part III, “Working with Multiple Tables”;
and Part IV, “Summarizing and Grouping Data”, using the SELECT statement to
fetch data from your tables can be both fun and challenging. (OK, so maybe some of
it is a lot more challenging than fun!) If all you need to do is answer questions, then
you don’t need this part of our book. However, most real-world applications not only
answer complex questions but also allow the user to change, add, or delete data. In
addition to defining the SELECT statement that you’ve been learning about to
retrieve data, the SQL Standard also defines three statements that allow you to
modify your data. In this chapter, you’ll learn about the first of those statements—
UPDATE.

What Is an UPDATE?
The SELECT statement lets you retrieve sets of data from your tables. The UPDATE
statement also works with sets of data, but you can use it to change the values in one
or more columns and in one or more rows. By now, you should also be very familiar
with expressions. To change a value in a column, you simply assign an expression to
the column.
But you must be careful because UPDATE is very powerful. Most of the time you’ll
want to update only one or a few rows. If you’re not careful, you can end up
changing thousands of rows. To avoid this problem, we’ll show you a technique for
testing your statement first.

 Note

You can find all the sample statements and solutions in the “modify” version
of the respective sample databases—SalesOrdersModify,
EntertainmentAgencyModify, SchoolSchedulingModify, and
BowlingLeagueModify.

The UPDATE Statement
The UPDATE statement is actually much simpler than the SELECT statement that
you have been learning about in the previous chapters. The UPDATE statement has
only three clauses: UPDATE, SET, and an optional WHERE clause, as shown in
Figure 15–1.

Figure 15–1 The syntax diagram of the UPDATE statement

After the UPDATE keyword, you specify the name of the table that you want to
update. The SET keyword begins one or more clauses that assign a new value to a
column in the table. You must include at least one assignment clause, and you can
include as many assignment clauses as you need to change the value of multiple
columns in each row. Use the optional WHERE clause to restrict the rows that are to
be updated in the target table.

Using a Simple UPDATE Expression
Let’s look at an example using a simple assignment of an expression to the column
you want to update.

 Note

Throughout this chapter, we use the “Request/Translation/Clean Up/SQL”
technique introduced in Chapter 4, “Creating a Simple Query.”

“Increase the retail price of all products by 10 percent.”

Ah, this is somewhat tricky. You’ll find it tough to directly translate your original
request into SQL-like English because you don’t usually state the clauses in the same
order required by the UPDATE statement. Take a close look at your request and
figure out (a) the name of the target table and (b) the names of the columns you need
to update. Restate your request in that order, and then proceed with the translation,
like this:

“Change products by increasing the retail price by 10 percent.”

Translation
Update the products table by setting the retail price equal to the
retail price plus 10 percent of the price

Clean Up
Update the products table by setting the retail price equal to = the
retail price plus + (.10 percent of the * retail price)

SQL

UPDATE Products
SET Price = Price + (0.1 * Price)

Notice that you cannot say SET Price + 10 percent. You must state the column to be
updated to the left of the equals sign and then create an expression to calculate the
new value you want. If the new value involves using the old or current value of the
column, then you must reference the column name as needed to the right of the
equals sign. One rule that’s very clear in the SQL Standard is that your database
system must evaluate all the assignment expressions before it updates any rows. So
your database will resolve the two references to the Price column to the right of the
equals sign by fetching the value of the Price column before it makes any changes.
You’ll find this sort of assignment statement common in any programming language.
Although it might appear to you that you’re assigning the value of a column to itself,
you’re really grabbing the value before it changes, adding 10 percent of the value,
and then assigning the result to the column to update it to a new value.

Updating Selected Rows
Are you always going to want to update all rows in a table? Probably not. To limit
the rows changed by your UPDATE statement, you need to add a WHERE clause.

Let’s consider another problem:

“My clothing supplier just announced a price increase of 4 percent. Update the
price of the clothing products and add 4 percent.”

Let’s restate that:

“Modify products by increasing the retail price by 4 percent for products that
are clothing (category 3).”

Translation
Update the products table by setting the retail price equal to retail
price times 1.04 for all products in category 3

Clean Up
Update the products table by setting the retail price equal to = retail
price times * 1.04 for all where products in category ID = 3

SQL

UPDATE Products
SET RetailPrice = RetailPrice * 1.04
WHERE CategoryID = 3

 Note
We simplified the calculation in the query by multiplying the original value by
1.04 rather than adding the original value to 0.04 times the original value. The
result is mathematically the same and might actually execute faster because
one mathematical operation (price times 1.04) is more efficient than two
(price plus price times .04).

After tackling subqueries in Chapter 11, this was easy, right? Just wait—you’ll use
subqueries extensively in your WHERE clauses, and we’ll cover that later in this
chapter.

Safety First: Ensure You’re Updating the Correct Rows
Even for simple UPDATE queries, we strongly recommend that you verify that
you’re going to be updating the correct rows. How do you do that? As we
mentioned, most of the time you’ll add a WHERE clause to select a subset of rows to
update. Why not build a SELECT query first to return the rows that you intend to
update? Continuing with our example, let’s ask the database to return a column that
lets us ensure that we have the correct rows, the value we want to update, and the
expression we intend to assign to the column we’re changing.

“List the product name, retail price, and retail price plus 4 percent from the
products table for the products in category 3.”

Translation
Select product name, retail price, and retail price times 1.04 from
the products table for products in category ID 3

Clean Up
Select product name, retail price, and retail price times * 1.04 from
the products table for where products in category ID = 3

SQL

SELECT ProductName, RetailPrice,
 RetailPrice * 1.04 As NewPrice
FROM Products
WHERE CategoryID = 3

Figure 15–2 shows the result.

Figure 15–2 Verifying the rows you want to update

Note that we included the product name so we can see exactly what we want to
update. If this is the result we want, we can transform the SELECT statement into
the correct UPDATE statement by removing elements we don’t need and swapping
the FROM and SELECT clauses. Figure 15–3 (on page 510) shows how to transform
this SELECT statement into the correct UPDATE syntax.

Figure 15–3 Converting a SELECT query into an UPDATE statement

Simply cross out the words you don’t need, move the table name to the UPDATE

clause, move the target field and expression to the SET clause separated by an equals
sign, copy your WHERE clause, and you’re done.

A Brief Aside: Transactions
Before we get too much further into changing data, you need to know about an
important feature available in SQL. The SQL Standard defines something called a
transaction that you can use to protect a series of changes you’re making to the data
in your tables. You can think of a transaction in SQL just like a transaction you
might make online or at a store to buy something. You initiate the transaction when
you send in your order. Paying for the item you ordered is part of the transaction.
The transaction is completed when you receive and accept the merchandise. But if
the merchandise doesn’t arrive, you might apply for a refund. Or if the merchandise
is unsatisfactory, you return it and ask for your money back.
The SQL Standard provides three statements that mimic this scenario. You can use
START TRANSACTION before you begin your changes to indicate that you want
to protect and verify the changes you’re about to make. Think of this as sending in
your order. You make the changes to your database—register the payment and
register the receipt. If everything completes satisfactorily, you can use COMMIT to
make the changes permanent. If something went wrong (the payment or receipt
update failed), you can use ROLLBACK to restore the data as it was before you
started the transaction.
This buying and selling example might seem silly, but transactions are a very
powerful feature of SQL, especially when you need to make changes to multiple
rows or to rows in several tables. Using a transaction ensures that either all changes
are successful or none are. You don’t want to register the payment without receipt of
the goods, and you don’t want to mark the goods received without receiving the
payment. Note that this applies to changing your data not only with the UPDATE
statement described in this chapter but also with INSERT and DELETE, which are
described in the next two chapters.
Not all database systems implement transactions, and the syntax to use transaction
processing varies slightly depending on the particular database system. Some
database systems allow you to nest transactions inside each other so that you can
establish multiple commit points. Some end-user database systems, such as
Microsoft Office Access, start a transaction for you behind the scenes every time you
run a query that changes your data. If you’ve used Microsoft Access, you know that
it prompts you with a message indicating how many rows will be changed and
whether any will fail—and you can either accept the changes or cancel them
(ROLLBACK). As always, consult your database documentation for details.

Updating Multiple Columns
As implied by the diagram of the UPDATE statement in Figure 15–1 (see page 506),
you can specify more than one column to change by including additional assignment
statements separated by columns. Keep in mind that your database applies all the
changes you specify to every row returned as a result of evaluating your WHERE
clause. Let’s take a look at an update you might want to perform in the School
Scheduling database:

“Modify classes by changing the classroom to 1635 and the schedule dates from
Monday-Wednesday-Friday to Tuesday-Thursday-Saturday for all drawing
classes (subject ID 13).”

Translation
Update classes and set classroom ID to 1635, Monday schedule to
false, Wednesday schedule to false, Friday schedule to false,
Tuesday schedule to true, Thursday schedule to true, and Saturday
schedule to true for all classes that are subject ID 13

Clean Up
Update classes and set classroom ID to = 1635, Monday schedule to
= 0 false, Wednesday schedule to = 0 false, Friday schedule to = 0
false, Tuesday schedule to = 1 true, Thursday schedule to = 1 true,
and Saturday schedule to = 1 true for all classes that are where
subject ID = 13

SQL

UPDATE Classes
SET ClassRoomID = 1635, MondaySchedule = 0,
 WednesdaySchedule = 0, FridaySchedule = 0,
 TuesdaySchedule = 1, ThursdaySchedule = 1,
 SaturdaySchedule = 1
WHERE SubjectID = 13

 Note
Remember that most database systems use the value 0 for false and the value
1 or –1 for true. Check your database documentation for details.

Perhaps you want to make doubly sure that you’re changing only the classes
scheduled on Monday-Wednesday-Friday. To do that, add criteria to your WHERE
clause like this:

SQL

UPDATE Classes
SET ClassRoomID = 1635, MondaySchedule = 0,
 WednesdaySchedule = 0, FridaySchedule = 0,
 TuesdaySchedule = 1, ThursdaySchedule = 1,
 SaturdaySchedule = 1
WHERE SubjectID = 13
 AND MondaySchedule = 1
 AND WednesdaySchedule = 1
 AND FridaySchedule = 1

Notice that you’re filtering for the value you expect to find in the field before your
UPDATE statement changes the value. With this modified query, you’re finding all
rows for SubjectID 13 that have a true (1) value in the Monday, Wednesday, and
Friday schedule fields. For each row that matches these criteria, your UPDATE
statement will change the ClassRoomID and the schedule fields. If you try to run this
query a second time, you should find that your database updates no rows because
you eliminated all rows that qualify by changing the field values the first time you
ran the query.

Using a Subquery to Filter Rows
In the examples in previous sections, we’ve updated the products in category 3 and
the classes in subject 13. In the real world, code values like this don’t have much
meaning. You’d probably much rather say “clothing products” or “drawing classes.”
In a SELECT query, you can add the related tables to your FROM clause with JOIN
specifications and then display the more meaningful value from the related table. As
always, you must be familiar with your table relationships to make this connection.
Figure 15–4 shows the tables we need for our example.

Figure 15–4 The tables needed to relate category descriptions to products
Let’s look again at the verification query we built to check our update of products,
but this time, let’s add the Categories table:

SQL

SELECT ProductName, RetailPrice,
 RetailPrice * 1.04 As NewPrice
FROM Products
INNER JOIN Categories
ON Products.CategoryID = Categories.CategoryID
WHERE Categories.CategoryDescription = 'Clothing'

Filtering on the value Clothing makes a lot more sense than selecting the category ID
value 3. However, notice that the diagram of the UPDATE statement in Figure 15–1
shows that we can supply only a table name following the UPDATE keyword. We
cannot specify the INNER JOIN needed to include the Categories table so that we
can filter on the more meaningful value. So what’s the solution?
Remember from Chapter 11, “Subqueries,” that we can create a filter in a WHERE
clause to test a value fetched from a related table. Let’s solve the price update
problem again using a subquery so that we can apply a more meaningful filter value.

“Modify products by increasing the retail price by 4 percent for products that
are clothing.”

Translation
Update the products table by setting the retail price equal to retail
price times 1.04 for the products whose category ID is equal to the
selection of the category ID from the categories table where the
category description is clothing

Clean Up
Update the products table by setting the retail price equal to = retail
price times * 1.04 for the products whose where category ID is
equal to = the (selection of the category ID from the categories table
where the category description is = ‘Clothing’)

SQL

UPDATE Products
SET RetailPrice = RetailPrice * 1.04
WHERE CategoryID =
 (SELECT CategoryID
 FROM Categories
 WHERE CategoryDescription = 'Clothing')

That’s not as straightforward as a simple WHERE clause on a column from a joined
table, but it gets the job done.

 Caution
Notice that we used an equals comparison for the CategoryID column in the
Products table and the value returned by the subquery. As we noted in Chapter
11, if you want to use an equals comparison in a predicate with a subquery,
the subquery must return only one value. If more than one row in the
Categories table had the value Clothing in the category description field, this
query would fail. However, in our example, we’re reasonably certain that
filtering for Clothing will return only one value for CategoryID. Whenever

you’re not sure that a subquery will return only one value, you should use the
IN predicate rather than the “equal to” operator.

Let’s solve the problem of updating classes by using the same technique. We want to
use the subject code or subject name from the Subjects table rather than the numeric
and meaningless subject ID. Figure 15–5 shows the tables involved.

Figure 15–5 The tables needed to relate subject names to classes

Let’s solve the update problem again by using a subquery filter.

“Modify classes by changing the classroom to 1635 and the schedule dates from
Monday-Wednesday-Friday to Tuesday-Thursday-Saturday for all drawing
classes.”

Translation
Update classes and set classroom ID to 1635, Monday schedule to
false, Wednesday schedule to false, Friday schedule to false,
Tuesday schedule to true, Thursday schedule to true, and Saturday
schedule to true for all classes whose subject ID is in the selection
of subject IDs from the subjects table where subject name is
‘Drawing’

Clean Up
Update classes and set classroom ID to = 1635, Monday schedule to
= 0 false, Wednesday schedule to = 0 false, Friday schedule to = 0
false, Tuesday schedule to = 1 true, Thursday schedule to = 1 true,
and Saturday schedule to = 1 true for all classes whose where
subject ID is in the (selection of subject IDs from the subjects table
where subject name is = ‘Drawing’)

SQL

UPDATE Classes
SET ClassRoomID = 1635, MondaySchedule = 0,
 WednesdaySchedule = 0, FridaySchedule = 0,
 TuesdaySchedule = 1, ThursdaySchedule = 1,
 SaturdaySchedule = 1
WHERE SubjectID IN
 (SELECT SubjectID
 FROM Subjects
 WHERE SubjectName = 'Drawing')

Notice that even though we’re fairly certain that only one subject ID has a subject
name equal to Drawing, we decided to play it safe and use the IN predicate.

Some Database Systems Allow a JOIN in the UPDATE Clause
Several database systems, most notably the ones from Microsoft (Microsoft
Access and Microsoft SQL Server), allow you to specify a joined table in the
FROM clause of an UPDATE query. The restriction is that the JOIN must be
from the primary key in one table to the foreign key in another table so that
the database system can figure out which specific row or rows you intend to
update. This allows you to avoid a subquery in the WHERE clause when you
want to filter rows based on a value in a related table.
If your database system allows this, you can solve the problem of modifying
the information on drawing classes as follows:
SQL

UPDATE Classes
INNER JOIN Subject
ON Classes.SubjectID = Subjects.SubjectID
SET ClassRoomID = 1635, MondaySchedule = 0,
 WednesdaySchedule = 0, FridaySchedule = 0,
 TuesdaySchedule = 1, ThursdaySchedule = 1,
 SaturdaySchedule = 1
WHERE Subjects.SubjectName = 'Drawing'

As you can see, this avoids having to use a subquery to filter the rows. In
some ways, this syntax is also easier to understand. You can also use this
syntax to join a related table that supplies one of the values in your update
calculation rather than use a subquery in the SET clause. Be sure to check the
documentation for your database system to see if this feature is supported.
You’ll note that we’ve used this technique to solve some of the sample queries
in the Microsoft Access versions of the sample databases.
By the way, the SQL Standard allows the target table to be a view, which
could imply a joined table. However, the Standard specifies that the rules for
updating a view are defined by the implementation, which allows database
system vendors to either always require a simple table name or otherwise

restrict what you can do using a view or joined table. As always, check your
database documentation for details.

As you might imagine, you can make the subquery as complex as necessary to allow
you to properly filter the target table. For example, if you want to change the start
time for all classes taught by one professor, you need to join the Faculty_Classes and
Staff tables in the FROM clause of the subquery. Figure 15–6 shows the tables
involved.

Figure 15–6 The tables needed to relate staff names to classes

Let’s say you want to change the start time of all classes taught by Kathryn Patterson
to 2:00 PM. (You probably wouldn’t want to do this because you might end up with
multiple classes starting at the same time, but this makes an interesting example.)
Your solution might look as follows.

“Change the classes table by setting the start time to 2:00 PM. for all classes
taught by Kathryn Patterson.”

Translation
Update the classes table by setting the start time to 2:00 PM. for all
classes whose class ID is in the selection of class IDs of faculty
classes joined with staff on staff ID in the faculty classes table
matches staff ID in the staff table where the staff first name is
‘Kathryn’ and the staff last name is ‘Patterson’

Clean Up
Update the classes table by setting the start time to = 2:00 PM.
‘14:00:00’ for all classes whose where class ID is in the (selection
of class IDs of from faculty classes inner joined with staff on
faculty_classes.staff ID in the faculty classes table matches =

staff.staff ID in the staff table where the staff first name is =
‘Kathryn’ and the staff last name is = ‘Patterson’)

SQL

UPDATE Classes
SET StartTime = '14:00:00'
WHERE ClassID IN
 (SELECT ClassID
 FROM Faculty_Classes
 INNER JOIN Staff
 ON Faculty_Classes.StaffID = Staff.StaffID
 WHERE StfFirstName = 'Kathryn'
 AND StfLastName = 'Patterson')

So the trick is to identify the relationships between the target table and any related
table(s) you need in order to specify the criteria in the WHERE clause. You did this
in Chapter 8, “INNER JOINs,” and Chapter 9, “OUTER JOINs,” as you assembled
the FROM clause of queries on multiple tables. When building an UPDATE
statement, you can put only the target table after the UPDATE keyword, so you must
take the other tables and put them in a subquery that returns the column that you can
link back to the target table.

Using a Subquery UPDATE Expression
If you thought we were done using subqueries, you were wrong. Notice in Figure
15–1 that the value that you can assign to a column in a SET clause can be a value
expression. Just for review, Figure 15–7 shows how to construct a value expression.

Figure 15–7 The syntax diagram for a value expression

In Chapter 2, “Ensuring Your Database Structure Is Sound,” we advised you to not
include calculated fields in your tables. As with most rules, there are exceptions.
Consider the Orders table in the Sales Orders sample database. If your business

handles extremely large orders (thousands of order detail rows), you might want to
consider including an order total field in the Orders table. Including this calculated
field lets you run queries to examine the total of all items ordered without having to
fetch and total thousands of detail rows. If you choose to do this, you must include
code in your application that keeps the calculated total up to date every time a
change is made to any related order detail row.

 Note
Many database systems provide a feature—often called a trigger—that
enables you to run code within the database system whenever data is added,
updated, or deleted. (The act of adding, updating, or deleting data “triggers”
your code.) The trigger code can then perform additional complex validations
or even run additional update, insert, or delete queries to modify data in
related tables. You can imagine how code you write in a trigger could
potentially update calculated values in related tables.
Some database systems (notably Microsoft SQL Server) also enable you to
define calculated columns as part of your table design. Clearly, such features
cause your database system to do additional work whenever you work with
the data in your tables, so you should carefully consider using such features
and do so sparingly. Consult your database documentation for details.

So far, we’ve been assigning a literal value or a value expression containing a literal
value, an operator, and a column name to columns in the SET clause. Notice that you
can also assign the value of another column in the target table, but you’ll rarely want
to do that. The most interesting possibility is that you can use a SELECT expression
(a subquery) that returns a single value (such as a sum) from another table and assign
that value to your column. You can include criteria in the subquery (a WHERE
clause) that filters the values from the other table based on a value in the table you’re
updating.
So, to update a total in one table (Orders) using a sum of an expression on columns
in a related table (Order_Details), you can run an UPDATE query using a subquery.
In the subquery, you’ll sum the value of quantity ordered times quoted price and
place it in the calculated field, and you’ll add a WHERE clause to make sure you’re
summing values from related rows in the Order_Details table for each row in the
Orders table. Your request might look like this:

“Change the orders table by setting the order total to the sum of quantity
ordered times quoted price for all related order detail rows.”

Translation
Update the orders table by setting the order total to the sum of
quantity ordered times quoted price from the order details table
where the order number matches the order number in the orders
table

Clean Up
Update the orders table by setting the order total to = the (select sum
of (quantity ordered times * quoted price) from the order details
table where the order_details.order number matches the =
orders.order number in the orders table)

SQL

UPDATE Orders
SET OrderTotal =
 (SELECT SUM(QuantityOrdered * QuotedPrice)
 FROM Order_Details
 WHERE Order_Details.OrderNumber =
 Orders.OrderNumber)

 Note
We saved this query as CH15_Update_Order_Totals_Subquery in the Sales
Orders Modify sample database.

Notice that we didn’t include a WHERE clause to filter the orders that the database
will update. If you execute this query in application code, you’ll probably want to
filter the order number so that the database updates only the order that you know was
changed. Some database systems actually let you define a calculated field like this
and specify how the field should be updated by your database system. As noted
earlier, most database systems also support something called a trigger that the
database system runs on your behalf each time a row in a specified table is changed,
added, or deleted. For systems that include these features, you can use this UPDATE
query syntax in either the definition of the table or in the trigger you define to run
when a value changes. As usual, consult your database documentation for details.

Uses for UPDATE
At this point, you should have a good understanding of how to update one or more
columns in a table using either a simple literal or a complex subquery expression.
You also know how to filter the rows that will be changed by your UPDATE
statement. The best way to give you an idea of the wide range of uses for the
UPDATE statement is to list some problems you can solve with this statement and

then present a set of examples in the “Sample Statements” section.
“Reduce the quoted price by 2 percent for orders shipped more than 30 days
after the order date.”

“Add 6 percent to all agent salaries.”
“Change the tournament location to ‘Oasis Lanes’ for all tournaments
originally scheduled at ‘Sports World Lanes.’”

“Recalculate the grade point average for all students based on classes
completed.”

“Apply a 5 percent discount to all orders for customers who purchased more
than $50,000 in the month of October 2012.”

“Correct the engagement contract price by multiplying the entertainer daily
rate times number of days and adding a 15 percent commission.”

“Update the city and state for all bowlers by looking up the names by ZIP
Code.”

“For all students and staff in ZIP codes 98270 and 98271, change the area code
to 360.”

“Make sure the retail price for all bikes is at least a 45 percent markup over the
wholesale price of the vendor with the lowest cost.”

“Apply a 2 percent discount to all engagements for customers who booked more
than $3,000 worth of business in the month of October 2012.”

“Change the name of the ‘Huckleberrys’ bowling team to ‘Manta Rays.’”
“Increase the salary of full-time tenured staff by 5 percent.”
“Set the retail price of accessories to the wholesale price of the highest priced
vendor plus 35 percent.”

“Add 0.5 percent to the commission rate of agents who have sold more than
$20,000 in engagements.”

“Calculate and update the total pins, games bowled, current average, and
current handicap for all bowlers.”

Sample Statements
You now know the mechanics of constructing UPDATE queries. Let’s look at a set
of samples, all of which request that one or more columns in a table be changed in
some way. These examples come from four of the sample databases.

 Caution
Because the sample queries you’ll find in the modify versions of the sample

databases change your data, be aware that some of the queries will work as
expected only once. For example, after you run an UPDATE query to change
the name of a customer or bowling team using a WHERE clause to find the
row you want to change, subsequent attempts to find the row to change will
fail because of the change you made the first time you ran the query. Consider
restoring the databases from the sample scripts or a backup copy if you want
to work through the problems again.

We’ve also included a view of each target table before and after executing the update
and a count of the number of rows that should be changed by each sample UPDATE
statement. The name that appears immediately before the count of rows changed is
the name we gave each query in the sample data on the companion website for the
book. In addition, we created a companion SELECT query (stored as a View in
MySQL and Microsoft SQL Server) for each UPDATE query that you can use to see
exactly what will be changed. The name of the companion query is the name of the
original query with _Query appended to the name. We stored each query in the
appropriate sample database (as indicated within the example) and prefixed the
names of the queries relevant to this chapter with “CH15.” You can follow the
instructions in the Introduction of this book to load the samples onto your computer
and try them.

 Note
Remember that all the column names and table names used in these examples
are drawn from the sample database structures shown in Appendix B,
“Schema for the Sample Databases.” To simplify the process, we have
combined the Translation and Clean Up steps for all the examples. These
samples assume you have thoroughly studied and understood the concepts
covered in previous chapters, especially the chapter on subqueries.

Sales Orders Database

“Reduce the quoted price by 2 percent for orders shipped more than 30 days
after the order date.”

Let’s restate the problem so that it more closely follows the SQL syntax.

“Change order details by setting the quoted price to quoted price times 0.98 for
all orders where the shipped date is more than 30 days later than the order
date.”

Translation/Clean Up
Update the order details table by setting the quoted price equal to =
the quoted price times * 0.98 where the order ID is in the (selection
of order IDs from the orders table where ship date minus – order
date is greater than > 30

SQL

UPDATE Order_Details
SET QuotedPrice = QuotedPrice * 0.98
WHERE OrderID IN
 (SELECT OrderID
 FROM Orders
 WHERE (ShipDate – OrderDate) > 30)

 Note
This query solution assumes your database system allows you to subtract one
date from another to obtain the number of days between the two dates.
Consult your database documentation for details.

Order_Details Table Before Executing the UPDATE Query –
CH15_Adjust_Late_Order_Prices_Query

Order_Details Table After Executing CH15_Adjust_Late_Order_Prices (29 rows
changed)

“Make sure the retail price for all bikes is at least a 45 percent markup over the
wholesale price of the vendor with the lowest cost.”

Restated, the request is as follows:

“Change the products table by setting the retail price equal to 1.45 times the
wholesale price of the vendor that has the lowest cost for the product where the
retail price is not already equal to 1.45 times the wholesale price and the
category ID is 2.”

Translation/Clean Up
Update the products table by setting the retail price equal to = 1.45
times * the (selection of the unique distinct wholesale price from the
product vendors table where the product vendors table’s product
number is equal to = the products table’s product number and the
wholesale price is equal to = the (selection of the minimum
(wholesale price) from the product vendors table where the product
vendors table’s product number is equal to = the products table’s
product number)) where the retail price is less than < 1.45 times the
(selection of the unique distinct wholesale price from the product
vendors table where the product vendors table’s product number is
equal to = the products table’s product number and the wholesale
price is equal to = the (selection of the minimum (wholesale price)
from the product vendors table where the product vendors table’s
product number is equal to = the products table’s product number))
and the category ID is equal to = 2

SQL

UPDATE Products
SET RetailPrice = ROUND(1.45 *
 (SELECT DISTINCT WholeSalePrice
 FROM Product_Vendors
 WHERE Product_Vendors.ProductNumber
 = Products.ProductNumber
 AND WholeSalePrice =
 (SELECT MIN(WholeSalePrice)
 FROM Product_Vendors
 WHERE Product_Vendors.ProductNumber
 = Products.ProductNumber)), 0)
 WHERE RetailPrice < 1.45 *
 (SELECT DISTINCT WholeSalePrice
 FROM Product_Vendors
 WHERE Product_Vendors.ProductNumber
 = Products.ProductNumber
 AND WholeSalePrice =
 (SELECT MIN(WholeSalePrice)
 FROM Product_Vendors
 WHERE Product_Vendors.ProductNumber
 = Products.ProductNumber))
 AND CategoryID = 2

 Note
You’ll find this query solved with a JOIN in the UPDATE clause in the
Microsoft Access sample database because Access does not support a
subquery that uses DISTINCT in the SET clause. (It declares the query not
updatable because of the DISTINCT.)
Notice also that the solution rounds the resulting price to the nearest dollar
(zero decimal places). You’ll find that most commercial implementations
support a ROUND function even though this function is not explicitly defined
in the SQL Standard.
We could have also included a subquery to find the category ID that is equal
to (or IN) the category IDs from the Categories table where category
description is equal to Bikes, but we thought the query was complex enough
without adding another subquery. Finally, we selected the DISTINCT
wholesale price because more than one vendor might have the same low price.
We want only one value from the subquery for the comparison.

Products Table Before Executing the UPDATE Query –
CH15_Adjust_Bike_Retail_Price_Query (1 row)

Products Table After Executing CH15_Adjust_Bike_Retail_Price (1 row changed)

 Note
If you scan the Product_Vendors table for all the bikes (product IDs 1, 2, 6,
and 11), you’ll find that only product 2 has a current retail price that is less
than 1.45 times the lowest wholesale price for that product from any vendor.
The wholesale price for bike 2 from vendor ID 6 is $1,269, and 1.45 times this
amount is $1,840.05, which the query rounded to the nearest dollar.

Entertainment Agency Database

“Add 6 percent to all agent salaries.”

Restated, the request is as follows:

“Change the agents table by adding 6 percent to all salaries.”

Translation/Clean Up
Update the agents table by setting salary equal to = salary times *
1.06

SQL

UPDATE Agents
SET Salary = ROUND(Salary * 1.06, 0)

 Note
We’ve again used the common ROUND function found in most commercial
implementations and have specified rounding to zero decimal places. Check
your database system documentation for specific details about rounding in
your implementation.

Agents Table Before Executing the UPDATE Query –
CH15_Give_Agents_6Percent_Raise_Query (9 rows)

Agents Table After Executing CH15_Give_Agents_6Percent_Raise (9 rows
changed)

“Correct the engagement contract price by multiplying the entertainer daily
rate by the number of days and adding a 15 percent commission.”

Let’s restate that:

“Modify the engagements table by setting the contract price to 1.15 times the

number of days for the contract times the entertainer daily rate.”

Translation/Clean Up
Update the engagements table by setting the contract price equal to
= 1.15 times * the (end date minus – the start date plus + 1) and then
times the * (selection of the entertainer price per day from the
entertainers table where the entertainers table entertainer ID is equal
to = the engagements table entertainer ID

SQL

UPDATE Engagements
SET Engagements.ContractPrice =
ROUND(1.15 * (EndDate - StartDate + 1) *
 (Select EntPricePerDay
 FROM Entertainers
 WHERE Entertainers.EntertainerID =
 Engagements.EntertainerID), 0)

 Note
This query solution assumes your database system allows you to subtract one
date from another to obtain the number of days between the two dates.
Consult your database documentation for details.
We add 1 to the difference to obtain the actual number of days because the
entertainment occurs on both the first and the last days of the engagement. It’s
clear you need to do this for an engagement that is booked for only one day.
The start and end days are the same, so the difference is zero, but the
engagement played for exactly one day.

Entertainer Prices per Day

Engagements Table Before Executing the UPDATE Query –
CH15_Calculate_Entertainment_ContractPrice_Query (111 rows)

Engagements Table After Executing
CH15_Calculate_Entertainment_ContractPrice (111 rows changed)

 Note
The original contract price values in the Engagements table are simply
random values within a reasonable range that we chose when we created the
original sample data. This update query clearly corrects each value to a more

reasonable charge based on each entertainer’s daily rate.

School Scheduling Database

“For all students in ZIP Codes 98270 and 98271, change the area code to
360.”

Restated, the problem is as follows:

“Change the students table by setting the area code to 360 for all students who
live in ZIP Codes 98270 and 98271.”

Translation/Clean Up
Update the students table by setting the area code equal to = ‘360’
where the student ZIP Code is in the list (’98270’, and ‘98271’)

SQL

UPDATE Students
SET Students.StudAreaCode = '360'
WHERE Students.StudZipCode IN ('98270', '98271')

Students Table Before Executing the UPDATE Query
CH15_Fix_Student_AreaCode_Query (2 rows)

Students Table After Executing CH15_Fix_Student_AreaCode (2 rows changed)

“Recalculate the grade point average for all students based on classes
completed.”

Restated, the request looks like this:

“Modify the students table by setting the grade point average to the sum of the
credits times the grade divided by the sum of the credits.”

Translation/Clean Up
Update the students table by setting the student GPA equal to = the
(selection of the sum of (credits times * grade) divided by / the sum
of (credits) from the classes table inner joined with the student
schedules table on classes.class ID in the classes table matches =
student_schedules.class ID in the student schedules table where the
class status is = complete 2 and the student schedules table student
ID is equal to = the students table student ID)

SQL

UPDATE Students
SET Students.StudGPA =
 (SELECT ROUND(SUM(Classes.Credits *
 Student_Schedules.Grade) /
 SUM(Classes.Credits), 3)
 FROM Classes
 INNER JOIN Student_Schedules
 ON Classes.ClassID = Student_Schedules.ClassID
 WHERE (Student_Schedules.ClassStatus = 2)
 AND (Student_Schedules.StudentID =
 Students.StudentID))

Students Table Before Executing the UPDATE Query –
CH15_Update_Student_GPA_Query (19 rows)

Students Table After Executing the CH15_Update_Student_GPA Query (19 rows
changed)

 Note
Because Microsoft Access does not support using subqueries with aggregate
functions, you’ll find this query solved as a series of calls to built-in functions
using a predefined view on the Student_Schedules and Classes tables. Also, if
you use the SQL shown above, you will get a Null result for the last student
who hasn’t registered for any classes. In all three sample databases, we avoid

the Null and substitute a 0 value using functions available in each database
system. In Chapter 19, “Condition Testing,” we’ll show you how to avoid this
problem using CASE.

Bowling League Database

“Calculate and update the total pins, games bowled, current average, and
current handicap for all bowlers.”

 Note
You calculated the handicap using a SELECT query in the “Problems for You
to Solve” section of Chapter 13, “Grouping Data.” For a hint, see the
CH13_Bowler_Average_Handicap query in the Bowling League sample
database. Remember that the handicap is 90 percent of 200 minus the
bowler’s average.

Let’s restate the problem like this:

“Modify the bowlers table by calculating the total pins, games bowled, current
average, and current handicap from the bowler scores table.”

Translation/Clean Up
Update the bowlers table by setting the total pins equal to = the
(selection of the sum of the (raw score) from the bowler scores table
where the bowler scores table bowler ID is equal to = the bowlers
table bowler ID), and the games bowled equal to = the (selection of
the count of the (raw score) from the bowler scores table where the
bowler scores table bowler ID is equal to = the bowlers table bowler
ID), and the current average equal to = the (selection of the average
avg of the (raw score) from the bowler scores table where the
bowler scores table bowler ID is equal to = the bowlers table bowler
ID), and the current handicap equal to = the (selection of 0.9 times *
(200 minus – the average avg of the (raw score)) from the bowler
scores table where the bowler scores table bowler ID is equal to =
the bowlers table bowler ID)

SQL

UPDATE Bowlers
SET Bowlers.BowlerTotalPins =
 (SELECT SUM(RawScore)

 FROM Bowler_Scores
 WHERE Bowler_Scores.BowlerID = Bowlers.BowlerID),
 Bowlers.BowlerGamesBowled =
 (SELECT COUNT(Bowler_Scores.RawScore)
 FROM Bowler_Scores
 WHERE Bowler_Scores.BowlerID = Bowlers.BowlerID),
 Bowlers.BowlerCurrentAverage =
 (SELECT ROUND(AVG(Bowler_Scores.RawScore), 0)
 FROM Bowler_Scores
 WHERE Bowler_Scores.BowlerID =
 Bowlers.BowlerID),
 Bowlers.BowlerCurrentHcp =
 (SELECT ROUND(0.9 *
 (200 - ROUND(AVG(Bowler_Scores.RawScore),
 0)), 0)
 FROM Bowler_Scores
 WHERE Bowler_Scores.BowlerID = Bowlers.BowlerID)

Bowlers Table Before Executing the UPDATE Query –
CH15_Calc_Bowler_Pins_Avg_Hcp (34 rows)

Bowlers Table After Executing CH15_Calc_Bowler_Pins_Avg_Hcp (34 rows
changed)

 Note
Because Microsoft Access does not support using subqueries with aggregate
functions, you’ll find this query solved as a series of calls to built-in functions.
Also, if you use the SQL shown above, you will get a Null result for the last
two bowlers who haven’t bowled any games. In all three sample databases, we
avoid the Null and substitute a 0 value using functions available in each
database system. In Chapter 19, we’ll show you how to avoid this problem
using CASE.

“Change the tournament location to ‘Oasis Lanes’ for all tournaments
originally scheduled at ‘Sports World Lanes.’”

Restated, the problem is as follows:

“Modify the tournaments table by changing the tournament location to ‘Oasis
Lanes’ for all tournaments originally scheduled at ‘Sports World Lanes.’”

Translation/Clean Up
Update the tournaments table by setting the tourney location equal
to = ‘Oasis Lanes’ where the original tourney location is equal to =

‘Sports World Lanes’
SQL

UPDATE Tournaments
SET TourneyLocation = 'Oasis Lanes'
WHERE TourneyLocation = 'Sports World Lanes'

Tournaments Table Before Executing the UPDATE Query –
CH15_Change_Tourney_Location (3 rows)

Tournaments Table After Executing CH15_Change_Tourney_Location (3 rows
changed)

Summary
We started the chapter with a brief discussion about the UPDATE statement used to
change data in tables rather than to fetch data. We introduced the syntax of the

UPDATE statement and explained a simple example to update one column in all the
rows in a table using an expression.
Next we showed an example of how to use the WHERE clause to filter the rows you
are updating. We also showed you how to construct a SELECT query first to verify
that you’ll be updating the correct rows, and we showed you how to map the clauses
in your SELECT query into the UPDATE statement you need. Next we explained
the importance of transactions and how you can use them to protect against errors or
to ensure that either all changes or no changes are made to your tables. We continued
our discussion by showing you how to update multiple columns in a table with a
single UPDATE query.
Then we entered the realm of using subqueries in your UPDATE queries. We
explained how to use a subquery to create a more complex filter in your WHERE
clause. Finally, we showed you how to use a subquery to generate a new value to
assign to a column in your SET clause. The rest of the chapter provided examples of
how to build UPDATE queries.
The following section presents a number of problems that you can work out on your
own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need
for each request and then check your answer with the query we saved in the samples.
Don’t worry if your syntax doesn’t exactly match the syntax of the queries we saved
—as long as your result is the same.

Sales Orders Database
1. “Apply a 5 percent discount to all orders for customers who purchased more

than $50,000 in the month of October 2012.”
(Hint: You need a subquery within a subquery to fetch the order numbers for
all orders where the customer ID of the order is in the set of customers who
ordered more than $50,000 in the month of October.)
You can find the solution in
CH15_Give_Discount_To_Good_October_Customers (650 rows changed). Be
sure to run CH15_Update_Order_Totals_Subquery to correct the totals in the
Orders table after executing this query.

2. “Set the retail price of accessories (category = 1) to the wholesale price of the
highest-priced vendor plus 35 percent.”
(Hint: See CH15_Adjust_Bike_Retail_Price in the Sample Statements for the

technique.)
You can find the solution in CH15_Adjust_Accessory_Retail_Price (11 rows
changed).

Entertainment Agency Database
1. “Apply a 2 percent discount to all engagements for customers who booked

more than $3,000 worth of business in the month of October 2012.”
(Hint: Use an aggregate subquery to find those customers with engagements in
October HAVING total bookings greater than $3,000.)
You can find the solution in CH15_Discount_Good_Customers_October (34
rows changed).

2. “Add 0.5 percent to the commission rate of agents who have sold more than
$20,000 in engagements.”
(Hint: Use an aggregate subquery to find those agents HAVING total bookings
greater than $20,000.)
You can find the solution in CH15_Reward_Good_Agents (3 rows changed).

School Scheduling Database
1. “Increase the salary of full-time tenured staff by 5 percent.”

(Hint: Use a subquery in the WHERE clause to find matching staff IDs in the
faculty table that have a status of full time and a tenured field value of true,
that is, 1 or –1, depending on your database system.)
You can find the solution in CH15_Give_FullTime_Tenured_Raise (21 rows
changed).

2. “For all staff in ZIP Codes 98270 and 98271, change the area code to 360.”
You can find the solution in CH15_Fix_Staff_AreaCode (2 rows changed).

Bowling League Database
1. “Change the name of the ‘Huckleberrys’ bowling team to ‘Manta Rays.’”

You can find the solution in CH15_Change_Huckleberry_Name (1 row
changed).

2. “Update the city and state for all bowlers by looking up the names by ZIP
Code.”
(Hint: Use a subquery to fetch the matching city name and another subquery to
fetch the matching state from the WAZips table.)
You can find the solution in CH15_Update_Bowler_City_State (6 rows

changed).

16. Inserting Sets of Data

“I was brought up to believe that the only thing worth doing was to
add to the sum of accurate information in the world.”

—Margaret Meade

Topics Covered in This Chapter
What Is an INSERT?
The INSERT Statement
Uses for INSERT
Sample Statements
Summary
Problems for You to Solve

To this point, you have learned how to fetch information from your tables in creative
ways. In the previous chapter, you learned how to modify existing data by using the
UPDATE statement. But how do you put data into your tables to begin with? The
data certainly doesn’t appear magically on its own! You’ll learn the answer in this
chapter—how to use the INSERT statement to add rows into your tables.

What Is an INSERT?
Most commercial database systems come with one or more graphical interface
programs that let you work with data displayed on your screen. For example, you can
open any table in Microsoft Office Access by simply finding the table object and
opening it. Access displays the data in something it calls a datasheet that looks like a
grid with columns and rows. You scroll to the end of the display to find a blank row,
type data into the columns on that row, and then move to another row to insert a new
row in your table. You can also use Access to work with tables in Microsoft SQL
Server in the same manner. You can do something similar using the MySQL query
browser, and Microsoft’s SQL Server, IBM’s DB2, and Oracle Corporation’s Oracle
database provide equivalent tools.
But what’s really happening when you type in new data and tell the system to save
it? The graphical interface tools actually execute a command using SQL to add the
data you just entered to your table. The SQL statement that these programs use is
INSERT. If you browse through the sample files, you can find scripts that we
generated to load the data into the sample databases. For example, the first few lines
of the 01 EntertainmentAgencyData.SQL file look like this:

Click here to view code image

USE EntertainmentAgencyExample;
INSERT INTO Customers
 (CustomerID, CustFirstName, CustLastName, CustStreetAddress,
 CustCity, CustState, CustZipCode, CustPhoneNumber)
 VALUES (10001, 'Doris', 'Hartwig', '4726 - 11th Ave. N.E.',
 'Seattle', 'WA', '98105', '555-2671');
INSERT INTO Customers
 (CustomerID, CustFirstName, CustLastName, CustStreetAddress,
 CustCity, CustState, CustZipCode, CustPhoneNumber)
 VALUES (10002, 'Deb', 'Waldal', '908 W. Capital Way',
 'Tacoma', 'WA', '98413', '555-2496');
INSERT INTO Customers
 (CustomerID, CustFirstName, CustLastName, CustStreetAddress,
 CustCity, CustState, CustZipCode, CustPhoneNumber)
 VALUES (10003, 'Peter', 'Brehm', '722 Moss Bay Blvd.',
 'Kirkland', 'WA', '98033', '555-2501');
INSERT INTO Customers
 (CustomerID, CustFirstName, CustLastName, CustStreetAddress,
 CustCity, CustState, CustZipCode, CustPhoneNumber)
 VALUES (10004, 'Dean', 'McCrae', '4110 Old Redmond Rd.',
 'Redmond', 'WA', '98052', '555-2506');
INSERT INTO Customers
 (CustomerID, CustFirstName, CustLastName, CustStreetAddress,
 CustCity, CustState, CustZipCode, CustPhoneNumber)
 VALUES (10005, 'Elizabeth', 'Hallmark', 'Route 2, Box 203B',
 'Auburn', 'WA', '98002', '555-2521');

The first command (USE) tells the database system which database to use for the
following commands. Each INSERT statement tells the database system to add
exactly one row to a specific table. This might seem like a tedious process to load
thousands of records into a sample database, but you’ll find that each script to load
data actually runs in just a few seconds. For some of the simpler tables, we used the
graphical user interface to directly type in the data. To generate data for other sample
tables, we wrote some application code to create and execute the INSERT
statements. If you’re familiar with Microsoft Office Access and Visual Basic, you
can find code to generate sample data in the zfrm SellProducts form in the Sales
Orders sample database.
If you write any applications, whether for desktop systems or for the Web, you’ll
create code to generate and execute the appropriate INSERT statement when your
user enters new data. Most of the time, you’ll use the INSERT . . . VALUES version
to add the data. In this chapter, you’ll also learn about a second form of the INSERT
statement that makes it easy to copy data from one table to another.

 Note
You can find all the sample statements and solutions in the “modify” version
of the respective sample databases—SalesOrdersModify,
EntertainmentAgencyModify, SchoolSchedulingModify, and

BowlingLeagueModify.

The INSERT Statement
SQL has two main versions of the INSERT statement. In the first version, you
include the VALUES keyword and list the values that you want your database
system to add as a single new row in a specified target table. The second version lets
you use a SELECT clause to fetch data from a table to insert into your target table.
Let’s take a look at the VALUES version first.

Inserting Values
Although SQL is primarily designed to work with sets of data, much of the time
you’ll use INSERT to add a single row of data to one of your tables. The simplest
way to add one row to a table is to use the INSERT statement with the VALUES
clause. Figure 16–1 (on page 544) shows the diagram for this statement.

Figure 16–1 The syntax diagram of the INSERT statement using the VALUES clause

As you can see, you begin the statement with the INSERT INTO keywords. Next,
specify the name of the table where you want to add the row. If you’re going to
supply values for all the columns in the sequence in which those columns are defined
in the table, you can omit the column name list. (For example, we could have
omitted specifying the column name list in the INSERT statements we use to load
the sample data because we’re supplying a value for every column.) However, even
when you plan to supply values for all columns, we recommend that you include the
list of columns for which you intend to specify a data value. If you don’t do that,
your query will break if someone later adds a column to the table definition or
changes the sequence of columns in the table. You specify the column name list by
entering a left parenthesis, the column names separated by commas if you specify

more than one, and a closing right parenthesis.

 Note
The SQL Standard indicates that table_name can also be a view name, but the
view must be “updatable and insertable.” Many database systems support
inserting rows into views, and each database system has its own rules about
what constitutes an updatable or insertable view.
In most cases, a view isn’t insertable if you use the DISTINCT keyword or if
one of the output columns is the result of an expression or an aggregate
function. Some database systems also support defining the view using JOIN
and ON keywords in place of table_name. Consult your database system
documentation for details. In this chapter, we’ll exclusively use a single table
as the target for each INSERT statement.

Finally, specify the VALUES keyword, a left parenthesis, a list of value expressions
separated by commas, and a closing right parenthesis. Note that you must specify
each value in the same sequence that you specified them in the column name list.
That is, the first value expression supplies the value for the first column in the list,
the second value expression for the second column in the list, and so on. If you’re
including values for all columns and did not include the column name list, your
values must be in the same sequence as the columns in the table definition. If you
want your database system to use the default value defined for a column, use the
DEFAULT keyword. (But you’ll get an error if no default value is defined.) To
supply the Null value, use the NULL keyword. (But you’ll get an error of the column
is defined to not allow Null values.)
Remember from earlier chapters that a value expression can be quite complex and
can even include a subquery to fetch a single value from the target table or another
table. For review, Figure 16–2 shows the diagram of a value expression.

Figure 16–2 Use a value expression, whose syntax is shown here, in a VALUES
clause to specify the value of each column in your target table

 Note
Not all database systems allow you to use a SELECT expression in the
VALUES clause of an INSERT statement. Check your database
documentation for details.

Let’s look at how to add one row to the Employees table in the Sales Orders sample
database. As with all queries, you should know the structure of the table. Figure 16–
3 shows the design of the Employees table.

Figure 16–3 The Employees table in the Sales Orders sample database

Now let’s formulate a request.

 Note
Throughout this chapter, we use the “Request/Translation/Clean Up/SQL”

technique introduced in Chapter 4, “Creating a Simple Query”.

“Add new employee Susan Metters at 16547 NE 132nd St, Woodinville, WA
98072, with area code 425 and phone number 555-7825.”

You typically won’t list the columns you need in your original request, but keep
them in mind as you go to the Translation step. Here’s how you might translate the
request to add a new employee row:

Translation
Insert into the employees table in the columns first name, last name,
street address, city, state, ZIP Code, area code, and phone number
the values Susan, Metters, 16547 NE 132nd St, Woodinville, WA,
98072, 425, and 555-7825

Clean Up
Insert into the employees table in the columns (first name, last
name, street address, city, state, ZIP Code, area code, and phone
number) the values (‘Susan’, ‘Metters’, ‘16547 NE 132nd St’,
‘Woodinville’, ‘WA’, ‘98072’, 425, and ‘555-7825’)

SQL

INSERT INTO Employees
 (EmpFirstName, EmpLastName,
 EmpStreetAddress, EmpCity, EmpState,
 EmpZipCode, EmpAreaCode, EmpPhoneNumber)
VALUES ('Susan', 'Metters',
 '16547 NE 132nd St', 'Woodinville', 'WA',
 '98072', 425, '555-7825')

You can find this query saved as CH16_Add_Employee in the modify version of the
Sales Orders sample database.
Are you wondering why we didn’t include the primary key (EmployeeID) of the
Employees table? If so, read on!

Generating the Next Primary Key Value
In the example query in the previous section, we didn’t include the primary key—
EmployeeID. In all database systems, the primary key must have a value. Won’t this
query fail?
The answer is no, but only because we took advantage of a special feature that you’ll
find in nearly all commercial database implementations. When you’re not concerned
about the value of the primary key in a table—except that the value must be unique
—you can usually define the primary key using a special data type that the database

system will increment for you every time you insert a new row. In Microsoft Access,
use the data type called AutoNumber. (The data type is actually an integer with
special attributes.) In Microsoft SQL Server, use the Identity data type (also an
integer). For MySQL, use an integer with the special AUTO_INCREMENT
attribute. The SQL syntax used in our example works in all three types of sample
databases because we used this special feature for the primary key fields in nearly all
the sample tables in the modify versions.
The Oracle database system is a bit different. Rather than provide a special data type,
Oracle lets you define a Sequence pseudo-column, and you reference the NEXTVAL
property of the pseudo-column every time you need a unique value for a new row. In
Oracle, let’s assume you previously defined a pseudo-column called EmpID. You
can write your SQL like this:

SQL

INSERT INTO Employees
(EmployeeID, EmpFirstName, EmpLastName,
EmpStreetAddress, EmpCity, EmpState,
EmpZipCode, EmpAreaCode, EmpPhoneNumber)
VALUES (EmpID.NEXTVAL, 'Susan', 'Metters',
'16547 NE 132nd St', 'Woodinville', 'WA',
'98072', 425, '555-7825')

Note that we’re now providing a value for each column in the table in the sequence
that the columns are defined in the table definition. We could eliminate the optional
column name list and write the SQL like this:

SQL

INSERT INTO Employees
VALUES (EmpID.NEXTVAL, 'Susan', 'Metters',
'16547 NE 132nd St', 'Woodinville', 'WA',
'98072', 425, '555-7825')

As noted earlier, we don’t recommend that you omit the column name list because
your query will fail if your database administrator adds a column or changes the
sequence of the column definitions. We present this option only for completeness.
If you really have your thinking cap on, you might wonder whether you could just as
easily generate the next value by using a subquery expression. The SQL standard
certainly supports this, and your SQL might look like this:

SQL

INSERT INTO Employees
(EmployeeID,
EmpFirstName, EmpLastName,
EmpStreetAddress, EmpCity, EmpState,
EmpZipCode, EmpAreaCode, EmpPhoneNumber)
VALUES (
(SELECT MAX(EmployeeID) FROM Employees) + 1,
'Susan', 'Metters',

'16547 NE 132nd St', 'Woodinville', 'WA',
'98072', 425, '555-7825')

Unfortunately, several of the major database systems do not yet support a subquery
in a VALUES clause. Check your database documentation for details.

Inserting Data by Using SELECT
Because we’ve focused so far on inserting only a single row at a time, you’re
probably wondering why we named this chapter “Inserting Sets of Data.” In one
sense, values for multiple columns in one row is a set of data, but you probably think
of a set as consisting of multiple rows. Never fear—you can also insert a set of rows
by using a SELECT expression in place of the VALUES clause. Because a SELECT
expression fetches rows from one or more tables, you can think of an INSERT
statement with SELECT as a powerful way to copy data. Figure 16–4 shows the
syntax diagram for an INSERT statement using a SELECT expression.

Figure 16–4 The syntax diagram of the INSERT statement using a SELECT
expression

Notice that this variant of the INSERT statement begins in the same way. Following
the INSERT INTO keywords, specify the name of the table that is the target of this
insert. If your SELECT expression returns the same number of columns and in the
same order as in your target table, you can omit the optional column name list. But
as we recommended earlier, even when you plan to supply values for all columns,
we recommend that you include the list of columns for which you intend to specify a
data value. If you don’t do that, your query will break if someone later adds a
column to the table definition or changes the sequence of columns in the table.
If you examine the SQL diagrams in Appendix A, “SQL Standard Diagrams,” you’ll
find that a SELECT expression is simply a SELECT statement that is optionally
combined with additional SELECT statements using the UNION, INTERSECT, or

EXCEPT operations. (See Chapter 7, “Thinking in Sets,” for an explanation of these
three operations and Chapter 10, “UNIONs,” for a detailed description of UNION.)
Figure 16–5 (on page 550) shows the syntax diagram for a SELECT statement.

Figure 16–5 The syntax diagram of a SELECT statement

You might recall from earlier chapters that a table reference can be a single table
name, a list of tables separated by commas, or a complex JOIN of two or more
tables. A search condition can be a simple comparison of a column to a value; a
more complex test using BETWEEN, IN, LIKE, or NULL; or a very complex
predicate using subqueries. In short, you have all the power of SELECT queries that
you’ve learned about in earlier chapters at your disposal to specify the set of rows
that you want to copy to a table.
Let’s dig in and work through some examples that you can solve using INSERT with
a SELECT expression. Here’s a simple request that requires copying the data from a
row in one table into another table:

“We just hired customer David Smith. Copy to the Employees table all the
details for David Smith from the Customers table.”

As when building any query, you need to be familiar with the structure of the tables
involved. Figure 16–6 shows the design of the two tables.

Figure 16–6 The Customers and Employees tables in the Sales Orders sample
database

Let’s restate the request so that it’s easier to translate into an INSERT query:

“Copy to the Employees table the relevant columns in the Customers table for
customer David Smith.”

Translation
Insert into the employees table in the columns first name, last name,
street address, city, state, ZIP code, area code, and phone number
the selection of the first name, last name, street address, city, state,
ZIP code, area code, and phone number columns from the customers
table where the customer first name is ‘David’ and the customer last
name is ‘Smith’

Clean Up
Insert into the employees table in the columns (first name, last
name, street address, city, state, ZIP code, area code, and phone
number) the (selection of the first name, last name, street address,
city, state, ZIP code, area code, and phone number columns from
the customers table where the customer first name is = ‘David’ and
the customer last name is = ‘Smith’)

SQL

INSERT INTO Employees
 (EmpFirstName, EmpLastName, EmpStreetAddress,
 EmpCity, EmpState, EmpZipCode,
 EmpAreaCode, EmpPhoneNumber)
 SELECT Customers.CustFirstName,
 Customers.CustLastName,
 Customers.CustStreetAddress,
 Customers.CustCity,
 Customers.CustState, Customers.CustZipCode,
 Customers.CustAreaCode,
 Customers.CustPhoneNumber
 FROM Customers

 WHERE (Customers.CustFirstName = 'David')
 AND (Customers.CustLastName = 'Smith')

Notice that we did not include the EmployeeID column because we’re depending on
the database system to generate the next unique value for the new row(s) being
inserted. You can find this query saved as CH16_Copy_Customer_To_Employee in
the modify version of the Sales Orders sample database.
Because there’s only one customer named David Smith, this query copies exactly
one row to the Employees table. This still isn’t a set of rows, but you can see how
easy it is to use a SELECT expression to fetch the values you need to insert when
they’re available in another table.
Let’s move on to a problem that could potentially insert hundreds of rows. In every
active database application that collects new information over time, you might want
to design a feature that allows the user to archive or copy to a backup table all
transactions that occurred at some point in the past. The idea is that you don’t want
old historical data slowing down the processing of new data by making your
application wade through thousands of rows that represent transactions that occurred
long ago.
So, you might want to write an INSERT statement that copies transactions that
happened earlier than a specific date into a table reserved for historical data. (In the
next chapter, we’ll show you how to delete the copied or archived transactions from
the active table.) A typical request might look like this:

“Archive all engagements earlier than January 1, 2013.”

In this particular case, both the Engagements table and the Engagements_Archive
table have the same design, as shown in Figure 16–7.

Figure 16–7 The Engagements and Engagements_Archive tables in the
Entertainment Agency sample database

This is one case where you can safely leave out the column name list. The translation

is very easy, and it looks like this:
Translation

Insert into the engagements archive table the selection of all
columns from the engagements table where the engagement end
date is earlier than January 1, 2013

Clean Up
Insert into the engagements archive table the selection of all
columns * from the engagements table where the engagement end
date is earlier than < January 1, 2008 ‘2013-01-01’

SQL

INSERT INTO Engagements_Archive
 SELECT Engagements.*
 FROM Engagements
 WHERE Engagements.EndDate
 < '2013-01-01'

That’s almost too easy, right? But remember that we recommended that you always
explicitly list the column names. If you do that, your query will still run even if
someone adds a new column to either table or changes the sequence of the columns.
It’s a bit more effort, but we recommend writing your SQL for this problem to look
like this:

SQL

INSERT INTO Engagements_Archive
 (EngagementNumber, StartDate, EndDate,
 StartTime, StopTime, ContractPrice,
 CustomerID, AgentID, EntertainerID)
 SELECT Engagements.EngagementNumber,
 Engagements.StartDate, Engagements.EndDate,
 Engagements.StartTime, Engagements.StopTime,
 Engagements.ContractPrice,
 Engagements.CustomerID,
 Engagements.AgentID, Engagements.EntertainerID
 FROM Engagements
 WHERE Engagements.EndDate < '2013-01-01'

You’ll find this query saved as CH16_Archive_Engagements in the modify version
of the Entertainment Agency sample database.
Now let’s look at a creative way to use a SELECT expression. Consider the
following request:

“Add a new product named ‘Hot Dog Spinner’ with a retail price of $895 in the
Bikes category.”

You can see the tables you need in Figure 16–8.

Figure 16–8 The Products table and the related Categories table in the Sales Orders
database

Your target table is clearly the Products table, but that table requires a numeric value
in the CategoryID field. The request says “in the Bikes category,” so how do you
suppose you can find the related CategoryID that you need for the Products table?
Use a SELECT expression! You want to supply values also for the ProductName and
RetailPrice columns, but remember that a SELECT statement can include literal
values for some or all output columns. So you can fetch the related category ID from
the Categories table and supply the other values you intend to insert as literal values.
Let’s restate the request and then solve it. (You can find this query saved as
CH16_Add_Product in the sample database.)

“Add a row to the products table using the values ‘Hot Dog Spinner’ for the
product name, $895 for the retail price, and the category ID from the
categories table for the category ‘Bikes.’”

Translation
Insert into the products table in the columns product name, retail
price, and category ID the selection of ‘Hot Dog Spinner’ as the
product name, 895 as the retail price, and category ID from the
categories table where the category description is equal to ‘Bikes’

Clean Up
Insert into the products table in the columns (product name, retail
price, and category ID) the selection of ‘Hot Dog Spinner’ as the
product name, 895 as the retail price, and category ID from the
categories table where the category description is equal to = ‘Bikes’

SQL

INSERT INTO Products
(ProductName, RetailPrice, CategoryID)
SELECT 'Hot Dog Spinner' AS ProductName,
895 AS RetailPrice, CategoryID
FROM Categories
WHERE CategoryDescription = 'Bikes'

You might think using a SELECT Expression is useful only for copying entire rows,
but as you have just seen, it’s also useful to fetch one or more discrete values from a
table that can supply the values you need. You’ll find some interesting applications
of this technique in the “Sample Statements” section later in this chapter.

Uses for INSERT
At this point, you should have a good understanding of how to insert one or more
rows in a table using either a simple VALUES clause or a SELECT expression. The
best way to give you an idea of the wide range of uses for the INSERT statement is
to list some problems you can solve with this statement and then present a set of
examples in the “Sample Statements” section. Here’s just a small list of the types of
problems you can solve with INSERT:

“Create a new bowler record for Matthew Patterson by copying the record for
Neil Patterson.”

“In the Entertainment database, create a new customer record for Kendra
Hernandez at 457 211th St NE, Bothell, WA 98200, with a phone number of
555-3945.”

“In the Sales Order database, create a new customer record for Mary Baker at
7834 W 32nd Ct, Bothell, WA 98011, with area code 425 and phone number
555-9876.”

“Create a new subject category called ‘Italian’ with a subject code of ‘ITA’ in
the Humanities department.”

“Add a new team called the ‘Aardvarks’ with no captain assigned.”
“Add a new engagement for customer Matt Berg booking entertainer Jazz
Persuasion from 7 PM to 11 PM on August 15 and 16, 2013, that was booked
by agent Karen Smith.”

“Add a new vendor named Hot Dog Bikes at 1234 Main Street, Chicago, IL
60620, with phone number (773) 555-6543, fax number (773) 555-6542,
website address http://www.hotdogbikes.com/, and e-mail address
Sales@hotdogbikes.com.”

“Add a new class for subject ID 4 (Intermediate Accounting) to be taught in
classroom 3315 for 5 credits starting on January 14, 2014, at 3:00 PM for 80
minutes on Tuesdays and Thursdays.”

“Archive the tournament, tourney match, match game, and bowler scores for all
matches played in 2012.”

“Add ‘New Age’ to the list of musical styles.”
“Archive all orders and order details for orders placed before January 1,

http://www.hotdogbikes.com/
mailto:Sales@hotdogbikes.com

2013.”
“Angel Kennedy wants to register as a student. Her husband is already
enrolled. Create a new student record for Angel using the information from
John’s record.”

“Duplicate all the tournaments and tourney matches played in 2012 for the
same week in 2014.”

“Agent Marianne Wier would like to book some entertainers, so create a new
customer record by copying relevant fields from the agents table.”

“Customer Liz Keyser wants to order again the products ordered on December
11, 2012. Use June 12, 2013, as the order date and June 15, 2013, as the
shipped date.”

“Staff member Tim Smith wants to enroll as a student. Create a new student
record from Tim’s staff record.”

“Customer Doris Hartwig would like to rebook the entertainers she hired to
play on December 1, 2012, for August 1, 2013.”

“Customer Angel Kennedy wants to order again all the products ordered during
the month of November 2012. Use June 15, 2013, as the order date and June
18, 2013, as the shipped date.”

Sample Statements
You now know the mechanics of constructing INSERT queries. Let’s look at a set of
samples, all of which request that one or more rows be added to a table. These
examples come from four of the sample databases.

 Caution
Because the sample queries you’ll find in the modify versions of the sample
databases change your data, be aware that some of the queries will work as
expected only once. For example, after you run an INSERT query to archive
orders using a WHERE clause to find the rows you want to copy, subsequent
attempts to archive the data again will fail because you will be inserting
duplicate Primary Key values in the archive tables. Consider restoring the
databases from the sample scripts or a backup copy if you want to work
through the problems again.

We’ve also included a view of the data that the sample INSERT statement should
add to the target table and a count of the number of rows that should be added. The
name that appears immediately before the count of rows inserted is the name we

gave each query in the sample data on the companion website for the book. In
addition, we created a companion SELECT query (stored as a View in MySQL and
Microsoft SQL Server) for each INSERT query that you can use to see exactly what
will be added. The name of the companion query is the name of the original query
with _Query appended to the name. We stored each query in the appropriate sample
database (as indicated within the example) and prefixed the names of the queries
relevant to this chapter with “CH16.” You can follow the instructions in the
Introduction of this book to load the samples onto your computer and try them.

 Note
Remember that all the column names and table names used in these examples
are drawn from the sample database structures shown in Appendix B,
“Schema for the Sample Databases.” To simplify the process, we have
combined the Translation and Clean Up steps for all the examples. These
samples assume you have thoroughly studied and understood the concepts
covered in previous chapters.

Sales Orders Database

“Add a new vendor named Hot Dog Bikes at 1234 Main Street, Chicago, IL
60620, with phone number (773) 555-6543, fax number (773) 555-6542, Web
site address http://www.hotdogbikes.com/, and e-mail address
Sales@hotdogbikes.com.”

Translation/Clean Up
Insert into the vendors table in the columns (VendName,
VendStreetAddress, VendCity, VendState, VendZipCode,
VendPhoneNumber, VendFaxNumber, VendWebPage, and
VendEMailAddress) the values (‘Hot Dog Bikes’, ‘1234 Main
Street’, ‘Chicago’, ‘IL’, ‘60620’, ‘(773) 555-6543’, ‘(773) 555-
6542’, ‘http://www.hotdogbikes.com/’, and
‘Sales@hotdogbikes.com’)

SQL

INSERT INTO Vendors
 (VendName, VendStreetAddress, VendCity,
 VendState, VendZipCode, VendPhoneNumber,
 VendFaxNumber, VendWebPage,
 VendEMailAddress)
VALUES ('Hot Dog Bikes', '1234 Main Street', 'Chicago',
 'IL', '60620', '(773) 555-6543',
 '(773) 555-6542', 'http://www.hotdogbikes.com/',

http://www.hotdogbikes.com/
mailto:Sales@hotdogbikes.com
http://www.hotdogbikes.com/
mailto:Sales@hotdogbikes.com

 'Sales@hotdogbikes.com')

Row Inserted into the Vendors Table by the CH16_Add_Vendor Query (1 row
added)

“Archive all orders and order details for orders placed before January 1,
2013.”

 Note
To archive all the information about an order, you need to copy data from
both the Orders and the Order_Details tables, so you need two queries. Be
sure to run the INSERT query for the orders first because rows in the
Orders_Details_Archive table have foreign keys in the OrderID column that
points to the same column in the Orders_Archive table.
If your system supports transactions (see the discussion in Chapter 15,
“Updating Sets of Data”), you can start a transaction, run the query to copy
orders followed by the query to copy order details, and then commit both
INSERT actions if both ran with no errors. If the second query causes an
error, you can roll back the transaction, which will ensure that none of the
orders rows are copied. There’s no point in copying only half the information
about orders.
Because you’re archiving rows by date, the query to archive order details must
use a subquery filter for all order ID values that appear in the Orders table
before the specified date.

Translation 1/Clean Up
Insert into the orders archive table the selection of order number,
order date, ship date, customer ID, employee ID, and order total
from the orders table where the order date is earlier than < ‘2013-
01-01’

SQL

INSERT INTO Orders_Archive
 SELECT OrderNumber, OrderDate, ShipDate,
 CustomerID, EmployeeID, OrderTotal
 FROM Orders
 WHERE OrderDate < '2013-01-01'

Rows Inserted into the Orders_Archive Table by the CH16_Archive_2012_Orders
Query (598 rows added)

Translation 2/Clean Up
Insert into the order details archive table the selection of order
number, product number, quoted price, and quantity ordered from
the order details table where the order number is in the (selection of
the order number from the orders table where the order date is
earlier than < ‘2013-01-01’)

SQL

INSERT INTO Order_Details_Archive
 SELECT OrderNumber, ProductNumber,
 QuotedPrice, QuantityOrdered
 FROM Order_Details
 WHERE Order_Details.OrderNumber IN
 (SELECT OrderNumber
 FROM Orders
 WHERE Orders.OrderDate < '2013-01-01')

Rows Inserted into the Order_Details_Archive Table by the
CH16_Archive_2012_Order_Details Query (2520 rows added)

 Note
Neither query follows our recommendation to always include the column
name list, but we wrote these two queries this way to show you examples
where the column name list is not absolutely required.

Entertainment Agency Database

“Create a new customer record for Kendra Hernandez at 457 211th St NE,
Bothell, WA 98200, with a phone number of 555-3945.”

Translation/Clean Up
Insert into the customers table in the columns (customer first name,
customer last name, customer street address, customer city,
customer state, customer ZIP Code, and customer phone number)
the values (‘Kendra’, ‘Hernandez’, ‘457 211th St NE’, ‘Bothell’,
‘WA’, ‘98200’, and ‘555-3945’)

SQL

INSERT INTO Customers
 (CustFirstName, CustLastName,
 CustStreetAddress, CustCity, CustState,
 CustZipCode, CustPhoneNumber)
VALUES ('Kendra', 'Hernandez',
 '457 211th St NE', 'Bothell', 'WA',

 '98200', '555-3945')

Row Inserted into the Customers Table by the CH16_Add_Customer Query (1 row
added)

“Add a new engagement for customer Matt Berg booking entertainer Jazz
Persuasion from 7 PM to 11 PM on August 15 and 16, 2013, which was booked
by agent Karen Smith.”

 Note
If you look at the Engagements table, you’ll find that you need the customer
ID for Matt Berg from the Customers table, the entertainer ID for Jazz
Persuasion from the Entertainers table, and the agent ID for Karen Smith from
the Agents table. You can fetch these values by using a SELECT expression.
Be careful that you include the three tables you need in the FROM clause with
no JOIN criteria. Also don’t forget to calculate the contract price by using the
price per day from the Entertainers table with a 15 percent markup. This
technique works because there is only one customer named Matt Berg, only
one agent named Karen Smith, and only one entertainment group called Jazz
Persuasion. If there happens to be more than one agent or customer with these
names, you’ll get more than one row inserted into the Engagements table.

Translation/Clean Up
Insert into the engagements table into the (customer ID, entertainer
ID, agent ID, start date, end date, start time, end time, and contract
price) columns the selection of customer ID, entertainer ID, agent
ID, and the values August 15, 2013 ‘2013-08-15’, August 16, 2013
‘2013-08-16’, ‘07:00:00 P.M.’ ‘19:00:00’, ‘11:00:00 P.M.’
‘23:00:00’, and the (entertainer price per day times * 2 times * 1.15)
from the customers, entertainers, and agents tables where the
customer first name is = ‘Matt’ and the customer last name is =
‘Berg’ and the entertainer stage name is = ‘Jazz Persuasion’ and the
agent first name is = ‘Karen’ and the agent last name is = ‘Smith’

SQL

INSERT INTO Engagements

 (CustomerID, EntertainerID, AgentID,
 StartDate, EndDate,
 StartTime, StopTime,
 ContractPrice)
 SELECT Customers.CustomerID,
 Entertainers.EntertainerID, Agents.AgentID,
 '2013-08-15', '2013-08-16',
 '19:00:00', '23:00:00',
 ROUND(EntPricePerDay * 2 * 1.15, 0)
 FROM Customers, Entertainers, Agents
 WHERE (Customers.CustFirstName = 'Matt')
 AND (Customers.CustLastName = 'Berg')
 AND (Entertainers.EntStageName = 'Jazz
 Persuasion')
 AND (Agents.AgtFirstName = 'Karen')
 AND (Agents.AgtLastName = 'Smith')

 Note
You might have noticed that we used three tables with no JOIN in the FROM
clause. When you do this, you get all rows from the first table combined with
all rows from the second table and all rows from the third table—something
called a Cartesian product. It works in this case because we are filtering out
the specific customer, entertainer, and agent combination that we want. We’ll
go into more detail about using tables in this way on Chapter 20, “Using
Unlinked Data and ‘Driver’ Tables.”

Row Inserted into the Engagements Table by the CH16_Add_Engagement Query
(1 row added)

School Scheduling Database

“Create a new subject category called ‘Italian’ with a subject code of ‘ITA’ in
the Humanities department.”

 Note
You need the department ID for the Humanities department, so the solution
requires a SELECT expression using the Departments table.

Translation/Clean Up
Insert into the categories table the selection of ‘ITA’ as the category

ID, ‘Italian’ as the category description, and department ID from the
departments table where department name is = ‘Humanities’

SQL

INSERT INTO Categories
 SELECT 'ITA' AS CategoryID,
 'Italian' AS CategoryDescription,
 Departments.DepartmentID
 FROM Departments
 WHERE Departments.DeptName = 'Humanities'

Row Inserted into the Categories Table by the CH16_Add_Category Query (1 row
added)

“Add a new class for subject ID 4 (Intermediate Accounting) to be taught in
classroom 3315 for 5 credits starting on January 4, 2014, at 3:00 PM for 80
minutes on Tuesdays and Thursdays.”

 Note
You can assume that the default value for all schedule days is zero or false, so
you need to include a true or 1 value only for Tuesday and Thursday.

Translation/Clean Up
Insert into the classes table into the columns (subject ID, classroom
ID, credits, start date, start time, duration, Tuesday schedule, and
Thursday schedule) the values (4, 3315, 5, January 14, 2014 ‘2014-
01-14’, 3 PM 15:00:00, 80, 1, and 1)

SQL

INSERT INTO Classes
 (SubjectID, ClassRoomID, Credits, StartTime,
 Duration, TuesdaySchedule, ThursdaySchedule)
 VALUES (4, 3315, 5, '2014'-1'14', '15:00:00',
 80, 1, 1)

Row Inserted into the Classes Table by the CH16_Add_New_Accounting_Class
Query (1 row added)

Bowling League Database

“Create a new bowler record for Matthew Patterson by copying the record for
Neil Patterson.”

 Note
Be sure to set the total pins, games bowled, current average, and current
handicap columns to zero.

Translation/Clean Up
Insert into the bowlers table into the columns (bowler last name,
bowler first name, bowler address, bowler city, bowler state, bowler
zip, bowler phone number, team ID, bowler total pins, bowler
games bowled, bowler current average, and bowler current
handicap) the selection of bowler last name, the value ‘Matthew’,
bowler address, bowler city, bowler state, bowler zip, bowler phone
number, team ID, and the values 0, 0, 0, and 0 from the bowlers
table where the bowler last name is = ‘Patterson’ and the bowler
first name is = ‘Neil’

SQL

INSERT INTO Bowlers
 (BowlerLastName, BowlerFirstName,
 BowlerAddress, BowlerCity,
 BowlerState, BowlerZip,
 BowlerPhoneNumber, TeamID,
 BowlerTotalPins, BowlerGamesBowled,
 BowlerCurrentAverage, BowlerCurrentHcp)
 SELECT Bowlers.BowlerLastName, 'Matthew',
 Bowlers.BowlerAddress, Bowlers.BowlerCity,
 Bowlers.BowlerState, Bowlers.BowlerZip,
 Bowlers.BowlerPhoneNumber, Bowlers.TeamID,
 0, 0,
 0, 0
 FROM Bowlers
 WHERE (Bowlers.BowlerLastName = 'Patterson')
 AND (Bowlers.BowlerFirstName = 'Neil')

Row Inserted into the Bowlers Table by the CH16_Add_Bowler Query (1 row
added)

“Add a new team called the ‘Aardvarks’ with no captain assigned.”

Translation/Clean Up
Insert into the teams table into the columns (team name, and captain
ID) the values (‘Aardvarks’, and Null)

SQL

INSERT INTO Teams
 (TeamName, CaptainID)
VALUES ('Aardvarks', NULL)

Row Inserted into the Teams Table by the CH16_Add_Team Query (1 row added)

Summary
We started the chapter with a brief discussion about the INSERT statement used to
add data in tables. We introduced the syntax of the INSERT statement and explained
a simple example of adding one row using a values list.
Next we discussed the features in most database systems that allow you to generate
the next unique value in a table to use as the primary key value for new rows. We
explained that Microsoft SQL Server provides an Identity data type, Microsoft
Access provides an AutoNumber data type, and MySQL has an
AUTO_INCREMENT attribute for this purpose. We briefly explained the use of the
Sequence pseudo-column in the Oracle database system. And finally, we explained
how to use a subquery in a VALUES clause to obtain the previous maximum value
and add 1.

We explored using a SELECT expression in your INSERT statements to copy one or
more rows. First, we reviewed the syntax of the SELECT expression. Next, we
showed you how to copy one row from one table to another. We explored copying
multiple rows using an example to copy old records to history archive tables. Finally,
we showed you how a SELECT expression is often useful for fetching one or more
values from a related table to create values to add to your table. The rest of the
chapter provided examples of how to build UPDATE queries.
The following section presents a number of problems that you can work out on your
own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need
for each request and then check your answer with the query we saved in the samples.
Don’t worry if your syntax doesn’t exactly match the syntax of the queries we saved
—as long as your result is the same.

Sales Orders Database
1. “Customer Liz Keyser wants to order again the products ordered on

December 11, 2012. Use June 12, 2013, as the order date and June 15, 2013,
as the shipped date.”
(Hint: You need to copy rows in both the Orders and Order_Details tables.
Assume that you can add 1000 to the OrderID column value that you find for
the December 11 order for Liz Keyser to generate the new order number.)
You can find the solution in CH16_Copy_Dec11_Order_For_Keyser (1 row
added) and CH16_Copy_Dec11_OrderDetails_For_Keyser (4 rows added).

2. “Create a new customer record for Mary Baker at 7834 W 32nd Ct., Bothell,
WA, 98011, with area code 425 and phone number 555-9876.”
You can find the solution in CH16_Add_Customer (1 row added).

3. “Customer Angel Kennedy wants to order again all the products ordered
during the month of November 2012. Use June 15, 2013, as the order date and
June 18, 2013, as the shipped date.”
(Hint: You need to copy rows in both the Orders and Order_Details tables.
Assume that you can add 1000 to the OrderID column value that you find for
the November orders for Angel Kennedy to generate the new order number.)
You can find the solution in CH16_Copy_November_Orders_For_AKennedy
(7 rows added) and CH16_Copy_November_OrderDetails_For_AKennedy (37

rows added).

Entertainment Agency Database
1. “Agent Marianne Wier would like to book some entertainers, so create a new

customer record by copying relevant fields from the Agents table.”
(Hint: Simply copy the relevant columns from the Agents table to the
Customers table.)
You can find the solution in CH16_Copy_Agent_To_Customer (1 row added).

2. “Add ‘New Age’ to the list of musical styles.”
You can find the solution in CH16_Add_Style (1 row added).

3. “Customer Doris Hartwig would like to rebook the entertainers she hired to
play on December 1, 2012, for August 1, 2013.”
(Hint: Use a SELECT expression that joins the Customers and Engagements
tables, and provide the new engagement dates as literal values.)
You can find the solution in CH16_Duplicate_Engagement (1 row added).

School Scheduling Database
1. “Angel Kennedy wants to register as a student. Her husband, John, is already

enrolled. Create a new student record for Angel using the information from
John’s record.”
You can find the solution in CH16_Add_Student (1 row added).

2. “Staff member Tim Smith wants to enroll as a student. Create a new student
record from Tim’s staff record.”
You can find the solution in CH16_Enroll_Staff (1 row added).

Bowling League Database
1. “Archive the tournament, tourney match, match game, and bowler scores for

all matches played in 2012.”
(Hint: You need to write four queries to archive rows in the Tournaments,
Tourney_Matches, Match_Games, and Bowler_Scores tables.)
You can find the solution in CH16_Archive_2012_Tournaments_1 (14 rows
added), CH16_Archive_2012_Tournaments_2 (57 rows added),
CH16_Archive_2012_Tournaments_3 (168 rows added), and
CH16_Archive_2012_Tournaments_4 (1,344 rows added).

2. “Duplicate all the tournaments and tourney matches played in 2012 for the
same week in 2014.”

(Hint: Assume that you can add 25 to the TourneyID column value for the
2012 tournaments to generate the new tournament ID. You’ll need to copy
rows in both the Tournaments and the Tourney_Matches tables.) Note also that
you cannot simply add 2 years or 730 days to the dates because the objective is
to play the tournaments on the same day of the week—52 weeks times 7 is
364, not 365. You can find the solution in CH16_Copy_2012_Tournaments_1
(14 rows added) and CH16_Copy_2012_Tournaments_2 (57 rows added).

17. Deleting Sets of Data

“I came to love my rows, my beans,
though so many more than I wanted.”

—Henry David Thoreau

Topics Covered in This Chapter
What Is a DELETE?
The DELETE Statement
Uses for DELETE
Sample Statements
Summary
Problems for You to Solve

Now you know how to change data by using an UPDATE statement. You also have
learned how to add data by using an INSERT statement. But what about getting rid
of unwanted data? For that, you need to use what is arguably the simplest but also
the most dangerous statement in SQL—DELETE.

What Is a DELETE?
You learned in the previous chapter that adding data to your tables is fairly
straightforward. You can add one row at a time by using a VALUES clause, or you
can copy multiple rows by using a SELECT expression. But what do you do if you
added a row in error? How do you remove rows you’ve copied to archive tables?
How do you delete a customer who isn’t sending you any orders? How do you
remove a student who applied for admission but then didn’t sign up for any classes?
If you want to start over with empty tables, how do you remove all the rows? The
answer to all these questions is this: Use a DELETE statement. Just like all the other
statements in SQL, a DELETE statement works with sets of rows. As you’ll learn in
this chapter, the simplest DELETE statement removes all the rows from the table
you specify. But most of the time you’ll want to specify the subset of rows to delete.
If you guessed that you add a WHERE clause to do that, you’re absolutely correct.

 Note
You can find all the sample statements and solutions in the “modify” version
of the respective sample databases—SalesOrdersModify,
EntertainmentAgencyModify, SchoolSchedulingModify, and

BowlingLeagueModify.

The DELETE Statement
The DELETE statement has only three keywords: DELETE, FROM, and WHERE.
You can see the diagram of the DELETE statement in Figure 17–1.

Figure 17–1 The syntax diagram of the DELETE statement

We said that the DELETE statement is perhaps the simplest statement in SQL, and
we weren’t kidding! But it’s also the most dangerous statement that you can execute.
If you do not include a WHERE clause, the statement removes all the rows in the
table you specify. This can be useful when you’re testing a new application, for
example, so you can empty all the rows from existing tables but keep the table
structure. You might also design an application that has working or temporary tables
that you load with data to perform a specific task. For example, it’s common to use
an INSERT statement to copy rows from a very complex SELECT expression into a
table that you subsequently use for several static reports. A DELETE statement with
no WHERE clause is handy in this case to clean out the old rows before running a
new set of reports.

 Note
The SQL Standard indicates that table_name can also be a query (or view)
name, but the table implied by the query name must be “updatable.” Many
database systems support deleting rows from views, and each database system
has its own rules about what constitutes an updatable view. In most cases, a
view isn’t updatable if you use the DISTINCT keyword or if one of the output
columns is the result of an expression or an aggregate function.
Some database systems also support defining the view (a derived table in SQL
Standard terminology) using JOIN and ON keywords in place of table_name.
In systems that support using a derived table, you must also specify which
table in the JOIN is the target of the delete immediately after the FROM
keyword in the form table_name.*. Consult your database system
documentation for details. In this chapter, we’ll exclusively use a single table

as the target for each DELETE statement.

Deleting All Rows
Deleting all rows is almost too easy. Let’s construct a DELETE statement using the
Bowlers table in the Bowling League sample database.

 Note
Throughout this chapter, we use the “Request/Translation/Clean Up/SQL”
technique introduced in Chapter 4, “Creating a Simple Query.”

“Delete all bowlers.”

Translation
Delete all rows from the bowlers table

Clean Up
Delete all rows from the bowlers table

SQL

DELETE
FROM Bowlers

If you execute this statement in the sample database, will it actually delete all rows?
The answer is actually, no, because we defined a constraint (a referential integrity
rule as discussed in Chapter 2, “Ensuring Your Database Structure Is Sound”)
between the Bowlers table and the Bowler_Scores table. If any rows exist for a
particular bowler in the Bowler_Scores table, your database system should not allow
you to delete the row in the Bowlers table for that bowler.
Two bowlers in the modify version of the Bowling League sample database do not
have any scores, so you should be able to delete those records with this simple
DELETE statement. Even if you really didn’t mean to delete any rows at all, those
two rows will be gone forever. Well, maybe. First, many database systems maintain
a log of changes you make to tables. It is sometimes possible to recover lost data
from the system logs. Remember also our brief discussion about transactions in
Chapter 15, “Updating Sets of Data.” If you start a transaction (or the system starts
one for you), you can roll back any pending changes if you encounter any errors.
You might also remember that we told you that Microsoft Office Access is one
database system that automatically starts a transaction for you whenever you execute
a query from the user program interface. If you try to run this query in Microsoft
Access, it will first prompt you with a warning about how many rows are about to be

deleted. You can cancel the delete at that point when you realize that the database is
about to attempt to delete all the rows in the table. If you let the system continue
beyond the first warning, you’ll receive the error dialog box shown in Figure 17–2.

Figure 17–2 Some database systems warn you if executing a DELETE statement will
cause errors

You can see that 32 of the 34 records in the table won’t be deleted because of “key
violations.” This is an obtuse way to tell you: “Hey, dummy, you’ve still got rows in
the Bowler_Scores table for some of these bowlers you’re trying to delete.” Click No
at this point, and the database system will execute a ROLLBACK on your behalf—
none of the rows will be deleted. Click Yes, and the database system executes a
COMMIT to permanently delete the two rows for bowlers who have no scores.
In the “Sample Statements” section later in this chapter, we’ll show you two ways to
safely delete bowlers who haven’t bowled any games if that’s what you really want
to do.

Deleting Some Rows
Most of the time, you’ll want to limit the rows that you delete. You can do that by
adding a WHERE clause to specifically filter the rows to be deleted. Your WHERE
clause can be as simple or as complex as any you’ve learned about for SELECT or
UPDATE statements.

Using a Simple WHERE Clause
Let’s start with something simple. Suppose you want to delete in the Sales Orders
database any orders that have a zero order total. Your request might look like this:

“Delete orders that have a zero order total.”

Translation
Delete from the orders table where the order total is zero

Clean Up
Delete from the orders table where the order total is = zero 0

SQL

DELETE FROM Orders

WHERE OrderTotal = 0

The WHERE clause uses a simple comparison predicate to find only the rows that
have an order total equal to zero. If you execute this query in the sample database,
you’ll find that it deletes 11 rows. You can find this query saved as
CH17_Delete_Zero_OrdersA.

Safety First: Ensuring That You’re Deleting the Correct Rows
Even for simple DELETE queries, we strongly recommend that you verify that
you’ll be deleting the correct rows. How do you do that? As we mentioned, most of
the time you’ll add a WHERE clause to select a subset of rows to delete. Why not
build a SELECT query first to return the rows that you intend to remove?

“List all the columns from the Orders table for the orders that have a zero order
total.”

Translation
Select all columns from the orders table where the order total is zero

Clean Up
Select all columns * from the orders table where the order total is =
zero 0

SQL

SELECT * FROM Orders
WHERE OrderTotal = 0

If you run this query on the Sales Orders sample database, your result should look
like Figure 17–3.

Figure 17–3 Verifying the rows you want to delete

Note that we used the shortcut * character to indicate we wanted to see all columns.
If the result set shows all the rows you want to delete, you can transform your
SELECT statement into the correct DELETE statement by simply replacing
SELECT * with DELETE. Figure 17–4 shows how to transform this SELECT
statement into the correct DELETE syntax.

Figure 17–4 Converting a verifying SELECT query into a DELETE statement

This conversion is so simple that it would be silly to not create the SELECT
statement first to make sure you’re deleting the rows you want. Remember, unless
you’ve protected your DELETE inside a transaction, after you execute a DELETE
statement, the rows are gone for good.

Using a Subquery
The query explained in the previous section to delete all orders that have a zero order
total seems simple enough. But keep in mind that the OrderTotal column is a
calculated value. (We showed you how to calculate and set the total using an
UPDATE query in Chapter 15.) What if the user or the application failed to run the
update after adding, changing, or deleting one or more order detail rows? Your
simple query might attempt to delete an order that still has rows in the Order_Details
table, and it might miss some orders that had all the order details removed but didn’t
have the total updated.
A safer way to ensure that you’re deleting orders that have no order details is to use a
subquery to check for matching rows in the Order_Details table. Your request might
look like this:

“Delete all orders that have no items ordered.”

Translation
Delete the rows from the orders table where the order number is not
in the selection of the order number from the order details table

Clean Up

Delete the rows from the orders table where the order number is not
in the (selection of the order number from the order details) table

SQL

DELETE FROM Orders
WHERE OrderNumber NOT IN
(SELECT OrderNumber
FROM Order_Details)

That’s a bit more complex than the simple comparison for an order total equal to
zero, but it ensures that you delete only orders that have no matching rows in the
Order_Details table. You can find this query saved as CH17_Delete_Zero_OrdersB
in the sample database. This more complex query might actually find and delete
some rows that have a nonzero order total that wasn’t correctly updated when the last
order item was deleted.
To construct the WHERE clause for DELETE queries, you’ll probably use IN, NOT
IN, EXISTS, or NOT EXISTS quite frequently. (Reread Chapter 11, “Subqueries,” if
you need a refresher.) Let’s look at one more example that requires a complex
WHERE clause to filter the rows to be deleted.

“Delete all orders and order details for orders placed before January 1, 2013,
that have been copied to the archive tables.”

Remember that in Chapter 16, “Inserting Sets of Data,” we showed you how to use
INSERT to copy a set of old rows to one or more archive tables. After you copy the
rows, you can often make the processing in the main part of your application more
efficient by deleting the rows that you have archived. As implied by the request, you
need to delete rows from two tables, so let’s break it down into two requests. You
need to delete from the Order_Details table first because a defined referential
integrity rule won’t let you delete rows in the Orders table if matching rows exist in
the Order_Details table.

“Delete all order details for orders placed before January 1, 2013, that have
been copied to the archive table.”

Do you see a potential danger here? One way to solve the problem would be to
simply delete rows from orders that were placed before January 1, 2013.

Translation
Delete rows from the order details table where the order number is
in the selection of the order number from the orders table where the
order date is earlier than January 1, 2013

Clean Up

Delete rows from the order details table where the order number is
in the (selection of the order number from the orders table where the
order date is earlier than < January 1, 2013 ‘2013-01-01’)

SQL

DELETE FROM Order_Details
WHERE OrderNumber IN
(SELECT OrderNumber
FROM Orders
WHERE OrderDate
< '2013-01-01')

You can find this query saved as CH17_Delete_Archived_Order_Details_Unsafe.
What if someone else promised to run the INSERT query to archive the rows but
really didn’t? If you run this query, you’ll delete all the order details for orders
placed before January 1, 2013, regardless of whether the rows actually exist in the
archive table. A safer way is to delete only the rows that you first verify are in the
archive table. Let’s try again.

Translation
Delete rows from the order details table where the order number is
in the selection of order number from the order details archive table

Clean Up
Delete rows from the order details table where the order number is
in the (selection of order number from the order details archive)
table

SQL

DELETE FROM OrderDetails
WHERE OrderNumber IN
(SELECT OrderNumber
FROM Order_Details_Archive)

You can find this query saved as CH17_Delete_Archived_Order_Details_OK.
Notice that the query doesn’t care at all about the order date. However, it is much
safer because it is deleting only the rows in the main table that have a matching order
number in the archive table. If you want to be sure you’re deleting rows from orders
that are before January 1, 2013, and that are already in the archive table, you can use
both IN predicates in your query combined with the AND Boolean operator.

Uses for DELETE
At this point, you should have a good understanding of how to delete one or more
rows in a table—either all the rows or a selection of rows determined by using a
WHERE clause. The best way to give you an idea of the wide range of uses for the
DELETE statement is to list some problems you can solve with this statement and

then present a set of examples in the “Sample Statements” section. Here’s just a
small list of the types of problems that you can solve with DELETE:

“Delete products that have never been ordered.”
“Delete all entertainers who have never been hired.”
“Delete bowlers who have not bowled any games.”
“Delete all students who are not registered for any class.”
“Delete any categories that have no products.”
“Delete customers who have never booked an entertainer.”
“Delete teams that have no bowlers assigned.”
“Delete all classes that have never had a student registered.”
“Delete customers who haven’t placed an order.”
“Delete musical styles that aren’t played by any entertainer.”
“Delete all bowling matches that have not been played.”
“Delete subjects that have no classes.”
“Delete all engagements that have been copied to the archive table.”
“Delete all the tournament data that has been copied to the archive tables.”
“Delete vendors who do not provide any products.”
“Delete members who are not part of an entertainment group.”
“Delete employees who haven’t sold anything.”

Sample Statements
You now know the mechanics of constructing DELETE queries. Let’s take a look at
a set of samples, all of which request that one or more rows be deleted from a table.
These examples come from four of the sample databases.

 Caution
Because the sample queries you’ll find in the modify versions of the sample
databases change your data, be aware that some of the queries will work as
expected only once. For example, after you run a DELETE query to remove
orders using a WHERE clause to find the rows you want to copy, subsequent
attempts to delete the data again will fail because those rows were deleted the
first time you ran the query. Consider restoring the databases from the sample
scripts or a backup copy if you want to work through the problems again.

We’ve also included a view of the data that the sample DELETE statement should

remove from the target table and a count of the number of rows that should be
deleted. The name that appears immediately before the count of rows deleted is the
name we gave each query in the sample data on the companion website for the book,
www.informit.com/title/9780321992475. In addition, we created a companion
SELECT query (stored as a View in MySQL and Microsoft SQL Server) for each
DELETE query that you can use to see exactly what will be deleted. The name of the
companion query is the name of the original query with _Query appended to the
name. We stored each query in the appropriate sample database (as indicated within
the example) and prefixed the names of the queries relevant to this chapter with
“CH17.” You can follow the instructions in the Introduction of this book to load the
samples onto your computer and try them.

 Note
Remember that all the column names and table names used in these examples
are drawn from the sample database structures shown in Appendix B,
“Schema for the Sample Databases.” To simplify the process, we have
combined the Translation and Clean Up steps for all the examples. These
samples assume you have thoroughly studied and understood the concepts
covered in previous chapters.

Sales Orders Database

“Delete customers who haven’t placed an order.”

Translation/Clean Up
Delete rows from the customers table where the customer ID is not
in the (selection of the customer ID from the orders) table

SQL

DELETE FROM Customers
WHERE CustomerID NOT IN
(SELECT CustomerID
FROM Orders)

Row Deleted from the Customers Table by the
CH17_Delete_Customers_Never_Ordered Query (1 row deleted)

http://www.informit.com/title/9780321992475

 Note
If you ran the CH16_Add_Customer query from the previous chapter, you
will see two rows deleted. The second row will be for Kendra Hernandez.

“Delete vendors who do not provide any products.”
Translation/Clean Up

Delete rows from the vendors table where the vendor ID is not in
the (selection of vendor ID from the product vendors) table

SQL

DELETE FROM Vendors
WHERE VendorID NOT IN
(SELECT VendorID
FROM Product_Vendors)

Row Deleted from the Vendors Table by the CH17_Delete_Vendors_No_Products
Query (1 row deleted)

 Note
If you executed the CH16_Add_Vendor query from the previous chapter, you
will see two rows deleted. The second row will be for Hot Dog Bikes.

Entertainment Agency Database

“Delete all entertainers who have never been hired.”

Translation 1/Clean Up
Delete rows from the entertainer members table where the
entertainer ID is not in the (selection of entertainer ID from the
engagements) table

SQL

DELETE FROM Entertainer_Members
WHERE EntertainerID NOT IN
(SELECT EntertainerID
FROM Engagements)

Row Deleted from the Entertainer_Members Table by the
CH17_Delete_Entertainers_Not_Booked1 Query (1 row deleted)

Translation 2/Clean Up
Delete rows from the entertainers table where the entertainer ID is
not in the (selection of entertainer ID from the engagements) table

SQL

DELETE FROM Entertainers
WHERE EntertainerID NOT IN
(SELECT EntertainerID
FROM Engagements)

Row Deleted from the Entertainers Table by the
CH17_Delete_Entertainers_Not_Booked2 Query (1 row deleted)

“Delete all engagements that have been copied to the archive table.”

Translation/Clean Up
Delete rows from the engagements table where the engagement ID
is in the (selection of engagement ID from the engagements archive)
table

SQL

DELETE FROM Engagements
WHERE EngagementID IN
(SELECT EngagementID
FROM Engagements_Archive)

 Note
In order to find rows to delete, you must first run the
CH16_Archive_Engagements query to copy data to the archive table. The
archive table in the original sample database is empty.

Rows Deleted from the Engagements Table by the

CH17_Remove_Archived_Engagements Query (56 rows deleted if you first run
CH16_Archive_Engagements)

School Scheduling Database
“Delete all classes that have never had a student registered.”

 Note
You need to delete the rows from the Faculty_Classes table first and then
delete from the Classes table because the database has an integrity rule that
won’t let you delete rows in the Classes table when matching rows exist in the
Faculty_Classes table.

Translation 1/Clean Up
Delete from the faculty classes table where the class ID is not in the
(selection of class ID from the student schedules) table

SQL

DELETE FROM Faculty_Classes
WHERE ClassID NOT IN
(SELECT ClassID
FROM Student_Classes)

Rows Deleted from the Faculty_Classes Table by the
CH17_Delete_Classes_No_Students_1 Query (113 rows deleted)

Translation 2/Clean Up
Delete from the classes table where the class ID is not in the
(selection of class ID from the student schedules) table

SQL

DELETE FROM Classes
WHERE ClassID NOT IN
(SELECT ClassID
FROM Student_Schedules)

Rows Deleted from the Classes Table by the CH17_Delete_Classes_No_Students_2
Query (115 rows deleted)

Bowling League Database

“Delete bowlers who have not bowled any games.”

 Note
You can solve this request by deleting bowlers whose number of games
bowled is zero or by deleting bowlers who have no rows in the Bowler_Scores
table. The second method is safer because it doesn’t depend on the calculated
value of the games bowled, but let’s solve it both ways.

Translation 1/Clean Up
Delete rows from the bowlers table where the bowler games bowled
is = zero 0

SQL

DELETE FROM Bowlers
WHERE BowlerGamesBowled = 0

Rows Deleted from the Bowlers Table by the CH17_Delete_Bowlers_No_Games
Query (2 rows deleted)

Translation 2/Clean Up
Delete rows from the bowlers table where the bowler ID is not in
the (selection of bowler ID from the bowler scores) table

SQL

DELETE FROM Bowlers
WHERE BowlerID NOT IN
(SELECT BowlerID
FROM Bowler_Scores)

Rows Deleted from the Bowlers Table by the
CH17_Delete_Bowlers_No_Games_Safe Query (2 rows deleted)

 Note
If you ran the CH16_Add_Bowler query in the previous chapter, you should
see three rows deleted in both queries. (Matthew Patterson will be the third
row.)

“Delete teams that have no bowlers assigned.”

Translation/Clean Up
Delete from the teams table where the team ID is not in the
(selection of team ID from the bowlers) table

SQL

DELETE FROM Teams
WHERE TeamID NOT IN
(SELECT TeamID
FROM Bowlers)

Rows Deleted from the Bowlers Table by the CH17_Delete_Teams_No_Bowlers

Query (2 rows deleted)

Summary
We started the chapter with a brief discussion about the DELETE statement used to
delete rows from tables. We introduced the syntax of the DELETE statement and
explained a simple example of deleting all the rows in a table. We briefly reviewed
transactions and showed you how the Microsoft Access database system uses
transactions to help protect you from mistakes.
Next, we discussed using a WHERE clause to limit the rows you are deleting. We
explained how to use a SELECT statement to verify the rows you plan to delete and
how to convert the SELECT statement into a DELETE statement. Finally, we
extensively explored using subqueries to test for rows to delete based on the
existence or nonexistence of related rows in other tables. The rest of the chapter
provided examples of how to build DELETE queries.
The following section presents a number of problems that you can work out on your
own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need
for each request and then check your answer with the query we saved in the samples.
Don’t worry if your syntax doesn’t exactly match the syntax of the queries we saved
—as long as your result is the same.

Sales Orders Database
1. “Delete products that have never been ordered.”

(Hint: You need to delete from the Product_Vendors table first and then from
the Products table.)
You can find the solution in CH17_Delete_Products_Never_Ordered_1 (4
rows deleted) and CH17_Delete_Products_Never_Ordered_2 (2 rows deleted).
Note that you will see three rows deleted in the second query if you ran the
CH16_Add_Product query in the previous chapter.

2. “Delete employees who haven’t sold anything.”
You can find the solution in CH17_Delete_Employees_No_Orders (1 row
deleted). Note that you will see two rows deleted if you executed the
CH16_Add_Employee query from the previous chapter.

3. “Delete any categories that have no products.”
You can find the solution in CH17_Delete_Categories_No_Products (1 row
deleted).

Entertainment Agency Database
1. “Delete customers who have never booked an entertainer.”

You can find the solution in CH17_Delete_Customers_Never_Booked (2 rows
deleted). Note that you will see three rows deleted if you ran the
CH16_Add_Customer query in the previous chapter.

2. “Delete musical styles that aren’t played by any entertainer.”
Hint: If you look for StyleID values that do not exist only in the
Enterainer_Styles table, the query will fail because some of the selected styles
also exis in the Musical_Preferances table. See
CH17_Delete_Styles_No_Entertainer_Wrong. You can find the solution in
CH17_Delete_Styles_No_Entertainer (5 rows deleted). You will see six rows
deleted if you executed the CH16_Add_Style query in the previous chapter.

3. “Delete members who are not part of an entertainment group.”
You can find the solution in CH17_Delete_Members_Not_In_Group (no rows
deleted).

School Scheduling Database
1. “Delete all students who are not registered for any class.”

You can find the solution in CH17_Delete_Students_No_Classes (1 row
deleted). You will see two rows deleted if you ran the CH16_Add_Student
query from the previous chapter.

2. “Delete subjects that have no classes.”
(Hint: You need to delete rows from both the Faculty_Subjects and the
Subjects tables. In the second query, be sure that you don’t delete subjects that
are a prerequisite for another subject tha has classes scheduled.)
You can find the solution in CH17_Delete_Subjects_No_Classes_1 (8 rows
deleted - 64 rows if previously executed the
CH17_Delete_Classes_No_Students_1[page 8] and the

CH17_Delete_Classes_No_Students_2[page 586] queries) and
CH17_Delete_Subjects_No_Classes_2 (4 rows deleted - 31 rows if you
previously excuted the two queries mentioned above).

Bowling League Database
1. “Delete all the tournament data that has been copied to the archive tables.”

(Hint: You need to delete rows from the Bowler_Scores, Match_Games,
Tourney_Matches, and Tournaments tables. You should find no rows to delete
unless you have executed the four archive queries from Chapter 16.)
You can find the solution in CH17_Delete_Archived_2012_Tournaments_1
(1,344 rows deleted), CH17_Delete_Archived_2012_Tournaments_2 (168
rows deleted), CH17_Delete_Archived_2012_Tournaments_3 (57 rows
deleted), and CH17_Delete_Archived_2012_Tournaments_4 (14 rows
deleted).

2. “Delete all bowling matches that have not been played.”
You can find the solution in CH17_Delete_Matches_Not_Played (1 row
deleted).

Part VI: Introduction to Solving Tough
Problems

18. “NOT” and “AND” Problems

“For every complex problem, there’s an
answer that is clear, simple, and wrong.”

—H. L. Mencken

Topics Covered in This Chapter
A Short Review of Sets
Finding Out the “NOT” Case
Finding Multiple Match in the Same Tables
Sample Statements
Summary
Problems for You to Solve

At this point (especially if you’ve been a good student and have worked through all
the sample statements and problems), you should be very comfortable with the
basics of the SQL database language. Now, in the words of a famous Louisiana chef,
it’s time to “kick it up a notch.” In this chapter, we’re going to walk you through
more complex problems to find out when something “is not” and when something
“is” under multiple conditions. In Chapter 19, “Condition Testing,” we’ll introduce
you to logic testing in a Value Expression using CASE. In Chapter 20, “Using
Unlinked Data and ‘Driver’ Tables,” we’ll prompt you to “think outside the box”
using disconnected tables to solve problems. Let’s get started!

A Short Review of Sets
Remember in Chapter 7, “Thinking in Sets,” we used Venn diagrams to help you
visualize how you need the overlapping part of two sets to solve “and” problems and
the excluded part of two sets to solve “not” problems. Solving a problem requiring
something to be “not” one criterion is easy (recipes that do not have beef), but it
starts to get tough when your result must satisfy two or more “not” criteria (recipes
that do not have beef OR carrots OR onions). The same is surely true when you’re
looking for something that “is” with one criterion (recipes that have cheese). It gets a
bit tougher when a set of things must satisfy two (recipes that have beef AND
onions), and it becomes a head-scratcher when a set must satisfy three or more
criteria (recipes that have beef AND onions AND carrots). And it can be mind-
boggling to visualize a set of things that IS one or more criteria but is also NOT
several other criteria.

Sets with Multiple AND Criteria
Let’s take a look at the multiple “AND” (“IS”) case first because that’s easier to
visualize. Figure 18-1 shows you a possible solution for recipes that have beef AND
onions AND carrots.

Figure 18–1 Recipes that have beef and onions and carrots

Looks pretty simple, doesn’t it? But keep in mind that recipes with their ingredients
are themselves sets of data with two or more rows. (You can’t think of a recipe that
has only one ingredient, can you?) If you try to solve the problem with a search
condition like this:
Click here to view code image

WHERE Ingredient IN ('Beef', 'Onions', 'Carrots')

you’ll get the wrong answer! Why? Well, remember that your database system tests
each individual row against the search condition. If a recipe has beef OR onions OR
carrots, the preceding search condition will be true. You want recipes that have all
three, not just one. You need something more complex to find the recipes that have
all three items, not just one, so you should state the problem like this:

“Find the recipes whose list of ingredients includes beef AND whose list of
ingredients includes onions AND whose list of ingredients includes carrots.”

In Chapter 8, “INNER JOINs,” we showed you one way to search for recipes with
two ingredients using individual SELECT statements inside the FROM clause
(CH08_Beef_And_Garlic_Recipes). In Chapter 14, “Filtering Grouped Data,” we
showed another way to do this for two ingredients with a creative use of GROUP BY

and HAVING (CH14_Beef_And_Garlic_Recipes). In this chapter, we’ll show you
some additional ways to tackle a problem like this.

Sets with Multiple NOT Criteria
Excluding multiple criteria involves finding all the items that DO include one of the
criteria and then subtracting (removing) them all from the set of all items. If we want
to find all recipes that do not have beef or onions or carrots, the Venn diagram looks
like Figure 18-2.

Figure 18–2 Recipes that do not have beef, onions, or carrots

Think of it as finding all the recipes that have beef and removing them from the set
of all recipes, then finding the recipes that have onions and removing all of those,
and finally finding the set of recipes that includes carrots and removing those as
well. What you have left is the answer. Again, you might be tempted to solve it with
a search condition like this:
Click here to view code image

WHERE Ingredient NOT IN ('Beef', 'Onions', 'Carrot')

From the previous discussion, you should be able to see why this won’t work. A
search condition like the preceding one will return any recipe that has some
ingredient other than beef, onions, or carrots. It will find and eliminate a recipe that
has ONLY those three ingredients, but that would be a strange recipe, indeed!

Because ingredients for any recipe form a set, you need to think of the problem like
this:

“Find the recipes whose list of ingredients does not include beef, and whose list
of ingredients does not include onions, and whose list of ingredients does not
include carrots.”

Stated another way, you could also do:

“Find the recipes that are NOT in the list of recipes whose list of ingredients
includes beef or onions or carrots.”

We haven’t solved this particular problem in previous chapters, but rest assured we
will show you some ways to do it in this one.

Sets Including Some Criteria but Excluding Others
Just for completeness, we should take a quick look at the case where you want to
include items that meet one or more criteria but exclude items that also meet one or
more criteria. Suppose you want all recipes that have beef but do not want any
recipes that have onions or carrots. Figure 18-3 shows you a possible situation for
this problem.

Figure 18–3 Recipes that have beef but do not have onions or carrots

We bet you can figure this one out on your own, but to make sure you really “get it,”
you should not try to solve the problem like this:
Click here to view code image

WHERE Ingredient = 'Beef' AND Ingredient NOT IN ('Onions',

'Carrot')

A search like this will certainly find all recipes that have beef, but it will also include
any recipe that has any ingredient other than onions or carrots, including all the
recipes that have beef! Oops. Again, the ingredients for a recipe form a set, so you
need to think of solving the problem like this:

“Find the recipes whose list of ingredients includes beef, and whose list of
ingredients does not include onions, and whose list of ingredients does not
include carrots.”

Let’s move on now to finding out exactly how to solve these complex “NOT” and
“AND” problems.

Finding Out the “Not” Case
You might recall that you’ve already learned how to solve simple “not” cases. In
Chapter 9, “OUTER JOINs,” we showed you, for example, how to find any
ingredients not used in any recipe (CH09_Ingredients_Not_Used), customers who
haven’t ordered a helmet (CH09_Customers_No_Helmets), and any agents who have
no contracts (CH09_Agents_No_Contracts). In Chapter 11, “Subqueries,” we
showed you how to find students who have never withdrawn
(CH11_Students_Never_Withdrawn) and products not ordered
(CH11_Products_Not_Ordered). Now let’s learn how to handle multiple “not”
criteria using four different techniques:

• OUTER JOIN
• NOT IN
• NOT EXISTS
• GROUP BY/HAVING

 Note
Throughout this chapter, we use the “Request/Translation/Clean Up/SQL”
technique introduced in Chapter 4, “Creating a Simple Query.” Because this
process should now be very familiar to you, we have combined the
Translation/Clean Up steps for all the following examples to simplify the
process.

Using OUTER JOIN
In Chapter 9, you learned that you can use an OUTER JOIN with an IS NULL test to

find rows in one table that do not have a matching row in another table. An example
is the query to find ingredients that are not used:

“List ingredients not used in any recipe yet.”

Translation/Clean Up
Select ingredient name from the ingredients table left outer joined
with the recipe ingredients table on ingredients.ingredient ID in the
ingredients table matches = recipe_ingredients.ingredient ID in the
recipe ingredients table where recipe ID is null

SQL

SELECT Ingredients.IngredientName
FROM Ingredients
LEFT OUTER JOIN Recipe_Ingredients
ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID
WHERE Recipe_Ingredients.RecipeID IS NULL

CH09_Ingredients_Not_Used (20 rows)

Notice that this works because where there is no match in the second table, your
database engine returns a Null value for any column in that table. You can use the
same technique to exclude rows from the second table that match certain criteria, but
you must combine the OUTER JOIN technique that you learned in Chapter 9 with a
subquery that you learned how to use in Chapter 11. You must do this because the
second “table” that you want to match with must first be filtered by the excluding

criteria.
Let’s solve our beef, onions, carrots problem using an OUTER JOIN and a subquery:

“Find the recipes that have neither beef, nor onions, nor carrots.”

Translation/Clean Up
Select recipe ID and recipe title from the recipes table left outer
joined with the (selection of recipe IDs from the recipe ingredients
table inner joined with the ingredients table on
Recipe_Ingredients.recipe ID in the recipe ingredients table matches
= Ingredients.recipe ID in the ingredients table where ingredient
name is in the values (Beef, Onion, or Carrot)) where the recipe ID
in the selection is NULL empty

SQL

SELECT Recipes.RecipeID, Recipes.RecipeTitle
FROM Recipes LEFT JOIN
(SELECT Recipe_Ingredients.RecipeID
 FROM Recipe_Ingredients
 INNER JOIN Ingredients
 ON Recipe_Ingredients.IngredientID =
 Ingredients.IngredientID
 WHERE Ingredients.IngredientName
 IN ('Beef', 'Onion', 'Carrot')) AS RBeefCarrotOnion
ON Recipes.RecipeID = RBeefCarrotOnion.RecipeID
WHERE RBeefCarrotOnion.RecipeID Is Null;

CH18_Recipes_NOT_Beef_Onion_Carrot_OUTERJOIN (8 rows)

What is happening is the query to the right of the OUTER JOIN is finding the recipe

ID for all recipes that have beef, onions, or carrots, then the OUTER JOIN with an
IS NULL test eliminates all those recipe IDs from consideration–including only the
recipes that do not match. You might be tempted to directly join the recipe
ingredients table and ingredients table and put the criteria for beef, onion, and carrot
in the final WHERE clause, but as we explained in Chapter 9, applying a filter to the
“right” side of a “left” join (or vice-versa) effectively nullifies the “outer” part of the
join. The result will be as though you had asked for an INNER JOIN, which won’t
solve the problem.

Using NOT IN
You have already seen in Chapter 11 how to use NOT IN to solve simple “not”
queries. For example, in the Sales Orders database you can find a query to discover
which products have never been ordered (CH11_Products_Not_Ordered). In the
Entertainment database, there is a query to list agents who haven’t booked anything
(CH11_Bad_Agents). But as you might suspect, it gets a bit tricky when you want to
find rows using multiple “not” criteria.
Let’s solve our old friend in the Recipes database using NOT IN. First, let’s do it the
hard way using three separate NOT IN clauses.

“Find the recipes that have neither beef, nor onions, nor carrots.”

Translation/Clean Up
Select recipe ID and recipe title from the recipes table where the
recipe ID is not in the (selection of recipe IDs from the recipe
ingredients table inner joined with the ingredients table on
Recipe_Ingredients.recipe ID in the recipe ingredients table matches
= Ingredients.recipe ID in the ingredients table where ingredient
name is = ‘Beef’)) and the recipe ID is not in the (selection of recipe
IDs from the recipe ingredients table inner joined with the
ingredients table on Recipe_Ingredients.recipe ID in the recipe
ingredients table matches = Ingredients.recipe ID in the ingredients
table where ingredient name is = ‘Onion’)) and the recipe ID is not
in the (selection of recipe IDs from the recipe ingredients table inner
joined with the ingredients table on Recipe_Ingredients.recipe ID in
the recipe ingredients table matches = Ingredients.recipe ID in the
ingredients table where ingredient name is = ‘Carrot’))

SQL

SELECT Recipes.RecipeID, Recipes.RecipeTitle
FROM Recipes
WHERE Recipes.RecipeID NOT IN

(SELECT Recipe_Ingredients.RecipeID
 FROM Recipe_Ingredients
 INNER JOIN Ingredients
 ON Recipe_Ingredients.IngredientID =
 Ingredients.IngredientID
 WHERE Ingredients.IngredientName = 'Beef')
AND Recipes.RecipeID NOT IN
(SELECT Recipe_Ingredients.RecipeID
 FROM Recipe_Ingredients
 INNER JOIN Ingredients
 ON Recipe_Ingredients.IngredientID =
 Ingredients.IngredientID
 WHERE Ingredients.IngredientName = 'Onion')
AND Recipes.RecipeID NOT IN
(SELECT Recipe_Ingredients.RecipeID
 FROM Recipe_Ingredients
 INNER JOIN Ingredients
 ON Recipe_Ingredients.IngredientID =
 Ingredients.IngredientID
 WHERE Ingredients.IngredientName = 'Carrot');

Whew! This query is doing three eliminations, first eliminating all recipes that have
beef, then eliminating all recipes that have onions, and finally eliminating all recipes
that have carrots. (You can find this query saved as
CH18_Recipes_NOT_Beef_Onion_Carrot_NOTIN_1.) But if you think about it, if
you can collect all the recipes that have neither beef nor onions nor carrots in one
subquery, you can do a single elimination like this:

“Find the recipes that have neither beef, nor onions, nor carrots.”

Translation/Clean Up
Select recipe ID and recipe title from the recipes table where the
recipe ID is not in the (selection of recipe IDs from the recipe
ingredients table inner joined with the ingredients table on
Recipe_Ingredients.recipe ID in the recipe ingredients table matches
= Ingredients.recipe ID in the ingredients table where ingredient
name is in the values (‘Beef’, ‘Onion’, or ‘Carrots’)).

SQL

SELECT Recipes.RecipeID, Recipes.RecipeTitle
FROM Recipes
WHERE Recipes.RecipeID NOT IN
(SELECT Recipe_Ingredients.RecipeID
 FROM Recipe_Ingredients
 INNER JOIN Ingredients
 ON Recipe_Ingredients.IngredientID =
 Ingredients.IngredientID
 WHERE Ingredients.IngredientName
 IN ('Beef', 'Onion', 'Carrot'));

That’s really lots simpler, and, in fact, this is arguably the simplest way to solve a
multiple “not” problem. It’s also very efficient because your database system will

run the subquery once then use the result from that to eliminate recipes that match.
You can find this query saved in the Recipes sample database as
CH18_Recipes_NOT_Beef_Onion_Carrot_NOTIN_2.

Using NOT EXISTS
In Chapter 11, you also learned about using EXISTS and a subquery to search for
related data on a single criterion. You can imagine how this can be expanded to
handle multiple criteria. And it’s a simple matter to use NOT EXISTS to handle the
“not” case. Let’s solve our trusty not beef-onions-carrots again using NOT EXISTS.

“Find the recipes that have neither beef, nor onions, nor carrots.”

Translation/Clean Up
Select recipe ID and recipe title from the recipes table where does
not exist the (selection of recipe IDs from the recipe ingredients
table inner joined with the ingredients table on
Recipe_Ingredients.recipe ID in the recipe ingredients table matches
= Ingredients.recipe ID in the ingredients table where ingredient
name is in the values (‘Beef’, ‘Onion’, or ‘Carrot’)) and the
Recipe_Ingredients.recipe ID from the recipe ingredients table
matches the = Recipes.recipe ID from the recipes table)

SQL

SELECT Recipes.RecipeID, Recipes.RecipeTitle
FROM Recipes
WHERE NOT EXISTS
(SELECT Recipe_Ingredients.RecipeID
 FROM Recipe_Ingredients
 INNER JOIN Ingredients
 ON Recipe_Ingredients.IngredientID =
 Ingredients.IngredientID
 WHERE Ingredients.IngredientName
 IN ('Beef', 'Onion', 'Carrot')
 AND Recipe_Ingredients.RecipeID =
 Recipes.RecipeID);

This operates similarly to the principles behind the NOT IN solution. You first find
all the recipes that include beef, onions, or carrots, and then eliminate them by
matching on recipe ID and using NOT EXISTS. The one drawback to this approach
is the subquery must make a reference to a field in the main query. This means that
your database system must execute the subquery once for every row it finds in the
Recipes table–once for each unique RecipeID value. (In some more advanced books,
you will find this sort of subquery called a “correlated” subquery because the
subquery is, in effect, co-dependent on each row in the outer query.) You can find
this query saved as CH18_Recipes_NOT_Beef_Onion_Carrot_NOTEXISTS in the

Recipes sample database.

Using GROUP BY/HAVING
In Chapter 14 you learned how to find out if there are “n” or more rows that qualify
for one or more criteria. For example, in the Entertainment database you can find a
query to show you the entertainers who play jazz and have three or more members
(CH14_Jazz_Entertainers_More_Than_3).
Did it occur to you that you could test for a count of zero to find sets of data that do
not qualify? Sure you can! Let’s solve our handy not beef-onions-carrots using
GROUP BY and HAVING COUNT = 0.

“Find the recipes that have neither beef, nor onions, nor carrots.”

Translation/Clean Up
Select recipe ID and recipe title from the recipes table left joined
with the (selection of recipe ID from the recipe ingredients table
inner joined with the ingredients table on Ingredients.ingredient ID
in the ingredients table equals matches =
Recipe_Ingredients.ingredient ID in the recipe ingredients table
where ingredient name is in the values (’beef’, ‘onion’, or ‘carrot’))
AS RIBOC on Recipes.recipe ID in the recipes table equals matches
= RIBOC.recipe ID in the selection where RIBOC.recipe ID in the
selection is NULL empty, then grouped by recipe ID and recipe title
and having the count of RIBOC.recipe ID in the selection equals
zero = 0.

SQL

SELECT Recipes.RecipeID, Recipes.RecipeTitle
FROM Recipes LEFT JOIN
 (SELECT Recipe_Ingredients.RecipeID
 FROM Recipe_Ingredients
 INNER JOIN Ingredients
 ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID
 WHERE Ingredients.IngredientName
 IN ('Beef','Onion','Carrot')) AS RIBOC
ON Recipes.RecipeID=RIBOC.RecipeID
WHERE RIBOC.RecipeID IS NULL
GROUP BY Recipes.RecipeID, Recipes.RecipeTitle
HAVING COUNT(RIBOC.RecipeID)=0;

If you noticed that this looks a lot like the LEFT JOIN solution, you’re absolutely
correct! In fact, the LEFT JOIN solution for a single table is the better method
because it avoids the overhead of grouping the rows. If you want to do this sort of
exclusion on a JOIN of two or more tables and some other criteria, however, using

GROUP BY and COUNT is a good way to do it. Remember that you learned in
Chapter 13, “Grouping Data,” that when you use COUNT (or, for that matter, any
aggregate function) on a column and that column contains a Null value in some
rows, the aggregate function ignores the Null values. This is why, when the LEFT
JOIN returns no rows from the subquery, COUNT(RIBOC.RecipeID) = 0 works.
When a recipe has no rows matching in the set of recipes that have beef, onions, or
carrots, the COUNT is zero. (You can find this query saved as
CH18_Recipes_NOT_Beef_Onion_Carrot_GROUPBY in the Recipes sample
database.)
Let’s do an example where the GROUP BY and HAVING make more sense:

“Find the recipes that have butter but have neither beef, nor onions, nor
carrots.”

Translation/Clean Up
Select recipe ID and recipe title from the recipes table inner joined
with the recipe ingredients table on Recipes.recipe ID in the recipes
table equals = Recipe_Ingredients.recipe ID in the recipe ingredients
table, then inner joined with the ingredients table on
Ingredients.ingredient ID in the ingredients table equals =
Recipe_Ingredients.ingredient ID in the recipe ingredients table,
then left joined with the (selection of recipe ID from the recipe
ingredients table inner joined with the ingredients table on
Ingredients.ingredient ID in the ingredients table equals
Recipe_Ingredients.ingredient ID in the recipe ingredients table
where ingredient name is in the values (’beef’, ‘onion’, or ‘carrot’))
AS RIBOC on Recipes.recipe ID in the recipes table equals
RIBOC.recipe ID in the selection where ingredient name in the
ingredients table equals = ‘Butter’ and RIBOC.recipe ID in the
selection is NULL empty, then grouped by recipe ID and recipe title
and having the count of RIBOC.recipe ID in the selection equals
zero = 0.

SQL

SELECT Recipes.RecipeID, Recipes.RecipeTitle
FROM ((Recipes INNER JOIN Recipe_Ingredients
ON Recipes.RecipeID = Recipe_Ingredients.RecipeID)
INNER JOIN Ingredients
ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID)
LEFT JOIN
 (SELECT Recipe_Ingredients.RecipeID
 FROM Recipe_Ingredients

 INNER JOIN Ingredients
 ON Ingredients.IngredientID =
 Recipe_Ingredients.IngredientID
 WHERE Ingredients.IngredientName In
 ('Beef','Onion','Carrot'))AS RIBOC
ON Recipes.RecipeID=RIBOC.RecipeID
WHERE Ingredients.IngredientName = 'Butter'
AND RIBOC.RecipeID IS NULL
GROUP BY Recipes.RecipeID, Recipes.RecipeTitle
HAVING COUNT(RIBOC.RecipeID)=0;

CH18_Recipes_Butter_NOT_Beef_Onion_Carrot_GROUPBY (2 rows)

Now this makes more sense because the JOIN between Recipes, Recipe_Ingredients,
and Ingredients will certainly return multiple rows, but we want only one row per
recipe to appear in the final result. The GROUP BY accomplishes returning one row
per recipe, and the HAVING eliminates all recipes that have beef, onions, or carrots
in the ingredients.
That pretty much covers the different ways to solve “not” problems that have
multiple criteria. We’ll show you some more sample statements and challenge you
with some problems later in the chapter.

Finding Multiple Matches in the Same Table
Now we’ll look at the other side of the coin–queries that need to find matches on
multiple criteria. You had a taste of this in Chapter 8 when you learned how to find
customers who have ordered both a bike and a helmet in the Sales Orders Database
(CH08_Customers_Both_Bikes_And_Helmets), and in the Entertainment database
to discover entertainers who played for both Berg and Hallmark
(CH08_Entertainers_Berg_AND_Hallmark). Let’s explore the many ways to solve
this type of problem in more detail:

• INNER JOIN
• IN
• EXISTS
• GROUP BY/HAVING

Using INNER JOIN
Remember from Chapter 7 that you can find matching items in two sets by

performing an intersection of the two sets. We also told you that it’s most common
when working in SQL to perform an intersection on key values using an INNER
JOIN. Because the Primary Key of each row in a table uniquely identifies each row,
an intersection on Primary Key values will show you the rows that are common to
two sets.
So, one way to find rows that match multiple criteria is to create a set of data (using
a subquery) for each criterion and then JOIN the multiple sets on Primary Key
values. Let’s work through an example from the Entertainment database:

“List the customers who have booked Carol Peacock Trio, Caroline Coie
Cuartet, and Jazz Persuasion.”

Translation/Clean Up
Select the unique DISTINCT CPT.customer ID, CPT.customer first
name, and CPT.customer last name from the (selection of customer
id, customer first name, customer last name from the customers
table inner joined with the engagements table on
Customers.customer ID in the customers table equals =
Engagements.customer ID in the engagements table then inner
joined with the entertainers table on Engagements.entertainer ID in
the engagements table equals = Entertainers.entertainer ID in the
entertainers table where Entertainers.entertainer stage name in the
entertainers table equals = ‘Carol Peacock Trio’) AS CPT inner
joined with the (selection of customer id from the customers table
inner joined with the engagements table on Customers.customer ID
in the customers table equals = Engagements.customer ID in the
engagements table then inner joined with the entertainers table on
Engagements.entertainer ID in the engagements table equals =
Entertainers.entertainer ID in the entertainers table where
Entertainers.entertainer stage name in the entertainers table equals =
‘Caroline Coie Cuartet’) AS CCC on CPT.customer ID in the first
selection equals = CCC.customer ID in the second selection inner
joined with the (selection of customer id from the customers table
inner joined with the engagements table on Customers.customer ID
in the customers table equals = Engagements.customer ID in the
engagements table then inner joined with the entertainers table on
Engagements.entertainer ID in the engagements table equals =
Entertainers.entertainer ID in the entertainers table where
Entertainers.entertainer stage name in the entertainers table equals =
‘Jazz Persuasion’) AS JP on CCC.customer ID in the second

selection equals JP.customer ID in the third selection.
SQL

SELECT DISTINCT CPT.CustomerID, CPT.CustFirstName,
CPT.CustLastName
FROM
((SELECT Customers.CustomerID, Customers.CustFirstName,
 Customers.CustLastName
 FROM (Customers INNER JOIN Engagements
 ON Customers.CustomerID = Engagements.CustomerID)
 INNER JOIN Entertainers
 ON Engagements.EntertainerID = Entertainers.EntertainerID
 WHERE Entertainers.EntStageName =
 'Carol Peacock Trio') As CPT
 INNER JOIN
 (SELECT Customers.CustomerID
 FROM (Customers INNER JOIN Engagements
 ON Customers.CustomerID = Engagements.CustomerID)
 INNER JOIN Entertainers
 ON Engagements.EntertainerID = Entertainers.EntertainerID
 WHERE Entertainers.EntStageName =
 'Caroline Coie Cuartet') As CCC
 ON CPT.CustomerID = CCC.CustomerID)
 INNER JOIN
 (SELECT Customers.CustomerID
 FROM (Customers INNER JOIN Engagements
 ON Customers.CustomerID = Engagements.CustomerID)
 INNER JOIN Entertainers
 ON Engagements.EntertainerID = Entertainers.EntertainerID
 WHERE Entertainers.EntStageName =
 'Jazz Persuasion') As JP
 ON CCC.CustomerID = JP.CustomerID;

CH18_Customers_Peacock_Coie_Jazz_INNERJOIN (2 rows)

The three SELECT expressions in the FROM clause fetch the three sets we want–
one for customers who booked Carol Peacock Trio; one for customers who booked
Caroline Coie Cuartet; and one for customers who booked Jazz Persuasion. We
included the customer name fields in the first query so that we can display those
fields in the final result, but all we need in the second and third queries is the
CustomerID field (the Primary Key of the Customers table) to perform the JOIN to
find out who booked all three groups. Finally, we used the DISTINCT keyword to
eliminate any duplicate rows produced when a customer booked one of the
entertainers multiple times.
If you look back in Chapter 8, you’ll find we use the same technique to solve
CH08_Entertainers_Berg_AND_Hallmark. The only difference is that we used

DISTINCT in each of the subqueries instead of in the outer SELECT statement.

Using IN
Let’s solve our customers booking three entertainment groups problem using IN.
When you want to find a match on multiple criteria using IN, you might be tempted
to do it this simple way:
Click here to view code image

SELECT Customers.CustomerID, Customers.CustFirstName,
 Customers.CustLastName
FROM Customers
WHERE Customers.CustomerID IN
(SELECT Customers.CustomerID
FROM (Customers INNER JOIN Engagements
ON Customers.CustomerID = Engagements.CustomerID)
INNER JOIN Entertainers
ON Engagements.EntertainerID = Entertainers.EntertainerID
WHERE Entertainers.EntStageName IN
 ('Carol Peacock Trio', 'Caroline Coie Cuartet',
 'Jazz Persuasion'))

Why won’t this work? The answer is you’ll get any customer who booked any of the
three groups. You won’t get only the customers who booked all three groups! You
can find this query saved as CH18_Customers_Peacock_Coie_Jazz_IN_WRONG in
the Entertainment sample database.
Remember that to find the customers who booked all three, you need an intersection
of three sets: one for the customers who booked Carol Peacock Trio; one for the
customers who booked Caroline Coie Cuartet; and one for customers who booked
Jazz Persuasion. To solve this with IN, you need three IN clauses, and you must find
the customers who are IN the first set AND IN the second set AND IN the third set.
Let’s take a whack at it:

“List the customers who have booked Carol Peacock Trio, Caroline Coie
Cuartet, and Jazz Persuasion.”

Translation/Clean Up
Select customer ID, customer first name, and customer last name
from the customers table where customerID is in the (selection of
customer id from the engagements table inner joined with the
entertainers table on Engagements.entertainer ID in the
engagements table equals = Entertainers.entertainer ID in the
entertainers table where Entertainers.entertainer stage name in the
entertainers table equals = ‘Carol Peacock Trio’) and customer id is
in the (selection of customer id from the engagements table inner

joined with the entertainers table on Engagements.entertainer ID in
the engagements table equals = Entertainers.entertainer ID in the
entertainers table where Entertainers.entertainer stage name in the
entertainers table equals = ‘Caroline Coie Cuartet’) and customer id
is in the (selection of customer id from the engagements table inner
joined with the entertainers table on Engagements.entertainer ID in
the engagements table equals = Entertainers.entertainer ID in the
entertainers table where Entertainers.entertainer stage name in the
entertainers table equals = ‘Jazz Persuasion’).

SQL

SELECT Customers.CustomerID, Customers.CustFirstName,
 Customers.CustLastName
FROM Customers
WHERE Customers.CustomerID IN
(SELECT Engagements.CustomerID
FROM Engagements INNER JOIN Entertainers
ON Engagements.EntertainerID=Entertainers.EntertainerID
WHERE Entertainers.EntStageName='Carol Peacock Trio')

AND Customers.CustomerID IN
(SELECT Engagements.CustomerID
FROM Engagements INNER JOIN Entertainers
ON Engagements.EntertainerID=Entertainers.EntertainerID
WHERE Entertainers.EntStageName='Caroline Coie Cuartet')

AND Customers.CustomerID IN
(SELECT Engagements.CustomerID
FROM Engagements INNER JOIN Entertainers
ON Engagements.EntertainerID=Entertainers.EntertainerID
WHERE Entertainers.EntStageName='Jazz Persuasion');

You should get the same two rows that you found in the solution for INNER JOIN.
We have specifically spaced out the three subqueries in the preceding SQL so that
you can clearly see how to fetch the three sets. You can find this query in the
Entertainment sample database saved as
CH18_Customers_Peacock_Coie_Jazz_IN_RIGHT.

Using EXISTS
To solve our customers who booked three specific groups problem using EXISTS,
you’ll use a technique similar to the one you used to solve the problem using IN. The
key difference is that each of your subqueries must also match on customer ID.
Because you’re testing for the existence of each set, each set must match the
customer ID being examined in the current row. Here’s how to do it:

“List the customers who have booked Carol Peacock Trio, Caroline Coie
Cuartet, and Jazz Persuasion.”

Translation/Clean Up
Select customer ID, customer first name, and customer last name
from the customers table where there exists the (selection of
customer id from the engagements table inner joined with the
entertainers table on Engagements.entertainer ID in the
engagements table equals = Entertainers.entertainer ID in the
entertainers table where Entertainers.entertainer stage name in the
entertainers table equals = ‘Carol Peacock Trio’ and the
Engagements.customer ID in the engagements table equals the =
Customers.customer ID in the customers table) and there exists the
(selection of customer id from the engagements table inner joined
with the entertainers table on Engagements.entertainer ID in the
engagements table equals = Entertainers.entertainer ID in the
entertainers table where Entertainers.entertainer stage name in the
entertainers table equals = ‘Caroline Coie Cuartet’ and the
Engagements.customer ID in the engagements table equals the =
Customers.customer ID in the customers table) and there exists the
(selection of customer id from the engagements table inner joined
with the entertainers table on Engagements.entertainer ID in the
engagements table equals = Entertainers.entertainer ID in the
entertainers table where Entertainers.entertainer stage name in the
entertainers table equals = ‘Jazz Persuasion’ and the
Engagements.customer ID in the engagements table equals the =
Customers.customer ID in the customers table).

SQL

SELECT Customers.CustomerID, Customers.CustFirstName,
 Customers.CustLastName
FROM Customers
WHERE EXISTS
(SELECT Engagements.CustomerID
FROM Engagements INNER JOIN Entertainers
ON Engagements.EntertainerID=Entertainers.EntertainerID
WHERE Entertainers.EntStageName='Carol Peacock Trio'
AND Engagements.CustomerID = Customers.CustomerID)
AND EXISTS
(SELECT Engagements.CustomerID
FROM Engagements INNER JOIN Entertainers
ON Engagements.EntertainerID=Entertainers.EntertainerID
WHERE Entertainers.EntStageName='Caroline Coie Cuartet'
AND Engagements.CustomerID = Customers.CustomerID)
AND EXISTS
(SELECT Engagements.CustomerID
FROM Engagements INNER JOIN Entertainers
ON Engagements.EntertainerID=Entertainers.EntertainerID
WHERE Entertainers.EntStageName='Jazz Persuasion'
AND Engagements.CustomerID = Customers.CustomerID);

This operates similarly to the principles behind the IN solution. You find the three
sets of customers who have booked each of the groups and test using EXISTS. The
one drawback to this approach is that the subqueries must make a reference to a field
in the main query. This means that your database system must execute each of the
subqueries once for every row it finds in the Customers table–once for each unique
CustomerID value. (In some more advanced books, you will find this sort of
subquery called a “correlated” subquery because the subquery is, in effect, co-
dependent on each row in the outer query.) You can find this query saved as
CH18_Customers_Peacock_Coie_Jazz_EXISTS in the Entertainment sample
database.

Using GROUP BY/HAVING
We could try to solve our customers who booked three specific entertainers using
GROUP BY and HAVING, but it would be difficult. When we did it for recipes and
ingredients, we knew that any one ingredient appears only once in the
Recipe_Ingredients table. That’s not the case for customers and entertainers because
a customer can choose to book an entertainer more than once. Sure, we could do
something with groupings on SELECT DISTINCT, but why bother when there are
several other ways to solve the problem?
Instead, let’s tackle an interesting problem in the Entertainment sample database that
is really best solved with GROUP BY and HAVING. Here’s the problem:

“Display customers and groups where the musical styles of the group match all
of the musical styles preferred by the customer.”

This is a “match many” problem because each customer potentially has told the
agency that there are several styles that they prefer. The difficulty is the “many” isn’t
a fixed list–the list of potential matches changes with each customer!
Let’s take a look at the tables we need to see how we might begin to construct the
request. Figure 18-4 shows the tables we need to find entertainers and all the styles
they play, and Figure 18-5 shows the tables we need to find customers and all the
styles they prefer.

Figure 18–4 Tables to list all entertainers and the styles that they play

Figure 18–5 Tables to list all customers and the styles they prefer

Do you see any column that is common in the two sets of tables? How about the
StyleID column? In fact, we probably don’t need the Musical_Styles table at all
unless we also want to list the matching style. If you look at the full diagram for the
Entertainment Agency sample database, you won’t see a direct relationship between
StyleID in the Musical_Preferences table and StyleID in the Entertainer_Styles table;
however, it’s perfectly legal to ask for a JOIN between those two tables on StyleID
because the columns in both tables are the same data type. It’s also logical to do a
JOIN this way because the columns we want to use in the JOIN have the same
meaning. We want to find all styles that match between customers and entertainers,
and we specifically want to find the matches where the number (COUNT) of
matches between the two equals the total number of styles preferred by the customer.
Let’s get started:

“Display customers and groups where the musical styles of the group match all
of the musical styles preferred by the customer.”

Translation/Clean/Up
Select customer ID, customer first name, customer last name,
entertainer ID, entertainer stage name, and the count of (style ID)
from the customers table inner joined with the musical preferences

table on Customers.customer ID in the customers table matches =
Musical_Styles.customer ID in the musical styles table then inner
joined with the entertainer styles table on Musical_Styles.style ID in
the musical styles table matches = Entertainer_Styles.style ID in the
entertainer styles table and finally inner joined with the entertainers
table on Entertainers.entertainer ID in the entertainers table matches
= Entertainer_Styles.entertainer ID in the entertainer styles table
grouped by customer ID, customer first name, customer last name,
entertainer ID, and entertainer stage name and having the count of
(style ID) = equal to the (selection of the count(*) of all rows from
the musical preferences table where the
Musical_Preferences.customer ID in the musical preferences table
matches the = Customers.customer ID in the customers table.

SQL

SELECT Customers.CustomerID, Customers.CustFirstName,
 Customers.CustLastName, Entertainers.EntertainerID,
 Entertainers.EntStageName,
 Count(Musical_Preferences.StyleID) AS CountOfStyleID
FROM ((Customers INNER JOIN Musical_Preferences
ON Customers.CustomerID=Musical_Preferences.CustomerID)
INNER JOIN Entertainer_Styles
ON Musical_Preferences.StyleID=Entertainer_
 Styles.StyleID)
INNER JOIN Entertainers
ON Entertainers.EntertainerID =
 Entertainer_Styles.EntertainerID
GROUP BY Customers.CustomerID, Customers.CustFirstName,
Customers.CustLastName, Entertainers.EntertainerID,
Entertainers.EntStageName
HAVING Count(Musical_Preferences.StyleID) =
(SELECT Count(*)
FROM Musical_Preferences
WHERE Musical_Preferences.CustomerID =
 Customers.CustomerID);

CH18_Entertainers_Fully_Match_Customers_Style (8 rows)

This works because each customer or entertainer has a style listed only once. Note
that we don’t need to know how many styles we have to match on–the query does
that for us. We included the CountOfStyleID column only to demonstrate that the
number of style preferences varies from customer to customer. Imagine what a sales
tool this would be when one of the customers in the list calls up asking for a group
recommendation. The agent can confidently recommend at least one group per
customer where the group plays all the styles the customer prefers.

Sample Statements
You now know the mechanics of constructing queries that solve complex “not” and
“and” questions and have seen some of the types of requests you can answer. Let’s
take a look at a fairly robust set of samples that solve a variety of “not” and “and”
problems. These examples come from each of the sample databases, and they
illustrate the use of the JOINs, IN, EXISTS, and grouping to find answers requiring
multiple search criteria.
We’ve also included sample result sets that would be returned by these operations
and placed them immediately after the SQL syntax line. The name that appears
immediately above a result set is the name we gave each query in the sample data on
the companion website for the book, www.informit.com/title/9780321992475. We
stored each query in the appropriate sample database (as indicated within the
example), using “CH18” as the leading part of the query or view name. You can
follow the instructions at the beginning of this book to load the samples onto your
computer and try them out.

 Note
Remember that all of the field names and table names used in these examples

http://www.informit.com/title/9780321992475

are drawn from the sample database structures shown in Appendix B,
“Schema for the Sample Databases.”
Because many of these examples use complex joins, the optimizer for your
database system may choose a different way to solve these queries. For this
reason, the first few rows we show you may not exactly match the result you
obtain, but the total number of rows should be the same.

Sales Order Database
“Find all the customers who ordered a bicycle and also ordered a helmet.”

 Note
In Chapter 8, we solved this problem using an INNER JOIN of two SELECT
DISTINCT subqueries. Here, we solve it using EXISTS.

Translation/Clean Up
Select customer ID, customer first name, and customer last name
from the customers table where there exists some row in (SELECT
* FROM the orders table inner joined with the order details table on
orders.order number in the orders table equals = order_details.order
number in the order details table, and then inner joined with the
products table on products.product ID in the products table equals =
order_details.product ID in the order details table where product
name contains LIKE ‘%Bike’ and Orders.customer ID in the orders
table equals = the Customers.customer ID in the customers table),
and there also exists some row in (SELECT * FROM the orders
table inner joined with the order details table on orders.order ID in
the orders table equals = order_details.order ID in the order details
table, and then inner joined with the products table on
products.product ID in the products table equals =
order_details.product ID in the order details table where product
name contains LIKE ‘%Helmet’ and the Orders.customer ID in the
orders table equals = the Customers.customer ID in the customers
table)

SQL

SELECT Customers.CustomerID,
 Customers.CustFirstName,
 Customers.CustLastName
FROM Customers

WHERE EXISTS
 (SELECT *
 FROM (Orders
 INNER JOIN Order_Details
 ON Orders.OrderNumber =
 Order_Details.OrderNumber)
 INNER JOIN Products
 ON Products.ProductNumber =
 Order_Details.ProductNumber
 WHERE Products.ProductName LIKE '%Bike'
 AND Orders.CustomerID =
 Customers.CustomerID)
AND EXISTS
 (SELECT *
 FROM (Orders
 INNER JOIN Order_Details
 ON Orders.OrderNumber =
 Order_Details.OrderNumber)
 INNER JOIN Products
 ON Products.ProductNumber =
 Order_Details.ProductNumber
 WHERE Products.ProductName LIKE '%Helmet'
 AND Orders.CustomerID =
 Customers.CustomerID)

CH18_Cust_Bikes_And_Helmets_EXISTS (21 rows)

“Find all the customers who have not ordered either bikes or tires.”

 Note

We simplified this a bit because we know the category ID for bikes is 2, and
the category ID for tires is 6. If we didn’t know this, we should have included
an additional join to the Categories table and then looked for ‘Bikes’ and
‘Tires’.

Translation/Clean Up
Select customer ID, customer first name, and customer last name
from the customers table where customer ID is not in the (selection
of customer ID from the orders table inner joined with the order
details table on Orders.order number in the orders table equals =
Order_Details.order number in the order details table, and then inner
joined with the products table on Products.product ID in the
products table equals = Order_Details.product ID in the order
details table where product category is = 2), and customer ID is not
in the (selection of customer ID from the orders table inner joined
with the order details table on Orders.order number in the orders
table equals = Order_Details.order number in the order details table,
and then inner joined with the products table on Products.product ID
in the products table equals = Order_Details.product ID in the order
details table where product category ID is = 6)

SQL

SELECT Customers.CustomerID, Customers.CustFirstName,
 Customers.CustLastName
FROM Customers
WHERE Customers.CustomerID NOT IN
(SELECT CustomerID
FROM (Orders INNER JOIN Order_Details
ON Orders.OrderNumber = Order_Details.OrderNumber)
INNER JOIN Products
ON Order_Details.ProductNumber = Products.ProductNumber
WHERE Products.CategoryID = 2)
AND Customers.CustomerID NOT IN
(SELECT CustomerID FROM (Orders
INNER JOIN Order_Details
ON Orders.OrderNumber = Order_Details.OrderNumber)
INNER JOIN Products
ON Order_Details.ProductNumber = Products.ProductNumber
WHERE Products.CategoryID = 6)

CH18_Customers_Not_Bikes_Or_Tires_NOTIN_2 (2 rows)

 Note
We would expect Jeffrey Tirekicker to show up in any query that asks for
customers who haven’t bought certain items because this customer has never
bought anything! See CH18_Customers_No_Orders_JOIN and
CH18_Customers_No_Orders_NOT_IN to verify this.

Entertainment Database

“List the entertainers who played engagements for customers Berg and
Hallmark.”

 Note
We solved this problem in Chapter 8 with a JOIN of two complex table
subqueries. This time, we’ll use EXISTS.

Translation/Clean Up
Select entertainer ID, and entertainer stage name from the
entertainers table where there exists (SELECT * some row from the
customers table inner joined with the engagements table on
customers.customer ID in the customers table matches =
engagements.customer ID in the engagements table where customer
last name is = ‘Berg’ and the engagements table entertainer ID
equals = the Entertainers.entertainer ID in the entertainers table),
and there also exists (SELECT * some row from the customers table
inner joined with the engagements table on customers.customer ID
in the customers table matches = engagements.customer ID in the
engagements table where customer last name is = ‘Hallmark’ and
the Engagements.entertainer ID in the engagements table equals =
the Entertainers.entertainer ID in the entertainers table)

SQL

SELECT Entertainers.EntertainerID,
 Entertainers.EntStageName
FROM Entertainers
WHERE EXISTS
 (SELECT *
 FROM Customers
 INNER JOIN Engagements
 ON Customers.CustomerID =
 Engagements.CustomerID
 WHERE Customers.CustLastName = 'Berg'

 AND Engagements.EntertainerID =
 Entertainers.EntertainerID)
AND EXISTS
 (SELECT *
 FROM Customers
 INNER JOIN Engagements
 ON Customers.CustomerID =
 Engagements.CustomerID
 WHERE Customers.CustLastName = 'Hallmark'
 AND Engagements.EntertainerID =
 Entertainers.EntertainerID)

CH18_Entertainers_Berg_AND_Hallmark_EXISTS (4 rows)

“Display agents who have never booked a Country or Country Rock group.”

Translation/Clean Up
Select agent ID, agent first name, and agent last name from the
agents table where agent ID is not in the (selection of agent ID from
the engagements table inner joined with the engagements table on
Engagements.entertainer ID in the engagements table equals =
Entertainers.entertainer ID in the entertainers table, and then inner
joined with the entertainer styles table on Entertainers.entertainer ID
in the entertainers table equals = Entertainer_Styles.entertainer ID in
the entertainer styles table, and then inner joined with the musical
styles table on Entertainer_Styles.style ID in the entertainer styles
table equals = Musical_Styles.style ID in the musical styles table
where style name is in (’Country’, or ‘Country Rock’))

SQL

SELECT Agents.AgentID, Agents.AgtFirstName,
 Agents.AgtLastName
FROM Agents
WHERE Agents.AgentID NOT IN
(SELECT Engagements.AgentID
FROM ((Engagements INNER JOIN Entertainers
ON Engagements.EntertainerID
 = Entertainers.EntertainerID)
INNER JOIN Entertainer_Styles
ON Entertainers.EntertainerID =

 Entertainer_Styles.EntertainerID)
INNER JOIN Musical_Styles
ON Entertainer_Styles.StyleID
 = Musical_Styles.StyleID
WHERE Musical_Styles.StyleName
IN ('Country', 'Country Rock'));

CH18_Agents_Not_Book_Country_CountryRock (3 rows)

 Note
We would expect Daffy Dumbwit to show up in any query that asks for agents
who haven’t bought certain items because this agent has never booked
anything!

School Scheduling Database

“List students who have a grade of 85 or better in both art and computer
science.”

 Note
We showed you how to solve this problem in Chapter 8 with an INNER JOIN
of two DISTINCT subqueries. Here’s how to solve it using IN.

Translation/Clean Up
Select student ID, student first name, and student last name from the
students table where student ID is in the (selection of student ID
from the student schedules table inner joined with the classes table
on Classes.student ID in the classes table equals =
Student_Schedules.student ID in the student schedules table, then
inner joined with the subjects table on Subjects.subject ID in the
subjects table equals = Classes.subject ID in the classes styles table,
and then inner joined with the categories table on
Categories.category ID in the categories table equals =

Subjects.category ID in the subjects table where category
description is equal to = ‘art’ and grade is greater than or equal to
>= 85) and student ID is in the (selection of student ID from the
student schedules table inner joined with the classes table on
Classes.student ID in the classes table equals =
Student_Schedules.student ID in the student schedules table, then
inner joined with the subjects table on Subjects.subject ID in the
subjects table equals = Classes.subject ID in the classes styles table,
and then inner joined with the categories table on
Categories.category ID in the categories table equals =
Subjects.category ID in the subjects table where category
description contains LIKE ‘%computer%’ and grade is greater than
or equal to >= 85)

SQL

SELECT Students.StudentID, Students.StudFirstName,
 Students.StudLastName
FROM Students
WHERE Students.StudentID IN
(SELECT Student_Schedules.StudentID
 FROM ((Student_Schedules INNER JOIN Classes
 ON Classes.ClassID = Student_Schedules.ClassID)
 INNER JOIN Subjects
 ON Subjects.SubjectID = Classes.SubjectID)
 INNER JOIN Categories
 ON Categories.CategoryID = Subjects.CategoryID
 WHERE Categories.CategoryDescription = 'Art'
 AND Student_Schedules.Grade >= 85)
AND Students.StudentID IN
(SELECT Student_Schedules.StudentID
 FROM ((Student_Schedules INNER JOIN Classes
 ON Classes.ClassID = Student_Schedules.ClassID)
 INNER JOIN Subjects
 ON Subjects.SubjectID = Classes.SubjectID)
 INNER JOIN Categories
 ON Categories.CategoryID = Subjects.CategoryID
 WHERE Categories.CategoryDescription LIKE
 '%Computer%'
 AND Student_Schedules.Grade >= 85);

CH18_Good_Art_CS_Students_IN (1 row)

“Show me students registered for classes for which they have not completed the
prerequisite course.”

 Note
This is an interesting combination of “and” and “not.” The query needs to
compare an unknown number of classes for which a student has registered
with an unknown number of those classes that have prerequisites for which
the student has not previously registered or completed. (The problem assumes
that it’s OK if a student is concurrently registered for a prerequisite course.)

Let’s restate that so it’s a bit clearer how you should solve this problem.

“Show the students and the courses for which they are registered that have
prerequisites for which there is not a registration for this student in the
prerequisite course (and the student did not withdraw) with a start date of the
prerequisite course that is equal to or earlier than the current course.”

Translation/Clean Up
Select student ID, student first name, student last name start date,
subject code, subject name, and subject prereq from the students
table inner joined with the student schedules table on
Students.student ID in the students table equals =
Student_Schedules.student ID in the student schedules table, then
inner joined with the classes table on Classes.class ID in the classes
table equals = Student_Schedules.class ID in the student schedules
table, and then inner joined with the subjects table on
Subjects.subject ID in the subjects table equals = Classes.subject ID
in the classes table where subject prereq is not null and subject
prereq is not in the (selection of subject code from the subjects table
inner joined with the classes table aliased as c2 on Subjects.subject
ID in the subjects table equals = C2.subject ID in the c2 aliased
table, and then inner joined with the student schedules table on
C2.class ID in the c2 aliased table equals = Student_Schedules.class
ID in the student schedules table, and then inner joined with the
student class status table on Student_Schedules.class status in the
student schedules table equals = Student_Class_Status.class status
in the student class status table where class status description does
not equal <> ‘withdrew’ and Student_Schedules.student ID in the
student schedules table equals = Students.student ID in the students
table and C2.start date in the aliased c2 table is less than or equal to
<= Classes.start date in the classes table)

SQL

SELECT Students.StudentID, Students.StudFirstName,
 Students.StudLastName, Classes.StartDate,
 Subjects.SubjectCode, Subjects.SubjectName,
 Subjects.SubjectPreReq
FROM ((Students INNER JOIN Student_Schedules
ON Students.StudentID=Student_Schedules.StudentID)
INNER JOIN Classes
ON Classes.ClassID=Student_Schedules.ClassID)
INNER JOIN Subjects
ON Subjects.SubjectID=Classes.SubjectID
WHERE Subjects.SubjectPreReq Is Not Null
AND Subjects.SubjectPreReq NOT IN
(SELECT Subjects.SubjectCode
 FROM ((Subjects INNER JOIN Classes As C2
 ON Subjects.SubjectID = C2.SubjectID)
 INNER JOIN Student_Schedules
 ON C2.ClassID = Student_Schedules.ClassID)
 INNER JOIN Student_Class_Status
 ON Student_Schedules.ClassStatus =
 Student_Class_Status.ClassStatus
WHERE Student_Class_Status.ClassStatusDescription <>
 'Withdrew'
AND Student_Schedules.StudentID = Students.StudentID
AND C2.StartDate <= Classes.StartDate);

CH18_Students_Missing_Prerequisites (5 rows)

Bowling League Database

“List the bowlers, the match number, the game number, the handicap score, the
tournament date, and the tournament location for bowlers who won a game
with a handicap score of 190 or less at Thunderbird Lanes, Totem Lanes, and
Bolero Lanes.”

 Note

You first need to find all bowlers who won a game with a handicap score of
190 or less at one of the three locations, then verify that the bowler ID is also
in the list of bowlers who one a game with a handicap score of 190 or less at
each of the three locations. (Remember, not in (a, b, c) but in (a) AND in (b),
AND in (c).)

Translation/Clean Up
Select bowler ID, bowler first name, bowler last name, match ID
game number, handicap score, tourney date, and tourney location
from the bowlers table inner joined with the bowler scores table on
Bowlers.bowler ID in the bowlers table equals =
Bowler_Scores.bowler ID in the bowler scores table, then inner
joined with the tourney matches table on Bowler_Scores.match ID
in the bowler scores table equals = Tourney_Matches.match ID in
the tourney matches table, and then inner joined with the
tournaments table on Tournaments.tourney ID in the tournaments
table equals = Tourney_Matches.tourney ID in the tourney matches
table where handicap score is less than or equal to <= 190 and won
game equals = 1 and tourney location is in the list (’Thunderbird
Lanes’, ‘Totem Lanes’, and ‘Bolero Lanes’) and bowler ID is in the
(selection of bowler ID from the tournaments table inner joined with
the tourney matches table on Tournaments.tourney ID in the
tournaments table equals = Tourney_Matches.tourney ID in the
tourney matches table, and then inner joined with the bowler scores
table on Tourney_Matches.match ID in the tourney matches table
equals = Bowler_Scores.match ID in the bowler scores table where
won game equals = 1 and handicap score is less than or equal to <=
190 and tourney location equals = ‘Thunderbird Lanes’) and bowler
ID is in the (selection of bowler ID from the tournaments table inner
joined with the tourney matches table on Tournaments.tourney ID in
the tournaments table equals = Tourney_Matches.tourney ID in the
tourney matches table, and then inner joined with the bowler scores
table on Tourney_Matches.match ID in the tourney matches table
equals = Bowler_Scores.match ID in the bowler scores table where
won game equals = 1 and handicap score is less than or equal to <=
190 and tourney location equals = ‘Totem Lanes’) and bowler ID is
in the (selection of bowler ID from the tournaments table inner
joined with the tourney matches table on Tournaments.tourney ID in
the tournaments table equals = Tourney_Matches.tourney ID in the

tourney matches table, and then inner joined with the bowler scores
table on Tourney_Matches.match ID in the tourney matches table
equals = Bowler_Scores.match ID in the bowler scores table where
won game equals = 1 and handicap score is less than or equal to <=
190 and tourney location equals = ‘Bolero Lanes’)

SQL

SELECT Bowlers.BowlerID, Bowlers.BowlerFirstName,
 Bowlers.BowlerLastName, Bowler_Scores.MatchID,
 Bowler_Scores.GameNumber, Bowler_Scores.HandiCapScore,
 Tournaments.TourneyDate, Tournaments.TourneyLocation
FROM ((Bowlers INNER JOIN Bowler_Scores
ON Bowlers.BowlerID=Bowler_Scores.BowlerID)
INNER JOIN Tourney_Matches
ON Bowler_Scores.MatchID=Tourney_Matches.MatchID)
INNER JOIN Tournaments
ON Tournaments.TourneyID=Tourney_Matches.TourneyID
WHERE (Bowler_Scores.HandiCapScore <= 190)
AND (Bowler_Scores.WonGame = 1)
AND (Tournaments.TourneyLocation
IN ('Thunderbird Lanes', 'Totem Lanes', 'Bolero Lanes'))
AND (Bowlers.BowlerID IN
(SELECT Bowler_Scores.BowlerID
 FROM (Tournaments INNER JOIN Tourney_Matches
 ON Tournaments.TourneyID = Tourney_Matches.TourneyID)
 INNER JOIN Bowler_Scores
 ON Tourney_Matches.MatchID = Bowler_Scores.MatchID
 WHERE Bowler_Scores.WonGame = 1
 AND Bowler_Scores.HandiCapScore <=190
 AND Tournaments.TourneyLocation = 'Thunderbird Lanes'))
AND (Bowlers.BowlerID IN
(SELECT Bowler_Scores.BowlerID
 FROM (Tournaments INNER JOIN Tourney_Matches
 ON Tournaments.TourneyID = Tourney_Matches.TourneyID)
 INNER JOIN Bowler_Scores
 ON Tourney_Matches.MatchID = Bowler_Scores.MatchID
 WHERE Bowler_Scores.WonGame = 1
 AND Bowler_Scores.HandiCapScore <=190
 AND Tournaments.TourneyLocation = 'Totem Lanes'))
AND (Bowlers.BowlerID IN
(SELECT Bowler_Scores.BowlerID
 FROM (Tournaments INNER JOIN Tourney_Matches
 ON Tournaments.TourneyID = Tourney_Matches.TourneyID)
 INNER JOIN Bowler_Scores
 ON Tourney_Matches.MatchID = Bowler_Scores.MatchID
 WHERE Bowler_Scores.WonGame = 1
 AND Bowler_Scores.HandiCapScore <=190
 AND Tournaments.TourneyLocation = 'Bolero Lanes'));

CH18_Bowlers_Won_LowScore_TBird_Totem_Bolero_RIGHT (11 rows)

 Note
You can also find the incorrect IN solution saved as
CH18_Bowlers_Won_LowScore_TBird_Totem_Bolero_WRONG in the
Bowling League sample database.

“Show me the bowlers who have not bowled a raw score better than 165 at
Thunderbird Lanes and Bolero Lanes.”

Translation/Clean Up
Select bowler ID, bowler last name, and bowler first name from the
bowlers table where bowler ID is not in the (selection of bowler ID
from the tournaments table inner joined with the tourney matches
table on Tournaments.tourney ID in the tournaments table equals =
Tourney_Matches.tourney ID in the tourney matches table, then
inner joined with the bowler scores table on
Tourney_Matches.match ID in the tourney matches table equals =
Bowler_Scores.match ID in the bowler scores table where raw score

is greater than > 165 and tourney location is in the list of
(’Thunderbird Lanes’, and ‘Bolero Lanes))

SQL

SELECT Bowlers.BowlerID, Bowlers.BowlerLastName,
 Bowlers.BowlerFirstName
FROM Bowlers
WHERE Bowlers.BowlerID NOT IN
(SELECT Bowler_Scores.BowlerID
FROM (Tournaments INNER JOIN Tourney_Matches
ON Tournaments.TourneyID = Tourney_Matches.TourneyID)
INNER JOIN Bowler_Scores
ON Tourney_Matches.MatchID = Bowler_Scores.MatchID
WHERE (Bowler_Scores.RawScore > 165)
AND (Tournaments.TourneyLocation
 IN ('Thunderbird Lanes', 'Bolero Lanes')))

CH18_Bowlers_LTE_165_Thunderbird_Bolero (15 rows)

Recipes Database
“Display the ingredients that are not used in the recipes for Irish Stew, Pollo
Picoso, and Roast Beef.”

Translation/Clean Up

Select ingredient ID, and ingredient name from the ingredients table
where ingredient ID is not in the (selection of ingredient ID from the
recipe ingredients table inner joined with the recipes table on
Recipe_Ingredients.recipe ID in the recipe ingredients table equals =
Recipes.recipe ID in the recipes table where recipe title is in the list
of (’Irish Stew’, ‘Pollo Picoso’, and ‘Roast Beef’))

SQL

SELECT Ingredients.IngredientID,
 Ingredients.IngredientName
FROM Ingredients
WHERE Ingredients.IngredientID NOT IN
(SELECT Recipe_Ingredients.IngredientID
FROM Recipe_Ingredients INNER JOIN Recipes
ON Recipe_Ingredients.RecipeID = Recipes.RecipeID
WHERE RecipeTitle IN
 ('Irish Stew', 'Pollo Picoso', 'Roast Beef'))

CH18_Ingredients_NOTIN_IrishStew_PolloPicoso_RoastBeef (67 rows)

“List the pairs of recipes where both recipes have at least the same three
ingredients.”

 Note

This is similar to the query we showed you earlier matching customers and
entertainers who play all the customer’s preferred styles. Do you suppose you
need two copies of the recipes and recipe ingredients tables?

Translation/Clean Up
Select Recipes.recipe ID and Recipes.recipe title in the first copy of
the recipes table and R2.recipe ID As R2ID and R2.recipe title As
R2Title in the second copy of the recipes table, and the count of
(Recipe_Ingredients.recipe ID) As CountOfRecipeID in the first
copy of the recipe ingredients table from the recipes table inner
joined with the recipe ingredients table on Recipes.recipe ID in the
recipes table equals = Recipe_Ingredients.recipe ID in the recipe
ingredients table, then inner joined with the second copy of the
recipe ingredients table AS RI2 on Recipe_Ingredients.ingredient ID
in the recipe ingredients table equals = RI2.ingredient ID in the
second copy of the recipe ingredients table, then inner joined with
the second copy of the recipes table AS R2 on R2.recipe ID in the
second copy of the recipes table equals = RI2.recipe ID in the
second copy of the recipe ingredients table where RI2.recipe ID in
the second copy of the recipe ingredients table is greater than >
Recipes.recipe ID in the first copy of the recipes table, grouped by
Recipes.recipe ID in the first copy of the recipes table,
Recipes.recipe title in the first copy of the recipes table, R2.recipe
ID in the second copy of the recipes table, and R2.recipe title in the
second copy of the recipes table, and having the count of matching
(Recipe_Ingredients.ingredient ID) in the recipe ingredients table
greater than > 3.

SQL

SELECT Recipes.RecipeID, Recipes.RecipeTitle,
 R2.RecipeID AS R2ID, R2.RecipeTitle AS R2Title,
 Count(Recipe_Ingredients.RecipeID) AS
 CountOfRecipeID
FROM ((Recipes INNER JOIN Recipe_Ingredients
ON Recipes.RecipeID=Recipe_Ingredients.RecipeID)
INNER JOIN Recipe_Ingredients AS RI2
ON Recipe_Ingredients.IngredientID=RI2.IngredientID)
INNER JOIN Recipes AS R2
ON R2.RecipeID=RI2.RecipeID
WHERE RI2.RecipeID>Recipes.RecipeID
GROUP BY Recipes.RecipeID, Recipes.RecipeTitle,
 R2.RecipeID, R2.RecipeTitle
HAVING Count(Recipe_Ingredients.RecipeID)>=3;

CH18_Recipes_AtLeast_3_Same_Ingredients (4 rows)

 Note
We threw in the check to make sure the ID of the second recipe is always
higher than the ID of the first so that we don’t get a pair of recipes listed
twice. Following the SQL Standard, we could have put that filter in the JOIN
on the two copies of the Recipe_Ingredients tables, but we chose to put the
filter in the WHERE clause to ensure compatibility with most database
systems.

Summary
We began the chapter with a review of sets to help you get a picture of how you go
about solving problems that involve multiple “not” and “and” criteria. We then
followed that with an extensive review of four different ways to approach solving
problems with multiple “not” criteria, including OUTER JOIN, NOT IN, NOT
EXISTS, and GROUP BY/HAVING.
We then covered four different ways to think about solving problems with multiple
“and” criteria: INNER JOIN, IN, EXISTS, and GROUP BY/HAVING. To help
cement the concepts, we provided five sets of sample statements for each of the
sample databases. We were careful to include one “and” example and one “not”
example for each sample database.
The following section presents a number of requests that you can work out on your
own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need
for each request and then check your answer with the query we saved in the samples.

Don’t worry if your syntax doesn’t exactly match the syntax of the queries we
saved–as long as your Result Set is the same.

Sales Order Database
1. “Display the customers who have never ordered bikes or tires.”

We showed you how to solve this earlier using NOT IN on multiple
subqueries. Can you figure out a way to solve it more simply using NOT IN?
You can find the solution in
CH18_Customers_Not_Bikes_Or_Tires_NOTIN_1 (2 rows).

2. “List the customers who have purchased a bike but not a helmet.”
First, solve this problem using EXISTS and NOT EXISTS. The solution is in
CH18_Cust_Bikes_No_Helmets_EXISTS (2 rows). For extra credit, solve the
problem using IN and NOT IN. You can find the solution in
CH18_Customer_Bikes_No_Helmets (2 rows).

3. “Show me the customer orders that have a bike but do not have a helmet.”
This might seem to be the same as problem 2 above, but it’s not. Solve it using
EXISTS and NOT EXISTS.
You can find the solution in CH18_Orders_Bikes_No_Helmet_EXISTS (402
rows).

4. “Display the customers and their orders that have a bike and a helmet in the
same order.”
Solve this problem using EXISTS. You can find the solution in
CH18_Customers_Bikes_And_Helmets_Same_Order (184 rows).

5. “Show the vendors who sell accessories, car racks, and clothing.”
Solve this problem using IN. You can find the solution in
CH18_Vendors_Accessories_CarRacks_Clothing (3 rows).

Entertainment Database
1. “List the entertainers who play the Jazz, Rhythm and Blues, and Salsa styles.”

Solve the problem using IN, but be careful to not take the easy way out!
You can find the solution in CH18_Entertainers_Jazz_RhythmBlues_Salsa_IN
(1 row). CH18_Entertainers_Jazz_RhythmBlues_Salsa_IN_WRONG shows
you the incorrect IN solution (4 rows).
For extra credit, solve the problem using GROUP BY and HAVING. You can
find the solution in CH18_Entertainers_Jazz_RhythmBlues_Salsa_HAVING
(1 row).

2. “Show the entertainers who did not have a booking in the 90 days preceding
May 1, 2013.”
You can solve this problem using NOT IN, but be careful to use the date and
time function appropriate for your database system. You can find the solution
in CH18_Entertainers_Not_Booked_90Days_Before_May12013 (2 rows).

3. “Display the customers who have not booked Topazz of Modern Dance.”
You can solve this problem in a couple of different ways using NOT IN. You
can find one solution in
CH18_Customers_Not_Booked_Topazz_Or_ModernDance (6 rows).

4. “List the entertainers who have performed for Hartwig, McCrae, and
Rosales.”
There are a number of ways to solve this. You can find the solution using
EXISTS in CH18_Entertainers_Hartwig_McCrae_AND_Rosales_EXISTS (2
rows).

5. “Display the customer who have never booked an entertainer.”
“Show the entertainers who have no bookings.”
You can solve both problems using a simple NOT IN. You can find the
solutions in CH18_Customers_No_Bookings_NOT_IN (2 rows), and
CH18_Entertainers_Never_Booked_NOT_IN (1 row).

School Scheduling Database
1. “Show students who have a grade of 85 or better in both Art and Computer

Science.”
We showed you earlier how to solve this problem using IN. Now solve it using
EXISTS. You can find the solution in
CH18_Good_Art_CS_Students_EXISTS (1 row).

2. “Display the staff members who are teaching classes for which they are not
accredited.”
The trick is to find rows in the faculty classes table that are not in the faculty
subjects table.
You can find the solution in CH18_Staff_Teaching_NonAccredited_Classes (4
rows).

3. “List the students who have passed all completed classes with a grade of 80 or
better.”
As you might suspect, this is best done with GROUP BY and HAVING. You
can find the solution in CH18_Students_Passed_All_Grade_GTE_80 (3 rows).

4. Solve three of the following simple NOT problems:
“Find classes with no students.”
“Display staff members not teaching.”
“Show which students have never withdrawn.”
“List students not currently enrolled.”
“Find subjects that have no faculty assigned.”
You can find the solutions in:
CH18_Classes_No_Students_Enrolled_NOT_IN (118 rows),
CH18_Staff_Not_Teaching_EXISTS (5 rows),
CH18_Students_Never_Withdrawn_EXISTS (16 rows),
CH18_Students_Not_Currently_Enrolled_NOT_IN (2 rows), and
CH18_Subjects_No_Faculty_NOT_IN (1 row).

Bowling League Database
1. “Display the bowlers who have never bowled a raw score greater than 150.”

You can find one way to solve this in CH18_Mediocre_Bowlers (7 rows).
2. “Show the bowlers who have a raw score greater than 170 at both

Thunderbird Lanes and Bolero Lanes.”
We have shown you how to solve this using an INNER JOIN of SELECT
DISTINCT queries. Now solve it using EXISTS.
You can find the solution in
CH18_Good_Bowlers_TBird_And_Bolero_EXISTS (11 rows).

3. “List the tournaments that have not yet been played.”
This is an easy one to solve using NOT IN. You can find the solution in
CH18_Tourney_Not_Yet_Played_NOT_IN (6 rows).

Recipes Database
1. “Show me the recipes that have beef and garlic.”

Solve the problem this time using EXISTS. You can find the solution in
CH18_Recipes_Beef_And_Garlic (1 row).

2. “List the recipes that have beef, onion, and carrot.”
This time, solve the problem using IN, but do it carefully! You can find the
solution in CH18_Recipes_Beef_Onion_Carrot (1 row).

3. “Which recipes use no dairy products (cheese, butter, dairy)?”

Solve this using NOT IN, but be careful you do it correctly. You can find the
correct solution in CH18_Recipes_No_Dairy_RIGHT (10 rows).
If you did it incorrectly, your solution might look like
CH18_Recipes_No_Dairy_WRONG (15 rows).

4. Solve both of the following using NOT IN:
“Display ingredients not used in any recipe.”
“Show recipe classes for which there is no recipe.”
You can find the solution in CH18_Ingredients_No_Recipe (20 rows) and
CH18_Recipe_Classes_No_Recipes_NOT_IN (1 row).

19. Condition Testing

“The only real mistake is the one from which we learn nothing.”
—John Powell

Topics Covered in This Chapter
Conditional Expressions (CASE)
Solving Problems with CASE
Sample Statements
Summary
Problems for You to Solve

You might remember that way back in Chapter 4, “Creating a Simple Query,” we
explained the difference between data and information. You store data in the rows
and columns in your tables, but you often need a query to turn that data into useful
information. Sometimes, turning data into information requires you to perform
complex calculations or transformations of your data to get what you want. It could
be something as simple as formatting a salutation for the name line of address labels.
Or, you might need to use a complex mathematical expression. When the
“calculation” of information you want is based on the values you find in columns not
related to your final expression, you need to be able to perform some “If ... Then ...
Else” sorts of comparisons to create the correct expression. We’ll show you how to
solve these types of problems in this chapter.

Conditional Expressions (CASE)
When you need to test the data in one column to determine how to handle data in
another column, you need to be able to say something like “If the value in column
‘a’ is ‘x’, then return expression ‘y’, else return expression ‘z’.” The SQL Standard
provides a handy syntax to accomplish this: CASE.

Why Use CASE?
Because systems to express a set of values are all man-made and have evolved over
time, there are many different way to measure, weigh, or express values in your data.
Is the distance measure in feet and inches or in centimeters? Is the temperature
expressed as Celsius or Fahrenheit? Is the weight in pounds or kilograms? Some
man-invented systems are bizarre, indeed: The Gregorian calendar that most people
use to mark the passage of time has 28, 29, 30, or 31 days in a month, and a year can

have 365 or 366 days!
You’ll also often encounter a case where your table is designed with columns
containing code values to represent certain information. A very common example is
using “M” or “F” to indicate gender. A database that contains numerical values from
multiple different systems might have a column to tell you whether the reading is in
Celsius (“C”) or Fahrenheit (“F”), or the distance is in meters (“M”) or the Imperial
inches and feet (“I”). Sometimes, the indication is within the data value itself. For
example in a system handling money, a negative number indicates a “debit” whereas
a positive number indicates a “credit.” Other times, the method to decode a value is
embedded in the format of the data itself—any month, day, and year value is, by
definition, using the bizarre Gregorian system. Remember that in Chapter 5, “Getting
More Than Simple Columns,” we showed you a primitive way to calculate years of
service that will be correct for most cases. We also promised to show you the
accurate way to do it in this chapter. As always, we keep our promises!
All these situations require that you perform some sort of test to discover the correct
expression you need to use to fetch the information you want. CASE is the solution
for all these problems and more.

Syntax
Let’s dig right in and explore the syntax for a CASE expression. First, let’s look at
where you can use it. Figure 19-1 shows you the diagram for Value Expression,
which is the one place where you can use a CASE expression.

Figure 19–1 A diagram of Value Expression

That might seem fairly limiting at first glance, but remember that you can use a
Value Expression in many places. You can use a Value Expression in the list of
items you want returned in the SELECT clause. You can also use it in a predicate in

any Search Condition that you can use in the ON clause of a JOIN, a WHERE
clause, or a HAVING clause. Now let’s examine the syntax of a CASE Expression.
Figure 19-2 shows you the diagram.

Figure 19–2 The diagram for the CASE Expression

A CASE Expression actually has two forms:
• Simple: In the Simple version, you use the keyword CASE and immediately

follow the keyword with the Value Expression (which can include another
CASE Expression) that you want to test. You can then write multiple
WHEN/THEN clauses to compare the Value Expression to one or more single
values and specify what Value Expression should be returned “when” the value
expression in the WHEN clause has a value equal to the Value Expression you
specified after the CASE keyword. Note that this is simply an equals test.

• Searched: If you want to perform a more complex comparison test, such as
greater than, less than, IN, BETWEEN, or EXISTS, you must use the Searched
form of the CASE Expression. In the Searched form, you immediately follow
the CASE keyword with one or more WHEN/THEN clauses. In this form, you

can specify a Search Condition after the WHEN keyword to perform any sort
of complex comparison of values, including using a subquery to fetch related
data from another table. For review, let’s take a look at Search Condition and
Predicate again. Note that for both Simple and Searched CASE expressions,
evaluation of the expression ends when your database system finds the first
WHEN clause that is true. Figure 19-3 shows you the diagram for Search
Condition.

Figure 19–3 The diagram of a Search Condition

Note that you do not need to include the IS [NOT] TRUE/FALSE/UNKNOWN
portion because your database automatically evaluates the THEN expression when
your Search Condition is true. Figures 19-4 and 19-5 (on page 646) show you the
diagrams for a Predicate.

Figure 19–4 The diagram of a Predicate: Part 1 of 2

Figure 19–5 The diagram of a Predicate: Part 2 of 2
As you can see, the options you can include in a Search Condition that you specify
after a WHEN keyword are very extensive. The ability to use a SELECT Expression
that returns one or more values from another related table is particularly powerful.
In the following section, we’ll explore and explain several examples that show you
ways you can use a CASE Expression.

Solving Problems with CASE
Let’s take a look at some real-world examples from the School Scheduling sample

database. In the following sections, we’ll show you how to construct Simple CASE
and Searched CASE expressions. In the last section, we’ll also show you a simple
example of using CASE in a WHERE clause.

 Note
Throughout this chapter, we use the “Request/Translation/CleanUp/SQL”
technique introduced in Chapter 4. Because this process should now be very
familiar to you, we have combined the Translation/Clean Up steps for all the
following examples to simplify the process.

Solving Problems with Simple CASE
“Simple” CASE is called that because it’s, well, very simple. You specify an
expression that you want tested, and in the WHEN clauses list values to which you
want the expression compared. If the comparison is equal, the CASE Expression
returns the expression you specified in the THEN clause. If none of the values are
equal, you can also specify an ELSE clause to return an expression.
One common way to use Simple CASE is to examine a code value in a column and
transform it into something more meaningful. Suppose you have a column in a table
about people that indicates the person’s gender. A database designer might define
such a column—an efficiently stored single character—to store the values “M” or
“F” to indicate Male or Female, respectively. In a report, most people would
understand seeing the M or F, but wouldn’t it be nice to spell it out? Here’s how to
do it using CASE and the rows from the Students table:

“Prepare a list of IDs, student names, and the gender of the student spelled
out.”

Clearly, you need to use CASE and the name of the Gender column, then compare to
the valid codes using WHEN and return out the equivalent word using THEN. Just
for safety, let’s include an ELSE clause in case we encounter any rows with now
value in the Gender column.

Translation/Clean Up
Select student ID, student first name, student last name, and (CASE
gender when the gender code is ‘M’, then display ‘Male’, when the
gender code is ‘F’, then display ‘Female’, and else display ‘Not
Specified’ END) from the students table.

SQL

SELECT StudentID, StudFirstName, StudLastName,

(CASE StudGender WHEN 'M' THEN 'Male'
WHEN 'F' THEN 'Female'
ELSE 'Not Specified' END) AS Gender
FROM Students

 Note
Although the SQL Standard doesn’t require parentheses around the CASE
expression, we found that both Microsoft SQL Server and MySQL didn’t
understand the clause without the parentheses. It never hurts to add
parentheses to make it crystal clear what you intend, so we added them in all
our examples.
Also, Microsoft Office Access does not support CASE at all. Access does
have a built-in function (Immediate If or IIf) that serves a similar purpose. If
you look at the examples in the Access databases, you’ll find we used IIf as a
way to solve the problem in a similar fashion. We recommend you reference
the examples in Microsoft SQL Server and MySQL to see examples that
follow the SQL Standard.

You can find this query in the School Scheduling sample database saved as
CH19_Student_Gender.
Now let’s look at an example of using Simple CASE that’s a bit more complex. In
Chapter 15, “Updating Sets of Data,” we showed you how to calculate and update
each student’s current grade point average (GPA) using information from the Classes
and Student Schedules tables. We commented at the time that the sample queries use
functions specific to each database (NZ in Access, IsNull in SQL Server, and IfNull
in MySQL) to avoid a divide by zero problem when we encounter a student who has
not completed any courses. We noted that we would show you how to avoid this
problem using CASE, and, as always, we keep our promises.
Just for review, here’s the problem from Chapter 15:

“Modify the students table by setting the grade point average to the sum of the
credits times the grade divided by the sum of the credits.”

Translation/Clean Up
Update the students table by setting the student GPA equal to = the
(selection of the sum of (credits times * grade) divided by / the sum
of (credits) from the classes table inner joined with the student
schedules table on Classes.class ID in the classes table matches =
Student_Schedules.class ID in the student schedules table where the
class status is = complete 2 and the student schedules table student

ID is equal to = the students table student ID)
SQL

UPDATE Students
SET Students.StudGPA =
 (SELECT ROUND(SUM(Classes.Credits *
 Student_Schedules.Grade) /
 SUM(Classes.Credits), 3)
 FROM Classes
 INNER JOIN Student_Schedules
 ON Classes.ClassID = Student_Schedules.ClassID
 WHERE (Student_Schedules.ClassStatus = 2)
 AND (Student_Schedules.StudentID =
 Students.StudentID))

What we want to do is avoid performing a divide by SUM(Classes.Credits) when the
student has completed no classes. The sum would be 0, and a divide by 0 would
normally generate an error. Because there is no GPA field in the Students table in the
Example database (there is one in the Modify version that allows us to run an
UPDATE), let’s solve this as a simple query. Figure 19-6 (on page 650) shows you
the tables you need.

Figure 19–6 Tables you need to calculate a student’s grade point average (GPA)

Just for fun, let’s be a little more stringent this time and declare that a student not
only has to have completed the class but also must have passed the class with a grade
of 67 or better. (“Completed” but with a grade of 50 shouldn’t get credit!) We want
to list all students, so let’s create a subquery on the Classes, Student_Schedules, and
Student_Class_Status tables and then OUTER JOIN that with the Students table.
Because you need to SUM credits times grade and divide by the sum of credits,
you’ll need a GROUP BY clause. To avoid a divide by zero, you need to count some
field in the subquery (all fields returned by the subquery will be Null if any student
failed to complete and pass any course) and use CASE to see if the result is 0. Let’s
put the query together:

“Display for all students the Student ID, first name, last name, the number of
classes completed, the total credits, and the grade point average for classes
that were completed with a grade of 67 or better.”

Translation/Clean Up
Select student ID, student first name, student last name, the count of
(student ID), the sum of (credits), and CASE when the count of
(studentID) is WHEN 0, then return 0, else return the sum of
(credits times the * grade) divided by / the sum of (credits) from the
students table left joined with the (selection of student ID, grade,
and credits from the student schedules table inner joined with the
student class status table on Student_Schedules.class status in the
student schedules table matches = Student_Class_Status.class status
in the student class status table, then inner joined with the classes
table on Student_Schedules.class ID in the student schedules table
matches = Classes.class ID in the classes table where the class status
description equals = ‘Completed’ and the grade is greater than or
equal to >= 67) AS SClasses on Students.student ID in the students
table matches = SClasses.student ID in the selection grouped by
student ID, student first name, and student last name

SQL

SELECT Students.StudentID, Students.StudFirstName,
 Students.StudLastName,
 COUNT(SClasses.StudentID) AS NumberCompleted,
 SUM(SClasses.Credits) AS TotalCredits,
 (CASE COUNT(SClasses.StudentID)
 WHEN 0 THEN 0
 ELSE ROUND(SUM(SClasses.Credits * SClasses.Grade)
 / SUM(SClasses.Credits), 3) END) AS GPA
FROM Students LEFT OUTER JOIN
 (SELECT Student_Schedules.StudentID,
 Student_Schedules.Grade, Classes.Credits
 FROM (Student_Schedules INNER JOIN
 Student_Class_Status
 ON Student_Schedules.ClassStatus =
 Student_Class_Status.ClassStatus)
 INNER JOIN Classes
 ON Student_Schedules.ClassID =
 Classes.ClassID
 WHERE
 (Student_Class_Status.ClassStatusDescription =
 'Completed')
 AND (Student_Schedules.Grade >= 67)) AS SClasses
ON Students.StudentID = SClasses.StudentID
GROUP BY Students.StudentID, Students.StudFirstName,
 Students.StudLastName;

Should there be a student who has not completed and passed a class, the number of

classes, credits, and grade point average will all be zero for that student. We avoid a
divide by zero problem using absolutely standard SQL—we don’t have to depend on
a non-standard function in the database system. We saved this example in the school
scheduling example database as CH19_Student_GPA_Avoid_0_Passed.

Solving Problems with Searched CASE
If you think using Simple CASE is a bit mind twisting, you’re in for a whole lot of
fun getting familiar with Searched CASE. With Simple CASE, all you can logically
perform is simple equal comparisons (maybe that’s why they call it “simple”).
Searched CASE, on the other hand, lets you perform multiple complex comparisons
on different fields and even subqueries. Basically, anything you can specify in a
Search Condition in the ON clause of a JOIN, a WHERE clause, or a HAVING
clause is fair game. Let’s work through a couple of problems that require you to uses
Searched CASE to solve them.
Remember in Chapter 5 we showed you how to calculate a staff member’s full years
of service as of a certain date by finding the difference in days between the date
hired and the target date and then dividing by 365 days in a year. We warned you
that the calculation is imprecise because it doesn’t account for the leap years
between the two dates. In fact, the answer will be incorrect by one day for each
intervening leap year. This matters only when the month and day of the date hired is
close to the month and day of the target date, so most of the time, dividing by 365
will give you the correct answer.
We also promised you that we would show you how to perform the calculation
exactly using CASE. Basically, you need to subtract the year of the date hired from
the year of the target date, then adjust the value by one year if the month and day of
the hired date fall later in the year than the month and date of the target date. The
idea is you don’t want to give a year’s credit to a staff member whose anniversary
date hasn’t occurred yet in the target year. (You want to calculate only full years of
service.)
So, you can imagine that you start with the difference between the two years, then
subtract 1 if the month of the date hired is greater than the month of the target date or
the month of the date hired is equal to the month of the target date but the day of the
date hired is later in that month. The calculation looks like the following:
Click here to view code image

Years of service = ((year of target) - (year of date hired)) -
 (If month of date hired < month of target then 0
 If month of date hired > month of target then 1
 If month of date hired = month of target and
 day of date hired > then target then 1
 Else 0)

What we need to do is convert the “If – Then – Else” part of the preceding
calculation into a Searched CASE statement. Here’s how to do it:

“For all staff members, list staff ID, first name, last name, date hired, and
length of service in complete years as of October 1, 2012, sorted by last name
and first name.”

Translation/Clean Up
Select staff ID, staff first name, staff last name, date hired, and
calculate the year of the date (2012-10-1) minus the - year of the
(date hired) minus - (CASE when the month of the (date hired) is
less than < 10 then 0, when the month of the (date hired) is greater
than > 10 then 1, and when the day of the (date hired) is greater than
> 1 then 1 else 0 END) as the length of service from the staff table
ordered by staff last name, and staff first name

SQL

SELECT StaffID, StfFirstName, StfLastname,
 YEAR(CAST('2012-10-01' As Date)) - YEAR(DateHired) -
 CASE WHEN Month(DateHired) < 10
 THEN 0
 WHEN Month(DateHired) > 10
 THEN 1
 WHEN Day(DateHired) > 1
 THEN 1
 ELSE 0 END) AS LengthOfService
FROM Staff
ORDER BY StfLastName, StfFirstName;

 Note
Nearly all database systems have a built-in YEAR, MONTH, and DAY
functions (in Oracle use EXTRACT) to obtain the year part of a date, so we
decided to use these functions in our example even though they are not
specifically defined in the SQL Standard. Also, because we know the “target”
date that we want, we directly coded the values 10 and 1 in the CASE
statement. If you were using something like today’s date from your database
system, you would have to extract the month and day parts to do the
comparison.

We saved this query as CH19_Length_Of_Service in the School Scheduling sample
database. If you open this query and CH05_Length_Of_Service side-by-side, you’ll
find that the answer for years of service for Jeffrey Smith is one year less in the
accurate CASE example. Jeffrey Smith’s date hired is October 6, 1983—five days

later than the target date. The error occurs because there were more than five leap
years between 1983 and 2012.
You might be wondering why we didn’t explicitly test for month equals 10.
Remember that your database system keeps evaluating the WHEN clauses until it
finds the first one that is true. If month isn’t less than 10 and month isn’t greater than
10, then obviously month must equal 10. There’s no need to test that explicitly.
Now let’s look at another example using Searched CASE. Suppose that you want to
create a mailing list, and you have gender and marital status information in your
table, but you don’t have a salutation (Mr., Mrs., and so on). Let’s generate one
using a CASE test on the fields you do have. Because you need tests on more than
one column, you must use a Searched CASE.

“Create a student mailing list that includes a generated salutation, first name
and last name, the street address, and a city, state, and ZIP code field.”

Translation/Clean Up
Select (CASE when the gender is male = ‘M’ then return ‘Mr.’,
when the marital status is single = ‘S’ then return ‘Ms.’ else return
‘Mrs.’ END) concatenated with || student first name concatenated
with a space || ‘ ‘ and student last name as the name line, student
street address as the street line, student city concatenated with a
comma and a space || ‘, ‘ then concatenated with || student state and
two spaces || ‘ ‘, then concatenated with || student ZIP code as the
city line from the students table

SQL

SELECT (CASE WHEN StudGender = 'M' THEN 'Mr. '
 WHEN StudMaritalStatus = 'S' THEN 'Ms. '
 ELSE 'Mrs. ' END)
 || StudFirstName || ' ' || StudLastName
 AS NameLine, StudStreetAddress AS StreetLine,
 StudCity || ', ' || StudState || ' ' ||
 StudZipCode AS CityLine
FROM Students

All male students will be addressed as “Mr.”, so there’s no reason to test the marital
status of male students. If the student is not male, then there’s no reason to test the
gender again because the only other value we expect is “F” for female. Finally, if the
female student is single, the salutation will be “Ms.”; otherwise, use “Mrs.” for
women who are Married (“M”), Divorced (“D”), or Widowed (“W”). If you
construct your WHEN/THEN pairs intelligently, you don’t have to test for every
possible combination. We saved this query in the Student Scheduling database as
CH19_Student_Mailing_List.

Using CASE in a WHERE Clause
Just to cover all the bases, let’s take a look at how you might use CASE in a
WHERE (or HAVING) clause. Quite frankly, we cannot think of an example where
it wouldn’t be clearer to simply construct your predicate using all the available
predicate expressions. As we’ve said many times before, just because you can do
something doesn’t mean you should! Let’s give it a shot anyway to see what it might
look like:

“List all students who are ‘Male’.”

Translation/Clean Up
Select student ID, student first name, student last name, and ‘Male’
as gender from the students table where ‘Male’ equals = (CASE
when the student gender is ‘M’ then return ‘Male’ else return
‘Nomatch’ END)

SQL

SELECT StudentID, StudFirstName, StudLastName,
 'Male' AS Gender
FROM Students
WHERE ('Male' = (CASE StudGender
 WHEN 'M' THEN 'Male'
 ELSE 'Nomatch' END));

The trick here is the request asked for “Male” students, so we took that literally. To
generate a true “Male” value we had to use CASE to return that word when gender is
“M”. Frankly, it would be much easier to simply say:

WHERE Gender = 'M'

Sample Statements
You now know the mechanics of constructing queries using CASE and have seen
some of the types of requests you can answer with CASE. Let’s take a look at a
fairly robust set of samples, all of which use either Simple or Searched CASE. These
examples come from each of the sample databases, and they illustrate the use of the
CASE to perform logical evaluations in Value Expressions.
We’ve also included sample result sets that would be returned by these operations
and placed them immediately after the SQL syntax line. The name that appears
immediately above a result set is the name we gave each query in the sample data
that you’ll find on the book’s website (www.informit.com/title/9780321992475). We
stored each query in the appropriate sample database (as indicated within the
example), using “CH19” as the leading part of the query or view name. You can

http://www.informit.com/title/9780321992475

follow the instructions in the Introduction to this book to load the samples onto your
computer and try them out.

 Note
Remember that all of the field names and table names used in these examples
are drawn from the sample database structures shown in Appendix B,
“Schema for the Sample Databases.”
Because many of these examples use complex joins, the optimizer for your
database system may choose a different way to solve these queries. For this
reason, the first few rows we show you may not exactly match the result you
obtain, but the total number of rows should be the same. Keep in mind that for
any SQL Server View that contains an ORDER BY clause, you must open the
view in Design mode first and then execute it to see the specified order. If you
SELECT * from the View, SQL Server does not honor the ORDER BY
clause.

Sales Order Database

“List all products and display whether the product was sold in December
2012.”

Translation/Clean Up
Select product number, product name, and (CASE when product
number is in the (selection of product number from the order details
table inner joined with the orders table on Orders.order number in
the orders table matches = Order_Details.order number in the order
details table where the order date is between ‘2012-12-01 and
‘2012-12-31’) then return ‘Ordered’ else return ‘Not Ordered’ END)
as product ordered from the products table

SQL

SELECT ProductNumber, ProductName,
 (CASE WHEN Products.ProductNumber IN
 (SELECT Order_Details.ProductNumber
 FROM Order_Details INNER JOIN Orders
 ON Orders.OrderNumber =
 Order_Details.OrderNumber
 WHERE (Orders.OrderDate BETWEEN
 CAST('2012-12-01' AS Date) AND
 CAST('2012-12-31' AS Date)))
 THEN 'Ordered'
 ELSE 'Not Ordered' END) AS ProductOrdered
FROM Products;

CH19_Products_Ordered_Dec_2012 (40 rows)

“Display products and a sale rating based on number sold (poor <= 200 sales,
Average > 200 and <= 500, Good > 500 and <= 1000, Excellent > 1000).”

Translation/Clean Up
Select product number, product name, and (CASE when the
(selection of the sum of (quantity ordered) from the order details
table where the Order_Details.product number in the order details
table equals = the Products.product number in the products table) is
less than or equal to <= 200 then return ‘Poor’ when the (selection
of the sum of (quantity ordered) from the order details table where
the Order_Details.product number in the order details table equals =
the Products.product number in the products table) is less than or
equal to <= 500 then return ‘Average’ when the (selection of the
sum of (quantity ordered) from the order details table where the
Order_Details.product number in the order details table equals = the
Products.product number in the products table) is less than or equal
to <= 1000 then return ‘Good’ else return ‘Excellent’ END) as sales
quality from the products table

SQL

SELECT ProductNumber, ProductName,
 (CASE WHEN
 (SELECT SUM(QuantityOrdered)
 FROM Order_Details
 WHERE (Order_Details.ProductNumber =
 Products.ProductNumber)) <= 200
 THEN 'Poor'

 WHEN
 (SELECT SUM(QuantityOrdered)
 FROM Order_Details
 WHERE (Order_Details.ProductNumber =
 Products.ProductNumber)) <= 500
 THEN 'Average'
 WHEN
 (SELECT SUM(QuantityOrdered)
 FROM Order_Details
 WHERE (Order_Details.ProductNumber =
 Products.ProductNumber)) <= 1000
 THEN 'Good'
 ELSE 'Excellent' END) AS SalesQuality
FROM Products

CH19_Products_And_SalesQuality (40 rows)

 Note
Even though the request specified criteria such as > 200 and <= 500, you
don’t need to specify the greater than part in each WHEN because the
previous WHEN for <= 200 is already not true. (If the sum is not <= 200, then
it is, by definition, greater than 200.) It would be nice to run the subquery only
once in a Simple CASE format, but we can’t do that because the tests are not
strictly for equality. A database system with a smart optimizer will recognize
that all three subqueries are the same and execute it just once per row.

Entertainment Database

“List entertainers and display whether the entertainer was booked on Christmas
2012 (December 25).”

Translation/Clean Up
Select entertainer ID, entertainer stage name and (CASE when
entertainer ID is in the (selection of the entertainer ID from the
engagements table where ‘2012-12-25’ is between start date and end
date) then return ‘Booked’ else return ‘Not Booked’ END) as
booked Xmas 2012 from the entertainers table

SQL

SELECT EntertainerID, EntStageName,
 (CASE WHEN EntertainerID IN
 (SELECT EntertainerID
 FROM Engagements
 WHERE CAST('2012-12-25' AS Date)
 BETWEEN StartDate AND EndDate)
 THEN 'Booked'
 ELSE 'Not Booked' END) AS BookedXmas2012
FROM Entertainers;

CH19_Entertainers_Booked_Xmas_2012 (13 rows)

 Note
Remember that engagements have both a start and an end date, so you want
the engagements where December 25, 2012 is anywhere in the span
(BETWEEN) those two dates.

“Find customers who like Jazz but not Standards (using Searched CASE in the
WHERE clause).”

Translation/Clean Up

Select customer ID, customer first name and customer last name
from the customers table where true 1 equals = (CASE when
customer is not in the (selection of the customer ID from the
musical preferences table inner joined with the musical styles table
on Musical_Preferences.style ID in the musical preferences table
equals = Musical_Styles.style ID in the musical styles table where
style name equals = ‘Jazz’) then return 0 when customer is in the
(selection of the customer ID from the musical preferences table
inner joined with the musical styles table on
Musical_Preferences.style ID in the musical preferences table
equals = Musical_Styles.style ID in the musical styles table where
style name equals = ‘Standards’) then return 0 else return 1 END)

SQL

SELECT CustomerID, CustFirstName, CustLastName
FROM Customers
WHERE (1 =
 (CASE WHEN CustomerID NOT IN
 (SELECT CustomerID
 FROM Musical_Preferences INNER JOIN
 Musical_Styles
 ON Musical_Preferences.StyleID =
 Musical_Styles.StyleID
 WHERE Musical_Styles.StyleName =
 'Jazz')
 THEN 0
 WHEN CustomerID IN
 (SELECT CustomerID
 FROM Musical_Preferences INNER JOIN
 Musical_Styles
 ON Musical_Preferences.StyleID =
 Musical_Styles.StyleID
 WHERE Musical_Styles.StyleName =
 'Standards')
 THEN 0 ELSE 1 END));

 Note
Although the request asks for customers that do like Jazz and do not like
Standards, keep in mind that evaluation of WHEN/THEN clauses ends with
the first one that is true. Because of that, we coded the tests logically
“backward.” First, we eliminated the customers who do not like Jazz, then we
eliminated the customers who do like Standards. If we had specified a test for
customers who do like Jazz first, that would have selected all Jazz customers
without ever testing for those in that set who might not like Standards.

CH19_Customers_Jazz_Not_Standards (2 rows)

School Scheduling Database

“Show what new salaries for full-time faculty would be if you gave a 5% raise
to instructors, a 4% raise to associate professors, and a 3.5% raise to
professors.”

Translation/Clean Up
Select staff ID, staff first name, staff last name, title, status, salary,
and (CASE when title is WHEN ‘Instructor’ then return salary times
* 1.05 when ‘Associate Professor’ then return salary times * 1.04
when ‘Professor’ then return salary times * 1.035 else return salary
END) as new salary from the staff table inner joined with the faculty
table on Staff.staff ID in the staff table equals = Faculty.staff ID in
the faculty table where status equals = ‘Full Time’

SQL

SELECT StaffID, StfFirstName, StfLastname, Title,
 Status, Salary,
 (CASE Title
 WHEN 'Instructor'
 THEN ROUND(Salary * 1.05, 0)
 WHEN 'Associate Professor'
 THEN ROUND(Salary * 1.04, 0)
 WHEN 'Professor'
 THEN ROUND(Salary * 1.035, 0)
 ELSE Salary END) AS NewSalary
FROM Staff INNER JOIN Faculty
ON Staff.StaffID = Faculty.StaffID
WHERE Faculty.Status = 'Full Time';

CH19_FullTime_Instructor_Raises (22 rows)

“List all students, the classes for which they enrolled, the grade they received,
and a conversion of the grade number to a letter.”

 Note
We’ll use a conversion scheme common to schools in the United States where
97 to 100 is A+, 93 to 96.99 is A, 90 to 92.99 is A-, and so on in 10 point
increments down to 60 to 62.99, which is D-, and anything less is failing or F.

Translation/Clean Up
Select student ID student first name, student last name, class ID start
date, subject code, subject name, grade, and (CASE when the grade
is between 97 and 100 then return ‘A+’, when the grade is between
93 and 96.99 then return ‘A’, when the grade is between 90 and
92.99 then return ‘A-’, when the grade is between 87 and 89.99 then
return ‘B+’, when the grade is between 83 and 86.99 then return
‘B’, when the grade is between 80 and 82.99 then return ‘B-’, when
the grade is between 77 and 79.99 then return ‘C+’, when the grade
is between 73 and 76.99 then return ‘C’, when the grade is between
70 and 72.99 then return ‘C-’, when the grade is between 67 and
69.99 then return ‘D+’, when the grade is between 63 and 66.99
then return ‘D’, when the grade is between 60 and 62.99 then return
‘D-’, else return ‘F’ END) as letter grade from the students table
inner joined with the student schedules table on Students.student ID

in the students table equals = Student_Schedules.student ID in the
student schedules table, then inner joined with the classes table on
Student_Schedules.class ID in the student schedules table equals =
Classes.class ID in the classes table, then inner joined with the
subjects table on Classes.subject ID in the classes table equals =
Subjects.subject ID in the subjects table, and then finally inner
joined with the student class status table on Student_Schedules.class
status in the student schedules table equals =
Student_Class_Status.class status in the student class status table
where class status description equals = ‘Completed’

SQL

SELECT Students.StudentID, Students.StudFirstName,
 Students.StudLastName, Classes.ClassID,
 Classes.StartDate, Subjects.SubjectCode,
 Subjects.SubjectName, Student_Schedules.Grade,
 (CASE WHEN Grade BETWEEN 97 AND 100 THEN 'A+'
 WHEN Grade BETWEEN 93 AND 96.99 THEN 'A'
 WHEN Grade BETWEEN 90 AND 92.99 THEN 'A-'
 WHEN Grade BETWEEN 87 AND 89.99 THEN 'B+'
 WHEN Grade BETWEEN 83 AND 86.99 THEN 'B'
 WHEN Grade BETWEEN 80 AND 82.99 THEN 'B-'
 WHEN Grade BETWEEN 77 AND 79.99 THEN 'C+'
 WHEN Grade BETWEEN 73 AND 76.99 THEN 'C'
 WHEN Grade BETWEEN 70 AND 72.99 THEN 'C-'
 WHEN Grade BETWEEN 67 AND 69.99 THEN 'D+'
 WHEN Grade BETWEEN 63 AND 66.99 THEN 'D'
 WHEN Grade BETWEEN 60 AND 62.99 THEN 'D-'
 ELSE 'F' END) AS LetterGrade
FROM (((Students INNER JOIN Student_Schedules
ON Students.StudentID = Student_Schedules.StudentID)
INNER JOIN Classes
ON Student_Schedules.ClassID = Classes.ClassID)
INNER JOIN Subjects
ON Classes.SubjectID = Subjects.SubjectID)
INNER JOIN Student_Class_Status
ON Student_Schedules.ClassStatus =
 Student_Class_Status.ClassStatus
WHERE Student_Class_Status.ClassStatusDescription =
 'Completed';

CH19_Students_Classes_Letter_Grades (68 rows)

Bowling League Database

“List Bowlers and display ‘fair’ (average < 140), ‘average’ (average >= 140
and < 160), ‘good’ (average >= 160 and < 185), ‘excellent’ (average >=
185).”

Translation/Clean Up
Select bowler ID, bowler last name, bowler first name, the average
of (raw score), and (CASE when the average of (raw score) is less
than < 140, then return ‘Fair’, when the average of (raw score) is
less than < 160, then return ‘Average’, when the average of (raw
score) is less than < 185, then return ‘Good’, else return ‘Excellent’
END) as bowler rating from the bowlers table inner joined with the
bowler scores table on Bowlers.bowler ID in the bowlers table
equals = Bowler_Scores.bowler ID in the bowler scores table
grouped by bowler ID, bowler last name, and bowler first name

SQL

SELECT Bowlers.BowlerID, Bowlers.BowlerLastName,

 Bowlers.BowlerFirstName,
 CAST(AVG(RawScore) AS Int) AS BowlerAverage,
 (CASE
 WHEN CAST(AVG(Bowler_Scores.RawScore) AS Int) < 140
 THEN 'Fair'
 WHEN CAST(AVG(Bowler_Scores.RawScore) AS Int) < 160
 THEN 'Average'
 WHEN CAST(AVG(Bowler_Scores.RawScore) AS Int) < 185
 THEN 'Good'
 ELSE 'Excellent' END) AS BowlerRating
FROM Bowlers INNER JOIN Bowler_Scores
ON Bowlers.BowlerID = Bowler_Scores.BowlerID
GROUP BY Bowlers.BowlerID, Bowlers.BowlerLastName,
 Bowlers.BowlerFirstName;

CH19_Bowler_Ratings (32 rows)

 Note
Remember that your database system stops at the first WHEN/THEN that is
true, so you do not need to check for >= as well as <.

“Show all tournaments with either their match details or ‘Not Played Yet.’”

Translation/Clean Up
Select tourney ID, tourney date, tourney location, and (CASE when
the match ID is empty NULL then return ‘Not Played Yet’ else
return ‘Match: ‘ concatenated with || match ID concatenated with || ‘
Lanes: ‘ concatenated with || lanes concatenated with || ‘ Odd Lane
Team: ‘ concatenated with || Teams.team name from the teams table
concatenated with || ‘ Even Lane Team: ‘ concatenated with ||
Teams_1.team name from the second copy of the teams table from

the tourney matches table inner joined with the teams table on
Tourney_Matches.odd lane team ID in the tourney matches table
equals = Teams.team ID in the teams table, then inner joined with a
second copy of the teams table AS Teams_1 on
Tourney_Matches.even lane team in the tourney matches table
equals = Teams_1.team ID in the second copy of the teams table,
then RIGHT outer joined with the tournaments table on
Tourney_Matches.tourney ID in the tourney matches table equals =
Tournaments.tourney ID in the tournaments table

SQL

SELECT Tournaments.TourneyID,
 Tournaments.TourneyDate,
 Tournaments.TourneyLocation,
 (CASE WHEN Tourney_Matches.MatchID IS NULL
 THEN 'Not Played Yet'
 ELSE 'Match: ' ||
 CAST(Tourney_Matches.MatchID AS char)
 || ' Lanes: ' || Tourney_Matches.Lanes
 || ' Odd Lane Team: '
 || Teams.TeamName || ' Even Lane Team: '
 || Teams_1.TeamName END) AS Match
FROM ((Tourney_Matches INNER JOIN Teams
ON Tourney_Matches.OddLaneTeamID = Teams.TeamID)
INNER JOIN Teams AS Teams_1
ON Tourney_Matches.EvenLaneTeamID = Teams_1.TeamID)
RIGHT OUTER JOIN Tournaments
ON Tourney_Matches.TourneyID = Tournaments.TourneyID;

CH19_All_Tournaments_Any_Matches (63 rows)

 Note
You should find tournaments 15 – 20 at the end of the list marked “Not
Played Yet.”

Summary
We began this chapter with a discussion of why CASE is useful and an examination
of the syntax of not only the CASE Expression but also Search Condition and
Predicate in which you might use a Value Expression constructed with CASE. Next,
we explained how to solve problems using Simple CASE and gave you some
examples. We then covered Searched CASE with detailed explanations using
examples. We then showed you how to use CASE in a WHERE clause, but we noted
that you can often specify what you want more clearly with Predicate expressions.
Finally, we gave you two examples each from four of the sample databases that
showed you other ways to use Simple CASE, Searched CASE, and CASE within a
WHERE clause.
The following section presents a number of requests that you can work out on your
own.

Problems for You to Solve
Below, we show you the request statement and the name of the solution query in the
sample databases. If you want some practice, you can work out the SQL you need
for each request and then check your answer with the query we saved in the samples.
Don’t worry if your syntax doesn’t exactly match the syntax of the queries we saved
—as long as your Result Set is the same.

Sales Order Database
1. “Show customers and display whether they placed an order in the first week of

December 2012.”
(Hint: Use a Searched CASE and the dates December 1, 2012 and December 7,
2012.)
You can find the solution in CH19_Customers_Ordered_FirstWeek_Dec2012
(28 rows).

2. “List customers and the state they live in spelled out.”
(Hint: Use a Simple CASE and look for WA, OR, CA, and TX.)
You can find the solution in CH19_Customers_State_Names (28 rows).

3. “Display employees and their age as of February 15, 2014.”
(Be sure to use the functions to extract Year, Month, and Day portions of a
date value that are supported by your database system.)
You can find the solution in CH19_Employee_Age_Feb152014 (8 rows).

Entertainment Database
1. “Display Customers and their preferred styles, but change 50’s, 60’s, 70’s,

and 80’s music to ‘Oldies’.”
(Hint: Use a Simple CASE expression.)
You can find the solution in CH19_Customer_Styles_Oldies (36 rows).

2. “Find Entertainers who play Jazz but not Contemporary musical styles.”
(Hint: Use a Searched CASE in the WHERE clause and be careful to think in
the negative.)
You can find the solution in CH19_Entertainers_Jazz_Not_Contemporary (1
row).

School Scheduling Database
1. “Display student Marital Status based on a code.”

(Hint: Use Simple CASE in the SELECT clause. M = Married, S = Single, D =

Divorced, W = Widowed)
You can find the solution in CH19_Student_Marital_Status (18 rows).

2. “Calculate student age as of November 15, 2012.”
(Be sure to use the functions to extract Year, Month, and Day portions of a
date value that are supported by your database system.)
You can find the solution in CH19_Student_Age_Nov15_2012 (18 rows).

Bowling League Database
1. “List all bowlers and calculate their averages using the sum of pins divided by

games played, but avoid a divide by zero error.”
(Hint: Use Simple CASE in a query using an OUTER JOIN and GROUP BY.)
You can find the solution in CH19_Bowler_Averages_Avoid_0_Games (32
rows).

2. “List tournament date, tournament location, match number, teams on the odd
and even lanes, game number, and either the winner or ‘Match not played.’”
(Hint: Use an outer join between tournaments, tourney matches, teams, and a
second copy of teams with a subquery using match games and a third copy of
teams to indicate the winning team. Use a Searched Case to decide whether to
display “not played” or the match results in the SELECT list.)
You can find the solution in CH19_All_Tourney_Matches (169 rows – one
row on November 13, 2012 for match number 57 that was not played).

20. Using Unlinked Data and “Driver” Tables

“If you only have a hammer, you tend to see every problem as a nail.”
—Abraham Maslow

Topics Covered in This Chapter
What Is Unlinked Data?
Solving Problems with Unlinked Data
Solving Problems Using “Driver” Tables
Sample Statements
Summary
Problems for You to Solve

Before you start this chapter, make sure you get a good night’s sleep! And while
we’re doling out warnings, perhaps you should also make sure your seat belt is
securely fastened. We promised that we would introduce you to concepts that make
you think “outside the box.” In this chapter, we are going to tackle problems that can
be solved using unlinked data—problems where you will use more than one table in
your FROM clause, but you won’t specify any linking criteria using an ON clause.
Let’s get started.

 Caution
We are going to use the CASE expression extensively in this chapter. If you
are not familiar with using CASE, we strongly recommend you work through
Chapter 19, “Condition Testing,” before tackling this chapter.

What Is Unlinked Data?
As you learned beginning in Chapter 7, “Thinking in Sets,” most problems you’ll
solve using SQL involve gathering data from more than one table. In Chapter 8,
“INNER JOINs,” we showed you how to fetch information from multiple tables by
linking them on matching data in the Primary and Foreign keys where all the values
match. In Chapter 9, “OUTER JOINs,” we showed you how to fetch all the rows
from one table and any matching information from a related table again using
matching data in the Primary and Foreign keys. In this chapter, we’ll use multiple
tables, but we will purposefully not match on key values—we will be using
“unlinked” tables.

Let’s take a look at the SQL syntax to create unlinked tables. First, Figure 20-1
shows you the full syntax for the SELECT Statement.

Figure 20–1 The SELECT Statement

You need to study the Table Reference to understand how to put unlinked tables in a
FROM clause. Figure 20-2 shows you the full diagram for Table Reference.

Figure 20–2 The structure of a Table Reference

And finally, you need to study the diagram for Joined Table. Even though you really
aren’t going to “join” unlinked tables, the SQL Standard does show you how to do it
in the Joined Table definition, as shown in Figure 20-3.

Figure 20–3 The diagram for Joined Table
To get unlinked tables, you need to do what the SQL Standard calls a CROSS JOIN.
So what do you get when you put two or more tables in the FROM clause of your
SQL using a CROSS JOIN? The result is something called a Cartesian Product.
You’ll get all rows from the first table matched with all rows from the second table,
and the total number of rows you will get will be the product of the number of rows
in the first table times the number of rows in the second table. Let’s take a look at a
simple example:
Click here to view code image

SELECT Customers.CustLastName CROSS JOIN Products.ProductName
FROM Customers, Products;

In the Sales Orders sample database, you can find 28 customers and 40 products, so
you’ll get 28 times 40 rows or 1,120 rows! The result looks like this:

You might be asking: Why is this useful? Let’s say you need to produce a catalog of
all products that is customized for each customer. Your sales department has asked
you to create the information to be able to say “Dear Mr. Thompson” or “Dear Mrs.
Brown,” print a mailing label on the outside cover, and then list all the products
available. You could certainly include the Orders and Order_Details tables to fully
link Customers with Products, but then you would get only the products that each
customer had ever purchased. To solve your problem, you need to use unlinked
tables that result in a Cartesian Product to get the information you need. (By the way,
we saved the query to produce the list of all customers and products as
CH20_Customer_Catalog in the Sales Orders sample database.)

 Note
The SQL Standard allows you to simply list tables separated by commas when
you want to use unlinked tables (see Figure 20-1 of the SELECT Statement
shown previously on page 672), and nearly all database systems accept this
syntax. However, as you have learned, the SQL Standard also defines the
keywords CROSS JOIN to explicitly indicate that you intend to get the
Cartesian Product of the table reference on the left with the table reference on
the right.
When you save a View in Microsoft SQL Server using only commas to

separate the table names, you’ll find the view saved with the commas replaced
with CROSS JOIN. When you save a View in MySQL using only commas,
you’ll find the view saved with the commas replaced with JOIN. (CROSS is
the default if you don’t specify INNER or OUTER and do not include an ON
clause.) Microsoft Office Access doesn’t support CROSS JOIN, so we created
all the sample queries using only the lowest common denominator—the
comma syntax. We will, however, continue to use CROSS JOIN in the text
and in the Clean Up steps to make it clear that’s what we are doing. In the
SQL statements in the sample databases, we’ll use only commas.

Deciding When to Use a CROSS JOIN
Making the decision to use a CROSS JOIN isn’t easy. You can think of these types
of queries in two categories:

• Using data from two or more of the main data tables in your database—the
tables that you built to store all the subjects and actions described by your
application.
We mentioned Customers and all Products previously in this chapter. The same
might apply to all Agents and Entertainers, Students and Courses, or even
Teams unlinked with a second copy of the Teams table to list all potential
matches.

• Using data from one or more of your main data tables and a “helper” or
“driver” table that contains rows, for example, for all dates across a relevant
time period.
You certainly have date information in your database, such as the OrderDate in
the Orders table. But when you want to look at all dates across a range
regardless of whether an order was placed on that date, you need a driver table
to supply all the values. You can also use driver tables to supply “lookup”
values such as a translation from Gender code to the relevant word or
conversion of a grade point to a letter grade defined by a range of grade points.

Solving Problems with Unlinked Data
Normally when you set about solving problems using data in your main data tables,
you figure out where the data you want is stored and then gather all the tables
required to link that data in some meaningful way. When the data you want is in two
or more tables, you think about using a JOIN to link the tables, including any
intervening tables necessary to logically link all the tables even if you don’t actually
need data columns from some of those tables.

Solving problems with unlinked data involves breaking this mold and “thinking
outside of the box” to get the answer you want. Let’s take a look again at the
Customers and Products “catalog” problem, but let’s complicate it by flagging any
products the customers have already ordered.

 Note
Throughout this chapter, we use the “Request/Translation/Clean Up/SQL”
technique introduced in Chapter 4, “Creating a Simple Query.” Because this
process should now be very familiar to you, we have combined the
Translation/Clean Up steps for all the following examples to simplify the
process.

“Produce a list of all customer names and address and all products that we sell
and indicate the products the customer has already purchased.”

From what you learned in Part III, “Working with Multiple Tables,” you would look
at your table relationships to start to figure out how to proceed. Figure 20-4 shows
you the standard way you would link Customers and Products, using the Orders and
Order_Details tables as intermediaries.

Figure 20–4 The normal way to connect Customers to Products

Remember that we want all customers (including those who haven’t ordered
anything) and all Products (including products never ordered). If you have your
thinking cap on, you might come up with using a FULL OUTER JOIN (see Chapter
9), and you are correct—that would be one way to do it. Keep in mind that not all
database systems support FULL OUTER JOINs, so that might not be a solution for
you. You could also create one query (view) that LEFT JOINs Customers with
Orders and Order_Details, and then use that query in another query to RIGHT JOIN
with the Products table. When (remember CASE?) a key field in the Order_Details
table is not Null, then indicate that the customer has previously ordered the product.

But this chapter is about solving problems with unlinked tables, so let’s tackle the
problem head on by using a CROSS JOIN of Customers and Products and a
subquery in the SELECT clause to do a lookup to see if the customer ever ordered
the product. Just for fun, let’s also look up the category description for each product.
Here’s how to do it:

Translation/Clean Up
Select customer first name, customer last name, customer street
address, customer city, customer state, customer zip code, category
description, product number, product name, retail price, and (CASE
when the customer ID is in the (selection of customer ID from the
orders table inner joined with the order details table on Orders.order
number in the orders table equals = Order_Details.order number in
the order details table where the Products.product number in the
products table equals the = Order_Details.product number in the
order details table then display ‘You purchased this!’, else ‘ ‘ END)
display a blank from the customers table and the CROSS JOIN
categories table inner joined with the products table on
Categories.category ID in the categories table equals =
Products.category ID in the products table sorted ORDER by
customer ID, category description, and product number.

SQL

SELECT Customers.CustomerID, Customers.CustFirstName,
 Customers.CustLastName, Customers.CustStreetAddress,
 Customers.CustCity, Customers.CustState,
 Customers.CustZipCode, Categories.CategoryDescription,
 Products.ProductNumber, Products.ProductName,
 Products.RetailPrice,
 (CASE WHEN Customers.CustomerID IN
 (SELECT Orders.CustomerID
 FROM ORDERS INNER JOIN Order_Details
 ON Orders.OrderNumber = Order_Details.OrderNumber
 WHERE Order_Details.ProductNumber =
 Products.ProductNumber)
 THEN 'You purchased this!'
 ELSE '' END) AS ProductOrdered
FROM Customers, Categories INNER JOIN Products
 ON Categories.CategoryID=Products.CategoryID
ORDER BY Customers.CustomerID,
 Categories.CategoryDescription,
 Products.ProductNumber;

Yes, there is an INNER JOIN to link Categories with Products, but the key part of
the FROM clause is the CROSS JOIN with the Customers table. You can find this
query saved as CH20_Customer_All_Products_PurchasedStatus in the Sales Orders
sample database. As expected, the query returns 1,120 rows.

 Note
Recall from Chapter 19 that Microsoft Office Access does not support the
CASE expression. In the samples we created in the Access databases, you’ll
find that we used a built-in function called Immediate If (IIf) that serves a
similar purpose.

Solving Problems Using “Driver” Tables
Let’s move on now to solving problems that require you to set up one or more tables
containing a list of values that you’ll CROSS JOIN with other tables in your
database to get your answer. We call this sort of table a “driver” table because the
contents of the table “drive” the result you get. Arguably, the most common type of
driver table contains a list of dates or weeks or months that you can CROSS JOIN
with your data to list all days or weeks or months and any matching events that occur
on those dates.
Another use of a driver table is to define a categorization of values across a set of
defined ranges. Examples include assigning a letter grade to a grade point score,
rating instructors based on their proficiency rating, evaluating bowlers based on their
average score, categorizing product prices, or categorizing the amount spent by a
customer.
A really creative use of a driver table lets you “pivot” your data to display a result
that looks more like a spreadsheet. A common example would be to display sales or
purchases by month, with the months listed across by product or customer.

Setting Up a Driver Table
The SQL Standard defines WITH RECURSIVE that allows you to execute a stated
SQL query multiple times in a loop. This can be useful to load a driver table with
consecutive dates across a date range. Unfortunately, only a few database systems
support this. To load our large driver tables, we resorted to using Visual Basic in
Microsoft Office Access to perform the recursion necessary to load hundreds of rows
into a date range table. (You can actually find some of the code we used if you dig
around in the sample databases that are in Microsoft Office Access format.)
When your driver table is a simple set of ranges to translate to a value, it’s easy
enough to load the data by hand. For example, here’s the list of values we entered
into the ztblLetterGrades table you can find in the School Scheduling sample
database:

This should look familiar because it’s the exact same list of ranges that we used in
the CH19_Students_Classes_Letter_Grades query in the previous chapter. (By the
way, we named all the driver tables using a “ztbl” prefix to clearly separate them
from the main data tables in each database.) One clear advantage to setting up a table
like this is that you can easily change the range values should the need arise. You
don’t have to go digging in the CASE clauses in each individual query that depends
on the ranges to obtain the answer.
As we noted previously, a really creative use of a driver table lets you pivot your
result to look like a spreadsheet. Quite a few database systems provide nonstandard
ways to pivot data, but we’ll show you how to create a pivot using standard SQL and
a driver table. You can find one such table we created for this purpose in the Sales
Orders sample database called ztblMonths. Here is what part of the table looks like:

Additional columns...

Additional columns...

Looks a bit strange, doesn’t it? The little secret is you’ll use a WHERE clause to
match the rows in this driver table with the date of the order, and then you will build

columns by multiplying the total sales times the value found in a particular column
to get a total for that month. When the order occurs in January 2012, only the
January column on the matching row contains a 1 to result in 1 times quantity times
the price. The value won’t be added to the columns for the other months because
zero times any value is always zero. Another way to think of it is the ones and zeros
define the horizontal “buckets” for each value encountered in your query that
calculates the values you want to display. When a date matches the range defined by
the row in the driver table, the 1 indicates the correct horizontal bucket in which to
place the value. So, when a value is in January 2012, that value ends up in the
January column.

Using a Driver Table
Let’s use the two driver tables described in the previous section to solve problems.
First, we want to display a grade letter based on each student’s numeric grade
received for a class. We solved this problem using CASE in the previous chapter.
Now we’ll solve it using the driver table.

“List all students, the classes for which they enrolled, the grade they received,
and a conversion of the grade number to a letter.”

Translation/Clean Up
Select Students.student ID from the students table, Students.student
first name from the students table, Students.student last name from
the students table, Classes.class ID from the classes table,
Classes.start date from the classes table, Subjects.subject code from
the subjects table, Subjects.subject name from the subjects table,
Student_Schedules.grade from the student_schedules table, and
ztblLetterGrades.letter grade from the letter grades driver table from
ztblLetterGrades the letter grades driver table and CROSS JOIN the
students table inner joined with the student schedules table on
Students.student ID in the students table equals =
Student_Schedules.student ID in the student schedules table, then
inner joined with the classes table on Student_Schedules.class ID in
the student schedules table equals = Classes.class ID in the classes
table, then inner joined with the subjects table on Classes.subject ID
in the classes table equals = Subjects.subject ID in the subjects
table, then inner joined with the student class status table on
Student_Schedules.class status in the student schedules table equals
= Student_Class_Status.class status in the student class status table
where Student_Class_Status.class status description in the student

class status table equals = ‘Completed’ and
Student_Schedules.grade in the student schedules table is between
ztblLetterGrades.low grade point in the letter grades driver table and
ztblLetterGrades.high grade point in the letter grades driver table.

SQL

SELECT Students.StudentID, Students.StudFirstName,
 Students.StudLastName, Classes.ClassID,
 Classes.StartDate,
 Subjects.SubjectCode, Subjects.SubjectName,
 Student_Schedules.Grade, ztblLetterGrades.LetterGrade
FROM ztblLetterGrades, (((Students
INNER JOIN Student_Schedules
ON Students.StudentID=Student_Schedules.StudentID)
INNER JOIN Classes
ON Student_Schedules.ClassID=Classes.ClassID)
INNER JOIN Subjects
ON Classes.SubjectID=Subjects.SubjectID)
INNER JOIN Student_Class_Status
ON Student_Schedules.ClassStatus =
 Student_Class_Status.ClassStatus
WHERE (Student_Class_Status.ClassStatusDescription =
 'Completed')
 AND (Student_Schedules.Grade Between
 ztblLetterGrades.LowGradePoint
 AND ztblLetterGrades.HighGradePoint);

You can find this query saved as CH20_Student_Classes_Letter_Grades in the
School Scheduling sample database. You’ll find that it returns the exact same 68
rows as the CH19_Student_Classes_Letter_Grades that we showed you in Chapter
19.
Now let’s take a look at using the second driver table.

“Show product sales for each product for all months, listing the months as
columns.”

Translation/Clean Up
Select Products.product name from the products table, the sum of
(Order_Details.quoted price from the order details table times *
Order_Details.quantity ordered from the order details table times *
ztblMonths.January from the months driver table) as January, the
sum of (Order_Details.quoted price from the order details table
times * Order_Details.quantity ordered from the order details table
times * ztblMonths.February from the months driver table) as
February, the sum of (Order_Details.quoted price from the order
details table times * Order_Details.quantity ordered from the order
details table times * ztblMonths.March from the months driver

table) as March, the sum of (Order_Details.quoted price from the
order details table times * Order_Details.quantity ordered from the
order details table times * ztblMonths.April from the months driver
table) as April, the sum of (Order_Details.quoted price from the
order details table times * Order_Details.quantity ordered from the
order details table times * ztblMonths.May from the months driver
table) as May, the sum of (Order_Details.quoted price from the
order details table times * Order_Details.quantity ordered from the
order details table times * ztblMonths.June from the months driver
table) as June, the sum of (Order_Details.quoted price from the
order details table times * Order_Details.quantity ordered from the
order details table times * ztblMonths.July from the months driver
table) as July, the sum of (Order_Details.quoted price from the order
details table times * Order_Details.quantity ordered from the order
details table times * ztblMonths.August from the months driver
table) as August, the sum of (Order_Details.quoted price from the
order details table times * Order_Details.quantity ordered from the
order details table times * ztblMonths.September from the months
driver table) as September, the sum of (Order_Details.quoted price
from the order details table times * Order_Details.quantity ordered
from the order details table times * ztblMonths.October from the
months driver table) as October, the sum of (Order_Details.quoted
price from the order details table times * Order_Details.quantity
ordered from the order details table times * ztblMonths.November
from the months driver table) as November, and the sum of
(Order_Details.quoted price from the order details table times *
Order_Details.quantity ordered from the order details table times *
ztblMonths.December from the months driver table) as December
from ztblMonths the months driver table CROSS JOIN and the
products table then inner joined with the order details table on
Products.product number in the products table equals =
Order_Details.product number in the order details table then inner
joined with the orders table on Orders.order number in the orders
table equals = Order_Details.order number in the order details table
where Orders.order date in the orders table is between
ztblMonths.month start in the months driver table and
ztblMonths.month end in the months driver table grouped by
Products.product name in the products table.

SQL

SELECT Products.ProductName,
SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered * ztblMonths.January)
 AS January,
SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered * ztblMonths.February)
 AS February,
SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered * ztblMonths.March)
 AS March,
SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered * ztblMonths.April)
 AS April,
SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered * ztblMonths.May)
 AS May,
SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered * ztblMonths.June)
 AS June,
SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered * ztblMonths.July)
 AS July,
SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered * ztblMonths.August)
 AS August,
SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered * ztblMonths.September)
 AS September,
SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered * ztblMonths.October)
 AS October,
SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered * ztblMonths.November)
 AS November,
SUM(Order_Details.QuotedPrice *
 Order_Details.QuantityOrdered * ztblMonths.December)
 AS December
FROM ztblMonths, (Products
INNER JOIN Order_Details
ON Products.ProductNumber = Order_Details.ProductNumber)
INNER JOIN Orders
ON Orders.OrderNumber = Order_Details.OrderNumber
WHERE Orders.OrderDate BETWEEN ztblMonths.MonthStart
 AND ztblMonths.MonthEnd
GROUP BY Products.ProductName;

The “magic” happens when you restrict the row returned by the driver table to the
month that matches the date in the orders table. When the date falls in January, only
the January column has the value 1. That places the amount for that row in January
in the correct “bucket” to be finally summed to get your pivoted result. You can find
this query saved in the Sales Orders sample database as
CH20_Product_Sales_Month_Pivot. The query returns 38 rows, but there are 40
products in the Products table. The two missing rows occur because two of the
products have never been sold. (See CH09_Products_Never_Ordered to discover
those two products.)

Sample Statements
You now know the mechanics of constructing queries using CROSS JOIN and driver
tables and have seen some of the types of requests you can answer with these
techniques. Let’s take a look at a fairly robust set of samples, all of which use
CROSS JOIN between two data tables or with a driver table. These examples come
from each of the sample databases, and they illustrate the use of these techniques to
solve “thinking outside the box” problems.
We’ve also included sample result sets that would be returned by these operations
and placed them immediately after the SQL syntax line. The name that appears
immediately above a result set is the name we gave each query in the sample data
that you’ll find on the book’s website, www.informit.com/title/9780321992475. We
stored each query in the appropriate sample database (as indicated within the
example), using “CH20” as the leading part of the query or view name. You can
follow the instructions in the Introduction to this book to load the samples onto your
computer and try them out.

 Note
Remember that all of the field names and table names used in these examples
are drawn from the sample database structures shown in Appendix B,
“Schema for the Sample Databases.”
Because many of these examples use complex joins, the optimizer for your
database system may choose a different way to solve these queries. For this
reason, the first few rows we show you may not exactly match the result you
obtain, but the total number of rows should be the same. Keep in mind that for
any SQL Server View that contains an ORDER BY clause, you must open the
view in Design mode first and then execute it to see the specified order. If you
SELECT * from the View, SQL Server does not honor the ORDER BY
clause.

Examples Using Unlinked Tables
This first set of sample statements shows you problems you can solve using unlinked
tables. All of them use a CROSS JOIN between two data tables.

Sales Order Database

“List all employees and customers who live in the same state and indicate
whether the customer has ever placed an order with the employee.”

http://www.informit.com/title/9780321992475

Translation/Clean Up
Select employee first name, employee last name, customer first
name, customer last name, customer area code, customer phone
number, and (CASE when the customer ID in the customers table is
in the (selection of Orders.customer ID from the orders table where
Orders.employee ID in the orders table equals =
Employees.employee ID) in the employees table then display
‘Ordered from you.’ else display ‘ ‘ END) from employees and
CROSS JOIN customers where the Employees.employee state in the
employees table equals = Customer.customer state in the customers
table.

SQL

SELECT Employees.EmpFirstName, Employees.EmpLastName,
 Customers.CustFirstName, Customers.CustLastName,
 Customers.CustAreaCode, Customers.CustPhoneNumber,
 (CASE WHEN Customers.CustomerID IN
 (SELECT Orders.CustomerID
 FROM Orders
 WHERE Orders.EmployeeID =
 Employees.EmployeeID)
 THEN 'Ordered from you.'
 ELSE ' ' END) AS CustStatus
FROM Employees, Customers
WHERE Employees.EmpState = Customers.CustState;

CH20_Employees_Same_State_Customers (83 rows)

 Note
If you’re really sharp, you probably figured out that we could have solved the
problem using an INNER JOIN between Employees and Customers ON
EmpState = CustState. As we have stated many times before, there’s almost
always more than one way to solve a problem. Now you know how to solve it
using a CROSS JOIN.

Entertainment Database

“List all customer preferences and the count of first, second, and third
preferences.”

 Note
This is a bit tricky because you first need to “pivot” each customer’s first,
second, and third preferences (as indicated by the PreferenceSeq column), and
then count them. You could use a driver table to help perform the pivot, but
with only three unique values to pivot into columns, it’s just as easy to do it
with CASE.

Translation/Clean Up
Select Musical_Styles.style ID from the musical styles table,
Musical_Styles.style name from the musical styles table, the count
of (RankedPeferences.first style) from the ranked preferences query
as first preference, the count of (RankedPreferences.second style)
from the ranked preferences query as second preference, and the
count of (RankedPreferences.third style) from the ranked
preferences query as third preference from the musical styles table
and CROSS JOIN the (selection of (CASE when
Musical_Preferences.preference sequence in the musical preferences
table is = 1 then return the Musical_Preferences.style ID from the
musical preferences table else return Null END) as first style,
(CASE when Musical_Preferences.preference sequence in the
musical preferences table is = 2 then return the
Musical_Preferences.style ID from the musical preferences table
else return Null END) as second style, (CASE when
Musical_Preferences.preference sequence in the musical preferences
table is = 3 then return the Musical_Preferences.style ID from the
musical preferences table else return Null END) as third style from

the musical preferences table) as ranked preferences where
Musical_Styles.style ID in the musical styles table equals =
RankedPreferences.first style in the ranked preferences query or
Musical_Styles.style ID in the musical styles table equals =
RankedPreferences.second style in the ranked preferences query or
Musical_Styles.style ID in the musical styles table equals =
RankedPreferences.third style in the ranked preferences query
grouped by style ID, and style name having the count of (first style)
> greater than 0 or the count of (second style) > greater than 0 or the
count of (third style) > greater than 0 ordered by first preference
descending, second preference descending, third preference
descending, and style ID.

SQL

SELECT Musical_Styles.StyleID, Musical_Styles.StyleName,
COUNT(RankedPreferences.FirstStyle) AS FirstPreference,
COUNT(RankedPreferences.SecondStyle) AS SecondPreference,
COUNT(RankedPreferences.ThirdStyle) AS ThirdPreference
FROM Musical_Styles,
 (SELECT (CASE WHEN Musical_Preferences.PreferenceSeq = 1
 THEN Musical_Preferences.StyleID
 ELSE Null END) As FirstStyle,
 (CASE WHEN Musical_Preferences.PreferenceSeq = 1
 THEN Musical_Preferences.StyleID
 ELSE Null END) As SecondStyle,
 (CASE WHEN Musical_Preferences.PreferenceSeq = 3
 THEN Musical_Preferences.StyleID
 ELSE Null END) As ThirdStyle
 FROM Musical_Preferences) AS RankedPreferences
WHERE Musical_Styles.StyleID =
 RankedPreferences.FirstStyle
 OR Musical_Styles.StyleID =
 RankedPreferences.SecondStyle
 OR Musical_Styles.StyleID =
 RankedPreferences.ThirdStyle
GROUP BY StyleID, StyleName
HAVING COUNT(FirstStyle) > 0
 OR COUNT(SecondStyle) > 0
 OR COUNT(ThirdStyle) > 0
ORDER BY FirstPreference DESC, SecondPreference DESC,
 ThirdPreference DESC, StyleID;

CH20_Customer_Style_Preference_Rankings (20 rows)

Notice that although there are 25 distinct musical styles defined in the database, the
query returns only 20 rows. The styles that are missing aren’t ranked first, second, or
third by any customer.

School Scheduling Database

“List all students who have completed English courses and rank them by
Quintile on the grades they received.”

A Quintile divides a group into five equal ranges. When applied to student rankings,
a quintile will be 20% of students—those in the top 20% are in the first quintile,
those in the next 20% are in the second quintile, and so on. To solve this, you need to
CROSS JOIN two queries:

1. A query that assigns a ranking number to each student who completed an
English course. You can calculate the rank by counting the number of students
who have a grade greater than or equal to the current student’s grade. The
student with the highest grade will be ranked #1, the student with the second
highest grade #2, and so on.

2. A query that counts all students who completed an English course. You can
use this count times 0.2, 0.4, 0.6, and 0.8 to figure out the quintile. The
students whose rank (as calculated by the first query) is less than or equal to
0.2 times the total number of students is in the first quintile.

Translation/Clean Up
Select S1.subject ID from the first query, S1.student first name from
the first query, S1.student last name from the first query, S1.class
status from the first query, S1.grade from the first query,
S1.category ID from the first query, S1.subject name from the first
query, S1.rank in category from the first query, StudCount.number
of students from the student count query, and (CASE when the rank
in category <= is less than or equal to 0.2 * times the number of
students then return ‘First’ when the rank in category <= is less than
or equal to 0.4 * times the number of students then return ‘Second’
when the rank in category <= is less than or equal to 0.6 * times the
number of students then return ‘Third’ when the rank in category <=
is less than or equal to 0.8 * times the number of students then
return ‘Fourth’ else return ‘Fifth’ END) as the quintile from the
(selection of Subjects.subject ID in the subjects table,
Students.student first name in the students table, Students.student
last name in the students table, Student_Schedules.class status in the
student schedules table, Student_Schedules.grade in the student
schedules table, Subjects.category ID in the subjects table,
Subjects.subject name in the subjects table, and the (selection of the
count(*) of all rows from the classes table inner joined with the
student schedules table AS SS2 on Classes.class ID in the classes
table = equals SS2.class ID in the student schedules table, then inner
joined with the subjects table AS S3 on S3.subject ID in the subjects
table = equals Classes.subject ID in the classes table where
S3.category ID in the subjects table = equals ‘ENG’ and SS2.grade
in the student schedules table >= is greater than or equal to
Student_Schedules.grade in the student schedules table) as rank in
category) from the subjects table inner joined with the classes table
on Subjects.subject ID in the subjects table = equals Classes.subject
ID in the classes table, then inner joined with the student schedules
table on Student_Schedules.class ID in the student schedules table =
equals Classes.class ID in the classes table, then inner joined with
the students table on Students.student ID in the students table =
equals Student_Schedules.student ID in the student schedules table
where Student_Schedules.class status in the student schedules table
= equals 2 and Subjects.category ID in the subjects table = equals
‘ENG’) AS S1 CROSS JOIN and the (selection of the count(*) of
all rows as number of students from the classes table AS C2 inner

joined with the student schedules table AS SS3 on C2.class id in the
classes table = equals SS3.class ID in the student schedules table,
then inner joined with the subjects table AS S2 on S2.subject ID in
the subjects table = equals C2.subject ID in the classes table where
SS3.class status in the student schedules table = equals 2 and
S2.category ID in the subjects table = equals ‘ENG’) As student
count ordered by S1.grade in the first query descending.

SQL

SELECT S1.SubjectID, S1.StudFirstName,
 S1.StudLastName,
 S1.ClassStatus, S1.Grade, S1.CategoryID,
 S1.SubjectName,
 S1.RankInCategory, StudCount.NumStudents,
 (CASE WHEN RankInCategory<=0.2*NumStudents
 THEN 'First'
 WHEN RankInCategory<=0.4*NumStudents
 THEN 'Second'
 WHEN RankInCategory<=0.6*NumStudents
 THEN 'Third'
 WHEN RankInCategory<=0.8*NumStudents
 THEN 'Fourth'
 ELSE 'Fifth' END) AS Quintile
FROM
(SELECT Subjects.SubjectID, Students.StudFirstName,
 Students.StudLastName, Student_Schedules.ClassStatus,
 Student_Schedules.Grade, Subjects.CategoryID,
 Subjects.SubjectName,
 (SELECT Count(*)
 FROM (Classes INNER JOIN Student_Schedules AS SS2
 ON Classes.ClassID = SS2.ClassID)
 INNER JOIN Subjects As S3
 ON S3.SubjectID = Classes.SubjectID
 WHERE S3.CategoryID = 'ENG'
 AND SS2.Grade >=
 Student_Schedules.Grade) AS RankInCategory
FROM ((Subjects INNER JOIN Classes
 ON Subjects.SubjectID = Classes.SubjectID)
 INNER JOIN Student_Schedules
 ON Student_Schedules.ClassID = Classes.ClassID)
 INNER JOIN Students
 ON Students.StudentID=Student_Schedules.StudentID
WHERE Student_Schedules.ClassStatus = 2 And
 Subjects.CategoryID='ENG') AS S1,
(SELECT Count(*) AS NumStudents
FROM (Classes AS C2 INNER JOIN Student_Schedules AS SS3
 ON C2.ClassID=SS3.ClassID)
 INNER JOIN Subjects AS S2
 ON S2.SubjectID=C2.SubjectID
WHERE SS3.ClassStatus=2 And S2.CategoryID='ENG')
AS StudCount
ORDER BY S1.Grade DESC;

CH20_English_Student_Quintiles (18 rows)

 Note
This query uses the grade from each individual English class to rank the
students, so it is possible to see a student listed more than once if the student
has completed more than one English class. To rank students for all English
classes taken, you would first have to calculate the average of credits times
grade divided by credits for each student and then rank those results.

Bowling League Database

“List all potential matches between teams without duplicating any team
pairing.”

To solve this problem, you need two copies of the Teams table in your FROM
clause. That will give you all combinations of two teams, but you obviously don’t
want to list a team bowling itself. Think about dealing with each team one at a time.
When looking at Team 1, you need to match it with any team that has a higher
TeamID value. Looking at Team 2, you’ve already matched it with Team 1 on the
first pass, but any higher value in TeamID will work. So as long as the TeamID in

the second copy of the table has a higher value than the TeamID in the first copy of
the table, you’re good to go!

Translation/Clean Up
Select Teams.team ID from the 1st copy of the teams table as team1
ID, Teams.TeamName from the 1st copy of the teams table as
team1 name, Teams_1.team ID from the 2nd copy of the teams table
as team1 name, and Teams_1.team name from the 2nd copy of the
teams table as team2 name from the teams table CROSS JOIN and a
2nd copy of the teams table AS Team_1 where Teams_1.team ID in
the 2nd copy of the teams table is greater than > Teams.team ID in
the 1st copy of the teams table ordered by Teams.team ID in the 1st
copy of the teams table, and Teams_1.team ID in the 2nd copy of
the teams table.

SQL

SELECT Teams.TeamID AS Team1ID,
 Teams.TeamName AS Team1Name,
 Teams_1.TeamID AS Team2ID,
 Teams_1.TeamName AS Team2Name
FROM Teams, Teams AS Teams_1
WHERE Teams_1.TeamID > Teams.TeamID
ORDER BY Teams.TeamID, Teams_1.TeamID;

CH20_Team_Pairings (45 rows)

 Note
You might look at this query and ask: “Couldn’t I also solve this with an
INNER JOIN moving the WHERE clause to an ON clause?” You would be
absolutely correct for most database systems that support something other
than an equi-join in the ON clause. As usual, there’s always more than one
way to solve a particular problem using SQL.

Examples Using Driver Tables
Let’s move on to solving some problems using driver tables. All of the following
solutions use driver tables that we’ve already built for you in the sample databases.

Sales Order Database

“The warehouse manager has asked you to print an identification label for each
item in stock.”

You can look up the quantity on hand in the Products table. The trick here is to use a
driver table that has one column of integers, and each row has a successive value
from 1 to the maximum number you might have in stock. You can use
ztblSeqNumbers in the sample database for this purpose.

Translation/Clean Up
Select ztblSeqNumbers.Sequence from the sequence driver table,
Products.product number from the products table, and
Products.product name from the products table from
ztblSeqNumbers the sequence driver table CROSS JOIN and the
products table where ztblSeqNumbers.sequence in the sequence
driver table is less than or equal to <= Products.quantity on hand in
the products table ordered by Products.product number from the
products table, and ztblSequenceNumbers.sequence from the
sequence driver table.

SQL

SELECT ztblSeqNumbers.Sequence,
 Products.ProductNumber,
 Products.ProductName
FROM ztblSeqNumbers, Products
WHERE ztblSeqNumbers.Sequence <=
 Products.QuantityOnHand
ORDER BY Products.ProductNumber,
 ztblSeqNumbers.Sequence;

CH20_Product_Stock_Labels (813 rows)

Entertainment Database

“Produce a booking calendar that lists for all weeks in January 2013 any
engagement during that week.”

 Note
Remember to find an engagement that occurs in any part of a date span you
need to find engagements that begin before or on the end date of the span and
end after or on the start date of the span. You need to do a similar thing to find
weeks in which any part of the week falls in the month of January 2013.

Translation/Clean Up
Select ztblWeeks.week start from the weeks driver table,
ztblWeeks.week end from the weeks driver table,
Entertainers.entertainer ID from the entertainers table,
Entertainers.entertainer stage name from the entertainers table,
Customers.customer first name from the customers table,
Customers.customer last name from the customers table,
Engagements.start date from the engagements table, and
Engagements.end date from the engagements table from ztblWeeks
the weeks driver table CROSS JOIN and the customers table inner
joined with the engagements table on Customers.customer ID in the

customers table equals = Engagements.customer ID in the
engagements table, then inner joined with the entertainers table on
Entertainers.entertainer ID in the entertainers table equals =
Engagements.entertainer ID in the engagements table where
ztblWeeks.week start in the weeks driver table is less than or equal
to <= ‘2013-01-31’ and ztblWeeks.week end in the weeks driver
table is greater than or equal to >= ‘2013-01-01’ and
Engagements.start date in the engagements table is less than or
equal to <= ztblWeeks.week end in the weeks driver table and
Engagements.end date in the engagements table is greater than or
equal to >= ztblWeeks.week start in the weeks driver table.

SQL

SELECT ztblWeeks.WeekStart, ztblWeeks.WeekEnd,
 Entertainers.EntertainerID, Entertainers.EntStageName,
 Customers.CustFirstName, Customers.CustLastName,
 Engagements.StartDate, Engagements.EndDate
FROM ztblWeeks, (Customers INNER JOIN Engagements
 ON Customers.CustomerID = Engagements.CustomerID)
INNER JOIN Entertainers
ON Entertainers.EntertainerID =
 Engagements.EntertainerID
WHERE ztblWeeks.WeekStart <= '2013-01-31' AND
 ztblWeeks.WeekEnd >= '2013-01-01' AND
 Engagements.StartDate <= ztblWeeks.WeekEnd AND
 Engagements.EndDate >= ztblWeeks.WeekStart;

CH20_All_Weeks_Jan2013_All_Engagements (50 rows)

School Scheduling Database

“Display a list of classes by semester, date, and subject.”

 Note
This is a bit tricky because the Classes table has an unnormalized list of days
listed as columns. When a class is scheduled for a given day, the value is 1 or
“true” for that column. We need to use the ztblSemesterDays driver table and
include a class when the semester matches and the day of the week in the
driver table has the “flag” turned on in the appropriate day column. Because
some database systems use -1 (Microsoft Office Access, for example) and
others use 1 for “true,” we will test for not equal 0 to determine whether the
column has a “true” value.

Translation/Clean Up
Select ztblSemesterDays.semester no from the semester driver table,
ztblSemesterDays.semester date from the semester driver table,
Classes.start time from the classes table, ztblSemesterDays.semester
day name from the semester driver table, Subjects.subject code from
the subjects table, Subjects.subject name from the subjects table,
Class_Rooms.building code from the class rooms table,
Class_Rooms.class room ID from the class rooms table from
ztblSemesterDays the semester driver table CROSS JOIN and the
subjects table then inner joined with the classes table on
Subjects.subject ID in the subjects table equals = Classes.subject ID
in the classes table then inner joined with the class rooms table on
Class_Rooms.class room ID in the class rooms table equals =
Classes.class room ID in the classes table where Classes.semester
number in the classes table equals = ztblSemesterDays.semester no
in the semester driver table and 1 equals = (CASE when
ztblSemesterDays.semester day name in the semester driver table
equals = ‘Monday’ and Classes.Monday schedule in the classes
table does not equal <> 0 then return 1 when
ztblSemesterDays.semester day name in the semester driver table
equals = ‘Tuesday’ and Classes.Tuesday schedule in the classes
table does not equal <> 0 then return 1 when
ztblSemesterDays.semester day name in the semester driver table
equals = ‘Wednesday’ and Classes.Wednesday schedule in the
classes table does not equal <> 0 then return 1 when

ztblSemesterDays.semester day name in the semester driver table
equals = ‘Thursday’ and Classes.Thursday schedule in the classes
table does not equal <> 0 then return 1 when
ztblSemesterDays.semester day name in the semester driver table
equals = ‘Friday’ and Classes.Friday schedule in the classes table
does not equal <> 0 then return 1 when ztblSemesterDays.semester
day name in the semester driver table equals = ‘Saturday’ and
Classes.Saturday schedule in the classes table does not equal <> 0
then return 1 else return 0 END) ordered by
ztblSemesterDays.semester no in the semester driver table,
ztblSemesterDays.semester date in the semester driver table,
Subjects.subject code in the subjects table, Class_Rooms.building
code in the class rooms table, Class_Rooms.class room ID in the
class rooms table, and Classes.start time in the classes table.

SQL

SELECT ztblSemesterDays.SemesterNo,
 ztblSemesterDays.SemDate, Classes.StartTime,
 ztblSemesterDays.SemDayName, Subjects.SubjectCode,
 Subjects.SubjectName, Class_Rooms.BuildingCode,
 Class_Rooms.ClassRoomID
FROM ztblSemesterDays, (Subjects
INNER JOIN Classes
 ON Subjects.SubjectID = Classes.SubjectID)
INNER JOIN Class_Rooms
 ON Class_Rooms.ClassRoomID = Classes.ClassRoomID
WHERE Classes.SemesterNumber = ztblSemesterDays.SemesterNo
AND Classes.StartDate <= ztblSemesterDays.SemDate
AND 1 =
(CASE WHEN ztblSemesterDays.SemDayName='Monday'
 AND Classes.MondaySchedule<>0 THEN 1
 WHEN ztblSemesterDays.SemDayName='Tuesday'
 AND Classes.TuesdaySchedule<>0 THEN 1
 WHEN ztblSemesterDays.SemDayName='Wednesday'
 AND Classes.WednesdaySchedule<>0 THEN 1
 WHEN ztblSemesterDays.SemDayName='Thursday'
 AND Classes.ThursdaySchedule<>0 THEN 1
 WHEN ztblSemesterDays.SemDayName='Friday'
 AND Classes.FridaySchedule<>0 THEN 1
 WHEN ztblSemesterDays.SemDayName='Saturday'
 AND Classes.SaturdaySchedule<>0 THEN 1
 ELSE 0 END)
ORDER BY ztblSemesterDays.SemesterNo,
 ztblSemesterDays.SemDate, Subjects.SubjectCode,
 Class_Rooms.BuildingCode, Class_Rooms.ClassRoomID,
 Classes.StartTime;

CH20_Class_Schedule_Calendar (7,221 rows)

Bowling League Database

“Print a bowler mailing list, but skip the first three labels on the first page that
have already been used.”

 Note
What you want to do is produce three blank name and address lines to bypass
the used labels, and then list all the bowlers and their addresses. You can use
ztblSkipLabels in a SELECT Statement that substitutes blanks for all the
fields and stops when the number in the driver table becomes greater than the
number of labels you want to skip. Follow that with a UNION ALL of a
SELECT statement to produce the names and addresses for all bowlers. You
must use a UNION ALL because a simple UNION would eliminate all the
duplicate blank lines you produced in the first query.

Translation /Clean Up
Select blanks ‘ ‘ as bowler last name, blanks ‘ ‘ as bowler first
name, blanks ‘ ‘ as bowler address, blanks ‘ ‘ as bowler city, blanks
‘ ‘ as bowler state, blanks ‘ ‘ as bowler zip from ztblSkipLabels the
skip labels driver table where the ztblSkipLabels.label count in the

skip labels driver table is less than or equal to <= 3 unioned with all
rows in select bowler last name, bowler first name, bowler address,
bowler city, bowler state, and bowler zip from the bowlers table
ordered by bowler zip, and bowler last name.

SQL

SELECT ' ' As BowlerLastName, ' ' As BowlerFirstName,
 ' ' As BowlerAddress, ' ' As BowlerCity,
 ' ' As BowlerState, ' ' As BowlerZip
FROM ztblSkipLabels
WHERE ztblSkipLabels.LabelCount <= 3
UNION ALL
SELECT BowlerLastName, BowlerFirstName,
 BowlerAddress, BowlerCity, BowlerState, BowlerZip
FROM Bowlers
ORDER BY BowlerZip, BowlerLastName;

CH20_Bowler_Mailing_Skip_3 (35 rows)

Summary
We started this chapter with a definition of unlinked data and a discussion of how to
use CROSS JOIN to handle unlinked data in your queries. At the end of the first
section, we outlined the two cases where a CROSS JOIN can be useful—linking
main data tables with each other and linking main data tables with a “driver” table.
We next covered solving problems using main data tables linked to each other and
gave explained a complex example. After that, we covered using a driver table,

showing you how to set one up and discussing an two examples. Finally, we showed
you and explained examples from four of the sample databases using both main
tables linked to each other and a driver table linked to one or more main tables. We
encourage you to try to work out the problems presented in the final section that
follows.

Problems for You to Solve
The following problems show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work out the SQL
you need for each request and then check your answer with the query we saved in the
samples. Don’t worry if your syntax doesn’t exactly match the syntax of the queries
we saved—as long as your Result Set is the same.

Sales Order Database
1. “List months and the total sales by products for each month.”

(Hint: Use the ztblMonths driver table we provided.)
You can find the solution in CH20_Product_Sales_ByMonth (227 rows).

2. “Produce a customer mailing list, but skip the five labels already used on the
first page of the labels.”
(Hint: Use the ztblSeqNumbers driver table we provided.)
You can find the solution in CH20_Customer_Mailing_Skip_5 (33 rows).

3. “The sales manager wants to send out 10% discount coupons for customers
who made large purchases in December 2012. Use the ztblPurchaseCoupons
table to determine how many coupons each customer gets based on the total
purchases for the month.”
(Hint: You need to CROSS JOIN the driver table with the Customers table
joined with a subquery that calculates the total spend for each customer.)
You can find the solution in CH20_Customer_Dec_2012_Order_Coupons (27
rows).

4. “Using the solution to #3 above, print out one 10% off coupon based on the
number of coupons each customer earned.”
(Hint: Use the ztblSeqNumbers driver table that we provided with the query in
the above problem.)
You can find the solution in CH20_Customer_Discount_Coupons_Print (321
rows).

5. “Display all months in 2012 and 2013, all products, and the total sales (if any)
registered for the product in the month.”

(Hint: Use a CROSS JOIN between the ztblMonths driver table and the
Products table and use a subquery to fetch the product sales for each product
and month.)
You can find the solution in CH20_Product_Sales_All_Months_2012_2013
(960 rows).

Entertainment Database
1. “List all agents and any entertainers who haven’t had a booking since

February 1, 2013.”
(Hint: Use a CROSS JOIN between Agents and Entertainers and use NOT IN
on a subquery in the WHERE clause to find entertainers not booked since
February 1, 2013.)
You can find the solution in CH20_Agents_Entertainers_Unbooked_Feb12013
(45 rows).

2. “Show all entertainer styles and the count of the first, second, and third
strengths.”
(Hint: This is similar to the CH20_Customer_Style_Preference_Rankings
query we showed you earlier. Use a CROSS JOIN of the Musical_Styles table
with a subquery that “pivots” the strengths into three columns, then count the
columns.)
You can find the solution in CH20_Entertainer_Style_Strength_Rankings (17
rows).

3. “Display customers and their first, second, and third ranked preferences along
with entertainers and their first, second, and third ranked strengths, then
match customers to entertainers when the customer’s first preference matches
the entertainer’s first or second strength and the customer’s second preference
matches the entertainer’s first or second strength.”
(Hint: Create a query on musical styles and customers and pivot the first,
second, and third strengths using a CASE expression. You will need to use
MAX and GROUP BY because the pivot will return Null values for some of
the positions. Do the same with entertainers and musical styles, then CROSS
JOIN the two subqueries and return the rows where the preferences and
strengths match in the first two positions.)
You can find the solution in
CH20_Customers_Match_Entertainers_FirstSecond_PrefStrength (6 rows).

4. “List all months across and calculate each entertainers income per month.”
(Hint: Use the ztblMonths driver table to pivot the amounts per month and use

SUM to total the amounts per entertainer.)
You can find the solution in CH20_Entertainer_BookingAmount_ByMonth
(12 rows).

5. “Display all dates in December 2012 and any entertainers booked on those
days.”
(Hint: Build a subquery using a CROSS JOIN between the ztblDays driver
table and a JOIN on entertainers and engagements, then LEFT JOIN that with
ztblDays again to get all dates.)
You can find the solution in CH20_All_December_Days_Any_Bookings (85
rows).

6. “Produce a customer mailing list, but skip the four labels already used on the
first page of labels.”
You can find the solution in CH20_Customer_Mailing_Skip_4 (19 rows).

School Scheduling Database
1. “List all students and the classes they could take, excluding the subjects

enrolled or already completed.”
(Hint: Do a CROSS JOIN between students and subjects joined with classes,
and use a subquery to eliminate classes found in the student schedules table for
the current student where the class status in the student schedules table is not 1
(enrolled) or 2 (completed).)
You can find the solution in CH20_Students_Additional_Courses (1,894
rows).

2. “Display a count of students by gender and marital status by state of residence
in columns across.”
(Hint: Use the ztblGenderMatrix and ztblMaritalStatusMatrix driver tables to
pivot your values.)
You can find the solution in CH20_Student_Crosstab_Gender_MaritalStatus (4
rows).

3. “Calculate an average proficiency rating for all teaching staff across the
subjects they teach, and show an overall rating based on the values found in
the ztblProfRatings driver table.”
You can find the solution in CH20_Staff_Proficiency_Ratings (24 rows).

4. “Create a mailing list for students, but skip the first two labels already used on
the first page.”
You can find the solution in CH20_Student_Mailing_Skip_2 (20 rows).

Bowling League Database
1. “Show bowlers and a rating of their raw score averages based on the values

found in the ztblBowlerRatings driver table.”
You can find the solution in CH20_Bowler_Ratings (32 rows).

2. “List all weeks from September through December 2012 and the location of
any tournament scheduled for those weeks.”
You can find the solution in CH20_Tournament_Week_Schedule_2012 (19
rows).

In Closing

“That is what learning is.
You suddenly understand something

you’ve understood all your life, but in a new way.”
—Doris Lessing

You now have all the tools you need to query or change a database successfully.
You’ve learned how to create both simple and complex SELECT statements and
how to work with various types of data. You’ve also learned how to filter data with
search conditions, work with multiple tables using JOINs, and produce statistical
information by grouping data. You learned how to update, add, and delete data in
your tables. And finally, you learned to “think out of the box” to build solutions to
“NOT” and “AND” problems, use condition testing, and work with unlinked tables.
As with any new endeavor, there’s always more to learn. Your next task is to take
the techniques you’ve learned in this book and apply them within your database
system. Be sure to refer to your database system’s documentation to determine
whether there are any differences between standard SQL syntax and the SQL syntax
your database uses. If your database allows you to create queries using a graphical
interface, you’ll probably find that the interface now makes more sense and is much
easier to use.
Also remember that we focused only on the data manipulation portion of SQL—
there are still many parts to SQL that you can delve into should you be so inspired.
For example, you could learn how to create data structures; incorporate several
tables into a single view, function, or stored procedure; or embed SQL statements
within an application program. If you want to learn more about SQL, we suggest you
start with any of the books we’ve listed in Appendix D, “Suggested Reading.”
We hope you’ve enjoyed reading this book as much as we’ve enjoyed writing it. We
know that books on this subject tend to be rather dry, so we decided to have a little
fun and inject some humor wherever we could. There’s absolutely no reason why
learning should be boring and tedious. On the contrary, you should look forward to
learning something new each day.
Writing a book is always a humbling experience. It makes you realize just how much
more there is to learn about the subject at hand. And as you work through the writing
process, it is inevitable that you’ll see things from a fresh perspective and in a
different light. We found out just how much Doris Lessing’s statement rings true.
We hope you will, too.

Appendices

A. SQL Standard Diagrams

Here are the complete diagrams for all the SQL grammar and syntax we’ve covered
throughout the book.

B. Schema for the Sample Databases

Sales Orders Example Database

Does not include Chapter 20 “driver” tables

Sales Orders Modify Database

Entertainment Agency Example Database

Does not include Chapter 20 “driver” tables

Entertainment Agency Modify Database

School Scheduling Example Database

Does not include Chapter 20 “driver” tables

School Scheduling Modify Database

Bowling League Example Database

Does not include Chapter 20 “driver” tables

Bowling League Modify Database

Recipes Database

C. Date and Time Types, Operations, and
Functions

As mentioned in Chapter 5, “Getting More Than Simple Columns,” each database
system has a variety of functions that you can use to fetch or manipulate date and
time values. Each database system also has its own rules regarding data types and
date and time arithmetic. The SQL Standard specifically defines three functions,
CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP, but not all
commercial database systems support all three function calls. To help you work with
date and time values in your database system, we provide a brief summary of the
data types and arithmetic operations supported. Following that, we’ve compiled a list
of functions for five of the major database systems that you can use to work with
date and time values. The lists in this appendix include the function name and a brief
description of its use. Consult your database documentation for the specific syntax to
use with each function.

IBM DB2
Data types supported:

DATE
TIME
TIMESTAMP

Arithmetic operations supported:
DATE + <year, month, or day duration or date duration> = DATE
TIME + <hour, minute, or second duration or time duration> = TIME
TIMESTAMP + <date, or time, or date and time duration> = TIMESTAMP
DATE - DATE = date duration (DECIMAL(8,0) value containing yyyymmdd)
DATE - <year, month, or day duration or date duration> = DATE
TIME - TIME = time duration (DECIMAL(6,0) value containing hhmmss)
TIME - <hour, minute, or second duration or time duration> = TIME
TIMESTAMP - TIMESTAMP = time duration (DECIMAL(20,6) value
containing yyyymmddhhmmss.microseconds)

TIMESTAMP - <date, or time, or date and time duration> = TIMESTAMP

IBM DB2

Microsoft Office Access

Data types supported: Date/Time
Arithmetic operations supported:

Date/Time + Date/Time = Date/Time (value is the result of adding the number
of days and fractions of a day in each value. December 31, 1899 is day 0.)

Date/Time + integer = Date/Time (adds the number of days in the integer)
Date/Time + fraction = Date/Time (adds the time represented by the fraction –
0.5 = 12 hours)

Date/Time + integer.fraction = Date/Time
Date/Time - Date/Time = number of days and fractions of days between the two
values

Date/Time - integer = Date/Time (subtracts the number of days in the integer)
Date/Time - fraction = Date/Time (subtracts the time represented by the fraction
– 0.5 = 12 hours)

Date/Time - integer.fraction = Date/Time

Microsoft SQL Server
Data types supported:

date
time
smalldatetime
datetime
datetime2
datetimeoffset

Arithmetic operations supported:
datetime + datetime = datetime (value is the result of adding the number of days
and fractions of a day in each value. January 1, 1900 is day 0.)

datetime + integer = datetime (adds the number of days in the integer)

datetime + fraction = datetime (adds the time represented by the fraction – 0.5 =
12 hours)

datetime + integer.fraction = datetime
datetime - datetime = number of days and fractions of days between the two
values

datetime - integer = datetime (subtracts the number of days in the integer)
datetime - fraction = datetime (subtracts the time represented by the fraction –
0.5 = 12 hours)

datetime - integer.fraction = datetime
smalldatetime + smalldatetime = smalldatetime (value is the result of adding the
number of days and fractions of a day in each value. January 1, 1900 is day 0.)

smalldatetime + integer = smalldatetime (adds the number of days in the
integer)

smalldatetime + fraction = smalldatetime (adds the time represented by the
fraction – 0.5 = 12 hours)

smalldatetime + integer.fraction = smalldatetime
smalldatetime - smalldatetime = number of days and fractions of days between
the two values

smalldatetime - integer = smalldatetime (subtracts the number of days in the
integer)

smalldatetime - fraction = smalldatetime (subtracts the time represented by the
fraction – 0.5 = 12 hours)

smalldatetime - integer.fraction = smalldatetime

MySQL
Data types supported:

date
datetime
timestamp
time
year

Arithmetic operations supported:
date +/- Interval <interval> <year/quarter/month/week/day> = date
datetime +/- Interval <interval>
<year/quarter/month/week/day/hour/minute/second> = datetime

timestamp +/- Interval <interval>
<year/quarter/month/week/day/hour/minute/second> = timestamp

time +/- Interval <interval> <hour/minute/second> = time

 Note
It is also legal to add or subtract an integer or decimal value to or from any of
the date and time data types, but MySQL will first convert the date or time
value to a number and then perform the operation. For example, adding 30 to
the date value ‘2012-11-15’ yields the number 20121145. Adding 100 to the
time value ‘12:20:00’ yields 122100. Be sure to use the INTERVAL keyword
when performing date and time arithmetic.

Oracle
Data types supported:

DATE
TIMESTAMP
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

Arithmetic operations supported:
DATE + INTERVAL = DATE
DATE + numeric = DATE
DATE - DATE = numeric (days and fraction of a day)
DATE - TIMESTAMP = INTERVAL
DATE - INTERVAL = DATE
DATE - numeric = DATE
INTERVAL + DATE = DATE
INTERVAL + TIMESTAMP = TIMESTAMP
INTERVAL + INTERVAL = INTERVAL

INTERVAL - INTERVAL = INTERVAL
INTERVAL * numeric = INTERVAL
INTERVAL / numeric = INTERVAL

D. Suggested Reading

These are the books we recommend you read if you want to learn more about
database design or expand your knowledge of SQL. Keep in mind that some of these
books will be challenging because they are more technical in nature. Also, some
authors assume that you have a fairly significant background in computers,
databases, and programming.

Database Books
Connolly, Thomas, and Carolyn Begg. Database Systems: A Practical Approach to
Design, Implementation, and Management (4th ed.). Essex, England: Addison-
Wesley, 2004.
Date, C. J. An Introduction to Database Systems (8th ed.). Boston, MA: Addison-
Wesley, 2003.
Date, C.J. Database in Depth: Relational Theory for Practitioners. Sebastopol, CA:
O’Reilly Media, 2005.
Date, C.J. Database Design and Relational Theory: Normal Forms and All That
Jazz. Sebastopol, CA: O’Reilly Media, 2012.
Hernandez, Michael J. Database Design for Mere Mortals (3rd ed.). Boston, MA:
Addison-Wesley, 2013.

Books on SQL
Bowman, Judith S., Sandra L. Emerson, and Marcy Darnovsky. The Practical SQL
Handbook: Using SQL Variants (4th ed.). Boston, MA: Addison-Wesley, 2001.
Celko, Joe. Joe Celko’s SQL for Smarties: Advanced SQL Programming (4th ed.).
Burlington, MA: Morgan Kaufmann Publishers, 2011.
Date, C. J., and Hugh Darwen. A Guide to the SQL Standard (4th ed.). Reading, MA:
Addison-Wesley, 1996.
Melton, Jim, and Alan R. Simon. Understanding the New SQL: A Complete Guide.
San Francisco, CA: Morgan Kaufmann Publishers, 2006.

Index

A
acronyms, naming fields, 24
Actian, 60
agents, 53
aggregate functions, 420-422

AVG, 427-428
COUNT, 422-425
filters, 432, 434
MAX, 428-430
MIN, 430-431
Null values, 451
sample statements, 435

bowling league database, 439-440
entertainment agency database, 437
recipes database, 441-442
sales orders database, 435-436
school scheduling database, 438

subqueries as columns, 381-383
SUM, 425-426
using multiple functions, 431-432

aliases, assigning to tables, 258-260
ALL, predicate keywords for subqueries, 392-395
American National Standards Institute (ANSI), 61
analytical databases, 4
AND, 185, 190

sets, 594-595
ANSI (American National Standards Institute), 61
ANSI/ISO standard, 62-65
ANY, predicate keywords for subqueries, 392-395
approximate numeric types, 112
ASCII collating sequence, 163
assigning correlation names to tables, 258-260

attributes, 221
AVG, calculating mean values, 427-428

B
BETWEEN, 173
Between predicate, 160
binary data types, 112
Boolean data types, 113
bowling league database

aggregate functions, 439-440
CASE sample statements, 666-668
DELETE sample statements, 586-588
driver tables sample statements, 703-704
expressions sample statements, 151-152
GROUP BY clause, 470-472
HAVING clause sample statements, 497-498
OUTER JOINs, 335-337
search conditions, 210
SELECT statements, 103-104
set sample statements, 629-633
subqueries

expressions, 403
filters, 410-411

UNION statements, 368-370
unlinked data sample statements, 703-704
unlinked tables sample statements, 695-696
UPDATE sample statements, 533-537

C
calculated columns, 135
calculated fields, 27
calculating mean values with AVG, 427-428
Call-Level Interface (CLI), 65
Cartesian Product, 303, 673
cascade deletion rule, 48
CASE, 641

reasons for using, 642
sample statements, 655-656

bowling league database, 666-668
entertainment database, 659-662
sales order database, 656-659
school scheduling database, 662-665

Searched, 644
Simple, 644
solving problems, 647

Searched CASE, 652-654
Simple CASE, 647-651

syntax, 642-646
WHERE clause, 655

CAST function, changing data types, 114-116
Chamberlain, Dr., 58
changing data types, CAST function, 114-116
character data types, 111
character string literals, explicit values, 116-118
checklists

for fields, 25-27
for tables, 35-36

clauses
CORRESPONDING clauses, 349
FROM, unlinked tables, 672
GROUP BY, 448

column restrictions, 459-460
grouping on expressions, 461-462
mixing columns and expressions, 454, 456
samples. See sample statements, GROUP BY
simulating SELECT DISTINCT statements, 457-458
subqueries in WHERE clauses, 456-457
syntax, 449-454
uses for, 462-463

Having. See HAVING clause
ORDER BY clause, SELECT query, 93-96
SELECT clauses, expressions, 133

SELECT statement, 77-79
USING, 256
WHERE clause, 158-159

CASE, 655
predicates, 159-160
using, 160-162
using GROUP BY in subqueries, 456-457

CLI (Call-Level Interface), 65
Codd, Dr. Edgar F., 4
collating sequences, 92-93
column expressions, subqueries, 378, 397

aggregate functions, 381, 383
syntax, 378-379, 381

column references, INNER JOIN, 251-252
column restrictions, GROUP BY clause, 459-460
columns

mixing with expressions, GROUP BY clause, 454-456
updating multiples with UPDATE, 511-512

combining
result sets, unions, 236-238
sets, UNION, 245-247

commas, separating tables, 675
commercial implementation, 68
comparing string values, comparison predicates, 163-166
comparison predicates, 160, 163

comparing string values, 163-166
equality and inequality, 166-167
less than and greater than, 168-170

Computer Associates International, Inc., 60
computing totals with SUM, 425-426
concatenation, 121-125
concatenation expressions, SELECT clauses, 134-135
conditional expressions. See CASE
conditions, expressing, 203-204
CORRESPONDING clause, 349
COUNT

counting rows and values, 422-425
HAVING clause, 485-490
subqueries, 381-383

counting rows and values with COUNT, 422-425
CROSS JOINs, 675

D
data

grouping. See grouping data
versus information, 79-81
inserting with SELECT, 548-555
unlinked data. See unlinked data

data types, 111-113
approximate numeric data types, 112
binary data types, 112
Boolean data types, 113
changing, CAST function, 114-116
character data types, 111
datetime data types, 113
exact numeric data types, 112
interval data types, 113
national character data types, 111
restrictions, 116

databases
analytical databases, 4
organizational databases, 4
relational databases, 4-5

fields, 9
keys, 9-11
records, 9
relationships, 12-16
tables, 7-8
views, 11-12

types of, 3
analytical databases, 4
organizational databases, 4

date and time arithmetic, 121
date and time arithmetic expressions, 129

date expressions, 129-131
time expressions, 131-133

date expressions, 129-131
SELECT clause, 138-139

DATE functions, 653
date literals, 119-120
datetime data types, 113
datetime literals, explicit values, 119-121
DB2 (Database 2), 60
defined pattern strings, samples, 176
DELETE, 571-572

rows
deleting, 573-574
deleting the correct rows, 575-576

samples, 580-581
bowling league database, 586-588
entertainment agency database, 582-584
sales orders database, 581-582
school scheduling database, 584-585

uses for, 579-580
deleting rows

with DELETE, 573-574
ensuring you delete the correct rows, 575-576
with subqueries, 577-579
with WHERE clause, 575

deletion rules, relationships, 48-49
diagrams

set diagrams, 225
SQL standard diagrams. See Appendix A

difference, 221, 228-230
between result sets, 230-233
problems you can solve, 233-234
SQL set operations, 243-245

DISTINCT, 89

DISTINCT keyword, 364
INSERT, 544
subqueries, 390

DISTINCT option, 425
don’t put a square peg in a round hole rule, 115
don’t put a ten-pound sack in a five-pound box rule, 115
driver tables

sample statements, 697
bowling league database, 703-704
entertainment database, 698-700
sales order database, 697-698
school scheduling database, 700-703

setting up, 679-682
solving problems, 679
using, 682-686

duplicate fields, resolving, 36-37, 39-41
duplicate rows, eliminating, 88-90

E
eliminating duplicate rows, 88-90
embedding

JOINs with JOINs, OUTER JOINs, 310-320
JOINs within JOINs in tables, 262-267
SELECT statements

OUTER JOINs, 307-310
in tables, 260-262

entertainers, 53
entertainment database

aggregate functions, 437
CASE sample statements, 659-662
DELETE sample statements, 582-584
driver tables sample statements, 698-700
expressions, 147-148
GROUP BY clause, 466-467
HAVING clause, 493-494
INSERT, 561-563

OUTER JOINs, 329-331
search conditions, 206-208
SELECT statements, 100-101
set sample statements, 622-624
subqueries

expressions, 400
filters, 410-411

UNIONs, 365
unlinked data sample statements, 698-700
unlinked tables sample statements, 689-691
UPDATE, 526-530

Entry SQL, 64
equality, comparison predicates, 166-167
ESCAPE option, 178
Euler diagram, 225
Euler, Leonard, 225
exact numeric data types, 112
EXCEPT, SQL set operations, 243-245
excluding rows, 191-193

with NOT, search conditions, 181-184
executing queries, 97
EXISTS

finding multiple matches in the same table, 612-614
predicate keywords for subqueries, 395-396

expanding field of vision, 85-87
explicit values, 116

character string literals, 116-118
datetime literals, 119-121
numeric literals, 118

expressing conditions, 203-204
expressions, 110

concatenation, 121-125
data types. See data types
date and time arithmetic, 121, 129

date expressions, 129-131
time expressions, 131-133

grouping, GROUP BY clause, 461-462
mathematical, 121, 125-129
mixing with columns, GROUP BY clause, 454-456
sample statements, 144-145

bowling league database, 151-152
emergency agency database, 147-148
sales orders database, 145-146
school scheduling database, 149-150

SELECT clause, 133
concatenation, 134-135
date expressions, 138-139
mathematical expressions, 137-138
naming expressions, 135-136

subqueries, sample statements
bowling league database, 403
entertainment agency database, 400
recipes database, 403
sales orders database, 399-400
school scheduling database, 401

UPDATE, 507-508
subqueries, 518-520
updating selected rows, 508

value expressions, 139-141

F
field of vision, expanding, 85-87
fields, 23

calculated fields, 27
checklists for, 25-27
multipart fields, resolving, 27-29
multivalued fields, resolving, 30-32
naming, 23-25
relational databases, 9

filtering. See also search conditions
focus groups, 478-480
HAVING clause, 480-484

samples. See sample statements, HAVING clause
uses for, 490-491

HAVING COUNT, 485-490
multiple conditions, 184

AND, 185, 189-190
checking for overlapping ranges, 197-199
excluding rows, 191-193
OR, 185-190
order of preference, 193-197

rows, subqueries, 512-515
WHERE clause, 482-484

filters
aggregate functions, 432-434
subqueries, 384, 398

predicate keywords, 386-396
syntax, 384-386

subqueries, samples
bowling league database, 410-411
entertainment agency database, 406-407
recipes database, 412-413
sales orders database, 405-406
school scheduling database, 408-409

finding
largest values with MAX, 428-430
matching values, INNER JOINs, 269
missing values

EXCEPT, 243-245
OUTER JOINs, 324

multiple matches in the same table, 607
EXISTS, 612-614
GROUP BY, 614-617
HAVING, 614-617
IN, 610-612
INNER JOINs, 608-610

partially matched information, OUTER JOINs, 325
related rows, INNER JOINs, 268-269

smallest values with MIN, 430-431
FIPS (Federal Information Processing Standard), 65
focus groups, filtering, 478-480
foreign keys, 10
FROM clause, 256

SELECT statement, 78
unlinked tables, 672

FROM keyword, 573
FULL OUTER JOINs, 320

non-key values, 323
syntax, 320-322

Full SQL, 64
functions, aggregate, 420-422

AVG, 427-428
COUNT, 422-425
filters, 432, 434
MAX, 428-430
MIN, 430-431
Null values, 451
samples. See sample statements, aggregate functions
SUM, 425-426
using multiple functions, 431-432

G
generating primary key values with INSERT, 547-548
greater than, comparison predicates, 168-170
GROUP BY clause, 448

column restrictions, 459-460
finding multiple matches in the same table, 614-617
grouping on expressions, 461-462
mixing columns and expressions, 454-456
NOT, 604-607
sample statements, 463

bowling league database, 470-472
entertainment agency database, 466-467
recipes database, 473-474

sales orders database, 464-465
school scheduling database, 468-469

SELECT statement, 79
simulating SELECT DISTINCT statements, 457-458
subqueries in WHERE clauses, 456-457
syntax, 449-454
uses for, 462-463

grouping data, 446-448
GROUP BY clause, 448

column restrictions, 459-460
grouping on expressions, 461-462
mixing columns and expressions, 454-456
samples. See sample statements, GROUP BY clause
simulating SELECT DISTINCT statements, 457-458
subqueries in WHERE clauses, 456-457
syntax, 449-454
uses for, 462-463

grouping expressions, GROUP BY clause, 461-462

H
HAVING clause, 480-482

filtering, 482-484
finding multiple matches in the same table, 614-617
NOT, 604-605, 607
sample statements, 491

bowling league database, 497-498
entertainment agency database, 493-494
recipes database, 498-499
sales orders database, 492-493
school scheduling database, 494-497

SELECT statement, 79
uses for, 490-491

HAVING COUNT, 485-490
history of relational databases, 4-5

I

IBM, origins of SQL, 58
IBM DB2, 733-735
IBM proprietary EBCDIC sequence, 164
IN

finding multiple matches in the same table, 610-612
predicate keywords for subqueries, 387-392

IN predicate, 160
inequality, comparison predicates, 166-167
information versus data, 79-81
INGRES (Interactive Graphics Retrieval System), 6, 60
INNER JOINs, 250

column references, 251-252
finding multiple matches in the same table, 608-610
samples, 269-270

matching values, 283-294
multiple tables, 276-283
two tables, 270-275

syntax, 252
tables, 253-256
tables, assigning correlation names, 258-260
tables, embedding JOINs within JOINs, 262-267
tables, embedding SELECT statements, 260-262
tables, relationships, 267-268

uses for
finding matching values, 269
finding related rows, 268-269

INSERT, 541-543
generating primary key values, 547-548
sample statements, 556-557

entertainment agency database, 561-563
sales orders database, 557-560
school scheduling database, 564-567

uses for, 555-556
values, 543-547

inserting
data with SELECT, 548-555

values, 543-545, 547
Interactive Graphics Retrieval System (INGRES), 6, 60
Intermediate SQL, 64
International Organization of Standardization (ISO), 62
INTERSECT, SQL set operations, 240-242
intersection, 221
intersections, set operations, 222-223

between result sets, 224-227
problems you can solve, 227-228

interval data types, 113
date expressions, 130

ISNULL predicate, 160
ISO (International Organization for Standardization), 62

J
JOIN eligible, 251
joining tables, INNER JOINs, 270-275

multiple tables, 276-283
JOINs, 227, 249-250

embedding with JOINs, OUTER JOINs, 310-320
embedding within JOINs, 262-267
INNER JOINs, 250
keywords, 256
NATURAL JOINs, 257
OUTER JOINs. See OUTER JOINs
UPDATE clause, 515-518
what can you join, 251

K
keys

foreign keys, 10
primary keys, 10
relational databases, 9-11
tables, 42-45

keywords
DISTINCT, 89, 364

subqueries, 390
FROM, 573
JOIN, 256
predicate keywords for subqueries, 386

ALL, 392-395
ANY, 392-395
EXISTS, 395-396
IN, 387-392
SOME, 392-395

SELECT, 76

L
largest values, finding with MAX, 428-430
LEFT OUTER JOINs, 301, 309
less than, comparison predicates, 168-170
LIKE predicate, 160
linking columns, JOINs, 251
linking tables, 16
literal values, 116

M
many-to-many relationships, 14-16, 47
matches, finding in the same table, 607

EXISTS, 612-614
GROUP BY, 614-617
HAVING, 614-617
IN, 610-612
INNER JOINs, 608-610

matching values, INNER JOINs
finding with, 269
samples, 283-294

mathematical expressions, 121, 125-129
SELECT clause, 137-138

MAX
finding largest values, 428-430
finding smallest values, 430-431

subqueries, 381-383
mean values, calculating with AVG, 427-428
Microsoft Office Access, 736-737
Microsoft SQL Server, 738
missing values, finding

with EXCEPT, 243-245
with OUTER JOINS, 324

mixing columns and expressions, GROUP BY clause, 454-456
multipart fields, resolving, 27-29
multiple conditions, 184

AND, 185, 189-190
checking for overlapping ranges, 197-199
excluding rows, 191-193
OR, 185-190
order of precedence, 193-194

less is more, 196-197
prioritizing conditions, 194-196

multivalued fields, resolving, 30-32
MySQL, 740-741

N
naming

expressions, SELECT clause, 135-136
fields, 23-25
tables, 33-35

national character data types, 111
NATURAL JOIN, 257
NIST (National Institute of Standards and Technology), 65
non-key values, FULL OUTER JOINs, 323
NOT, 597

excluding rows with NOT, search conditions, 181-184
GROUP BY, 604-607
HAVING, 604-607
NOT EXISTS, 603-604
NOT IN, 601-603
OUTER JOINs, 598-600

sets, 595-596
NOT EXISTS, 603-604
NOT IN, 601-603
Null, 141-143, 199-203

aggregate functions, 451
problems with, 143-144
search conditions, 179-181

numeric literals, explicit values, 118

O
ODBC, 65
one-to-many relationships, 14, 46
one-to-one relationships, 13, 46
operations, sets. See set operations
OR, 185-190

result sets, 202
Oracle, 743-744
ORDER, SELECT statement, 92
ORDER BY clause, SELECT query, 93-96
ORDER BY clause, SELECT statement, 92
order of precedence, 126
order of preference, multiple conditions, 193-194

less is more, 196-197
prioritizing conditions, 194-196

organizational databases, 4
origins of SQL, 58-59

early implementations, 59-60
standardization, 60-62

OUTER JOINs, 234, 299-301
FULL OUTER JOINs. See FULL OUTER JOINs
LEFT OUTER JOINs, 301
NOT, 598-600
RIGHT OUTER JOINs, 301
samples, 325

bowling league database, 335-337
entertainment agency database, 329-331

recipes database, 338-340
sales orders database, 326-328
school scheduling database, 331-334

syntax, 302
tables, 302-307
tables, embedding JOINs with JOINs, 310-320
tables, embedding SELECT statements, 307-310

UNION JOINs, 323
uses for, 324

finding missing values, 324
finding partially matched information, 325

overlapping ranges, checking for, 197-199

P
parentheses

mathematical expressions, 127
prioritizing conditions, 195

partially matched information, finding with OUTER JOINS, 325
participation, relationships, 49-54
pattern match condition, 175-179
PC-based RDBMS programs, 6
performing UNIONs, 347
predicate keywords for subqueries, 386

ALL, 392-395
ANY, 392-395
EXISTS, 395-396
IN, 387-392
SOME, 392-395

predicates
comparison predicates, 163

comparing string values, 163-166
equality and inequality, 166-167
less than and greater than, 168-170

range predicates, 170-173
WHERE clause, 159-160

primary key values, generating with INSERT, 547-548

primary keys, 10
tables, 42-44

prioritizing conditions, 194-196
problems

solving
with driver tables, 679
with unlinked data, 676-678

solving with CASE, 647
Searched CASE, 652-654
Simple CASE, 647-651

Q
quantified predicates, 392
QUEL (Query Language), 60
queries, executing, 97
quotes, single quotes, 117

R
range condition, 170-173
ranges, checking for overlapping ranges, 197-199
RDBMS (relational database management system), 5-7
reasons for learning SQL, 69
recipes database

aggregate functions, 441-442
GROUP BY clause, 473-474
HAVING clause samples, 498-499
OUTER JOINs, 325
search conditions, 211-212
SELECT statements, 105-106
set sample statements, 633-635
subqueries

expressions, 403
filters, 412-413

UNIONs, 370-371
records, relational databases, 9
referential integrity, 48

ANSI/ISO standard, 62
relational database management system (RDBMS), 5-7
relational databases

fields, 9
history of, 4-5
keys, 9-11
RDBMS (relational database management system), 5-7
records, 9
relationships, 12

many-to-many, 14-16
one-to-many, 14
one-to-one, 13

tables, 7-8
views, 11-12

Relational Software, Inc, 59
Relational Technology, Inc., 60
relationship integrity, 48
relationships, 45, 48

deletion rules, 48-49
many-to-many, 47
one-to-many, 46
one-to-one, 46
participation, 49-54
relational databases, 12

many-to-many, 14-16
one-to-many, 14
one-to-one, 13

tables, INNER JOIN, 267-268
requesting all columns using shortcuts, 87-88
requests

translating into SQL, 81-85
expanding field of vision, 85-87
using shortcuts to request all columns, 87-88

UNIONs, 348
complex SELECT statements, 351-354
SELECT statements, 348-349

sorting, 357-358
using UNION more than once, 355-356

resolving
duplicate fields, tables, 36-37, 39-41
multipart fields, 27-29
multivalued fields, 30-32

restrict deletion rule, 48
restrictions

column restrictions, GROUP BY clause, 459-460
data types, 116
grouping on expressions, GROUP BY clause, 461-462

result sets
combining with unions, 236-238
difference, 230-233
intersections between, 224-227
OR, 202

RIGHT OUTER JOINs, 301
row subqueries, 376-377
rows

counting with COUNT, 422-423
deleting

with DELETE, 573-574
with subqueries, 577-579
with WHERE clause, 575

duplicate rows, eliminating, 88-90
ensuring you delete the correct rows, 575-576
ensuring you’re updating the correct rows, UPDATE, 509
excluding, 191-193
filtering with subqueries, 512-515
finding related rows, INNER JOINs, 268-269
updating with UPDATE, 508

S
SAA, 65
sales order database

aggregate functions, 435-436

CASE sample statements, 656, 658-659
DELETE sample statements, 581-582
driver tables sample statements, 697-698
GROUP BY clause, 464-465
HAVING clause samples, 492-493
INSERT samples, 557-560
OUTER JOINs, 326-328
search conditions, 205-206
SELECT statements, 98-99
set sample statements, 618, 620-622
subqueries

expressions, 399-400
filters, 405-406

UNIONs, 360-364
unlinked data sample statements, 697-698
unlinked tables sample statements, 687-688
UPDATE samples, 522-526

sample statements
aggregate functions, 435

bowling league database, 439-440
entertainment agency database, 437
recipes database, 441-442
sales orders database, 435-436
school scheduling database, 438

CASE, 655-656
bowling league database, 666-668
entertainment database, 659-662
sales order database, 656, 658-659
school scheduling database, 662-665

defined pattern strings, 176
DELETE, 580-581

bowling league database, 586-588
entertainment agency database, 582-584
sales orders database, 581-582
school scheduling database, 584-585

driver tables, 697

bowling league database, 703-704
entertainment database, 698-700
sales order database, 697-698
school scheduling database, 700-703

expressions, 144-145
bowling league database, 151-152
emergency agency database, 147-148
sales orders database, 145-146
school scheduling database, 149-150

GROUP BY clause, 463
bowling league database, 470-472
entertainment agency database, 466-467
recipes database, 473-474
sales orders database, 464-465
school scheduling database, 468-469

HAVING clause, 491
bowling league database, 497-498
entertainment agency database, 493-494
recipes database, 498-499
sales orders database, 492-493
school scheduling database, 494-497

INNER JOINs, 269-270
matching values, 283-294
multiple tables, 276-283
two tables, 270-275

INSERT, 556-557
entertainment agency database, 561-563
sales orders database, 557-560
school scheduling database, 564-567

OUTER JOINs, 325
bowling league database, 335-337
entertainment agency database, 329-331
recipes database, 338-340
sales orders database, 326-328
school scheduling database, 331-334

search conditions, 204

bowling league database, 210
entertainment agency database, 206-208
recipes database, 211-212
sales orders database, 205-206
school scheduling database, 208-209

SELECT statements, 97
bowling league database, 103-104
entertainment agency database, 100-101
recipes database, 105-106
sales orders database, 98-99
school scheduling database, 102

sets, 618
bowling league database, 629-633
entertainment database, 622-624
recipes database, 633-635
sales orders database, 618-622
school scheduling database, 625-628

subqueries, expressions
bowling league database, 403
entertainment agency database, 400
recipes database, 403
sales orders database, 399-400
school scheduling database, 401

subqueries, filters
bowling league database, 410-411
entertainment agency database, 406-407
recipes database, 412-413
sales orders database, 405-406
school scheduling database, 408-409

UNIONs, 359
bowling league database, 368-370
entertainment agency database, 365
recipes database, 370-371
sales orders database, 360-364
school scheduling database, 366-367

unlinked data, 686

unlinked tables. See unlinked tables, sample statements
unlinked tables

bowling league database, 695-696
entertainment database, 689-691
sales order database, 687-688
school scheduling database, 691-695

UPDATE, 521-522
bowling league database, 533-537
entertainment agency database, 526-530
sales orders database, 522-526
school scheduling database, 530-533

saving SELECT statements, 96-97
scalar subqueries, 376-378
school scheduling database

aggregate functions, 438
CASE sample statements, 662-665
DELETE sample statements, 584-585
driver tables, 700-703
expressions, 149-150
GROUP BY clause, 468-469
HAVING clause samples, 494-497
INSERT sample statements, 564-567
OUTER JOINs, 331-334
search conditions, 208-209
SELECT statements, 102
subqueries

expressions, 401
filters, 408-409

set sample statements, 625-628
UNIONs, 366-367
unlinked data sample statements, 700-703
unlinked tables sample statements, 691-695
UPDATE samples, 530-533

search conditions, 158, 254
comparison predicates, 163

comparing string values, 163-166

equality and inequality, 166-167
less than and greater than, 168-170

excluding rows with NOT, 181-184
Null condition, 179-181
pattern match condition, 175-179
range condition, 170-173
samples, 204

bowling league database, 210
entertainment agency database, 206-208
recipes database, 211-212
sales orders database, 205-206
school scheduling database, 208-209

set membership condition, 173-175
Searched CASE, 644

solving problems, 652-654
SELECT clause, 76

expressions, 133
concatenation, 134-135
date expressions, 138-139
mathematical expressions, 137-138
naming, 135-136

inserting data, 548-555
SELECT statement, 78

SELECT DISTINCT statements, simulating with GROUP BY clause, 457-458
SELECT expression, 76
SELECT operation, 76
SELECT query, 76

sorting, 91-92
ORDER BY clause, 93-96

SELECT statements, 76-77
clauses, 77-79
eliminating duplicate rows, 88-90
embedding OUTER JOINs, 307-310
embedding in tables, 260-262
ORDER, 92
ORDER BY clause, 92

sample statements, 97
bowling league database, 103-104
entertainment agency database, 100-101
recipes database, 105-106
sales orders database, 98-99
school scheduling database, 102

saving, 96-97
sorting, 91-92
WHERE clause. See WHERE clause
writing requests with UNIONs, 348-349

complex statements, 351-354
SEQUEL-XRM, 58
sequences, collating, 92-93
set diagrams, 225
set membership condition, 173-175
set operations, 221

difference, 228-230
between result sets, 230-233
problems you can solve, 233-234

intersections, 222-223
between result sets, 224-227
problems you can solve, 227-228

SQL
EXCEPT, 243-245
INTERSECT, 240-242
UNION, 245-247

versus SQL set operations, 239
unions, 234-235, 238

combining result sets, 236-238
problems you can solve, 238-239

sets, 220-221
combining with UNION, 245-247
including some criteria but excluding others, 596-597
with multiple AND criteria, 594-595
with multiple NOT criteria, 595-596
NOT. See NOT

overview, 593-594
sample statements, 618

bowling league database, 629-633
entertainment database, 622-624
recipes database, 633-635
sales orders database, 618-622
school scheduling database, 625-628

shortcuts, requesting all columns, 87-88
Simple CASE, 644

solving problems, 647-651
single quotes, 117
smallest values, finding with MIN, 430-431
solving

problems
with driver tables, 679
with unlinked data, 676-678

problems with CASE, 647
Searched CASE, 652-654
Simple CASE, 647-651

SOME, predicate keywords for subqueries, 392-395
sorting

SELECT query, 91-92
ORDER BY clause, 93-96

SELECT statement, 91-92
UNIONs, 357-358

SQL, origins of, 58-59
early implementations, 59-60
standardization, 60-62

SQL set operations
versus classic set operations, 239
EXCEPT, 243-245
INTERSECT, 240-242
UNION, 245-247

SQL Standard, data types, 111
restrictions, 116

SQL standard diagrams. See Appendix A

SQL standards, structure of, 66-68
SQL/86, 61-63
SQL/89, 62-63
SQL/92, 63-64
SQL/DS, 60
SQUARE (Specifying Queries As Relational Expressions), 59
standardization, 66

ANSI/ISO standard, 62-65
FIPS, 65
ODBC, 65
origins of SQL, 60-62
SAA, 65
X/OPEN, 65

START TRANSACTION, 510
statements

DELETE. See DELETE
INSERT. See INSERT
SELECT DISTINCT statements. See SELECT DISTINCT statements
UPDATE. See UPDATE

Stonebraker, Michael, 60
string values, comparing, 163-166
structure of SQL standards, 66-68
structures, 22

fields, 23
checklists for, 25-27
naming, 23-25
resolving multipart fields, 27-29
resolving multivalued fields, 30-32

relationships, 45, 48
deletion rules, 48-49
participation, 49-54

tables, 32
checklists for, 35-36
keys, 42-45
naming, 33-35
resolving duplicate fields, 36-41

subqueries, 376
as column expressions, 378

aggregate functions, 381-383
syntax, 378-381

deleting rows, 577-579
filtering rows, UPDATE, 512-515
as filters, 384

predicate keywords, 386-396
syntax, 384-386

row subqueries, 376-377
sample statements, 399

in expressions, bowling league database, 403
in expressions, entertainment agency database, 400
in expressions, recipes database, 403
in expressions, sales orders database, 399-400
in expressions, school scheduling database, 401
as filters, bowling league database, 410-411
as filters, entertainment agency database, 406-407
as filters, recipes database, 412-413
as filters, sales orders database, 405-406
as filters, school scheduling database, 408-409

scalar subqueries, 376-378
table subqueries, 376-377
UPDATE expressions, 518-520
uses for, 397-398
WHERE clause, GROUP BY clause, 456-457

SUM, counting rows and values, 425-426
syntax

FULL OUTER JOINs, 320-322
INNER JOIN, tables, 252-256

assigning correlation names, 258-260
embedding JOINs within JOINs, 262-267
embedding SELECT statements, 260-262
relationships, 267-268

OUTER JOINs, tables, 302-307
embedding JOINs with JOINs, 310-320

embedding SELECT statements, 307-310
System R, 6, 60

T
table subqueries, 376-377
tables, 32

checklists for, 35-36
driver tables. See driver tables
duplicate fields, resolving, 36-41
INNER JOIN, 253-256

assigning correlation names, 258-260
embedding JOINs within JOINs, 262-267
embedding SELECT statements, 260-262
relationships, 267-268

joining, samples, 270-275
matching values, 283-294
multiple tables, 276-283

keys, 42-45
linking tables, 16
naming, 33-35
OUTER JOINs, 302-307

embedding JOINs with JOINs, 310-320
embedding SELECT statements, 307-310

relational databases, 7-8
unlinked, 673-675

time expressions, 131-133
time literals, 119-120
timestamp literals, 119-120
totals, computing with SUM, 425-426
trailing blanks, 166
transactions, UPDATE, 510-511
translating requests into SQL, 81-85

expanding field of vision, 85-87
using shortcuts to request all columns, 87-88

U

UNION JOINs, 323
UNIONs, 221, 234-235, 238, 345-348

combining result sets, 236-238
performing, 347
problems you can solve, 238-239
sample statements, 359

bowling league database, 368-370
entertainment agency database, 365
recipes database, 370-371
sales orders database, 360, 362-364
school scheduling database, 366-367

SQL set operations, 245-247
uses for, 358-359
writing requests, 348

complex SELECT statements, 351-354
SELECT statements, 348-349
sorting, 357-358
using UNION more than once, 355-356

unlinked data, 672-674
CROSS JOINs, deciding when to use, 675
driver tables. See driver tables
sample statements, 686

unlinked tables. See unlinked tables, sample statements
solving problems with, 676-678

driver tables, 679
unlinked tables, 673-675

sample statements
bowling league database, 695-696
entertainment database, 689-691
sales order database, 687-688
school scheduling database, 691-695

UPDATE, 505-507
ensure you’re updating the correct rows, 509
expressions, 507-508

subqueries, 518-520
updating selected rows, 508

JOINs, 515-516, 518
samples, 521-522

bowling league database, 533-537
entertainment agency database, 526-530
sales orders database, 522, 524-526
school scheduling database, 530-533

subqueries, filtering rows, 512-515
transactions, 510-511
updating multiple columns, 511-512
uses for, 520-521

updating
multiple columns, 511-512
selected rows, UPDATE, 508

USING clause, 256

V
value expressions, 139-141
values

counting with COUNT, 424-425
explicit values. See explicit values
inserting, 543-547
non-key values, FULL OUTER JOINs, 323
Null, 141-143, 199-203

problems with, 143-144
Venn diagram, 225
Venn, John, 225
views, relational databases, 11-12

W
WHERE clause, 157-159, 256

CASE, 655
deleting rows, 575
filtering, 482-484
predicates, 159-160
SELECT statement, 79
using, 160-162

using GROUP BY in subqueries, 456-457
Wong, Eugene, 60
writing requests with UNIONs, 348

complex SELECT statements, 351, 353-354
SELECT statements, 348-349
sorting, 357-358
using UNION more than once, 355-356

X-Y-Z
X/OPEN, 65
X3H2, 61-62

	About This eBook
	Title Page
	Copyright Page
	Praise for SQL Queries for Mere Mortals®, Third Edition
	Contents
	Foreword
	Preface
	Acknowledgments

	About the Authors
	Introduction
	Are You a Mere Mortal?
	About This Book
	What This Book Is Not
	How to Use This Book
	Reading the Diagrams Used in This Book
	Sample Databases Used in This Book
	“Follow the Yellow Brick Road”

	Part I: Relational Databases and SQL
	1. What Is Relational?
	Types of Databases
	A Brief History of the Relational Model
	Anatomy of a Relational Database
	What’s in It for You?
	Summary

	2. Ensuring Your Database Structure Is Sound
	Why Is This Chapter Here?
	Why Worry about Sound Structures?
	Fine-Tuning Fields
	Fine-Tuning Tables
	Establishing Solid Relationships
	Is That All?
	Summary

	3. A Concise History of SQL
	The Origins of SQL
	Early Vendor Implementations
	“. . . And Then There Was a Standard”
	Evolution of the ANSI/ISO Standard
	Commercial Implementations
	What the Future Holds
	Why Should You Learn SQL?
	Which Version of SQL Does This Book Cover?
	Summary

	Part II: SQL Basics
	4. Creating a Simple Query
	Introducing SELECT
	The SELECT Statement
	A Quick Aside: Data versus Information
	Translating Your Request into SQL
	Eliminating Duplicate Rows
	Sorting Information
	Saving Your Work
	Sample Statements
	Summary
	Problems for You to Solve

	5. Getting More Than Simple Columns
	What Is an Expression?
	What Type of Data Are You Trying to Express?
	Changing Data Types: The CAST Function
	Specifying Explicit Values
	Types of Expressions
	Using Expressions in a SELECT Clause
	That “Nothing” Value: Null
	Sample Statements
	Summary
	Problems for You to Solve

	6. Filtering Your Data
	Refining What You See Using WHERE
	Defining Search Conditions
	Using Multiple Conditions
	Nulls Revisited: A Cautionary Note
	Expressing Conditions in Different Ways
	Sample Statements
	Summary
	Problems for You to Solve

	Part III: Working with Multiple Tables
	7. Thinking in Sets
	What Is a Set, Anyway?
	Operations on Sets
	Intersection
	Difference
	Union
	SQL Set Operations
	Summary

	8. INNER JOINs
	What Is a JOIN?
	The INNER JOIN
	Uses for INNER JOINs
	Sample Statements
	Summary
	Problems for You to Solve

	9. OUTER JOINs
	What Is an OUTER JOIN?
	The LEFT/RIGHT OUTER JOIN
	The FULL OUTER JOIN
	Uses for OUTER JOINs
	Sample Statements
	Summary
	Problems for You to Solve

	10. UNIONs
	What Is a UNION?
	Writing Requests with UNION
	Uses for UNION
	Sample Statements
	Summary
	Problems for You to Solve

	11. Subqueries
	What Is a Subquery?
	Subqueries as Column Expressions
	Subqueries as Filters
	Uses for Subqueries
	Sample Statements
	Summary
	Problems for You to Solve

	Part IV: Summarizing and Grouping Data
	12. Simple Totals
	Aggregate Functions
	Using Aggregate Functions in Filters
	Sample Statements
	Summary
	Problems for You to Solve

	13. Grouping Data
	Why Group Data?
	The GROUP BY Clause
	“Some Restrictions Apply”
	Uses for GROUP BY
	Sample Statements
	Summary
	Problems for You to Solve

	14. Filtering Grouped Data
	A New Meaning of “Focus Groups”
	Where You Filter Makes a Difference
	Uses for HAVING
	Sample Statements
	Summary
	Problems for You to Solve

	Part V: Modifying Sets of Data
	15. Updating Sets of Data
	What Is an UPDATE?
	The UPDATE Statement
	Uses for UPDATE
	Sample Statements
	Summary
	Problems for You to Solve

	16. Inserting Sets of Data
	What Is an INSERT?
	The INSERT Statement
	Uses for INSERT
	Sample Statements
	Summary
	Problems for You to Solve

	17. Deleting Sets of Data
	What Is a DELETE?
	The DELETE Statement
	Uses for DELETE
	Sample Statements
	Summary
	Problems for You to Solve

	Part VI: Introduction to Solving Tough Problems
	18. “NOT” and “AND” Problems
	A Short Review of Sets
	Finding Out the “Not” Case
	Finding Multiple Matches in the Same Table
	Sample Statements
	Summary
	Problems for You to Solve

	19. Condition Testing
	Conditional Expressions (CASE)
	Solving Problems with CASE
	Sample Statements
	Summary
	Problems for You to Solve

	20. Using Unlinked Data and “Driver” Tables
	What Is Unlinked Data?
	Solving Problems with Unlinked Data
	Solving Problems Using “Driver” Tables
	Sample Statements
	Summary
	Problems for You to Solve

	In Closing

	Appendices
	A. SQL Standard Diagrams
	B. Schema for the Sample Databases
	Sales Orders Example Database
	Sales Orders Modify Database
	Entertainment Agency Example Database
	Entertainment Agency Modify Database
	School Scheduling Example Database
	School Scheduling Modify Database
	Bowling League Example Database
	Bowling League Modify Database
	Recipes Database

	C. Date and Time Types, Operations, and Functions
	IBM DB2
	IBM DB2
	Microsoft Office Access
	Microsoft SQL Server
	MySQL
	Oracle

	D. Suggested Reading
	Database Books
	Books on SQL

	Index

