

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Ryan Stephens
Ron Plew
Arie D. Jones

SamsTeachYourself

24in

Hours

SQL®

FOURTH EDITION

Boykma
Text Box
From library of Wow! eBook
 www.wowebook.com

Associate
Publisher
Mark Taub

Acquisitions Editor
Trina MacDonald

Development
Editor
Michael Thurston

Managing Editor
Patrick Kanouse

Project Editor
Mandie Frank

Copy Editor
Heather Wilkins
Editorial Services

Indexer
Heather McNeil

Proofreader
Matt Purcell

Technical Editor
Steve Cvar

Publishing
Coordinator
Olivia Basegio

Designer
Gary Adair

Composition
Bronkella Publishing

Sams Teach Yourself SQL®in 24 Hours, Fourth Edition
Copyright © 2008 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33018-6
ISBN-10: 0-672-33018-0

Library of Congress Cataloging-in-Publication Data
Stephens, Ryan K.

Sams teach yourself SQL in 24 hours / Ryan Stephens, Ron Plew, Arie D.
Jones. -- 4th ed.

p. cm. -- (Sams teach yourself in 24 hours)
On t.p. of earlier ed. Ronald R. Plew's name appeared first.
Includes indexes
ISBN 978-0-672-33018-6 (pbk.)

1. SQL (Computer program language) I. Plew, Ronald R. II. Jones,
Arie. III. Plew, Ronald R. Sams teach yourself SQL in 24 hours. IV.
Title.

QA76.73.S67P554 2008
005.75'6--dc22

2008016630

Printed in the United States of America

First Printing May 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

http://www.informit.com/onlineedition

Contents at a Glance

Introduction. 1

Part I: A SQL Concepts Overview

HOUR 1 Welcome to the World of SQL . 7

Part II: Building Your Database

HOUR 2 Defining Data Structures . 27

3 Managing Database Objects . 41

4 The Normalization Process . 61

5 Manipulating Data . 73

6 Managing Database Transactions . 87

Part III: Getting Effective Results from Queries

HOUR 7 Introduction to the Database Query . 101

8 Using Operators to Categorize Data. 117

9 Summarizing Data Results from a Query . 141

10 Sorting and Grouping Data . 151

11 Restructuring the Appearance of Data . 165

12 Understanding Dates and Times . 185

Part IV: Building Sophisticated Database Queries

HOUR 13 Joining Tables in Queries . 203

14 Using Subqueries to Define Unknown Data . 221

15 Combining Multiple Queries into One . 235

Part V: SQL Performance Tuning

HOUR 16 Using Indexes to Improve Performance . 253

17 Improving Database Performance . 265

Part VI: Using SQL to Manage Users and Security

HOUR 18 Managing Database Users . 283

19 Managing Database Security. 297

Part VII: Summarized Data Structures

HOUR 20 Creating and Using Views and Synonyms . 313

21 Working with the System Catalog . 329

Part VIII: Applying SQL Fundamentals in Today’s World

HOUR 22 Advanced SQL Topics . 343

23 Extending SQL to the Enterprise, the Internet, and the Intranet 359

24 Extensions to Standard SQL. 369

Part IX: Appendixes

A Common SQL Commands . 381

B Using MySQL for Exercises . 387

C Answers to Quizzes and Exercises . 391

D CREATE TABLE Statements for Book Examples . 435

E INSERT Statements for Data in Book Examples . 437

F Bonus Exercises . 441

Glossary. 447

Index . 451

Table of Contents

Introduction 1

What This Book Intends to Accomplish . 1

What We Added to This Edition . 1

What You Need . 2

Conventions Used in This Book . 2

ANSI SQL and Vendor Implementations . 3

Understanding the Examples and Exercises. 3

Part I: A SQL Concepts Overview

HOUR 1: Welcome to the World of SQL 7

SQL Definition and History . 7

SQL Sessions . 14

Types of SQL Commands . 15

The Database Used in This Book . 17

Summary . 22

Q&A . 23

Workshop . 24

Part II: Building Your Database

HOUR 2: Defining Data Structures 27

What Is Data? . 27

Basic Data Types . 28

Summary . 36

Q&A . 37

Workshop . 37

HOUR 3: Managing Database Objects 41

What Are Database Objects? . 41

What Is a Schema? . 42

A Table: The Primary Storage for Data . 44

Integrity Constraints . 52

Summary . 56

Q&A . 57

Workshop . 58

HOUR 4: The Normalization Process 61

Normalizing a Database . 61

Denormalizing a Database. 69

Summary . 69

Q&A . 70

Workshop . 70

HOUR 5: Manipulating Data 73

Overview of Data Manipulation . 73

Populating Tables with New Data . 74

Updating Existing Data . 79

Deleting Data from Tables . 81

Summary . 82

Q&A . 82

Workshop . 83

HOUR 6: Managing Database Transactions 87

What Is a Transaction? . 87

Controlling Transactions . 88

Transactional Control and Database Performance . 95

Summary . 95

Q&A . 96

Workshop . 96

vi

Sams Teach Yourself SQL in 24 Hours

Contents

vii

Part III: Getting Effective Results from Queries

HOUR 7: Introduction to the Database Query 101

What Is a Query? . 101

Introduction to the SELECT Statement . 101

Examples of Simple Queries . 109

Summary. 113

Q&A . 113

Workshop . 114

HOUR 8: Using Operators to Categorize Data 117

What Is an Operator in SQL? . 117

Comparison Operators . 118

Logical Operators . 121

Conjunctive Operators . 127

Negative Operators . 130

Arithmetic Operators . 134

Summary. 138

Q&A . 138

Workshop . 138

HOUR 9: Summarizing Data Results from a Query 141

What Are Aggregate Functions? . 141

Summary. 149

Q&A . 149

Workshop . 149

HOUR 10: Sorting and Grouping Data 151

Why Group Data? . 151

The GROUP BY Clause . 152

GROUP BY Versus ORDER BY . 156

The HAVING Clause. 159

Summary. 160

viii

Sams Teach Yourself SQL in 24 Hours

Q&A . 160

Workshop . 161

HOUR 11: Restructuring the Appearance of Data 165

ANSI Character Functions. 165

Various Common Character Functions . 166

Miscellaneous Character Functions . 175

Mathematical Functions. 178

Conversion Functions . 179

Combining Character Functions . 181

Summary. 182

Q&A . 182

Workshop . 183

HOUR 12: Understanding Dates and Times 185

How Is a Date Stored? . 186

Date Functions . 187

Date Conversions . 192

Summary. 197

Q&A . 197

Workshop . 198

Part IV: Building Sophisticated Database Queries

HOUR 13: Joining Tables in Queries 203

Selecting Data from Multiple Tables . 203

Types of Joins . 204

Join Considerations . 214

Summary. 218

Q&A . 218

Workshop . 219

HOUR 14: Using Subqueries to Define Unknown Data 221

What Is a Subquery? . 221

Embedded Subqueries . 227

Correlated Subqueries . 229

Summary. 230

Q&A . 231

Workshop . 231

HOUR 15: Combining Multiple Queries into One 235

Single Queries Versus Compound Queries . 235

Compound Query Operators . 236

Using ORDER BY with a Compound Query . 242

Using GROUP BY with a Compound Query . 244

Retrieving Accurate Data . 246

Summary. 246

Q&A . 246

Workshop . 247

Part V: SQL Performance Tuning

HOUR 16: Using Indexes to Improve Performance 253

What Is an Index?. 253

How Do Indexes Work? . 254

The CREATE INDEX Command . 255

Types of Indexes . 255

When Should Indexes Be Considered? . 258

When Should Indexes Be Avoided?. 259

Dropping an Index . 260

Summary. 261

Q&A . 261

Workshop . 262

Contents

ix

HOUR 17: Improving Database Performance 265

What Is SQL Statement Tuning? . 265

Database Tuning Versus SQL Statement Tuning . 266

Formatting Your SQL Statement. 266

Full Table Scans . 272

Other Performance Considerations . 273

Performance Tools . 276

Summary. 276

Q&A . 277

Workshop . 278

Part VI: Using SQL to Manage Users and Security

HOUR 18: Managing Database Users 283

Users Are the Reason . 284

The Management Process . 286

Tools Utilized by Database Users . 293

Summary. 294

Q&A . 294

Workshop . 295

HOUR 19: Managing Database Security 297

What Is Database Security? . 297

What Are Privileges? . 298

Controlling User Access . 302

Controlling Privileges Through Roles . 305

Summary. 307

Q&A . 308

Workshop . 309

x

Sams Teach Yourself SQL in 24 Hours

Part VII: Summarized Data Structures

HOUR 20: Creating and Using Views and Synonyms 313

What Is a View? . 313

Creating Views . 316

WITH CHECK OPTION . 320

Updating Data Through a View . 321

Creating a Table from a View . 322

Views and the ORDER BY Clause . 323

Dropping a View . 323

What Is a Synonym? . 324

Summary. 325

Q&A . 326

Workshop . 326

HOUR 21: Working with the System Catalog 329

What Is the System Catalog?. 329

How Is the System Catalog Created?. 331

What Is Contained in the System Catalog? . 331

System Catalog Tables by Implementation . 333

Querying the System Catalog . 335

Updating System Catalog Objects . 337

Summary. 337

Q&A . 338

Workshop . 338

Part VIII: Applying SQL Fundamentals in Today’s World

HOUR 22: Advanced SQL Topics 343

Cursors . 343

Stored Procedures and Functions . 346

Triggers . 349

Dynamic SQL . 351

Contents

xi

Call-Level Interface . 352

Using SQL to Generate SQL . 352

Direct Versus Embedded SQL . 353

Windowed Table Functions . 354

Working with XML . 354

Summary. 355

Q&A . 356

Workshop . 356

HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet 359

SQL and the Enterprise. 359

Accessing a Remote Database . 361

SQL and the Internet . 364

SQL and the Intranet . 365

Summary. 366

Q&A . 367

Workshop . 367

HOUR 24: Extensions to Standard SQL 369

Various Implementations . 369

Example Extensions. 372

Interactive SQL Statements . 375

Summary. 376

Q&A . 377

Workshop . 377

Part IX: Appendixes

APPENDIX A: Common SQL Commands 381

SQL Statements. 381

SQL Clauses . 384

xii

Sams Teach Yourself SQL in 24 Hours

APPENDIX B: Using MySQL for Exercises 387

Windows Installation Instructions . 387

Linux Installation Instructions . 388

APPENDIX C: Answers to Quizzes and Exercises 391

Hour 1, “Welcome to the World of SQL” . 391

Hour 2, “Defining Data Structures” . 393

Hour 3, “Managing Database Objects” . 395

Hour 4, “The Normalization Process” . 398

Hour 5, “Manipulating Data” . 400

Hour 6, “Managing Database Transactions” . 402

Hour 7, “Introduction to the Database Query” . 403

Hour 8, “Using Operators to Categorize Data” . 406

Hour 9, “Summarizing Data Results from a Query” . 409

Hour 10, “Sorting and Grouping Data”. 412

Hour 11, “Restructuring the Appearance of Data” . 414

Hour 12, “Understanding Dates and Time” . 416

Hour 13, “Joining Tables in Queries” . 417

Hour 14, “Using Subqueries to Define Unknown Data” . 419

Hour 15, “Combining Multiple Queries into One” . 421

Hour 16, “Using Indexes to Improve Performance” . 423

Hour 17, “Improving Database Performance” . 425

Hour 18, “Managing Database Users” . 427

Hour 19, “Managing Database Security”. 428

Hour 20, “Creating and Using Views and Synonyms” . 429

Hour 21, “Working with the System Catalog” . 430

Hour 22, “Advanced SQL Topics” . 431

Hour 23, “Extending SQL to the Enterprise, the Internet, and the Intranet”. . 432

Hour 24, “Extensions to Standard SQL” . 433

Contents

xiii

APPENDIX D: CREATE TABLE Statements for Book Examples 435

EMPLOYEE_TBL . 435

EMPLOYEE_PAY_TBL . 435

CUSTOMER_TBL . 436

ORDERS_TBL . 436

PRODUCTS_TBL . 436

APPENDIX E: INSERT Statements for Book Examples 437

EMPLOYEE_TBL . 437

EMPLOYEE_PAY_TBL . 438

CUSTOMER_TBL . 438

ORDERS_TBL . 439

PRODUCTS_TBL . 440

APPENDIX F: Bonus Exercises 441

Glossary 447

Index 451

xiv

Sams Teach Yourself SQL in 24 Hours

About the Authors

For more than 10 years, the authors have studied, applied, and documented the SQL stan-

dard and its application to critical database systems in this book. Ryan Stephens and Ron

Plew are entrepreneurs, speakers, and cofounders of Perpetual Technologies, Inc. (PTI), a

fast-growing IT management and consulting firm. PTI specializes in database technologies,

primarily Oracle and SQL servers running on all Unix, Linux, and Microsoft platforms.

Starting out as data analysts and database administrators, Ryan and Ron now lead a team

of impressive technical subject matter experts who manage databases for clients worldwide.

They authored and taught database courses for Indiana University-Purdue University in

Indianapolis for five years and have authored more than a dozen books on Oracle, SQL,

database design, and high availability of critical systems.

Arie D. Jones is Senior SQL Server database administrator and analyst for Perpetual

Technologies, Inc. (PTI) in Indianapolis, Indiana. Arie leads PTI’s team of experts in plan-

ning, design, development, deployment, and management of database environments and

applications to achieve the best combination of tools and services for each client. He is a

regular speaker at technical events and has authored several books and articles pertaining

to database-related topics. The most recent is SQL Functions Programmer’s Reference from

Wrox Publishing.

Dedications

This book is dedicated to my family: my wife, Linda; my mother, Betty; my children,
Leslie, Nancy, Angela, and Wendy; my grandchildren, Andy, Ryan, Holly, Morgan,
Schyler, Heather, Gavin, Regan, Caleigh, and Cameron; and my sons-in-law, Jason

and Dallas. Thanks for being patient with me during this busy time. Love all of you.

—Poppy

This book is dedicated to my parents, Thomas and Karlyn Stephens, who always
taught me that I can achieve anything if determined. This book is also dedicated to
my brilliant son, Daniel, and to my beautiful daughters, Autumn and Alivia; don’t

ever settle for anything less than your dreams.

—Ryan

I would like to dedicate this book to my wife, Jackie, for being understanding and
supportive during the long hours that it took to complete this book.

—Arie

Acknowledgments

Thanks to all the people in our lives who have been patient during all editions of this

book—mostly to our wives, Tina and Linda. Thanks to Arie Jones for stepping up to the

plate and helping so much with this edition. Thanks also to the editorial staff at Sams for

all of their hard work to make this edition better than the last. It has been a pleasure to

work with each of you.

—Ryan and Ron

We Want to Hear from You

As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

You can email or write me directly to let me know what you did or didn’t like about this

book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and

that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name

and phone or email address. I will carefully review your comments and share them with the

author and editors who worked on the book.

E-mail: opensource@samspublishing.com

Mail: Mark Taub

Associate Publisher

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to any

updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

Welcome to the world of relational databases and SQL! This book is written for those self-

motivated individuals out there who would like to get an edge on relational database tech-

nology by learning the Structured Query Language—SQL. This book was written primarily

for those with very little or no experience with relational database management systems

using SQL. This book also applies to those who have some experience with relational data-

bases but need to learn how to navigate within the database, issue queries against the data-

base, build database structures, manipulate data in the database, and more. This book is

not geared toward individuals with significant relational database experience who have

been using SQL on a regular basis.

What This Book Intends to Accomplish
This book was written for individuals with little or no experience using SQL or those who

have used a relational database, but their tasks have been very limited within the realm of

SQL. Keeping this thought in mind, it should be noted up front that this book is strictly a

learning mechanism, and one in which we present the material from ground zero and pro-

vide examples and exercises with which to begin to apply the material covered. This book is

not a complete SQL reference and should not be relied on as a sole reference of SQL.

However, this book combined with a complete SQL command reference could serve as a

complete solution source to all of your SQL needs.

What We Added to This Edition
This edition contains the same content and format as the first through third editions. We

have been through the entire book, searching for the little things that could be improved to

produce a better edition. We have also added concepts and commands from the new SQL

standard, SQL:2003, to bring this book up to date, making it more complete and applicable

to today’s SQL user. The most important addition was the use of MySQL for hands-on exer-

cises. By using an open source database such as MySQL, all readers have equal opportunity

for participation in hands-on exercises.

What You Need
You might be wondering, what do I need to make this book work for me? Theoretically, you

should be able to pick up this book, study the material for the current hour, study the

examples, and either write out the exercises or run them on a relational database server.

However, it would be to your benefit to have access to a relational database system to

which to apply the material in each lesson. The relational database to which you have

access is not a major factor because SQL is the standard language for all relational databas-

es. Some database systems that you can use include Oracle, Sybase, Informix, Microsoft SQL

Server, Microsoft Access, MySQL, and dBASE.

Conventions Used in This Book
For the most part, we have tried to keep conventions in this book as simple as possible.

Many new terms are printed in italics.

In the listings, all code that you type in (input) appears in boldface monospace. Output

appears in standard monospace. Any code that is serving as a placeholder appears in

italic monospace.

SQL code and keywords have been placed in uppercase for your convenience and general

consistency. For example:

SELECT * FROM PRODUCTS_TBL;

PROD_ID PROD_DESC COST
---------- ------------------------------------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

9 rows selected.

The following special design features enhance the text:

There are syntax boxes to draw your attention to the syntax of the commands discussed

during each hour.

SELECT [ALL | * | DISTINCT COLUMN1, COLUMN2]
FROM TABLE [, TABLE2];

2

Sams Teach Yourself SQL in 24 Hours

Notes are provided to expand on the material covered in each hour of the book.

Cautions are provided to warn the reader about “disasters” that could occur and
certain precautions that should be taken.

Tips are also given to supplement the material covered during appropriate hours
of study.

ANSI SQL and Vendor Implementations
One thing that is difficult about writing a book like this on standard SQL is that although

there is an ANSI standard for SQL, each database vendor has its own implementation of

SQL. With each implementation come variations from the actual standard, enhancements

to the standard, and even missing elements from the standard.

The expected question is, “Because there is an ANSI standard for SQL, what is so difficult

about teaching standard SQL?” The answer to this question begins with the statement that

ANSI SQL is just that: a standard. ANSI SQL is not an actual language. To teach you SQL,

we had to come up with examples and exercises that involve using one or more implemen-

tations of SQL. Because each vendor has its own implementation with its own specifications

for the language of SQL, these variations, if not handled properly in this book, could actual-

ly cause confusion concerning the syntax of various SQL commands. Therefore, we have

tried to stay as close to the ANSI standard as possible, foremost discussing the ANSI stan-

dard and then showing examples from different implementations that are very close, if not

the same, as the exact syntax that ANSI prescribes.

We have, however, accompanied examples of variations among implementations with

notes for reminders and tips on what to watch out for. Just remember this: Each implemen-

tation differs slightly from other implementations. The most important thing is that you

understand the underlying concepts of SQL and its commands. Although slight variations

do exist, SQL is basically the same across the board and is very portable from database to

database, regardless of the particular implementation.

Understanding the Examples and Exercises
We have chosen to use MySQL for most of the examples in this book due to its high compli-
ance to the ANSI standard; however, we have also shown examples from Oracle, Sybase,
Microsoft SQL Server, and dBASE.

Introduction

3

By the
Way

Watch
Out!

Did you
Know?

The use of MySQL for hands-on exercises was chosen so that all readers may participate,
with minimal confusion in converting SQL syntax into the proper syntax of the database
each reader is using. MySQL was chosen for exercises because it is an open source database
(free), it is easy to install, and its syntax is very similar to that of the ANSI Standard.
Additionally, MySQL is compatible with most operating system platforms.

In Appendix B, “Using MySQL for Exercises,” we show you how to obtain and install
MySQL. After it is installed on your computer, MySQL can be used for most of the exercises
in this book. Unfortunately, because MySQL is not fully ANSI SQL compliant, MySQL exer-
cises are not available for every subject.

As stated, some differences in the exact syntax exist among implementations of SQL. For
example, if you attempt to execute some examples in this book, you might have to make
minor modifications to fit the exact syntax of the implementation that you are using. We
have tried to keep all the examples compliant with the standard; however, we have inten-
tionally shown you some examples that are not exactly compliant. The basic structure for
all the commands is the same. To learn SQL, you have to start with an implementation
using practical examples. For hands-on practice, we use MySQL. If you have access to
another database implementation such as Oracle, we encourage its use for hands-on exer-
cises. You should be able to emulate the database and examples used in this book without
much difficulty. Any adjustments that you might have to make to the examples in this
book to fit your implementation exactly will only help you to better understand the syntax
and features of your implementation.

Good luck!

4

Sams Teach Yourself SQL in 24 Hours

PART I

A SQL Concepts Overview

HOUR 1 Welcome to the World of SQL 7

This page intentionally left blank

HOUR 1

Welcome to the World of SQL

Welcome to the world of SQL and the vast, growing database technologies of today’s busi-

nesses all over the world. By reading this book, you have begun accepting the knowledge

that will soon be required for survival in today’s world of relational databases and data

management. Unfortunately, because it is first necessary to provide the background of

SQL and cover some preliminary concepts that you need to know, the majority of this

hour is text in paragraph format. Bear with the book; this will be exciting, and the “bor-

ing stuff” in this hour definitely pays off.

The highlights of this hour include:
. An introduction to and brief history of SQL
. An introduction to database management systems
. An overview of some basic terms and concepts
. An introduction to the database used in this book

SQL Definition and History
Every business has data, which requires some organized method or mechanism for main-

taining the data. This mechanism is referred to as a database management system (DBMS).

Database management systems have been around for years, many of which started out as

flat-file systems on a mainframe. With today’s technologies, the accepted use of database

management systems has begun to flow in other directions, driven by the demands of

growing businesses, increased volumes of corporate data, and of course, Internet technolo-

gies.

The modern wave of information management is primarily carried out through the use of

a relational database management system (RDBMS), derived from the traditional DBMS.

8 HOUR 1: Welcome to the World of SQL

Modern databases combined with client/server and Web technologies are typical

combinations used by current businesses to successfully manage their data and stay

competitive in their appropriate markets. The trend for many businesses is to move

from a client/server environment to the Web, where location is not a restriction

when users need access to important data. The next few sections discuss SQL and

the relational database, the most common DBMS implemented today. A good

fundamental understanding of the relational database, and how to apply SQL to

managing data in today’s information technology world, is important to your

understanding of the SQL language.

What Is SQL?
Structured Query Language (SQL) is the standard language used to communicate

with a relational database. The prototype was originally developed by IBM using Dr.

E.F. Codd’s paper (“A Relational Model of Data for Large Shared Data Banks”) as a

model. In 1979, not long after IBM’s prototype, the first SQL product, ORACLE, was

released by Relational Software, Incorporated (which was later renamed Oracle

Corporation). It is, today, one of the distinguished leaders in relational database

technologies. SQL is pronounced either of two ways: as the letters S-Q-L, or as

“sequel”; both pronunciations are acceptable. However, most experienced SQL users

tend to use the latter pronunciation.

If you travel to a foreign country, you may be required to know that country’s lan-

guage to get around. For example, you might have trouble ordering from a menu

via your native tongue, if the waiter speaks only his country’s language. Look at a

database as a foreign land in which you seek information. SQL is the language you

use to express your needs to the database. Just as you would order a meal from a

menu in another country, you can request specific information from within a data-

base in the form of a query using SQL.

What Is ANSI SQL?
The American National Standards Institute (ANSI) is an organization that approves

certain standards in many different industries. SQL has been deemed the standard

language in relational database communication, originally approved in 1986 based

on IBM’s implementation. In 1987, the ANSI SQL standard was accepted as the

international standard by the International Standards Organization (ISO). The stan-

dard was revised again in 1992 (SQL-92) and once again in 1999 (SQL-99). The

newest standard is now called SQL-2003 and a draft of the newest version is being

voted upon as of December 2007.

SQL Definition and History 9

The New Standard: SQL-2003
SQL-2003 has eight interrelated documents and other documents may be added in

the near future as the standard is expanded to encompass newly emerging technolo-

gy needs. The eight interrelated parts are as follows:

. Part 1—SQL/Framework—Specifies the general requirements for conformance

and defines the fundamental concepts of SQL.

. Part 2—SQL/Foundation—Defines the syntax and operations of SQL.

. Part 3—SQL/Call-Level Interface—Defines the interface for application pro-

gramming to SQL.

. Part 4—SQL/Persistent Stored Modules—Defines the control structures that

then define SQL routines. Part 4 also defines the modules that contain SQL

routines.

. Part 9—SQL/Host Language Bindings—Defines extensions to SQL to support

the management of external data through the use of data-wrappers and

datalink types.

. Part 10—Object Language Bindings—Defines extensions to the SQL language

to support the embedding of SQL statements into programs written in Java.

. Part 11—Information and Definition Schemas—Defines specifications for the

Information Schema and Definition Schema, which provide structural and

security information related to SQL data.

. Part 13—Routines and Types Using the Java Programming Language—Defines

the capability to call Java static routines and classes as SQL-invoked routines.

. Part 14—XML-Related Specifications—Defines ways in which SQL can be used

with XML.

The new ANSI standard (SQL-2003) has two levels of minimal compliance that a

DBMS may claim: Core SQL Support and Enhanced SQL Support. A link to the ANSI

SQL standard can be found on this book’s web page, http://www.informit.com/title/

9780672330186.

ANSI stands for American National Standards Institute, an organization that is respon-

sible for devising standards for various products and concepts.

With any standard comes numerous, obvious advantages, as well as some disadvan-

tages. Foremost, a standard steers vendors in the appropriate industry direction for

development. In the case of SQL, a standard provides a basic skeleton of necessary

http://www.informit.com/title/9780672330186
http://www.informit.com/title/9780672330186

10 HOUR 1: Welcome to the World of SQL

fundamentals, which as an end result, allows consistency between various imple-

mentations and better serves increased portability (not only for database programs,

but databases in general and individuals who manage databases).

Some might argue that a standard is not so good, limiting the flexibility and possi-

ble capabilities of a particular implementation. However, most vendors who comply

with the standard have added product-specific enhancements to standard SQL to fill

in these gaps.

A standard is good, considering the advantages and disadvantages. The expected

standard demands features that should be available in any complete SQL imple-

mentation and outlines basic concepts that not only force consistency between all

competitive SQL implementations, but also increase the value of a SQL programmer.

A SQL implementation is a particular vendor’s SQL product, or relational database

management system. It is important to note, as you will hear numerous times

in this book, that implementations of SQL vary widely. There is no one implemen-

tation that follows the standard completely, although some are mostly ANSI-

compliant. It is also important to note that in recent years the list of functionality

within the ANSI standard that must be adhered to in order to be considered com-

plaint has not changed dramatically. Hence, when new versions of RDBMS are

released, they will most likely claim ANSI SQL compliance.

What Is a Database?
In very simple terms, a database is a collection of data. Some like to think of a data-

base as an organized mechanism that has the capability of storing information,

through which a user can retrieve stored information in an effective and efficient

manner.

People use databases every day without realizing it. A phone book is a database.

The data contained consists of individuals’ names, addresses, and telephone num-

bers. The listings are alphabetized or indexed, which allows the user to reference a

particular local resident with ease. Ultimately, this data is stored in a database

somewhere on a computer. After all, each page of a phone book is not manually

typed each year a new edition is released.

The database has to be maintained. As people move to different cities or states,

entries might have to be added or removed from the phone book. Likewise, entries

will have to be modified for people changing names, addresses, or telephone num-

bers, and so on. Figure 1.1 illustrates a simple database.

SQL Definition and History 11

The Relational Database
A relational database is a database divided into logical units called tables, where

tables are related to one another within the database. A relational database allows

data to be broken down into logical, smaller, manageable units, allowing for easier

maintenance and providing more optimal database performance according to the

level of organization. In Figure 1.2, you can see that tables are related to one anoth-

er through a common key (data value) in a relational database.

Again, tables are related in a relational database, allowing adequate data to be

retrieved in a single query (although the desired data may exist in more than one

table). By having common keys, or fields, among relational database tables, data

from multiple tables can be joined to form one large result set. As you venture deep-

er into this book, you see more of a relational database’s advantages, including

overall performance and easy data access.

Data Data

Data

Stored Information

Stored Objects

Vital Database Files

Users

Transactions

Internal
Processes

FIGURE 1.1
The database.

Stored Data, Objects

Relationship

TABLE1

Key

Data...

TABLE2

Key

Data...

Internal Processes

Database Files

Transactions, Queries

Users FIGURE 1.2
The relational
database.

A relational database is a database composed of related objects, primarily tables. A

table is the most basic means of storage for data in a database.

Client/Server Technology
In the past, the computer industry was predominately ruled by mainframe computers—

large, powerful systems capable of high storage capacity and high data processing

capabilities. Users communicated with the mainframe through dumb terminals—

terminals that did not think on their own, but relied solely on the mainframe’s CPU,

12 HOUR 1: Welcome to the World of SQL

storage, and memory. Each terminal had a data line attached to the mainframe. The

mainframe environment definitely served its purpose and does today in many busi-

nesses, but a greater technology was soon to be introduced: the client/server model.

In the client/server system, the main computer, called the server, is accessible from a

network—typically a local area network (LAN) or a wide area network (WAN). The

server is normally accessed by personal computers (PCs) or by other servers, instead

of dumb terminals. Each PC, called a client, is provided access to the network, allow-

ing communication between the client and the server, thus explaining the name

client/server. The main difference between client/server and mainframe environ-

ments is that the user’s PC in a client/server environment is capable of thinking on

its own, capable of running its own processes using its own CPU and memory, but

readily accessible to a server computer through a network. In most cases, a

client/server system is much more flexible for today’s overall business needs and is

much preferred.

Modern database systems reside on various types of computer systems with various

operating systems. The most common types of operating systems are Windows-based

systems, Linux, and command line systems such as UNIX. Databases reside mainly

in client/server and web environments. A lack of training and experience is the

main reason for failed implementations of database systems. Nevertheless, an

understanding of the client/server model and web-based systems is imperative with

the rising (and sometimes unreasonable) demands placed on today’s businesses as

well as the development of Internet technologies and network computing. Figure 1.3

illustrates the concept of client/server technology.

Client
Machine

Client
Machine

Client
Machine

ServerServer Server

Network

Client
Machine

Client
Machine

Client
Machine

FIGURE 1.3
The client/
server model.

Web-Based Database Systems
Business information systems are moving toward web integration. Databases are

now accessible through the Internet, meaning that customers’ access to an organiza-

tion’s information is enabled through an Internet browser such as Internet Explorer

SQL Definition and History 13

or Firefox. Customers (users of data) are able to order merchandise, check on inven-

tories, check on the status of orders, make administrative changes to accounts,

transfer money from one account to another, and so forth.

A customer simply invokes an Internet browser, goes to the organization’s website,

logs in (if required by the organization), and uses an application built into the orga-

nization’s web page to access data. Most organizations require users to register with

them, and will issue a login and password to the customer.

Of course, many things occur behind the scenes when a database is being accessed

via a web browser. SQL, for instance, can be executed by the web application. This

executed SQL is used to access the organization’s database, return data to the web

server, and then return that data to the customer’s Internet browser.

The basic structure of a web-based database system is similar to that of a client serv-

er system from a user’s standpoint (refer to Figure 1.3). Each user has a client

machine, which has a connection to the Internet and contains a web browser. The

network in Figure 1.3 (in the case of a web-based database) just happens to be the

Internet, as opposed to a local network. For the most part, a client is still accessing a

server for information. It doesn’t matter that the server may exist in another state or

even another country. The main point of web-based database systems is to expand

the potential customer base of a database system that knows no physical location

bounds, thus increasing data availability and an organization’s customer base.

Popular Database Vendors
Some of the most predominant database vendors include Oracle, Microsoft,

Informix, Sybase, and IBM. These vendors distribute various versions of the relation-

al database for a significant cost. Many other vendors supply an open-source ver-

sion of an SQL database (relational database). Some of these vendors include

MySQL, PostgresSQL, and SAP. Although many more vendors exist than those men-

tioned, this list includes names that you might have recognized on the bookshelf, in

the newspaper, in magazines, on the stock market, or on the World Wide Web.

As each individual in this world is unique in both features and nature, so is each

vendor-specific implementation of SQL. A database server is a product, like any

other product on the market, manufactured by a widespread number of vendors. It

is to the benefit of the vendor to ensure that its implementation is compliant with

the current ANSI standard for portability and user convenience. For instance, if a

company is migrating from one database server to another, it would be rather dis-

couraging for the database users to have to learn another language to maintain

functionality with the new system.

14 HOUR 1: Welcome to the World of SQL

With each vendor’s SQL implementation, however, you find that there are enhance-

ments that serve the purpose for each database server. These enhancements, or

extensions, are additional commands and options that are simply a bonus to the

standard SQL package and available with a specific implementation.

SQL Sessions
A SQL session is an occurrence of a user interacting with a relational database

through the use of SQL commands. When a user initially connects to the database,

a session is established. Within the scope of a SQL session, valid SQL commands can

be entered to query the database, manipulate data in the database, and define

database structures, such as tables. A session may be invoked by either direct con-

nection to the database or through a front-end application. In both cases, sessions

are normally established by a user at a terminal or workstation that communicates

through a network with the computer that hosts the database.

CONNECT
When a user connects to a database, the SQL session is initialized. The CONNECT

command is used to establish a database connection. With the CONNECT command,

you can either invoke a connection or change connections to the database. For

example, if you are connected as USER1, you can use the CONNECT command to con-

nect to the database as USER2. When this happens, the SQL session for USER1 is

implicitly disconnected.

CONNECT user@database

When you attempt to connect to a database, you are automatically prompted for a

password that is associated with your current username. The username is used to

authenticate yourself to the database, and the password is the key that allows

entrance.

DISCONNECT and EXIT
When a user disconnects from a database, the SQL session is terminated. The

DISCONNECT command is used to disconnect a user from the database. When you

disconnect from the database, the software you are using may still appear to be

communicating with the database, but you have lost your connection. When you

use EXIT to leave the database, your SQL session is terminated and the software that

you are using to access the database is normally closed.

DISCONNECT

Types of SQL Commands 15

Types of SQL Commands
The following sections discuss the basic categories of commands used in SQL to per-

form various functions. These functions include building database objects, manipu-

lating objects, populating database tables with data, updating existing data in

tables, deleting data, performing database queries, controlling database access, and

overall database administration.

The main categories are

. Data Definition Language (DDL)

. Data Manipulation Language (DML)

. Data Query Language (DQL)

. Data Control Language (DCL)

. Data administration commands

. Transactional control commands

Defining Database Structures
Data Definition Language (DDL) is the part of SQL that allows a database user to cre-

ate and restructure database objects, such as the creation or the deletion of a table.

Some of the most fundamental DDL commands discussed during following hours

include the following:

CREATE TABLE

ALTER TABLE

DROP TABLE

CREATE INDEX

ALTER INDEX

DROP INDEX

CREATE VIEW

DROP VIEW

These commands are discussed in detail during Hour 3, “Managing Database

Objects,” Hour 17, “Improving Database Performance,” and Hour 20, “Creating and

Using Views and Synonyms.”

16 HOUR 1: Welcome to the World of SQL

Manipulating Data
Data Manipulation Language (DML) is the part of SQL used to manipulate data within

objects of a relational database.

The three basic DML commands are

INSERT

UPDATE

DELETE

These commands are discussed in detail during Hour 5, “Manipulating Data.”

Selecting Data
Though comprised of only one command, Data Query Language (DQL) is the most

concentrated focus of SQL for modern relational database users. The base command

is as follows:

SELECT

This command, accompanied by many options and clauses, is used to compose

queries against a relational database. Queries, from simple to complex, from vague

to specific, can be easily created. The SELECT command is discussed in exhilarating

detail during Hours 7 through 16.

A query is an inquiry to the database for information. A query is usually issued to

the database through an application interface or via a command-line prompt.

Data Control Language
Data control commands in SQL allow you to control access to data within the data-

base. These Data Control Language (DCL) commands are normally used to create

objects related to user access and also control the distribution of privileges among

users. Some data control commands are as follows:

ALTER PASSWORD

GRANT

REVOKE

CREATE SYNONYM

You will find that these commands are often grouped with other commands and

may appear in a number of lessons throughout this book.

The Database Used in This Book 17

Data Administration Commands
Data administration commands allow the user to perform audits and perform

analyses on operations within the database. They can also be used to help analyze

system performance. Two general data administration commands are as follows:

START AUDIT

STOP AUDIT

Do not get data administration confused with database administration. Database

administration is the overall administration of a database, which envelops the use of

all levels of commands. Data administration is much more specific to each SQL

implementation than are those core commands of the SQL language.

Transactional Control Commands
In addition to the previously introduced categories of commands, there are com-

mands that allow the user to manage database transactions:

. COMMIT—Saves database transactions

. ROLLBACK—Undoes database transactions

. SAVEPOINT—Creates points within groups of transactions in which to

ROLLBACK

. SET TRANSACTION—Places a name on a transaction

Transactional commands are discussed extensively during Hour 6, “Managing

Database Transactions.”

The Database Used in This Book
Before continuing with your journey through SQL fundamentals, the next step is

introducing the tables and data that you use throughout the course of instruction

for the next 23 one-hour lessons. The following sections provide an overview of the

specific tables (the database) being used, their relationship to one another, their

structure, and examples of the data contained.

Figure 1.4 reveals the relationship between the tables that you use for examples,

quiz questions, and exercises in this book. Each table is identified by the table name

as well as each residing field in the table. Follow the mapping lines to compare the

specific tables’ relationship through a common field, in most cases referred to as the

primary key (discussed in Hour 3).

18 HOUR 1: Welcome to the World of SQL

Table-Naming Standards
Table-naming standards, as well as any standard within a business, are critical to

maintaining control. After studying the tables and data in the previous sections, you

probably noticed that each table’s suffix is _TBL. This is a naming standard selected

for use, such as what’s been used at various client sites. The _TBL simply tells you

that the object is a table; there are many different types of objects in a relational

database. For example, you will see that the suffix _INX is used to identify indexes

on tables in later hours. Naming standards exist almost exclusively for overall

organization and assist immensely in the administration of any relational database.

Remember, the use of a suffix is not mandatory when naming database objects.

You should not only adhere to the object-naming syntax of any SQL implementa-
tion, but also follow local business rules and create names that are descriptive
and related to the data groupings for the business.

A Look at the Data
This section offers a picture of the data contained in each one of the tables used in

this book. Take a few minutes and study the data, the variations, and the

relationships between the tables and the data itself. Notice that some fields might

not require data, which is specified when each table is created in the database.

EMPLOYEE_PAY_TBL

emp_id
position
date_hire
pay_rate
date_last_raise
bonus

EMPLOYEE_TBL

emp_id
last_name
first_name
middle_name
address
city
state
zip
phone
pager

CUSTOMER_TBL

cust_id
cust_name
cust_address
cust_city
cust_state
cust_zip
cust_phone
cust_fax

ORDERS_TBL

ord_num
cust_id
prod_id
qty
ord_date

PRODUCTS_TBL

prod_id
prod_desc
cost

FIGURE 1.4
Table relation-
ships for this
book.

By the
Way

The Database Used in This Book 19

EMPLOYEE_TBL

EMP_ID LAST_NAM FIRST_NA M ADDRESS CITY ST ZIP PHONE
--------- -------- -------- - --------------- ------------ -- ----- ----------
311549902 STEPHENS TINA D RR 3 BOX 17A GREENWOOD IN 47890 3178784465

442346889 PLEW LINDA C 3301 BEACON INDIANAPOLIS IN 46224 3172978990

213764555 GLASS BRANDON S 1710 MAIN ST WHITELAND IN 47885 3178984321

313782439 GLASS JACOB 3789 RIVER BLVD INDIANAPOLIS IN 45734 3175457676

220984332 WALLACE MARIAH 7889 KEYSTONE INDIANAPOLIS IN 46741 3173325986

443679012 SPURGEON TIFFANY 5 GEORGE COURT INDIANAPOLIS IN 46234 3175679007

EMPLOYEE_PAY_TBL

EMP_ID POSITION DATE_HIRE PAY_RATE DATE_LAST SALARY BONUS
--------- --------------- ----------- -------- ------------- ----------- ------
311549902 MARKETING 23-MAY-89 01-MAY-99 4000
442346889 TEAM LEADER 17-JUN-90 14.75 01-JUN-99
213764555 SALES MANAGER 14-AUG-94 01-AUG-99 3000 2000
313782439 SALESMAN 28-JUN-97 2000 1000
220984332 SHIPPER 22-JUL-96 11 01-JUL-99
443679012 SHIPPER 14-JAN-91 15 01-JAN-99

CUSTOMER_TBL

CUST_ID CUST_NAME ADDRESS CUST_CITY ST ZIP CUST_PHONE CUST_FAX
------- --------------- ---------- ------------ -- ----- ------------ --------
232 LESLIE GLEASON 798 HARDAWAY DR INDIANAPOLIS IN 47856 3175457690

109 NANCY BUNKER APT A 4556 WATERWAY BROAD RIPPLE IN 47950 3174262323

345 ANGELA DOBKO RR3 BOX 76 LEBANON IN 49967 7658970090

090 WENDY WOLF 3345 GATEWAY DR INDIANAPOLIS IN 46224 3172913421

12 MARYS GIFT SHOP 435 MAIN ST DANVILLE IL 47978 3178567221 3178523434

432 SCOTTYS MARKET RR2 BOX 173 BROWNSBURG IN 45687 3178529835 3178529836

333 JASONS AND DALLAS GOODIES LAFAYETTE SQ MALL INDIANAPOLIS IN 46222
3172978886 3172978887

21 MORGANS CANDIES AND TREATS 5657 W TENTH ST INDIANAPOLIS IN 46234
3172714398

43 SCHYLERS NOVELT IES 17 MAPLE ST LEBANON IN 48990 3174346758

287 GAVINS PLACE 9880 ROCKVILLE RD INDIANAPOLIS IN 46244 3172719991
3172719992

288 HOLLYS GAMEARAMA 567 US 31 WHITELAND IN 49980 3178879023

20 HOUR 1: Welcome to the World of SQL

590 HEATHERS FEATHERS AND THINGS 4090 N SHADELAND AVE INDIANAPOLIS IN
43278 3175456768

610 REGANS HOBBIES 451 GREEN PLAINFIELD IN 46818 3178393441 3178399090

560 ANDYS CANDIES RR 1 BOX 34 NASHVILLE IN 48756 8123239871

221 RYANS STUFF 2337 S SHELBY ST INDIANAPOLIS IN 47834 3175634402

175 CAMERON’S PIES 178 N TIBBS AVON IN 46234 3174543390

290 CALEIGH’S KITTENS 244 WEST ST LEBANON IN 47890 3174867754

56 DANIELS SPANIELS 17 MAIN ST GREENWOOD IN 46578 3172319908

978 AUTUMN’S BASKETS 5648 CENTER ST SOUTHPORT IN 45631 3178887565

ORDERS_TBL

ORD_NUM CUST_ID PROD_ID QTY ORD_DATE
---------- ------- ----------------- --- ---------
56A901 232 11235 1 22-OCT-99
56A917 12 907 100 30-SEP-99
32A132 43 222 25 10-OCT-99
16C17 090 222 2 17-OCT-99
18D778 287 90 10 17-OCT-99
23E934 432 13 20 15-OCT-99

PRODUCTS_TBL

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.10
90 LIGHTED LANTERNS 14.50
15 ASSORTED COSTUMES 10.00
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

A Closer Look at What Comprises a Table
The storage and maintenance of valuable data is the reason for any database’s exis-

tence. You have just viewed the data that is used to explain SQL concepts in this

book. The following sections take a closer look at the elements within a table.

Remember, a table is the most common and simplest form of data storage.

A Field
Every table is broken up into smaller entities called fields. A field is a column in a

table that is designed to maintain specific information about every record in the

The Database Used in This Book 21

table. The fields in the PRODUCTS_TBL table consist of PROD_ID, PROD_DESC, and

COST. These fields categorize the specific information that is maintained in a given

table.

A Record, or Row, of Data
A record, also called a row of data, is each individual, horizontal entry that exists in

a table. Looking at the last table, PRODUCTS_TBL, consider the following first record

in that table:

11235 WITCH’S COSTUME 29.99

The record is obviously composed of a product identification, product description,

and unit cost. For every distinct product, there should be a corresponding record in

the PRODUCTS_TBL table.

A row of data is an entire record in a relational database table.

A Column
A column is a vertical entity in a table that contains all information associated with

a specific field in a table. For example, a column in the PRODUCTS_TBL having to do

with the product description would consist of the following:

WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH
LIGHTED LANTERNS
ASSORTED COSTUMES
CANDY CORN
PUMPKIN CANDY
PLASTIC SPIDERS
ASSORTED MASKS

This column is based on the field PROD_DESC, the product description. A column

pulls information about a certain field from every record within a table.

The Primary Key
A primary key is a column that makes each row of data in the table unique in a rela-

tional database. The primary key in the PRODUCTS_TBL table is PROD_ID, which is

typically initialized during the table creation process. The nature of the primary key

is to ensure that all product identifications are unique, so that each record in the

PRODUCTS_TBL table has its own PROD_ID. Primary keys alleviate the possibility of a

duplicate record in a table and are used in other ways, which you read about in

Hour 3.

22 HOUR 1: Welcome to the World of SQL

A NULL Value
NULL is the term used to represent a missing value. A NULL value in a table is a

value in a field that appears to be blank. A field with a NULL value is a field with no

value. It is very important to understand that a NULL value is different from a zero

value or a field that contains spaces. A field with a NULL value is one that has been

left blank during record creation. Notice that in the EMPLOYEE_TBL table, not every

employee has a middle initial. Those records for employees who do not have an

entry for middle initial signify a NULL value.

Additional table elements are discussed in detail during the next two hours.

MySQL Examples and Exercises
Many exercises in this book use the MySQL database to generate the examples. We

decided to use MySQL in this edition for exercises because MySQL is open source,

can be freely distributed, and the latest version have been much more ANSI compli-

ant than past releases. MySQL is also popular, easy to download, easy to install, and

is available for most operating system platforms, including Windows and Linux.

Note that because MySQL is not 100% compliant to the SQL-2003, MySQL exercises

may be somewhat limited in some hours of instruction. Additionally, if you are

planning on using an alternate database platform such as Oracle or SQL Server, you

should be able to download personal or express editions of those platforms and per-

form most of the exercises with minor modifications.

Links to Oracle, Microsoft, and MySQL websites can be found by looking up this
book’s web page on http://www.informit.com/title/9780672330186.

Summary
You have been introduced to the standard language of SQL and have been given a

brief history and thumbnail of how the standard has evolved over the past several

years. Database systems and current technologies were also discussed, including the

relational database, client/server systems, and web-based database systems, all of

which are vital to your understanding of SQL. The main SQL language components

and the fact that there are numerous players in the relational database market, and

likewise, many different flavors of SQL, were discussed. Despite ANSI SQL variations,

most vendors do comply to some extent with the current standard (SQL-2003), ren-

dering consistency across the board and forcing the development of SQL applica-

tions that are portable.

By the
Way

http://www.informit.com/title/9780672330186

Q&A 23

The database that will be used during your course of study was also introduced. The

database, as you have seen it so far, has consisted of a few tables, which are related

to one another, and the data that each table contains at this point (at the end of

Hour 1). You should have acquired some overall background knowledge of the fun-

damentals of SQL and should understand the concept of a modern database. After a

few refreshers in the Workshop for this hour, you should feel very confident about

continuing to the next hour.

Q&A
Q. If I learn SQL, will I be able to use any of the implementations that use

SQL?

A. Yes, you will be able to communicate with a database whose implementation

is ANSI SQL compliant. If an implementation is not completely compliant,

you should be able to pick it up quickly with some adjustments.

Q. In a client/server environment, is the personal computer the client or the
server?

A. The personal computer is known as the client, although a server can also

serve as a client.

Q. Do I have to use _TBL for each table I create?

A. Certainly not. The use of _TBL is a standard chosen for use to name and easily

identify the tables in your database. You could spell out TBL as TABLE, or you

might want to avoid using a suffix. For example, EMPLOYEE TBL could simply

be EMPLOYEE.

Q. What should I do when I am inserting a new record into a table and am
missing, for example, a new employee’s phone number, and the column for
the phone number entry is NOT NULL?

A. You can do one of three things. Because the column was specified as NOT NULL

(something must be entered), and because you do not have the necessary

information, you could delay inserting the record until you have the phone

number. Another option is to change the column from NOT NULL to NULL,

thereby allowing you to update the phone number later when the information

is received. One other option would be to insert a default fake value, such as

1111111111, and then change it later after receiving the correct information.

Changing the column definitions is discussed in Hour 3.

24 HOUR 1: Welcome to the World of SQL

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. What does the acronym SQL stand for?

2. What are the six main categories of SQL commands?

3. What are the four transactional control commands?

4. What is the main difference between client/server and web technologies as

they relate to database access?

5. If a field is defined as NULL, does that mean that something has to be entered

into that field?

Exercises
1. Identify the categories in which the following SQL commands fall:

CREATE TABLE
DELETE
SELECT
INSERT
ALTER TABLE
UPDATE

2. Study the following tables and pick out the column that would be a good can-

didate for the primary key:

EMPLOYEE_TBL INVENTORY_TBL EQUIPMENT_TBL

name item model

phone description year

start date quantity serial number

address item number equipment number

employee number location assigned to

3. Refer to Appendix B, “Using MySQL for Exercises.” Download and install

MySQL on your computer to prepare for hands-on exercises in the following

hours of instruction.

PART II

Building Your Database

HOUR 2 Defining Data Structures 27

HOUR 3 Managing Database Objects 41

HOUR 4 The Normalization Process 61

HOUR 5 Manipulating Data 73

HOUR 6 Managing Database Transactions 87

This page intentionally left blank

HOUR 2

Defining Data Structures

In this second hour, you learn more about the data you viewed at the end of Hour 1,

“Welcome to the World of SQL.” You learn the characteristics of the data itself and how

such data is stored in a relational database. There are several data types, as you’ll soon

discover.

The highlights of this hour include:
. A look at the underlying data of a table
. An introduction to the basic data types
. Instruction on the use of various data types
. Examples depicting differences between data types

What Is Data?
Data is a collection of information stored in a database as one of several different data

types. Data includes names, numbers, dollar amounts, text, graphics, decimals, figures,

calculations, summarization, and just about anything else you can possibly imagine.

Data can be stored in uppercase, lowercase, or mixed case. Data can be manipulated or

changed; most data does not remain static for its lifetime.

Data types are used to provide rules for data for particular columns. A data type deals with

the way values are stored in a column as far as the length allocated for a column and

whether values such as alphanumeric, numeric, and date and time data are allowed.

There is a data type for every possible bit or combination of data that can be stored in a

particular database. These data types are used to store data such as characters, numbers,

date and time, images, and other binary data. More specifically, the data might consist of

names, descriptions, numbers, calculations, images, image descriptions, documents, and

so forth.

28 HOUR 2: Defining Data Structures

The data is the purpose of any database and must be protected. The protector of the

data is normally the database administrator (DBA), although it is every database

user’s responsibility to ensure that measures are taken to protect data. Data security

is discussed in depth in Hour 18, “Managing Database Users,” and Hour 19,

“Managing Database Security.”

Basic Data Types
The following sections discuss the basic data types supported by ANSI SQL. Data

types are characteristics of the data itself, whose attributes are placed on fields with-

in a table. For example, you can specify that a field must contain numeric values,

disallowing the entering of alphanumeric strings. After all, you would not want to

enter alphabetic characters in a field for a dollar amount. Defining each field in the

database with a data type eliminates much of the incorrect data found in a data-

base due to data entry errors. Field definition (data type definition) is a form of data

validation, which controls the type of data that may be entered into each given

field.

Depending on your implementation of RDBMS, certain data types can be converted

automatically to other data types depending upon their format. This type of conver-

sion in known as an implicit conversion, which means that the database will handle

the conversion for you. An example of this would be taking a numeric value of

1000.92 from a numeric field and inputting it into a string field. Other data types

cannot be converted implicitly by the host RDBMS and therefore must undergo an

explicit conversion. This usually involves the use of a SQL function, such as CAST or

CONVERT. For example:

SELECT CAST(‘12/27/1974’ AS DATETIME) AS MYDATE

Every implementation of SQL seems to have its own specific set of data types.
The use of implementation-specific data types is necessary to support the philos-
ophy of each implementation on how to handle the storage of data. However, the
basics are the same among all implementations.

The very basic data types, as with most other languages, are

. String types

. Numeric types

. Date and time types

By the
Way

Basic Data Types 29

Fixed-Length Strings
Constant characters, those strings that always have the same length, are stored using

a fixed-length data type. The following is the standard for an SQL fixed-length char-

acter:

CHARACTER(n)

n represents a number identifying the allocated or maximum length of the particu-

lar field with this definition.

Some implementations of SQL use the CHAR data type to store fixed-length data.

Alphanumeric data can be stored in this data type. An example of a constant

length data type would be for a state abbreviation because all state abbreviations

are two characters.

Spaces are normally used to fill extra spots when using a fixed-length data type; if a

field’s length was set to 10 and data entered filled only five places, the remaining

five spaces are recorded as spaces. The padding of spaces ensures that each value in

a field is a fixed length.

Be careful not to use a fixed-length data type for fields that might contain varying-
length values, such as an individual’s name. If you use the fixed-length data type
inappropriately, problems such as the waste of available space and the inability to
make accurate comparisons between data will eventually be encountered.

Varying-Length Strings
SQL supports the use of varying-length strings, strings whose length is not constant for

all data. The following is the standard for a SQL varying-length character:

CHARACTER VARYING(n)

n represents a number identifying the allocated or maximum length of the particu-

lar field with this definition.

Common data types for variable-length character values are the VARCHAR,

VARBINARY, and VARCHAR2 data types. VARCHAR is the ANSI standard, which

Microsoft SQL Server and MySQL use; both VARCHAR and VARCHAR2 are used by

Oracle. The data stored in a character-defined column can be alphanumeric, which

means that the data value may contain numeric characters. VARBINARY is similar

to VARCHAR and VARCHAR2 except that it contains a variable length of bytes.

Watch
Out!

30 HOUR 2: Defining Data Structures

Remember that fixed-length data types typically pad spaces to fill in allocated

places not used by the field. The varying-length data type does not work this way.

For instance, if the allocated length of a varying-length field is 10, and a string of

five characters is entered, the total length of that particular value is only 5. Spaces

are not used to fill unused places in a column.

Always use the varying-length data type for nonconstant character strings to save
database space.

Large Object Types
Some variable-length data types need to hold longer lengths of data than what is

traditionally reserved for a VARCHAR field. The BLOB and TEXT data types are two

examples of such data types in modern database implementations. These data types

are specifically made to hold large sets of data. The BLOB is a binary large object

and so its data is treated as a large binary string (a byte string). A BLOB is especially

useful in an implementation that needs to store binary media files in the database,

such as images or MP3s.

The TEXT data type is a large character string data type and can be treated as a

large VARCHAR field. It is often used in instances where an implementation would

need to store large sets of character data in the database. An example of this would

be storing HTML input from the entries of a blog site. Storing this type of data in the

database enables the site to be dynamically updated.

Numeric Types
Numeric values are stored in fields that are defined as some type of number, typically

referred to as NUMBER, INTEGER, REAL, DECIMAL, and so on.

The following are the standards for SQL numeric values:

BIT(n)

BIT VARYING(n)

DECIMAL(p,s)

INTEGER

SMALLINT

BIGINT

FLOAT(p,s)

DOUBLE PRECISION(p,s)

REAL(s)

Did you
Know?

Basic Data Types 31

p represents a number identifying the allocated or maximum length of the particu-

lar field for each appropriate definition.

s is a number to the right of the decimal point, such as 34.ss.

A common numeric data type in SQL implementations is NUMERIC, which accommo-

dates the direction for numeric values provided by ANSI. Numeric values can be

stored as zero, positive, negative, fixed, and floating-point numbers. The following is

an example using NUMERIC:

NUMERIC(5)

This example restricts the maximum value entered in a particular field to 99999.

Note that in MySQL, NUMERIC is merely implemented as a DECIMAL type.

Decimal Types
Decimal values are numeric values that include the use of a decimal point. The stan-

dard for a decimal in SQL follows, where the p is the precision and the s is the deci-

mal’s scale:

DECIMAL(p,s)

The precision is the total length of the numeric value. In a numeric defined

DECIMAL(4,2), the precision is 4, which is the total length allocated for a numeric

value. The scale is the number of digits to the right of the decimal point. The scale is

2 in the previous DECIMAL(4,2) example. If a value has more places to the right

side of the decimal point than the scale allows, the value is rounded; for instance,

34.33 inserted into a DECIMAL(3,1) is typically rounded to 34.3.

If a numeric value was defined as the following data type, the maximum value

allowed would be 99.99:

DECIMAL(4,2)

The precision is 4, which represents the total length allocated for an associated

value. The scale is 2, which represents the number of places, or bytes, reserved to the

right side of the decimal point. The decimal point itself does not count as a charac-

ter.

Allowed values for a column defined as DECIMAL(4,2) include the following:

12

12.4

12.44

12.449

32 HOUR 2: Defining Data Structures

The last numeric value, 12.449, is rounded off to 12.45 upon input into the col-

umn. In this case, any numbers between 12.445 and 12.449 would be rounded to

12.45.

Integers
An integer is a numeric value that does not contain a decimal, only whole numbers

(both positive and negative).

Valid integers include the following:

1

0

-1

99

-99

199

Floating-Point Decimals
Floating-point decimals are decimal values whose precision and scale are variable

lengths and virtually without limit. Any precision and scale is acceptable. The REAL

data type designates a column with single-precision, floating-point numbers. The

DOUBLE PRECISION data type designates a column that contains double-precision,

floating-point numbers. To be considered a single-precision floating point, the preci-

sion must be between 1 and 21 inclusive. To be considered a double-precision float-

ing point, the precision must be between 22 and 53 inclusive. The following are

examples of the FLOAT data type:

FLOAT

FLOAT(15)

FLOAT(50)

Date and Time Types
Date and time data types are quite obviously used to keep track of information con-

cerning dates and time. Standard SQL supports what are called DATETIME data

types, which include the following specific data types:

DATE

TIME

Basic Data Types 33

DATETIME

TIMESTAMP

The elements of a DATETIME data type consist of the following:

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

The SECOND element can also be broken down to fractions of a second. The range
is from 00.000 to 61.999, although some implementations of SQL might not sup-
port this range. The extra 1.999 seconds is used for leap seconds.

Be aware that each implementation of SQL might have its own customized data

type for dates and times. The previous data types and elements are standards to

which each SQL vendor should adhere, but be advised that most implementations

have their own data type for date values, varying in both appearance and the way

date information is actually stored internally.

A length is not normally specified for a date data type. Later in this hour, you learn

more about dates, how date information is stored in some implementations, and

how to manipulate dates and times using conversion functions. You also study prac-

tical examples of how dates and time are used in the real world.

Literal Strings
A literal string is a series of characters, such as a name or a phone number, that is

explicitly specified by a user or program. Literal strings consist of data with the

same attributes as the previously discussed data types, but the value of the string is

known. The value of a column itself is usually unknown because a column typically

has a different value associated with each row of data in a table.

By the
Way

34 HOUR 2: Defining Data Structures

You do not actually specify data types with literal strings—you simply specify the

string. Some examples of literal strings follow:

‘Hello’

45000

“45000”

3.14

‘November 1, 1997’

The alphanumeric strings are enclosed by single quotation marks, whereas the num-

ber value 45000 is not. Also notice that the second numeric value of 45000 is

enclosed by quotation marks. Generally speaking, character strings require quota-

tion marks, whereas numeric strings don’t. You see later how literal strings are used

with database queries.

NULL Data Types
As you should know from Hour 1, a NULL value is a missing value or a column in a

row of data that has not been assigned a value. NULL values are used in nearly all

parts of SQL, including the creation of tables, search conditions for queries, and

even in literal strings.

The following are two methods for referencing a NULL value:

. NULL (the keyword NULL itself)

. ‘’ (single quotation marks with nothing in between)

The following does not represent a NULL value, but a literal string containing the

characters N-U-L-L:

‘NULL’

When using the NULL data type, it is important to realize that data is not required in

a particular field. If data is always required for a given field, always use NOT NULL

with a data type. If there is a chance that there might not always be data for a field,

it is better to use NULL.

BOOLEAN Values
A BOOLEAN value is a value of TRUE, FALSE, or NULL. BOOLEAN values are used to

make data comparisons. For example, when criteria are specified for a query, each

condition evaluates to a TRUE, FALSE, or NULL. If the BOOLEAN value of TRUE is

Basic Data Types 35

returned by all conditions in a query, data is returned. If a BOOLEAN value of FALSE

or NULL is returned, data might not be returned.

Consider the following example:

WHERE NAME = ‘SMITH’

This line might be a condition found in a query. The condition is evaluated for every

row of data in the table that is being queried. If the value of NAME is SMITH for a row

of data in the table, the condition returns the value TRUE, thereby returning the

data associated with that record.

User-Defined Types
A user-defined type is a data type that is defined by the user. User-defined types allow

users to customize their own data types to meet data storage needs and are based on

existing data types. User-defined data types can assist the developer by providing

greater flexibility during database application development because they maximize

the number of possibilities for data storage. The CREATE TYPE statement is used to

create a user-defined type.

For example, you can create a type as follows:

CREATE TYPE PERSON AS OBJECT
(NAME VARCHAR (30),
SSN VARCHAR (9));

You can reference your user-defined type as follows:

CREATE TABLE EMP_PAY
(EMPLOYEE PERSON,
SALARY DECIMAL(10,2),
HIRE_DATE DATE);

Notice that the data type referenced for the first column EMPLOYEE is PERSON. PERSON

is the user-defined type you created in the first example.

Domains
A domain is a set of valid data types that can be used. A domain is associated with a

data type, so that only certain data is accepted. After a domain is created, you can

add constraints to the domain. Constraints work in conjunction with data types,

allowing you to further specify acceptable data for a field. The domain is used like

the user-defined type.

36 HOUR 2: Defining Data Structures

You can create a domain as follows:

CREATE DOMAIN MONEY_D AS NUMBER(8,2);

You can add constraints to your domain as follows:

ALTER DOMAIN MONEY_D
ADD CONSTRAINT MONEY_CON1
CHECK (VALUE > 5);

You can reference the domain as follows:

CREATE TABLE EMP_PAY
(EMP_ID NUMBER(9),
EMP_NAME VARCHAR2(30),
PAY_RATE MONEY_D);

Note that some of the data types mentioned during this hour might not be avail-
able by name in the implementation of SQL that you are using. Data types are
often named differently among implementations of SQL, but the concept behind
each data type remains. Most, if not all, data types are supported by most rela-
tional databases.

Summary
Several data types are available with SQL. If you have programmed in other lan-

guages, you probably recognize many of the data types mentioned. Data types

allow different types of data to be stored in the database, ranging from simple char-

acters to decimal points to date and time. The concept of data types is the same in

all languages, whether programming in a third-generation language such as C and

passing variables or using a relational database implementation and coding in SQL.

Of course, each implementation has its own names for standard data types, but

they basically work the same. Also remember that an RDBMS does not have to

implement all of the data types in the ANSI standard to be considered ANSI compli-

ant. Therefore, it is prudent to check with the documentation of your specific RDBMS

implementation to see what options you have available.

Care must be taken in planning for both the near and distant future when deciding

on data types, lengths, scales, and precisions in which to store your data. Business

rules and how you want the end user to access the data are other factors in deciding

on specific data types. You should know the nature of the data itself and how data

in the database is related to assign proper data types.

By the
Way

Workshop 37

Q&A
Q. How is it that I can enter numbers such as a person’s Social Security num-

ber in fields defined as character fields?

A. Numeric values are still alphanumeric, which are allowed in string data types.

The process is called an implicit conversion because it is handled automatical-

ly by the database system. Typically, the only data stored as numeric values

are values used in computations. However, it might be helpful for some to

define all numeric fields with a numeric data type to help control the data

entered in that field.

Q. I still do not understand the difference between constant-length and varying-
length data types. Can you explain?

A. Say you have an individual’s last name defined as a constant-length data type

with a length of 20 bytes. Suppose the individual’s name is Smith. When the

data is inserted into the table, 20 bytes are taken, 5 for the name and 15 for

the extra spaces (remember that this is a constant-length data type). If you

use a varying-length data type with a length of 20 and inserted Smith, only 5

bytes of space are taken. If you then imagine that you are inserting 100,000

rows of data into this system, you could possibly save 1.5 million bytes of

data.

Q. Are there limits on the lengths of data types?

A. Yes, there are limits on the lengths of data types, and they do vary among the

various implementations.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. You may refer to Appendix C,

“Answers to Quizzes and Exercises,” for answers.

38 HOUR 2: Defining Data Structures

Quiz
1. True or false: An individual’s Social Security number, entered in the format

‘111111111’, can be any of the following data types: constant-length charac-

ter, varying-length character, numeric.

2. True or false: The scale of a numeric value is the total length allowed for

values.

3. Do all implementations use the same data types?

4. What are the precision and scale of the following?

DECIMAL(4,2)
DECIMAL(10,2)
DECIMAL(14,1)

5. Which numbers could be inserted into a column whose data type is

DECIMAL(4,1)?

A. 16.2

B. 116.2

C. 16.21

D. 1116.2

E. 1116.21

6. What is data?

Exercises
1. Take the following column titles, assign them to a data type, decide on the

proper length, and give an example of the data you would enter into that col-

umn.

A. ssn

B. state

C. city

D. phone_number

E. zip

F. last_name

Workshop 39

G. first_name

H. middle_name

I. salary

J. hourly_pay_rate

K. date_hired

2. Take the same column titles and decide whether they should be NULL or NOT

NULL, realizing that in some cases where a column would normally be NOT

NULL, the column could be NULL or vice versa, depending on the application.

A. ssn

B. state

C. city

D. phone_number

E. zip

F. last_name

G. first_name

H. middle_name

I. salary

J. hourly_pay_rate

K. date_hired

3. We are going to set up a database in MySQL to use for the subsequent hours

in this book. From Windows Explorer, go to the folder where you installed

MySQL on your computer. Double-click on the bin folder, and then double-

click on the executable file called mysql.exe. If you receive an error stating

that the server could not be found, first execute winmysqladmin.exe

from the bin folder, and then enter a username and password. After the server

is started, execute mysql.exe from the bin folder.

At the mysql> command prompt, enter the following command to create a

database to use for this book’s exercises:

create database learnsql;

40 HOUR 2: Defining Data Structures

Be sure to press the Enter key on your keyboard after entering the command.

For all subsequent hands-on exercises in this book, you will double-click on

the mysql.exe executable, and then enter the following command to use the

database you just created:

use learnsql;

HOUR 3

Managing Database Objects

In this hour, you learn about database objects: what they are, how they act, how they are

stored, and how they relate to one another. Database objects are the underlying backbone

of the relational database. These objects are logical units within the database that are

used to store information and are referred to as the back-end database. The majority of the

instruction during this hour revolves around the table, but keep in mind that there are

other database objects, many of which are discussed in later hours of study.

The highlights of this hour include:
. An introduction to database objects
. An introduction to the schema
. An introduction to the table
. A discussion of the nature and attributes of tables
. Examples for the creation and manipulation of tables
. A discussion of table storage options
. Concepts on referential integrity and data consistency

What Are Database Objects?
A database object is any defined object in a database that is used to store or reference data.

Some examples of database objects include tables, views, clusters, sequences, indexes, and

synonyms. The table is this hour’s focus because it is the primary and simplest form of

data storage in a relational database.

42 HOUR 3: Managing Database Objects

What Is a Schema?
A schema is a collection of database objects (as far as this hour is concerned—tables)

associated with one particular database username. This username is called the

schema owner, or the owner of the related group of objects. You may have one or

multiple schemas in a database. The user is only associated with the schema of the

same name and often the terms will be used interchangeably. Basically, any user

who creates an object has just created it in her own schema unless she specifically

instructs it to be created in another one. So, based on a user’s privileges within the

database, the user has control over objects that are created, manipulated, and delet-

ed. A schema can consist of a single table and has no limits to the number of

objects that it may contain, unless restricted by a specific database implementation.

Say you have been issued a database username and password by the database

administrator. Your username is USER1. Suppose you log on to the database and

then create a table called EMPLOYEE_TBL. According to the database, your table’s

actual name is USER1.EMPLOYEE_TBL. The schema name for that table is USER1,

which is also the owner of that table. You have just created the first table of a

schema.

The good thing about schemas is that when you access a table that you own (in

your own schema), you do not have to refer to the schema name. For instance, you

could refer to your table as either one of the following:

EMPLOYEE_TBL
USER1.EMPLOYEE_TBL

The first option is preferred because it requires fewer keystrokes. If another user were

to query one of your tables, the user would have to specify the schema, as follows:

USER1.EMPLOYEE_TBL

In Hour 20, “Creating and Using Views and Synonyms,” you learn about the distri-

bution of permissions so that other users can access your tables. You also learn

about synonyms, which allow you to give a table another name so you do not have

to specify the schema name when accessing a table. Figure 3.1 illustrates two

schemas in a relational database.

What Is a Schema? 43

There are, in Figure 3.1, two user accounts in the database that own tables: USER1

and USER2. Each user account has its own schema. Some examples for how the two

users can access their own tables and tables owned by the other user follow:

USER1 accesses own TABLE1: TABLE1

USER1 accesses own TEST: TEST

USER1 accesses USER2’s TABLE10: USER2.TABLE10

USER1 accesses USER2’s TEST: USER2.TEST

USER1

test

table1

table2

USER2

test

table10

table20

Schema Owners

DATABASE

Schema Objects

(Tables)

FIGURE 3.1
Schemas in a
database.

In this example, both users have a table called TEST. Tables can have the same

names in a database as long as they belong to different schemas. If you look at it

this way, table names are always unique in a database because the schema owner is

actually part of the table name. For instance, USER1.TEST is a different table than

USER2.TEST. If you do not specify a schema with the table name when accessing

tables in a database, the database server looks for a table that you own by default.

That is, if USER1 tries to access TEST, the database server looks for a USER1-owned

table named TEST before it looks for other objects owned by USER1, such as syn-

onyms to tables in another schema. Hour 21, “Working with the System Catalog,”

helps you fully understand how synonyms work. You must be careful to understand

the distinction between objects in your own schema and those objects in another

schema. If you do not provide a schema when performing operations that alter the

table, such as a DROP command, the database will assume that you mean a table in

your own schema. This could possibly lead to you unintentionally dropping the

wrong object. So you must always pay careful attention as to which user you are

currently logged into the database with.

44 HOUR 3: Managing Database Objects

Every database server has rules concerning how you can name objects and ele-
ments of objects, such as field names. You must check your particular implemen-
tation for the exact naming conventions or rules.

A Table: The Primary Storage for Data
The table is the primary storage object for data in a relational database. In its sim-

plest form, a table consists of row(s) and column(s), both of which hold the data. A

table takes up physical space in a database and can be permanent or temporary.

Columns
A field, also called a column in a relational database, is part of a table that is

assigned a specific data type; a field should be named to correspond with the type of

data that will be entered into that column. Columns can be specified as NULL or NOT

NULL, meaning that if a column is NOT NULL, something must be entered. If a col-

umn is specified as NULL, nothing has to be entered.

Every database table must consist of at least one column. Columns are those ele-

ments within a table that hold specific types of data, such as a person’s name or

address. For example, a valid column in a customer table might be the customer’s

name. Figure 3.2 illustrates a column in a table.

By the
Way

FIGURE 3.2
An Example of a
Column

Generally, an object name must be one continuous string and can be limited to the

number of characters used according to each implementation of SQL. It is typical to

use underscores with names to provide separation between characters. For example,

a column for the customer’s name can be named CUSTOMER_NAME instead of

CUSTOMERNAME.

Additionally, data can be stored as either uppercase or lowercase for character-

defined fields. The case that you use for data is simply a matter of preference, which

should be based on how the data will be used. In many cases, data is stored in

A Table: The Primary Storage for Data 45

uppercase for simplicity and consistency. However, if data is stored in different case

types throughout the database (uppercase, lowercase, and mixed case), functions

can be applied to convert the data to either uppercase or lowercase if needed. These

functions will be covered in Hour 11, “Restructuring the Appearance of Data.”

Be sure to check your implementation for rules when naming objects and other
database elements. Often database administrators will adopt a naming convention
that explains how to name the objects within the database so you can easily dis-
cern how they are used.

Rows
A row is a record of data in a database table. For example, a row of data in a cus-

tomer table might consist of a particular customer’s identification number, name,

address, phone number, fax number, and so on. A row is comprised of fields that

contain data from one record in a table. A table can contain as little as one row of

data and up to as many as millions of rows of data or records. Figure 3.3 illustrates

a row within a table.

By the
Way

FIGURE 3.3
Example of a
Table Row.

The CREATE TABLE Statement
The CREATE TABLE statement in SQL is used to create a table. Although the very act

of creating a table is quite simple, much time and effort should be put into plan-

ning table structures before the actual execution of the CREATE TABLE statement.

Carefully planning your table structure before implementation will save you from

having to reconfigure things after they are in production.

Some elementary questions need to be answered when creating a table:

. What type of data will be entered into the table?

. What will be the table’s name?

. What column(s) will compose the primary key?

46 HOUR 3: Managing Database Objects

. What names shall be given to the columns (fields)?

. What data type will be assigned to each column?

. What will be the allocated length for each column?

. Which columns in a table can be left blank?

After these questions are answered, the actual CREATE TABLE statement is simple.

The basic syntax to create a table is as follows:

CREATE TABLE table_name
(field1 data_type [not null],
field2 data_type [not null],
field3 data_type [not null],
field4 data_type [not null],
field5 data_type [not null]);

A semicolon is the last character in the previous statement. Most SQL implementa-

tions have some character that terminates a statement or submits a statement to the

database server. Oracle and MySQL use the semicolon. Transact-SQL has no such

requirement. This book uses the semicolon.

In this hour’s examples, we use the popular data types CHAR (constant-length char-
acter), VARCHAR (variable-length character), NUMBER (numeric values, decimal and
non-decimal), and DATE (date and time values).

Create a table called EMPLOYEE_TBL in the following example:

CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL,
EMP_NAME VARCHAR (40) NOT NULL,
EMP_ST_ADDR VARCHAR (20) NOT NULL,
EMP_CITY VARCHAR (15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP INTEGER(5) NOT NULL,
EMP_PHONE INTEGER(10) NULL,
EMP_PAGER INTEGER(10) NULL);

Eight different columns make up this table. Notice the use of the underscore charac-

ter to break the column names up into what appears to be separate words (EMPLOYEE

ID is stored as EMP_ID). This is a technique that is used to make a table or column

name more readable. Each column has been assigned a specific data type and

length, and by using the NULL/NOT NULL constraint, you have specified which

columns require values for every row of data in the table. The EMP_PHONE is defined

as NULL, meaning that NULL values are allowed in this column because there might

By the
Way

A Table: The Primary Storage for Data 47

be individuals without a telephone number. The information concerning each col-

umn is separated by a comma, with parentheses surrounding all columns (a left

parenthesis before the first column and a right parenthesis following the informa-

tion on the last column).

Each record, or row of data, in this table would consist of the following:

EMP_ID, EMP_NAME, EMP_ST_ADDR, EMP_CITY, EMP_ST, EMP_ZIP, EMP_PHONE, EMP_PAGER

In this table, each field is a column. The column EMP_ID could consist of one

employee’s identification number or many employees’ identification numbers,

depending on the requirements of a database query or transactions. The column is a

vertical entity in a table, whereas a row of data is a horizontal entity.

NULL is a default attribute for a column; therefore, it does not have to be entered
in the CREATE TABLE statement. NOT NULL must always be specified.

Naming Conventions
When selecting names for objects, specifically tables and columns, the name should

reflect the data that is to be stored. For example, the name for a table pertaining to

employee information could be named EMPLOYEE_TBL. Names for columns should

follow the same logic. When storing an employee’s phone number, an obvious

name for that column would be PHONE_NUMBER.

Check your particular implementation for name length limits and characters that
are allowed; they could differ from implementation to implementation.

The ALTER TABLE Command
A table can be modified through the use of the ALTER TABLE command after that

table’s creation. You can add column(s), drop column(s), change column definitions,

add and drop constraints, and, in some implementations, modify table STORAGE val-

ues. The standard syntax for the ALTER TABLE command follows:

alter table table_name [modify] [column column_name][datatype|null not null]
[restrict|cascade]

[drop] [constraint constraint_name]
[add] [column] column definition

By the
Way

By the
Way

48 HOUR 3: Managing Database Objects

Modifying Elements of a Table
The attributes of a column refer to the rules and behavior of data in a column. You

can modify the attributes of a column with the ALTER TABLE command. The word

attributes here refers to the following:

. The data type of a column

. The length, precision, or scale of a column

. Whether the column can contain NULL values

The following example uses the ALTER TABLE command on EMPLOYEE_TBL to modi-

fy the attributes of the column EMP_ID:

ALTER TABLE EMPLOYEE_TBL MODIFY
EMP_ID VARCHAR(10);

Table altered.

The column was already defined as data type VARCHAR (a varying-length character),

but you increased the maximum length from 9 to 10.

Adding Mandatory Columns to a Table
One of the basic rules for adding columns to an existing table is that the column

you are adding cannot be defined as NOT NULL if data currently exists in the table.

NOT NULL means that a column must contain some value for every row of data in

the table. So, if you are adding a column defined as NOT NULL, you are contradict-

ing the NOT NULL constraint right off the bat if the preexisting rows of data in the

table do not have values for the new column.

There is, however, a way to add a mandatory column to a table:

1. Add the column and define it as NULL (the column does not have to contain a

value).

2. Insert a value into the new column for every row of data in the table.

3. After ensuring that the column contains a value for every row of data in the

table, you can alter the table to change the column’s attribute to NOT NULL.

Adding Auto-Incrementing Columns to a Table
Sometimes it is necessary to create a column that auto-increments itself in order to

give a unique sequence number for a particular row. This could be done for many

reasons, such as not having a natural key for the data or you would like to use a

A Table: The Primary Storage for Data 49

unique sequence number to sort the data. Creating an auto-incrementing column is

generally quite easy. In MySQL the implementation provides the SERIAL method to

produce a truly unique value for the table. Following is an example:

CREATE TABLE TEST_INCREMENT(
ID SERIAL,
TEST_NAME VARCHAR(20));

INSERT INTO TEST_INCREMENT(TEST_NAME)
VALUES (‘FRED’),(‘JOE’),(‘MIKE’),(‘TED’);

SELECT * FROM TEST_INCREMENT;

ID	TEST_NAME
1	FRED
2	JOE
3	MIKE
4	TED

Modifying Columns
There are many things to take into consideration when modifying existing columns

of a table. Following are some common rules for modifying columns:

. The length of a column can be increased to the maximum length of the given

data type.

. The length of a column can be decreased only if the largest value for that col-

umn in the table is less than or equal to the new length of the column.

. The number of digits for a number data type can always be increased.

. The number of digits for a number data type can be decreased only if the

value with the most number of digits for that column is less than or equal to

the new number of digits specified for the column.

. The number of decimal places for a number data type can either be increased

or decreased.

. The data type of a column can normally be changed.

Some implementations may actually restrict you from using certain ALTER TABLE

options. For example, you might not be allowed to drop columns from a table. To do

this, you would have to drop the table itself, and then rebuild the table with the

desired columns. You could run into problems by dropping a column in one table

that is dependent on a column in another table, or a column that is referenced by a

column in another table. Be sure to refer to your specific implementation documen-

tation.

50 HOUR 3: Managing Database Objects

Take heed when altering and dropping tables. If logical or typing mistakes are
made when issuing these statements, important data can be lost.

Creating a Table from an Existing Table
A copy of an existing table can be created using a combination of the CREATE

TABLE statement and the SELECT statement. The new table has the same column

definitions. Any or all columns can be selected. New columns that are created via

functions or a combination of columns automatically assume the size necessary to

hold the data. The basic syntax for creating a table from another table is as follows:

create table new_table_name as
select [*|column1, column2]
from table_name
[where]

Notice some new keywords in the syntax, particularly the SELECT keyword. SELECT

is a database query and is discussed in more detail in Chapter 7, “Introduction to

Database Query.” However, it is important to know that you can create a table

based on the results from a query.

First, we do a simple query to view the data in the PRODUCTS_TBL table.

You will create the tables that you see in these examples at the end of this hour
in the “Exercises” section. In Hour 5, “Manipulating Data,” you will populate the
tables you create in this hour with data.

select * from products_tbl;

PROD_ID PROD_DESC COST
---------- ----------------------------- ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

SELECT * selects data from all fields in the given table. The * represents a com-
plete row of data, or record, in the table.

Watch
Out!

Watch
Out!

Watch
Out!

A Table: The Primary Storage for Data 51

Next, create a table called PRODUCTS_TMP based on the previous query:

create table products_tmp as
select * from products_tbl;

Table created.

Now, if you run a query on the PRODUCTS_TMP table, your results appear the same as

if you had selected data from the original table.

select *
from products_tmp;

PROD_ID PROD_DESC COST
---------- ----------------------------- ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

When creating a table from an existing table, the new table takes on the same
STORAGE attributes as the original table.

Dropping Tables
Dropping a table is actually one of the easiest things to do. When the RESTRICT

option is used and the table is referenced by a view or constraint, the DROP state-

ment returns an error. When the CASCADE option is used, the drop succeeds and all

referencing views and constraints are dropped. The syntax to drop a table follows:

drop table table_name [restrict|cascade]

In the following example, you drop the table that you just created:

drop table products.tmp;

Table dropped.

Whenever dropping a table, be sure to specify the schema name or owner of the
table before submitting your command. You could drop the incorrect table. If you
have access to multiple user accounts, ensure that you are connected to the data-
base through the correct user account before dropping tables.

By the
Way

Watch
Out!

52 HOUR 3: Managing Database Objects

Integrity Constraints
Integrity constraints are used to ensure accuracy and consistency of data in a

relational database. Data integrity is handled in a relational database through the

concept of referential integrity. Many types of integrity constraints play a role in

referential integrity (RI).

Primary Key Constraints
Primary key is the term used to identify one or more columns in a table that make a

row of data unique. Although the primary key typically consists of one column in a

table, more than one column can comprise the primary key. For example, either the

employee’s Social Security number or an assigned employee identification number is

the logical primary key for an employee table. The objective is for every record to

have a unique primary key or value for the employee’s identification number.

Because there is probably no need to have more than one record for each employee

in an employee table, the employee identification number makes a logical primary

key. The primary key is assigned at table creation.

The following example identifies the EMP_ID column as the PRIMARY KEY for the

EMPLOYEES table:

CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL PRIMARY KEY,
EMP_NAME VARCHAR (40) NOT NULL,
EMP_ST_ADDR VARCHAR (20) NOT NULL,
EMP_CITY VARCHAR (15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP INTEGER(5) NOT NULL,
EMP_PHONE INTEGER(10) NULL,
EMP_PAGER INTEGER(10) NULL);

This method of defining a primary key is accomplished during table creation. The

primary key in this case is an implied constraint. You can also specify a primary key

explicitly as a constraint when setting up a table, as follows:

CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL,
EMP_NAME VARCHAR (40) NOT NULL,
EMP_ST_ADDR VARCHAR (20) NOT NULL,
EMP_CITY VARCHAR (15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP INTEGER(5) NOT NULL,
EMP_PHONE INTEGER(10) NULL,
EMP_PAGER INTEGER(10) NULL,
PRIMARY KEY (EMP_ID));

Integrity Constraints 53

The primary key constraint in this example is defined after the column comma list

in the CREATE TABLE statement.

A primary key that consists of more than one column can be defined by either of

the following methods:

CREATE TABLE PRODUCTS
(PROD_ID VARCHAR2(10) NOT NULL,
VEND_ID VARCHAR2(10) NOT NULL,
PRODUCT VARCHAR2(30) NOT NULL,
COST NUMBER(8,2) NOT NULL,
PRIMARY KEY (PROD_ID, VEND_ID));

ALTER TABLE PRODUCTS
ADD CONSTRAINT PRODUCTS_PK PRIMARY KEY (PROD_ID, VEND_ID);

Unique Constraints
A unique column constraint in a table is similar to a primary key in that the value in

that column for every row of data in the table must have a unique value. Although

a primary key constraint is placed on one column, you can place a unique con-

straint on another column even though it is not actually for use as the primary key.

Study the following example:

CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL PRIMARY KEY,
EMP_NAME VARCHAR (40) NOT NULL,
EMP_ST_ADDR VARCHAR (20) NOT NULL,
EMP_CITY VARCHAR (15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP INTEGER(5) NOT NULL,
EMP_PHONE INTEGER(10) NULL UNIQUE,
EMP_PAGER INTEGER(10) NULL);

The primary key in this example is EMP_ID, meaning that the employee identifica-

tion number is the column that is used to ensure that every record in the table is

unique. The primary key is a column that is normally referenced in queries, particu-

larly to join tables. The column EMP_PHONE has been designated as a UNIQUE value,

meaning that no two employees can have the same telephone number. There is not

a lot of difference between the two, except that the primary key is used to provide

an order to data in a table and, in the same respect, join related tables.

Foreign Key Constraints
A foreign key is a column in a child table that references a primary key in the parent

table. A foreign key constraint is the main mechanism used to enforce referential

54 HOUR 3: Managing Database Objects

integrity between tables in a relational database. A column defined as a foreign key

is used to reference a column defined as a primary key in another table.

Study the creation of the foreign key in the following example:

CREATE TABLE EMPLOYEE_PAY_TBL
(EMP_ID CHAR(9) NOT NULL,
POSITION VARCHAR2(15) NOT NULL,
DATE_HIRE DATE NULL,
PAY_RATE NUMBER(4,2) NOT NULL,
DATE_LAST_RAISE DATE NULL,
CONSTRAINT EMP_ID_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL (EMP_ID));

The EMP_ID column in this example has been designated as the foreign key for the

EMPLOYEE_PAY_TBL table. This foreign key, as you can see, references the EMP_ID col-

umn in the EMPLOYEE_TBL table. This foreign key ensures that for every EMP_ID in

the EMPLOYEE_PAY_TBL, there is a corresponding EMP_ID in the EMPLOYEE_TBL. This

is called a parent/child relationship. The parent table is the EMPLOYEE_TBL table, and

the child table is the EMPLOYEE_PAY_TBL table. Study Figure 3.4 for a better under-

standing of the parent table/child table relationship.

EMPLOYEE_PAY_TBL

emp_id
position
date_hire
pay_rate
date_last_raise

EMPLOYEE_TBL

emp_id
last_name
first_name
mid_name
address
city
state
zip
phone
pager

Primary
Key

Foreign
Key

Parent
Table

Child
Table

FIGURE 3.4
The
parent/child
table relation-
ship.

In this figure, the EMP_ID column in the child table references the EMP_ID column in

the parent table. For a value to be inserted for EMP_ID in the child table, a value for

EMP_ID in the parent table must first exist. Likewise, for a value to be removed for

EMP_ID in the parent table, all corresponding values for EMP_ID must first be

removed from the child table. This is how referential integrity works.

A foreign key can be added to a table using the ALTER TABLE command, as shown

in the following example:

alter table employee_pay_tbl
add constraint id_fk foreign key (emp_id)
references employee_tbl (emp_id);

Integrity Constraints 55

The options available with the ALTER TABLE command differ among different
implementations of SQL, particularly when dealing with constraints. In addition,
the actual use and definitions of constraints also vary, but the concept of referen-
tial integrity should be the same with all relational databases.

NOT NULL Constraints
Previous examples use the keywords NULL and NOT NULL listed on the same line as

each column and after the data type. NOT NULL is a constraint that you can place

on a table’s column. This constraint disallows the entrance of NULL values into a col-

umn; in other words, data is required in a NOT NULL column for each row of data in

the table. NULL is generally the default for a column if NOT NULL is not specified,

allowing NULL values in a column.

Check Constraints
Check (CHK) constraints can be utilized to check the validity of data entered into par-

ticular table columns. Check constraints are used to provide back-end database

edits, although edits are commonly found in the front-end application as well.

General edits restrict values that can be entered into columns or objects, whether

within the database itself or on a front-end application. The check constraint is a

way of providing another protective layer for the data.

The following example illustrates the use of a check constraint:

CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL,
EMP_NAME VARCHAR2(40) NOT NULL,
EMP_ST_ADDR VARCHAR2(20) NOT NULL,
EMP_CITY VARCHAR2(15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP NUMBER(5) NOT NULL,
EMP_PHONE NUMBER(10) NULL,
EMP_PAGER NUMBER(10) NULL),
PRIMARY KEY (EMP_ID),
CONSTRAINT CHK_EMP_ZIP CHECK (EMP_ZIP = ‘46234’);

The check constraint in this table has been placed on the EMP_ZIP column, ensuring

that all employees entered into this table have a ZIP code of ‘46234’. Perhaps that

is a little restricting. Nevertheless, you can see how it works.

If you wanted to use a check constraint to verify that the ZIP code is within a list of

values, your constraint definition could look like the following:

CONSTRAINT CHK_EMP_ZIP CHECK (EMP_ZIP in (‘46234’,’46227’,’46745’));

By the
Way

56 HOUR 3: Managing Database Objects

If there is a minimum pay rate that can be designated for an employee, you could

have a constraint that looks like the following:

CREATE TABLE EMPLOYEE_PAY_TBL
(EMP_ID CHAR(9) NOT NULL,
POSITION VARCHAR2(15) NOT NULL,
DATE_HIRE DATE NULL,
PAY_RATE NUMBER(4,2) NOT NULL,
DATE_LAST_RAISE DATE NULL,
CONSTRAINT EMP_ID_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL (EMP_ID),
CONSTRAINT CHK_PAY CHECK (PAY_RATE > 12.50));

In this example, any employee entered in this table must be paid more than $12.50

an hour. You can use just about any condition in a check constraint, as you can

with a SQL query. You learn more about these conditions in Hours 5 and 7.

Dropping Constraints
Any constraint that you have defined can be dropped using the ALTER TABLE com-

mand with the DROP CONSTRAINT option. For example, to drop the primary key con-

straint in the EMPLOYEES table, you can use the following command:

ALTER TABLE EMPLOYEES DROP CONSTRAINT EMPLOYEES_PK;

Table altered.

Some implementations might provide shortcuts for dropping certain constraints. For

example, to drop the primary key constraint for a table in MySQL, you can use the

following command:

ALTER TABLE EMPLOYEES DROP PRIMARY KEY;

Table altered.

Some implementations allow you to disable constraints. Instead of permanently
dropping a constraint from the database you might want to temporarily disable the
constraint, and then enable it later.

Summary
You have learned a little about database objects in general, but have specifically

learned about the table. The table is the simplest form of data storage in a relation-

al database. Tables contain groups of logical information, such as employee, cus-

tomer, or product information. A table is composed of various columns, with each

column having attributes; those attributes mainly consist of data types and con-

straints, such as NOT NULL values, primary keys, foreign keys, and unique values.

By the
Way

Q&A 57

You learned the CREATE TABLE command and options, such as storage parameters,

that might be available with this command. You have also learned how to modify

the structure of existing tables using the ALTER TABLE command. Although the

process of managing database tables might not be the most basic process in SQL, it

is our philosophy that if you first learn the structure and nature of tables, you more

easily grasp the concept of accessing the tables, whether through data manipulation

operations or database queries. In later hours, you learn about the management of

other objects in SQL, such as indexes on tables and views.

Q&A
Q. When I name a table that I am creating, is it necessary to use a suffix such

as _TBL?

A. Absolutely not. You do not have to use anything. For example, a table to hold

employee information could be named similar to the following, or anything

else that would refer to what type of data is to be stored in that particular

table:

EMPLOYEE
EMP_TBL
EMPLOYEE_TBL
EMPLOYEE_TABLE
WORKER

Q. Why is it so important to use the schema name when dropping a table?

A. Here’s a true story about a new DBA that dropped a table: A programmer had

created a table under his schema with the same name as a production table.

That particular programmer left the company. The programmer’s database

account was being deleted from the database, but the DROP USER statement

returned an error due to the fact that outstanding objects were owned by the

programmer. After some investigation, it was determined that the program-

mer’s table was not needed, so a DROP TABLE statement was issued.

It worked like a charm—but the problem was that the DBA was logged in as

the production schema when the DROP TABLE statement was issued. The DBA

should have specified a schema name, or owner, for the table to be dropped.

Yes, the wrong table in the wrong schema was dropped. It took approximately

eight hours to restore the production database.

58 HOUR 3: Managing Database Objects

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. Will the following CREATE TABLE statement work? If not, what needs to be

done to correct the problem(s)?

Create table EMPLOYEE_TABLE as:
(ssn number(9) not null,
last_name varchar2(20) not null,
first_name varchar2(20) not null,
middle_name varchar2(20) not null,
st address varchar2(30) not null,
city char(20) not null,
state char(2) not null,
zip number(4) not null,
date hired date);

2. Can you drop a column from a table?

3. What statement would you issue in order to create a primary key constraint

on the preceding EMPLOYEE_TABLE?

4. What statement would you issue on the preceding EMPLOYEE_TABLE to allow

the MIDDLE_NAME column to accept NULL values?

5. What statement would you use to restrict the people added into the preceding

EMPLOYEE_TABLE to only reside in the state of New York (‘NY’)?

6. What statement would you use to add an auto-incrementing column called

EMPID to the preceding EMPLOYEE_TABLE?

Workshop 59

Exercises
1. Bring up a command prompt and use the following syntax to log onto your

local MySQL instance, replacing username with your username and password

with your password. Ensure that you do not leave a space between –p and

your password.

Mysql -h localhost –u username -ppassword

2. At the mysql> command prompt, enter the following command to tell MySQL

that you want to use the database you created previously:

use learnsql;

3. Now, go to Appendix D, “CREATE TABLE Statements for Book Examples,” to

get the DDL for the tables used in this book. At the mysql> prompt, enter each

CREATE TABLE statement. Be sure to include a semicolon at the end of each

CREATE TABLE statement. The tables that you create will be used throughout

the book.

4. At the mysql> prompt, enter the following command to get a list of your

tables:

show tables;

5. At the mysql> prompt, use the DESCRIBE command (desc for short) to list the

columns and their attributes for each one of the tables you created. For exam-

ple:

describe employee_tbl;
describe employee_pay_tbl;

6. If you have any errors or typos, simply re-create the appropriate table(s). If the

table was successfully created, but has typos (perhaps you did not properly

define a column or forgot a column), drop the table, and issue the CREATE

TABLE command again. The syntax of the DROP TABLE command is as fol-

lows:

drop table orders_tbl;

This page intentionally left blank

HOUR 4

The Normalization Process

In this hour, you learn the process of taking a raw database and breaking it into logical

units called tables. This process is referred to as normalization. The normalization process is

used by database developers to design databases in which it is easy to organize and man-

age data while ensuring the accuracy of data throughout the database.

The advantages and disadvantages of both normalization and denormalization of a data-

base are discussed in this hour, as well as data integrity versus performance issues that

pertain to normalization.

The highlights of this hour include:
. What normalization is
. Benefits of normalization
. Advantages of denormalization
. Normalization techniques
. Guidelines of normalization
. The three normal forms
. Database design

Normalizing a Database
Normalization is a process of reducing redundancies of data in a database. Normalization

is a technique that is used when designing and redesigning a database. Normalization is

a process or set of guidelines used to optimally design a database to reduce redundant

data. The actual guidelines of normalization, called normal forms, will be discussed later in

this hour. It was a difficult decision to decide whether to cover normalization in this book

because of the complexity involved in understanding the rules of the normal forms this

early on in your SQL journey. However, normalization is an important process that, if

62 HOUR 4: The Normalization Process

understood, will increase your understanding of SQL. We have attempted to simplify

the process of normalization as much as possible in this hour. At this point, don’t be

overly concerned with all the specifics of normalization; it is most important to

understand the basic concepts.

The Raw Database
A database that is not normalized might include data that is contained in one or

more different tables for no apparent reason. This could be bad for security reasons,

disk space usage, speed of queries, efficiency of database updates, and, maybe most

importantly, data integrity. A database before normalization is one that has not

been broken down logically into smaller, more manageable tables. Figure 4.1 illus-

trates the database used for this book before it was normalized.

emp_id
last_name
first_name
middle_name
address
city
state
zip
phone
pager
position
date_hire
pay_rate
bonus
date_last_raise

COMPANY_DATABASE

cust_id
cust_name
cust_address
cust_city
cust_state
cust_zip
cust_phone
cust_fax
ord_num
qty
ord_date
prod_id
prod_desc
cost

FIGURE 4.1
The raw data-
base.

Determining the set of information that the raw database will consist of is one of

the first and most important steps in logical database design. You must know all of

the data elements that will comprise your database in order to effectively apply the

techniques discussed in this chapter. Taking the time to perform the due diligence of

gathering the set of required data will keep you from having to backtrack your data-

base design scheme due to missing data elements.

Logical Database Design
Any database should be designed with the end user in mind. Logical database

design, also referred to as the logical model, is the process of arranging data into

Normalizing a Database 63

logical, organized groups of objects that can easily be maintained. The logical

design of a database should reduce data repetition or go so far as to completely

eliminate it. After all, why store the same data twice? Additionally, the logical data-

base design should strive to make the database easy to maintain and update.

Naming conventions used in a database should also be standard and logical to aid

in this endeavor.

What Are the End User’s Needs?
The needs of the end user should be one of the top considerations when designing a

database. Remember that the end user is the person who ultimately uses the data-

base. There should be ease of use through the user’s front-end tool (a client program

that allows a user access to a database), but this, along with optimal performance,

cannot be achieved if the user’s needs are not taken into consideration.

Some user-related design considerations include the following:

. What data should be stored in the database?

. How will the user access the database?

. What privileges does the user require?

. How should the data be grouped in the database?

. What data is the most commonly accessed?

. How is all data related in the database?

. What measures should be taken to ensure accurate data?

. What measures can be taken to reduce redundancy of data?

. What measures can be taken to ensure ease of use for the end-user who is

maintaining the data?

Data Redundancy
Data should not be redundant, which means that the duplication of data should be

kept to a minimum for several reasons. For example, it is unnecessary to store an

employee’s home address in more than one table. With duplicate data, unnecessary

space is used. Confusion is always a threat when, for instance, an address for an

employee in one table does not match the address of the same employee in another

table. Which table is correct? Do you have documentation to verify the employee’s

current address? As if data management were not difficult enough, redundancy of

data could prove to be a disaster. Reducing redundancy also ensures that updating

64 HOUR 4: The Normalization Process

the data within the database is relatively simple. If you have a single table for the

employees’ addresses and you update that table with new addresses, you can rest

assured that it is updated for everyone viewing the data.

The Normal Forms
The next sections discuss the normal forms, an integral concept involved in the

process of database normalization.

Normal form is a way of measuring the levels, or depth, to which a database has

been normalized. A database’s level of normalization is determined by the normal

form.

The following are the three most common normal forms in the normalization

process:

. The first normal form

. The second normal form

. The third normal form

Of the three normal forms, each subsequent normal form depends on normalization

steps taken in the previous normal form. For example, to normalize a database

using the second normal form, the database must first be in the first normal form.

The First Normal Form
The objective of the first normal form is to divide the base data into logical units

called tables. When each table has been designed, a primary key is assigned to most

or all tables. Remember from Hour 3, “Managing Database Objects,” that your pri-

mary key must be a unique value, so try to select a data element for the primary

key that naturally uniquely identifies a specific piece of data. Examine Figure 4.2,

which illustrates how the raw database shown in the previous figure has been rede-

veloped using the first normal form.

You can see that to achieve the first normal form, data had to be broken into logical

units of related information, each having a primary key and ensuring that there are

no repeated groups in any of the tables. Instead of one large table, there are now

smaller, more manageable tables: EMPLOYEE_TBL, CUSTOMER_TBL, and PRODUCTS_

TBL. The primary keys are normally the first columns listed in a table, in this case,

EMP_ID, CUST_ID, and PROD_ID. This is a normal convention that you should use

when diagramming your database to ensure that it is easily readable.

Normalizing a Database 65

The Second Normal Form
The objective of the second normal form is to take data that is only partly depend-

ent on the primary key and enter that data into another table. Figure 4.3 illustrates

the second normal form.

According to the figure, the second normal form is derived from the first normal

form by further breaking two tables into more specific units.

EMPLOYEE_TBL is split into two tables called EMPLOYEE_TBL and EMPLOYEE_PAY_TBL.

Personal employee information is dependent on the primary key (EMP_ID), so that

information remained in the EMPLOYEE_TBL (EMP_ID, LAST_NAME, FIRST_NAME,

MIDDLE_NAME, ADDRESS, CITY, STATE, ZIP, PHONE, and PAGER). On the other hand,

the information that is only partly dependent on the EMP_ID (each individual

employee) is used to populate EMPLOYEE_PAY_TBL (EMP_ID, POSITION, POSITION_

DESC, DATE_HIRE, PAY_RATE, and DATE_LAST_RAISE). Notice that both tables contain

the column EMP_ID. This is the primary key of each table and is used to match cor-

responding data between the two tables.

CUSTOMER_TBL is split into two tables called CUSTOMER_TBL and ORDERS_TBL. What

took place is similar to what occurred in the EMPLOYEE_TBL. Columns that were

partly dependent on the primary key were directed to another table. The order infor-

mation for a customer is dependent on each CUST_ID, but does not directly depend

on the general customer information in the original table.

emp_id
last_name
first_name
middle_name
address
city
state
zip
phone
pager
position
position_desc
date_hire
pay_rate
bonus
date_last_raise

EMPLOYEE_TBL

emp_id
last_name
first_name
middle_name
address
city
state
zip
phone
pager
position
position_desc
date_hire
pay_rate
bonus
date_last_raise

COMPANY_DATABASE

cust_id
cust_name
cust_address
cust_city
cust_state
cust_zip
cust_phone
cust_fax
ord_num
qty
ord_date

CUSTOMER_TBL

prod_id
prod_desc
cost

cust_id
cust_name
cust_address
cust_city
cust_state
cust_zip
cust_phone
cust_fax
ord_num
qty
ord_date

prod_id
prod_desc
cost

PRODUCTS_TBL

FIGURE 4.2
The first normal
form.

66 HOUR 4: The Normalization Process

The Third Normal Form
The third normal form’s objective is to remove data in a table that is not dependent

on the primary key. Figure 4.4 illustrates the third normal form.

Another table was created to display the use of the third normal form. EMPLOYEE_

PAY_TBL is split into two tables, one table containing the actual employee pay infor-

mation and the other containing the position descriptions, which really do not need

to reside in EMPLOYEE_PAY_TBL. The POSITION_DESC column is totally independent

of the primary key, EMP_ID. As you can see, the normalization process is a series of

steps that breaks down the data from your raw database into discrete tables of relat-

ed data.

emp_id
last_name
first_name
middle_name
address
city
state
zip
phone
pager
position
position_desc
date_hire
pay_rate
bonus
date_last_raise

EMPLOYEE_TBL

emp_id
position
position_desc
date_hire
pay_rate
bonus
date_last_raise

EMPLOYEE_PAY_TBL

emp_id
last_name
first_name
middle_name
address
city
state
zip
phone
pager

EMPLOYEE_TBL

cust_id
cust_name
cust_address
cust_city
cust_state
cust_zip
cust_phone
cust_fax

CUSTOMER_TBL

cust_id
cust_name
cust_address
cust_city
cust_state
cust_zip
cust_phone
cust_fax

ord_num
prod_id
qty
ord_date

CUSTOMER_TBL

ord_num
prod_id
qty
ord_date

ORDERS_TBL

SECOND NORMAL FORMFIRST NORMAL FORM

FIGURE 4.3
The second nor-
mal form.

Normalizing a Database 67

Naming Conventions
Naming conventions are one of the foremost considerations when you’re normaliz-

ing a database. Names are how you will refer to objects in the database. You want

to give your tables names that are descriptive of the type of information they con-

tain so that the data you are looking for is easy to find. Descriptive table names are

especially important for users querying the database who had no part in the data-

base design. A company-wide naming convention should be set, providing guidance

in the naming of not only tables within the database, but users, filenames, and

other related objects. Naming conventions will also help in database administration

by making it easier to discern the purpose of tables and locations of files within a

database system. Designing and enforcing naming conventions is one of a compa-

ny’s first steps toward a successful database implementation.

Benefits of Normalization
Normalization provides numerous benefits to a database. Some of the major bene-

fits include the following:

. Greater overall database organization

. Reduction of redundant data

. Data consistency within the database

. A much more flexible database design

emp_id
position
position_desc
date_hire
pay_rate
bonus
date_last_raise

EMPLOYEE_PAY_TBL

emp_id
position
date_hire
pay_rate
bonus
date_last_raise

EMPLOYEE_PAY_TBL

position
position_desc

POSITIONS_TBL

FIGURE 4.4
The third normal
form.

68 HOUR 4: The Normalization Process

. A better handle on database security

. Enforces concept of referential integrity

Organization is brought about by the normalization process, making everyone’s job

easier, from the user who accesses tables to the database administrator (DBA) who is

responsible for the overall management of every object in the database. Data redun-

dancy is reduced, which simplifies data structures and conserves disk space. Because

duplicate data is minimized, the possibility of inconsistent data is greatly reduced.

For example, in one table an individual’s name could read STEVE SMITH, whereas

the name of the same individual reads STEPHEN R. SMITH in another table.

Reducing duplicate data increases data integrity, or the assurance of consistent and

accurate data within a database. Because the database has been normalized and

broken into smaller tables, you have more flexibility in modifying existing struc-

tures. It is much easier to modify a small table with little data than to modify one

big table that holds all the vital data in the database. Lastly, security is also provid-

ed in the sense that the DBA can grant access to limited tables to certain users.

Security is easier to control when normalization has occurred.

Referential integrity simply means that the values of one column in a table depend

on the values of a column in another table. For instance, for a customer to have a

record in the ORDERS_TBL table, there must first be a record for that customer in the

CUSTOMER_TBL table. Integrity constraints can also control values by restricting a

range of values for a column. The integrity constraint should be created at the

table’s creation. Referential integrity is typically controlled through the use of pri-

mary and foreign keys.

In a table, a foreign key, normally a single field, directly references a primary key in

another table to enforce referential integrity. In the preceding paragraph, the

CUST_ID in ORDERS_TBL is a foreign key that references CUST_ID in CUSTOMER_TBL.

Normalization helps to enhance and enforce these constraints by logically breaking

down data into subsets that are referenced by a primary key.

Drawbacks of Normalization
Although most successful databases are normalized to some degree, there is one

substantial drawback of a normalized database: reduced database performance. The

acceptance of reduced performance requires the knowledge that when a query or

transaction request is sent to the database, there are factors involved, such as CPU

usage, memory usage, and input/output (I/O). To make a long story short, a nor-

malized database requires much more CPU, memory, and I/O to process transac-

tions and database queries than does a denormalized database. A normalized data-

Summary 69

base must locate the requested tables and then join the data from the tables to

either get the requested information or to process the desired data. A more in-depth

discussion concerning database performance occurs in Hour 18, “Managing

Database Users.”

Denormalizing a Database
Denormalization is the process of taking a normalized database and modifying table

structures to allow controlled redundancy for increased database performance.

Attempting to improve performance is the only reason to ever denormalize a data-

base. A denormalized database is not the same as a database that has not been nor-

malized. Denormalizing a database is the process of taking the level of normaliza-

tion within the database down a notch or two. Remember, normalization can actu-

ally slow performance with its frequently occurring table join operations. (Table

joins are discussed during Hour 13, “Joining Tables in Queries.”) Denormalization

might involve recombining separate tables or creating duplicate data within tables

to reduce the number of tables that need to be joined to retrieve the requested data,

which results in less I/O and CPU time. This is normally advantageous in larger

data warehousing applications in which aggregate calculations are being made

across millions of rows of data within tables.

There are costs to denormalization, however. Data redundancy is increased in a

denormalized database, which can improve performance but requires more extrane-

ous efforts to keep track of related data. Application coding renders more complica-

tions because the data has been spread across various tables and might be more dif-

ficult to locate. In addition, referential integrity is more of a chore; related data has

been divided among a number of tables. There is a happy medium in both normal-

ization and denormalization, but both require a thorough knowledge of the actual

data and the specific business requirements of the pertinent company. If you do look

at denormalizing parts of your database structure, carefully document the process so

you can see exactly how you are handling issues such as redundancy to maintain

data integrity within your systems.

Summary
A difficult decision has to be made concerning database design—to normalize or not

to normalize, that is the question. You will always want to normalize a database to

some degree. How much do you normalize a database without destroying perform-

ance? The real decision relies on the application itself. How large is the database?

What is its purpose? What types of users are going to access the data? This hour

70 HOUR 4: The Normalization Process

covered the three most common normal forms, the concepts behind the normaliza-

tion process, and the integrity of data. The normalization process involves many

steps, most of which are optional but vital to the functionality and performance of

your database. Regardless of how deep you decide to normalize, there will almost

always be a trade-off, either between simple maintenance and questionable per-

formance or complicated maintenance and better performance. In the end, the indi-

vidual (or team of individuals) designing the database must decide, and that person

or team is responsible.

Q&A
Q. Why should I be so concerned with the end user’s needs when designing the

database?

A. The end users are the real data experts who use the database, and, in that

respect, they should be the focus of any database design effort. The database

designer only helps organize the data.

Q. It seems to me that normalization is more advantageous than denormaliza-
tion. Do you agree?

A. It can be more advantageous. However, denormalization, to a point, could be

more advantageous. Remember, many factors help determine which way to

go. You will probably normalize your database to reduce repetition in the

database, but you might turn around and denormalize to a certain extent to

improve performance.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Workshop 71

Quiz
1. True or false: Normalization is the process of grouping data into logical relat-

ed groups.

2. True or false: Having no duplicate or redundant data in a database, and hav-

ing everything in the database normalized, is always the best way to go.

3. True or false: If data is in the third normal form, it is automatically in the first

and second normal forms.

4. What is a major advantage of a denormalized database versus a normalized

database?

5. What are some major disadvantages of denormalization?

6. How do you determine if data needs to be moved to a separate table when

normalizing your database?

7. What are the disadvantages of over-normalizing your database design?

Exercises
1. You are developing a new database for a small company. Take the following

data and normalize it. Keep in mind that there would be many more items for

a small company than you are given here.

Employees:

Angela Smith, secretary, 317-545-6789, RR 1 Box 73, Greensburg, Indiana,

47890, $9.50 per hour, date started January 22, 1996, SSN is 323149669.

Jack Lee Nelson, salesman, 3334 N Main St, Brownsburg, IN, 45687, 317-852-

9901, salary of $35,000.00 per year, SSN is 312567342, date started 10/28/95.

Customers:

Robert’s Games and Things, 5612 Lafayette Rd, Indianapolis, IN, 46224, 317-

291-7888, customer ID is 432A.

Reed’s Dairy Bar, 4556 W 10th St, Indianapolis, IN, 46245, 317-271-9823, cus-

tomer ID is 117A.

Customer Orders:

Customer ID is 117A, date of last order is December 20, 1999, product ordered

was napkins, and the product ID is 661.

72 HOUR 4: The Normalization Process

2. Open a command prompt and login to your MySQL instance as you did in the

exercises in Hour 3. Then type the following at the command prompt to use

your database:

use learnsql;

3. At the mysql> prompt, enter CREATE TABLE statements based on the tables

you defined in Exercise 1.

HOUR 5

Manipulating Data

In this hour, you learn the part of SQL known as Data Manipulation Language (DML).

DML is the part of SQL that is used to make changes to data and tables in a relational

database.

This hour’s highlights include:
. An overview of data manipulation language
. Instruction on how to manipulate data in tables
. Concepts behind table population of data
. How to delete data from tables
. How to change or modify data in tables

Overview of Data Manipulation
DML is the part of SQL that allows a database user to actually propagate changes among

data in a relational database. With DML, the user can populate tables with new data,

update existing data in tables, and delete data from tables. Simple database queries can

also be performed within a DML command.

The three basic DML commands in SQL are

. INSERT

. UPDATE

. DELETE

74 HOUR 5: Manipulating Data

The SELECT command, which can be used with DML commands, is discussed in

more detail in Hour 7, “Introduction to the Database Query.” The SELECT command

is the basic query command that can be used after data has been entered into the

database with the INSERT command.

Populating Tables with New Data
Populating a table with data is simply the process of entering new data into a table,

whether through a manual process using individual commands or through batch

processes using programs or other related software. Manual population of data refers

to data entry via a keyboard. Automated population normally deals with obtaining

data from an external data source (such as another database or possibly a flat file)

and loading the obtained data into the database.

Many factors can affect what data and how much data can be put into a table

when populating tables with data. Some major factors include existing table con-

straints, the physical table size, column data types, the length of columns, and other

integrity constraints, such as primary and foreign keys. The following sections help

you learn the basics of inserting new data into a table, in addition to offering some

dos and don’ts.

Do not forget that SQL statements can be in uppercase or lowercase. However,
data is always case-sensitive. For example, if data is entered into the database as
uppercase, it must be referenced in uppercase. These examples use both lower-
case and uppercase just to show that it does not affect the outcome.

Inserting Data into a Table
Use the INSERT statement to insert new data into a table. There are a few options

with the INSERT statement; look at the following basic syntax to begin:

INSERT INTO TABLE_NAME
VALUES (‘value1’, ‘value2’, [NULL]);

Using this INSERT statement syntax, you must include every column in the specified

table in the VALUES list. Notice that each value in this list is separated by a comma.

The values inserted into the table must be enclosed by single quotation marks for

character and date/time data types. Single quotation marks are not required for

numeric data types or NULL values using the NULL keyword. A value should be pres-

ent for each column in the table and those values must be in the same order as the

columns are listed in the table.

By the
Way

Populating Tables with New Data 75

In the following example, you insert a new record into the PRODUCTS_TBL table.

Here is the table structure:

products_tbl

COLUMN Name Null? DATA Type
------------------------------ -------- -------------
PROD_ID NOT NULL VARCHAR2(10)
PROD_DESC NOT NULL VARCHAR2(25)
COST NOT NULL NUMBER(6,2)

Here is the sample INSERT statement:

INSERT INTO PRODUCTS_TBL
VALUES (‘7725’,’LEATHER GLOVES’,24.99);

1 row created.

In this example, three values were inserted into a table with three columns. The

inserted values are in the same order as the columns listed in the table. The first two

values are inserted using single quotation marks because the data types of the corre-

sponding columns are of character type. The third value’s associated column, COST,

is a numeric data type and does not require quotation marks, although they can be

used and would not affect the outcome of the statement.

Although single quotation marks are not required around numeric data that is
being inserted, they may be used with any data type. Said another way, single quo-
tation marks are optional when referring to numeric data values in the database,
but required for all other data values (data types). Although usually a matter of
preference, most SQL users choose not to use quotation marks with numeric val-
ues as it makes their queries more readable.

Inserting Data into Limited Columns of a Table
There is a way you can insert data into specified columns. For instance, suppose you

want to insert all values for an employee except a pager number. You must, in this

case, specify a column list as well as a VALUES list in your INSERT statement.

INSERT INTO EMPLOYEE_TBL
(EMP_ID, LAST_NAME, FIRST_NAME, MIDDLE_NAME, ADDRESS, CITY, STATE, ZIP, PHONE)
VALUES
(‘123456789’, ‘SMITH’, ‘JOHN’, ‘JAY’, ‘12 BEACON CT’,
‘INDIANAPOLIS’, ‘IN’, ‘46222’, ‘3172996868’);

1 row created.

By the
Way

76 HOUR 5: Manipulating Data

The syntax for inserting values into a limited number of columns in a table is as fol-

lows:

INSERT INTO TABLE_NAME (‘COLUMN1’, ‘COLUMN2’)
VALUES (‘VALUE1’, ‘VALUE2’);

You use ORDERS_TBL and insert values into only specified columns in the following

example.

Here is the table structure:

ORDERS_TBL

COLUMN NAME Null? DATA TYPE
------------------------------ --------- ------------
ORD_NUM NOT NULL VARCHAR2(10)
CUST_ID NOT NULL VARCHAR2(10)
PROD_ID NOT NULL VARCHAR2(10)
QTY NOT NULL NUMBER(4)
ORD_DATE DATE

Here is the sample INSERT statement:

insert into orders_tbl (ord_num,cust_id,prod_id,qty)
values (‘23A16’,’109’,’7725’,2);

1 row created.

You have specified a column list enclosed by parentheses after the table name in the

INSERT statement. You have listed all columns into which you want to insert data.

ORD_DATE is the only excluded column. If you look at the table definition, you can

see that ORD_DATE does not require data for every record in the table. You know that

ORD_DATE does not require data because NOT NULL is not specified in the table defi-

nition. NOT NULL tells us that NULL values are not allowed in the column.

Furthermore, the list of values must appear in the same order as the column list.

The column list in the INSERT statement does not have to reflect the same order
of columns as in the definition of the associated table, but the list of values must
be in the order of the associated columns in the column list.

Inserting Data from Another Table
You can insert data into a table based on the results of a query from another table

using a combination of the INSERT statement and the SELECT statement. Briefly, a

query is an inquiry to the database that either expects or does not expect data to be

returned. See Hour 7 for more information on queries. A query is a question that the

By the
Way

Populating Tables with New Data 77

user asks the database, and the data returned is the answer. In the case of combin-

ing the INSERT statement with the SELECT statement, you are able to insert the data

retrieved from a query into a table.

The syntax for inserting data from another table is

insert into table_name [(‘column1’, ‘column2’)]
select [*|(‘column1’, ‘column2’)]
from table_name
[where condition(s)];

You see three new keywords in this syntax, which are covered here briefly. These

keywords are SELECT, FROM, and WHERE. SELECT is the main command used to initi-

ate a query in SQL. FROM is a clause in the query that specifies the names of tables

in which the target data should be found. The WHERE clause, also part of the query,

is used to place conditions on the query itself. A condition is a way of placing criteria

on data affected by a SQL statement. An example condition might state: WHERE

NAME = ‘SMITH’. These three keywords are covered extensively during Hour 7 and

Hour 8, “Using Operators to Categorize Data.”

The following example uses a simple query to view all data in the PRODUCTS_TBL

table. SELECT * tells the database server that you want information on all columns

of the table. Because no WHERE clause is used, you will see all records in the table as

well.

select * from products_tbl;
PROD_ID PROD_DESC COST
---------- ------------------------------ -----
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

11 rows selected.

Now, insert values into the PRODUCTS_TMP table based on the preceding query. You

can see that 11 rows are created in the temporary table.

insert into products_tmp
select * from products_tbl;

11 rows created.

78 HOUR 5: Manipulating Data

You must ensure that the columns returned from the SELECT query are in the same

order as the columns that you have in your table or INSERT statement. Additionally,

double-check that the data from the SELECT query is compatible with the data type

of the column that it is inserting into the table. For example, trying to insert a

VARCHAR field with ‘ABC’ into a numeric column would cause your statement to fail.

The following query shows all data in the PRODUCTS_TMP table that you just

inserted:

select * from products_tmp;
PROD_ID PROD_DESC COST
---------- ------------------------------ -----
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

11 rows selected.

Inserting NULL Values
Inserting a NULL value into a column of a table is a simple matter. You might want

to insert a NULL value into a column if the value of the column in question is

unknown. For instance, not every person carries a pager, so it would be inaccurate

to enter an erroneous pager number—not to mention, you would not be budgeting

space. A NULL value can be inserted into a column of a table using the keyword

NULL.

The syntax for inserting a NULL value follows:

insert into schema.table_name values
(‘column1’, NULL, ‘column3’);

The NULL keyword should be used in the proper sequence of the associated column

that exists in the table. That column will not have data in it for that row if you

enter NULL. In the syntax, a NULL value is being entered in the place of COLUMN2.

Study the two following examples:

insert into orders_tbl (ord_num,cust_id,prod_id,qty,ORD_DATE)
values (‘23A16’,’109’,’7725’,2,NULL);

1 row created.

Updating Existing Data 79

In this example, all columns in which to insert values are listed, which also happen

to be every column in the ORDERS_TBL table. You insert a NULL value for the

ORD_DATE column, meaning that you either do not know the order date, or there is

no order date at this time. Now look at the second example:

insert into orders_tbl
values (‘23A16’,’109’,’7725’,2);

1 row created.

The second example contains two differences from the first statement, but the results

are the same. First, there is not a column list. Remember that a column list is not

required if you are inserting data into all columns of a table. Second, instead of

inserting the value NULL into the ORD_DATE column, you simply leave off the last

value, which signifies that a NULL value should be added. Remember that a NULL

value signifies an absence of value from a field and is different from an empty

string.

Updating Existing Data
Pre-existing data in a table can be modified using the UPDATE command. The

UPDATE command does not add new records to a table, nor does it remove records—

UPDATE simply updates existing data. The update is generally used to update one

table at a time in a database, but can be used to update multiple columns of a table

at the same time. An individual row of data in a table can be updated, or numerous

rows of data can be updated in a single statement, depending on what’s needed.

Updating the Value of a Single Column
The most simple form of the UPDATE statement is its use to update a single column

in a table. Either a single row of data or numerous records can be updated when

updating a single column in a table.

The syntax for updating a single column follows:

update table_name
set column_name = ‘value’
[where condition];

The following example updates the QTY column in the ORDERS table to the new

value 1 for the ORD_NUM 23A16, which you have specified using the WHERE clause:

update orders_tbl
set qty = 1
where ord_num = ‘23A16’;

1 row updated.

80 HOUR 5: Manipulating Data

The following example is identical to the previous example, except for the absence

of the WHERE clause:

update orders_tbl
set qty = 1;

11 rows updated.

Notice that in this example, 11 rows of data were updated. You set the QTY to 1,

which updated the quantity column in the ORDERS_TBL table for all rows of data. Is

this really what you wanted to do? Perhaps in some cases, but rarely will you issue

an UPDATE statement without a WHERE clause. An easy way to check to see whether

you are going to be updating the correct dataset or not is to write a SELECT state-

ment for the same table with your WHERE clause that you will be using in the INSERT

statement. Then you can physically verify that these are the rows that you want to

update.

Extreme caution must be used when using the UPDATE statement without a WHERE
clause. The target column is updated for all rows of data in the table if conditions
are not designated using the WHERE clause. In most situations, the use of the
WHERE clause with a DML command is appropriate.

Updating Multiple Columns in One or More
Records
Next, you see how to update multiple columns with a single UPDATE statement.

Study the following syntax:

update table_name
set column1 = ‘value’,

[column2 = ‘value’,]
[column3 = ‘value’]

[where condition];

Notice the use of the SET in this syntax—there is only one SET, but multiple

columns. Each column is separated by a comma. You should start to see a trend in

SQL. The comma is usually used to separate different types of arguments in SQL

statements. In the following code, a comma is used to separate the two columns

being updated. Again, the WHERE clause is optional, but usually necessary.

update orders_tbl
set qty = 1,

cust_id = ‘221’
where ord_num = ‘23A16’;

1 row updated.

Watch
Out!

Deleting Data from Tables 81

The SET keyword is used only once for each UPDATE statement. If more than
one column is to be updated, a comma is used to separate the columns to be
updated.

Deleting Data from Tables
The DELETE command is used to remove entire rows of data from a table. The

DELETE command is not used to remove values from specific columns; a full record,

including all columns, is removed. The DELETE statement must be used with

caution—as it works all too well.

To delete a single record or selected records from a table, the DELETE statement must

be used with the following syntax:

delete from table_name
[where condition];

delete from orders_tbl
where ord_num = ‘23A16’;

1 row deleted.

Notice the use of the WHERE clause. The WHERE clause is an essential part of the

DELETE statement if you are attempting to remove selected rows of data from a

table. You rarely issue a DELETE statement without the use of the WHERE clause. If

you do, your results will be similar to the following example:

delete from orders_tbl;

11 rows deleted.

If the WHERE clause is omitted from the DELETE statement, all rows of data are
deleted from the table. As a general rule, always use a WHERE clause with the
DELETE statement. Additionally, test your WHERE clause with a SELECT statement
first.

Also, remember that the DELETE command might have a permanent impact on the
database. Ideally, it should be possible to recover erroneously deleted data via a
backup, but in some cases, it might be difficult or even impossible to recover
data. If data cannot be recovered, it must be re-entered into the database—trivial
if dealing with only one row of data, but not so trivial if dealing with thousands of
rows of data. Hence, the importance of the WHERE clause.

By the
Way

Watch
Out!

82 HOUR 5: Manipulating Data

The temporary table that was populated from the original table earlier in this hour
can be very useful for testing the DELETE and UPDATE commands before issuing
them against the original table.

Summary
You have learned the three basic commands in DML: the INSERT, UPDATE, and

DELETE statements. As you have seen, data manipulation is a very powerful part of

SQL, allowing the database user to populate tables with new data, update existing

data, and delete data.

A very important lesson when updating or deleting data from tables in a database

is sometimes learned when neglecting the use of the WHERE clause. Remember that

the WHERE clause places conditions on a SQL statement—particularly in the case of

UDPATE and DELETE operations, when you are specifying specific rows of data that

will be affected during a transaction. All target table data rows are affected if the

WHERE clause is not used, which could be disastrous to the database. Protect your

data and be cautious during data manipulation operations.

Q&A
Q. With all the warnings about DELETE and UPDATE, I’m a little afraid to use

them. If I accidentally update all the records in a table because the WHERE
clause was not used, can the changes be reversed?

A. There is no reason to be afraid, because there is not much you can do to the

database that cannot be corrected, although considerable time and work

might be involved. Hour 6, “Managing Database Transactions,” discusses the

concepts of transactional control, which allows data manipulation operations

to either be finalized or undone.

Q. Is the INSERT statement the only way to enter data into a table?

A. No, but remember that the INSERT statement is ANSI standard. The various

implementations have their tools to enter data into tables. For example,

Oracle has a utility called SQL*Loader. Also, many of the various implemen-

tations have utilities called IMPORT that can be used to insert data. There are

many good books on the market that will expand on these utilities.

By the
Way

Workshop 83

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. Use the EMPLOYEE_TBL with the following structure:

column data type (not)null
last_name varchar2(20) not null
first_name varchar2(20) not null
ssn char(9) not null
phone number(10) null

LAST_NAME FIRST_NAME SSN PHONE
SMITH JOHN 312456788 3174549923
ROBERTS LISA 232118857 3175452321
SMITH SUE 443221989 3178398712
PIERCE BILLY 310239856 3176763990

What would happen if the following statements were run?

A.

insert into employee_tbl
(‘JACKSON’, ‘STEVE’, ‘313546078’, ‘3178523443’);

B.

insert into employee_tbl values
(‘JACKSON’, ‘STEVE’, ‘313546078’, ‘3178523443’);

C.

insert into employee_tbl values
(‘MILLER’, ‘DANIEL’, ‘230980012’, NULL);

D.

insert into employee_tbl values
(‘TAYLOR’, NULL, ‘445761212’, ‘3179221331’);

84 HOUR 5: Manipulating Data

E.

delete from employee_tbl;

F.

delete from employee_tbl
where last_name = ‘SMITH’;

G.

delete from employee_tbl
where last_name = ‘SMITH’
and first_name = ‘JOHN’;

H.

update employee_tbl
set last_name = ‘CONRAD’;

I.

update employee_tbl
set last_name = ‘CONRAD’
where last_name = ‘SMITH’;

J.

update employee_tbl
set last_name = ‘CONRAD’,
first_name = ‘LARRY’;

K.

update employee_tbl
set last_name = ‘CONRAD’
first_name = ‘LARRY’
where ssn = ‘313546078’;

Exercises
1. Go to Appendix E, “INSERT Statements for Data in Book Examples.” Invoke

MySQL as you have done in previous exercises.

Now you need to insert the data into the tables that you created in Hour 3,

“Managing Database Objects.” There are two ways to do this. The first method

is to type each INSERT statement that is found in Appendix E at the mysql>

command prompt. This method is recommended if you have the time to do

so. The second method is to download the file tysql24_data.sql from the

website for this book and execute the file from the mysql> command prompt.

Workshop 85

The syntax to execute tysql24_data.sql at the command prompt is as fol-

lows:

source tysql24_data.sql

If you downloaded the file tysql24_data.sql to the mysql folder on your

computer, the syntax to execute this file would be as follows:

source c:\mysql\tysql24_data.sql

After you have executed the file tysql24_data.sql, your tables will be popu-

lated with data and you can proceed with the exercises in the rest of this book.

If you executed the file tysql24_data.sql, you do not have to manually type

the INSERT statements at the mysql> command prompt.

2. Use the PRODUCTS_TBL for the next exercise.

A. Add the following products to the product table:

PROD_ID PROD_DESC COST
301 FIREMAN COSTUME 24.99
302 POLICEMAN COSTUME 24.99
303 KIDDIE GRAB BAG 4.99

Write DML to accomplish the following:

B. Correct the cost of the two costumes added. The cost should be the same

as the witch’s costume.

C. Now we have decided to cut our product line, starting with the new

products. Remove the three products you just added.

This page intentionally left blank

HOUR 6

Managing Database
Transactions

In this hour, you learn the concepts behind the management of database transactions.

The highlights of this hour include:
. The definition of a transaction
. The commands used to control transactions
. The syntax and examples of transaction commands
. When to use transactional commands
. The consequences of poor transactional control

What Is a Transaction?
A transaction is a unit of work that is performed against a database. Transactions are units

or sequences of work accomplished in a logical order, whether in a manual fashion by a

user or automatically by some sort of a database program. In a relational database using

SQL, transactions are accomplished using the Data Manipulation Language (DML) com-

mands that were discussed during Hour 5, “Manipulating Data” (INSERT, UPDATE, and

DELETE). A transaction is the propagation of one or more changes to the database. For

instance, you are performing a transaction if you perform an UPDATE statement on a table

to change an individual’s name.

A transaction can either be one DML statement or a group of statements. When manag-

ing transactions, each designated transaction (group of DML statements) must be success-

ful as one entity or none of them will be successful.

88 HOUR 6: Managing Database Transactions

The following list describes the nature of transactions:

. All transactions have a beginning and an end.

. A transaction can be saved or undone.

. If a transaction fails in the middle, no part of the transaction can be saved to

the database.

Starting or executing transactions is implementation specific. You must check your
particular implementation for how to begin transactions.

Controlling Transactions
Transactional control is the capability to manage various transactions that might

occur within a relational database management system. When you speak of trans-

actions, you are referring to the INSERT, UPDATE, and DELETE commands, which

were covered during the previous hour.

When a transaction is executed and completes successfully, the target table is not

immediately changed, although it might appear so according to the output. When a

transaction successfully completes, transactional control commands are used to

finalize the transaction, either saving the changes made by the transaction to the

database or reversing the changes made by the transaction.

Three commands are used to control transactions:

. COMMIT

. ROLLBACK

. SAVEPOINT

Each of these is discussed in detail in the following sections.

Transactional control commands are only used with the DML commands INSERT,
UPDATE, and DELETE. For example, you do not issue a COMMIT statement after cre-
ating a table. When the table is created, it is automatically committed to the data-
base. Likewise, you cannot issue a ROLLBACK statement to replenish a table that
was just dropped.

By the
Way

By the
Way

Controlling Transactions 89

When a transaction has completed, the transactional information is stored either in

an allocated area or in a temporary rollback area in the database. All changes are

held in this temporary rollback area until a transactional control command is

issued. When a transactional control command is issued, changes are either made

to the database or discarded; then, the temporary rollback area is emptied. Figure

6.1 illustrates how changes are applied to a relational database.

Temporary
Buffer

Changes
Written to

TARGET
TABLE

COMMIT

Transaction
Changes

Changes
Discarded

ROLLBACK

FIGURE 6.1
Rollback area.

The COMMIT Command
The COMMIT command is the transactional command used to save changes invoked

by a transaction to the database. The COMMIT command saves all transactions to the

database since the last COMMIT or ROLLBACK command.

The syntax for this command is

commit [work];

The keyword COMMIT is the only mandatory part of the syntax, along with the char-

acter or command used to terminate a statement according to each implementa-

tion. WORK is a keyword that is completely optional; its only purpose is to make the

command more user-friendly.

In the following example, you begin by selecting all data from the PRODUCT_TMP

table:

SELECT * FROM PRODUCTS_TMP;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35

90 HOUR 6: Managing Database Transactions

6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

11 rows selected.

Next, you delete all records from the table where the product cost is less than

$14.00.

DELETE FROM PRODUCTS_TMP
WHERE COST < 14;

8 rows deleted.

A COMMIT statement is issued to save the changes to the database, completing the

transaction.

COMMIT;

Commit complete.

Frequent COMMIT statements in large loads or unloads of the database are highly
recommended; however, too many COMMIT statements cause the job to take a lot
of extra time to complete. Remember that all changes are sent to the temporary
rollback area first. If this temporary rollback area runs out of space and cannot
store information about changes made to the database, the database will proba-
bly halt, disallowing further transactional activity.

In some implementations, transactions are committed without issuing the COMMIT
command—instead, merely signing out of the database causes a commit to occur.
However, in some implementations, such as MySQL, after you perform a SET
TRANSACTION command, the auto-commit functionality will not resume until it has
received a COMMIT or ROLLBACK statement.

The ROLLBACK Command
The ROLLBACK command is the transactional control command used to undo trans-

actions that have not already been saved to the database. The ROLLBACK command

can only be used to undo transactions since the last COMMIT or ROLLBACK command

was issued.

Watch
Out!

By the
Way

Controlling Transactions 91

The syntax for the ROLLBACK command is as follows:

rollback [work];

Once again, as in the COMMIT statement, the WORK keyword is an optional part of the

ROLLBACK syntax.

In the following example, you begin by selecting all records from the PRODUCTS_TMP

table since the previous deletion of 14 records:

SELECT * FROM PRODUCTS_TMP;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
90 LIGHTED LANTERNS 14.5
2345 OAK BOOKSHELF 59.99

3 rows selected.

Next, you update the table, changing the product cost to $39.99 for the product

identification number 11235:

update products_tmp
set cost = 39.99
where prod_id = ‘11235’;

1 row updated.

If you perform a quick query on the table, the change appears to have occurred:

select * from products_tmp;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 39.99
90 LIGHTED LANTERNS 14.5
2345 OAK BOOKSHELF 59.99

3 rows selected.

Now, issue the ROLLBACK statement to undo the last change:

rollback;

Rollback complete.

92 HOUR 6: Managing Database Transactions

Finally, verify that the change was not committed to the database:

select * from products_tmp;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
90 LIGHTED LANTERNS 14.5
2345 OAK BOOKSHELF 59.99

3 rows selected

The SAVEPOINT Command
A savepoint is a point in a transaction where you can roll the transaction back to

this point without rolling back the entire transaction.

The syntax for the SAVEPOINT command is

savepoint savepoint_name

This command serves only to create a savepoint among transactional statements.

The ROLLBACK command is used to undo a group of transactions. The savepoint is a

way of managing transactions by breaking large numbers of transactions into

smaller, more manageable groups.

The savepoint name must be unique to the associated group of transactions.
However, the savepoint can have the same name as a table or other object. Refer
to specific implementation documentation for more details on naming conven-
tions. Otherwise, savepoint names are a matter of personal preference and are
used only by the database application developer to manage groups of transac-
tions.

The ROLLBACK TO SAVEPOINT Command
The syntax for rolling back to a savepoint is as follows:

ROLLBACK TO SAVEPOINT_NAME;

In this example, you are going to delete the remaining three records from the PROD-

UCTS_TMP table. You want to issue a SAVEPOINT command before each delete, so you

can issue a ROLLBACK command to any savepoint at any time to return the appro-

priate data to its original state:

By the
Way

Controlling Transactions 93

savepoint sp1;

Savepoint created.

delete from products_tmp where prod_id = ‘11235’;

1 row deleted.

savepoint sp2;

Savepoint created.

delete from products_tmp where prod_id = ‘90’;

1 row deleted.

savepoint sp3;

Savepoint created.

delete from products_tmp where prod_id = ‘2345’;

1 row deleted.

Now that the three deletions have taken place, let’s say you have changed your

mind and decided to issue a ROLLBACK command to the savepoint that you identi-

fied as SP2. Because SP2 was created after the first deletion, the last two deletions

are undone:

rollback to sp2;

Rollback complete.

Notice that only the first deletion took place because you rolled back to SP2:

select * from products_tmp;

PROD_ID PROD_DESC COST
---------- ------------------------------ -----
90 LIGHTED LANTERNS 14.5
2345 OAK BOOKSHELF 59.99

2 rows selected.

Remember, the ROLLBACK command by itself will roll back to the last COMMIT or

ROLLBACK statement. You have not yet issued a COMMIT, so all deletions are undone,

as in the following example:

rollback;

Rollback complete.

select * from products_tmp;

94 HOUR 6: Managing Database Transactions

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
90 LIGHTED LANTERNS 14.5
2345 OAK BOOKSHELF 59.99

3 rows selected.

The RELEASE SAVEPOINT Command
The RELEASE SAVEPOINT command is used to remove a savepoint that you have

created. After a savepoint has been released, you can no longer use the ROLLBACK

command to undo transactions performed since the savepoint. You might want to

issue a RELEASE SAVEPOINT command to avoid the accidental rollback to a save-

point that is no longer needed.

RELEASE SAVEPOINT savepoint_name;

The SET TRANSACTION Command
The SET TRANSACTION command can be used to initiate a database transaction.

This command is used to specify characteristics for the transaction that follows. For

example, you can specify a transaction to be read only or read write. For example:

SET TRANSACTION READ WRITE;
SET TRANSACTION READ ONLY;

READ WRITE is used for transactions that are allowed to query and manipulate data

in the database. READ ONLY is used for transactions that require query-only access.

READ ONLY is useful for report generation and for increasing the speed at which

transactions are accomplished. If a transaction is READ WRITE, the database must

create locks on database objects to maintain data integrity in case multiple transac-

tions are happening concurrently. If a transaction is READ ONLY, no locks are estab-

lished by the database, thereby improving transaction performance.

Other characteristics can be set for a transaction that are out of the scope of this

book. MySQL supports this syntax for setting an isolation level for the transaction

but in slightly different syntax. For more information, see the documentation for

your implementation of SQL.

Summary 95

Transactional Control and Database
Performance
Poor transactional control can hurt database performance and even bring the data-

base to a halt. Repeated poor database performance might be due to a lack of trans-

actional control during large inserts, updates, or deletes. Large batch processes also

cause temporary storage for rollback information to grow until either a COMMIT or

ROLLBACK command is issued.

When a COMMIT is issued, rollback transactional information is written to the

target table and the rollback information in temporary storage is cleared. When a

ROLLBACK is issued, no changes are made to the database and the rollback informa-

tion in the temporary storage is cleared. If neither a COMMIT nor ROLLBACK is issued,

the temporary storage for rollback information continues to grow until there is no

more space left, thus forcing the database to stop all processes until space is freed.

Although space usage is ultimately controlled by the database administrator (DBA),

a lack of transactional control can still cause database processing to stop, sometimes

forcing the DBA to take action that might consist of killing running user processes.

Summary
During this hour, you learned the preliminary concepts of transactional manage-

ment through the use of three transactional control commands: COMMIT, ROLLBACK,

and SAVEPOINT. COMMIT is used to save a transaction to the database. ROLLBACK is

used to undo a transaction that was performed. SAVEPOINT is used to break a trans-

action or transactions into groups, allowing you to roll back to specific logical points

in transaction processing.

Remember that you should frequently use the COMMIT and ROLLBACK commands

when running large transactional jobs to keep space free in the database. Also, keep

in mind that these transactional commands are used only with the three DML com-

mands (INSERT, UPDATE, and DELETE).

96 HOUR 6: Managing Database Transactions

Q&A
Q. Is it necessary to issue a commit after every INSERT statement?

A. No, absolutely not. If you were inserting a few hundred thousand rows into a

table, a COMMIT would be recommended every 5,000–10,000 rows, depending

on the size of the temporary rollback area (seek the advice of your database

administrator). Remember that the database might freeze up or not function

properly when the rollback area fills up.

Q. How does the ROLLBACK command undo a transaction?

A. The ROLLBACK command clears all changes from the rollback area.

Q. If I issue a transaction and 99% of the transaction completes but the other
1% errs, will I be able to redo only the error part?

A. No, the entire transaction must succeed; otherwise, data integrity is compro-

mised.

Q. A transaction is permanent after I issue a COMMIT, but can’t I change data
with an UPDATE command?

A. The word permanent used in this matter means that it is now a part of the

database. The UPDATE statement can always be used to make modifications or

corrections to the data.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Workshop 97

Quiz
1. True or false: If you have committed several transactions, have several more

transactions that have not been committed, and issue a ROLLBACK command,

all your transactions for the same session are undone.

2. True or false: A SAVEPOINT command actually saves transactions after a speci-

fied amount of transactions have executed.

3. Briefly describe the purpose of each one of the following commands: COMMIT,

ROLLBACK, and SAVEPOINT.

Exercises
1. Take the following transactions and create a SAVEPOINT command after the

first three transactions. Then place a ROLLBACK statement to your savepoint at

the end. Try to determine what the CUSTOMER_TBL will look like after you are

done.

INSERT INTO CUSTOMER_TBL VALUES(615,’FRED WOLF’,’109 MEMORY
LANE’,’PLAINFIELD’,’IN’,46113,’3175555555’,NULL);
INSERT INTO CUSTOMER_TBL VALUES(559,’RITA THOMPSON’,’125
PEACHTREE’,’INDIANAPOLIS’,’IN’,46248,’3171111111’,NULL);
INSERT INTO CUSTOMER_TBL VALUES(715,’BOB DIGGLER’,’1102 HUNTINGTON
ST’,’SHELBY’,’IN’,41234,’3172222222’,NULL);
UPDATE CUSTOMER_TBL SET CUST_NAME=’FRED WOLF’ WHERE CUST_ID=’559’;
UPDATE CUSTOMER_TBL SET CUST_ADDRESS=’APT C 4556 WATERWAY’ WHERE
CUST_ID=’615’;
UPDATE CUSTOMER_TBL SET CUST_CITY=’CHICAGO’ WHERE CUST_ID=’715’;

2. Take the following group of transactions and create a savepoint after the first

three transactions.

Then place a COMMIT statement at the end, followed by a ROLLBACK statement

to your savepoint. What do you think should happen?

UPDATE CUSTOMER_TBL SET CUST_NAME=’FRED WOLF’ WHERE CUST_ID=’559’;
UPDATE CUSTOMER_TBL SET CUST_ADDRESS=’APT C 4556 WATERWAY’ WHERE
CUST_ID=’615’;
UPDATE CUSTOMER_TBL SET CUST_CITY=’CHICAGO’ WHERE CUST_ID=’715’;
DELETE FROM CUSTOMER_TBL WHERE CUST_ID=’615’;
DELETE FROM CUSTOMER_TBL WHERE CUST_ID=’559’;
DELETE FROM CUSTOMER_TBL WHERE CUST_ID=’615’;

This page intentionally left blank

PART III

Getting Effective Results from
Queries

HOUR 7 Introduction to the Database Query 101

HOUR 8 Using Operators to Categorize Data 117

HOUR 9 Summarizing Data Results from a Query 141

HOUR 10 Sorting and Grouping Data 151

HOUR 11 Restructuring the Appearance of Data 165

HOUR 12 Understanding Dates and Times 185

This page intentionally left blank

HOUR 7

Introduction to the Database
Query

In this seventh hour, you will learn about database queries, which involve the use of the

SELECT statement. The SELECT statement is the most frequently used of all SQL commands

after a database’s establishment. The SELECT statement allows you to view data that is

stored in the database.

The highlights of this hour include:
. What a database query is
. How to use the SELECT statement
. Adding conditions to queries using the WHERE clause
. Using column aliases
. Selecting data from another user’s table

What Is a Query?
A query is an inquiry into the database using the SELECT statement. A query is used to

extract data from the database in a readable format according to the user’s request. For

instance, if you have an employee table, you might issue a SQL statement that returns the

employee who is paid the most. This request to the database for usable employee informa-

tion is a typical query that can be performed in a relational database.

Introduction to the SELECT Statement
The SELECT statement, the command that represents Data Query Language (DQL) in SQL,

is the basic statement used to construct database queries. The SELECT statement is not a

102 HOUR 7: Introduction to the Database Query

standalone statement, which means that one or more additional clauses (elements)

are required for a syntactically correct query. In addition to the required clauses,

there are optional clauses that increase the overall functionality of the SELECT state-

ment. The SELECT statement is by far one of the most powerful statements in SQL.

The FROM clause is a mandatory clause and must always be used in conjunction

with the SELECT statement.

There are four keywords, or clauses, that are valuable parts of a SELECT statement.

These keywords are as follows:

. SELECT

. FROM

. WHERE

. ORDER BY

Each of these keywords is covered in detail during the following sections.

The SELECT Statement
The SELECT statement is used in conjunction with the FROM clause to extract data

from the database in an organized, readable format. The SELECT part of the query is

for selecting the data you want to see according to the columns in which they are

stored in a table.

The syntax for a simple SELECT statement is as follows:

SELECT [* | ALL | DISTINCT COLUMN1, COLUMN2]
FROM TABLE1 [, TABLE2];

The SELECT keyword in a query is followed by a list of columns that you want dis-

played as part of the query output. The asterisk (*) is used to denote that all

columns in a table should be displayed as part of the output. Check your particular

implementation for its usage. The ALL option is used to display all values for a col-

umn, including duplicates. The DISTINCT option is used to suppress duplicate rows

from being displayed in the output. The ALL option is considered an inferred option,

meaning that it is considered the default and therefore does not necessarily need to

be used in the SELECT statement. The FROM keyword is followed by a list of one or

more tables from which you want to select data. Notice that the columns following

the SELECT clause are separated by commas, as is the table list following the FROM

clause.

Introduction to the SELECT Statement 103

Commas are used to separate arguments in a list in SQL statements. Arguments
are values that are either required or optional to the syntax of a SQL statement or
command. Some common lists include lists of columns in a query, lists of tables
to be selected from in a query, values to be inserted into a table, and values
grouped as a condition in a query’s WHERE clause.

Explore the basic capabilities of the SELECT statement by studying the following

examples. First, perform a simple query from the PRODUCTS_TBL table:

SELECT * FROM PRODUCTS_TBL;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

11 rows selected.

The asterisk represents all columns in the table, which, as you can see, are displayed

in the form PROD_ID, PROD_DESC, and COST. Each column in the output is displayed

in the order that it appears in the table. There are 11 records in this table, identified

by the feedback 11 rows selected. This feedback differs among implementations;

for example, another feedback for the same query would be 11 rows affected.

Now select data from another table, CANDY_TBL. Create this table in the image of

the PRODUCTS_TBL table for the following examples. List the column name after the

SELECT keyword to display only one column in the table:

SELECT PROD_DESC FROM CANDY_TBL;

PROD_DESC

CANDY CORN
CANDY CORN
HERSHEYS KISS
SMARTIES

4 rows selected.

By the
Way

104 HOUR 7: Introduction to the Database Query

Four records exist in the CANDY_TBL table. The next statement uses the ALL option to

show you that the ALL is optional and redundant. There is never a need to specify

ALL; it is a default option.

SELECT ALL PROD_DESC
FROM CANDY_TBL;

PROD_DESC

CANDY CORN
CANDY CORN
HERSHEYS KISS
SMARTIES

4 rows selected.

The DISTINCT option is used in the following statement to suppress the display of

duplicate records. Notice that the value CANDY CORN is only printed once in this

example.

SELECT DISTINCT PROD_DESC
FROM CANDY_TBL;

PROD_DESC

CANDY CORN
HERSHEYS KISS
SMARTIES

3 rows selected.

DISTINCT and ALL can also be used with parentheses enclosing the associated col-

umn. The use of parentheses is often used in SQL—as well as many other lan-

guages—to improve readability.

SELECT DISTINCT(PROD_DESC)
FROM CANDY_TBL;

PROD_DESC

CANDY CORN
HERSHEYS KISS
SMARTIES

3 rows selected.

The FROM Clause
The FROM clause must be used in conjunction with the SELECT statement. It is a

required element for any query. The FROM clause’s purpose is to tell the database

what table(s) to access to retrieve the desired data for the query. The FROM clause

may contain one or more tables. The FROM clause must always list at least one table.

Introduction to the SELECT Statement 105

The syntax for the FROM clause is as follows:

from table1 [, table2]

The WHERE Clause
A condition is part of a query that is used to display selective information as speci-

fied by the user. The value of a condition is either TRUE or FALSE, thereby limiting

the data received from the query. The WHERE clause is used to place conditions on a

query by eliminating rows that would normally be returned by a query without con-

ditions.

There can be more than one condition in the WHERE clause. If there is more than one

condition, they are connected by the AND and OR operators, which are discussed dur-

ing Hour 8, “Using Operators to Categorize Data.” As you also learn during the next

hour, several conditional operators exist that can be used to specify conditions in a

query. This hour only deals with a single condition for each query.

An operator is a character or keyword in SQL that is used to combine elements in a

SQL statement.

The syntax for the WHERE clause is as follows:

select [all | * | distinct column1, column2]
from table1 [, table2]
where [condition1 | expression1]
[and|OR condition2 | expression2]

The following is a simple SELECT statement without conditions specified by the

WHERE clause:

SELECT *
FROM PRODUCTS_TBL;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

11 rows selected.

106 HOUR 7: Introduction to the Database Query

Now add a condition for the same query.

SELECT * FROM PRODUCTS_TBL
WHERE COST < 5;

PROD_ID PROD_DESC COST
---------- ------------------------------- -----
13 FALSE PARAFFIN TEETH 1.1
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

5 rows selected.

The only records displayed are those that cost less than $5.

In the following query, you want to display the product description and cost that

matches the product identification 119.

SELECT PROD_DESC, COST
FROM PRODUCTS_TBL
WHERE PROD_ID = ‘119’;

PROD_DESC COST
------------------------------- -----
ASSORTED MASKS 4.95

1 row selected.

The ORDER BY Clause
You usually want your output to have some kind of order. Data can be sorted by

using the ORDER BY clause. The ORDER BY clause arranges the results of a query in a

listing format you specify. The default ordering of the ORDER BY clause is an ascend-

ing order; the sort displays in the order A–Z if it’s sorting output names alphabetical-

ly. A descending order for alphabetical output would be displayed in the order Z–A.

Ascending order for output for numeric values between 1 and 9 would be displayed

1–9; descending order is displayed as 9–1.

SQL sorts are ASCII, character-based sorts. The numeric values 0–9 would be
sorted as character values and sorted before the characters A–Z. Because numer-
ic values are treated like characters during a sort, the following list of numeric val-
ues would be sorted in the following order: 1, 12, 2, 255, 3.

By the
Way

Introduction to the SELECT Statement 107

The syntax for the ORDER BY clause is as follows:

select [all | * | distinct column1, column2]
from table1 [, table2]
where [condition1 | expression1]
[and|OR condition2 | expression2]
ORDER BY column1|integer [ASC|DESC]

Begin your exploration of the ORDER BY clause with an extension of one of the pre-

vious statements. You will order the product description in ascending order, or

alphabetical order. Note the use of the ASC option. ASC can be specified after any

column in the ORDER BY clause.

SELECT PROD_DESC, PROD_ID, COST
FROM PRODUCTS_TBL
WHERE COST < 20
ORDER BY PROD_DESC ASC;

PROD_DESC PROD_ID COST
------------------------- --------------- ------
ASSORTED COSTUMES 15 10
ASSORTED MASKS 119 4.95
CANDY CORN 9 1.35
FALSE PARAFFIN TEETH 13 1.1
LIGHTED LANTERNS 90 14.5
PLASTIC PUMPKIN 18 INCH 222 7.75
PLASTIC SPIDERS 87 1.05
PUMPKIN CANDY 6 1.45

8 rows selected.

Because ascending order for output is the default, ASC does not have to be speci-
fied.

You can use DESC, as in the following statement, if you want the same output to be

sorted in reverse alphabetical order.

SELECT PROD_DESC, PROD_ID, COST
FROM PRODUCTS_TBL
WHERE COST < 20
ORDER BY PROD_DESC DESC;

PROD_DESC PROD_ID COST
------------------------- --------------- ------
PUMPKIN CANDY 6 1.45
PLASTIC SPIDERS 87 1.05
PLASTIC PUMPKIN 18 INCH 222 7.75
LIGHTED LANTERNS 90 14.5
FALSE PARAFFIN TEETH 13 1.1
CANDY CORN 9 1.35
ASSORTED MASKS 119 4.95
ASSORTED COSTUMES 15 10

8 rows selected.

By the
Way

108 HOUR 7: Introduction to the Database Query

Shortcuts do exist in SQL. A column listed in the ORDER BY clause can be abbreviat-

ed with an integer. The integer is a substitution for the actual column name (an

alias for the purpose of the sort operation), identifying the position of the column

after the SELECT keyword.

An example of using an integer as an identifier in the ORDER BY clause follows:

SELECT PROD_DESC, PROD_ID, COST
FROM PRODUCTS_TBL
WHERE COST < 20
ORDER BY 1;

PROD_DESC PROD_ID COST
------------------------- --------------- ------
ASSORTED COSTUMES 15 10
ASSORTED MASKS 119 4.95
CANDY CORN 9 1.35
FALSE PARAFFIN TEETH 13 1.1
LIGHTED LANTERNS 90 14.5
PLASTIC PUMPKIN 18 INCH 222 7.75
PLASTIC SPIDERS 87 1.05
PUMPKIN CANDY 6 1.45

8 rows selected.

In this query, the integer 1 represents the column PROD_DESC. The integer 2 repre-

sents the PROD_ID column, 3 represents the COST column, and so on.

You can order by multiple columns in a query, using either the column name itself

or the associated number of the column in the SELECT:

ORDER BY 1,2,3

Columns in an ORDER BY clause are not required to appear in the same order as the

associated columns following the SELECT, as shown by the following example:

ORDER BY 1,3,2

The order in which the columns are specified within the ORDER BY clause will be the

manner in which the ordering process is done. So the statement below would first

order by the PROD_DESC column and then by the COST column.

ORDER BY PROD_DESC,COST

Case Sensitivity
Case sensitivity is a very important concept to understand when coding with SQL.

Typically, SQL commands and keywords are not case-sensitive, which allows you to

enter your commands and keywords in either uppercase or lowercase—whatever you

Examples of Simple Queries 109

prefer. The case may also be mixed (both uppercase and lowercase for a single word

or statement). See Hour 5, “Manipulating Data,” on case sensitivity.

Case sensitivity is, however, a factor when dealing with data in SQL. In most situa-

tions, data seems to be stored exclusively in uppercase in a relational database to

provide data consistency.

For instance, your data would not be consistent if you arbitrarily entered your data

using random case:

SMITH

Smith

smith

If the last name was stored as smith and you issued a query as follows, no rows

would be returned:

SELECT *
FROM EMPLOYEE_TBL
WHERE LAST_NAME = ‘SMITH’;

You must use the same case in your query as the case the data is stored in when
referencing data in the database. When entering data, consult the rules set forth
by your company for the appropriate case to be used. The way data is stored
varies widely among organizations.

Examples of Simple Queries
This section provides several examples of queries based on the concepts that have

been discussed. The hour begins with the simplest query you can issue and builds

upon the initial query progressively. You use the EMPLOYEE_TBL table.

Select all records from a table and display all columns:

SELECT * FROM EMPLOYEE_TBL;

Select all records from a table and display a specified column:

SELECT EMP_ID
FROM EMPLOYEE_TBL;

By the
Way

110 HOUR 7: Introduction to the Database Query

Select all records from a table and display a specified column. You can enter code on

one line or use a carriage return as desired:

SELECT EMP_ID FROM EMPLOYEE_TBL;

Select all records from a table and display multiple columns separated by commas:

SELECT EMP_ID, LAST_NAME
FROM EMPLOYEE_TBL;

Display data for a given condition:

SELECT EMP_ID, LAST_NAME
FROM EMPLOYEE_TBL
WHERE EMP_ID = ‘333333333’;

Display data for a given condition and sort the output:

SELECT EMP_ID, LAST_NAME
FROM EMPLOYEE_TBL
WHERE CITY = ‘INDIANAPOLIS’
ORDER BY EMP_ID;

Display data for a given condition and sort the output on multiple columns, one

column sorted in reverse order:

SELECT EMP_ID, LAST_NAME
FROM EMPLOYEE_TBL
WHERE CITY = ‘INDIANAPOLIS’
ORDER BY EMP_ID, LAST_NAME DESC;

Display data for a given condition and sort the output using an integer in the place

of the spelled-out column name:

SELECT EMP_ID, LAST_NAME
FROM EMPLOYEE_TBL
WHERE CITY = ‘INDIANAPOLIS’
ORDER BY 1;

Display data for a given condition and sort the output by multiple columns using

integers. The order of the columns in the sort is different than their corresponding

order after the SELECT keyword:

SELECT EMP_ID, LAST_NAME
FROM EMPLOYEE_TBL
WHERE CITY = ‘INDIANAPOLIS’
ORDER BY 2, 1;

Examples of Simple Queries 111

When selecting all rows of data from a large table, the results could return a sub-
stantial amount of data.

Counting the Records in a Table
A simple query can be issued on a table to get a quick count of the number of

records in the table or on the number of values for a column in the table. A count is

accomplished by the function COUNT. Although functions are not discussed until

later in this book, this function should be introduced here because it is often a part

of one of the simplest queries that you can create.

The syntax of the COUNT function is as follows:

SELECT COUNT(*)
FROM TABLE_NAME;

The COUNT function is used with parentheses, which are used to enclose the target

column to count or the asterisk to count all rows of data in the table.

Counting the number of records in the PRODUCTS_TBL table:

SELECT COUNT(*) FROM PRODUCTS_TBL;

COUNT(*)

9

1 row selected.

Counting the number of values for PROD_ID in the PRODUCTS_TBL table:

SELECT COUNT(PROD_ID) FROM PRODUCTS_TBL;

COUNT(PROD_ID)

9

1 row selected.

Interesting note: Counting the number of values for a column is the same as
counting the number of records in a table, if the column being counted is NOT
NULL (a required column). However, COUNT(*) is typically used for counting the
number of rows for a table.

By the
Way

By the
Way

112 HOUR 7: Introduction to the Database Query

Selecting Data from Another User’s Table
Permission must be granted to a user to access another user’s table. If no permission

has been granted, access is not allowed. You can select data from another user’s

table after access has been granted (the GRANT command is discussed in Hour 20,

“Creating and Using Views and Synonyms”). To access another user’s table in a

SELECT statement, you must precede the table name with the schema name or the

username that owns (created) the table, as in the following example:

SELECT EMP_ID
FROM SCHEMA.EMPLOYEE_TBL;

If a synonym exists in the database for the table to which you desire access, you
do not have to specify the schema name for the table. Synonyms are alternate
names for tables, which are discussed in Hour 21, “Working with the System
Catalog.”

Using Column Aliases
Column aliases are used to temporarily rename a table’s columns for the purpose of a

particular query. The following syntax illustrates the use of column aliases:

SELECT COLUMN_NAME ALIAS_NAME
FROM TABLE_NAME;

The following example displays the product description twice, giving the second col-

umn an alias named PRODUCT. Notice the column headers in the output.

select prod_desc,
prod_desc product

from products_tbl;

PROD_DESC PRODUCT
------------------------- ------------------------
WITCHES COSTUME WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH FALSE PARAFFIN TEETH
LIGHTED LANTERNS LIGHTED LANTERNS
ASSORTED COSTUMES ASSORTED COSTUMES
CANDY CORN CANDY CORN
PUMPKIN CANDY PUMPKIN CANDY
PLASTIC SPIDERS PLASTIC SPIDERS
ASSORTED MASKS ASSORTED MASKS
KEY CHAIN KEY CHAIN
OAK BOOKSHELF OAK BOOKSHELF

11 rows selected.

By the
Way

Q&A 113

Column aliases can be used to customize names for column headers and can also

be used to reference a column with a shorter name in some SQL implementations.

When a column is renamed in a SELECT statement, the name is not a permanent
change. The change is only for that particular SELECT statement.

Summary
You have been introduced to the database query, a means for obtaining useful infor-

mation from a relational database. The SELECT statement, which is known as the

Data Query Language (DQL) command, is used to create queries in SQL. The FROM

clause must be included with every SELECT statement. You have learned how to

place a condition on a query using the WHERE clause and how to sort data using the

ORDER BY clause. You have learned the fundamentals of writing queries, and, after a

few exercises, you should be prepared to learn more about queries during the next

hour.

Q&A
Q. Why won’t the SELECT clause work without the FROM clause?

A. The SELECT clause merely tells the database what data you want to see. The

FROM clause tells the database where to get the data.

Q. When I use the ORDER BY clause and choose the option descending, what
does that really do to the data?

A. Say that you use the ORDER BY clause and have selected last_name from the

EMPLOYEE_TBL. If you used the descending option, the order would start with

the letter Z and finish with the letter A. Now, let’s say that you have used the

ORDER BY clause and have selected the salary from the EMPLOYEE_PAY_TBL. If

you used the descending option, the order would start with the largest salary

down to the lowest salary.

Q. What advantage is there to renaming columns?

A. The new column name could fit the description of the returned data more

closely for a particular report.

By the
Way

114 HOUR 7: Introduction to the Database Query

Q. What would be the ordering of the following statement:

SELECT PROD_DESC,PROD_ID,COST FROM PRODUCTS_TBL
ORDER BY 3,1

A. The query would be ordered by the COST column, and then by the PROD_DESC

column. Because no ordering preference was specified, they would both be in

ascending order.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. Name the required parts for any SELECT statement.

2. In the WHERE clause, are single quotation marks required for all the data?

3. Under what part of the SQL language does the SELECT statement (database

query) fall?

4. Can multiple conditions be used in the WHERE clause?

5. What is the purpose of the DISTINCT option?

6. Is the ALL option required?

7. How are numeric characters treated when ordering based upon a character

field?

Workshop 115

Exercises
1. Invoke MySQL on your computer. Using your learnsql database, enter the

following SELECT statements at the mysql> command prompt. Determine

whether the syntax is correct. If the syntax is incorrect, make corrections to the

code as necessary. We are using the EMPLOYEE_TBL here.

A.

SELECT EMP_ID, LAST_NAME, FIRST_NAME,
FROM EMPLOYEE_TBL;

B.

SELECT EMP_ID, LAST_NAME
ORDER BY EMPLOYEE_TBL
FROM EMPLOYEE_TBL;

C.

SELECT EMP_ID, LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE EMP_ID = ‘213764555’
ORDER BY EMP_ID;

D.

SELECT EMP_ID SSN, LAST_NAME
FROM EMPLOYEE_TBL
WHERE EMP_ID = ‘213764555’
ORDER BY 1;

E.

SELECT EMP_ID, LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE EMP_ID = ‘213764555’
ORDER BY 3, 1, 2;

2. Does the following SELECT statement work?

SELECT LAST_NAME, FIRST_NAME, PHONE
FROM EMPLOYEE_TBL
WHERE EMP_ID = ‘333333333’;

3. Write a SELECT statement that returns the name and cost of each product

from the PRODUCTS_TBL. Which product is the most expensive?

4. Write a query that generates a list of all customers and their telephone num-

bers.

This page intentionally left blank

HOUR 8

Using Operators to Categorize
Data

Operators are used in conjunction with the SELECT command to place extended criteria

on data that is returned by a query. Various operators are available to the SQL user that

support all data querying needs.

The highlights of this hour include:
. What is an operator?
. An overview of operators in SQL
. How are operators used singularly?
. How are operators used in combinations?

What Is an Operator in SQL?
An operator is a reserved word or a character used primarily in a SQL statement’s WHERE

clause to perform operation(s), such as comparisons and arithmetic operations. Operators

are used to specify conditions in a SQL statement and to serve as conjunctions for multiple

conditions in a statement.

The operators discussed during this hour are

. Comparison operators

. Logical operators

. Operators used to negate conditions

. Arithmetic operators

118 HOUR 8: Using Operators to Categorize Data

Comparison Operators
Comparison operators are used to test single values in a SQL statement. The compari-

son operators discussed consist of =, <>, <, and >.

These operators are used to test

. Equality

. Non-equality

. Less-than values

. Greater-than values

Examples and the meanings of comparison operators are covered in the following

sections.

Equality
The equal operator compares single values to one another in a SQL statement. The

equal sign (=) symbolizes equality. When testing for equality, the compared values

must match exactly or no data is returned. If two values are equal during a compar-

ison for equality, the returned value for the comparison is TRUE; the returned value

is FALSE if equality is not found. This Boolean value (TRUE/FALSE) is used to deter-

mine whether data is returned according to the condition.

The = operator can be used by itself or combined with other operators. Remember

from the previous chapter that character data comparisons are case sensitive.

The following example shows that salary is equal to 20000:

WHERE SALARY = ‘20000’

The following query returns all rows of data where the PROD_ID is equal to 2345:

SELECT *
FROM PRODUCTS_TBL
WHERE PROD_ID = ‘2345’;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
2345 OAK BOOKSHELF 59.99

1 row selected.

Comparison Operators 119

Non-Equality
For every equality, there are multiple non-equalities. In SQL, the operator used to

measure non-equality is <> (the less than sign combined with the greater than sign).

The condition returns TRUE if the condition finds non-equality; FALSE is returned if

equality is found.

Another option comparable to <> is !=. Many of the major implementations have
adopted != to represent not-equal. Check your particular implementation for the
usage.

The following example shows that salary is not equal to 20000:

WHERE SALARY <> ‘20000’

The following example shows all of the product information from the products table

that do not have the product id of 2345:

SELECT *
FROM PRODUCTS_TBL
WHERE PROD_ID <> ‘2345’;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

11 rows selected.

Less Than, Greater Than
The symbols < (less than) and > (greater than) can be used by themselves or in com-

bination with each other or other operators.

The following examples show that salary is less than or greater than to 20000:

WHERE SALARY < ‘20000’
WHERE SALARY > ‘20000’

By the
Way

120 HOUR 8: Using Operators to Categorize Data

In the first example, anything less than and not equal to 20000 returns TRUE. Any

value of 20000 or more returns FALSE. Greater than works the opposite of less than.

SELECT *
FROM PRODUCTS_TBL
WHERE COST > 20;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
2345 OAK BOOKSHELF 59.99

2 rows selected.

In the next example, notice that the value 24.99 was not included in the query’s

result set. The less than operator is not inclusive.

SELECT *
FROM PRODUCTS_TBL
WHERE COST < 24.99;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95

9 rows selected.

Combinations of Comparison Operators
The equal operator can be combined with the less than and greater than operators.

The following example shows that salary is less than or equal to 20000:

WHERE SALARY <= ‘20000’

The next example shows that salary is greater than or equal to 20000:

WHERE SALARY >= ‘20000’

Less than or equal to 20000 includes 20000 and all values less than 20000. Any

value in that range returns TRUE; any value greater than 20000 returns FALSE.

Greater than or equal to also includes the value 20000 in this case and works the

same as the <= operator.

Logical Operators 121

SELECT *
FROM PRODUCTS_TBL
WHERE COST <= 24.99;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95

9 rows selected.

Logical Operators
Logical operators are those operators that use SQL keywords to make comparisons

instead of symbols. The logical operators covered in the following subsections are

. IS NULL

. BETWEEN

. IN

. LIKE

. EXISTS

. UNIQUE

. ALL and ANY

IS NULL
The NULL operator is used to compare a value with a NULL value. For example, you

might look for employees who do not have a pager by searching for NULL values in

the PAGER column of the EMPLOYEE_TBL table.

The following example compares a value to a NULL value; here, salary has no value:

WHERE SALARY IS NULL

The following example does not find a NULL value because salary has a value con-

taining the letters N-U-L-L:

WHERE SALARY = NULL

122 HOUR 8: Using Operators to Categorize Data

The following example demonstrates finding all of the employees from the employ-

ee table who do not have a pager:

SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER
FROM EMPLOYEE_TBL
WHERE PAGER IS NULL;

EMP_ID LAST_NAM FIRST_NA PAGER
--------- -------- -------- -----
311549902 STEPHENS TINA
442346889 PLEW LINDA
220984332 WALLACE MARIAH
443679012 SPURGEON TIFFANY

4 rows selected.

Understand that the literal word null is different than a NULL value. Examine the fol-

lowing example:

SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER
FROM EMPLOYEE_TBL
WHERE PAGER = NULL;

no rows selected.

BETWEEN
The BETWEEN operator is used to search for values that are within a set of values,

given the minimum value and the maximum value. The minimum and maximum

values are included as part of the conditional set.

The following example shows that salary must fall between 20000 and 30000,

including the values 20000 and 30000:

WHERE SALARY BETWEEN’20000’ AND ‘30000’

The following example shows all of the products that cost between $5.95 and

$14.50:

SELECT *
FROM PRODUCTS_TBL
WHERE COST BETWEEN 5.95 AND 14.5;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
222 PLASTIC PUMPKIN 18 INCH 7.75
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
1234 KEY CHAIN 5.95

4 rows selected.

Notice that the values 5.95 and 14.5 are included in the output.

Logical Operators 123

BETWEEN is inclusive and therefore includes the minimum and maximum values in
the query results.

IN
The IN operator is used to compare a value to a list of literal values that have been

specified. For TRUE to be returned, the compared value must match at least one of

the values in the list.

The following example shows that salary must match one of the values 20000,

30000, or 40000:

WHERE SALARY IN(‘20000’, ‘30000’, ‘40000’)

The following example show using the IN operator to match all of the products that

have a product id within a certain range of values:

SELECT *
FROM PRODUCTS_TBL
WHERE PROD_ID IN (‘13’,’9’,’87’,’119’);

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
119 ASSORTED MASKS 4.95
87 PLASTIC SPIDERS 1.05
9 CANDY CORN 1.35
13 FALSE PARAFFIN TEETH 1.1

4 rows selected.

Using the IN operator can achieve the same results as using the OR operator and can

return the results more quickly.

LIKE
The LIKE operator is used to compare a value to similar values using wildcard oper-

ators. There are two wildcards used in conjunction with the LIKE operator:

. The percent sign (%)

. The underscore (_)

The percent sign represents zero, one, or multiple characters. The underscore repre-

sents a single number or character. The symbols can be used in combinations.

To find any values that start with 200:

WHERE SALARY LIKE ‘200%

By the
Way

124 HOUR 8: Using Operators to Categorize Data

To find any values that have 200 in any position:

WHERE SALARY LIKE ‘%200%’

To find any values that have 00 in the second and third positions:

WHERE SALARY LIKE ‘_00%’

To find any values that start with 2 and are at least three characters in length:

WHERE SALARY LIKE ‘2_%_%’

To find any values that end with 2:

WHERE SALARY LIKE ‘%2’

To find any values that have a 2 in the second position and end with a 3:

WHERE SALARY LIKE ‘_2%3’

To find any values in a five-digit number that start with 2 and end with 3:

WHERE SALARY LIKE ‘2___3’

The following example shows all product descriptions that end with the letter S in

uppercase:

SELECT PROD_DESC
FROM PRODUCTS_TBL
WHERE PROD_DESC LIKE ‘%S’;

PROD_DESC

LIGHTED LANTERNS
ASSORTED COSTUMES
PLASTIC SPIDERS
ASSORTED MASKS

4 rows selected.

The following example shows all product descriptions whose second character is the

letter S in uppercase:

SELECT PROD_DESC
FROM PRODUCTS_TBL
WHERE PROD_DESC LIKE ‘_S%’;

PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS

2 rows selected.

Logical Operators 125

EXISTS
The EXISTS operator is used to search for the presence of a row in a specified table

that meets certain criteria.

The following example searches to see whether the EMP_ID 3333333333 is in

EMPLOYEE_TBL:

WHERE EXISTS (SELECT EMP_ID FROM EMPLOYEE_TBL WHERE EMPLOYEE_ID =’333333333’)

The following example is a form of a subquery, which is further discussed during

Hour 14, “Using Subqueries to Define Unknown Data:”

SELECT COST
FROM PRODUCTS_TBL
WHERE EXISTS (SELECT COST

FROM PRODUCTS_TBL
WHERE COST > 100);

No rows selected.

There were no rows selected because no records existed where the cost was greater

than 100.

Consider the following example:

SELECT COST
FROM PRODUCTS_TBL
WHERE EXISTS (SELECT COST

FROM PRODUCTS_TBL
WHERE COST < 100);

COST

29.99
7.75
1.1
14.5

10
1.35
1.45
1.05
4.95
5.95
59.99

11 rows selected.

The cost was displayed for records in the table because records existed where the

product cost was less than 100.

126 HOUR 8: Using Operators to Categorize Data

ALL, SOME, and ANY Operators
The ALL operator is used to compare a value to all values in another value set.

The following example tests salary to see whether it is greater than all salaries of

the employees living in Indianapolis:

WHERE SALARY > ALL SALARY (SELECT FROM EMPLOYEE_TBL WHERE CITY = ‘INDIANAPOLIS’)

The following example shows how the ALL operator is used in conjunction with
subquery:
SELECT *
FROM PRODUCTS_TBL
WHERE COST > ALL (SELECT COST

FROM PRODUCTS_TBL
WHERE COST < 10);

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
2345 OAK BOOKSHELF 59.99

4 rows selected.

In this output, five records had a cost greater than the cost of all records having a

cost less than 10.

The ANY operator is used to compare a value to any applicable value in the list

according to the condition. SOME is an alias for ANY, so they can be used inter-

changeably.

The following example tests salary to see whether it is greater than any of the

salaries of employees living in Indianapolis:

WHERE SALARY > ANY (SELECT SALARY FROM EMPLOYEE_TBL WHERE CITY = ‘INDIANAPOLIS’)

The following example shows the use of the ANY operator used in conjunction with a

subquery:

SELECT *
FROM PRODUCTS_TBL
WHERE COST > ANY (SELECT COST

FROM PRODUCTS_TBL
WHERE COST < 10);

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10

Conjunctive Operators 127

9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

10 rows selected.

In this output, more records were returned than when using ALL because the cost

only had to be greater than any of the costs that were less than 10. The one record

that was not displayed had a cost of 1.05, which was not greater than any of the

values less than 10 (which was, in fact, 1.05). It should also be noted that ANY is not

a synonym for IN because the IN operator can take an expression list of the form

shown below, while ANY cannot:

IN (<Item#1>,<Item#2>,<Item#3>)

Additionally, the negation of IN, discussed in the section “Negative Operators,”

would be NOT IN, and its alias would be <>ALL instead of <>ANY.

Conjunctive Operators
What if you want to use multiple conditions to narrow data in a SQL statement?

You must be able to combine the conditions, and you would do this with conjunctive

operators. These operators are

. AND

. OR

Conjunctive operators provide a means to make multiple comparisons with different

operators in the same SQL statement. The following sections describe each operator’s

behavior.

AND
The AND operator allows the existence of multiple conditions in a SQL statement’s

WHERE clause. For an action to be taken by the SQL statement, whether it be a trans-

action or query, all conditions separated by the AND must be TRUE.

The following example shows that the EMPLOYEE_ID must match 333333333 and the

salary must equal 20000:

WHERE EMPLOYEE_ID = ‘333333333’ AND SALARY = ‘20000’

128 HOUR 8: Using Operators to Categorize Data

The following example shows the use of the AND operator to find the products with a

cost between two limiting values:

SELECT *
FROM PRODUCTS_TBL
WHERE COST > 10

AND COST < 30;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
90 LIGHTED LANTERNS 14.5

2 rows selected.

In this output, the value for cost had to be both greater than 10 and less than 30 for

data to be retrieved.

This statement retrieves no data because each row of data has only one product

identification:

SELECT *
FROM PRODUCTS_TBL
WHERE PROD_ID = ‘7725’

AND PROD_ID = ‘2345’;

no rows selected

OR
The OR operator is used to combine multiple conditions in a SQL statement’s WHERE

clause. For an action to be taken by the SQL statement, whether it is a transaction

or query, at least one of the conditions that are separated by OR must be TRUE.

The following example shows that salary must match either 20000 or 30000:

WHERE SALARY = ‘20000’ OR SALARY = ‘30000’

Each of the comparison and logical operators can be used singularly or in combi-
nation with each other.

By the
Way

Conjunctive Operators 129

The following example show the use of the OR operator to limit a query on the prod-

ucts table:

SELECT *
FROM PRODUCTS_TBL
WHERE PROD_ID = ‘90’

OR PROD_ID = ‘2345’;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
2345 OAK BOOKSHELF 59.99
90 LIGHTED LANTERNS 14.5
2 rows selected.

In this output, either one of the conditions had to be TRUE for data to be retrieved.

Two records that met either one or the other condition were found.

When using multiple conditions and operators in a SQL statement, you might find
that it improves overall readability if parentheses are used to separate statements
into logical groups. However, be aware that the misuse of parentheses could
adversely affect your output results.

In the next example, notice the use of the AND and two OR operators. In addition,

notice the logical placement of the parentheses to make the statement more read-

able.

SELECT *
FROM PRODUCTS_TBL
WHERE COST > 10

AND (PROD_ID = ‘222’
OR PROD_ID = ‘90’
OR PROD_ID = ‘11235’);

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
90 LIGHTED LANTERNS 14.5

2 rows selected.

The cost in this output had to be greater than 10, and the product identification had

to be any one of the three listed. A row was not returned for PROD_ID 222 because

the cost for this identification was not greater than 10. Parentheses are not used just

to make your code more readable but also to ensure that logical grouping of con-

junctive operators are evaluated properly. By default, operators are parsed from left

to right in the order that they are listed. For example, you want to return all the

Did you
Know?

130 HOUR 8: Using Operators to Categorize Data

products in a table whose cost is greater than 5 and whose PRODUCT_ID is in the

range of values 222, 90, 11235, and 13. Try the following query to see the result set

it returns:

SELECT *
FROM PRODUCTS_TBL
WHERE COST > 5

AND (PROD_ID = ‘222’
OR PROD_ID = ‘90’
OR PROD_ID = ‘11235’
OR PROD_ID = ‘13’);

PROD_ID PROD_DESC COST
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
90 LIGHTED LANTERNS 14.50

3 rows in set

If you remove the parentheses, you can see how the result is much different:

SELECT *
FROM PRODUCTS_TBL
WHERE COST > 5

AND PROD_ID = ‘222’
OR PROD_ID = ‘90’
OR PROD_ID = ‘11235’
OR PROD_ID = ‘13’;

PROD_ID PROD_DESC COST
11235 WITCHES COSTUME 29.99
13 FALSE PARAFFIN TEETH 1.10
222 PLASTIC PUMPKIN 18 INCH 7.75
90 LIGHTED LANTERNS 14.50

3 rows in set

FALSE PARAFFIN TEETH gets returned now because this SQL query asks to return a

PROD_ID equal to 222 and COST greater than 5 or any rows with PROD_ID equal to

90, 11235, or 13. Use parentheses properly within your WHERE clause to ensure that

you are returning the correct logical result set.

Negative Operators
Of all the conditions tested by the logical operators discussed here, there is a way to

negate each one of these operators to change the condition’s viewpoint.

The NOT operator reverses the meaning of the logical operator with which it is used.

The NOT can be used with operators to form the following methods:

Negative Operators 131

. Not Equal

. NOT BETWEEN

. NOT IN

. NOT LIKE

. IS NOT NULL

. NOT EXISTS

. NOT UNIQUE

Each method is discussed in the following sections. First, let’s look at how to test for

inequality.

Not Equal
You have learned how to test for inequality using the <> operator. Inequality is

worth mentioning in this section because to test for it, you are actually negating the

equality operator. The following is a second method for testing inequality available

in some SQL implementations:

The following examples show that salary is not equal to 20000:

WHERE SALARY <> ‘20000’
WHERE SALARY != ‘20000’

In the second example, you can see that the exclamation mark is used to negate the

equality comparison. The use of the exclamation mark is allowed in addition to the

standard operator for inequality <> in some implementations.

Check your particular implementation for the use of the exclamation mark to
negate the inequality operator. The other operators mentioned are most always
the same if compared between different SQL implementations.

NOT BETWEEN
The BETWEEN operator is negated as follows:

WHERE Salary NOT BETWEEN ‘20000’ AND ‘30000’

By the
Way

132 HOUR 8: Using Operators to Categorize Data

The value for salary cannot fall between 20000 and 30000 or include the values

20000 and 30000. Let’s see how this works on PRODUCTS_TBL:

SELECT *
FROM PRODUCTS_TBL
WHERE COST NOT BETWEEN 5.95 AND 14.5;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
13 FALSE PARAFFIN TEETH 1.1
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
2345 OAK BOOKSHELF 59.99

7 rows selected.

Remember that BETWEEN is inclusive; therefore, in the previous example, any rows
that equal 5.95 or 14.50 are not included in the query results.

NOT IN
The IN operator is negated as NOT IN. All salaries in the following example that are

not in the listed values, if any, are returned:

WHERE SALARY NOT IN (‘20000’, ‘30000’, ‘40000’)

The following example demostrates using the negation of the IN operator:

SELECT *
FROM PRODUCTS_TBL

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
6 PUMPKIN CANDY 1.45
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

7 rows selected.

In this output, records were not displayed for the listed identifications after the NOT

IN operator.

By the
Way

Negative Operators 133

NOT LIKE
The LIKE, or wildcard, operator is negated as NOT LIKE. When NOT LIKE is used,

only values that are not similar are returned.

To find any values that do not start with 200:

WHERE SALARY NOT LIKE ‘200%’

To find any values that do not have 200 in any position:

WHERE SALARY NOT LIKE ‘%200%’

To find any values that do not have 00 starting in the second position:

WHERE SALARY NOT LIKE ‘_00%’

To find values that do not start with 2 and have a length of three or greater:

WHERE SALARY NOT LIKE ‘2_%_%’

The following example demonstrates using the NOT LIKE operator to display a list

of values:

SELECT PROD_DESC
FROM PRODUCTS_TBL
WHERE PROD_DESC NOT LIKE ‘L%’;

PROD_DESC

WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH
ASSORTED COSTUMES
CANDY CORN
PUMPKIN CANDY
PLASTIC SPIDERS
ASSORTED MASKS
KEY CHAIN
OAK BOOKSHELF

10 rows selected.

In this output, the product descriptions starting with the letter L were not displayed.

IS NOT NULL
The IS NULL operator is negated as IS NOT NULL to test for values that are not

NULL. The following example only returns NOT NULL rows:

WHERE SALARY IS NOT NULL

134 HOUR 8: Using Operators to Categorize Data

The following example demonstrates using the IS NOT NULL operator to retrieve a

list of employees whose page number is not NULL.

SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER
FROM EMPLOYEE_TBL
WHERE PAGER IS NOT NULL;

EMP_ID LAST_NAM FIRST_NA PAGER
--------- -------- -------- ----------
213764555 GLASS BRANDON 3175709980
313782439 GLASS JACOB 8887345678

2 rows selected.

NOT EXISTS
EXISTS is negated as NOT EXISTS.

The following example searches to see whether the EMP_ID 3333333333 is not in

EMPLOYEE_TBL:

WHERE NOT EXISTS (SELECT EMP_ID FROM EMPLOYEE_TBL WHERE EMP_ID = ‘333333333’)

The following example demonstrates the use of the NOT EXISTS operator in con-

junction with a subquery:

SELECT MAX(COST)
FROM PRODUCTS_TBL
WHERE NOT EXISTS (SELECT COST

FROM PRODUCTS_TBL
WHERE COST > 100);

MAX(COST)

59.99

The maximum cost for the table is displayed in this output because no records con-

tained a cost greater than 100.

Arithmetic Operators
Arithmetic operators are used to perform mathematical functions in SQL—the same

as in most other languages. The four conventional operators for mathematical func-

tions are

. + (addition)

. - (subtraction)

Arithmetic Operators 135

. * (multiplication)

. / (division)

Addition
Addition is performed through the use of the plus (+) symbol.

The following example adds the SALARY column with the BONUS column for a total

for each row of data:

SELECT SALARY + BONUS FROM EMPLOYEE_PAY_TBL;

This example returns all rows that are greater than the total of the SALARY and

BONUS columns:

SELECT SALARY FROM EMPLOYEE_PAY_TBL WHERE SALARY + BONUS > ‘40000’;

Subtraction
Subtraction is performed using the minus (-) symbol.

The following example subtracts the BONUS column from the SALARY column for the

difference:

SELECT SALARY - BONUS FROM EMPLOYEE_PAY_TBL;

This example returns all rows where the SALARY minus the BONUS is greater than

40000:

SELECT SALARY FROM EMPLOYEE_PAY_TBL WHERE SALARY - BONUS > ‘40000’;

Multiplication
Multiplication is performed by using the asterisk (*) symbol.

The following example multiplies the SALARY column by 10:

SELECT SALARY * 10 FROM EMPLOYEE_PAY_TBL;

The next example returns all rows where the product of the SALARY multiplied by

10 is greater than 40000.

SELECT SALARY FROM EMPLOYEE_PAY_TBL WHERE SALARY * 10 > ‘40000’;

136 HOUR 8: Using Operators to Categorize Data

The pay rate in the following example is multiplied by 1.1, which increases the cur-

rent pay rate by 10%:

SELECT EMP_ID, PAY_RATE, PAY_RATE * 1.1
FROM EMPLOYEE_PAY_TBL
WHERE PAY_RATE IS NOT NULL;

EMP_ID PAY_RATE PAY_RATE*1.1
----------- -------- ------------
442346889 14.75 16.225
220984332 11 12.1
443679012 15 16.5

3 rows selected.

Division
Division is performed through the use of the slash (/) symbol.

The following example divides the SALARY column by 10:

SELECT SALARY / 10 FROM EMPLOYEE_PAY_TBL;

This example returns all rows that are greater than 40000:

SELECT SALARY FROM EMPLOYEE_PAY_TBL WHERE SALARY > ‘40000’;

This example returns all rows where the salary divided by 10 is greater than 40000:

SELECT SALARY FROM EMPLOYEE_PAY_TBL WHERE (SALARY / 10) > ‘40000’;

Arithmetic Operator Combinations
The arithmetic operators can be used in combinations with one another. Remember

the rules of precedence in basic mathematics. Multiplication and division operations

are performed first, and then addition and subtraction operations. The only way the

user has control over the order of the mathematical operations is through the use of

parentheses. Parentheses surrounding an expression cause that expression to be

evaluated as a block.

Precedence is the order in which expressions are resolved in a mathematical expres-

sion or with embedded functions in SQL.

Expression Result

1 + 1 * 5 6

(1 + 1) * 5 10

10 – 4 / 2 + 1 9

(10 – 4) / (2 + 1) 2

Arithmetic Operators 137

In the following examples, notice that the placement of parentheses in an expres-

sion does not affect the outcome if only multiplication and division are involved.

Precedence is not a factor in these cases. Although it might not appear to make

sense, it is possible that some implementations of SQL do not follow the ANSI stan-

dard in cases like this; however, this is unlikely.

Expression Result

4 * 6 / 2 12

(4 * 6) / 2 12

4 * (6 / 3) 12

The following are some more examples:

SELECT SALARY * 10 + 1000
FROM EMPLOYEE_PAY_TBL
WHERE SALARY > 20000;

SELECT SALARY / 52 + BONUS
FROM EMPLOYEE_PAY_TBL;

SELECT (SALARY - 1000 + BONUS) / 52 * 1.1
FROM EMPLOYEE_PAY_TBL;

The following is a rather wild example:

SELECT SALARY
FROM EMPLOYEE_PAY_TBL
WHERE SALARY < BONUS * 3 + 10 / 2 - 50;

Because parentheses are not used, mathematical precedence takes effect, altering

the value for BONUS tremendously for the condition.

When combining arithmetic operators, remember to consider the rules of prece-
dence. The absence of parentheses in a statement could render inaccurate
results. Although the syntax of a SQL statement is correct, a logical error might
result.

Watch
Out!

138 HOUR 8: Using Operators to Categorize Data

Summary
You have been introduced to various operators available in SQL. You have learned

the hows and whys of operators. You have seen examples of operators being used by

themselves and in various combinations with one another, using the conjunctive-

type operators AND and OR. You have learned the basic arithmetic functions: addi-

tion, subtraction, multiplication, and division. Comparison operators are used to test

equality, inequality, less than values, and greater than values. Logical operators

include BETWEEN, IN, LIKE, EXISTS, ANY, and ALL. You are already experiencing how

elements are added to SQL statements to further specify conditions and better con-

trol the processing and retrieving capabilities provided with SQL.

Q&A
Q. Can I have more than one AND in the WHERE clause?

A. Yes. In fact, all the operators can be used multiple times. An example would

be

SELECT SALARY
FROM EMPLOYEE_PAY_TBL
WHERE SALARY > 20000
AND BONUS BETWEEN 1000 AND 3000
AND POSITION = ‘VICE PRESIDENT’

Q. What happens if I use single quotation marks around a NUMBER data type in
a WHERE clause?

A. Your query still processes. Quotation marks are not necessary for NUMBER

fields.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Workshop 139

Quiz
1. True or false: Both conditions when using the OR operator must be TRUE.

2. True or false: All specified values must match when using the IN operator.

3. True or false: The AND operator can be used in the SELECT and the WHERE

clauses.

4. True or false: The ANY operator can accept an expression list.

5. What is the logical negation of the IN operator?

6. What is the logical negation of the ANY and ALL operators?

7. What, if anything, is wrong with the following SELECT statements?

A.

SELECT SALARY
FROM EMPLOYEE_PAY_TBL
WHERE SALARY BETWEEN 20000, 30000

B.

SELECT SALARY + DATE_HIRE
FROM EMPLOYEE_PAY_TBL

C.

SELECT SALARY, BONUS
FROM EMPLOYEE_PAY_TBL
WHERE DATE_HIRE BETWEEN 1999-09-22
AND 1999-11-23
AND POSITION = ‘SALES’
OR POSITION = ‘MARKETING’
AND EMPLOYEE_ID LIKE ‘%55%

Exercises
1. Using the following CUSTOMER_TBL:

DESCRIBE CUSTOMER_TBL;

Name Null? Type
-------------------------------- -------- ------------
CUST_ID NOT NULL VARCHAR (10)
CUST_NAME NOT NULL VARCHAR (30)
CUST_ADDRESS NOT NULL VARCHAR (20)
CUST_CITY NOT NULL VARCHAR (12)
CUST_STATE NOT NULL VARCHAR (2)
CUST_ZIP NOT NULL VARCHAR (5)
CUST_PHONE VARCHAR (10)
CUST_FAX VARCHAR (10)

140 HOUR 8: Using Operators to Categorize Data

Write a SELECT statement that returns customer IDs and customer names

(alpha order) for customers who live in Indiana, Ohio, Michigan, and Illinois,

and whose names begin with the letters A or B.

2. Using the following PRODUCTS_TBL:

DESCRIBE PRODUCTS_TBL

Name Null? Type
------------------------------- ---------------------
PROD_ID NOT NULL VARCHAR (10)
PROD_DESC NOT NULL VARCHAR (25)
COST NOT NULL DECIMAL(6,2)

Write a SELECT statement that returns the product ID, product description,

and the product cost. Limit the product cost to range from $1.00 and $12.50.

3. Assuming that you used the BETWEEN operator in exercise 2, rewrite your SQL

statement to achieve the same results using different operators. If you did not

use the BETWEEN operator, do so now.

4. Write a SELECT statement that returns products that are either less than 1.00

or greater than 12.50. There are two ways to achieve the same results.

5. Write a SELECT statement that returns the following information from

PRODUCTS_TBL: product description, product cost, and 5% sales tax for each

product. List the products in order from most to least expensive.

6. Write a SELECT statement that returns the following information from

PRODUCTS_TBL: product description, product cost, 5% sales tax for each

product, and total cost with sales tax. List the products in order from most to

least expensive. There are two ways to achieve the same results. Try both.

HOUR 9

Summarizing Data Results
from a Query

In this hour, you learn about SQL’s aggregate functions. You can perform a variety of use-

ful functions with aggregate functions.

The highlights of this hour include:
. What functions are
. How functions are used
. When to use functions
. Using aggregate functions
. Summarizing data with aggregate functions
. Results from using functions

What Are Aggregate Functions?
Functions are keywords in SQL used to manipulate values within columns for output pur-

poses. A function is a command normally used in conjunction with a column name or

expression that processes the incoming data to produce a result. SQL contains several

types of functions. This hour covers aggregate functions. An aggregate function is used to

provide summarization information for an SQL statement, such as counts, totals, and

averages.

The basic set of aggregate functions discussed in this hour are

. COUNT

. SUM

142 HOUR 9: Summarizing Data Results from a Query

. MAX

. MIN

. AVG

The following queries show the data used for most of this hour’s examples:

SELECT *
FROM PRODUCTS_TBL;

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

11 rows selected.

The following query lists the employee information from the EMPLOYEE_TBL table.

Note that some of the employees do not have pager numbers assigned.

SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER
FROM EMPLOYEE_TBL;

EMP_ID LAST_NAM FIRST_NA PAGER
--------- -------- -------- ----------
311549902 STEPHENS TINA
442346889 PLEW LINDA
213764555 GLASS BRANDON 3175709980
313782439 GLASS JACOB 8887345678
220984332 WALLACE MARIAH
443679012 SPURGEON TIFFANY

6 rows selected.

The COUNT Function
The COUNT function is used to count rows or values of a column that do not contain

a NULL value. When used within a query, the COUNT function returns a numeric

value. The COUNT function may also be used with the DISTINCT command to only

count the distinct rows of a dataset. ALL (opposite of DISTINCT) is the default; it is

not necessary to include ALL in the syntax. Duplicate rows are counted if DISTINCT

What Are Aggregate Functions? 143

is not specified. One other option with the COUNT function is to use COUNT with an

asterisk. COUNT(*) counts all the rows of a table including duplicates, whether a

NULL value is contained in a column or not.

The syntax for the COUNT function is as follows:

COUNT [(*) | (DISTINCT | ALL)] (COLUMN NAME)

The DISTINCT command cannot be used with COUNT(*), only with COUNT
(column_name).

This example counts all employee IDs:

SELECT COUNT(EMPLOYEE_ID) FROM EMPLOYEE_PAY_ID

This example counts only the distinct rows:

SELECT COUNT(DISTINCT SALARY)FROM EMPLOYEE_PAY_TBL

This example counts all rows for SALARY:

SELECT COUNT(ALL SALARY)FROM EMPLOYEE_PAY_TBL

This final example counts all rows of the EMPLOYEE table:

SELECT COUNT(*) FROM EMPLOYEE_TBL

COUNT(*) is used in the following example to get a count of all records in the

EMPLOYEE_TBL table. There are six employees.

SELECT COUNT(*)
FROM EMPLOYEE_TBL;

COUNT(*)

6

COUNT(EMP_ID) is used in the next example to get a count of all the employee iden-

tification IDs that exist in the table. The returned count is the same as the last query

because all employees have an identification number.

SELECT COUNT(EMP_ID)
FROM EMPLOYEE_TBL;

COUNT(EMP_ID)

6

By the
Way

144 HOUR 9: Summarizing Data Results from a Query

COUNT(PAGER) is used in the following example to get a count of all of the employee

records that have a pager number. Only two employees had pager numbers.

SELECT COUNT(PAGER)
FROM EMPLOYEE_TBL;

COUNT(PAGER)

2

The ORDERS_TBL table is shown next:

SELECT *
FROM ORDERS_TBL;

ORD_NUM CUST_ID PROD_ID QTY ORD_DATE_
---------- ---------- ----------------- -------------
56A901 232 11235 1 22-OCT-99
56A917 12 907 100 30-SEP-99
32A132 43 222 25 10-OCT-99
16C17 090 222 2 17-OCT-99
18D778 287 90 10 17-OCT-99
23E934 432 13 20 15-OCT-99
90C461 560 1234 2

7 rows selected.

This example obtains a count of all distinct product identifications in the

ORDERS_TBL table.

SELECT COUNT(DISTINCT PROD_ID)
FROM ORDERS_TBL;

COUNT(DISTINCT PROD_ID)

6

The PROD_ID 222 has two entries in the table, thus reducing the distinct values from

7 to 6.

Because the COUNT function counts the rows, data types do not play a part. The
rows can contain columns with any data type.

The SUM Function
The SUM function is used to return a total on the values of a column for a group of

rows. The SUM function can also be used in conjunction with DISTINCT. When SUM is

used with DISTINCT, only the distinct rows are totaled, which might not have much

purpose. Your total is not accurate in that case because rows of data are omitted.

By the
Way

What Are Aggregate Functions? 145

The syntax for the SUM function is as follows:

SUM ([DISTINCT] COLUMN NAME)

The value of an argument must be numeric to use the SUM function. The SUM func-
tion cannot be used on columns having a data type other than numeric, such as
character or date.

This example totals the salaries:

SELECT SUM(SALARY) FROM EMPLOYEE_PAY_TBL

This example totals the distinct salaries:

SELECT SUM(DISTINCT SALARY) FROM EMPLOYEE_PAY_TBL

In the following query, the sum, or total amount, of all cost values is being retrieved

from the PRODUCTS_TBL table:

SELECT SUM(COST)
FROM PRODUCTS_TBL;

SUM(COST)

163.07

Observe how the DISTINCT command in the following example skews the results

from above, this is why it is rarely useful.

SELECT SUM(DISTINCT COST)
FROM PRODUCTS_TBL;

SUM(COST)

72.14

The following query demonstrates that although some aggregate functions require

numeric data, this is only limited to the type of data. Here the PAGER column of the

EMPLOYEE_TBL table is used to show that the implicit conversion of the CHAR data to

a numeric type is supported:

SELECT SUM(PAGER)
FROM EMPLOYEE_TBL;

SUM(PAGER)

12063055658

By the
Way

146 HOUR 9: Summarizing Data Results from a Query

When you use a type of data that cannot be implicitly converted to a numeric type,

such as the LAST_NAME column, it will return a result of 0.

SELECT SUM(LAST_NAME)
FROM EMPLOYEE_TBL;

SUM(LAST_NAME)

0

The AVG Function
The AVG function is used to find the average value for a given group of rows. When

used with the DISTINCT command, the AVG function returns the average of the dis-

tinct rows. The syntax for the AVG function is as follows:

AVG ([DISTINCT] COLUMN NAME)

The value of the argument must be numeric for the AVG function to work.

This example returns the average salary:

SELECT AVG(SALARY) FROM EMPLOYEE_PAY_TBL

This example returns the distinct average salary:

SELECT AVG(DISTINCT SALARY) EMPLOYEE_PAY_TBL

The average value for all values in the PRODUCTS_TBL table’s COST column is being

retrieved in the following example:

SELECT AVG(COST)
FROM PRODUCTS_TBL;

AVG(COST)

13.5891667

In some implementations, the results of your query might be truncated to the pre-
cision of the data type.

By the
Way

By the
Way

What Are Aggregate Functions? 147

The next example uses two aggregate functions in the same query. Because some

employees are paid hourly and others paid a salary, you want to retrieve the aver-

age value for both PAY_RATE and SALARY.

SELECT AVG(PAY_RATE), AVG(SALARY)
FROM EMPLOYEE_PAY_TBL;

AVG(PAY_RATE) AVG(SALARY)
------------- -----------
13.5833333 30000

The MAX Function
The MAX function is used to return the maximum value from the values of a column

in a group of rows. NULL values are ignored when using the MAX function. The DIS-

TINCT command is an option. However, because the maximum value for all the

rows is the same as the distinct maximum value, DISTINCT is useless.

The syntax for the MAX function is

MAX([DISTINCT] COLUMN NAME)

This example returns the highest salary:

SELECT MAX(SALARY) FROM EMPLOYEE_PAY_TBL

This example returns the highest distinct salary:

SELECT MAX(DISTINCT SALARY) FROM EMPLOYEE_PAY_TBL

The following example returns the maximum value for the COST column in the

PRODUCTS_TBL table:

SELECT MAX(COST)
FROM PRODUCTS_TBL;

MAX(COST)
----------29.99

SELECT MAX(DISTICNT COST)
FROM PRODUCTS_TBL;

MAX(COST)
29.99

The MIN Function
The MIN function returns the minimum value of a column for a group of rows. NULL

values are ignored when using the MIN function. The DISTINCT command is an

148 HOUR 9: Summarizing Data Results from a Query

option. However, because the minimum value for all rows is the same as the mini-

mum value for distinct rows, DISTINCT is useless.

The syntax for the MIN function is

MIN([DISTINCT] COLUMN NAME)

This example returns the lowest salary:

SELECT MIN(SALARY) FROM EMPLOYEE_PAY_TBL

This example returns the lowest distinct salary:

SELECT MIN(DISTINCT SALARY) FROM EMPLOYEE_PAY_TBL

The following example returns the minimum value for the COST column in the

PRODUCTS_TBL table:

SELECT MIN(COST)
FROM PRODUCTS_TBL;

MIN(COST)

1.05

SELECT MIN(DISTINCT COST)
FROM PRODUCTS_TBL;

MIN(COST)

1.05

One very important thing to keep in mind when using aggregate functions with the
DISTINCT command is that your query might not return the desired results. The
purpose of aggregate functions is to return summarized data based on all rows of
data in a table.

The final example combines aggregate functions with the use of arithmetic opera-

tors:

SELECT COUNT(ORD_NUM), SUM(QTY),
SUM(QTY) / COUNT(ORD_NUM) AVG_QTY

FROM ORDERS_TBL;

COUNT(ORD_NUM) SUM(QTY) AVG_QTY
-------------- ---------- ----------
7 160 22.857143

You have performed a count on all order numbers, figured the sum of all quantities

ordered, and, by dividing the two figures, have derived the average quantity of an

item per order. You also created a column alias for the computation—AVG_QTY.

Watch
Out!

Workshop 149

Summary
Aggregate functions can be very useful and are quite simple to use. You have

learned how to count values in columns, count rows of data in a table, get the max-

imum and minimum values for a column, figure the sum of the values in a column,

and figure the average value for values in a column. Remember that NULL values

are not considered when using aggregate functions, except when using the COUNT

function in the format COUNT(*).

Aggregate functions are the first functions in SQL that you have learned, but more

follow. Aggregate functions can also be used for group values, which are discussed

during the next hour. As you learn about other functions, you see that the syntaxes

of most functions are similar to one another and that their concepts of use are rela-

tively easy to understand.

Q&A
Q. Why are NULL values ignored when using the MAX or MIN function?

A. A NULL value means that nothing is there.

Q. Why don’t data types matter when using the COUNT function?

A. The COUNT function only counts rows.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. True or false: The AVG function returns an average of all rows from a select col-

umn, including any NULL values.

2. True or false: The SUM function is used to add column totals.

150 HOUR 9: Summarizing Data Results from a Query

3. True or false: The COUNT(*) function counts all rows in a table.

4. Will the following SELECT statements work? If not, what will fix the state-

ments?

A.

SELECT COUNT *
FROM EMPLOYEE_PAY_TBL;

B.

SELECT COUNT(EMPLOYEE_ID), SALARY
FROM EMPLOYEE_PAY_TBL;

C.

SELECT MIN(BONUS), MAX(SALARY)
FROM EMPLOYEE_PAY_TBL
WHERE SALARY > 20000;

D.

SELECT COUNT(DISTINCT PROD_ID) FROM PRODUCTS_TBL;

E.

SELECT AVG(LAST_NAME) FROM EMPLOYEE_TBL;

F.

SELECT AVG(PAGER) FROM EMPLOYEE_TBL;

Exercises
1. Use EMPLOYEE_PAY_TBL to construct SQL statements to solve the following

exercises:

A. What is the average salary?

B. What is the maximum bonus?

C. What are the total salaries?

D. What is the minimum pay rate?

E. How many rows are in the table?

2. How many employees do we have whose last names begin with a G?

3. If every product cost $10.00, what would be the total dollar amount for all

orders?

HOUR 10

Sorting and Grouping Data

You have learned how to query the database and return data in an organized fashion.

You have also learned how to sort data from a query. During this hour, you learn how to

break returned data from a query into groups for improved readability.

The highlights of this hour include:
. Why you would want to group data
. The GROUP BY clause
. Group value functions
. The how and why of group functions
. Grouping by columns
. GROUP BY versus ORDER BY
. The HAVING clause

Why Group Data?
Grouping data is the process of combining columns with duplicate values in a logical

order. For example, a database might contain information about employees; many

employees live in different cities, while some employees live in the same city. You might

want to execute a query that shows employee information for each particular city. You are

grouping employee information by city, and a summarized report is created.

Suppose that you wanted to figure the average salary paid to employees according to each

city. You would do this by using the aggregate function AVG on the SALARY column, as you

learned last hour, and by using the GROUP BY clause to group the output by city.

Grouping data is accomplished through the use of the GROUP BY clause of a SELECT state-

ment (query). Last hour, you learned how to use aggregate functions. During this lesson,

152 HOUR 10: Sorting and Grouping Data

you will see how aggregate functions are used in conjunction with the GROUP BY

clause to display results more effectively.

The GROUP BY Clause
The GROUP BY clause is used in collaboration with the SELECT statement to arrange

identical data into groups. The GROUP BY clause follows the WHERE clause in a

SELECT statement and precedes the ORDER BY clause.

The position of the GROUP BY clause in a query is as follows:

SELECT
FROM
WHERE
GROUP BY
ORDER BY

The GROUP BY clause must follow the conditions in the WHERE clause and must pre-

cede the ORDER BY clause if one is used.

The following is the SELECT statement’s syntax, including the GROUP BY clause:

SELECT COLUMN1, COLUMN2
FROM TABLE1, TABLE2
WHERE CONDITIONS
GROUP BY COLUMN1, COLUMN2
ORDER BY COLUMN1, COLUMN2

The following sections give examples and explanations of the GROUP BY clause’s use

in a variety of situations.

Group Functions
Typical group functions—those that are used with the GROUP BY clause to arrange

data in groups—include AVG, MAX, MIN, SUM, and COUNT. These are the aggregate

functions that you learned about during Hour 9, “Summarizing Data Results from a

Query.” Remember that the aggregate functions were used for single values in Hour

9; now, you use the aggregate functions for group values.

Grouping Selected Data
Grouping data is a simple process. The selected columns (the column list following

the SELECT keyword in a query) are the columns that can be referenced in the GROUP

BY clause. If a column is not found in the SELECT statement, it cannot be used in the

GROUP BY clause. This is logical if you think about it—how can you group data on a

report if the data is not displayed?

The GROUP BY Clause 153

If the column name has been qualified, the qualified name must go into the GROUP

BY clause. The column name can also be represented by a number, which is dis-

cussed later in Representing Column Names with Numbers. When grouping the

data, the order of columns grouped does not have to match the column order in the

SELECT clause.

Creating Groups and Using Aggregate Functions
The SELECT clause has conditions that must be met when using GROUP BY.

Specifically, whatever columns are selected must appear in the GROUP BY clause,

except for any aggregate values. The columns in the GROUP BY clause do not neces-

sarily have to be in the same order as they appear in the SELECT clause. Should the

columns in the SELECT clause be qualified, the qualified names of the columns must

be used in the GROUP BY clause. Some examples of syntax for the GROUP BY clause

are shown next.

The following SQL statement selects the EMP_ID and the CITY from the

EMPLOYEE_TBL and groups the data returned by CITY and then EMP_ID:

SELECT EMP_ID, CITY
FROM EMPLOYEE_TBL
GROUP BY CITY, EMP_ID;

Note the order of the columns selected, versus the order of the columns in the
GROUP BY clause.

This SQL statement returns the EMP_ID and the total of the SALARY column. Then it

groups the results by both the salaries and employee IDs:

SELECT EMP_ID, SUM(SALARY)
FROM EMPLOYEE_PAY_TBL
GROUP BY SALARY, EMP_ID;

This SQL statement returns the total of all the salaries from the EMPLOYEE_PAY_TBL:

SELECT SUM(SALARY) AS TOTAL_SALARY
FROM EMPLOYEE_PAY_TBL;

TOTAL_SALARY
90000.00

1 row selected

By the
Way

154 HOUR 10: Sorting and Grouping Data

This SQL statement returns the totals for the different groups of salaries:

SELECT SUM(SALARY)
FROM EMPLOYEE_PAY_TBL
GROUP BY SALARY;

SUM(SALARY)
(null)
20000.00
30000.00
40000.00

4 rows selected

Practical examples using real data follow. In this first example, you can see that

there are three distinct cities in the EMPLOYEE_TBL table:

SELECT CITY
FROM EMPLOYEE_TBL;

CITY

GREENWOOD
INDIANAPOLIS
WHITELAND
INDIANAPOLIS
INDIANAPOLIS
INDIANAPOLIS

6 rows selected.

In the following example, you select the city and a count of all records for each city.

You see a count on each of the three distinct cities because you are using a GROUP

BY clause:

SELECT CITY, COUNT(*)
FROM EMPLOYEE_TBL
GROUP BY CITY;

CITY COUNT(*)
-------------- --------
GREENWOOD 1
INDIANAPOLIS 4
WHITELAND 1

3 rows selected.

The GROUP BY Clause 155

The following is a query from a temporary table created based on EMPLOYEE_TBL

and EMPLOYEE_PAY_TBL. You will soon learn how to join two tables for a query:

SELECT *
FROM EMP_PAY_TMP;

CITY LAST_NAM FIRST_NA PAY_RATE SALARY
------------ -------- ---------- ------------ ------
GREENWOOD STEPHENS TINA 30000
INDIANAPOLIS PLEW LINDA 14.75
WHITELAND GLASS BRANDON 40000
INDIANAPOLIS GLASS JACOB 20000
INDIANAPOLIS WALLACE MARIAH 11
INDIANAPOLIS SPURGEON TIFFANY 15

6 rows selected.

In the following example, you retrieve the average pay rate and salary on each dis-

tinct city using the aggregate function AVG. There is no average pay rate for GREEN-

WOOD or WHITELAND because no employees living in those cities are paid hourly:

SELECT CITY, AVG(PAY_RATE), AVG(SALARY)
FROM EMP_PAY_TMP
GROUP BY CITY;

CITY AVG(PAY_RATE) AVG(SALARY)
------------ ------------- -----------
GREENWOOD 30000
INDIANAPOLIS 13.5833333 20000
WHITELAND 40000

3 rows selected.

In the next example, you combine the use of multiple components in a query to

return grouped data. You still want to see the average pay rate and salary, but only

for INDIANAPOLIS and WHITELAND. You group the data by CITY—you have no choice

because you are using aggregate functions on the other columns. Lastly, you want

to order the report by 2 and then 3, which is the average pay rate and then average

salary, respectively. Study the following details and output:

SELECT CITY, AVG(PAY_RATE), AVG(SALARY)
FROM EMP_PAY_TMP
WHERE CITY IN (‘INDIANAPOLIS’,’WHITELAND’)
GROUP BY CITY
ORDER BY 2,3;

CITY AVG(PAY_RATE) AVG(SALARY)
------------ ------------- -----------
INDIANAPOLIS 13.5833333 20000
WHITELAND 40000

156 HOUR 10: Sorting and Grouping Data

Values are sorted before NULL values; therefore, the record for INDIANAPOLIS is dis-

played first. GREENWOOD is not selected, but if it was, its record would have been dis-

played before the WHITELAND record because the average salary for GREENWOOD is

$30,000 (the second sort in the ORDER BY clause was on average salary).

The last example in this section shows the use of the MAX and MIN aggregate func-

tions with the GROUP BY clause:

SELECT CITY, MAX(PAY_RATE), MIN(SALARY)
FROM EMP_PAY_TMP
GROUP BY CITY;

CITY MAX(PAY_RATE) MIN(SALARY)
------------ ------------- -----------
GREENWOOD 30000
INDIANAPOLIS 15 20000
WHITELAND 40000

3 rows selected.

Representing Column Names with Numbers
Like the ORDER BY clause, the GROUP BY clause can be ordered by using an integer

to represent the column name. The following is an example of representing column

names with numbers:

SELECT YEAR(DATE_HIRE) as YEAR_HIRED, SUM(SALARY)
FROM EMPLOYEE_PAY_TBL
GROUP BY 1;

YEAR_HIRED SUM(SALARY)
------------- ------------------------
1989 40000.00
1990
1991
1994 30000.00
1996
1997 20000.00

6 rows selected.

This SQL statement returns the SUM of the employee salaries grouped by the year in

which the employees were hired. The GROUP BY clause is performed on the entire

result set. The order for the groupings is 1, representing EMP_ID.

GROUP BY Versus ORDER BY
You should understand that the GROUP BY clause works the same as the ORDER BY

clause in that both are used to sort data. The ORDER BY clause is specifically used to

GROUP BY Versus ORDER BY 157

sort data from a query. The GROUP BY clause also sorts data from a query to proper-

ly group the data. Therefore, the GROUP BY clause can be used to sort data the same

as the ORDER BY clause.

There are some differences and disadvantages of using GROUP BY for sorting opera-

tions:

. All non-aggregate columns selected must be listed in the GROUP BY clause.

. The GROUP BY clause is generally not necessary unless using aggregate func-

tions.

An example of performing sort operations utilizing the GROUP BY clause in place of

the ORDER BY clause is shown next:

SELECT LAST_NAME, FIRST_NAME, CITY
FROM EMPLOYEE_TBL
GROUP BY LAST_NAME;

SELECT LAST_NAME, CITY
*

ERROR at line 1:
ORA-00979: not a GROUP BY expression

In this example, an error was received from the database server stating that

FIRST_NAME is not a GROUP BY expression. Remember that all columns and expres-

sions in the SELECT statement must be listed in the GROUP BY clause, with the excep-

tion of aggregate columns (those columns targeted by an aggregate function.

Different SQL implementations will return errors in different formats.

In the next example, the previous problem is solved by adding all the expressions in

the SELECT statement to the GROUP BY clause:

SELECT LAST_NAME, FIRST_NAME, CITY
FROM EMPLOYEE_TBL
GROUP BY LAST_NAME, FIRST_NAME, CITY;

LAST_NAME FIRST_NAME CITY
-------- ----------- ------------
GLASS BRANDON WHITELAND
GLASS JACOB INDIANAPOLIS
PLEW LINDA INDIANAPOLIS
SPURGEON TIFFANY INDIANAPOLIS
STEPHENS TINA GREENWOOD
WALLACE MARIAH INDIANAPOLIS

6 rows selected.

By the
Way

158 HOUR 10: Sorting and Grouping Data

In this example, the same columns were selected from the same table, but all

columns in the GROUP BY clause are listed as they appeared after the SELECT key-

word. The results were ordered by LAST_NAME first, FIRST_NAME second, and CITY

third. These results could have been accomplished easier with the ORDER BY clause;

however, it might help you better understand how the GROUP BY clause works if you

can visualize how it must first sort data to group data results.

The following example shows a SELECT statement from EMPLOYEE_TBL and uses the

GROUP BY clause to order by CITY:

SELECT CITY, LAST_NAME
FROM EMPLOYEE_TBL
GROUP BY CITY, LAST_NAME;

CITY LAST_NAME
------------ ---------
GREENWOOD STEPHENS
INDIANAPOLIS GLASS
INDIANAPOLIS PLEW
INDIANAPOLIS SPURGEON
INDIANAPOLIS WALLACE
WHITELAND GLASS

6 rows selected.

Notice the order of data in the previous results, as well as the LAST_NAME of the indi-

vidual for each CITY. In the following example, all employee records in the EMPLOY-

EE_TBL table are now counted, and the results are grouped by CITY, but ordered by

the count on each city first:

SELECT CITY, COUNT(*)
FROM EMPLOYEE_TBL
GROUP BY CITY
ORDER BY 2,1;

CITY COUNT(*)
-------------- --------
GREENWOOD 1
WHITELAND 1
INDIANAPOLIS 4

Notice the order of the results. The results were first sorted by the count on each city

(1–4), and then by city. The count for the first two cities in the output is 1. Because

the count is the same, which is the first expression in the ORDER BY clause, the city

is then sorted; GREENWOOD is placed before WHITELAND.

Although GROUP BY and ORDER BY perform a similar function, there is one major

difference. The GROUP BY clause is designed to group identical data, whereas the

ORDER BY clause is designed merely to put data into a specific order. GROUP BY and

ORDER BY can be used in the same SELECT statement, but must follow a specific

The HAVING Clause 159

order. The GROUP BY clause is always placed before the ORDER BY clause in the

SELECT statement.

The GROUP BY clause can be used in the CREATE VIEW statement to sort data,
but the ORDER BY clause is not allowed in the CREATE VIEW statement. The CRE-
ATE VIEW statement is discussed in depth in Hour 20, “Creating and Using Views
and Synonyms.”

The HAVING Clause
The HAVING clause, when used in conjunction with the GROUP BY clause in a SELECT

statement, tells GROUP BY which groups to include in the output. HAVING is to GROUP

BY as WHERE is to SELECT. In other words, the WHERE clause places conditions on the

selected columns, and the HAVING clause places conditions on groups created by the

GROUP BY clause. Therefore, when you use the HAVING clause, you are effectively

including or excluding, as the case might be, whole groups of data from the query

results.

The following is the position of the HAVING clause in a query:

SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY

The HAVING clause must follow the GROUP BY clause in a query and must also pre-

cede the ORDER BY clause if used.

The following is the syntax of the SELECT statement, including the HAVING clause:

SELECT COLUMN1, COLUMN2
FROM TABLE1, TABLE2
WHERE CONDITIONS
GROUP BY COLUMN1, COLUMN2
HAVING CONDITIONS
ORDER BY COLUMN1, COLUMN2

In the following example, you select the average pay rate and salary for all cities

except GREENWOOD. You group the output by CITY, but only want to display those

Did you
Know?

160 HOUR 10: Sorting and Grouping Data

groups (cities) that have an average salary greater than $20,000. You sort the results

by average salary for each city:

SELECT CITY, AVG(PAY_RATE), AVG(SALARY)
FROM EMP_PAY_TMP
WHERE CITY <> ‘GREENWOOD’
GROUP BY CITY
HAVING AVG(SALARY) > 20000
ORDER BY 3;

CITY AVG(PAY_RATE) AVG(SALARY)
------------ ------------- -----------
WHITELAND 40000

1 row selected.

Why was only one row returned by this query?

. The city GREENWOOD was eliminated from the WHERE clause.

. INDIANAPOLIS was deducted from the output because the average salary was

20000, which is not greater than 20000.

Summary
You have learned how to group the results of a query using the GROUP BY clause.

The GROUP BY clause is primarily used with aggregate SQL functions, such as SUM,

AVG, MAX, MIN, and COUNT. The nature of GROUP BY is like that of ORDER BY in that

both sort query results. The GROUP BY clause must sort data to group results logical-

ly, but can also be used exclusively to sort data, although an ORDER BY clause is

much simpler for this purpose.

The HAVING clause, an extension to the GROUP BY clause, is used to place conditions

on the established groups of a query. The WHERE clause is used to place conditions

on a query’s SELECT clause. During the next hour, you learn a new arsenal of func-

tions that allow you to further manipulate query results.

Q&A
Q. Is using the GROUP BY clause mandatory when using the ORDER BY clause in

a SELECT statement?

A. No. Using the GROUP BY clause is strictly optional, but it can be very useful

when used with ORDER BY.

Workshop 161

Q. What is a group value?

A. Take the CITY column from the EMPLOYEE_TBL. If you select the employee’s

name and city, and then group the output by city, all the cities that are identi-

cal are arranged together.

Q. Must a column appear in the SELECT statement to use a GROUP BY clause on it?

A. Yes, a column must be in the SELECT statement to use a GROUP BY clause on it.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the current

material. The practical exercises are intended to afford you the opportunity to apply

the concepts discussed during the current hour, as well as build upon the knowledge

acquired in previous hours of study. Please take time to complete the quiz questions

and exercises before continuing. Refer to Appendix C, “Answers to Quizzes and

Exercises,” for answers.

Quiz
1. Will the following SQL statements work?

A.

SELECT SUM(SALARY), EMP_ID
FROM EMPLOYEE_PAY_TBL
GROUP BY 1 and 2;

B.

SELECT EMP_ID, MAX(SALARY)
FROM EMPLOYEE_PAY_TBL
GROUP BY SALARY, EMP_ID;

C.

SELECT EMP_ID, COUNT(SALARY)
FROM EMPLOYEE_PAY_TBL
ORDER BY EMP_ID
GROUP BY SALARY;

D.

SELECT YEAR(DATE_HIRE) AS YEAR_HIRED,SUM(SALARY)
FROM EMPLOYEE_PAY_TBL
GROUP BY 1
HAVING SUM(SALARY)>20000;

162 HOUR 10: Sorting and Grouping Data

2. True or false: You must also use the GROUP BY clause when using the HAVING

clause.

3. True or false: The following SQL statement returns a total of the salaries by

groups:

SELECT SUM(SALARY)
FROM EMPLOYEE_PAY_TBL;

4. True or false: The columns selected must appear in the GROUP BY clause in the

same order.

5. True or false: The HAVING clause tells the GROUP BY which groups to include.

Exercises
1. Invoke mysql.exe on your computer, and then type use learnsql; at the

mysql> prompt.

2. Enter the following query at the mysql> prompt to show all cities in

EMPLOYEE_TBL:

SELECT CITY
FROM EMPLOYEE_TBL;

3. Now, enter the following query and compare the results to the query in exer-

cise 2:

SELECT CITY, COUNT(*)
FROM EMPLOYEE_TBL
GROUP BY CITY;

4. The HAVING clause works like the WHERE clause in that it allows the user to

specify conditions on data returned. The WHERE clause is the main filter on the

query and the HAVING clause is the filter used after groups of data have been

established using the GROUP BY clause. Enter the following query to see how

the HAVING clause works:

SELECT CITY, COUNT(*)
FROM EMPLOYEE_TBL
GROUP BY CITY
HAVING COUNT(*) > 1;

5. Modify the query in exercise 3 to order the results in descending order, from

highest count to lowest.

Workshop 163

6. Write a query to list the average pay rate by position from the

EMPLOYEE_PAY_TBL table.

7. Write a query to list the average salary by position from the

EMPLOYEE_PAY_TBL table.

8. Write a query to list the average salary by position from the

EMPLOYEE_PAY_TBL table where the average salary is greater than 20000.

This page intentionally left blank

HOUR 11

Restructuring the Appearance
of Data

During this hour, you learn how to restructure the appearance of output results using a

wide array of functions, some ANSI standard functions, and other functions based on the

standard and several variations used by some major SQL implementations.

This hour’s highlights include:
. Introduction to character functions
. How and when to use character functions
. Examples of ANSI SQL functions
. Examples of common implementation-specific functions
. Overview of conversion functions
. How and when to use conversion functions

ANSI Character Functions
Character functions are functions used to represent strings in SQL in formats alternate to

how they are stored in the table. The first part of this hour discusses the concepts for char-

acter functions as covered by ANSI. The second part of this hour shows real-world exam-

ples using functions that are specific to various SQL implementations. ANSI functions

discussed in this hour include concatenation, substring, TRANSLATE, REPLACE, UPPER, and

LOWER.

166 HOUR 11: Restructuring the Appearance of Data

Concatenation
Concatenation is the process of combining two separate strings into one string. For

example, you might want to concatenate an individual’s first and last names into a

single string for the complete name.

JOHN concatenated with SMITH produces JOHN SMITH.

Substring
The concept of substring is the capability to extract part of a string, or a “sub” of the

string. For example, the following values are substrings of JOHNSON:

. J

. JOHN

. JO

. ON

. SON

TRANSLATE
The TRANSLATE function is used to translate a string, character by character, into

another string. There are normally three arguments with the TRANSLATE function:

the string to be converted, a list of the characters to convert, and a list of the substi-

tution characters. Implementation examples are shown in the next part of this hour.

Various Common Character Functions
Character functions are used mainly to compare, join, search, and extract a segment

of a string or a value in a column. Several character functions are available to the

SQL programmer.

The following sections illustrate the application of ANSI concepts in some of the leading

implementations of SQL, such as Oracle, Sybase, SQLBase, Informix, and SQL Server.

The ANSI concepts discussed in this book are just that—concepts. Standards pro-
vided by ANSI are simply guidelines for how the use of SQL in a relational data-
base should be implemented. With that thought, keep in mind that the specific
functions discussed in this hour are not necessarily the exact functions that you
might use in your particular implementation. Yes, the concepts are the same, and
the way the functions work are generally the same, but function names and actual
syntax might differ.

By the
Way

Various Common Character Functions 167

Concatenation
Concatenation, along with most other functions, is represented slightly differently

among various implementations. The following examples show the use of concate-

nation in Oracle and SQL Server.

Let’s say you want to concatenate JOHN and SON to produce JOHNSON. In Oracle, your

code would look like this:

SELECT ‘JOHN’ || ‘SON’

In SQL Server, your code would appear as follows:

SELECT ‘JOHN’ + ‘SON’

In MySQL, your code would look like

SELECT CONCAT(‘JOHN’ , ‘SON’)

Now for an overview of the syntaxes. The syntax for Oracle is

COLUMN_NAME || [‘’ ||] COLUMN_NAME [COLUMN_NAME]

The syntax for SQL Server is

COLUMN_NAME + [‘’ +] COLUMN_NAME [COLUMN_NAME]

The syntax for MySQL is

CONCAT(COLUMN_NAME , [‘’ ,] COLUMN_NAME [COLUMN_NAME])

This SQL Server statement concatenates the values for city and state into one value:

SELECT CITY + STATE FROM EMPLOYEE_TBL;

This Oracle statement concatenates the values for city and state into one value,

placing a comma between the values for city and state:

SELECT CITY ||’, ‘|| STATE FROM EMPLOYEE_TBL;

This SQL Server statement concatenates the values for city and state into one value,

placing a space between the two original values.

SELECT CITY + ‘’ + STATE FROM EMPLOYEE_TBL;

168 HOUR 11: Restructuring the Appearance of Data

This SQL Server statement concatenates the last name with the first name and

inserts a comma between the two original values.

SELECT LAST_NAME || ‘, ‘ || FIRST_NAME NAME
FROM EMPLOYEE_TBL;

NAME

STEPHENS, TINA
PLEW, LINDA
GLASS, BRANDON
GLASS, JACOB
WALLACE, MARIAH
SPURGEON, TIFFANY

6 rows selected.

Notice the use of single quotation marks and a comma in the preceding SQL
statement. Most characters and symbols are allowed if enclosed by single quota-
tions marks. Some implementations might use double quotation marks for literal
string values.

TRANSLATE
The TRANSLATE function searches a string of characters and checks for a specific

character, makes note of the position found, searches the replacement string at the

same position, and then replaces that character with the new value. The syntax is

TRANSLATE(CHARACTER SET, VALUE1, VALUE2)

This SQL statement substitutes every occurrence of I in the string with A, every

occurrence of N with B, and replaces all occurrences of D with C.

SELECT TRANSLATE (CITY,’IND’,’ABC’ FROM EMPLOYEE_TBL) CITY_TRANSLATION

The following example illustrates the use of TRANSLATE with real data:

SELECT CITY, TRANSLATE(CITY,’IND’,’ABC’)
FROM EMPLOYEE_TBL;

CITY CITY_TRANSLATION
------------ ------------
GREENWOOD GREEBWOOC
INDIANAPOLIS ABCAABAPOLAS
WHITELAND WHATELABC
INDIANAPOLIS ABCAABAPOLAS
INDIANAPOLIS ABCAABAPOLAS
INDIANAPOLIS ABCAABAPOLAS

6 rows selected.

By the
Way

Various Common Character Functions 169

Notice in this example that all occurrences of I were replaced with A, N with B, and

D with C. In the city INDIANAPOLIS, IND was replaced with ABC, but in GREENWOOD, D

was replaced with C. Also notice how the value WHITELAND was translated.

REPLACE
The REPLACE function is used to replace every occurrence of a character(s) with a

specified character(s). The use of this function is similar to the TRANSLATE function,

except only one specific character or string is replaced within another string. The

syntax is

REPLACE(‘VALUE’, ‘VALUE’, [NULL] ‘VALUE’)

This statement returns all the first names and changes any occurrence of T to a B:

SELECT REPLACE(FIRST__’T’, ‘B’) FROM EMPLOYEE_TBL

This statement returns all of the cities in the employee table and the same cities

with each I replaced with a Z:

SELECT CITY, REPLACE(CITY,’I’,’Z’)
FROM EMPLOYEE_TBL;

CITY REPLACE(CITY)
------------ -------------
GREENWOOD GREENWOOD
INDIANAPOLIS ZNDZANAPOLZS
WHITELAND WHZTELAND
INDIANAPOLIS ZNDZANAPOLZS
INDIANAPOLIS ZNDZANAPOLZS
INDIANAPOLIS ZNDZANAPOLZS

6 rows selected.

UPPER
Most implementations have a way to control the case of data by using functions.

The UPPER function is used to convert lowercase letters to uppercase letters for a spe-

cific string.

The syntax is as follows:

UPPER(character string)

170 HOUR 11: Restructuring the Appearance of Data

This SQL statement converts all characters in the column to uppercase:

SELECT UPPER(CITY)
FROM EMPLOYEE_TBL;

UPPER(CITY)

GREENWOOD
INDIANAPOLIS
WHITELAND
INDIANAPOLIS
INDIANAPOLIS
INDIANAPOLIS

6 rows selected.

LOWER
The converse of the UPPER function, the LOWER function is used to convert uppercase

letters to lowercase letters for a specific string.

The syntax is as follows:

LOWER(character string)

This SQL statement converts all characters in the column to lowercase:

SELECT LOWER(CITY)
FROM EMPLOYEE_TBL;

LOWER(CITY)

greenwood
indianapolis
whiteland
indianapolis
indianapolis
indianapolis

6 rows selected.

SUBSTR
Taking an expression’s substring is common in most implementations of SQL, but

the function name might differ, as shown in the following Oracle and SQL Server

examples.

The syntax for Oracle is

SUBSTR(COLUMN NAME, STARTING POSITION, LENGTH)

Various Common Character Functions 171

The syntax for SQL Server is

SUBSTRING(COLUMN NAME, STARTING POSITION, LENGTH)

The only difference between the two implementations is the spelling of the function

name.

This SQL statement returns the first three characters of EMP_ID:

SELECT SUBSTRING(EMP_ID,1,3) FROM EMPLOYEE_TBL

This SQL statement returns the fourth and fifth characters of EMP_ID:

SELECT SUBSTRING(EMP_ID,4,2) FROM EMPLOYEE_TBL

This SQL statement returns the sixth through the ninth characters of EMP_ID:

SELECT SUBSTRING(EMP_ID,6,4) FROM EMPLOYEE_TBL

The following is an example that is compatible with Microsoft SQL Server and

MySQL:

SELECT EMP_ID, SUBSTRING(EMP_ID,1,3)
FROM EMPLOYEE_TBL;

EMP_ID SUB
--------- ---
311549902 311
442346889 442
213764555 213
313782439 313
220984332 220
443679012 443

6 rows affected.

The following SQL statement is what you would use for Oracle.

SELECT EMP_ID, SUBSTR(EMP_ID,1,3)
FROM EMPLOYEE_TBL;

EMP_ID SUB
--------- ---
311549902 311
442346889 442
213764555 213
313782439 313
220984332 220
443679012 443

6 rows selected.

172 HOUR 11: Restructuring the Appearance of Data

Notice the difference between the feedback of the two queries. The first example
returns the feedback 6 rows affected and the second returns 6 rows select-
ed. You will see differences such as this between the various implementations.

INSTR
The INSTR function is used to search a string of characters for a specific set of char-

acters and report the position of those characters. The syntax is as follows:

INSTR(COLUMN NAME, ‘SET’,
[START POSITION [, OCCURRENCE]]);

This SQL statement returns the position of the first occurrence of the letter I for each

state in EMPLOYEE_TBL:

SELECT INSTR(STATE,’I’,1,1) FROM EMPLOYEE_TBL;

This SQL statement looks for the first occurance of the letter A in the PROD_DESC

column:

SELECT PROD_DESC,
INSTR(PROD_DESC,’A’,1,1)

FROM PRODUCTS_TBL;

PROD_DESC INSTR(PROD_DESC,’A’,1,1)
------------------------- --------------------------
WITCHES COSTUME 0
PLASTIC PUMPKIN 18 INCH 3
FALSE PARAFFIN TEETH 2
LIGHTED LANTERNS 10
ASSORTED COSTUMES 1
CANDY CORN 2
PUMPKIN CANDY 10
PLASTIC SPIDERS 3
ASSORTED MASKS 1
KEY CHAIN 7
OAK BOOKSHELF 2

11 rows selected.

Notice that if the searched character A was not found in a string, the value 0 was

returned for the position.

By the
Way

Various Common Character Functions 173

LTRIM
The LTRIM function is another way of clipping part of a string. This function and

SUBSTRING are in the same family. LTRIM is used to trim characters from the left of a

string. The syntax is

LTRIM(CHARACTER STRING [,’set’])

This SQL statement trims the characters LES from the left of all names that are

LESLIE.

SELECT LTRIM(FIRST_NAME,’LES’) FROM CUSTOMER_TBL WHERE FIRST_NAME =’LESLIE’;

This SQL statement returns the positions and also the returns the position with the

word ‘SALES’ trimmed from the left side of the character string:

SELECT POSITION, LTRIM(POSITION,’SALES’)
FROM EMPLOYEE_PAY_TBL;

POSITION LTRIM(POSITION,
--------------- ---------------
MARKETING MARKETING
TEAM LEADER TEAM LEADER
SALES MANAGER MANAGER
SALESMAN MAN
SHIPPER HIPPER
SHIPPER HIPPER

6 rows selected.

The S in SHIPPER was trimmed off, even though SHIPPER does not contain the string

SALES. The first four characters of SALES were ignored. The searched characters must

appear in the same order of the search string and must be on the far left of the

string. In other words, LTRIM will trim off all characters to the left of the last occur-

rence in the search string.

RTRIM
Like LTRIM, the RTRIM function is used to trim characters, but this time from the

right of a string. The syntax is

RTRIM(CHARACTER STRING [,’set’])

This SQL statement returns the first name BRANDON and trims the ON, leaving BRAND

as a result:

SELECT RTRIM(FIRST_NAME, ‘ON’) FROM EMPLOYEE_TBL WHERE FIRST_NAME = ‘BRANDON’;

174 HOUR 11: Restructuring the Appearance of Data

This SQL statement returns a list of the postions in the PAY_TBL as well as the posi-

tions with the letters ‘ER’ trimmed from the right of the character string:

SELECT POSITION, RTRIM(POSITION,’ER’)
FROM EMPLOYEE_PAY_TBL;

POSITION RTRIM(POSITION,
--------------- ---------------
MARKETING MARKETING
TEAM LEADER TEAM LEAD
SALES MANAGER SALES MANAG
SALESMAN SALESMAN
SHIPPER SHIPP
SHIPPER SHIPP

6 rows selected.

The string ER was trimmed from the right of all applicable strings.

DECODE
The DECODE function is not ANSI—at least not at the time of this writing—but its use

is shown here because of its great power. This function is used in SQLBase, Oracle,

and possibly other implementations. DECODE is used to search a string for a value or

string, and if the string is found, an alternative string is displayed as part of the

query results.

The syntax is

DECODE(COLUMN NAME, ‘SEARCH1’, ‘RETURN1’,[‘SEARCH2’, ‘RETURN2’, ‘DEFAULT
VALUE’])

This query searches the value of all last names in EMPLOYEE_TBL; if the value SMITH

is found, JONES is displayed in its place. Any other names are displayed as OTHER,

which is called the default value.

SELECT DECODE(LAST_NAME,’SMITH’,’JONES’,’OTHER’) FROM EMPLOYEE_TBL;

In the following example, DECODE is used on the values for CITY in EMPLOYEE_TBL:

SELECT CITY,
DECODE(CITY,’INDIANAPOLIS’,’INDY’,

‘GREENWOOD’,’GREEN’,’OTHER’)
FROM EMPLOYEE_TBL;

CITY DECOD
------------ -----
GREENWOOD GREEN
INDIANAPOLIS INDY
WHITELAND OTHER
INDIANAPOLIS INDY
INDIANAPOLIS INDY
INDIANAPOLIS INDY

6 rows selected.

Miscellaneous Character Functions 175

The output shows the value INDIANAPOLIS displayed as INDY, GREENWOOD displayed

as GREEN, and all other cities displayed as OTHER.

Miscellaneous Character Functions
The following sections show a few other character functions worth mentioning.

Once again, these are functions that are fairly common among major implementa-

tions.

LENGTH
The LENGTH function is a common function used to find the length of a string, num-

ber, date, or expression in bytes. The syntax is

LENGTH(CHARACTER STRING)

This SQL statement returns the product description and also its corresponding

length:

SELECT PROD_DESC, LENGTH(PROD_DESC)
FROM PRODUCTS_TBL;

PROD_DESC LENGTH(PROD_DESC)
------------------------ -----------------
WITCHES COSTUME 15
PLASTIC PUMPKIN 18 INCH 23
FALSE PARAFFIN TEETH 19
LIGHTED LANTERNS 16
ASSORTED COSTUMES 17
CANDY CORN 10
PUMPKIN CANDY 13
PLASTIC SPIDERS 15
ASSORTED MASKS 14
KEY CHAIN 9
OAK BOOKSHELF 13

11 rows selected.

IFNULL (NULL Value Checker)
The IFNULL function is used to return data from one expression if another expres-

sion is NULL. IFNULL can be used with most data types; however, the value and the

substitute must be the same data type. The syntax is

IFNULL(‘VALUE’, ‘SUBSTITUTION’)

176 HOUR 11: Restructuring the Appearance of Data

This SQL statement finds NULL values and substitutes 9999999999 for any NULL

values:

SELECT PAGER, IFNULL(PAGER,9999999999)
FROM EMPLOYEE_TBL;

PAGER IFNULL(PAGER,
---------- ----------

9999999999
9999999999

3175709980 3175709980
8887345678 8887345678

9999999999
9999999999

6 rows selected.

Only NULL values were represented as 9999999999.

COALESCE
The COALESCE function is similar to the IFNULL function in that it is used to specifi-

cally replace NULL values within the result set. The COALESCE function, however, can

accept a whole set of values and checks each one in order until it finds a non-NULL

result. If a non-NULL result is not present, COALESCE returns a NULL value.

The following example demonstrates the COALESCE function by giving us the first

non-NULL value of BONUS, SALARY, and PAY_RATE:

SELECT EMP_ID, COALESCE(BONUS,SALARY,PAY_RATE)
FROM EMPLOYEE_PAY_TBL;

EMP_ID COALESCE(BONUS,SALARY,PAY_RATE)
------------ ---
213764555 2000.00
220984332 11.00
311549902 40000.00
313782439 1000.00
442346889 14.75
443679012 15.00

6 rows selected.

LPAD
LPAD (left pad) is used to add characters or spaces to the left of a string. The syntax

is

LPAD(CHARACTER SET)

Miscellaneous Character Functions 177

The following example pads periods to the left of each product description, totaling

30 characters between the actual value and padded periods:

SELECT LPAD(PROD_DESC,30,’.’) PRODUCT
FROM PRODUCTS_TBL;

PRODUCT

...............WITCHES COSTUME
.......PLASTIC PUMPKIN 18 INCH
..........FALSE PARAFFIN TEETH
..............LIGHTED LANTERNS
.............ASSORTED COSTUMES
....................CANDY CORN
.................PUMPKIN CANDY
...............PLASTIC SPIDERS
................ASSORTED MASKS
.....................KEY CHAIN
.................OAK BOOKSHELF

11 rows selected.

RPAD
The RPAD (right pad) is used to add characters or spaces to the right of a string. The

syntax is

RPAD(CHARACTER SET)

The following example pads periods to the right of each product description, total-

ing 30 characters between the actual value and padded periods:

SELECT RPAD(PROD_DESC,30,’.’) PRODUCT
FROM PRODUCTS_TBL;

PRODUCT

WITCHES COSTUME...............
PLASTIC PUMPKIN 18 INCH.......
FALSE PARAFFIN TEETH..........
LIGHTED LANTERNS..............
ASSORTED COSTUMES.............
CANDY CORN....................
PUMPKIN CANDY.................
PLASTIC SPIDERS...............
ASSORTED MASKS................
KEY CHAIN.....................
OAK BOOKSHELF.................

11 rows selected.

178 HOUR 11: Restructuring the Appearance of Data

ASCII
The ASCII function is used to return the American Standard Code for Information

Interchange (ASCII) representation of the leftmost character of a string. The syntax

is

ASCII(CHARACTER SET)

The following are some examples:

. ASCII(‘A’) returns 65

. ASCII(‘B’) returns 66

. ASCII(‘C’) returns 67

. ASCII(‘a’) returns 97

For more information, you may refer to the ASCII chart located at

www.asciitable.com.

Mathematical Functions
Mathematical functions are fairly standard across implementations. Mathematical

functions allow you to manipulate numeric values in a database according to math-

ematical rules.

The most common functions include the following:

Absolute value (ABS)

Rounding (ROUND)

Square root (SQRT)

Sign values (SIGN)

Power (POWER)

Ceiling and floor values (CEIL, FLOOR)

Exponential values (EXP)

SIN, COS, TAN

The general syntax of most mathematical functions is

FUNCTION(EXPRESSION)

www.asciitable.com

Conversion Functions 179

Conversion Functions
Conversion functions are used to convert a data type into another data type. For

example, there might be times when you want to convert character data into

numeric data. You might have data that is normally stored in character format, but

occasionally you want to convert the character format to numeric for the purpose of

making calculations. Mathematical functions and computations are not allowed on

data that is represented in character format.

The following are general types of data conversions:

. Character to numeric

. Numeric to character

. Character to date

. Date to character

The first two types of conversions are discussed in this hour. The remaining conver-

sion types are discussed during Hour 12, “Understanding Dates and Times,” where

date and time storage is discussed in more detail.

Some implementations might implicitly convert data types when necessary. This
means that the system will make the conversion for you when changing between
data types. In these cases, the use of conversion functions is unnecessary.
Please check your implementations documentation to see which types of implicit
conversions are supported.

Converting Character Strings to Numbers
You should notice two things regarding the differences between numeric data types

and character string data types:

. Arithmetic expressions and functions can be used on numeric values.

. Numeric values are right-justified, whereas character string data types are left-

justified in the output results.

When a character string is converted to a numeric value, the value takes on the two

attributes just mentioned.

By the
Way

180 HOUR 11: Restructuring the Appearance of Data

Some implementations might not have functions to convert character strings to

numbers, whereas some will have such conversion functions. In either case, consult

your implementation documentation for specific syntax and rules for conversions.

For a character string to be converted to a number, the characters must typically
be 0 through 9. The addition symbol, minus symbol, and period can also be used
to represent positive numbers, negative numbers, and decimals. For example, the
string STEVE cannot be converted to a number, whereas an individual’s Social
Security number could be stored as a character string, but could easily be convert-
ed to a numeric value via use of a conversion function.

The following is an example of a numeric conversion using an Oracle conversion

function:

SELECT EMP_ID, TO_NUMBER(EMP_ID)
FROM EMPLOYEE_TBL;

EMP_ID TO_NUMBER(EMP_ID)
--------- -----------------
311549902 311549902
442346889 442346889
213764555 213764555
313782439 313782439
220984332 220984332
443679012 443679012

6 rows selected.

The employee identification is right-justified following the conversion.

The data’s justification is the simplest way to identify a column’s data type.

Converting Numbers to Character Strings
Converting numeric values to character strings is precisely the opposite of convert-

ing characters to numbers.

The following is an example of converting a numeric value to a character string

using a Transact-SQL conversion function for Microsoft SQL Server:

SELECT PAY = PAY_RATE, NEW_PAY = STR(PAY_RATE)
FROM EMPLOYEE_PAY_TBL
WHERE PAY_RATE IS NOT NULL;

PAY NEW_PAY
---------- -------
17.5 17.5
14.75 14.75

By the
Way

Did you
Know?

Combining Character Functions 181

18.25 18.25
12.8 12.8
11 11
15 15

6 rows affected.

The following is the same example using an Oracle conversion function:

SELECT PAY_RATE, TO_CHAR(PAY_RATE)
FROM EMPLOYEE_PAY_TBL
WHERE PAY_RATE IS NOT NULL;

PAY_RATE TO_CHAR(PAY_RATE)
---------- -----------------
17.5 17.5
14.75 14.75
18.25 18.25
12.8 12.8
11 11
15 15

6 rows selected.

Combining Character Functions
Most functions can be combined in a SQL statement. SQL would be far too limited if

function combinations were not allowed. The following example combines two func-

tions in the query (concatenation with substring). By pulling the EMP_ID column

apart into three pieces, you can concatenate those pieces with dashes to render a

readable Social Security number. This example uses the CONCAT function to combine

the strings for output:

SELECT concat(LAST_NAME,’, ‘,FIRST_NAME) NAME,
CONCAT(SUBSTR(EMP_ID,1,3),’-’,
SUBSTR(EMP_ID,4,2),’-’,
SUBSTR(EMP_ID,6,4)) AS ID

FROM EMPLOYEE_TBL;

NAME ID
------------------ -----------
STEPHENS, TINA 311-54-9902
PLEW, LINDA 442-34-6889
GLASS, BRANDON 213-76-4555
GLASS, JACOB 313-78-2439
WALLACE, MARIAH 220-98-4332
SPURGEON, TIFFANY 443-67-9012

6 rows selected.

182 HOUR 11: Restructuring the Appearance of Data

This example uses the LENGTH function and the arithmetic operator (+) to add the

length of the first name to the length of the last name for each column; the SUM

function then finds the total length of all first and last names.

SELECT SUM(LENGTH(LAST_NAME) + LENGTH(FIRST_NAME)) TOTAL
FROM EMPLOYEE_TBL;

TOTAL

71

1 row selected.

When embedding functions within functions in a SQL statement, remember that
the innermost function is resolved first, and then each function is subsequently
resolved from the inside out.

Summary
You have been introduced to various functions used in a SQL statement—usually a

query—to modify or enhance the way output is represented. Those functions include

character, mathematical, and conversion functions. It is very important to realize

that the ANSI standard is a guideline for how SQL should be implemented by ven-

dors, but does not dictate the exact syntax or necessarily place limits on vendors’

innovations. Most vendors have standard functions and conform to the ANSI con-

cepts, but each vendor has its own specific list of available functions. The function

name might differ and the syntax might differ, but the concepts with all functions

are the same.

Q&A
Q. Are all the functions in the ANSI standard?

A. No, not all functions are exactly ANSI SQL. Functions, like data types, are

often implementation dependent. Most implementations contain supersets of

the ANSI functions; many have a wide range of functions with extended capa-

bility, whereas other implementations seem to be somewhat limited. Several

examples of functions from selected implementations are included in this

hour. However, because so many implementations use similar functions

(although they might slightly differ), check your particular implementation

for available functions and their usage.

By the
Way

Workshop 183

Q. Is the data actually changed in the database when using functions?

A. No. Data is not changed in the database when using functions. Functions are

typically used in queries to manipulate the output’s appearance.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. Match the descriptions with the possible functions.

Descriptions Functions

a. Used to select a portion of a character string ||

b. Used to trim characters from either the right or left of a string RPAD

c. Used to change all letters to lowercase LPAD

d. Used to find the length of a string RTRIM

e. Used to combine strings UPPER

LTRIM

LENGTH

LOWER

SUBSTR

2. True or false: Using functions in a SELECT statement to restructure the appear-

ance of data in output will also affect the way the data is stored in the data-

base.

3. True or false: The outermost function is always resolved first when functions

are embedded within other functions in a query.

184 HOUR 11: Restructuring the Appearance of Data

Exercises
1. Type the following code at the mysql> prompt to concatenate each employee’s

last name and first name:

SELECT CONCAT(LAST_NAME, ‘, ‘, FIRST_NAME)
FROM EMPLOYEE_TBL;

2. Type the following code to print each employee’s concatenated name and

their area code:

SELECT CONCAT(LAST_NAME, ‘, ‘, FIRST_NAME), SUBSTRING(PHONE, 1, 3)
FROM EMPLOYEE_TBL;

3. Write a SQL statement that lists employee emails. Email is not a stored col-

umn. The email for each employee should be as follows:

FIRST.LAST@PERPTECH.COM

For example, John Smith’s email would be JOHN.SMITH@PERPTECH.COM.

4. Write a SQL statement that lists employee emails. Email is not a stored col-

umn. The email for each employee should be as follows:

FIRSTINITIAL.LAST@PERPTECH.COM

For example, John Smith’s email would be JSMITH@PERPTECH.COM.

5. Write a SQL statement that lists each employee’s name, employee ID, and

phone number in the following formats:

. This name should be displayed as SMITH, JOHN

. The employee id should be displayed as 999-99-9999

. The phone number should be displayed as (999)999-9999

HOUR 12

Understanding Dates and
Times

In this hour, you will learn about the nature of dates and time in SQL. Not only does this

hour discuss the DATETIME data type in more detail, but you will also see how some imple-

mentations use dates, how to extract the date and time in a desired format, and some of

the common rules.

The highlights of this hour include
. Understanding dates and time
. How date and time are stored
. Typical date and time formats
. How to use date functions
. How to use date conversions

As you know by now, there are many different SQL implementations.
This book shows the ANSI standard and the most common nonstan-
dard functions, commands, and operators. MySQL is used for the exam-
ples. Even in MySQL, the date can be stored in different formats. You
must check your particular implementation for the date storage. No
matter how it is stored, your implementation should have functions that
convert date formats.

By the
Way

186 HOUR 12: Understanding Dates and Times

How Is a Date Stored?
Each implementation has a default storage format for the date and time. This

default storage often varies among different implementations, as do other data

types for each implementation. The following sections begin by reviewing the stan-

dard format of the DATETIME data type and its elements. Then you see the data

types for date and time in some popular implementations of SQL, including Oracle,

Sybase, and Microsoft SQL Server.

Standard Data Types for Date and Time
There are three standard SQL data types for date and time (DATETIME) storage:

. DATE—Stores date literals. DATE is formatted as YYYY-MM-DD and ranges from

0001-01-01 to 9999-12-31.

. TIME—Stores time literals. TIME is formatted as HH:MI:SS.nn… and ranges

from 00:00:00… to 23:59:61.999….

. TIMESTAMP—Stores date and time literals. TIMESTAMP is formatted as YYYY-MM-

DD HH:MI:SS.nn… and ranges from 0001-01-01 00:00:00… to 9999-12-31

23:59:61.999….

DATETIME Elements
DATETIME elements are those elements pertaining to date and time that are included

as part of a DATETIME definition. The following is a list of the constrained DATETIME

elements and a valid range of values for each element:

DATETIME Element Valid Ranges

YEAR 0001 to 9999

MONTH 01 to 12

DAY 01 to 31

HOUR 00 to 23

MINUTE 00 to 59

SECOND 00.000… to 61.999…

Each of these elements, except for the last, is self-explanatory; they are elements of

time that we deal with on a daily basis. Seconds can be represented as a decimal,

allowing the expression of tenths of a second, hundredths of a second, milliseconds,

Date Functions 187

and so on. You might question the fact that a minute can contain more than 60 sec-

onds. According to the ANSI standard, this 61.999 seconds is due to the possible

insertion or omission of a leap second in a minute, which in itself is a rare occur-

rence. Refer to your implementation on the allowed values because date and time

storage may vary widely.

Date variances such as leap seconds and leap years are handled internally by the
database if the data is stored in a DATETIME data type.

Implementation-Specific Data Types
As with other data types, each implementation provides its own representation and

syntax. This section shows how three products (Oracle, Sybase, and MySQL) have

been implemented with date and time.

Product Data Type Use

Oracle DATE Stores both date and time information

Sybase DATETIME Stores both date and time information

SMALLDATETIME Stores both date and time information, but

includes a smaller date range than DATETIME

MySQL DATETIME Stores both date and time information

TIMESTAMP Stores both date and time information

DATE Stores a date value

TIME Stores a time value

YEAR One byte type that represents the year

Each implementation has its own specific data type(s) for date and time informa-
tion. However, most implementations comply with the ANSI standard in the fact
that all elements of the date and time are included in their associated data types.
The way the date is internally stored is implementation dependent.

Date Functions
Date functions are available in SQL depending on the options with each specific

implementation. Date functions, similar to character string functions, are used to

manipulate the representation of date and time data. Available date functions are

By the
Way

By the
Way

188 HOUR 12: Understanding Dates and Times

often used to format the output of dates and time in an appealing format, compare

date values with one another, compute intervals between dates, and so on.

The Current Date
You might have already raised the question: How do I get the current date from the

database? The need to retrieve the current date from the database might originate

from several situations, but the current date is normally returned either to compare

it to a stored date or to return the value of the current date as some sort of time-

stamp.

The current date is ultimately stored on the host computer for the database and is

called the system date. The database, which interfaces with the appropriate operat-

ing system, has the capability to retrieve the system date for its own purpose or to

resolve database requests, such as queries.

Take a look at a couple of methods of attaining the system date based on com-

mands from two different implementations.

Sybase uses a function called GETDATE() to return the system date. This function is

used in a query as follows. The output is what would return if today’s current date

were New Year’s Eve for 1999.

SELECT GETDATE()

Dec 31, 1999

Most options discussed in this book for Sybase’s and Microsoft’s implementations
are applicable to both implementations because both use SQL Server for their
database server. Both implementations also use an extension to standard SQL
known as Transact-SQL.

MySQL uses the NOW function to retrieve the current date and time. NOW is called a

pseudocolumn because it acts as any other column in a table and can be selected

from any table in the database, although it is not actually part of the table’s defini-

tion.

The following MySQL statement returns the output if today were New Year’s Eve

before 2002:

SELECT NOW ();

31-DEC-01 13:41:45

By the
Way

Date Functions 189

Time Zones
The use of time zones might be a factor when dealing with date and time informa-

tion. For instance, a time of 6:00 p.m. in central United States does not equate to the

same time in Australia, although the actual point in time is the same. Some of us

who live within the daylight saving time zone are used to adjusting our clocks twice

a year. If time zones are considerations when maintaining data in your case, you

might find it necessary to consider time zones and perform time conversions, if

available with your SQL implementation.

The following are some common time zones and their abbreviations:

Abbreviation Definition

AST, ADT Atlantic standard, daylight time

BST, BDT Bering standard, daylight time

CST, CDT Central standard, daylight time

EST, EDT Eastern standard, daylight time

GMT Greenwich mean time

HST, HDT Alaska/Hawaii standard, daylight time

MST, MDT Mountain standard, daylight time

NST Newfoundland standard, daylight time

PST, PDT Pacific standard, daylight time

YST, YDT Yukon standard, daylight time

The following table shows examples of time zone differences based on a given time:

Time Zone Time

AST June 12th, 2002 at 1:15 PM

BST June 12th, 2002 at 6:15 AM

CST June 12th, 2002 at 11:15 AM

EST June 12th, 2002 at 12:15 PM

GMT June 12th, 2002 at 5:15 PM

HST June 12th, 2002 at 7:15 AM

MST June 12th, 2002 at 10:15 AM

NST June 12th, 2002 at 1:45 PM

PST June 12th, 2002 at 9:15 AM

YST June 12th, 2002 at 8:15 AM

190 HOUR 12: Understanding Dates and Times

Some implementations have functions that allow you to deal with different time
zones. However, not all implementations may support the use of time zones. Be
sure to verify the use of time zones in your particular implementation, as well as
the need to deal with them in the case of your database.

Adding Time to Dates
Days, months, and other parts of time can be added to dates for the purpose of com-

paring dates to one another or to provide more specific conditions in the WHERE

clause of a query.

Intervals can be used to add periods of time to a DATETIME value. As defined by the

standard, intervals are used to manipulate the value of a DATETIME value, as in the

following examples:

DATE ‘1999-12-31’ + INTERVAL ‘1’ DAY

‘2000-01-01’

DATE ‘1999-12-31’ + INTERVAL ‘1’ MONTH

‘2000-01-31’

The following is an example using the SQL Server function DATEADD:

SELECT DATEADD(MONTH, 1, DATE_HIRE)
FROM EMPLOYEE_PAY_TBL;

DATE_HIRE ADD_MONTH
--------- ---------
23-MAY-89 23-JUN-89
17-JUN-90 17-JUL-90
14-AUG-94 14-SEP-94
28-JUN-97 28-JUL-97
22-JUL-96 22-AUG-96
14-JAN-91 14-FEB-91

6 rows affected.

The following example uses the Oracle function ADD_MONTHS:

SELECT DATE_HIRE, ADD_MONTHS(DATE_HIRE,1)
FROM EMPLOYEE_PAY_TBL;

DATE_HIRE ADD_MONTH
--------- ---------
23-MAY-89 23-JUN-89
17-JUN-90 17-JUL-90
14-AUG-94 14-SEP-94
28-JUN-97 28-JUL-97
22-JUL-96 22-AUG-96
14-JAN-91 14-FEB-91

6 rows selected.

By the
Way

Date Functions 191

To add one day to a date in Oracle, use the following:

SELECT DATE_HIRE, DATE_HIRE + 1
FROM EMPLOYEE_PAY_TBL
WHERE EMP_ID = ‘311549902’;

DATE_HIRE DATE_HIRE
--------- ---------
23-MAY-89 24-MAY-89

1 row selected.

If you wanted to do the same query in MySQL, you would use the ANSI standard

INTERVAL command, as follows. Otherwise, MySQL would convert the date to an

integer and try to perform the operation.

SELECT DATE_HIRE, DATE_ADD(DATE_HIRE, INTERVAL 1 DAY), DATE_HIRE + 1
FROM EMPLOYEE_PAY_TBL
WHERE EMP_ID = ‘311549902’;

DATE_HIRE DATE_ADD DATE_HIRE+1
--------- ---------------- ---------------------
23-MAY-89 24-MAY-89 19890524

1 row selected.

Notice that these examples in MySQL, SQL Server, and Oracle, although they differ

syntactically from the ANSI examples, derive their results based on the same con-

cept as described by the SQL standard.

Comparing Date and Time Periods
OVERLAPS is a powerful standard SQL conditional operator for DATETIME values. The

OVERLAPS operator is used to compare two timeframes and return the Boolean value

TRUE or FALSE, depending on whether the two timeframes overlap. The following

comparison returns the value TRUE:

(TIME ‘01:00:00’ , TIME ‘05:59:00’)
OVERLAPS
(TIME ‘05:00:00’ , TIME ‘07:00:00’)

The following comparison returns the value FALSE:

(TIME ‘01:00:00’ , TIME ‘05:59:00’)
OVERLAPS
(TIME ‘06:00:00 , TIME ‘07:00:00’)

Unfortunately, MySQL does not implement the OVERLAPS function in terms of

DATETIME data types.

192 HOUR 12: Understanding Dates and Times

Miscellaneous Date Functions
The following list shows some powerful date functions that exist in the implementa-

tions for SQL Server, Oracle, and MySQL.

Product Date Function Use

SQL Server DATEPART Returns the integer value of a DATEPART for

a date

DATENAME Returns the text value of a DATEPART for a

date

GETDATE() Returns the system date

DATEDIFF Returns the difference between two dates for

specified date parts, such as days, minutes,

and seconds

Oracle NEXT_DAY Returns the next day of the week as specified

(for example, FRIDAY) since a given date

MONTHS_BETWEEN Returns the number of months between two

given dates

MySQL DAYNAME(date) Displays day of week

DAYOFMONTH(date) Displays day of month

DAYOFWEEK(date) Displays day of week

DAYOFYEAR(date) Displays day of year

Date Conversions
The conversion of dates can take place for any number of reasons. Conversions are

mainly used to alter the data type of values defined as a DATETIME value or any

other valid data type of a particular implementation.

Typical reasons for date conversions are as follows:

. To compare date values of different data types

. To format a date value as a character string

. To convert a character string into a date format

Date Conversions 193

The ANSI CAST operator is used to convert data types into other data types. The

basic syntax is as follows:

CAST (EXPRESSION AS NEW_DATA_TYPE)

Specific syntax examples of some implementations are illustrated in the following

subsections, covering

. The representation of parts of a DATETIME value

. Conversions of dates to character strings

. Conversions of character strings to dates

Date Pictures
A date picture is composed of formatting elements used to extract date and time

information from the database in a desired format. Date pictures might not be

available in all SQL implementations.

Without the use of a date picture and some type of conversion function, the date

and time information is retrieved from the database in a default format, such as

1999-12-31
31-DEC-99
1999-12-31 23:59:01.11
...

What if you wanted the date displayed as the following?

December 31, 1997

You would have to convert the date from a DATETIME format into a character string

format. This is accomplished by implementation-specific functions for this very pur-

pose, further illustrated in the following sections.

The following table displays some of the common date parts used in various imple-

mentations. This will aid you in using the date picture in the following sections to

extract the proper datetime information from the database.

194 HOUR 12: Understanding Dates and Times

TABLE 12.1 Common Date Parts

Product Syntax Date Part

Sybase yy Year

qq Quarter

mm Month

dy Day of year

wk Week

dw Weekday

hh Hour

mi Minute

ss Second

ms Millisecond

Oracle AD Anno Domini

AM Ante meridian

BC Before Christ

CC Century

D Number of the day in the week

DD Number of the day in the month

DDD Number of the day in the year

DAY The day spelled out (MONDAY)

Day The day spelled out (Monday)

day The day spelled out (monday)

DY The three-letter abbreviation of the day (MON)

Dy The three-letter abbreviation of the day (Mon)

dy The three-letter abbreviation of the day (mon)

HH Hour of the day

HH12 Hour of the day

HH24 Hour of the day for a 24-hour clock

J Julian days since 12-31-4713 B.C.

MI Minute of the hour

MM The number of the month

MON The three-letter abbreviation of the month (JAN)

Mon The three-letter abbreviation of the month (Jan)

mon The three-letter abbreviation of the month (jan)

MONTH The month spelled out (JANUARY)

Date Conversions 195

Product Syntax Date Part

Oracle (continued)
Month The month spelled out (January)

month The month spelled out (january)

PM Post meridian

Q The number of the quarter

RM The Roman numeral for the month

RR The two digits of the year

SS The second of a minute

SSSSS The seconds since midnight

SYYYY The signed year; if B.C. 500, B.C. = -500

W The number of the week in a month

WW The number of the week in a year

Y The last digit of the year

YY The last two digits of the year

YYY The last three digits of the year

YYYY The year

YEAR The year spelled out (NINETEEN-NINETY-NINE)

Year The year spelled out (Nineteen-Ninety-Nine)

year The year spelled out (nineteen-ninety-nine)

MySQL SECOND Seconds

MINUTE Minutes

HOUR Hours

DAY Days

MONTH Months

YEAR Years

MINUTE_SECOND Minutes and seconds

HOUR_MINUTE Hours and minutes

DAY_HOUR Days and hours

YEAR_MONTH Years and months

HOUR_SECOND Hours, minutes, and seconds

DAY_MINUTE Days and minutes

DAY_SECOND Days and seconds

196 HOUR 12: Understanding Dates and Times

These are some of the most common date parts for MySQL. Other date parts
might be available depending on the version of MySQL.

Converting Dates to Character Strings
DATETIME values are converted to character strings to alter the appearance of output

from a query. A conversion function is used to achieve this. Two examples of con-

verting date and time data into a character string as designated by a query follow.

The first using SQL Server:

SELECT DATE_HIRE = DATENAME(MONTH, DATE_HIRE)
FROM EMPLOYEE_PAY_TBL;

DATE_HIRE

May
June
August
June
July
Jan

6 rows affected.

The second example is an Oracle date conversion using the TO_CHAR function:

SELECT DATE_HIRE, TO_CHAR(DATE_HIRE,’Month dd, yyyy’) HIRE
FROM EMPLOYEE_PAY_TBL;

DATE_HIRE HIRE
--------- ------------------
23-MAY-89 May 23, 1989
17-JUN-90 June 17, 1990
14-AUG-94 August 14, 1994
28-JUN-97 June 28, 1997
22-JUL-96 July 22, 1996
14-JAN-91 January 14, 1991

6 rows selected.

Converting Character Strings to Dates
The following example illustrates a method from a MySQL implementation of con-

verting a character string into a date format. When the conversion is complete, the

data can be stored in a column defined as having some form of a DATETIME data

type.

By the
Way

Q&A 197

SELECT STR_TO_DATE(‘02/25/1998 12:00:00 AM’, ‘%m/%d/%Y %h:%i:%s %p’) AS
FORMAT_DATE
FROM EMPLOYEE_PAY_TBL;

FORMAT_DATE

01-JAN-99
01-JAN-99
01-JAN-99
01-JAN-99
01-JAN-99
01-JAN-99

6 rows selected.

You might be wondering why six rows were selected from this query when only one

date value was provided. The reason is because the conversion of the literal string

was selected from the EMPLOYEE_PAY_TBL, which has six rows of data. Hence, the

conversion of the literal string was selected against each record in the table.

Summary
You have an understanding of DATETIME values based on the fact that ANSI has

provided a standard. However, as with many SQL elements, most implementations

have deviated from the exact functions and syntax of standard SQL commands,

although the concepts always remain the same as far as the basic representation

and manipulation of date and time information. Last hour, you saw how functions

varied depending on each implementation. This hour, you have seen some of the

differences between date and time data types, functions, and operators. Keep in

mind that not all examples discussed in this hour will work with your particular

implementation, but the concepts of dates and times are the same and should be

applicable to any implementation.

Q&A
Q. Why do implementations choose to deviate from a single standard set of

data types and functions?

A. Implementations differ as far as the representation of data types and func-

tions mainly because of the way each vendor has chosen to internally store

data and provide the most efficient means of data retrieval. However, all

implementations should provide the same means for the storage of date and

time values based on the required elements prescribed by ANSI, such as the

year, month, day, hour, minute, second, and so on.

198 HOUR 12: Understanding Dates and Times

Q. What if I want to store date and time information differently than what is
available in my implementation?

A. Dates can be stored in nearly any type of format if you choose to define the

column for a date as a variable length character. The main thing to remem-

ber is that when comparing date values to one another, you are usually

required to first convert the character string representation of the date to a

valid DATETIME format for your implementation—that is, if appropriate con-

version functions are available.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. From where is the system date and time normally derived?

2. List the standard internal elements of a DATETIME value.

3. What could be a major factor concerning the representation and comparison

of date and time values if your company is an international organization?

4. Can a character string date value be compared to a date value defined as a

valid DATETIME data type?

5. What would you use in MySQL to get the current date and time?

Exercises
1. Type the following SQL code into the mysql> prompt to display the current

date from the MySQL server:

SELECT CURRENT_DATE;

Workshop 199

2. Type the following SQL code into the mysql> prompt to display each employ-

ee’s hire date:

SELECT EMP_ID, DATE_HIRE
FROM EMPLOYEE_PAY_TBL;

3. In MySQL, dates can be displayed in various formats using the EXTRACT func-

tion in conjunction with the MySQL date pictures. Type the following code to

display the year that each employee was hired:

SELECT EMP_ID, EXTRACT(YEAR FROM DATE_HIRE)
FROM EMPLOYEE_PAY_TBL;

4. Type the following code to display the current date along with the date that

each employee was hired:

SELECT EMP_ID, DATE_HIRE, CURRENT_DATE
FROM EMPLOYEE_PAY_TBL;

5. On what day of the week was each employee hired?

6. What is today’s Julian date (day of year)?

7. Type the following SQL code into the mysql> prompt to compare the results of

casting the current date and time to different data types:

SELECT NOW()
FROM EMPLOYEE_PAY_TBL;

SELECT CAST(NOW() AS DATE)
FROM EMPLOYEE_PAY_TBL;

SELECT CAST(NOW() AS TIME)
FROM EMPLOYEE_PAY_TBL;

This page intentionally left blank

PART IV

Building Sophisticated
Database Queries

HOUR 13 Joining Tables in Queries 203

HOUR 14 Using Subqueries to Define Unknown Data 221

HOUR 15 Combining Multiple Queries into One 235

This page intentionally left blank

HOUR 13

Joining Tables in Queries

To this point, all database queries you have executed have extracted data from a single

table. During this hour, you learn how to join tables in a query so data can be retrieved

from multiple tables.

The highlights of this hour include
. An introduction to the table joins
. The different types of joins
. How and when joins are used
. Numerous practical examples of table joins
. The effects of improperly joined tables
. Renaming tables in a query using an alias

Selecting Data from Multiple Tables
Having the capability to select data from multiple tables is one of SQL’s most powerful

features. Without this capability, the entire relational database concept would not be fea-

sible. Single-table queries are sometimes quite informative, but in the real world, the most

practical queries are those whose data is acquired from multiple tables within the data-

base.

As you witnessed in Hour 4, “The Normalization Process,” a relational database is broken

up into smaller, more manageable tables for simplicity and the sake of overall manage-

ment ease. As tables are divided into smaller tables, the related tables are created with

common columns—primary keys and foreign keys. These keys are used to join related tables

to one another.

204 HOUR 13: Joining Tables in Queries

You might ask why you should normalize tables if, in the end, you are only going to

rejoin the tables to retrieve the data you want. You rarely select all data from all

tables, so it is better to pick and choose according to the needs of each individual

query. Although performance might suffer slightly due to a normalized database,

overall coding and maintenance are much simpler. Remember that you generally

normalize the database to reduce redundancy and increase data integrity. Your over-

reaching task as a database administrator is to ensure the safeguarding of data.

Types of Joins
A join combines two or more tables to retrieve data from multiple tables. Although

different implementations have many ways of joining tables, you concentrate on

the most common joins in this lesson. The types of joins that you learn are

. Equijoins or inner joins

. Natural joins

. Non-equijoins

. Outer joins

. Self joins

Component Locations of a Join Condition
As you have learned from previous hours, the SELECT and FROM clauses are both

required SQL statement elements; the WHERE clause is a required element of a SQL

statement when joining tables. The tables being joined are listed in the FROM clause.

The join is performed in the WHERE clause. Several operators can be used to join

tables, such as =, <, >, <>, <=, >=, !=, BETWEEN, LIKE, and NOT. However, the most

common operator is the equal symbol.

Joins of Equality
Perhaps the most used and important of the joins is the equijoin, also referred to as

an inner join. The equijoin joins two tables with a common column in which each is

usually the primary key.

The syntax for an equijoin is

SELECT TABLE1.COLUMN1, TABLE2.COLUMN2...
FROM TABLE1, TABLE2 [, TABLE3]
WHERE TABLE1.COLUMN_NAME = TABLE2.COLUMN_NAME
[AND TABLE1.COLUMN_NAME = TABLE3.COLUMN_NAME]

Types of Joins 205

Look at the following example:

SELECT EMPLOYEE_TBL.EMP_ID,
EMPLOYEE_PAY_TBL.DATE_HIRE

FROM EMPLOYEE_TBL,
EMPLOYEE_PAY_TBL

WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;

Take note of the sample SQL statements. Indentation is used in the SQL state-
ments to improve overall readability. Indentation is not required, but is recom-
mended.

This SQL statement returns the employee identification and the employee’s date of

hire. The employee identification is selected from the EMPLOYEE_TBL (although it

exists in both tables, you must specify one table), and the hire date is selected from

the EMPLOYEE_PAY_TBL. Because the employee identification exists in both tables,

both columns must be justified with the table name. By justifying the columns with

the table names, you tell the database server where to get the data.

Data in the following example is selected from the EMPLOYEE_TBL and

EMPLOYEE_PAY_TBL tables because desired data resides in each of the two tables. An

equality join is used.

SELECT EMPLOYEE_TBL.EMP_ID, EMPLOYEE_TBL.LAST_NAME,
EMPLOYEE_PAY_TBL.POSITION

FROM EMPLOYEE_TBL, EMPLOYEE_PAY_TBL
WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;

EMP_ID LAST_NAM POSITION
--------- -------- -------------
311549902 STEPHENS MARKETING
442346889 PLEW TEAM LEADER
213764555 GLASS SALES MANAGER
313782439 GLASS SALESMAN
220984332 WALLACE SHIPPER
443679012 SPURGEON SHIPPER

6 rows selected.

Notice that each column in the SELECT clause is preceded by the associated table

name in order to identify each column. This is called qualifying columns in a query.

Qualifying columns is only necessary for columns that exist in more than one table

referenced by a query. You usually qualify all columns for consistency and to avoid

any questions when debugging or modifying SQL code.

By the
Way

206 HOUR 13: Joining Tables in Queries

Additionally, the SQL syntax provides for a more readable version of the previous

syntax by introducing the JOIN syntax. The JOIN syntax is as follows:

SELECT TABLE1.COLUMN1, TABLE2.COLUMN2...
FROM TABLE1
INNER JOIN TABLE2 ON TABLE1.COLUMN_NAME = TABLE2.COLUMN_NAME

As you can see, the join operator is removed from the WHERE clause and instead

replaced with the JOIN syntax. The table being joined is added after the JOIN syntax

and then the JOIN operators are placed after the ON qualifier. In the following exam-

ple, the previous query for employee identification and hire date is rewritten to use

the JOIN syntax:

SELECT EMPLOYEE_TBL.EMP_ID,
EMPLOYEE_PAY_TBL.DATE_HIRE

FROM EMPLOYEE_TBL
INNER JOIN EMPLOYEE_PAY_TBL
ON EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;

You will notice that this query returns the same set of data as the previous version,

even though the syntax is different. So you may use either version of the syntax

without fear of coming up with different results.

Natural Joins
A natural join is nearly the same as the equijoin; however, the natural join differs

from the equijoin by eliminating duplicate columns in the joining columns. The

JOIN condition is the same, but the columns selected differ. The syntax is as follows:

SELECT TABLE1.*, TABLE2.COLUMN_NAME
[TABLE3.COLUMN_NAME]

FROM TABLE1, TABLE2 [TABLE3]
WHERE TABLE1.COLUMN_NAME = TABLE2.COLUMN_NAME
[AND TABLE1.COLUMN_NAME = TABLE3.COLUMN_NAME]

Look at the following example:

SELECT EMPLOYEE_TBL.*, EMPLOYEE_PAY_TBL.SALARY
FROM EMPLOYEE_TBL,

EMPLOYEE_PAY_TBL
WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;

This SQL statement returns all columns from EMPLOYEE_TBL and SALARY from the

EMPLOYEE_PAY_TBL. The EMP_ID is in both tables, but is retrieved only from the

EMPLOYEE_TBL because both contain the same information and do not need to be

selected.

Types of Joins 207

Alternatively, you may use a NATURAL JOIN syntax similar to the INNER JOIN syn-

tax described in the previous section. The syntax is very similar:

SELECT TABLE1.*, TABLE2.COLUMN_NAME
FROM TABLE1
NATURAL JOIN TABLE2 ON TABLE1.COLUMN_NAME = TABLE2.COLUMN_NAME

Look at the following example using this syntax:

SELECT EMPLOYEE_TBL.*, EMPLOYEE_PAY_TBL.SALARY
FROM EMPLOYEE_TBL
NATURAL JOIN EMPLOYEE_PAY_TBL
ON EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;

The following example selects all columns from the EMPLOYEE_TBL table and only

one column from the EMPLOYEE_PAY_TBL table. Remember that the asterisk (*) rep-

resents all the columns in a table.

SELECT EMPLOYEE_TBL.*, EMPLOYEE_PAY_TBL.POSITION
FROM EMPLOYEE_TBL, EMPLOYEE_PAY_TBL
WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;

EMP_ID LAST_NAM FIRST_NA M ADDRESS CITY ST ZIP PHONE
--------- -------- -------- - ------------- ------------ -- ----- ----------
PAGER POSITION
---------- --------------
311549902 STEPHENS TINA D RR 3 BOX 17A GREENWOOD IN 47890 3178784465

MARKETING

442346889 PLEW LINDA C 3301 BEACON INDIANAPOLIS IN 46224 3172978990
TEAM LEADER

213764555 GLASS BRANDON S 1710 MAIN ST WHITELAND IN 47885 3178984321
3175709980 SALES MANAGER

313782439 GLASS JACOB 3789 RIVER BLVD INDIANAPOLIS IN 45734 3175457676
8887345678 SALESMAN

220984332 WALLACE MARIAH 7889 KEYSTONE INDIANAPOLIS IN 46741 3173325986
SHIPPER

443679012 SPURGEON TIFFANY 5 GEORGE COURT INDIANAPOLIS IN 46234 3175679007
SHIPPER

6 rows selected.

Notice how the output has wrapped in the previous example. The wrap occurred
because the length of the line has exceeded the limit for the line length within the
query editor window (which is 80 characters per line).

By the
Way

208 HOUR 13: Joining Tables in Queries

Using Table Aliases
The use of table aliases means to rename a table in a particular SQL statement. The

renaming is a temporary change. The actual table name does not change in the

database. As you will learn later in the section on Self Joins, giving the tables aliases

is a necessity for the self join. Giving tables aliases is most often used to save key-

strokes, which results in a shorter and easier-to-read SQL statement. In addition,

fewer keystrokes means fewer keystroke errors. Also, programming errors are typical-

ly less frequent if you can refer to an alias, which is often shorter in length and

more descriptive of the data with which you are working. Giving tables aliases also

means that the columns being selected must be qualified with the table alias. The

following are some examples of table aliases and the corresponding columns:

SELECT E.EMP_ID, EP.SALARY, EP.DATE_HIRE, E.LAST_NAME
FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP
WHERE E.EMP_ID = EP.EMP_ID
AND EP.SALARY > 20000;

The tables have been given aliases in the preceding SQL statement. The

EMPLOYEE_TBL has been renamed E. The EMPLOYEE_PAY_TBL has been renamed EP.

The choice of what to rename the tables is arbitrary. The letter E is chosen because

the EMPLOYEE_TBL starts with E. Because the EMPLOYEE_PAY_TBL also begins with the

letter E, you could not use E again. Instead, the first letter (E) and the first letter of

the second word in the name (PAY) are used as the alias. The selected columns were

justified with the corresponding table alias. Note that SALARY was used in the WHERE

clause and must also be justified with the table alias.

Joins of Non-Equality
A non-equijoin joins two or more tables based on a specified column value not equal-

ing a specified column value in another table. The syntax for the non-equijoin is

FROM TABLE1, TABLE2 [, TABLE3]
WHERE TABLE1.COLUMN_NAME != TABLE2.COLUMN_NAME
[AND TABLE1.COLUMN_NAME != TABLE2.COLUMN_NAME]

An example is as follows:

SELECT EMPLOYEE_TBL.EMP_ID, EMPLOYEE_PAY_TBL.DATE_HIRE
FROM EMPLOYEE_TBL,

EMPLOYEE_PAY_TBL
WHERE EMPLOYEE_TBL.EMP_ID != EMPLOYEE_PAY_TBL.EMP_ID;

The preceding SQL statement returns the employee identification and the date of

hire for all employees who do not have a corresponding record in both tables. The

following example is a join of non-equality:

Types of Joins 209

SELECT E.EMP_ID, E.LAST_NAME, P.POSITION
FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL P
WHERE E.EMP_ID <> P.EMP_ID;

EMP_ID LAST_NAM POSITION
--------- -------- -------------
442346889 PLEW MARKETING
213764555 GLASS MARKETING
313782439 GLASS MARKETING
220984332 WALLACE MARKETING
443679012 SPURGEON MARKETING
311549902 STEPHENS TEAM LEADER
213764555 GLASS TEAM LEADER
313782439 GLASS TEAM LEADER
220984332 WALLACE TEAM LEADER
443679012 SPURGEON TEAM LEADER
311549902 STEPHENS SALES MANAGER
442346889 PLEW SALES MANAGER
313782439 GLASS SALES MANAGER
220984332 WALLACE SALES MANAGER
443679012 SPURGEON SALES MANAGER
311549902 STEPHENS SALESMAN
442346889 PLEW SALESMAN
213764555 GLASS SALESMAN
220984332 WALLACE SALESMAN
443679012 SPURGEON SALESMAN
311549902 STEPHENS SHIPPER
442346889 PLEW SHIPPER
213764555 GLASS SHIPPER
313782439 GLASS SHIPPER
443679012 SPURGEON SHIPPER
311549902 STEPHENS SHIPPER
442346889 PLEW SHIPPER
213764555 GLASS SHIPPER
313782439 GLASS SHIPPER
220984332 WALLACE SHIPPER

30 rows selected.

You might be curious why 30 rows were retrieved when only 6 rows exist in

each table. For every record in EMPLOYEE_TBL, there is a corresponding record in

EMPLOYEE_PAY_TBL. Because non-equality was tested in the join of the two tables,

each row in the first table is paired with all rows from the second table, except for

its own corresponding row. This means that each of the 6 rows is paired with 5

unrelated rows in the second table; 6 rows multiplied by 5 rows equals 30 rows total.

In the earlier section’s test for equality example, each of the six rows in the first

table were paired with only one row in the second table (each row’s corresponding

row); six rows multiplied by one row yields a total of six rows.

210 HOUR 13: Joining Tables in Queries

When using non-equijoins, you might receive several rows of data that are of no
use to you. Check your results carefully.

Outer Joins
An outer join is used to return all rows that exist in one table, even though corre-

sponding rows do not exist in the joined table. The (+) symbol is used to denote an

outer join in a query. The (+) is placed at the end of the table name in the WHERE

clause. The table with the (+) should be the table that does not have matching

rows. In many implementations, the outer join is broken down into joins called left

outer join, right outer join, and full outer join. The outer join in these implementa-

tions is normally optional.

You must check your particular implementation for exact usage and syntax of the
outer join. The (+) symbol is used by some major implementations, but is non-
standard.

The general syntax for an outer join is

FROM TABLE1
{RIGHT | LEFT | FULL} [OUTER] JOIN
ON TABLE2

The Oracle syntax is

FROM TABLE1, TABLE2 [, TABLE3]
WHERE TABLE1.COLUMN_NAME[(+)] = TABLE2.COLUMN_NAME[(+)]
[AND TABLE1.COLUMN_NAME[(+)] = TABLE3.COLUMN_NAME[(+)]]

The outer join can only be used on one side of a JOIN condition; however, you can
use an outer join on more than one column of the same table in the JOIN condi-
tion.

The concept of the outer join is explained in the next two examples. In the first

example, the product description and the quantity ordered are selected; both values

are extracted from two separate tables. One important factor to keep in mind is that

there might not be a corresponding record in the ORDERS_TBL table for every prod-

uct. A regular join of equality is performed:

Watch
Out!

By the
Way

By the
Way

Types of Joins 211

SELECT P.PROD_DESC, O.QTY
FROM PRODUCTS_TBL P,

ORDERS_TBL O
WHERE P.PROD_ID = O.PROD_ID;

PROD_DESC QTY
-------------------------------- ---
WITCHES COSTUME 1
PLASTIC PUMPKIN 18 INCH 25
PLASTIC PUMPKIN 18 INCH 2
LIGHTED LANTERNS 10
FALSE PARAFFIN TEETH 20
KEY CHAIN 1

6 rows selected.

Only six rows were selected, but there are 10 distinct products. You want to display

all products, whether the products have been placed on order or not.

The next example accomplishes the desired output through the use of an outer join.

Oracle’s syntax is used here.

SELECT P.PROD_DESC, O.QTY
FROM PRODUCTS_TBL P,

ORDERS_TBL O
WHERE P.PROD_ID = O.PROD_ID(+);

PROD_DESC QTY
-------------------------------- ---
WITCHES COSTUME 1
ASSORTED MASKS
FALSE PARAFFIN TEETH 20
ASSORTED COSTUMES
PLASTIC PUMPKIN 18 INCH 25
PLASTIC PUMPKIN 18 INCH 2
PUMPKIN CANDY
PLASTIC SPIDERS
CANDY CORN
LIGHTED LANTERNS 10
KEY CHAIN 1
OAK BOOKSHELF

12 rows selected.

All products were returned by the query, even though they might not have had a

quantity ordered. The outer join is inclusive of all rows of data in the PRODUCTS_TBL

table, whether a corresponding row exists in the ORDERS_TBL table or not.

212 HOUR 13: Joining Tables in Queries

Self Joins
The self join is used to join a table to itself, as if the table were two tables, temporari-

ly renaming at least one table in the SQL statement using a table alias. The syntax

is as follows:

SELECT A.COLUMN_NAME, B.COLUMN_NAME, [C.COLUMN_NAME]
FROM TABLE1 A, TABLE2 B [, TABLE3 C]
WHERE A.COLUMN_NAME = B.COLUMN_NAME
[AND A.COLUMN_NAME = C.COLUMN_NAME]

The following is an example:

SELECT A.LAST_NAME, B.LAST_NAME, A.FIRST_NAME
FROM EMPLOYEE_TBL A,

EMPLOYEE_TBL B
WHERE A.LAST_NAME = B.LAST_NAME;

The preceding SQL statement returns the employees’ first names for all the employ-

ees with the same last name from the EMPLOYEE_TBL. Self joins are useful when all

of the data you want to retrieve resides in one table, but you must somehow com-

pare records in the table to other records in the table.

You may also use the alternate INNER JOIN syntax as shown below to give the same

result:

SELECT A.LAST_NAME, B.LAST_NAME, A.FIRST_NAME
FROM EMPLOYEE_TBL A
INNER JOIN EMPLOYEE_TBL B
ON A.LAST_NAME = B.LAST_NAME;

Another common example used to explain a self join is as follows: Suppose you

have a table that stores an employee identification number, the employee’s name,

and the employee identification number of the employee’s manager. You might

want to produce a list of all employees and their managers’ names. The problem is

that the manager name does not exist as a category in the table:

SELECT * FROM EMP;

ID NAME MGR_ID
---- --------- ------
1 JOHN 0
2 MARY 1
3 STEVE 1
4 JACK 2
5 SUE 2

In the following example, we have included the table EMP twice in the FROM clause

of the query, giving the table two aliases for the purpose of the query. By providing

two aliases, it is as if you are selecting from two distinct tables. All managers are

Types of Joins 213

also employees, so the JOIN condition between the two tables compares the value of

the employee identification number from the first table with the manager identifica-

tion number in the second table. The first table acts as a table that stores employee

information, whereas the second table acts as a table that stores manager informa-

tion:

SELECT E1.NAME, E2.NAME
FROM EMP E1, EMP E2
WHERE E1.MGR_ID = E2.ID;

NAME NAME
--------- ---------
MARY JOHN
STEVE JOHN
JACK MARY
SUE MARY

Joining on Multiple Keys
Most join operations involve the merging of data based on a key in one table and a

key in another table. Depending on how your database has been designed, you

might have to join on more than one key field to accurately depict that data in your

database. You might have a table that has a primary key that is comprised of more

than one column. You might also have a foreign key in a table that consists of more

than one column, which references the multiple column primary key.

Consider the following Oracle tables that are used here for examples only:

SQL> desc prod
Name Null? Type
--- -------- ----------------------------
SERIAL_NUMBER NOT NULL NUMBER(10)
VENDOR_NUMBER NOT NULL NUMBER(10)
PRODUCT_NAME NOT NULL VARCHAR2(30)
COST NOT NULL NUMBER(8,2)

SQL> desc ord
Name Null? Type
--- -------- ----------------------------
ORD_NO NOT NULL NUMBER(10)
PROD_NUMBER NOT NULL NUMBER(10)
VENDOR_NUMBER NOT NULL NUMBER(10)
QUANTITY NOT NULL NUMBER(5)
ORD_DATE NOT NULL DATE

The primary key in PROD is the combination of the columns SERIAL_NUMBER and

VENDOR_NUMBER. Perhaps two products can have the same serial number within the

distribution company, but each serial number is unique per vendor.

The foreign key in ORD is also the combination of the columns SERIAL_NUMBER and

VENDOR_NUMBER.

214 HOUR 13: Joining Tables in Queries

When selecting data from both tables (PROD and ORD), the join operation might

appear as follows:

SELECT P.PRODUCT_NAME, O.ORD_DATE, O.QUANTITY
FROM PROD P, ORD O
WHERE P.SERIAL_NUMBER = O.SERIAL_NUMBER

AND P.VENDOR_NUMBER = O.VENDOR_NUMBER;

Similarly, if you were using the INNER JOIN syntax, you would merely list the multi-

ple join operations after the ON keyword, as shown below:

SELECT P.PRODUCT_NAME, O.ORD_DATE, O.QUANTITY
FROM PROD P,
INNER JOIN ORD O ON P.SERIAL_NUMBER = O.SERIAL_NUMBER

AND P.VENDOR_NUMBER = O.VENDOR_NUMBER;

Join Considerations
Several things should be considered before using joins: what columns(s) to join on,

whether there is no common column to join on, and performance issues. More joins

in a query means the database server has to do more work, which means that more

time is taken to retrieve data. Joins cannot be avoided when retrieving data from a

normalized database, but it is imperative to ensure that joins are performed correct-

ly from a logical standpoint. Incorrect joins can result in serious performance degra-

dation and inaccurate query results. Performance issues are discussed in more detail

in Hour 18, “Managing Database Users.”

Using a Base Table
What to join on? Should you have the need to retrieve data from two tables that do

not have a common column to join, you must join on another table that has a com-

mon column or columns to both tables. That table becomes the base table. A base

table is used to join one or more tables that have common columns, or to join tables

that do not have common columns. Use the following three tables for an example of

a base table:

CUSTOMER_TBL
CUST_ID VARCHAR(10) NOT NULL primary key
CUST_NAME VARCHAR(30) NOT NULL
CUST_ADDRESS VARCHAR(20) NOT NULL
CUST_CITY VARCHAR(15) NOT NULL
CUST_STATE VARCHAR(2) NOT NULL
CUST_ZIP INTEGER(5) NOT NULL
CUST_PHONE INTEGER(10)
CUST_FAX INTEGER(10)

Join Considerations 215

ORDERS_TBL
ORD_NUM VARCHAR(10) NOT NULL primary key
CUST_ID VARCHAR(10) NOT NULL
PROD_ID VARCHAR(10) NOT NULL
QTY INTEGER(6) NOT NULL
ORD_DATE DATETIME

PRODUCTS_TBL
PROD_ID VARCHAR(10) NOT NULL primary key
PROD_DESC VARCHAR(40) NOT NULL
COST DECIMAL(6,2) NOT NULL

You have a need to use the CUSTOMERS_TBL and the PRODUCTS_TBL. There is no com-

mon column in which to join the tables. Now look at the ORDERS_TBL. The

ORDERS_TBL has a CUST_ID column to join with CUSTOMERS_TBL, which also has a

CUST_ID column. The PRODUCTS_TBL has a PROD_ID column, which is also in

ORDERS_TBL. The JOIN conditions and results look like the following:

SELECT C.CUST_NAME, P.PROD_DESC
FROM CUSTOMER_TBL C,

PRODUCTS_TBL P,
ORDERS_TBL O

WHERE C.CUST_ID = O.CUST_ID
AND P.PROD_ID = O.PROD_ID;

CUST_NAME PROD_DESC
------------------------------ -----------------------
LESLIE GLEASON WITCHES COSTUME
SCHYLERS NOVELTIES PLASTIC PUMPKIN 18 INCH
WENDY WOLF PLASTIC PUMPKIN 18 INCH
GAVINS PLACE LIGHTED LANTERNS
SCOTTYS MARKET FALSE PARAFFIN TEETH
ANDYS CANDIES KEY CHAIN

6 rows selected.

Note the use of table aliases and their use on the columns in the WHERE clause.

The Cartesian Product
The Cartesian product is a result of a Cartesian join or “no join.” If you select from

two or more tables and do not join the tables, your output is all possible rows from

all the tables selected. If your tables were large, the result could be hundreds of

thousands, or even millions, of rows of data. A WHERE clause is highly recommended

for SQL statements retrieving data from two or more tables. The Cartesian product is

also known as a cross join.

By the
Way

216 HOUR 13: Joining Tables in Queries

The syntax is

FROM TABLE1, TABLE2 [, TABLE3]
WHERE TABLE1, TABLE2 [, TABLE3]

The following is an example of a cross join, or the dreaded Cartesian product:

SELECT E.EMP_ID, E.LAST_NAME, P.POSITION
FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL P;

EMP_ID LAST_NAM POSITION
--------- -------- --------------
311549902 STEPHENS MARKETING
442346889 PLEW MARKETING
213764555 GLASS MARKETING
313782439 GLASS MARKETING
220984332 WALLACE MARKETING
443679012 SPURGEON MARKETING
311549902 STEPHENS TEAM LEADER
442346889 PLEW TEAM LEADER
213764555 GLASS TEAM LEADER
313782439 GLASS TEAM LEADER
220984332 WALLACE TEAM LEADER
443679012 SPURGEON TEAM LEADER
311549902 STEPHENS SALES MANAGER
442346889 PLEW SALES MANAGER
213764555 GLASS SALES MANAGER
313782439 GLASS SALES MANAGER
220984332 WALLACE SALES MANAGER
443679012 SPURGEON SALES MANAGER
311549902 STEPHENS SALESMAN
442346889 PLEW SALESMAN
213764555 GLASS SALESMAN
313782439 GLASS SALESMAN
220984332 WALLACE SALESMAN
443679012 SPURGEON SALESMAN
311549902 STEPHENS SHIPPER
442346889 PLEW SHIPPER
213764555 GLASS SHIPPER
313782439 GLASS SHIPPER
220984332 WALLACE SHIPPER
443679012 SPURGEON SHIPPER
311549902 STEPHENS SHIPPER
442346889 PLEW SHIPPER
213764555 GLASS SHIPPER
313782439 GLASS SHIPPER
220984332 WALLACE SHIPPER
443679012 SPURGEON SHIPPER

36 rows selected.

Join Considerations 217

Data is being selected from two separate tables, yet no JOIN operation is performed.

Because you have not specified how to join rows in the first table with rows in the

second table, the database server pairs every row in the first table with every row in

the second table. Because each table has 6 rows of data each, the product of 36 rows

selected is achieved from 6 rows multiplied by 6 rows.

To fully understand exactly how the Cartesian product is derived, study the follow-

ing example.

SQL> SELECT X FROM TABLE1;

X
-
A
B
C
D

4 rows selected.

SQL> SELECT V FROM TABLE2;

X
-
A
B
C
D

4 rows selected.

SQL> SELECT TABLE1.X, TABLE2.X
2* FROM TABLE1, TABLE2;

X X
- -
A A
B A
C A
D A
A B
B B
C B
D B
A C
B C
C C
D C
A D
B D
C D
D D

16 rows selected.

218 HOUR 13: Joining Tables in Queries

Be careful to always join all tables in a query. If two tables in a query have not
been joined and each table contains 1,000 rows of data, the Cartesian product
consists of 1,000 rows multiplied by 1,000 rows, which results in a total of
1,000,000 rows of data returned. Cartesian products, when dealing with large
amounts of data, can cause the host computer to stall or crash in some cases,
based on resource usage on the host computer. Therefore, it is important for the
DBA and system administrator to closely monitor for long-running queries.

Summary
You have been introduced to one of the most robust features of SQL—the table join.

Imagine the limits if you were not able to extract data from more than one table in

a single query. You were shown several types of joins, each serving its own purpose

depending on conditions placed on the query. Joins are used to link data from tables

based on equality and non-equality. Outer joins are very powerful, allowing data to

be retrieved from one table, even though associated data is not found in a joined

table. Self joins are used to join a table to itself. Beware of the cross join, more com-

monly known as the Cartesian product. The Cartesian product is the resultset of a

multiple table query without a join, often yielding a large amount of unwanted out-

put. When selecting data from more than one table, be sure to properly join the

tables according to the related columns (normally primary keys). Failure to properly

join tables could result in incomplete or inaccurate output.

Q&A
Q. When joining tables, must they be joined in the same order that they appear

in the FROM clause?

A. No, they do not have to appear in the same order; however, performance

might be benefited depending on the order of tables in the FROM clause and

the order in which tables are joined.

Q. When using a base table to join unrelated tables, must I select any columns
from the base table?

A. No, the use of a base table to join unrelated tables does not mandate that

columns from the base table be selected.

Watch
Out!

Workshop 219

Q. Can I join on more than one column between tables?

A. Yes, some queries might require you to join on more than one column per

table to provide a complete relationship between rows of data in the joined

tables.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. What type of join would you use to return records from one table, regardless

of the existence of associated records in the related table?

2. The JOIN conditions are located in which parts of the SQL statement?

3. What type of JOIN do you use to evaluate equality among rows of related

tables?

4. What happens if you select from two different tables but fail to join the tables?

5. Use the following tables:

ORDERS_TBL
ORD_NUM VARCHAR(10) NOT NULL primary key
CUST_ID VARCHAR(10) NOT NULL
PROD_ID VARCHAR(10) NOT NULL
QTY Integer(6) NOT NULL
ORD_DATE DATETIME

PRODUCTS_TBL
PROD_ID VARCHAR(10) NOT NULL primary key
PROD_DESC VARCHAR(40) NOT NULL
COST DECIMAL(,2) NOT NULL

Is the following syntax correct for using an outer join?

SELECT C.CUST_ID, C.CUST_NAME, O.ORD_NUM
FROM CUSTOMER_TBL C, ORDERS_TBL O
WHERE C.CUST_ID(+) = O.CUST_ID(+)

220 HOUR 13: Joining Tables in Queries

Exercises
1. Invoke MySQL, point to your learnsql database, and type the following code

and study the resultset (Cartesian product):

SELECT E.LAST_NAME, E.FIRST_NAME, EP.DATE_HIRE
FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP;

2. Type the following code to properly join the EMPLOYEE_TBL and

EMPLOYEE_PAY_TBL tables:

SELECT E.LAST_NAME, E.FIRST_NAME, EP.DATE_HIRE
FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP
WHERE E.EMP_ID = EP.EMP_ID;

3. Rewrite the SQL query from Exercise 2, using the INNER JOIN syntax.

4. Write a SQL statement to return the EMP_ID, LAST_NAME, and FIRST_NAME

columns from the EMPLOYEE_TBL and SALARY and BONUS columns from the

EMPLOYEE_PAY_TBL. Use both types of INNER JOIN techniques.

5. What is the average employee salary per city?

6. Try writing a few queries with join operations on your own.

HOUR 14

Using Subqueries to Define
Unknown Data

During this hour, you are presented with the concept of using subqueries to return results

from a database query more effectively.

The highlights of this hour include
. What a subquery is
. The justifications of using subqueries
. Examples of subqueries in regular database queries
. Using subqueries with data manipulation commands
. Embedded subqueries

What Is a Subquery?
A subquery, also known as a nested query, is a query embedded within the WHERE clause of

another query to further restrict data returned by the query. A subquery is used to return

data that will be used in the main query as a condition to further restrict the data to be

retrieved. Subqueries are used with the SELECT, INSERT, UPDATE, and DELETE statements.

A subquery can be used in some cases in place of a join operation by indirectly linking

data between the tables based on one or more conditions. When a subquery is used in a

query, the subquery is resolved first, and then the main query is resolved according to the

condition(s) resolved by the subquery. The results of the subquery are used to process

expressions in the WHERE clause of the main query. The subquery can be used either in the

WHERE clause or the HAVING clause of the main query. Logical and relational operators,

such as =, >, <, <>,!=, IN, NOT IN, AND, OR, and so on, can be used within the subquery as

well as to evaluate a subquery in the WHERE or HAVING clause.

222 HOUR 14: Using Subqueries to Define Unknown Data

The same rules that apply to standard queries also apply to subqueries. Join oper-
ations, functions, conversions, and other options can be used within a subquery.

Subqueries must follow a few rules:

. Subqueries must be enclosed within parentheses.

. A subquery can have only one column in the SELECT clause, unless multiple

columns are in the main query for the subquery to compare its selected

columns.

. An ORDER BY clause cannot be used in a subquery, although the main query

can use an ORDER BY clause. The GROUP BY clause can be used to perform the

same function as the ORDER BY clause in a subquery.

. Subqueries that return more than one row can only be used with multiple

value operators, such as the IN operator.

. The SELECT list cannot include any references to values that evaluate to a

BLOB, ARRAY, CLOB, or NCLOB.

. A subquery cannot be immediately enclosed in a set function.

. The BETWEEN operator cannot be used with a subquery; however, the BETWEEN

operator can be used within the subquery.

The basic syntax for a subquery is as follows:

SELECT COLUMN_NAME
FROM TABLE
WHERE COLUMN_NAME = (SELECT COLUMN_NAME

FROM TABLE
WHERE CONDITIONS);

Notice the use of indentation in our examples. The use of indentation is merely
for readability. We have found that when looking for errors in SQL statements, the
neater your statements are, the easier it is to read and find any errors in syntax.

The following examples show how the BETWEEN operator can and cannot be used

with a subquery. Here is an example of a correct use of BETWEEN in the subquery:

SELECT COLUMN_NAME
FROM TABLE
WHERE COLUMN_NAME OPERATOR (SELECT COLUMN_NAME

FROM TABLE)
WHERE VALUE BETWEEN VALUE)

By the
Way

By the
Way

What Is a Subquery? 223

The following is an example of an illegal use of BETWEEN with a subquery:

SELECT COLUMN_NAME
FROM TABLE
WHERE COLUMN_NAME BETWEEN VALUE AND (SELECT COLUMN_NAME

FROM TABLE)

BETWEEN cannot be used as an operator outside the subquery.

Subqueries with the SELECT Statement
Subqueries are most frequently used with the SELECT statement, although they can

be used within a data manipulation statement as well. The subquery, when used

with the SELECT statement, retrieves data for the main query to use.

The basic syntax is as follows:

SELECT COLUMN_NAME [, COLUMN_NAME]
FROM TABLE1 [, TABLE2]
WHERE COLUMN_NAME OPERATOR

(SELECT COLUMN_NAME [, COLUMN_NAME]
FROM TABLE1 [, TABLE2]
[WHERE])

The following is an example:

SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.PAY_RATE
FROM EMPLOYEE_TBL E, EMPLOYEE_PAY_TBL EP
WHERE E.EMP_ID = EP.EMP_ID
AND EP.PAY_RATE < (SELECT PAY_RATE

FROM EMPLOYEE_PAY_TBL
WHERE EMP_ID = ‘443679012’);

The preceding SQL statement returns the employee identification, last name, first

name, and pay rate for all employees who have a pay rate greater than that of the

employee with the identification 313782439. In this case, you do not necessarily

know (or care) what the exact pay rate is for this particular employee; you only care

about the pay rate for the purpose of getting a list of employees who bring home

more than the employee specified in the subquery.

The next query selects the pay rate for a particular employee. This query is used as

the subquery in the following example.

SELECT PAY_RATE
FROM EMPLOYEE_PAY_TBL
WHERE EMP_ID = ‘220984332’;

PAY_RATE

11

1 row selected.

224 HOUR 14: Using Subqueries to Define Unknown Data

The previous query is used as a subquery in the WHERE clause of the following query:

SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.PAY_RATE
FROM EMPLOYEE_TBL E, EMPLOYEE_PAY_TBL EP
WHERE E.EMP_ID = EP.EMP_ID

AND EP.PAY_RATE > (SELECT PAY_RATE
FROM EMPLOYEE_PAY_TBL
WHERE EMP_ID = ‘220984332’);

EMP_ID LAST_NAME FIRST_NAME PAY_RATE
--------- -------- ---------- --------
442346889 PLEW LINDA 14.75
443679012 SPURGEON TIFFANY 15

2 rows selected.

The result of the subquery is 11 (shown in the last example), so the last condition of

the WHERE clause is evaluated as

AND EP.PAY_RATE > 11

You did not know the value of the pay rate for the given individual when you exe-

cuted the query. However, the main query was able to compare each individual’s

pay rate to the subquery results.

Subqueries are frequently used to place conditions on a query when the exact
conditions are unknown. The salary for 220984332 was unknown, but the sub-
query was designed to do the footwork for you.

Subqueries with the INSERT Statement
Subqueries also can be used in conjunction with Data Manipulation Language

(DML) statements. The INSERT statement is the first instance you will examine. The

INSERT statement uses the data returned from the subquery to insert into another

table. The selected data in the subquery can be modified with any of the character,

date, or number functions.

The basic syntax is as follows:

INSERT INTO TABLE_NAME [(COLUMN1 [, COLUMN2])]
SELECT [*|COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE VALUE OPERATOR]

By the
Way

What Is a Subquery? 225

The following is an example of the INSERT statement with a subquery:

INSERT INTO RICH_EMPLOYEES
SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.PAY_RATE
FROM EMPLOYEE_TBL E, EMPLOYEE_PAY_TBL EP
WHERE E.EMP_ID = EP.EMP_ID

AND EP.PAY_RATE > (SELECT PAY_RATE
FROM EMPLOYEE_PAY_TBL
WHERE EMP_ID = ‘220984332’);

2 rows created.

This INSERT statement inserts the EMP_ID, LAST_NAME, FIRST_NAME, and PAY_RATE

into a table called RICH_EMPLOYEES for all records of employees who have a pay

rate greater than the pay rate of the employee with identification 220984332.

Remember to use the COMMIT and ROLLBACK commands when using DML com-
mands such as the INSERT statement.

Subqueries with the UPDATE Statement
The subquery can be used in conjunction with the UPDATE statement to update sin-

gle or multiple columns in a table. The basic syntax is as follows:

UPDATE TABLE
SET COLUMN_NAME [, COLUMN_NAME)] =

(SELECT]COLUMN_NAME [, COLUMN_NAME)]
FROM TABLE
[WHERE]

Examples showing the use of the UPDATE statement with a subquery follow. The first

query returns the employee identification of all employees who reside in

Indianapolis. You can see that four individuals meet this criterion.

SELECT EMP_ID
FROM EMPLOYEE_TBL
WHERE CITY = ‘INDIANAPOLIS’;

EMP_ID

442346889
313782439
220984332
443679012

4 rows selected.

By the
Way

226 HOUR 14: Using Subqueries to Define Unknown Data

The first query is used as the subquery in the following UPDATE statement. The first

query proves how many employee identifications are returned by the subquery. The

following is the UPDATE with the subquery:

UPDATE EMPLOYEE_PAY_TBL
SET PAY_RATE = PAY_RATE * 1.1
WHERE EMP_ID IN (SELECT EMP_ID

FROM EMPLOYEE_TBL
WHERE CITY = ‘INDIANAPOLIS’);

4 rows updated.

As expected, four rows are updated. One very important thing to notice is that,

unlike the example in the first section, this subquery returns multiple rows of data.

Because you expect multiple rows to be returned, you have used the IN operator

instead of the equal sign. Remember that IN is used to compare an expression to

values in a list. If the equal sign were used, an error would have been returned.

Be sure to use the correct operator when evaluating a subquery. For example, an
operator used to compare an expression to one value, such as the equal sign,
cannot be used to evaluate a subquery that returns more than one row of data.

Subqueries with the DELETE Statement
The subquery also can be used in conjunction with the DELETE statement. The basic

syntax is as follows:

DELETE FROM TABLE_NAME
[WHERE OPERATOR [VALUE]

(SELECT COLUMN_NAME
FROM TABLE_NAME)
[WHERE)]

In this example, you delete the BRANDON GLASS record from the EMPLOYEE_PAY_TBL

table. You do not know Brandon’s employee identification number, but you can use

a subquery to get his identification number from the EMPLOYEE_TBL table, which

contains the FIRST_NAME and LAST_NAME columns.

DELETE FROM EMPLOYEE_PAY_TBL
WHERE EMP_ID = (SELECT EMP_ID

FROM EMPLOYEE_TBL
WHERE LAST_NAME = ‘GLASS’
AND FIRST_NAME = ‘BRANDON’);

1 row deleted.

Watch
Out!

Embedded Subqueries 227

Do not forget the use of the WHERE clause with the UPDATE and DELETE state-
ments. All rows are updated or deleted from the target table if the WHERE clause
is not used. See Hour 5, “Manipulating Data.”

Embedded Subqueries
A subquery can be embedded within another subquery, just as you can embed the

subquery within a regular query. When a subquery is used, that subquery is resolved

before the main query. Likewise, the lowest level subquery is resolved first in embed-

ded or nested subqueries, working out to the main query.

You must check your particular implementation for limits on the number of
subqueries, if any, that can be used in a single statement. It may differ between
vendors.

The basic syntax for embedded subqueries is as follows:

SELECT COLUMN_NAME [, COLUMN_NAME]
FROM TABLE1 [, TABLE2]
WHERE COLUMN_NAME OPERATOR (SELECT COLUMN_NAME

FROM TABLE
WHERE COLUMN_NAME OPERATOR

(SELECT COLUMN_NAME
FROM TABLE
[WHERE COLUMN_NAME OPERATOR VALUE]))

The following example uses two subqueries, one embedded within the other. You

want to find out what customers have placed orders where the quantity multiplied

by the cost of a single order is greater than the sum of the cost of all products.

SELECT CUST_ID, CUST_NAME
FROM CUSTOMER_TBL
WHERE CUST_ID IN (SELECT O.CUST_ID

FROM ORDERS_TBL O, PRODUCTS_TBL P
WHERE O.PROD_ID = P.PROD_ID
AND O.QTY + P.COST < (SELECT SUM(COST)

FROM
PRODUCTS_TBL));

CUST_ID CUST_NAME
---------- ------------------
090 WENDY WOLF
232 LESLIE GLEASON
287 GAVINS PLACE
43 SCHYLERS NOVELTIES
432 SCOTTYS MARKET
560 ANDYS CANDIES

6 rows selected.

Watch
Out!

By the
Way

228 HOUR 14: Using Subqueries to Define Unknown Data

Six rows that met the criteria of both subqueries were selected.

The following two examples show the results of each of the subqueries to aid your

understanding of how the main query was resolved.

SELECT SUM(COST) FROM PRODUCTS_TBL;

SUM(COST)

138.08

1 row selected.

SELECT O.CUST_ID
FROM ORDERS_TBL O, PRODUCTS_TBL P
WHERE O.PROD_ID = P.PROD_ID

AND O.QTY + P.COST > 138.08;

CUST_ID

43
287

2 rows selected.

In essence, the main query, after the substitution of the second subquery, is evaluat-

ed as shown in the following example:

SELECT CUST_ID, CUST_NAME
FROM CUSTOMER_TBL
WHERE CUST_ID IN (SELECT O.CUST_ID

FROM ORDERS_TBL O, PRODUCTS_TBL P
WHERE O.PROD_ID = P.PROD_ID
AND O.QTY + P.COST > 138.08);

The following shows how the main query is evaluated after the substitution of the

first subquery:

SELECT CUST_ID, CUST_NAME
FROM CUSTOMER_TBL
WHERE CUST_ID IN (‘287’,’43’);

The following is the final result:

CUST_ID CUST_NAME
---------- ------------------

43 SCHYLERS NOVELTIES
287 GAVINS PLACE

2 rows selected.

Correlated Subqueries 229

The use of multiple subqueries results in slower response time and might result
in reduced accuracy of the results due to possible mistakes in the statement
coding.

Correlated Subqueries
Correlated subqueries are common in many SQL implementations. The concept of

correlated subqueries is discussed as an ANSI-standard SQL topic and is covered

briefly in this hour. A correlated subquery is a subquery that is dependent upon infor-

mation in the main query. This means that tables in a subquery can be related to

tables in the main query.

In the following example, the table join between CUSTOMER_TBL and ORDERS_TBL in

the subquery is dependent on the alias for CUSTOMER_TBL (C) in the main query.

This query returns the name of all customers that have ordered more than 10 units

of one or more items.

SELECT C.CUST_NAME
FROM CUSTOMER_TBL C
WHERE 10 < (SELECT SUM(O.QTY)

FROM ORDERS_TBL O
WHERE O.CUST_ID = C.CUST_ID);

CUST_NAME

SCOTTYS MARKET
SCHYLERS NOVELTIES
MARYS GIFT SHOP

3 rows selected.

In the case of a correlated subquery, the reference to the table in the main query
must be accomplished before the subquery can be resolved.

Watch
Out!

By the
Way

230 HOUR 14: Using Subqueries to Define Unknown Data

The subquery is slightly modified in the next statement to show you the total quan-

tity of units ordered for each customer, allowing the previous results to be verified.

SELECT C.CUST_NAME, SUM(O.QTY)
FROM CUSTOMER_TBL C,

ORDERS_TBL O
WHERE C.CUST_ID = O.CUST_ID
GROUP BY C.CUST_NAME;

CUST_NAME SUM(O.QTY)
----------------------- ----------
ANDYS CANDIES 1
GAVINS PLACE 10
LESLIE GLEASON 1
MARYS GIFT SHOP 100
SCHYLERS NOVELTIES 25
SCOTTYS MARKET 20
WENDY WOLF 2

7 rows selected.

The GROUP BY clause in this example is required because another column is being

selected with the aggregate function SUM. This gives you a sum for each customer. In

the original subquery, a GROUP BY clause is not required because SUM is used to

achieve a total for the entire query, which is run against the record for each individ-

ual customer.

Summary
By simple definition and general concept, a subquery is a query that is performed

within another query to place further conditions on a query. A subquery can be

used in a SQL statement’s WHERE clause or HAVING clause. Queries are typically used

within other queries (Data Query Language), but can also be used in the resolution

of DML statements such as INSERT, UPDATE, and DELETE. All basic rules for DML

apply when using subqueries with DML commands.

The subquery’s syntax is virtually the same as that of a standalone query, with a

few minor restrictions. One of these restrictions is that the ORDER BY clause cannot

be used within a subquery; a GROUP BY clause can be used, however, which renders

virtually the same effect. Subqueries are used to place conditions that are not neces-

sarily known for a query, providing more power and flexibility with SQL.

Workshop 231

Q&A
Q. In the examples of subqueries, I noticed quite a bit of indentation. Is this

necessary in the syntax of a subquery?

A. Absolutely not. The indentation is used merely to break the statement into

separate parts, making the statement more readable and easier to follow.

Q. Is there a limit on the number of embedded subqueries that can be used in
a single query?

A. Limitations such as the number of embedded subqueries allowed and the

number of tables joined in a query are specific to each implementation. Some

implementations might not have limits, although the use of too many embed-

ded subqueries could drastically hinder SQL statement performance. Most lim-

itations are affected by the actual hardware, CPU speed, and system memory

available, although there are many other considerations.

Q. It seems that debugging a query with subqueries can prove to be very con-
fusing, especially with embedded subqueries. What is the best way to debug
a query with subqueries?

A. The best way to debug a query with subqueries is to evaluate the query in sec-

tions. First, evaluate the lowest-level subquery, and then work your way to the

main query (the same way the database evaluates the query). When you eval-

uate each subquery individually, you can substitute the returned values for

each subquery to check your main query’s logic. An error with a subquery is

often in the use of the operator used to evaluate the subquery, such as (=), IN,

>, <, and so on.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

232 HOUR 14: Using Subqueries to Define Unknown Data

Quiz
1. What is the function of a subquery when used with a SELECT statement?

2. Can you update more than one column when using the UPDATE statement in

conjunction with a subquery?

3. Are the following syntax(s) correct? If not, what is the correct syntax?

A.

SELECT CUST_ID, CUST_NAME
FROM CUSTOMER_TBL
WHERE CUST_ID =

(SELECT CUST_ID
FROM ORDERS_TBL
WHERE ORD_NUM = ‘16C17’);

B.

SELECT EMP_ID, SALARY
FROM EMPLOYEE_PAY_TBL
WHERE SALARY BETWEEN ‘20000’

AND (SELECT SALARY
FROM EMPLOYEE_ID
WHERE SALARY = ‘40000’);

C.

UPDATE PRODUCTS_TBL
SET COST = 1.15
WHERE CUST_ID =

(SELECT CUST_ID
FROM ORDERS_TBL
WHERE ORD_NUM = ‘32A132’);

4. What would happen if the following statement were run?

DELETE FROM EMPLOYEE_TBL
WHERE EMP_ID IN

(SELECT EMP_ID
FROM EMPLOYEE_PAY_TBL);

Exercises
1. Write the MySQL SQL code for the requested subqueries by hand on a sheet of

paper and compare your results to ours. Use the following tables to complete

the exercises:

EMPLOYEE_TBL
EMP_ID VARCHAR(9) NOT NULL primary key
LAST_NAME VARCHAR(15) NOT NULL
FIRST_NAME VARCHAR(15) NOT NULL
MIDDLE_NAME VARCHAR(15)
ADDRESS VARCHAR(30) NOT NULL

Workshop 233

CITY VARCHAR(15) NOT NULL
STATE VARCHAR(2) NOT NULL
ZIP INTEGER(5) NOT NULL
PHONE VARCHAR(10)
PAGER VARCHAR(10)

EMPLOYEE_PAY_TBL
EMP_ID VARCHAR(9) NOT NULL primary key
POSITION VARCHAR(15) NOT NULL
DATE_HIRE DATETIME
PAY_RATE DECIMAL(4,2) NOT NULL
DATE_LAST_RAISE DATETIME
CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID_ REFERENCES
EMPLOYEE_TBL (EMP_ID)

CUSTOMER_TBL
CUST_ID VARCHAR(10) NOT NULL primary key
CUST_NAME VARCHAR(30) NOT NULL
CUST_ADDRESS VARCHAR(20) NOT NULL
CUST_CITY VARCHAR(15) NOT NULL
CUST_STATE VARCHAR(2) NOT NULL
CUST_ZIP INTEGER(5) NOT NULL
CUST_PHONE INTEGER(10)
CUST_FAX INTEGER(10)

ORDERS_TBL
ORD_NUM VARCHAR(10) NOT NULL primary key
CUST_ID VARCHAR(10) NOT NULL
PROD_ID VARCHAR(10) NOT NULL
QTY INTEGER(6) NOT NULL
ORD_DATE DATETIME

PRODUCTS_TBL
PROD_ID VARCHAR(10) NOT NULL primary key
PROD_DESC VARCHAR(40) NOT NULL
COST DECIMAL(6,2) NOT NULL

2. Using a subquery, write an SQL statement to update the CUSTOMER_TBL table.

Find the customer with the order number 23E934 and change the customer

name to DAVIDS MARKET.

3. Using a subquery, write a query that returns all the names of all employees

who have a pay rate greater than JOHN DOE, whose employee identification

number is 343559876.

4. Using a subquery, write a query that lists all products that cost more than the

average cost of all products.

This page intentionally left blank

HOUR 15

Combining Multiple Queries
into One

During this hour, you learn how to combine SQL queries into one by using the UNION,

UNION ALL, INTERSECT, and EXCEPT operators. Once again, you must check your particu-

lar implementation for any variations in the use of these operators.

The highlights of this hour include
. An overview of the operators used to combine queries
. When to use the commands to combine queries
. Using the GROUP BY clause with the compound operators
. Using the ORDER BY clause with the compound operators
. How to retrieve accurate data

Some of the query operators covered in this hour are not currently sup-
ported by MySQL, as of the current release of version 5.0.45.

Single Queries Versus Compound Queries
The single query is one SELECT statement, whereas the compound query includes two or

more SELECT statements.

Compound queries are formed by using some type of operator to join the two queries. The

UNION operator in the following examples is used to join two queries.

By the
Way

236 HOUR 15: Combining Multiple Queries into One

A single SQL statement could be written as follows:

SELECT EMP_ID, SALARY, PAY_RATE
FROM EMPLOYEE_PAY_TBL
WHERE SALARY IS NOT NULL OR
PAY_RATE IS NOT NULL;

This is the same statement using the UNION operator:

SELECT EMP_ID, SALARY
FROM EMPLOYEE_PAY_TBL
WHERE SALARY IS NOT NULL
UNION
SELECT EMP_ID, PAY_RATE
FROM EMPLOYEE_PAY_TBL
WHERE PAY_RATE IS NOT NULL;

The previous statements return pay information for all employees who are paid

either hourly or on a salary.

If you executed the second query, the output has two column headings: EMP_ID
and SALARY. Each individual’s pay rate is listed under the SALARY column. When
using the UNION operator, column headings are determined by column names or
column aliases used in the first SELECT statement.

Compound operators are used to combine and restrict the results of two SELECT

statements. These operators can be used to return or suppress the output of dupli-

cate records. Compound operators can bring together similar data that is stored in

different fields.

Compound queries allow you to combine the results of more than one query to

return a single set of data. Compound queries are often simpler to write than a sin-

gle query with complex conditions. Compound queries also allow for more flexibility

regarding the never-ending task of data retrieval.

Compound Query Operators
The compound query operators vary among database vendors. The ANSI standard

includes the UNION, UNION ALL, EXCEPT, and INTERSECT operators, all of which are

discussed in the following sections.

By the
Way

Compound Query Operators 237

The UNION Operator
The UNION operator is used to combine the results of two or more SELECT statements

without returning any duplicate rows. In other words, if a row of output exists in the

results of one query, the same row is not returned, even though it exists in the sec-

ond query. To use the UNION operator, each SELECT statement must have the same

number of columns selected, the same number of column expressions, the same

data type, and the same order—but they do not have to be the same length.

The syntax is as follows:

SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
UNION
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]

Look at the following example:

SELECT EMP_ID FROM EMPLOYEE_TBL
UNION
SELECT EMP_ID FROM EMPLOYEE_PAY_TBL;

Those employee IDs that are in both tables appear only once in the results.

This hour’s examples begin with a simple SELECT statement from two tables:

SELECT PROD_DESC FROM PRODUCTS_TBL;

PROD_DESC

WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH
LIGHTED LANTERNS
ASSORTED COSTUMES
CANDY CORN
PUMPKIN CANDY
PLASTIC SPIDERS
ASSORTED MASKS
KEY CHAIN
OAK BOOKSHELF

1 rows selected.

SELECT PROD_DESC FROM PRODUCTS_TMP;

PROD_DESC

WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH
LIGHTED LANTERNS

238 HOUR 15: Combining Multiple Queries into One

ASSORTED COSTUMES
CANDY CORN
PUMPKIN CANDY
PLASTIC SPIDERS
ASSORTED MASKS
KEY CHAIN
OAK BOOKSHELF

11 rows selected.

The PRODUCTS_TMP table was created in Hour 3, “Managing Database Objects.”
Refer back to Hour 3 if you need to re-create this table.

Now, combine the same two queries with the UNION operator, making a compound

query.

SELECT PROD_DESC FROM PRODUCTS_TBL
UNION
SELECT PROD_DESC FROM PRODUCTS_TMP;

PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS
CANDY CORN
FALSE PARAFFIN TEETH
LIGHTED LANTERNS
PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PUMPKIN CANDY
WITCHES COSTUME
KEY CHAIN
OAK BOOKSHELF

11 rows selected.

In the first query, nine rows of data were returned, and six rows of data were

returned from the second query. Nine rows of data are returned when the UNION

operator combines the two queries. Only nine rows are returned because duplicate

rows of data are not returned when using the UNION operator.

The following code shows an example of combining two unrelated queries with the

UNION operator:

SELECT PROD_DESC FROM PRODUCTS_TBL
UNION
SELECT LAST_NAME FROM EMPLOYEE_TBL;

By the
Way

Compound Query Operators 239

PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS
CANDY CORN
FALSE PARAFFIN TEETH
GLASS
KEY CHAIN
LIGHTED LANTERNS
OAK BOOKSHELF
PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PLEW
PUMPKIN CANDY
SPURGEON
STEPHENS
WALLACE
WITCHES COSTUME

16 rows selected.

The PROD_DESC and LAST_NAME values are listed together, and the column heading

is taken from the column name in the first query.

The UNION ALL Operator
The UNION ALL operator is used to combine the results of two SELECT statements,

including duplicate rows. The same rules that apply to UNION apply to the UNION

ALL operator. The UNION and UNION ALL operators are the same, although one

returns duplicate rows of data where the other does not.

The syntax is as follows:

SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
UNION ALL
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]

Look at the following example:

SELECT EMP_ID FROM EMPLOYEE_TBL
UNION ALL
SELECT EMP_ID FROM EMPLOYEE_PAY_TBL

The preceding SQL statement returns all employee IDs from both tables and shows

duplicates.

240 HOUR 15: Combining Multiple Queries into One

The following is the same compound query in the previous section with the UNION

ALL operator:

SELECT PROD_DESC FROM PRODUCTS_TBL
UNION ALL
SELECT PROD_DESC FROM PRODUCTS_TMP;

PROD_DESC

WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH
LIGHTED LANTERNS
ASSORTED COSTUMES
CANDY CORN
PUMPKIN CANDY
PLASTIC SPIDERS
ASSORTED MASKS
KEY CHAIN
OAK BOOKSHELF
WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH
LIGHTED LANTERNS
ASSORTED COSTUMES
CANDY CORN
PUMPKIN CANDY
PLASTIC SPIDERS
ASSORTED MASKS
KEY CHAIN
OAK BOOKSHELF

22 rows selected.

Notice that there were 22 rows returned in this query (9+6) because duplicate records

are retrieved with the UNION ALL operator.

The INTERSECT Operator
The INTERSECT operator is used to combine two SELECT statements, but returns only

rows from the first SELECT statement that are identical to a row in the second

SELECT statement. Just as with the UNION operator, the same rules apply when using

the INTERSECT operator. Currently, the INTERSECT operator is not supported by

MySQL.

The syntax is as follows:

SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
INTERSECT
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]

Compound Query Operators 241

Look at the following example:

SELECT CUST_ID FROM CUSTOMER_TBL
INTERSECT
SELECT CUST_ID FROM ORDERS_TBL;

The preceding SQL statement returns the customer identification for those customers

who have placed an order.

The following example illustrates the INTERSECT operator using the two original

queries in this hour:

SELECT PROD_DESC FROM PRODUCTS_TBL
INTERSECT
SELECT PROD_DESC FROM PRODUCTS_TMP;

PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS
CANDY CORN
FALSE PARAFFIN TEETH
KEY CHAIN
LIGHTED LANTERNS
OAK BOOKSHELF
PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PUMPKIN CANDY
WITCHES COSTUME

11 rows selected.

Only eleven rows are returned because only eleven rows were identical between the

output of the two single queries.

The EXCEPT Operator
The EXCEPT operator combines two SELECT statements and returns rows from the

first SELECT statement that are not returned by the second SELECT statement. Once

again, the same rules that apply to the UNION operator also apply to the EXCEPT

operator. The EXCEPT operator is not currently supported in MySQL.

The syntax is as follows:

SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
EXCEPT
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]

242 HOUR 15: Combining Multiple Queries into One

Study the following example:

SELECT PROD_DESC FROM PRODUCTS_TBL
EXCEPT
SELECT PROD_DESC FROM PRODUCTS_TMP;

PROD_DESC

PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PUMPKIN CANDY

3 rows selected.

According to the results, there were three rows of data returned by the first query

that were not returned by the second query.

The EXCEPT operator is known as the MINUS operator in some implementations.
Check your implementation for the operator name that performs the EXCEPT oper-
ator’s function.

The following example demostrates the use of the MINUS operator as a replacement
for the EXCEPT operator.
SELECT PROD_DESC FROM PRODUCTS_TBL
MINUS
SELECT PROD_DESC FROM PRODUCTS_TMP;

PROD_DESC

PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PUMPKIN CANDY

3 rows selected.

Using ORDER BY with a Compound Query
The ORDER BY clause can be used with a compound query. However, the ORDER BY

clause can only be used to order the results of both queries. Therefore, there can be

only one ORDER BY clause in a compound query, even though the compound query

might consist of multiple individual queries or SELECT statements. The ORDER BY

clause must reference the columns being ordered by an alias or by the column

number.

The syntax is as follows:

SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]

By the
Way

Using ORDER BY with a Compound Query 243

OPERATOR{UNION | EXCEPT | INTERSECT | UNION ALL}
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
[ORDER BY]

Examine the following example:

SELECT EMP_ID FROM EMPLOYEE_TBL
UNION
SELECT EMP_ID FROM EMPLOYEE_PAY_TBL
ORDER BY 1;

The results of the compound query are sorted by the first column of each individual

query. Duplicate records can easily be recognized by sorting compound queries.

The column in the ORDER BY clause is referenced by the number 1 instead of the
actual column name.

The preceding SQL statement returns the employee ID from the EMPLOYEE_TBL

and the EMPLOYEE_PAY_TBL, but it does not show duplicates and it orders by the

employee ID.

The following example shows the use of the ORDER BY clause with a compound

query. The column name can be used in the ORDER BY clause if the column sorted

by has the same name in all individual queries of the statement.

SELECT PROD_DESC FROM PRODUCTS_TBL
UNION
SELECT PROD_DESC FROM PRODUCTS_TBL
ORDER BY PROD_DESC;

PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS
CANDY CORN
FALSE PARAFFIN TEETH
KEY CHAIN
LIGHTED LANTERNS
OAK BOOKSHELF
PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PUMPKIN CANDY
WITCHES COSTUME

11 rows selected.

By the
Way

244 HOUR 15: Combining Multiple Queries into One

The following query uses a numeric value in place of the actual column name in

the ORDER BY clause:

SELECT PROD_DESC FROM PRODUCTS_TBL
UNION
SELECT PROD_DESC FROM PRODUCTS_TBL;

PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS
CANDY CORN
FALSE PARAFFIN TEETH
KEY CHAIN
LIGHTED LANTERNS
OAK BOOKSHELF
PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PUMPKIN CANDY
WITCHES COSTUME

11 rows selected.

Using GROUP BY with a Compound Query
Unlike ORDER BY, GROUP BY can be used in each SELECT statement of a compound

query, but it also can be used following all individual queries. In addition, the

HAVING clause (sometimes used with the GROUP BY clause) can be used in each

SELECT statement of a compound statement.

The syntax is as follows:

SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
[GROUP BY]
[HAVING]
OPERATOR {UNION | EXCEPT | INTERSECT | UNION ALL}
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
[GROUP BY]
[HAVING]
[ORDER BY]

The compound query operators covered in this hour are not currently supported in
MySQL.

By the
Way

Using GROUP BY with a Compound Query 245

In the following example, you select a literal string to represent customer records,

employee records, and product records. Each individual query is simply a count of

all records in each appropriate table. The GROUP BY clause is used to group the

results of the entire report by the numeric value 1, which represents the first column

in each individual query.

SELECT ‘CUSTOMERS’ TYPE, COUNT(*)
FROM CUSTOMER_TBL
UNION
SELECT ‘EMPLOYEES’ TYPE, COUNT(*)
FROM EMPLOYEE_TBL
UNION
SELECT ‘PRODUCTS’ TYPE, COUNT(*)
FROM PRODUCTS_TBL
GROUP BY 1;

TYPE COUNT(*)
----------- --------
CUSTOMERS 15
EMPLOYEES 6
PRODUCTS 9

3 rows selected.

The following query is identical to the previous query, except that the ORDER BY

clause is used as well:

SELECT ‘CUSTOMERS’ TYPE, COUNT(*)
FROM CUSTOMER_TBL
UNION
SELECT ‘EMPLOYEES’ TYPE, COUNT(*)
FROM EMPLOYEE_TBL
UNION
SELECT ‘PRODUCTS’ TYPE, COUNT(*)
FROM PRODUCTS_TBL
GROUP BY 1
ORDER BY 2;

TYPE COUNT(*)
----------- --------
EMPLOYEES 6
PRODUCTS 9
CUSTOMERS 15

3 rows selected.

This is sorted by column 2, which was the count on each table. Hence, the final out-

put is sorted by the count from least to greatest.

246 HOUR 15: Combining Multiple Queries into One

Retrieving Accurate Data
Be cautious when using the compound operators. Incorrect or incomplete data

might be returned if you were using the INTERSECT operator and you used the

wrong SELECT statement as the first individual query. In addition, consider whether

duplicate records are wanted when using the UNION and UNION ALL operators. What

about EXCEPT? Do you need any of the rows that were not returned by the second

query? As you can see, the wrong compound query operator or the wrong order of

individual queries in a compound query can easily cause misleading data to be

returned.

Incomplete data returned by a query qualifies as incorrect data.

Summary
You have been introduced to compound queries. All SQL statements previous to this

hour have consisted of a single query. Compound queries allow multiple individual

queries to be used together as a single query to achieve the data resultset desired as

output. The compound query operators discussed included UNION, UNION ALL,

INTERSECT, and EXCEPT (MINUS). UNION returns the output of two single queries

without displaying duplicate rows of data. UNION ALL simply displays all output of

single queries, regardless of existing duplicate rows. INTERSECT is used to return

identical rows between two queries. EXCEPT (the same as MINUS) is used to return the

results of one query that do not exist in another query. Compound queries provide

greater flexibility when trying to satisfy the requirements of various queries, which,

without the use of compound operators, could result in very complex queries.

Q&A
Q. How are the columns referenced in the GROUP BY clause in a compound

query?

A. The columns can be referenced by the actual column name or by the number

of the column placement in the query if the column names are not identical

in the two queries.

By the
Way

Workshop 247

Q. I understand what the EXCEPT operator does, but would the outcome change
if I were to reverse the SELECT statements?

A. Yes. The order of the individual queries is very important when using the

EXCEPT or MINUS operator. Remember that all rows are returned from the first

query that are not returned by the second query. Changing the order of the

two individual queries in the compound query could definitely affect the

results.

Q. Must the data type and the length of columns in a compound query be the
same in both queries?

A. No. Only the data type must be the same. The length can differ.

Q. What determines the column names when using the UNION operator?

A. The first query set determines the column names for the data returned when

using a UNION operator.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
Refer to the Oracle syntax covered in this hour for the following quiz questions

when referring to the INTERSECT and EXCEPT operators.

1. Is the syntax correct for the following compound queries? If not, what would

correct the syntax? Use the EMPLOYEE_TBL and the EMPLOYEE_PAY_TBL shown

as follows:

EMPLOYEE_TBL
EMP_ID VARCHAR(9) NOT NULL,
LAST_NAME VARCHAR(15) NOT NULL,
FIRST_NAME VARCHAR(15) NOT NULL,
MIDDLE_NAME VARCHAR(15),
ADDRESS VARCHAR(30) NOT NULL,

248 HOUR 15: Combining Multiple Queries into One

CITY VARCHAR(15) NOT NULL,
STATE VARCHAR(2) NOT NULL,
ZIP INTEGER(5) NOT NULL,
PHONE VARCHAR(10),
PAGER VARCHAR(10),
CONSTRAINT EMP_PK PRIMARY KEY (EMP_ID)

EMPLOYEE_PAY_TBL
EMP_ID VARCHAR(9) NOT NULL primary key,
POSITION VARCHAR(15) NOT NULL,
DATE_HIRE DATETIME,
PAY_RATE DECIMAL(4,2) NOT NULL,
DATE_LAST_RAISE DATE,
SALARY DECIMAL(8,2),
BONUS DECIMAL(6,2),
CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID)
REFERENCES EMPLOYEE_TBL (EMP_ID)

A.

SELECT EMP_ID, LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
UNION
SELECT EMP_ID, POSITION, DATE_HIRE
FROM EMPLOYEE_PAY_TBL;

B.

SELECT EMP_ID FROM EMPLOYEE_TBL
UNION ALL
SELECT EMP_ID FROM EMPLOYEE_PAY_TBL
ORDER BY EMP_ID;

C.

SELECT EMP_ID FROM EMPLOYEE_PAY_TBL
INTERSECT
SELECT EMP_ID FROM EMPLOYEE_TBL
ORDER BY 1;

2. Match the correct operator to the following statements.

Statement Operator

a. Show duplicates UNION

b. Return only rows from the first query that match INTERSECT

those in the second query

c. Return no duplicates UNION ALL

d. Return only rows from the first query not returned by EXCEPT

the second

Workshop 249

Exercises
Refer to the Oracle syntax covered in this hour for the following exercises. Write

your queries out by hand on a sheet of paper because MySQL does not support some

of the operators covered in this hour. When you are finished, compare your results

to ours.

Use the CUSTOMER_TBL and the ORDERS_TBL as listed:

CUSTOMER_TBL
CUST_IN VARCHAR(10) NOT NULL primary key,
CUST_NAME VARCHAR(30) NOT NULL,
CUST_ADDRESS VARCHAR(20) NOT NULL,
CUST_CITY VARCHAR(15) NOT NULL,
CUST_STATE VARCHAR(2) NOT NULL,
CUST_ZIP INTEGER(5) NOT NULL,
CUST_PHONE INTEGER(10),
CUST_FAX INTEGER(10)

ORDERS_TBL
ORD_NUM VARCHAR(10) NOT NULL primary key,
CUST_ID VARCHAR(10) NOT NULL,
PROD_ID VARCHAR(10) NOT NULL,
QTY INTEGER(6) NOT NULL,
ORD_DATE DATETIME

1. Write a compound query to find the customers that have placed an order.

2. Write a compound query to find the customers that have not placed an order.

This page intentionally left blank

PART V

SQL Performance Tuning

HOUR 16 Using Indexes to Improve Performance 253

HOUR 17 Improving Database Performance 265

This page intentionally left blank

HOUR 16

Using Indexes to Improve
Performance

During this hour, you learn how to improve SQL statement performance by creating and

using indexes. You begin with the CREATE INDEX command and learn how to use indexes

that have been created on tables.

The highlights of this hour include
. How to create an index
. How indexes work
. The different types of indexes
. When to use indexes
. When not to use indexes

What Is an Index?
Simply put, an index is a pointer to data in a table. An index in a database is very similar

to an index in the back of a book. For example, if you want to reference all pages in a

book that discuss a certain topic, you first refer to the index, which lists all topics alpha-

betically, and it refers you to one or more specific page numbers. An index in a database

works the same way in that a query is pointed to the exact physical location of data in a

table. You are actually being directed to the data’s location in an underlying file of the

database, but as far as you are concerned, you are referring to a table.

Which would be faster, looking through a book page by page for some information or

searching the book’s index and getting a page number? Of course, using the book’s index

is the most efficient method. A lot of time can be saved if that book is large. Say you have

a small book of just a few pages. In this case, it might be faster to check the pages for the

254 HOUR 16: Using Indexes to Improve Performance

information than to flip back and forth between the index and pages of the book.

When a database does not use an index, it is performing what is typically called a

full table scan, the same as flipping through a book page by page. Full table scans

are discussed in Hour 17, “Improving Database Performance.”

An index is typically stored separately from the table for which the index was creat-

ed. An index’s main purpose is to improve the performance of data retrieval.

Indexes can be created or dropped with no effect on the data. However, after an

index is dropped, performance of data retrieval might be slowed. Indexes do take up

physical space and can often grows larger than the table itself. Therefore, they need

to be considered when estimating the size your database storage needs.

How Do Indexes Work?
When an index is created, it records the location of values in a table that are associ-

ated with the column that is indexed. Entries are added to the index when new data

is added to the table. When a query is executed against the database and a condi-

tion is specified on a column in the WHERE clause that is indexed, the index is first

searched for the values specified in the WHERE clause. If the value is found in the

index, the index returns the exact location of the searched data in the table.

Figure 16.1 illustrates how an index functions.

Suppose the following query was issued:

SELECT *
FROM TABLE_NAME
WHERE NAME = ‘SMITH’;

Data Location

GLASS 6
JONES 2
JONES 9
PLEW 5

SMITH 1
SMITH 3
SMITH 7
SMITH 100,000

WALLACE 8
WILLIAMS 4
...

INDEX

Location Data

1 SMITH
2 JONES
3 SMITH
4 WILLIAMS
5 PLEW
6 GLASS
7 SMITH
8 WALLACE
8 JONES
...
100,000 SMITH

TABLEFIGURE 16.1
Table access
using an index.

Types of Indexes 255

As shown in Figure 16.1, the NAME index is referenced to resolve the location of all

names equal to ‘SMITH’. After the location is determined, the data can be quickly

retrieved from the table. The data, in this case names, is alphabetized in the index.

A full table scan would occur if there were no index on the table and the same

query was executed, which means that every row of data in the table would be read

to retrieve information pertaining to all individuals with the name SMITH.

An index is faster because it typically stores information in an orderly tree-like for-

mat. Consider if we had a list of books upon which we placed an index. The index

would have a root node, which would be the beginning point of each query. Then it

would be split into branches. Maybe in our case there are two branches, one for let-

ters A–L and the other for letters M–Z. Now if you ask for a book with a name that

starts with the letter M, you will enter the index at the root node and immediately

travel to the branch containing letters M–Z. This would effectively cut your time to

find the book by eliminating close to half the possibilities.

The CREATE INDEX Command
The CREATE INDEX statement, as with many other statements in SQL, varies greatly

among different relational database vendors. Most relational database implementa-

tions use the CREATE INDEX statement:

CREATE INDEX INDEX_NAME ON TABLE_NAME

The syntax is where the vendors start varying greatly on the CREATE INDEX state-

ment options. Some implementations allow the specification of a storage clause (as

with the CREATE TABLE statement), ordering (DESC||ASC), and the use of clusters.

You must check your particular implementation for its correct syntax.

Indexes can be created during table creation in some implementations. Most
implementations accommodate a command, aside from the CREATE TABLE com-
mand, used to create indexes. You must check your particular implementation for
the exact syntax for the command, if any, that is available to create an index.

Types of Indexes
Different types of indexes can be created on tables in a database, all of which serve

the same goal—to improve database performance by expediting data retrieval. This

hour discusses single-column indexes, composite indexes, and unique indexes.

By the
Way

256 HOUR 16: Using Indexes to Improve Performance

Single-Column Indexes
Indexing on a single column of a table is the simplest and most common manifesta-

tion of an index. Obviously, a single-column index is one that is created based on

only one table column. The basic syntax is as follows:

CREATE INDEX INDEX_NAME
ON TABLE_NAME (COLUMN_NAME)

For example, if you want to create an index on the EMPLOYEE_TBL table for

employees’ last names, the command used to create the index would look like

the following:

CREATE INDEX NAME_IDX
ON EMPLOYEE_TBL (LAST_NAME);

Single-column indexes are most effective when used on columns that are fre-
quently used alone in the WHERE clause as query conditions. Good candidates for
a single-column index are an individual identification number, a serial number, or a
system-assigned key.

Unique Indexes
Unique indexes are used for performance and data integrity. A unique index does not

allow any duplicate values to be inserted into the table. Otherwise, the unique index

performs the same way a regular index performs. The syntax is as follows:

CREATE UNIQUE INDEX INDEX_NAME
ON TABLE_NAME (COLUMN_NAME)

If you want to create a unique index on the EMPLOYEE_TBL table for an employee’s

last name, the command used to create the unique index would look like the follow-

ing:

CREATE UNIQUE INDEX NAME_IDX
ON EMPLOYEE_TBL (LAST_NAME);

The only problem with this index is that every individual’s last name in the

EMPLOYEE_TBL table must be unique—pretty impractical. However, a unique index

should be created for a column, such as an individual’s Social Security number,

because each of these numbers for each individual is unique.

You might be wondering, “What if an employee’s SSN were the primary key for a

table?” An index is usually implicitly created when you define a primary key for a

table. However, a company can use a fictitious number for an employee ID, but

Did you
Know?

Types of Indexes 257

maintain each employee’s SSN for tax purposes. You probably want to index this

column and ensure that all entries into this column are unique values.

A unique index can only be created on a column in a table whose values are
unique. In other words, you cannot create a unique index on an existing table with
data that already contains records on the indexed key.

Composite Indexes
A composite index is an index on two or more columns of a table. You should consid-

er performance when creating a composite index because the order of columns in

the index has a measurable effect on data retrieval speed. Generally, the most

restrictive value should be placed first for optimum performance. However, the

columns that will always be specified should be placed first. The syntax is as follows:

CREATE INDEX INDEX_NAME
ON TABLE_NAME (COLUMN1, COLUMN2)

An example of a composite index follows:

CREATE INDEX ORD_IDX
ON ORDERS_TBL (CUST_ID, PROD_ID);

In this example, you create a composite index based on two columns in the

ORDERS_TBL table: CUST_ID and PROD_ID. You assume that these two columns are

frequently used together as conditions in the WHERE clause of a query.

Composite indexes are most effective on table columns that are used together
frequently as conditions in a query’s WHERE clause.

In deciding whether to create a single-column index or a composite index, take into

consideration the column(s) that you might use very frequently in a query’s WHERE

clause as filter conditions. If only one column is used, a single-column index should

be the choice. If two or more columns are frequently used in the WHERE clause as fil-

ters, a composite index would be the best choice.

Implicit Indexes
Implicit indexes are indexes that are automatically created by the database server

when an object is created. Indexes are automatically created for primary key con-

straints and unique constraints.

By the
Way

Did you
Know?

258 HOUR 16: Using Indexes to Improve Performance

Why are indexes automatically created for these constraints? Imagine that you are

the database server. A user adds a new product to the database. The product identi-

fication is the primary key on the table, which means that it must be a unique

value. To efficiently check to make sure the new value is unique among hundreds or

thousands of records, the product identifications in the table must be indexed.

Therefore, when you create a primary key or unique constraint, an index is auto-

matically created for you.

When Should Indexes Be Considered?
Unique indexes are implicitly used in conjunction with a primary key for the pri-

mary key to work. Foreign keys are also excellent candidates for an index because

they are often used to join the parent table. Most, if not all, columns used for table

joins should be indexed.

Columns that are frequently referenced in the ORDER BY and GROUP BY clauses

should be considered for indexes. For example, if you are sorting on an individual’s

name, it would be quite beneficial to have an index on the name column. It renders

an automatic alphabetical order on every name, thus simplifying the actual sort

operation and expediting the output results.

Furthermore, indexes should be created on columns with a high number of unique

values, or columns that when used as filter conditions in the WHERE clause return a

low percentage of rows of data from a table. This is where trial and error might

come into play. Just as production code and database structures should always be

tested before their implementation into production, so should indexes. This testing is

time that should be spent trying different combinations of indexes, no indexes, sin-

gle-column indexes, and composite indexes. There is no cut-and-dried rule for using

indexes. The effective use of indexes requires a thorough knowledge of table rela-

tionships, query and transaction requirements, and the data itself.

You should plan your tables and indexes. Do not assume that because an index
has been created that all performance issues are resolved. The index might not
help at all (it might actually hinder performance) and might just take up disk
space.

By the
Way

When Should Indexes Be Avoided? 259

When Should Indexes Be Avoided?
Although indexes are intended to enhance a database’s performance, there are

times when they should be avoided. The following guidelines indicate when the use

of an index should be reconsidered:

. Indexes should not be used on small tables.

. Indexes should not be used on columns that return a high percentage of data

rows when used as a filter condition in a query’s WHERE clause. For instance,

you would not have an entry for the words the or and in the index of a book.

. Tables that have frequent, large batch update jobs run can be indexed.

However, the batch job’s performance is slowed considerably by the index. The

conflict of having an index on a table that is frequently loaded or manipulat-

ed by a large batch process can be corrected by dropping the index before the

batch job, and then re-creating the index after the job has completed. This is

because the indexes are also updated as the data is inserted, causing addition-

al overhead.

. Indexes should not be used on columns that contain a high number of NULL

values.

. Columns that are frequently manipulated should not be indexed.

Maintenance on the index can become excessive.

Caution should be taken when creating indexes on a table’s extremely long keys
because performance is inevitably slowed by high I/O costs.

You can see in Figure 16.2 that an index on a column, such as gender, might not

prove beneficial. For example, suppose the following query was submitted to the

database:

SELECT *
FROM TABLE_NAME
WHERE GENDER = ‘FEMALE’;

By referring to Figure 16.2, which is based on the previous query, you can see that

there is constant activity between the table and its index. Because a high number of

data rows is returned for WHERE GENDER = ‘FEMALE’ (or ‘MALE’), the database serv-

er constantly has to read the index, and then the table, and then the index, and

then the table, and so on. In this case, it might be more efficient for a full table scan

to occur because a high percentage of the table must be read anyway.

Watch
Out!

260 HOUR 16: Using Indexes to Improve Performance

As a general rule, you do not want to use an index on a column used in a query’s

condition that will return a high percentage of data rows from the table. In other

words, do not create an index on a column such as gender, or any column that con-

tains very few distinct values. This is often referred to as a column’s cardinality or the

uniqueness of the data. High-cardinality means very unique and is therefore used to

describe things such as identification numbers. Low-cardinality values are not very

unique and would refer to columns such as the gender example.

Indexes can be very good for performance, but in some cases might actually hurt
performance. Refrain from creating indexes on columns that will contain few
unique values, such as gender, state of residence, and so on.

Dropping an Index
An index can be dropped rather simply. Check your particular implementation for

the exact syntax, but most major implementations use the DROP command. Care

should be taken when dropping an index because performance might be slowed

drastically (or improved!). The syntax is as follows:

DROP INDEX INDEX_NAME

MySQL uses the ALTER TABLE command to drop indexes. Again, different SQL
implementations might vary widely in syntax, especially when dealing with indexes
and data storage.

Location Data

 1 MALE
 2 MALE
 3 FEMALE
 4 MALE
 5 FEMALE
 6 MALE
 7 FEMALE
 8 FEMALE
 9 FEMALE
10 MALE
11 MALE
12 FEMALE
13 FEMALE
14 MALE
 ...

TABLE

Data Location

FEMALE 3
FEMALE 5
FEMALE 7
FEMALE 8
FEMALE 9
FEMALE 12
FEMALE 13

MALE 1
MALE 2
MALE 4
MALE 6
MALE 10
MALE 11
MALE 14
...

INDEXFIGURE 16.2
An example of
an ineffective
index.

Did you
Know?

By the
Way

Q&A 261

The most common reason for dropping an index is in an attempt to improve per-

formance. Remember that if you drop an index, you can also re-create it. Indexes

might need to be rebuilt sometimes to reduce fragmentation. It is often necessary to

experiment with the use of indexes in a database to determine the route to best per-

formance, which might involve creating an index, dropping it, and eventually re-

creating it, with or without modifications.

Summary
You have learned that indexes can be used to improve the overall performance of

queries and transactions performed within the database. Database indexes, like an

index of a book, allow specific data to be quickly referenced from a table. The most

common method for creating indexes is through use of the CREATE INDEX com-

mand. There are different types of indexes available among various SQL implemen-

tations. Unique indexes, single-column indexes, and composite indexes are among

those different types of indexes. You need to consider many factors when deciding

on the index type that best meets the needs of your database. The effective use of

indexes often requires some experimentation, a thorough knowledge of table rela-

tionships and data, and a little patience—but patience now can save minutes,

hours, or even days of work later.

Q&A
Q. Does an index actually take up space the way a table does?

A. Yes. An index takes up physical space in a database. In fact, an index can

become much larger than the table for which the index was created.

Q. If you drop an index so a batch job can complete faster, how long does it
take to re-create the index?

A. Many factors are involved, such as the size of the index being dropped, CPU

usage, and the machine’s power.

Q. Should all indexes be unique indexes?

A. No. Unique indexes allow no duplicate values. There might be a need for the

allowance of duplicate values in a table.

262 HOUR 16: Using Indexes to Improve Performance

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. What are some major disadvantages of using indexes?

2. Why is the order of columns in a composite important?

3. Should a column with a large percentage of NULL values be indexed?

4. Is the main purpose of an index to stop duplicate values in a table?

5. True or false: The main reason for a composite index is for aggregate function

usage in an index.

6. What does cardinality refer to? What would be considered a column of high-

cardinality?

Exercises
1. For the following situations, decide whether an index should be used and, if

so, what type of index should be used.

A. Several columns, but a rather small table

B. Medium-sized table, no duplicates should be allowed

C. Several columns, very large table, several columns used as filters in the

WHERE clause

D. Large table, many columns, a lot of data manipulation

Workshop 263

2. Type the following code into the mysql> prompt to create an index on the

EMPLOYEE_PAY_TBL table on the POSITION column:

CREATE INDEX EP_POSITION ON EMPLOYEE_PAY_TBL (POSITION);

3. Study the tables used in this book. What are some good candidates for

indexed columns based on how a user might search for data?

4. Create a multi-column index on the ORDERS_TBL table. Include the following

columns: CUST_ID, PROD_ID, and ORD_DATE.

5. Create some additional indexes on your tables as desired.

This page intentionally left blank

HOUR 17

Improving Database
Performance

During this hour, you learn how to tune your SQL statement for maximum performance

using some very simple methods.

The highlights of this hour include
. What SQL statement tuning is
. Database tuning versus SQL statement tuning
. Formatting your SQL statement
. Properly joining tables
. The most restrictive condition
. Full table scans
. Invoking the use of indexes
. Avoiding the use of OR and HAVING

. Avoiding large sort operations

What Is SQL Statement Tuning?
SQL statement tuning is the process of optimally building SQL statements to achieve results

in the most effective and efficient manner. SQL tuning begins with the basic arrangement

of the elements in a query. Simple formatting can play a rather large role in the optimiza-

tion of a statement.

SQL statement tuning mainly involves tweaking a statement’s FROM and WHERE clauses. It

is mostly from these two clauses that the database server decides how to evaluate a query.

To this point, you have learned the FROM and WHERE clauses’ basics. Now it is time to learn

how to fine-tune them for better results and happier users.

266 HOUR 17: Improving Database Performance

Database Tuning Versus SQL Statement
Tuning
Before continuing with your SQL statement tuning lesson, it is important to under-

stand the difference between tuning a database and tuning the SQL statements that

access the database.

Database tuning is the process of tuning the actual database, which encompasses the

allocated memory, disk usage, CPU, I/O, and underlying database processes. Tuning

a database also involves the management and manipulation of the database struc-

ture itself, such as the design and layout of tables and indexes. Additionally, data-

base tuning often involves the modification of the database architecture to optimize

the use of the hardware resources available. Many other things need to be consid-

ered when tuning a database, but these tasks are normally accomplished by the

database administrator (DBA) in conjunction with a system administrator. The

objective of database tuning is to ensure that the database has been designed in a

way that best accommodates expected activity within the database.

SQL tuning is the process of tuning the SQL statements that access the database.

These SQL statements include database queries and transactional operations, such

as inserts, updates, and deletes. The objective of SQL statement tuning is to formu-

late statements that most effectively access the database in its current state, taking

advantage of database and system resources and indexes. The objective is to reduce

the operational overhead of executing the query on the database.

Both database tuning and SQL statement tuning must be performed to achieve
optimal results when accessing the database. A poorly tuned database might very
well render your efforts in SQL tuning as wasted, and vice versa. Ideally, it is best
to first tune the database, ensure that indexes exist where needed, and then tune
the SQL code.

Formatting Your SQL Statement
Formatting your SQL statement sounds like an obvious task; as obvious as it might

sound, it is worth mentioning. A newcomer to SQL will probably not take into con-

sideration several things when building a SQL statement. The upcoming sections

discuss the following considerations; some are common sense, others are not so

obvious:

By the
Way

Formatting Your SQL Statement 267

. Formatting SQL statements for readability

. The order of tables in the FROM clause

. The placement of the most restrictive conditions in the WHERE clause

. The placement of join conditions in the WHERE clause

Most relational database implementations have what is called an SQL optimizer,
which evaluates a SQL statement and determines the best method for executing
the statement based on the way a SQL statement is written and the availability of
indexes in the database. Not all optimizers are the same. Please check your
implementation or consult the database administrator to learn how the optimizer
reads SQL code. You should understand how the optimizer works to effectively
tune a SQL statement.

Formatting a Statement for Readability
Formatting a SQL statement for readability is fairly obvious, but many SQL state-

ments have not been written neatly. Although the neatness of a statement does not

affect the actual performance (the database does not care how neat the statement

appears), careful formatting is the first step in tuning a statement. When you look

at a SQL statement with tuning intentions, making the statement readable is always

the first priority. How can you determine whether the statement is written well if it is

difficult to read?

Some basic rules for making a statement readable include

. Always begin a new line with each clause in the statement—For example,

place the FROM clause on a separate line from the SELECT clause. Place the

WHERE clause on a separate line from the FROM clause, and so on.

. Use tabs or spaces for indentation when arguments of a clause in the state-

ment exceed one line.

. Use tabs and spaces consistently.

. Use table aliases when multiple tables are used in the statement—The use of

the full table name to qualify each column in the statement quickly clutters

the statement and makes reading it difficult.

. Use remarks sparingly in SQL statements if they are available within your spe-

cific implementation—Remarks are great for documentation, but too many of

them clutter a statement.

By the
Way

268 HOUR 17: Improving Database Performance

. Begin a new line with each column name in the SELECT clause if many

columns are being selected.

. Begin a new line with each table name in the FROM clause if many tables are

being used.

. Begin a new line with each condition of the WHERE clause—You can easily see

all conditions of the statement and the order in which they are used.

The following is an example of an unreadable statement:

SELECT CUSTOMER_TBL.CUST_ID, CUSTOMER_TBL.CUST_NAME,
CUSTOMER_TBL.CUST_PHONE, ORDERS_TBL.ORD_NUM, ORDERS_TBL.QTY
FROM CUSTOMER_TBL, ORDERS_TBL
WHERE CUSTOMER_TBL.CUST_ID = ORDERS_TBL.CUST_ID
AND ORDERS_TBL.QTY > 1 AND CUSTOMER_TBL.CUST_NAME LIKE ‘G%’
ORDER BY CUSTOMER_TBL.CUST_NAME;

CUST_ID CUST_NAME CUST_PHONE ORD_NUM QTY
---------- ------------------------------ ---------- ----------------- ---
287 GAVINS PLACE 3172719991 18D778 10

1 row selected.

Here the statement has been reformatted for improved readability:

SELECT C.CUST_ID,
C.CUST_NAME,
C.CUST_PHONE,
O.ORD_NUM,
O.QTY

FROM ORDERS_TBL O,
CUSTOMER_TBL C

WHERE O.CUST_ID = C.CUST_ID
AND O.QTY > 1
AND C.CUST_NAME LIKE ‘G%’

ORDER BY 2;

CUST_ID CUST_NAME CUST_PHONE ORD_NUM QTY
---------- ------------------------------ ---------- ----------------- ---
287 GAVINS PLACE 3172719991 18D778 10

1 row selected.

Both statements are exactly the same, but the second statement is much more read-

able. The second statement has been greatly simplified by using table aliases, which

have been defined in the query’s FROM clause. Spacing has been used to align the

elements of each clause, making each clause stand out.

Again, making a statement more readable does not directly improve its perform-

ance, but it assists you in making modifications and debugging a lengthy and

otherwise complex statement. Now you can easily identify the columns being

Formatting Your SQL Statement 269

selected, the tables being used, the table joins being performed, and the conditions

being placed on the query.

It is especially important to establish coding standards in a multi-user program-
ming environment. If all code is consistently formatted, shared code and modifica-
tions to code are much easier to manage.

Arrangement of Tables in the FROM Clause
The arrangement or order of tables in the FROM clause might make a difference,

depending on how the optimizer reads the SQL statement. For example, it might be

more beneficial to list the smaller tables first and the larger tables last. Some users

with lots of experience have found that listing the larger tables last in the FROM

clause proves to be more efficient.

The following is an example FROM clause:

FROM SMALLEST TABLE,
LARGEST TABLE

Check your particular implementation for performance tips, if any, when listing mul-
tiple tables in the FROM clause.

Order of Join Conditions
As you learned in Hour 13, “Joining Tables in Queries,” most joins use a base table

to link tables that have one or more common columns on which to join. The base

table is the main table that most or all tables are joined to in a query. The column

from the base table is normally placed on the right side of a join operation in the

WHERE clause. The tables being joined to the base table are normally in order from

smallest to largest, similar to the tables listed in the FROM clause.

If a base table doesn’t exist, the tables should be listed from smallest to largest, with

the largest tables on the right side of the join operation in the WHERE clause. The join

conditions should be in the first position(s) of the WHERE clause followed by the filter

clause(s), as shown in the following:

FROM TABLE1, Smallest table
TABLE2, to
TABLE3 Largest table, also base table

WHERE TABLE1.COLUMN = TABLE3.COLUMN Join condition
AND TABLE2.COLUMN = TABLE3.COLUMN Join condition

[AND CONDITION1] Filter condition
[AND CONDITION2] Filter condition

By the
Way

By the
Way

270 HOUR 17: Improving Database Performance

In this example, TABLE3 is used as the base table. TABLE1 and TABLE2 are joined to

TABLE3 for both simplicity and proven efficiency.

Because joins typically return a high percentage of rows of data from the table(s),
join conditions should be evaluated after more restrictive conditions.

The Most Restrictive Condition
The most restrictive condition is typically the driving factor in achieving optimal

performance for a SQL query. What is the most restrictive condition? The condition

in the WHERE clause of a statement that returns the fewest rows of data. Conversely,

the least restrictive condition is the condition in a statement that returns the most

rows of data. This hour is concerned with the most restrictive condition simply

because it is this condition that filters the data that is to be returned by the query

the most.

It should be your goal for the SQL optimizer to evaluate the most restrictive condi-

tion first because a smaller subset of data is returned by the condition, thus reducing

the query’s overhead. The effective placement of the most restrictive condition in the

query requires knowledge of how the optimizer operates. The optimizers, in some

cases, seem to read from the bottom of the WHERE clause up. Therefore, you would

want to place the most restrictive condition last in the WHERE clause, which is the

condition that is first read by the optimizer.

FROM TABLE1, Smallest table
TABLE2, to
TABLE3 Largest table, also base table

WHERE TABLE1.COLUMN = TABLE3.COLUMN Join condition
AND TABLE2.COLUMN = TABLE3.COLUMN Join condition

[AND CONDITION1] Least restrictive
[AND CONDITION2] Most restrictive

If you do not know how your particular implementation’s SQL optimizer works, the
DBA does not know, or you do not have sufficient documentation, you can execute
a large query that takes a while to run, and then rearrange conditions in the
WHERE clause. Be sure to record the time it takes the query to complete each time
you make changes. You should only have to run a couple of tests to figure out
whether the optimizer reads the WHERE clause from the top to bottom or bottom to
top. If possible, it is best to turn off database caching during the testing for more
accurate results.

Did you
Know?

Did you
Know?

Formatting Your SQL Statement 271

The following is an example using a phony table:

Table: TEST

Row count: 95,867

Conditions: WHERE LAST_NAME = ‘SMITH’

returns 2,000 rows

WHERE CITY = ‘INDIANAPOLIS’

returns 30,000 rows

Most restrictive condition is: WHERE LAST_NAME = ‘SMITH’

The following is the first query:

SELECT COUNT(*)
FROM TEST
WHERE LAST_NAME = ‘SMITH’

AND CITY = ‘INDIANAPOLIS’;

COUNT(*)

1,024

The following is the second query:

SELECT COUNT(*)
FROM TEST
WHERE CITY = ‘INDIANAPOLIS’

AND LAST_NAME = ‘SMITH’;

COUNT(*)

1,024

Suppose that the first query completed in 20 seconds, whereas the second query

completed in 10 seconds. Because the second query returned faster results and the

most restrictive condition was listed last in the WHERE clause, it would be safe to

assume that the optimizer reads the WHERE clause from the bottom up.

It is a good practice to try to use an indexed column as the most restrictive condi-
tion in a query. Indexes generally improve a query’s performance.

By the
Way

272 HOUR 17: Improving Database Performance

Full Table Scans
A full table scan occurs when an index is either not used or there is no index on the

table(s) being used by the SQL statement. Full table scans usually return data much

slower than when an index is used. The larger the table, the slower that data is

returned when a full table scan is performed. The query optimizer decides whether

to use an index when executing the SQL statement. The index is used—if it exists—

in most cases.

Some implementations have sophisticated query optimizers that can decide whether

an index should be used. Decisions such as this are based on statistics that are gath-

ered on database objects, such as the size of an object and the estimated number of

rows that are returned by a condition with an indexed column. Please refer to your

implementation documentation for specifics on the decision-making capabilities of

your relational database’s optimizer.

Full table scans should be avoided when reading large tables. For example, a full

table scan is performed when a table that does not have an index is read, which

usually takes a considerably longer time to return the data. An index should be con-

sidered for the majority of larger tables. On small tables, as previously mentioned,

the optimizer might choose the full table scan over using the index, if the table is

indexed. In the case of a small table with an index, consideration should be given

to dropping the index and reserving the space that was used for the index for other

needy objects in the database.

The easiest and most obvious way to avoid a full table scan—outside of ensuring
that indexes exist on the table—is to use conditions in a query’s WHERE clause to
filter data to be returned.

The following is a reminder of data that should be indexed:

. Columns used as primary keys

. Columns used as foreign keys

. Columns frequently used to join tables

. Columns frequently used as conditions in a query

. Columns that have a high percentage of unique values

Did you
Know?

Other Performance Considerations 273

Sometimes full table scans are good. Full table scans should be performed on
queries against small tables or queries whose conditions return a high percentage
of rows. The easiest way to force a full table scan is to avoid creating an index on
the table.

Other Performance Considerations
Other performance considerations should be noted when tuning SQL statements.

The following concepts are discussed in the next sections:

. Using the LIKE operator and wildcards

. Avoiding the OR operator

. Avoiding the HAVING clause

. Avoiding large sort operations

. Using stored procedures

Using the LIKE Operator and Wildcards
The LIKE operator is a useful tool that is used to place conditions on a query in a

flexible manner. The placement and use of wildcards in a query can eliminate

many possibilities of data that should be retrieved. Wildcards are very flexible for

queries that search for similar data (data that is not equivalent to an exact value

specified).

Suppose you want to write a query using the EMPLOYEE_TBL selecting the EMP_ID,

LAST_NAME, FIRST_NAME, and STATE columns. You need to know the employee iden-

tification, name, and state for all the employees with the last name Stevens. Three

SQL statement examples with different wildcard placements serve as examples.

The following is Query 1:

SELECT EMP_ID, LAST_NAME, FIRST_NAME, STATE
FROM EMPLOYEE_TBL
WHERE LAST_NAME LIKE ‘STEVENS’;

Next is Query 2:

SELECT EMP_ID, LAST_NAME, FIRST_NAME, STATE
FROM EMPLOYEE_TBL
WHERE LAST_NAME LIKE ‘%EVENS%’;

By the
Way

274 HOUR 17: Improving Database Performance

Here is the last query, Query 3:

SELECT EMP_ID, LAST_NAME, FIRST_NAME, STATE
FROM EMPLOYEE_TBL
WHERE LAST_NAME LIKE ‘ST%’;

The SQL statements do not necessarily return the same results. More than likely,

Query 1 will return more rows than the other two queries. Query 2 and Query 3 are

more specific as to the desired returned data, thus eliminating more possibilities

than Query 1 and speeding data retrieval time. Additionally, Query 3 is probably

faster than Query 2 because the first letters of the string for which you are searching

are specified (and the column LAST_NAME is likely to be indexed). Query 3 can take

advantage of an index.

With Query 1, you might retrieve all individuals with the last name Stevens; but
can’t Stevens also be spelled different ways? Query 2 picks up all individuals with
the last name Stevens and its various spellings. Query 3 also picks up any last
name starting with ST; this is the only way to assure that you receive all the
Stevens (or Stephens).

Avoiding the OR Operator
Rewriting the SQL statement using the IN predicate instead of the OR operator con-

sistently and substantially improves data retrieval speed. Your implementation will

tell you about tools you can use to time or check the performance between the OR

operator and the IN predicate. An example of how to rewrite a SQL statement by

taking the OR operator out and replacing the OR operator with the IN predicate fol-

lows.

Hour 8, “Using Operators to Categorize Data,” can be referenced for the use of
the OR operator and the IN predicate.

The following is a query using the OR operator:

SELECT EMP_ID, LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE CITY = ‘INDIANAPOLIS’

OR CITY = ‘BROWNSBURG’
OR CITY = ‘GREENFIELD’;

The following is the same query using the IN operator:

SELECT EMP_ID, LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE CITY IN (‘INDIANAPOLIS’, ‘BROWNSBURG’,

‘GREENFIELD’);

By the
Way

By the
Way

Other Performance Considerations 275

The SQL statements retrieve the very same data; however, through testing and expe-

rience, you find that the data retrieval is measurably faster by replacing OR condi-

tions with the IN predicate, as in the second query.

Avoiding the HAVING Clause
The HAVING clause is a useful clause; however, you can’t use it without cost. Using

the HAVING clause gives the SQL optimizer extra work, which results in extra time. If

possible, SQL statements should be written without using the HAVING clause.

Avoiding Large Sort Operations
Large sort operations mean the use of the ORDER BY, GROUP BY, and HAVING clauses.

Subsets of data must be stored in memory or to disk (if there is not enough space in

allotted memory) whenever sort operations are performed. You must often sort data.

The main point is that these sort operations affect a SQL statement’s response time.

Because large sort operations cannot always be avoided, it is best to schedule queries

with large sorts as periodic batch processes during off-peak database usage so that

the performance of most user processes is not affected.

Using Stored Procedures
Stored procedures should be created for SQL statements executed on a regular

basis—particularly large transactions or queries. Stored procedures are simply SQL

statements that are compiled and permanently stored in the database in an exe-

cutable format.

Normally, when a SQL statement is issued in the database, the database must check

the syntax and convert the statement into an executable format within the data-

base (called parsing). The statement, after it is parsed, is stored in memory; however,

it is not permanent. This means that when memory is needed for other operations,

the statement might be ejected from memory. In the case of stored procedures, the

SQL statement is always available in an executable format and remains in the data-

base until it is dropped like any other database object. Stored procedures are dis-

cussed in more detail in Hour 22, “Advanced SQL Topics.”

Disabling Indexes During Batch Loads
When a user submits a transaction to the database (INSERT, UPDATE, or DELETE), an

entry is made to both the database table and any indexes associated with the table

being modified. This means that if there is an index on the EMPLOYEE table, and a

user updates the EMPLOYEE table, an update also occurs to the index associated with

276 HOUR 17: Improving Database Performance

the EMPLOYEE table. In a transactional environment, the fact that a write to an

index occurs every time a write to the table occurs is usually not an issue.

During batch loads, however, an index can actually cause serious performance

degradation. A batch load might consist of hundreds, thousands, or millions of

manipulation statements or transactions. Because of their volume, batch loads take

a long time to complete and are normally scheduled during off-peak hours—usually

during weekends or evenings. To optimize performance during a batch load—which

might equate to decreasing the time it takes the batch load to complete from 12

hours to 6 hours—it is recommended that the indexes associated with the table

affected during the load are dropped. When the indexes are dropped, changes are

written to the tables much faster, so the job completes faster. When the batch load is

complete, the indexes should be rebuilt. During the rebuild of the indexes, the

indexes will be populated with all the appropriate data from the tables. Although it

might take a while for an index to be created on a large table, the overall time

expended if you drop the index and rebuild it is less.

Another advantage to rebuilding an index after a batch load completes is the reduc-

tion of fragmentation that is found in the index. When a database grows, records

are added, removed, and updated, and fragmentation can occur. For any database

that experiences a lot of growth, it is a good idea to periodically drop and rebuild

large indexes. When an index is rebuilt, the number of physical extents that com-

prise the index is decreased, there is less disk I/O involved to read the index, the user

gets results faster, and everyone is happy.

Performance Tools
Many relational databases have built-in tools that assist in SQL statement database

performance tuning. For example, Oracle has a tool called EXPLAIN PLAN that

shows the user the execution plan of a SQL statement. Another tool in Oracle meas-

ures the actual elapsed time of a SQL statement is TKPROF. In SQL Server, the Query

Analyzer has several options to provide you with an estimated execution plan or

statistics from the executed query. Check with your DBA and implementation docu-

mentation for more information on tools that might be available to you.

Summary
You have learned the meaning of tuning SQL statements in a relational database.

You have learned that there are two basic types of tuning: database tuning and SQL

statement tuning—both of which are vital to the efficient operation of the database

and SQL statements within it. Each is equally important and cannot be optimally

Q&A 277

tuned without the other. Tuning the database falls to the DBA, whereas tuning SQL

statements falls to the individuals writing the statements. This book is more con-

cerned with the latter.

You have read about methods for tuning a SQL statement, starting with a statement’s

actual readability, which does not directly improve performance but aids the pro-

grammer in the development and management of statements. One of the main

issues in SQL statement performance is the use of indexes. There are times to use

indexes and times to avoid using them. A full table scan is performed when a table is

read and an index is not used. In a full table scan, each row of data in a table is

completely read. Other considerations for statement tuning, such as the arrangement

of elements in a query, were discussed. Of foremost importance is the placement of

the most restrictive condition in a statement’s WHERE clause. For all measures taken to

improve SQL statement performance, it is important to understand the data itself,

database design and relationships, and the users’ needs as far as accessing the

database.

Like building indexes on tables, SQL statement tuning often involves extensive

testing, which can be qualified as trial and error. There is no one way to tune a

database or SQL statements within a database. All databases are different, as the

business needs for each company are different. These differences affect the data

within the database and the methods in which the data is retrieved. It is your job to

crack the riddle of the most efficient SQL statement design for optimal database per-

formance.

Q&A
Q. By following what I have learned about performance, what realistic perform-

ance gains, as far as data retrieval time, can I really expect to see?

A. Realistically, you could see performance gains from fractions of a second to

minutes, hours, or even days.

Q. How can I test my SQL statements for performance?

A. Each implementation should have a tool or system to check performance.

Oracle7 was used to test the SQL statements in this book. Oracle has several

tools for use in checking performance. Some of these tools are the EXPLAIN

PLAN, TKPROF, and SET commands. Check your particular implementation for

tools that are similar to Oracle’s.

278 HOUR 17: Improving Database Performance

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. Would the use of a unique index on a small table be of any benefit?

2. What happens when the optimizer chooses not to use an index on a table

when a query has been executed?

3. Should the most restrictive clause(s) be placed before the join condition(s) or

after the join conditions in the WHERE clause?

Exercises
1. Rewrite the following SQL statements to improve their performance. Use the

EMPLOYEE_TBL and the EMPLOYEE_PAY_TBL as described here:

EMPLOYEE_TBL
EMP_ID VARCHAR(9) NOT NULL Primary key,
LAST_NAME VARCHAR(15) NOT NULL,
FIRST_NAME VARCHAR(15) NOT NULL,
MIDDLE_NAME VARCHAR(15),
ADDRESS VARCHAR(30) NOT NULL,
CITY VARCHAR(15) NOT NULL,
STATE VARCHAR(2) NOT NULL,
ZIP INTEGER(5) NOT NULL,
PHONE VARCHAR(10),
PAGER VARCHAR(10),
CONSTRAINT EMP_PK PRIMARY KEY (EMP_ID)

EMPLOYEE_PAY_TBL
EMP_ID VARCHAR(9) NOT NULL primary key,
POSITION VARCHAR(15) NOT NULL,
DATE_HIRE DATETIME,
PAY_RATE DECIMAL(4,2) NOT NULL,
DATE_LAST_RAISE DATETIME,
SALARY DECIMAL(8,2),
BONUS DECIMAL(8,2),
CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID)
REFERENCES EMPLOYEE_TBL (EMP_ID)

Workshop 279

A.

SELECT EMP_ID, LAST_NAME, FIRST_NAME,
PHONE

FROM EMPLOYEE_TBL
WHERE SUBSTRING(PHONE, 1, 3) = ‘317’ OR

SUBSTRING(PHONE, 1, 3) = ‘812’ OR
SUBSTRING(PHONE, 1, 3) = ‘765’;

B.

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE LAST_NAME LIKE ‘%ALL%;

C.

SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME,
EP.SALARY

FROM EMPLOYEE_TBL E,
EMPLOYEE_PAY_TBL EP
WHERE LAST_NAME LIKE ‘S%’
AND E.EMP_ID = EP.EMP_ID;

This page intentionally left blank

PART VI

Using SQL to Manage Users
and Security

HOUR 18 Managing Database Users 283

HOUR 19 Managing Database Security 297

This page intentionally left blank

HOUR 18

Managing Database Users

During this hour, you learn about one of the most critical administration functions for

any relational database: managing database users. You will learn the concepts behind cre-

ating users in SQL, user security, the user versus the schema, user profiles, user attributes,

and tools users utilize.

The highlights of this hour include:
. Types of users
. User management
. The user’s place in the database
. The user versus the schema
. User sessions
. Altering a user’s attributes
. User profiles
. Dropping users from the database
. Tools utilized by users

The SQL standard refers to a database user identification as an
Authorization Identifier (authID). In most major implementations,
authIDs are referred to simply as users. This book refers to
Authorization Identifiers as users, database users, usernames, or data-
base user accounts. The SQL standard states that the Authorization
Identifier is a name by which the system knows the database user.

By the
Way

284 HOUR 18: Managing Database Users

Users Are the Reason
Users are the reason for the season—the season of designing, creating, implement-

ing, and maintaining any database. The user’s needs are taken into consideration

when the database is designed, and the final goal in implementing a database is

making the database available to users, who in turn utilize the database that you

and possibly many others have had a hand in developing.

A common perception of users is that if there were no users, nothing bad would ever

happen to the database. Although this statement reeks with truth, the database was

nevertheless created to hold data so users can function in their day-to-day jobs.

Although user management is often the database administrator’s implicit task,

other individuals sometimes take a part in the user management process. User man-

agement is vital in the life of a relational database and is ultimately managed

through the use of SQL concepts and commands, although they vary from vendor to

vendor. The ultimate goal of the database administrator in terms of user manage-

ment is to strike the proper balance between giving users access to the data that

they need and still maintaining the integrity of the data within the system.

Types of Users
There are several types of database users:

. Data entry clerks

. Programmers

. System engineers

. Database administrators

. System analysts

. Developers

. Testers

. Management

. End user

Each type of user has its own set of job functions (and problems), all of which are

critical to their daily survival and job security. Furthermore, each type of user has

different levels of authority and its own place in the database.

Users Are the Reason 285

Titles, roles, and duties of users vary widely (and wildly) from workplace to work-
place, depending on the size of each organization and each organization’s specific
data processing needs. One organization’s DBA might be another organization’s
“computer guy.”

Who Manages Users?
A company’s management staff is responsible for the day-to-day management of

users; however, the database administrator or other assigned individuals are ulti-

mately responsible for the management of users within the database.

The database administrator (DBA) usually handles the creation of the database user

accounts, roles, privileges, and profiles, as well as dropping those user accounts from

the database. Because it can become an overwhelming task in a large and active

environment, some companies have a security officer who assists the DBA with the

user management process.

The security officer, if one is assigned, is usually responsible for the paperwork, relay-

ing to the DBA a user’s job requirements and letting the DBA know when a user no

longer requires access to the database.

The system analyst, or system administrator, is usually responsible for the operating

system security, which entails creating users and assigning appropriate privileges.

The security officer also might assist the system analyst in the same way he does the

database administrator.

Maintaining an orderly way in which to assign and remove permissions as well as

documenting the changes will make the process much easier to maintain.

Documentation also allows you to have a paper trail in which to point to when the

security of your system would possibly need to be audited either internally or exter-

nally. We will expand on the user management system throughout this hour.

The User’s Place in the Database
A user should be given the roles and privileges necessary to accomplish her job. No

user should have database access that extends beyond the scope of her job duties.

Protecting the data is the entire reason for setting up user accounts and security.

Data can be damaged or lost, even if unintentionally, if the wrong user has access to

the wrong data. When the user no longer requires database access, that user’s

account should be either removed from the database or disabled as quickly as

possible.

By the
Way

286 HOUR 18: Managing Database Users

User account management is vital to the protection and success of any database,
and when not managed systematically, it often fails. User account management is
one of the simplest database management tasks, theoretically, but is often com-
plicated by politics and communication problems.

All users have their place in the database; some have more responsibilities and dif-

ferent duties than others. Database users are like parts of a human body—all work

together in unison (at least that is the way it is supposed to be) to accomplish some

goal.

How Does a User Differ from a Schema?
A database’s objects are associated with database user accounts, called schemas. A

schema is a set of database objects that a database user owns. This database user is

called the schema owner. The difference between a regular database user and a

schema owner is that a schema owner owns objects within the database, whereas

most users do not own objects. Most users are given database accounts to access

data that is contained in other schemas. Because the schema owner actually owns

these objects, he has complete control over them.

The Management Process
A stable user management system is mandatory for data security in any database

system. The user management system starts with the new user’s immediate supervi-

sor, who should initiate the access request, and then go through the company’s

approval authorities. If the request is accepted by management, it is routed to the

security officer or database administrator, who takes action. A good notification

process is necessary; the supervisor and the user must be notified that the user

account has been created and that access to the database has been granted. The

user account password should only be given to the user, who should immediately

change the password upon initial login to the database.

Creating Users
The creation of database users involves the use of SQL commands within the data-

base. There is no one standard command for creating database users in SQL; each

implementation has a method for doing so. Some implementations have similar

commands, while others vary in syntax. The basic concept is the same, regardless of

the implementation. There are several graphical user interface (GUI) tools on the

market that can be used for user management.

By the
Way

The Management Process 287

When the DBA or assigned security officer receives a user account request, the

request should be analyzed for the necessary information. The information should

include your particular company’s requirements for establishing a user ID.

Some items that should be included are Social Security number, full name, address,

phone number, office or department name, assigned database, and sometimes, a

suggested user ID.

Syntactical examples of creating users compared between the different implementa-

tions are shown in the following sections.

You must check your particular implementation for the creation of users. Also
refer to company policies and procedures when creating and managing users. The
following section compares the user creation processes in Oracle, MySQL,
Sybase, and Microsoft SQL Server.

Creating Users in Oracle
Following are the steps for creating a user account in an Oracle database:

1. Create the database user account with default settings.

2. Grant appropriate privileges to the user account.

The following is the syntax for creating a user:

CREATE USER USER_ID
IDENTIFIED BY [PASSWORD | EXTERNALLY]
[DEFAULT TABLESPACE TABLESPACE_NAME]
[TEMPORARY TABLESPACE TABLESPACE_NAME]
[QUOTA (INTEGER (K | M) | UNLIMITED) ON TABLESPACE_NAME]
[PROFILE PROFILE_TYPE]
[PASSWORD EXPIRE |ACCOUNT [LOCK | UNLOCK]

The previous syntax for creating users can be used to add a user to an Oracle
database, as well as a few other major relational database implementations.

The CREATE USER command is not supported by MySQL. Users can be managed
using the mysqladmin tool. After a local user account is set up on a Windows
computer, a login is not required. However, a user should be set up for each user
requiring access to the database in a multiuser environment using mysqladmin.

If you are not using Oracle, do not overly concern yourself with some of the options

in this syntax. A tablespace is a logical area that houses database objects, such as

tables and indexes, which is managed by the DBA. The DEFAULT TABLESPACE is the

By the
Way

By the
Way

288 HOUR 18: Managing Database Users

tablespace in which objects created by the particular user reside. The TEMPORARY

TABLESPACE is the tablespace used for sort operations (table joins, ORDER BY, GROUP

BY) from queries executed by the user. The QUOTA is the space limit placed on a par-

ticular tablespace to which the user has access. PROFILE is a particular database

profile that has been assigned to the user.

The following is the syntax for granting privileges to the user account:

GRANT PRIV1 [, PRIV2, ...] TO USERNAME | ROLE [, USERNAME]

The GRANT statement can grant one or more privileges to one or more users in the

same statement. The privilege(s) can also be granted to a role, which in turn can be

granted to a user(s).

In MySQL, the GRANT command can be used to grant users on the local computer to

the current database. For example:

GRANT USAGE ON *.* TO USER@LOCALHOST IDENTIFIED BY ‘PASSWORD’;

Additional privileges can be granted to a user as follows:

GRANT SELECT ON TABLENAME TO USER@LOCALHOST;

For the most part, multiuser setup and access for MySQL is only required in multi-

user environments.

Creating Users in Sybase and Microsoft SQL Server
The steps for creating a user account in a Sybase and Microsoft SQL Server database

follow:

1. Create the database user account for SQL Server and assign a password and a

default database for the user.

2. Add the user to the appropriate database(s).

3. Grant appropriate privileges to the user account.

The following is the syntax for creating the user account:

SP_ADDLOGIN USER_ID ,PASSWORD [, DEFAULT_DATABASE]

The following is the syntax for adding the user to a database:

SP_ADDUSER USER_ID [, NAME_IN_DB [, GRPNAME]]

The Management Process 289

The following is the syntax for granting privileges to the user account:

GRANT PRIV1 [, PRIV2, ...] TO USER_ID

The discussion of privileges within a relational database is further elaborated on
during Hour 19, “Managing Database Security.”

Creating Users in MySQL
The steps for creating a user account in MySQL follow:

1. Create the user account within the database.

2. Grant the appropriate privileges to the user account.

The syntax for creating the user account is very similar to the syntax used in Oracle.

SELECT USER user [IDENTIFIED BY [PASSWORD] ‘password’]

The syntax for granting the user’s privileges is also similar to the Oracle version:

GRANT priv_type [(column_list)] [, priv_type [(column_list)]] ...
ON [object_type]

{tbl_name | * | *.* | db_name.* | db_name.routine_name}
TO user

Creating Schemas
Schemas are created via the CREATE SCHEMA statement.

The syntax is as follows:

CREATE SCHEMA [SCHEMA_NAME] [USER_ID]
[DEFAULT CHARACTER SET CHARACTER_SET]
[PATH SCHEMA NAME [,SCHEMA NAME]]
[SCHEMA_ELEMENT_LIST]

The following is an example:

CREATE SCHEMA USER1
CREATE TABLE TBL1

(COLUMN1 DATATYPE [NOT NULL],
COLUMN2 DATATYPE [NOT NULL]...)

CREATE TABLE TBL2
(COLUMN1 DATATYPE [NOT NULL],
COLUMN2 DATATYPE [NOT NULL]...)

GRANT SELECT ON TBL1 TO USER2
GRANT SELECT ON TBL2 TO USER2
[OTHER DDL COMMANDS ...]

By the
Way

290 HOUR 18: Managing Database Users

The following is the application of the CREATE SCHEMA command in one implemen-

tation:

CREATE SCHEMA AUTHORIZATION USER1
CREATE TABLE EMP

(ID NUMBER NOT NULL,
NAME VARCHAR2(10) NOT NULL)

CREATE TABLE CUST
(ID NUMBER NOT NULL,
NAME VARCHAR2(10) NOT NULL)

GRANT SELECT ON TBL1 TO USER2
GRANT SELECT ON TBL2 TO USER2;

Schema created.

The AUTHORIZATION keyword is added to the CREATE SCHEMA command. This exam-

ple was performed in an Oracle database. This goes to show you, as you have also

seen in this book’s previous examples, that vendors’ syntax for commands often

varies in their implementations.

Some implementations might not support the CREATE SCHEMA command.
However, schemas can be implicitly created when a user creates objects. The
CREATE SCHEMA command is simply a single-step method of accomplishing this
task. After objects have been created by a user, the user can grant privileges that
allow access to the user’s objects to other users.

The CREATE SCHEMA command is not supported by MySQL. A schema in MySQL is
considered to be a database. So you would use the CREATE DATABASE command
to essentially create a schema to populate with objects.

Dropping a Schema
A schema can be removed from the database using the DROP SCHEMA statement.

Two options must be considered when dropping a schema. First, the RESTRICT

option. If RESTRICT is specified, an error occurs if objects currently exist in the

schema. The second option is CASCADE. The CASCADE option must be used if any

objects currently exist in the schema. Remember that when you drop a schema, you

also drop all database objects associated with that schema.

The syntax is as follows:

DROP SCHEMA SCHEMA_NAME { RESTRICT | CASCADE }

By the
Way

The Management Process 291

The absence of objects in a schema is possible because objects, such as tables,
can be dropped using the DROP TABLE command. Some implementations might
have a procedure or command that drops a user, which can also be used to drop
a schema. If the DROP SCHEMA command is not available in your implementation,
you can remove a schema by removing the user that owns the schema objects.

Altering Users
A very important part of managing users is the ability to alter a user’s attributes

after user creation. Life for the DBA would be a lot simpler if personnel with user

accounts were never promoted, never left the company, or if the addition of new

employees was minimized. In the real world, high personnel turnover and changes

in users’ responsibilities are a reality and a significant factor in user management.

Nearly everyone changes jobs or job duties. Therefore, user privileges in a database

must be adjusted to fit a user’s needs.

The following is Oracle’s example of altering the current state of a user:

ALTER USER USER_ID [IDENTIFIED BY PASSWORD | EXTERNALLY |GLOBALLY AS ‘CN=USER’]
[DEFAULT TABLESPACE TABLESPACE_NAME]
[TEMPORARY TABLESPACE TABLESPACE_NAME]
[QUOTA INTEGER K|M |UNLIMITED ON TABLESPACE_NAME]
[PROFILE PROFILE_NAME]
[PASSWORD EXPIRE]
[ACCOUNT [LOCK |UNLOCK]]
[DEFAULT ROLE ROLE1 [, ROLE2] | ALL
[EXCEPT ROLE1 [, ROLE2 | NONE]]

Many of the user’s attributes can be altered in this syntax. Unfortunately, not all

implementations provide a simple command that allows the manipulation of data-

base users.

MySQL, for instance, uses several means to modify the user account. For example,

you would use the following syntax to reset the user’s password in MySQL:

UPDATE mysql.user SET Password=PASSWORD(‘new password’)
WHERE user=’username’;

Additionally, you might want to change the username for the user. You could

accomplish this with the following syntax:

RENAME USER old_username TO new_username;

Some implementations also provide GUI tools that allow users to be created, modi-

fied, and removed.

By the
Way

292 HOUR 18: Managing Database Users

You must check your particular implementation for the correct syntax for altering
users. Oracle’s ALTER USER syntax is shown here. In most major implementa-
tions, there is a tool that is used to alter or change a user’s roles, privileges,
attributes, and password.

A user can change an established password. You must check your particular
implementation for the exact syntax or tool used to reset a password. The ALTER
USER command is typically used in Oracle.

User Sessions
A user database session is the time that begins at database login and ends when a

user logs out. During the time a user is logged in to the database (a user session),

the user can perform various actions that have been granted, such as queries and

transactions.

An SQL session is initiated when a user connects from the client to the server using

the CONNECT statement. Upon the establishment of the connection and the initiation

of the session, any number of transactions can be started and performed until the

connection is disconnected; at that time, the database user session terminates.

Users can explicitly connect and disconnect from the database, starting and termi-

nating SQL sessions, using commands such as the following:

CONNECT TO DEFAULT | STRING1 [AS STRING2] [USER STRING3]

DISCONNECT DEFAULT | CURRENT | ALL | STRING

SET CONNECTION DEFAULT | STRING

Remember that the syntax varies between implementations. In addition, most
database users do not manually issue the commands to connect or disconnect
from the database. Most users access the database through a vendor-provided or
third-party tool that prompts the user for a username and password, which in turn
connects to the database and initiates a database user session.

User sessions can be—and often are—monitored by the DBA or other personnel hav-

ing interest in user activities. A user session is associated with a particular user

account when a user is monitored. A database user session is ultimately represented

as a process on the host operating system.

By the
Way

By the
Way

Tools Utilized by Database Users 293

Removing User Access
Removing a user from the database or disallowing a user’s access can easily be

accomplished through a couple of simple commands. Once again, however, varia-

tions among different implementations are numerous, so you must check your par-

ticular implementation for the syntax or tools used to accomplish user removal or

access revocation.

Following are methods used for removing user database access:

. Change the user’s password.

. Drop the user account from the database.

. Revoke appropriate previously granted privileges from the user.

The DROP command can be used in some implementations to drop a user from the

database:

DROP USER USER_ID [CASCADE]

The REVOKE command is the counterpart of the GRANT command in many imple-

mentations, allowing privileges that have been granted to a user to be revoked. An

example syntax for this command for SQL Server, Oracle, and MySQL is as follows:

REVOKE PRIV1 [,PRIV2, ...] FROM USERNAME

Tools Utilized by Database Users
Some people say that you do not need to know SQL to perform database queries. In

a sense, they might be correct; however, knowing SQL definitely helps when query-

ing a database, even when using GUI tools. Even though GUI tools are good and

should be used when available, it is most beneficial to understand what is happen-

ing behind the scenes so you can maximize the efficiency of utilizing these user-

friendly tools.

Many GUI tools that aid the database user automatically generate SQL code by nav-

igating through windows, responding to prompts, and selecting options. There are

reporting tools that generate reports. Forms can be created for users to query,

update, insert, or delete data from a database. There are tools that convert data into

graphs and charts. There are database administration tools that are used to monitor

database performance and some that allow remote connectivity to a database.

Database vendors provide some of these tools, whereas others are provided as third-

party tools from other vendors.

294 HOUR 18: Managing Database Users

Summary
All databases have users, whether one or thousands. The user is the reason for the

database.

There are three basic steps in the management of users. First, the database user

account must be created. Second, privileges must be granted to the user to accom-

modate the tasks the user must perform within the database. Finally, a user account

must either be removed from the database or certain privileges within the database

must be revoked from a user.

Some of the most common tasks of managing users have been touched on; too

much detail is avoided here, because most databases differ in the user management

process. However, it is important to discuss user management due to its relationship

with SQL. Many of the commands used to manage users have not been defined or

discussed in great detail by the ANSI standard, but the concept remains the same.

Q&A
Q. Is there a SQL standard for adding users to a database?

A. Some commands and concepts are provided by ANSI, although each imple-

mentation and each company has its own commands, tools, and rules for cre-

ating or adding users to a database.

Q. Can user access be temporarily suspended without removing the user ID
completely from the database?

A. Yes. User access can temporarily be suspended by simply changing the user’s

password or by revoking privileges that allow the user to connect to the data-

base. The functionality of the user account can be reinstated by changing and

issuing the password to the user or by granting privileges to the user that

might have been revoked.

Q. Can a user change his own password?

A. Yes, in most major implementations. Upon user creation or addition to the

database, a generic password is usually given to the user and must be

changed as quickly as possible by the user to a password of his choice. After

this has been accomplished, even the DBA does not know the user’s password.

Workshop 295

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. What command is used to establish a session?

2. Which option must be used to drop a schema that still contains database

objects?

3. What command is used in MySQL to create a schema?

4. What statement is used to remove a database privilege?

5. What command creates a grouping or collection of tables, views, and privi-

leges?

Exercises
1. Describe how you would create a new user ‘John’ in your learnsql database.

2. How would you grant access to the Employee_tbl to your new user ‘John’?

3. Describe how you would assign permissions to all objects within the learnsql

database to ‘John’.

4. Describe how you would revoke the previous privileges from ‘John’ and then

remove his account.

5. At the mysql> prompt, type the following to show the status of your current

MySQL session:

status;

This page intentionally left blank

HOUR 19

Managing Database Security

During this hour, you learn the basics of implementing and managing security within a

relational database using SQL and SQL-related commands. Each major implementation

differs on syntax with its security commands, but the overall security for the relational

database follows the same basic guidelines discussed in the ANSI standard. You must

check your particular implementation for syntax and any special guidelines for security.

The highlights of this hour include
. Database security
. Security versus user management
. Database system privileges
. Database object privileges
. Granting privileges to users
. Revoking privileges from users
. Security features in the database

What Is Database Security?
Database security is simply the process of protecting the data from unauthorized usage.

Unauthorized usage includes data access by database users who should have access to

part of the database, but not all parts. This protection also includes the act of policing

against unauthorized connectivity and distribution of privileges. Many user levels exist in

a database, from the database creator to individuals responsible for maintaining the data-

base (such as the database administrator [DBA]) to database programmers to end users.

End users, although individuals with the most limited access, are the users for which the

database exists. Each user has a different level of access to the database and should be

limited to the fewest number of privileges needed to perform his particular job.

298 HOUR 19: Managing Database Security

You might be wondering what the difference between user management and data-

base security is. After all, the previous hour discussed user management, which

seems to cover security. Although user management and database security are defi-

nitely related, each has its own purpose and work together to achieve a secure data-

base.

A well-planned and maintained user management program goes hand-in-hand

with the overall security of a database. Users are assigned user accounts and pass-

words that give the users general access to the database. The user accounts within

the database should be stored with information, such as the user’s actual name, the

office and department in which the user works, a telephone number or extension,

and the database name to which the user has access. Personal user information

should only be accessible to the DBA. An initial password for the database user

account is assigned by the DBA or security officer and should be changed immedi-

ately by the new user. Remember that the DBA does not need nor should want to

know the individual’s password. This ensures a separation of duties and protects the

DBA’s integrity should possible problems with a user’s account arise.

Security entails more; for instance, if a user no longer requires certain privileges

granted to her, those privileges should be revoked. If a user no longer requires access

to the database, the user account should be dropped from the database.

Generally, user management is the process of creating user accounts, removing user

accounts, and keeping track of users’ actions within the database. Database security

is going a step further by granting privileges for specific database access, revoking

those privileges from users, and taking measures to protect other parts of the data-

base, such as the underlying database files.

Because this is a SQL book, not a database book, it focuses on database privi-
leges. However, you should keep in mind other aspects to database security, such
as the protection of underlying database files, which holds equal importance with
the distribution of database privileges. High-level database security can become
complex and differs immensely between relational database implementations. If
you would like to learn more about database security, you can find information on
The Center for Internet Security’s web page: http://www.cisecurity.org/.

What Are Privileges?
Privileges are authority levels used to access the database itself, access objects within

the database, manipulate data in the database, and perform various administrative

functions within the database. Privileges are issued via the GRANT command and are

taken away via the REVOKE command.

By the
Way

http://www.cisecurity.org/

What Are Privileges? 299

Just because a user can connect to a database does not mean that the user can

access data within a database. Access to data within the database is handled

through these privileges. The two types of privileges are system privileges and object

privileges.

System Privileges
System privileges are those that allow database users to perform administrative

actions within the database, such as creating a database, dropping a database, cre-

ating user accounts, dropping users, dropping and altering database objects, alter-

ing the state of objects, altering the state of the database, and other actions that

could result in serious repercussions if not carefully used.

System privileges vary greatly among the different relational database vendors, so

you must check your particular implementation for all the available system privi-

leges and their correct usage.

The following are some common system privileges in Sybase:

. CREATE DATABASE

. CREATE DEFAULT

. CREATE PROCEDURE

. CREATE RULE

. CREATE VIEW

. DUMP DATABASE

. DUMP TRANSACTION

. EXECUTE

The following are some common system privileges in Oracle:

. CREATE TABLE

. CREATE ANY TABLE

. ALTER ANY TABLE

. DROP TABLE

. CREATE USER

. DROP USER

. ALTER USER

300 HOUR 19: Managing Database Security

. ALTER DATABASE

. ALTER SYSTEM

. BACKUP ANY TABLE

. SELECT ANY TABLE

The following are some common global (system) privileges in MySQL:

. CREATE

. DROP

. GRANT

. REFERENCES

. FILE

. PROCESS

. RELOAD

. SHUTDOWN

MySQL has global privileges and object privileges. Global privileges, similar to sys-
tem privileges, deal with user access to all database objects.

Object Privileges
Object privileges are authority levels on objects, meaning you must have been grant-

ed the appropriate privileges to perform certain operations on database objects. For

example, to select data from another user’s table, the user must first grant you

access to do so. Object privileges are granted to users in the database by the object’s

owner. Remember that this owner is also called the schema owner.

The ANSI standard for privileges includes the following object privileges:

. USAGE—Authorizes usage of a specific domain.

. SELECT—Allows access to a specific table.

. INSERT(column_name)—Allows data insertion to a specific column of a speci-

fied table.

. INSERT—Allows insertion of data into all columns of a specific table.

By the
Way

What Are Privileges? 301

. UPDATE(column_name)—Allows a specific column of a specified table to be

updated.

. UPDATE—Allows all columns of a specified table to be updated.

. REFERENCES(column_name)—Allows a reference to a specified column of a

specified table in integrity constraints; this privilege is required for all integrity

constraints.

. REFERENCES—Allows references to all columns of a specified table.

Most implementations of SQL adhere to the standard list of object privileges for con-

trolling access to database objects.

The owner of an object has been automatically granted all privileges that relate to
the objects owned. These privileges have also been granted with the GRANT
OPTION, which is a nice feature available in some SQL implementations. This fea-
ture is discussed in the “GRANT OPTION” section later this hour.

These object-level privileges should be used to grant and restrict access to objects in

a schema. These privileges can be used to protect objects in one schema from data-

base users that have access to another schema in the same database.

A variety of object privileges are available among different implementations not list-

ed in this section. The capability to delete data from another user’s object is another

common object privilege available in many implementations. Be sure to check your

implementation documentation for all the available object-level privileges.

Who Grants and Revokes Privileges?
The DBA is usually the one who issues the GRANT and REVOKE commands, although

a security administrator, if one exists, might have the authority to do so. The

authority on what to grant or revoke would come from management and would

hopefully be in writing.

The owner of an object must grant privileges to other users in the database on the

object. Even the DBA cannot grant database users privileges on objects that do not

belong to the DBA, although there are ways to work around that.

By the
Way

302 HOUR 19: Managing Database Security

Controlling User Access
User access is primarily controlled by a user account and password, but that is not

enough to access the database in most major implementations. The creation of a

user account is only the first step in allowing and controlling access to the database.

After the user account has been created, the database administrator, security officer,

or designated individual must be able to assign appropriate system-level privileges

to a user for that user to be allowed to perform actual functions within the data-

base, such as creating tables or selecting from tables. Furthermore, the schema

owner usually needs to grant database users access to objects in the schema so that

the user can do his job.

Two commands in SQL allow database access control involving the assignment of

privileges and the revocation of privileges. The GRANT and REVOKE commands are

used to distribute both system and object privileges in a relational database.

The GRANT Command
The GRANT command is used to grant both system-level and object-level privileges to

an existing database user account.

The syntax is as follows:

GRANT PRIVILEGE1 [, PRIVILEGE2][ON OBJECT]
TO USERNAME [WITH GRANT OPTION | ADMIN OPTION]

Granting one privilege to a user is as follows:

GRANT SELECT ON EMPLOYEE_TBL TO USER1;

Grant succeeded.

Granting multiple privileges to a user is as follows:

GRANT SELECT, INSERT ON EMPLOYEE_TBL TO USER1;

Grant succeeded.

Notice that when granting multiple privileges to a user in a single statement, each

privilege is separated by a comma.

Granting privileges to multiple users is as follows:

GRANT SELECT, INSERT ON EMPLOYEE_TBL TO USER1, USER2;

Grant succeeded.

Controlling User Access 303

Notice the phrase Grant succeeded, denoting the successful completion of each
grant statement. This is the feedback that you receive when you issue these
statements in the implementation used for the book examples (Oracle). Most
implementations have some sort of feedback, although the phrase used might
vary.

GRANT OPTION

GRANT OPTION is a very powerful GRANT command option. When an object’s owner

grants privileges on an object to another user with GRANT OPTION, the new user can

also grant privileges on that object to other users, even though the user does not

actually own the object. An example follows:

GRANT SELECT ON EMPLOYEE_TBL TO USER1 WITH GRANT OPTION;

Grant succeeded.

ADMIN OPTION

ADMIN OPTION is similar to GRANT OPTION in that the user that has been granted the

privileges also inherits the ability to grant those privileges to another user. GRANT

OPTION is used for object-level privileges, whereas ADMIN OPTION is used for system-

level privileges. When a user grants system privileges to another user with ADMIN

OPTION, the new user can also grant the system-level privileges to any other user. An

example follows:

GRANT CREATE TABLE TO USER1 WITH ADMIN OPTION;

Grant succeeded.

When a user that has granted privileges using either GRANT OPTION or ADMIN
OPTION has been dropped from the database, the privileges that the user granted
are disassociated with the users to whom the privileges were granted.

The REVOKE Command
The REVOKE command removes privileges that have been granted to database users.

The REVOKE command has two options: RESTRICT and CASCADE. When the RESTRICT

option is used, REVOKE succeeds only if the privileges specified explicitly in the

REVOKE statement leave no other users with abandoned privileges. The CASCADE

option revokes any privileges that would otherwise be left with other users. In other

words, if the owner of an object granted USER1 privileges with GRANT OPTION, USER1

By the
Way

By the
Way

304 HOUR 19: Managing Database Security

granted USER2 privileges with GRANT OPTION, and then the owner revokes USER1’s

privileges, CASCADE also removes the privileges from USER2.

Abandoned privileges are privileges that are left with a user who was granted privi-

leges with the GRANT OPTION from a user who has been dropped from the database

or had her privileges revoked.

The syntax for REVOKE is as follows:

REVOKE PRIVILEGE1 [, PRIVILEGE2] [GRANT OPTION FOR] ON OBJECT
FROM USER { RESTRICT | CASCADE }

The following is an example:

REVOKE INSERT ON EMPLOYEE_TBL FROM USER1;

Revoke succeeded.

Controlling Access on Individual Columns
Instead of granting object privileges (INSERT, UPDATE, or DELETE) on a table as a

whole, you can grant privileges on specific columns in the table to restrict user

access, as shown in the following example:

GRANT UPDATE (NAME) ON EMPLOYEES TO PUBLIC;

Grant succeeded.

The PUBLIC Database Account
The PUBLIC database user account is a database account that represents all users in

the database. All users are part of the public account. If a privilege is granted to

the PUBLIC account, all database users have the privilege. Likewise, if a privilege is

revoked from the PUBLIC account, the privilege is revoked from all database users,

unless that privilege was explicitly granted to a specific user. The following is an

example:

GRANT SELECT ON EMPLOYEE_TBL TO PUBLIC;

Grant succeeded.

Extreme caution should be taken when granting privileges to PUBLIC; all database
users acquire the privileges granted. Therefore, by granting permissions to public
you may unintentionally give access to data to users whom have no business
accessing it. For example, giving PUBLIC access to SELECT from the employee
salary table would give everyone whom has access to the database the rights to
see what everyone in the company is being paid!

Watch
Out!

Controlling Privileges Through Roles 305

Groups of Privileges
Some implementations have groups of privileges in the database. These groups of

permissions are referred to with different names. Having a group of privileges allows

simplicity for granting and revoking common privileges to and from users. For

example, if a group consists of ten privileges, the group can be granted to a user

instead of individually granting all ten privileges.

SQLBase has groups of privileges called authority levels, whereas these groups of priv-

ileges in Oracle are called roles. SQLBase and Oracle both include the following

groups of privileges with their implementations:

. CONNECT

. RESOURCE

. DBA

The CONNECT group allows a user to connect to the database and perform operations

on any database objects to which the user has access.

The RESOURCE group allows a user to create objects, drop objects he owns, grant

privileges to objects he owns, and so on.

The DBA group allows a user to perform any function within the database. The user

can access any database object and perform any operation with this group.

An example for granting a group of privileges to a user follows:

GRANT DBA TO USER1;

Grant succeeded.

Each implementation differs on the use of groups of database privileges. If avail-
able, this feature should be used for ease of database security administration.

Controlling Privileges Through Roles
A role is an object created in the database that contains group-like privileges. Roles

can reduce security maintenance by not having to grant explicit privileges directly

to a user. Group privilege management is much easier to handle with roles. A role’s

privileges can be changed, and such a change is transparent to the user.

By the
Way

306 HOUR 19: Managing Database Security

If a user needs SELECT and UPDATE table privileges on a table at a specified time

within an application, a role with those privileges can temporarily be assigned until

the transaction is complete.

When a role is first created, it has no real value other than being a role within a

database. It can be granted to users or other roles. Let’s say that a schema named

APP01 grants the SELECT table privilege to the RECORDS_CLERK role on the EMPLOY-

EE_PAY table. Any user or role granted the RECORDS_CLERK role now would have

SELECT privileges on the EMPLOYEE_PAY table.

Likewise, if APP01 revoked the SELECT table privilege from the RECORDS_CLERK role

on the EMPLOYEE_PAY table, any user or role granted the RECORDS_CLERK role would

no longer have SELECT privileges on that table.

Roles are not supported by MySQL. The lack of role usage is a weakness in some
implementations of SQL.

The CREATE ROLE Statement
A role is created with the CREATE ROLE statement.

CREATE ROLE role_name;

Granting privileges to roles is the same as granting privileges to a user. Study the

following example:

CREATE ROLE RECORDS_CLERK;

Role created.

GRANT SELECT, INSERT, UPDATE, DELETE ON EMPLOYEE_PAY TO RECORDS_CLERK;

Grant succeeded.

GRANT RECORDS_CLERK TO USER1;

Grant succeeded.

The DROP ROLE Statement
A role is dropped using the DROP_ROLE statement.

DROP ROLE role_name;

By the
Way

Summary 307

The following is an example:

DROP ROLE RECORDS_CLERK;

Role dropped.

The SET ROLE Statement
A role can be set for a user SQL session using the SET_ROLE statement.

SET ROLE role_name;

The following is an example:

SET ROLE RECORDS_CLERK;

Role set.

You can set more than one role at once:

SET ROLE RECORDS_CLERK, ROLE2, ROLE3;

Role set.

In some implementations, such as Oracle, all roles granted to a user are automati-

cally default roles, which means the roles will be set and available to the user as

soon as the user logs in to the database.

Summary
You were shown the basics on implementing security in a SQL database or a rela-

tional database. You learned the basics of managing database users. The first step in

implementing security at the database level for users is to create the user; after the

user has been created, the user must be assigned certain privileges that allow the

user access to specific parts of the database, and now ANSI allows the use of roles as

discussed during this hour. Privileges can be granted to users or roles.

The two types of privileges are system and object privileges. System privileges are

those that allow the user to perform various different tasks within the database,

such as actually connecting to the database, creating tables, creating users, altering

the state of the database, and so on. Object privileges are those that allow a user

access to specific objects within the database, such as the ability to select data or

manipulate data in a specific table.

308 HOUR 19: Managing Database Security

Two commands in SQL allow a user to grant and revoke privileges to and from

other users or roles in the database: GRANT and REVOKE. These two commands are

used to control the overall administration of privileges in the database. Although

there are many other considerations for implementing security in a relational data-

base, the basics that relate to the language of SQL were discussed during this hour.

Q&A
Q. If a user forgets her password, what should the user do to gain access to

the database again?

A. The user should go to her immediate management or an available help desk.

A help desk should be able to reset a user’s password. If not, the DBA or securi-

ty officer can reset the password. The user should change the password to a

password of her choosing as soon as the password is reset and the user is noti-

fied. Sometimes the DBA can affect this by setting a specific property that

forces the user to change her password on the next login. Check your particu-

lar implementation’s documentation for specifics.

Q. What could I do if I wanted to grant CONNECT to a user, but the user does
not need all the privileges that are assigned to the connect role?

A. You would simply not grant CONNECT, but only the privileges required. Should

you ever grant CONNECT and the user no longer needs all the privileges that go

with it, simply revoke CONNECT from the user and grant the specific privileges

required.

Q. Why is it so important for the new user to change the password when
received from whomever created the new user?

A. An initial password is assigned upon creation of the user ID. No one, not even

the DBA or management, should know a user’s password. The password

should be kept a secret at all times to prevent another user from logging on to

the database under another user’s account.

309

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. What option must a user have to grant another user privileges on an object

not owned by the user?

2. When privileges are granted to PUBLIC, do all database users acquire the priv-

ileges, or only specified users?

3. What privilege is required to look at data in a specific table?

4. What type of privilege is SELECT?

5. What option is used for revoking a user’s privilege to an object as well as the

other users that they might have granted privileges to by use of the GRANT

option?

Exercises
1. Log in to MySQL and type the following at the mysql> prompt to use the

default mysql database:

use mysql;

2. Type the following at the mysql> prompt to get a list of the default tables:

show tables;

3. Now, describe each one of the following tables:

describe columns_priv;
describe db;
describe host;
describe tables_priv;
describe user;

Each of these tables relates to database security in MySQL.

Workshop

310 HOUR 19: Managing Database Security

4. Create a new database user as follows:

GRANT USAGE ON *.* TO ‘STEVE@LOCALHOST’ IDENTIFIED BY ‘STEVE123’;

Although a user called STEVE has been created in the MySQL database, this

new user account is not useful unless there is a user called STEVE at the oper-

ating system level (for example, in Windows or Linux). Logins are important

for multiple user environments, such as Linux.

5. Get a list of all database users by typing the following:

SELECT * FROM USER;

PART VII

Summarized Data Structures

HOUR 20 Creating and Using Views and Synonyms 313

HOUR 21 Working with the System Catalog 329

This page intentionally left blank

HOUR 20

Creating and Using Views and
Synonyms

During this hour, you learn about performance, as well as how to create and drop views,

how to use views for security, and how to provide simplicity in data retrieval for end users

and reports. You also will read a discussion on synonyms.

The highlights of this hour include
. What views are
. How views are used
. Views and security
. Storage of views
. Creating views
. Joining views
. Data manipulation in a view
. What synonyms are
. Managing synonyms
. Creation of synonyms
. Dropping synonyms

What Is a View?
A view is a virtual table. That is, a view looks like a table and acts like a table as far as a

user is concerned, but it doesn’t require physical storage. A view is actually a composition

of a table in the form of a predefined query, which is stored in the database. For example,

a view can be created from the EMPLOYEE_TBL table that contains only the employee’s

name and address, instead of all columns in the EMPLOYEE_TBL table. A view can contain

314 HOUR 20: Creating and Using Views and Synonyms

all rows of a table or select rows from a table. A view can be created from one or

many tables.

When a view is created, a SELECT statement is actually run against the database,

which defines the view. The SELECT statement used to define the view might simply

contain column names from the table, or can be more explicitly written using vari-

ous functions and calculations to manipulate or summarize the data that the user

sees. Study the illustration of a view in Figure 20.1.

SQL
Query

TABLE

data

VIEW

reflects data
in table based

on query.

FIGURE 20.1
The view.

A view is considered a database object, although the view takes up no storage space

on its own. The main difference between a view and a table is that data in a table

consumes physical storage, whereas a view does not require physical storage

because it is actually referring to data from a table.

A view is used in the same manner as a table is used in the database, meaning that

data can be selected from a view as it is from a table. Data can also be manipulated

in a view, although there are some restrictions. The following sections discuss some

common uses for views and how views are stored in the database.

If a table that was used to create a view is dropped, the view becomes inaccessi-
ble. You receive an error when trying to query against the view.

Utilizing Views to Simplify Data Access
Sometimes, through the process of normalizing your database or just as a process of

database design, the data might be contained in a table format that does not easily

lend itself to querying by end users. In this instance, you could create a series of

Watch
Out!

What Is a View? 315

views to make the data simpler for your end users to query. Your users might need to

query the employee salary information from the learnsql database. However, they

might not totally understand how to create joins between the EMPLOYEE_TBL and the

EMPLOYEE_PAY_TBL. To bridge this gap, you would create a view which would con-

tain the join and give the end users the right to select from the view.

Utilizing Views as a Form of Security
Views can be utilized as a form of security in the database. Let’s say you have a

table called EMPLOYEE_TBL. The EMPLOYEE_TBL includes employee names, addresses,

phone numbers, emergency contacts, department, position, and salary or hourly

pay. You have some temporary help come in to write some reports; you need a

report of employees’ names, addresses, and phone numbers. If you give access to the

EMPLOYEE_TBL to the temporary help, they can see how much each of your employ-

ees receives in compensation—you do not want this to happen. To prevent that, you

have created a view containing only the required information: employee name,

address, and phone numbers. The temporary help can then be given access to the

view to write the report without having access to the compensation columns in the

table.

Views can be used to restrict user access to particular columns in a table or to
rows in a table that meet specific conditions as defined in the WHERE clause of
the view definition.

Utilizing Views to Maintain Summarized Data
If you have a summarized data report in which the data in the table or tables is

updated often and the report is created often, a view with summarized data might

be an excellent choice.

For example, suppose that you have a table containing information about individu-

als, such as their city of residence, their sex, their salary, and their age. You could

create a view based on the table that shows summarized figures for individuals for

each city, such as the average age, average salary, total number of males, and total

number of females. To retrieve this information from the base table(s) after the view

is created, you can simply query the view instead of composing a SELECT statement

that might, in some cases, turn out to be very complex.

Did you
Know?

316 HOUR 20: Creating and Using Views and Synonyms

The only difference between the syntax for creating a view with summarized data

and creating a view from a single or multiple tables is the use of aggregate func-

tions. Review Hour 9, “Summarizing Data Results from a Query,” for the use of

aggregate functions.

A view is stored in memory only. A view takes up no storage space—as do other

database objects—other than the space required to store the view definition itself. A

view is owned by the view’s creator or the schema owner. The view owner automati-

cally has all applicable privileges on that view and can grant privileges on the view

to other users, as with tables. The GRANT command’s GRANT OPTION privilege works

the same as on a table. See Hour 19, “Managing Database Security,” for more infor-

mation.

Creating Views
Views are created using the CREATE VIEW statement. Views can be created from a

single table, multiple tables, or another view. To create a view, a user must have the

appropriate system privilege according to the specific implementation.

The basic CREATE VIEW syntax is as follows:

CREATE [RECURSIVE]VIEW VIEW_NAME
[COLUMN NAME [,COLUMN NAME]]
[OF UDT NAME [UNDER TABLE NAME]
[REF IS COLUMN NAME SYSTEM GENERATED |USER GENERATED | DERIVED]
[COLUMN NAME WITH OPTIONS SCOPE TABLE NAME]]
AS
{SELECT STATEMENT}
[WITH [CASCADED | LOCAL] CHECK OPTION]

The following subsections explore different methods for creating views using the

CREATE VIEW statement.

There is no provision for an ALTER VIEW statement in ANSI SQL, although most
database implementations do provide for that capability. For example, older ver-
sions of MySQL you would use REPLACE VIEW to alter a current view. Check with
your specific database implementation’s documentation to see what is supported.

Creating a View from a Single Table
A view can be created from a single table. The WITH CHECK OPTION is discussed

later this hour in the WITH CHECK OPTION section.

By the
Way

Creating Views 317

The syntax is as follows:

CREATE VIEW VIEW_NAME AS
SELECT * | COLUMN1 [, COLUMN2]
FROM TABLE_NAME
[WHERE EXPRESSION1 [, EXPRESSION2]]
[WITH CHECK OPTION]
[GROUP BY]

The simplest form for creating a view is one based on the entire contents of a single

table, as in the following example:

CREATE VIEW CUSTOMERS AS
SELECT *
FROM CUSTOMER_TBL;

View created.

The next example narrows the contents for a view by selecting only specified

columns from the base table:

CREATE VIEW EMP_VIEW AS
SELECT LAST_NAME, FIRST_NAME, MIDDLE_NAME
FROM EMPLOYEE_TBL;

View created.

The following is an example of how columns from the base table can be combined

or manipulated to form a column in a view. The view column is titled NAMES by

using an alias in the SELECT clause.

CREATE VIEW NAMES AS
SELECT LAST_NAME || ‘, ‘ ||FIRST_NAME || ‘ ‘ || MIDDLE_NAME NAME
FROM EMPLOYEE_TBL;

View created.

Now you select all data from the NAMES view that you created.

SELECT *
FROM NAMES;
NAME

STEPHENS, TINA D
PLEW, LINDA C
GLASS, BRANDON S
GLASS, JACOB
WALLACE, MARIAH
SPURGEON, TIFFANY

6 rows selected.

318 HOUR 20: Creating and Using Views and Synonyms

The following example shows how to create a view with summarized data from one

or more underlying tables:

CREATE VIEW CITY_PAY AS
SELECT E.CITY, AVG(P PAY_RATE) AVG_PAY
FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL P
WHERE E.EMP_ID = P.EMP_ID
GROUP BY E.CITY;

View created.

Now, you can select from your summarized view:

SELECT *
FROM CITY_PAY;

CITY AVG_PAY
--------------- -------
GREENWOOD
INDIANAPOLIS 13.33333
WHITELAND

3 rows selected.

By summarizing a view, SELECT statements that might occur in the future are sim-

plified against the underlying table of the view.

Creating a View from Multiple Tables
A view can be created from multiple tables by using a JOIN in the SELECT state-

ment. WITH CHECK OPTION is discussed later this hour in the WITH CHECK OPTION

section. The syntax is as follows:

CREATE VIEW VIEW_NAME AS
SELECT * | COLUMN1 [, COLUMN2]
FROM TABLE_NAME1, TABLE_NAME2 [, TABLE_NAME3]
WHERE TABLE_NAME1 = TABLE_NAME2
[AND TABLE_NAME1 = TABLE_NAME3]
[EXPRESSION1][, EXPRESSION2]
[WITH CHECK OPTION]
[GROUP BY]

The following is an example of creating a view from multiple tables:

CREATE VIEW EMPLOYEE_SUMMARY AS
SELECT E.EMP_ID, E.LAST_NAME, P.POSITION, P.DATE_HIRE, P.PAY_RATE
FROM EMPLOYEE_TBL E,

EMPLOYEE PAY_TBL P
WHERE E.EMP_ID = P.EMP_ID;

View created.

Creating Views 319

Remember that when selecting data from multiple tables, the tables must be joined

by common columns in the WHERE clause. A view is nothing more than a SELECT

statement itself; therefore, tables are joined in a view definition the same as they are

in a regular SELECT statement. Recall the use of table aliases to simplify the read-

ability of a multiple-table query.

A view can also be joined with tables and with other views. The same principles

apply to joining views with tables and other views that apply to joining tables to

other tables. Review Hour 13, “Joining Tables in Queries,” on the joining of tables.

Creating a View from a View
A view can be created from another view using the following format:

CREATE VIEW2 AS
SELECT * FROM VIEW1

A view can be created from a view many layers deep (a view of a view of a view,

and so on). How deep you can go is implementation specific. The only problem with

creating views based on other views is their manageability. For example, suppose

that you create VIEW2 based on VIEW1 and then create VIEW3 based on VIEW2. If

VIEW1 is dropped, VIEW2 and VIEW3 are no good. The underlying information that

supports these views no longer exists. Therefore, always maintain a good under-

standing of the views in the database and on which other objects those views rely

(see Figure 20.2).

If a view is as easy and efficient to create from the base table as from another
view, preference should go to the view being created from the base table.

By the
Way

VIEW3 VIEW4 VIEW5

TABLE

VIEW1 VIEW2

VIEW DEPENDENCIES

FIGURE 20.2
View dependen-
cies.

320 HOUR 20: Creating and Using Views and Synonyms

Figure 20.2 shows the relationship of views that are dependent not only on tables,

but on other views. VIEW1 and VIEW2 are dependent on the TABLE. VIEW3 is depend-

ent on VIEW1. VIEW4 is dependent on both VIEW1 and VIEW2. VIEW5 is dependent on

VIEW2. Based on these relationships, the following can be concluded:

. If VIEW1 is dropped, VIEW3 and VIEW4 are invalid.

. If VIEW2 is dropped, VIEW4 and VIEW5 are invalid.

. If the TABLE is dropped, none of the views are valid.

WITH CHECK OPTION
WITH CHECK OPTION is a CREATE VIEW statement option. The purpose of WITH

CHECK OPTION is to ensure that all UPDATE and INSERT commands satisfy the condi-

tion(s) in the view definition. If they do not satisfy the condition(s), the UPDATE or

INSERT returns an error. WITH CHECK OPTION has two options of its own: CASCADED

and LOCAL. WITH CHECK OPTION actually enforces referential integrity by checking

the view’s definition to see that it is not violated.

The following is an example of creating a view with WITH CHECK OPTION:

CREATE VIEW EMPLOYEE_PAGERS AS
SELECT LAST_NAME, FIRST_NAME, PAGER
FROM EMPLOYEE_TBL
WHERE PAGER IS NOT NULL
WITH CHECK OPTION;

View created.

WITH CHECK OPTION in this case should deny the entry of any NULL values in the

view’s PAGER column because the view is defined by data that does not have a NULL

value in the PAGER column.

Try to insert a NULL value in the PAGER column:

INSERT INTO EMPLOYEE PAGERS
VALUES (‘SMITH’,’JOHN’,NULL);

insert into employee_pagers
*

ERROR at line 1:
ORA-01400: mandatory (NOT NULL) column is missing or NULL during insert

WITH CHECK OPTION worked.

Updating Data Through a View 321

When you choose to use WITH CHECK OPTION during creation of a view from a view,

you have two options: CASCADED and LOCAL. CASCADED is the default, assumed if nei-

ther is specified. The CASCADED option checks all underlying views, all integrity con-

straints during an update for the base table, and against defining conditions in the

second view. The LOCAL option is used to check only integrity constraints against

both views and the defining conditions in the second view, not the underlying base

table. Therefore, it is safer to create views with the CASCADED option because the

base table’s referential integrity is preserved.

Updating Data Through a View
The underlying data of a view can be updated under certain conditions:

. The view must not involve joins.

. The view must not contain a GROUP BY clause.

. The view must not contain a UNION statement.

. The view cannot contain any reference to the pseudocolumn ROWNUM.

. The view cannot contain any group functions.

. The DISTINCT clause cannot be used.

. The WHERE clause cannot include a nested table expression that includes a ref-

erence to the same table as referenced in the FROM clause.

Review Hour 14, “Using Subqueries to Define Unknown Data,” for the UPDATE com-

mand’s syntax.

Inserting Rows into a View
Rows of data can be inserted into a view. The same rules that apply to the UPDATE

command also apply to the INSERT command. Review Hour 14 for the syntax of the

INSERT command.

Deleting Rows from a View
Rows of data can be deleted from a view. The same rules that apply to the UPDATE

and INSERT commands apply to the DELETE command. Review Hour 14 for the syn-

tax of the DELETE command.

322 HOUR 20: Creating and Using Views and Synonyms

Creating a Table from a View
A table can be created from a view, just as a table can be created from another table

(or a view from another view).

The syntax is as follows:

CREATE TABLE TABLE_NAME AS
SELECT {* | COLUMN1 [, COLUMN2]
FROM VIEW_NAME
[WHERE CONDITION1 [, CONDITION2]
[ORDER BY]

First, create a view based on two tables:

CREATE VIEW ACTIVE_CUSTOMERS AS
SELECT C.*
FROM CUSTOMER_TBL C,

ORDERS_TBL O
WHERE C.CUST_ID = O.CUST_ID;

View created.

Next, create a table based on the previously created view:

CREATE TABLE CUSTOMER_ROSTER_TBL AS
SELECT CUST_ID, CUST_NAME
FROM ACTIVE_CUSTOMERS;

Table created.

Finally, select data from the table, the same as any other table:

SELECT *
FROM CUSTOMER_ROSTER_TBL;

CUST_ID CUST_NAME
---------- ------------------
232 LESLIE GLEASON
12 MARYS GIFT SHOP
43 SCHYLERS NOVELTIES
090 WENDY WOLF
287 GAVINS PLACE
432 SCOTTYS MARKET

6 rows selected.

Remember that the main difference between a table and a view is that a table
contains actual data and consumes physical storage, whereas a view contains no
data and requires no storage other than to store the view definition (the query).

By the
Way

Views and the ORDER BY Clause 323

Views and the ORDER BY Clause
The ORDER BY clause cannot be used in the CREATE VIEW statement; however, the

GROUP BY clause when used in the CREATE VIEW statement has the same effect as

an ORDER BY clause.

Using the ORDER BY clause in the SELECT statement that is querying the view is
better and simpler than using the GROUP BY clause in the CREATE VIEW state-
ment.

The following is an example of a GROUP BY clause in a CREATE VIEW statement:

CREATE VIEW NAMES2 AS
SELECT LAST_NAME || ‘, ‘ || FIRST_NAME || ‘ ‘ ||MIDDLE_NAME NAME
FROM EMPLOYEE_TBL
GROUP BY LAST_NAME || ‘, ‘ || FIRST_NAME || ‘ ‘ || MIDDLE_NAME;

View created.

If you select all data from the view, the data is in alphabetical order (because you

grouped by NAME).

SELECT *
FROM NAMES2;

NAME

GLASS, BRANDON S
GLASS, JACOB
PLEW, LINDA C
SPURGEON, TIFFANY
STEPHENS, TINA D
WALLACE, MARIAH

6 rows selected.

Dropping a View
The DROP VIEW command is used to drop a view from the database. The two options

to the DROP VIEW command are RESTRICT and CASCADE. If a view is dropped with

the RESTRICT option and other views are referenced in a constraint, the DROP VIEW

errs. If the CASCADE option is used and another view or constraint is referenced, the

DROP VIEW succeeds and the underlying view or constraint is also dropped. An

example follows:

DROP VIEW NAMES2;

View dropped.

By the
Way

324 HOUR 20: Creating and Using Views and Synonyms

Take care when using the CASCADE option so that important views are not inadver-
tently removed from the database.

What Is a Synonym?
A synonym is merely another name for a table or a view. Synonyms are usually cre-

ated so a user can avoid having to qualify another user’s table or view to access the

table or view. Synonyms can be created as PUBLIC or PRIVATE. A PUBLIC synonym

can be used by any user of the database; a PRIVATE synonym can be used only by

the owner and any users that have been granted privileges.

Synonyms are not ANSI SQL standard; however, because synonyms are used by
several major implementations, it is best we discuss them briefly here. You must
check your particular implementation for the exact use of synonyms, if available.
Note, however, that synonyms are not supported in MySQL. However, you could
possibly implement the same type of functionality using a view instead.

Synonyms are either managed by the database administrator (or another designat-

ed individual) or by individual users. Because there are two types of synonyms, PUB-

LIC and PRIVATE, different system-level privileges might be required to create one or

the other. All users can generally create a PRIVATE synonym. Typically, only a data-

base administrator (DBA) or privileged database user can create a PUBLIC synonym.

Refer to your specific implementation for required privileges when creating syn-

onyms.

Creating Synonyms
The general syntax to create a synonym is as follows:

CREATE [PUBLIC|PRIVATE] SYNONYM SYNONYM_NAME FOR TABLE|VIEW

You create a synonym called CUST, short for CUSTOMER_TBL, in the following exam-

ple. This frees you from having to spell out the full table name.

CREATE SYNONYM CUST FOR CUSTOMER_TBL;

Synonym created.

SELECT CUST_NAME
FROM CUST;

By the
Way

By the
Way

Summary 325

CUST_NAME

LESLIE GLEASON
NANCY BUNKER
ANGELA DOBKO
WENDY WOLF
MARYS GIFT SHOP
SCOTTYS MARKET
JASONS AND DALLAS GOODIES
MORGANS CANDIES AND TREATS
SCHYLERS NOVELTIES
GAVINS PLACE
HOLLYS GAMEARAMA
HEATHERS FEATHERS AND THINGS
RAGANS HOBBIES INC
ANDYS CANDIES
RYANS STUFF
15 rows selected.

It is also a common practice for a table owner to create a synonym for the table to

which you have been granted access so you do not have to qualify the table name

by the name of the owner:

CREATE SYNONYM PRODUCTS_TBL FOR USER1.PRODUCTS_TBL;

Synonym created.

Dropping Synonyms
Dropping synonyms is like dropping most any other database object. The general

syntax to drop a synonym is as follows:

DROP [PUBLIC|PRIVATE] SYNONYM SYNONYM_NAME

The following is an example:

DROP SYNONYM CUST;

Synonym dropped.

Summary
Views and synonyms, two important features in SQL, were discussed this hour. In

many cases, these features are not used when they could aid in the overall function-

ality of relational database users. Views were defined as virtual tables—objects that

look and act like tables, but do not take physical space like tables. Views are actual-

ly defined by queries against tables and possible other views in the database. Views

are typically used to restrict data that a user sees and to simplify and summarize

326 HOUR 20: Creating and Using Views and Synonyms

data. Views can be created from views, but care must be taken not to embed views

too deeply, to avoid losing control over their management. There are various

options when creating views, and some are implementation specific.

Synonyms are objects in the database that represent other objects. Synonyms are

used to simplify the name of another object in the database, either by creating a

synonym with a short name for an object with a long name or by creating a syn-

onym on an object owned by another user to which you have access. There are two

types of synonyms: PUBLIC and PRIVATE. A PUBLIC synonym is one that is accessi-

ble to all database users, whereas a PRIVATE synonym is accessible to a single user.

A DBA typically creates a PUBLIC synonym, wheras each individual user normally

creates her own PRIVATE synonyms.

Q&A
Q. How can a view contain data but take no storage space?

A. A view does not contain data. A view is a virtual table or a stored query. The

only space required for a view is for the actual view creation statement, called

the view definition.

Q. What happens to the view if a table from which a view was created is
dropped?

A. The view is invalid because the underlying data for the view no longer exists.

Q. What are the limits on naming the synonym when creating synonyms?

A. This is implementation specific. However, the naming convention for syn-

onyms in most major implementations follows the same rules that apply to

the tables and other objects in the database.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Workshop 327

Quiz
1. Can a row of data be deleted from a view that was created from multiple

tables?

2. When creating a table, the owner is automatically granted the appropriate

privileges on that table. Is this true when creating a view?

3. What clause is used to order data when creating a view?

4. What option can be used, when creating a view from a view, to check integrity

constraints?

5. You try to drop a view and receive an error because there are one or more

underlying views. What must you do to drop the view?

Exercises
1. Write a statement to create a view based on the total contents of the

EMPLOYEE_TBL table.

2. Write a statement that creates a summarized view containing the average pay

rate and average salary for each city in the EMPLOYEE_TBL table.

3. Write statements that drop the two views that you created in Exercises 1 and 2.

This page intentionally left blank

HOUR 21

Working with the System
Catalog

During this hour, you learn about the system catalog, commonly referred to as the data

dictionary in some relational database implementations. By the end of this hour, you will

understand the purpose and contents of the system catalog and will be able to query it to

find information about the database based on commands that you have learned in previ-

ous hours. Each major implementation has some form of a system catalog that stores

information about the database itself. This hour shows examples of the elements con-

tained in a few of the different system catalog’s implementations.

The highlights of this hour include
. What the system catalog is
. How the system catalog is created
. What data is contained in the system catalog
. Examples of system catalog tables
. Querying the system catalog
. Updating the system catalog

What Is the System Catalog?
The system catalog is a collection of tables and views that contain important information

about a database. A system catalog is available for each database. Information in the sys-

tem catalog defines the structure of the database and also information on the data con-

tained therein. For example, the data dictionary language (DDL) for all tables in the data-

base is stored in the system catalog. See Figure 21.1 for an illustration of the system cata-

log within the database.

330 HOUR 21: Working with the System Catalog

As you can see in Figure 21.1, the system catalog for a database is actually part of

the database. Within the database are objects, such as tables, indexes, and views.

The system catalog is basically a group of objects that contain information that

defines other objects in the database, the structure of the database itself, and various

other significant information.

The system catalog for your implementation might be divided into logical groups of

objects to provide tables that are accessible by the database administrator (DBA)

and any other database user. For example, a user might need to view the particular

database privileges that she has been granted, but has no need to know about the

internal structure or processes of the database. A user typically queries the system

catalog to acquire information on the user’s own objects and privileges, whereas the

DBA needs to be able to inquire about any structure or event within the database.

In some implementations, there are system catalog objects that are accessible only

to the DBA.

The system catalog is crucial to the DBA or any other database user who needs to

know about the database’s structure and nature. It is especially important in those

instances in which the database user is not presented with a GUI interface. The sys-

tem catalog allows order to be kept, not only by the DBA and users, but by the data-

base server itself.

Each implementation has its own naming conventions for the system catalog’s
tables and views. The naming is not of importance; learning what the system cat-
alog does is important, as is what it contains and how and where to retrieve the
information.

DATABASE

Tables

Other
Objects

SYSTEM
CATALOG

Views Indexes

FIGURE 21.1
The system
catalog.

By the
Way

What Is Contained in the System Catalog? 331

How Is the System Catalog Created?
The system catalog is created either automatically with the creation of the database,

or by the DBA immediately following the creation of the database. For example, a

set of predefined, vendor-provided SQL scripts in Oracle is executed, which builds all

the database tables and views in the system catalog that are accessible to a data-

base user. The system catalog tables and views are system-owned and not specific to

any one schema. In Oracle, for example, the system catalog owner is a user account

called SYS, which has full authority in the database. In Sybase, the system catalog

for the SQL server is located in the master database. In MySQL the database is con-

tained in the mysql system database. Check with your specific vendor documenta-

tion to find where the system catalogs are stored.

What Is Contained in the System
Catalog?
The system catalog contains a variety of information accessible to many users and

is sometimes used for different specific purposes by each of those users.

The system catalog contains information such as the following:

. User accounts and default settings

. Privileges and other security information

. Performance statistics

. Object sizing

. Object growth

. Table structure and storage

. Index structure and storage

. Information on other database objects, such as views, synonyms, triggers, and

stored procedures

. Table constraints and referential integrity information

. User sessions

. Auditing information

. Internal database settings

. Locations of database files

332 HOUR 21: Working with the System Catalog

The system catalog is maintained by the database server. For example, when a table

is created, the database server inserts the data into the appropriate system catalog

table or view. When a table’s structure is modified, appropriate objects in the data

dictionary are also updated. The following sections describe, by category, the types

of data that are contained in the system catalog.

User Data
All information about individual users is stored in the system catalog: the system

and object privileges a user has been granted, the objects a user owns, and the

objects not owned by the user to which the user has access. The user tables or views

are accessible to the individual to query for information. See your implementation

documentation on the system catalog objects.

Security Information
The system catalog also stores security information, such as user identifications,

encrypted passwords, and various privileges and groups of privileges database users

utilize to access the data. Audit tables exist in some implementations for tracking

actions that occur within the database, as well as by whom, when, and so on.

Database user sessions also can be closely monitored through the use of the system

catalog in many implementations.

Database Design Information
The system catalog contains information regarding the actual database. That infor-

mation includes the database’s creation date, name, objects sizing, size and location

of data files, referential integrity information, indexes that exist in the database,

and specific column information and column attributes for each table in the data-

base.

Performance Statistics
Performance statistics are typically maintained in the system catalog as well.

Performance statistics include information concerning the performance of SQL state-

ments, both elapsed time and the execution method of a SQL statement taken by

the optimizer. Other information for performance concerns memory allocation and

usage, free space in the database, and information that allows table and index frag-

mentation to be controlled within the database. This performance information can

System Catalog Tables by Implementation 333

be used to properly tune the database, rearrange SQL queries, and redesign methods

of access to data to achieve better overall performance and SQL query response

time.

System Catalog Tables by
Implementation
Each implementation has several tables and views that compose the system catalog,

some of which are categorized by user level, system level, and DBA level. For your

particular implementation, you should query these tables and read your implemen-

tation’s documentation for more information on system catalog tables. See Table

21.1 for a few examples of six major implementations.

TABLE 21.1 Major Implementations’ System Catalog Objects

Microsoft SQL Server
Table Name Information On…

SYSUSERS Database users

SYSSEGMENTS All database segments

SYSINDEXES All indexes

SYSCONSTRAINTS All constraints

dBASE
Table Name Information On…

SYSVIEWS All views

SYSTABLS All tables

SYSIDXS All indexes

SYSCOLS Columns of tables

Microsoft Access
Table Name Information On…

MSysColumns Columns in tables

MSysIndexes Indexes in tables

MSysMacros Macros created

MSysObjects All database objects

MSysQueries Queries created

MSysRelationships Table relationships

334 HOUR 21: Working with the System Catalog

TABLE 21.1 Continued

Sybase
Table Name Information On…

SYSMESSAGES All server error messages

SYSKEYS Primary and foreign keys

SYSTABLES All tables and views

SYSVIEWS Text of all views

SYSCOLUMNS Table columns

SYSINDEXES Indexes

SYSOBJECTS Tables, triggers, views, and the like

SYSDATABASES All databases on server

SYSPROCEDURES Views, triggers, and stored procedures

Oracle
Table Name Information On…

ALL_TABLES Tables accessible by a user

USER_TABLES Tables owned by a user

DBA_TABLES All tables in the database

DBA_SEGMENTS Segment storage

DBA_INDEXES All indexes

DBA_USERS All users of the database

DBA_ROLE_PRIVS Roles granted

DBA_ROLES Roles in the database

DBA_SYS_PRIVS System privileges granted

DBA_FREE_SPACE Database free space

V$DATABASE The creation of the database

V$SESSION Current sessions

MySQL
Table Name Information On…

COLUMNS_PRIV Column privileges

DB Database privileges

FUNC The management of user-defined functions

HOST Hostnames related to MySQL

TABLES_PRIV Table privileges

USER Table relationships

Querying the System Catalog 335

These are just a few of the system catalog objects from a few various relational
database implementations. Many of the system catalog objects that are similar
between implementations are shown here, but this hour strives to provide some
variety. Overall, each implementation is very specific to the organization of the sys-
tem catalog’s contents.

Querying the System Catalog
The system catalog tables or views are queried as any other table or view in the

database using SQL. A user can usually query the user-related tables, but might be

denied access to various system tables that can be accessed only by privileged data-

base user accounts, such as the DBA.

You create a SQL query to retrieve data from the system catalog just as you create a

query to access any other table in the database. For example, the following query

returns all rows of data from the Sybase table SYSTABLES:

SELECT * FROM SYSTABLES
GO

The following examples use MySQL’s system catalog. MySQL is chosen for no partic-

ular reason other than that it is the implementation upon which this book’s exam-

ples are largely based.

The following query lists all user accounts in the database and is run from the

MySQL system database:

SELECT USER
FROM ALL_USER;

USER

ROOT
SYSTEM
RYAN
SCOTT
DEMO
RON
USER1
USER2

8 rows selected.

By the
Way

336 HOUR 21: Working with the System Catalog

The following query lists all tables within our learnsql schema and is run from the

Information_schema:

SELECT TABLE_NAME
FROM TABLES WHERE TABLE_SCHEMA=’learnsql’;

TABLE_NAME

CUSTOMER_TBL
EMPLOYEE_PAY_TBL
EMPLOYEE_TBL
PRODUCTS_TBL
ORDERS_TBL

5 rows selected.

The next query returns all the system privileges that have been granted to the data-

base user BRANDON:

SELECT GRANTEE, PRIVILEGE_TYPE
FROM USER_PRIVILEGES
WHERE GRANTEE = ‘BRANDON’;

GRANTEE PRIVILEGE
---------------------- --------------------
BRANDON SELECT
BRANDON INSERT
BRANDON UPDATE
BRANDON CREATE

4 rows selected.

The following is an example from MS Access:

SELECT NAME
FROM MSYSOBJECTS
WHERE NAME = ‘MSYSOBJECTS’

NAME

MSYSOBJECTS

The examples shown in this section are a drop in the bucket compared to the
information that you can retrieve from any system catalog. You might find it to be
extremely helpful to dump data dictionary information using queries to a file that
can be printed and used as a reference. Please refer to your implementation doc-
umentation for specific system catalog tables and columns within those available
tables.

By the
Way

Summary 337

Updating System Catalog Objects
The system catalog is used only for query operations—even when being used by the

DBA. Updates to the system catalog are accomplished automatically by the data-

base server. For example, a table is created in the database when a CREATE TABLE

statement is issued by a database user. The database server then places the DDL

that was used to create the table in the system catalog under the appropriate system

catalog table. There is never a need to manually update any table in the system cat-

alog. The database server for each implementation performs these updates accord-

ing to actions that occur within the database, as shown in Figure 21.2.

DATABASE

CREATE
TABLE

Statement

Database Server

System
Catalog

Database
User

FIGURE 21.2
Updates to the
system catalog.

Never directly manipulate tables in the system catalog in any way (only the DBA
has access to manipulate system catalog tables). Doing so might compromise the
database’s integrity. Remember that information concerning the structure of the
database, as well as all objects in the database, is maintained in the system cat-
alog. The system catalog is typically isolated from all other data in the database.

Summary
You have learned about the system catalog for a relational database. The system

catalog is, in a sense, a database within a database. The system catalog is essential-

ly a database that contains all information about the database in which it resides. It

is a way of maintaining the database’s overall structure, tracking events and

changes that occur within the database, and providing the vast pool of information

necessary for overall database management. The system catalog is only used for

Watch
Out!

338 HOUR 21: Working with the System Catalog

query operations. No database user should ever make changes directly to system

tables. However, changes are implicitly made each time a change is made to the

database structure itself, such as the creation of a table. These entries in the system

catalog are made automatically by the database server.

Q&A
Q. As a database user, I realize I can find information about my objects. How

can I find information about other users’ objects?

A. Users can use sets of tables and/or views to query in most system catalogs.

One set of these tables and views includes information on what objects to

which you have access. In order to find out about other user’s access you

would need to check the system catalogs that contain that information. For

example, in Oracle you could check the DBA_TABLES and DBA_USERS system

catalogs.

Q. If a user forgets his password, is there a table that the DBA can query to get
the password?

A. Yes and no. The password is maintained in a system table, but is typically

encrypted so that even the DBA cannot read the password. The password will

have to be reset if the user forgets it, which the DBA can easily accomplish.

Q. How can I tell what columns are in a system catalog table?

A. The system catalog tables can be queried as any other table. Simply query the

table that holds that particular information.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Workshop 339

Quiz
1. The system catalog is also known as what in some implementations?

2. Can a regular user update the system catalog?

3. What Sybase system table is used to retrieve information about views that

exist in the database?

4. Who owns the system catalog?

5. What is the difference between the Oracle system objects ALL_TABLES and

DBA_TABLES?

6. Who makes modifications to the system tables?

Exercises
1. In Hour 19, you looked at the MySQL system tables in the default mysql data-

base. Review these tables.

2. At the mysql> prompt, type the following to show common commands:

HELP;

3. Type the following command to see the current status of MySQL:

STATUS;

What is the current database?

4. At the mysql> prompt, change your database from mysql to learnsql, and

then check the status again.

5. Write a query to gather all of the usernames in your MySQL instance.

6. Now write a query to get a list of all of the users and their associated privi-

leges for the learnsql database by using the system catalogs.

This page intentionally left blank

PART VIII

Applying SQL Fundamentals in
Today’s World

HOUR 22 Advanced SQL Topics 343

HOUR 23 Extending SQL to Enterprise, the Internet,
and the Intranet 359

HOUR 24 Extensions to Standard SQL 369

This page intentionally left blank

HOUR 22

Advanced SQL Topics

During this hour, you are introduced to some advanced SQL topics that extend beyond the

basic operations that you have learned so far, such as querying data from the database,

building database structures, and manipulating data within the database. By the end of

the hour, you should understand the concepts behind cursors, stored procedures, triggers,

dynamic SQL, direct versus embedded SQL, and SQL generated from SQL. These advanced

topics are features available in many implementations, all of which provide enhance-

ments to the parts of SQL discussed so far.

The highlights of this hour include
. What cursors are
. Using stored procedures
. What triggers are
. Basics of dynamic SQL
. Using SQL to generate SQL
. Direct SQL versus embedded SQL
. Call-level interface

Not all topics are ANSI SQL, so you must check your particular imple-
mentation for variations in syntax and rules. A few major vendors’ syn-
tax is shown in this hour for comparison.

Cursors
To most people, a cursor is commonly known as a blinking dot or square that appears on

the monitor and indicates where you are in a file or application. That is not the same type

By the
Way

344 HOUR 22: Advanced SQL Topics

of cursor discussed here. An SQL cursor is an area in database memory where the

last SQL statement is stored. If the current SQL statement is a database query, a row

from the query is also stored in memory. This row is the cursor’s current value or cur-

rent row. The area in memory is named and is available to programs.

A cursor is typically used to retrieve a subset of data from the database. Thereby,

each row in the cursor can be evaluated by a program, one row at a time. Cursors

are normally used in SQL that is embedded in procedural-type programs. Some cur-

sors are created implicitly by the database server, whereas others are defined by the

SQL programmer. Each SQL implementation might define the use of cursors differ-

ently.

This section shows syntax examples from three popular implementations: MySQL,

Microsoft SQL Server, and Oracle.

The syntax to declare a cursor in MySQL is as follows:

DECLARE CURSOR_NAME CURSOR
FOR SELECT_STATEMENT

The syntax to declare a cursor for Microsoft SQL Server is as follows:

DECLARE CURSOR_NAME CURSOR
FOR SELECT_STATEMENT
[FOR [READ ONLY | UPDATE [COLUMN_LIST]}]

The syntax for Oracle is as follows:

DECLARE CURSOR CURSOR_NAME
IS {SELECT_STATEMENT}

The following cursor contains the result subset of all records from the EMPLOYEE_TBL

table:

DECLARE CURSOR EMP_CURSOR IS
SELECT * FROM EMPLOYEE_TBL
{ OTHER PROGRAM STATEMENTS }

According to the ANSI standard, the following operations are used to access a cursor

after it has been defined:

. OPEN Opens a defined cursor

. FETCH Fetches rows from a cursor into a program variable

. CLOSE Closes the cursor when operations against the cursor are complete

Cursors 345

Opening a Cursor
When a cursor is opened, the specified cursor’s SELECT statement is executed and the

results of the query are stored in a staging area in memory.

The syntax to open a cursor in MySQL is as follows:

OPEN CURSOR_NAME

The syntax in Oracle is as follows:

OPEN CURSOR_NAME [PARAMETER1 [, PARAMETER2]]

To open the EMP_CURSOR, use the following statement:

OPEN EMP_CURSOR

Fetching Data from a Cursor
The contents of the cursor (results from the query) can be retrieved through the use

of the FETCH statement after a cursor has been opened.

The syntax for the FETCH statement in Microsoft SQL Server is as follows:

FETCH CURSOR_NAME [INTO FETCH_LIST]

The syntax for Oracle is as follows:

FETCH CURSOR_NAME {INTO : HOST_VARIABLE
[[INDICATOR] : INDICATOR_VARIABLE]
[, : HOST_VARIABLE
[[INDICATOR] : INDICATOR_VARIABLE]]
| USING DESCRIPTOR DESCRIPTOR]

The syntax for MySQL is as follows:

FETCH CURSOR_NAME into VARIABLE_NAME,[VARIABLE_NAME]…

To fetch the contents of EMP_CURSOR into a variable called EMP_RECORD, your FETCH

statement might appear as follows:

FETCH EMP_CURSOR INTO EMP_RECORD

Closing a Cursor
You can obviously close a cursor if you can open a cursor. Closing a cursor is quite

simple. After it’s closed, it is no longer available to user programs.

346 HOUR 22: Advanced SQL Topics

Closing a cursor does not necessarily free the memory associated with the cursor.
In some implementations, the memory used by a cursor must be deallocated by
using the DEALLOCATE statement. When the cursor is deallocated, the associated
memory is freed and the name of the cursor can then be reused. In other imple-
mentations, memory is implicitly deallocated when the cursor is closed. Memory
is available for other operations, such as opening another cursor, when space
used by a cursor is reclaimed.

The Microsoft SQL Server syntax for the closing of a cursor and the deallocation of a

cursor is as follows:

CLOSE CURSOR_NAME

DEALLOCATE CURSOR CURSOR_NAME

When a cursor is closed in Oracle, the resources and name are released without the

DEALLOCATE statement. The syntax for Oracle is as follows:

CLOSE CURSOR_NAME

The same is true for the MySQL cursor. There is no DEALLOCATE statement available

because the resources are released when the cursor is closed. The syntax for MySQL

is as follows:

CLOSE CURSOR_NAME

As you can see from the previous examples, variations among the implementa-
tions are extensive, especially with advanced features of and extensions to SQL,
which are covered during Hour 24, “Extensions to Standard SQL.” You must check
your particular implementation for the exact usage of a cursor.

Stored Procedures and Functions
Stored procedures are groupings of related SQL statements—commonly referred to as

functions and subprograms—that allow ease and flexibility for a programmer. This

ease and flexibility are derived from the fact that a stored procedure is often easier

to execute than a number of individual SQL statements. Stored procedures can be

nested within other stored procedures. That is, a stored procedure can call another

stored procedure, which can call another stored procedure, and so on.

By the
Way

By the
Way

Stored Procedures and Functions 347

Stored procedures allow for procedural programming. The basic SQL DDL(Data

Definition Language), DML(Data Management Langauge), and DQL(Data Query

Language) statements (CREATE TABLE, INSERT, UPDATE, SELECT, and so on) allow

you the opportunity to tell the database what needs to be done, but not how to do

it. By coding stored procedures, you tell the database engine how to go about pro-

cessing the data.

A stored procedure is a group of one or more SQL statements or functions that are

stored in the database, compiled, and ready to be executed by a database user. A

stored function is the same as a stored procedure, but a function is used to return a

value.

Functions are called by procedures. When a function is called by a procedure,

parameters can be passed into a function like a procedure, a value is computed, and

then the value is passed back to the calling procedure for further processing.

When a stored procedure is created, the various subprograms and functions that

compose the stored procedure are actually stored in the database. These stored pro-

cedures are pre-parsed and are immediately ready to execute when invoked by the

user.

The MySQL syntax for creating a stored procedure is as follows:

CREATE [OR REPLACE] PROCEDURE PROCEDURE_NAME
[(ARGUMENT [{IN | OUT | IN OUT}] TYPE,
ARGUMENT [{IN | OUT | IN OUT}] TYPE)] { AS}
PROCEDURE_BODY

The Microsoft SQL Server syntax for creating a stored procedure is as follows:

CREATE PROCEDURE PROCEDURE_NAME
[[(] @PARAMETER_NAME
DATATYPE [(LENGTH) | (PRECISION] [, SCALE])
[= DEFAULT][OUTPUT]]
[, @PARAMETER_NAME
DATATYPE [(LENGTH) | (PRECISION [, SCALE])
[= DEFAULT][OUTPUT]] [)]]
[WITH RECOMPILE]
AS SQL_STATEMENTS

The syntax for Oracle is as follows:

CREATE [OR REPLACE] PROCEDURE PROCEDURE_NAME
[(ARGUMENT [{IN | OUT | IN OUT}] TYPE,
ARGUMENT [{IN | OUT | IN OUT}] TYPE)] {IS | AS}
PROCEDURE_BODY

348 HOUR 22: Advanced SQL Topics

An example of a very simple stored procedure to insert new rows into the PROD-

UCTS_TBL table is as follows:

CREATE PROCEDURE NEW_PRODUCT
(PROD_ID IN VARCHAR2, PROD_DESC IN VARCHAR2, COST IN NUMBER)
AS
BEGIN

INSERT INTO PRODUCTS_TBL
VALUES (PROD_ID, PROD_DESC, COST);
COMMIT;

END;

Procedure created.

The syntax for executing a stored procedure in Microsoft SQL Server is as follows:

EXECUTE [@RETURN_STATUS =]
PROCEDURE_NAME
[[@PARAMETER_NAME =] VALUE |
[@PARAMETER_NAME =] @VARIABLE [OUTPUT]]
[WITH RECOMPILE]

The syntax for Oracle is as follows:

EXECUTE [@RETURN STATUS =] PROCEDURE NAME
[[@PARAMETER NAME =] VALUE | [@PARAMETER NAME =] @VARIABLE [OUTPUT]]]
[WITH RECOMPILE]

The syntax for MySQL is as follows:

CALL PROCEDURE_NAME([PARAMETER[,…….]])

Now execute the procedure you have created:

CALL NEW_PRODUCT (‘9999’,’INDIAN CORN’,1.99);

PL/SQL procedure successfully completed.

You might find that there are distinct differences between the allowed syntax used
to code procedures in different implementations of SQL. The basic SQL com-
mands should be the same, but the programming constructs (variables, condition-
al statements, cursors, loops) might vary drastically among implementations.

Stored procedures provide several distinct advantages over individual SQL state-

ments executed in the database. Some of these advantages include the following:

. The statements are already stored in the database.

. The statements are already parsed and in an executable format.

. Stored procedures support modular programming.

By the
Way

Triggers 349

. Stored procedures can call other procedures and functions.

. Stored procedures can be called by other types of programs.

. Overall response time is typically better with stored procedures.

. Stored procedures increase the overall ease of use.

Triggers
A trigger is a compiled SQL procedure in the database used to perform actions based

on other actions that occur within the database. A trigger is a form of a stored pro-

cedure that is executed when a specified DML action is performed on a table. The

trigger can be executed before or after an INSERT, DELETE, or UPDATE statement.

Triggers can also be used to check data integrity before an INSERT, DELETE, or

UPDATE statement. Triggers can roll back transactions, and they can modify data in

one table and read from another table in another database.

Triggers, for the most part, are very good functions to use; they can, however, cause

more I/O overhead. Triggers should not be used when a stored procedure or a pro-

gram can accomplish the same results with less overhead.

The CREATE TRIGGER Statement
A trigger can be created using the CREATE TRIGGER.

The ANSI standard syntax is

CREATE TRIGGER TRIGGER NAME
[[BEFORE | AFTER] TRIGGER EVENT ON TABLE NAME]
[REFERENCING VALUES ALIAS LIST]
[TRIGGERED ACTION
TRIGGER EVENT::=
INSERT | UPDATE | DELETE [OF TRIGGER COLUMN LIST]
TRIGGER COLUMN LIST ::= COLUMN NAME [,COLUMN NAME]
VALUES ALIAS LIST ::=
VALUES ALIAS LIST ::=
OLD [ROW] ´ OLD VALUES CORRELATION NAME |
NEW [ROW] ´ NEW VALUES CORRELATION NAME |
OLD TABLE ´ OLD VALUES TABLE ALIAS |
NEW TABLE ´ NEW VALUES TABLE ALIAS
OLD VALUES TABLE ALIAS ::= IDENTIFIER
NEW VALUES TABLE ALIAS ::= IDENTIFIER
TRIGGERED ACTION ::=
[FOR EACH [ROW | STATEMENT] [WHEN SEARCH CONDITION]]
TRIGGERED SQL STATEMENT
TRIGGERED SQL STATEMENT ::=
SQL STATEMENT | BEGIN ATOMIC [SQL STATEMENT;]
END

350 HOUR 22: Advanced SQL Topics

The MySQL syntax to create a trigger is as follows:

CREATE [DEFINER={user | CURRENT_USER }]
TRIGGER TRIGGER_NAME
{BEFORE | AFTER }
{ INSERT | UPDATE | DELETE [, ..]}
ON TABLE_NAME
AS
SQL_STATEMENTS

The Microsoft SQL Server syntax to create a trigger is as follows:

CREATE TRIGGER TRIGGER_NAME
ON TABLE_NAME
FOR { INSERT | UPDATE | DELETE [, ..]}
AS
SQL_STATEMENTS
[RETURN]

The basic syntax for Oracle is as follows:

CREATE [OR REPLACE] TRIGGER TRIGGER_NAME
[BEFORE | AFTER]
[DELETE | INSERT | UPDATE]
ON [USER.TABLE_NAME]
[FOR EACH ROW]
[WHEN CONDITION]
[PL/SQL BLOCK]

The following is an example trigger:

CREATE TRIGGER EMP_PAY_TRIG
AFTER UPDATE ON EMPLOYEE_PAY_TBL
FOR EACH ROW
BEGIN

INSERT INTO EMPLOYEE_PAY_HISTORY
(EMP_ID, PREV_PAY_RATE, PAY_RATE, DATE_LAST_RAISE,
TRANSACTION_TYPE)
VALUES
(:NEW.EMP_ID, :OLD.PAY_RATE, :NEW.PAY_RATE,
:NEW.DATE_LAST_RAISE, ‘PAY CHANGE’);

END;
/

Trigger created.

The preceding example shows the creation of a trigger called EMP_PAY_TRIG. This

trigger inserts a row into the EMPLOYEE_PAY_HISTORY table, reflecting the changes

made every time a row of data is updated in the EMPLOYEE_PAY_TBL table.

The body of a trigger cannot be altered. You must either replace or re-create the
trigger. Some implementations allow a trigger to be replaced (if the trigger with the
same name already exists) as part of the CREATE TRIGGER statement.

By the
Way

Dynamic SQL 351

The DROP TRIGGER Statement
A trigger can be dropped using the DROP TRIGGER statement. The syntax for drop-

ping a trigger is as follows:

DROP TRIGGER TRIGGER_NAME

The FOR EACH ROW Statement
Triggers in MySQL also have another piece of syntax that allows them to be scoped.

The FOR EACH ROW syntax allows the developer to have the procedure fire for each

row that is affected by the SQL statement or once for the statement as a whole. The

syntax is as follows:

CREATE TRIGGER TRIGGER_NAME
ON TABLE_NAME FOR EACH ROW SQL_STATEMENT

The difference is how many times the trigger is executed. If you create a regular trig-

ger and execute a statement against the table that affects 100 rows, the trigger is

executed once. If instead you create the trigger with the FOR EACH ROW syntax and

execute the statement again, the trigger is executed 100 times, once for each row

that is affected by the statement.

Dynamic SQL
Dynamic SQL allows a programmer or end user to create a SQL statement’s specifics

at runtime and pass the statement to the database. The database then returns data

into the program variables, which are bound at SQL runtime.

To comprehend dynamic SQL, review static SQL. Static SQL is what this book has

discussed thus far. A static SQL statement is written and not meant to be changed.

Although static SQL statements can be stored as files ready to be executed later or as

stored procedures in the database, static SQL does not quite offer the flexibility that

is allowed with dynamic SQL.

The problem with static SQL is that even though numerous queries might be avail-

able to the end user, there is a good chance that none of these “canned” queries will

satisfy the users’ needs on every occasion. Dynamic SQL is often used by ad hoc

query tools, which allow a SQL statement to be created on-the-fly by a user to satisfy

the particular query requirements for that particular situation. After the statement is

customized according to the user’s needs, the statement is sent to the database,

checked for syntax errors and privileges required to execute the statement, and com-

piled in the database where the statement is carried out by the database server.

352 HOUR 22: Advanced SQL Topics

Dynamic SQL can be created by using call-level interface, which is explained in the

next section.

Although dynamic SQL provides more flexibility for the end user’s query needs, the
performance might not compare to that of a stored procedure whose code has
already been analyzed by the SQL optimizer.

Call-Level Interface
A call-level interface (CLI) is used to embed SQL code in a host program, such as ANSI

C. Application programmers should be very familiar with the concept of a call-level

interface. It is one of the methods that allows a programmer to embed SQL in differ-

ent procedural programming languages. When using a call-level interface, you sim-

ply pass the text of a SQL statement into a variable using the rules of the host pro-

gramming language. You can execute the SQL statement in the host program

through the use of the variable into which you passed the SQL text.

EXEC SQL is a common host programming language command that allows you to

call a SQL statement (CLI) from within the program.

The following are examples of programming languages that support CLI:

. COBOL

. ANSI C

. Pascal

. Fortran

. Ada

Refer to the syntax of the host programming language with which you are using
call-level interface options.

Using SQL to Generate SQL
Using SQL to generate SQL is a very valuable time-budgeting method of writing SQL

statements. Assume you have 100 users in the database already. A new role, ENABLE

(a user-defined object that is granted privileges), has been created and must be

By the
Way

By the
Way

Direct Versus Embedded SQL 353

granted to those 100 users. Instead of manually creating 100 GRANT statements, the

following SQL statement generates each of those statements for you:

SELECT ‘GRANT ENABLE TO ‘|| USERNAME||’;’
FROM SYS.DBA_USERS;

This example uses Oracle’s system catalog view (which contains information for

users).

Notice the use of single quotation marks around GRANT ENABLE TO. The use of sin-

gle quotation marks allows whatever is between the marks (including spaces) to be

literal. Remember that literal values can be selected from tables, the same as

columns from a table. USERNAME is the column in the system catalog table

SYS.DBA_USERS. The double pipe signs (||) are used to concatenate the columns.

The use of double pipes followed by ‘;’ concatenates the semicolon to the end of

the username, thus completing the statement.

The results of the SQL statement look like the following:

GRANT ENABLE TO RRPLEW;
GRANT ENABLE TO RKSTEP;

These results should be spooled to a file, which can be sent to the database. The

database, in turn, executes each SQL statement in the file, saving you many key-

strokes and much time. The GRANT ENABLE TO USERNAME statement is repeated

once for every user in the database.

Next time you are writing SQL statements and have repeated the same statement

several times, allow your imagination to take hold and let SQL do the work for you.

Direct Versus Embedded SQL
Direct SQL is where a SQL statement is executed from some form of an interactive

terminal. The SQL results are returned directly to the terminal that issued the state-

ment. Most of this book has focused on direct SQL. Direct SQL is also referred to as

interactive invocation or direct invocation.

Embedded SQL is SQL code used within other programs, such as Pascal, Fortran,

COBOL, and C. SQL code is actually embedded in a host programming language, as

discussed previously, with a call-level interface. Embedded SQL statements in host

programming language codes are commonly preceded by EXEC SQL and terminated

by a semicolon in many cases. Other termination characters include END-EXEC and

the right parenthesis.

354 HOUR 22: Advanced SQL Topics

The following is an example of embedded SQL in a host program, such as the ANSI

C language:

{HOST PROGRAMMING COMMANDS}
EXEC SQL {SQL STATEMENT};
{MORE HOST PROGRAMMING COMMANDS}

Windowed Table Functions
Windowed table functions allow calculations to operate over a window of the table

and returns a value based upon that window. This allows for the calculation of val-

ues such as a running sum, ranks, and moving averages. The syntax for the table

valued function follows:

ARGUMENT OVER ([PARTITION CLAUSE] [ORDER CLAUSE] [FRAME CLAUSE])

Almost all aggregate functions can be used as windowed table functions and they

provide five new windowed table functions:

. RANK() OVER

. DENSE_RANK() OVER

. PERCENT_RANK() OVER

. CUME_DIST() OVER

. ROW_NUMBER() OVER

Normally, it would be difficult to calculate something like an individual’s ranking

within their pay year. Windowed table function would make this calculation a little

easier, as seen in the example below:

SELECT EMP_ID, SALARY, RANK() OVER (PARTITION BY YEAR(DATE_HIRE)
ORDER BY SALARY DESC) AS RANK_IN DEPT
FROM EMPLOYEE_PAY_TBL;

Not all RDBM implementations currently support windowed table functions, so it is

best to check the documentation of your specific implementation.

Working with XML
The ANSI standard presented an XML-related features section in their 2003 version.

Since then, most database implementations have tried to support at least part of the

released feature set. For example, one part of the ANSI standard is to provide for the

Summary 355

output of XML-formatted output from a query. SQL Server provides such a method

by using the FOR XML statement, as shown in the example below:

SELECT EMP_ID, HIRE_DATE, SALARY FROM
EMPLOYEE_TBL FOR XML AUTO

Another important feature of the XML feature set is being able to retrieve informa-

tion from an XML document or fragment. MySQL provides this functionality

through the EXTRACTVALUE function. This function takes two arguments. The first is

an XML fragment and the second is the locator, which is used to return the first

value of the tags matched by the string. The syntax is shown below:

ExtractValue([XML Fragment],[locator string])

The following is an example of using the function to extract the value in the

node a:

SELECT EXTRACTVALUE(‘<a>Red<//a>Blue’,’/a’) as ColorValue;
ColorValue
Red

It is important to check with your individual database’s documentation to see exact-

ly what XML support is provided.

Summary
Some advanced SQL concepts were discussed this hour. Although this hour does not

go into a lot of detail, it does provide you with a basic understanding of how you

can apply the basic concepts that you have learned up to this point. You start with

cursors, which are used to pass a data set selected by a query into a location in

memory. After a cursor is declared in a program, it must first be opened for accessi-

bility. Then the contents of the cursor are fetched into a variable, at which time the

data can be used for program processing. The resultset for the cursor is contained in

memory until the cursor is closed and the memory is deallocated.

Stored procedures and triggers were covered next. Stored procedures are basically

SQL statements that are stored together in the database. These statements, along

with other implementation-specific commands, are compiled in the database and

are ready to be executed by a database user at any given time. A trigger is also a

type of stored procedure—one that allows actions to be automatically performed

based on other actions that occur within the database. Stored procedures typically

provide better performance benefits than individual SQL statements.

Dynamic SQL, using SQL to generate other SQL statements, and the differences

between direct SQL and embedded SQL were all discussed. Dynamic SQL is SQL code

356 HOUR 22: Advanced SQL Topics

dynamically created during runtime by a user, unlike static SQL. Using SQL code to

generate other SQL statements is a great time-saver. It is a way of automating the

creation of numerous, tedious SQL statements using features available with your

implementation, such as concatenation and the selection of literal values. The main

difference between direct SQL and embedded SQL is that the user issues direct SQL

statements from some terminal, whereas embedded SQL is actually embedded with-

in a host program to help process data. Lastly, we discussed Windowed Table

Functions and XML. These features may not yet be supported in your database ver-

sion since they are relatively new but are good to know for future reference. The

concepts of some of the advanced topics discussed during this hour are used to illus-

trate the application of SQL in an enterprise, covered in Hour 23, “Extending SQL to

the Enterprise, the Internet, and the Intranet.”

Q&A
Q. Can a stored procedure call another stored procedure?

A. Yes. The stored procedure being called is referred to as being nested.

Q. How do I execute a cursor?

A. Simply use the OPEN CURSOR statement. This sends the results of the cursor to

a staging area.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. Can a trigger be altered?

2. When a cursor is closed, can you reuse the name?

3. What command is used to retrieve the results after a cursor has been opened?

Workshop 357

4. Are triggers executed before or after an INSERT, DELETE, or UPDATE statement?

5. What MySQL function is used to retrieve information from an XML fragment?

6. Why do Oracle and MySQL not support the DEALLOCATE syntax for cursors?

Exercises
1. Enter the following code at the mysql> prompt to generate DESCRIBE TABLE

statements for all tables in your MySQL database:

SELECT CONCAT(‘DESCRIBE ‘,TABLE_NAME,’;’) FROM TABLES_PRIV;

2. Write a SELECT statement that generates the SQL code to count all rows in

each of your tables. (Hint: It is similar to Exercise 1.)

This page intentionally left blank

HOUR 23

Extending SQL to the
Enterprise, the Internet, and
the Intranet

During this hour, you learn how SQL is actually used in an enterprise and a company’s

intranet and how it has been extended to the Internet.

The highlights of this hour include
. SQL and the enterprise
. Front-end and back-end applications
. Accessing a remote database
. SQL and the Internet
. SQL and the intranet

SQL and the Enterprise
The previous hour covered some advanced SQL topics. These topics built on earlier hours

in the book and began to show you practical applications for the SQL you have learned.

During this hour, you focus on the concepts behind extending SQL to the enterprise, which

involve SQL applications and making data available to all appropriate members of a

company for daily use. Many commercial enterprises have specific data available to other

enterprises, customers, and vendors. For example, the enterprise might have detailed

information on its products available for customers to access in hopes of acquiring more

purchases. Enterprise employee needs are included as well. For example, employee-specific

data can also be made available, such as for timesheet logs, vacation schedules, training

schedules, company policies, and so on. A database can be created, and customers and

360 HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet

employees can be allowed easy access to an enterprise’s important data via SQL and

an Internet language.

The Back-End Application
The heart of any application is the back-end application. This is where things

happen behind the scenes, transparent to the database end user. The back-end

application includes the actual database server, data sources, and the appropriate

middleware used to connect an application to the Web or a remote database on the

local network.

As a review, some of the major database servers include Oracle, Informix, Sybase,

Microsoft SQL Server, and MySQL. Determining your database implementation is

typically the first step in porting any application, either to the enterprise through a

local area network (LAN), to the enterprise’s own intranet, or to the Internet. Porting

describes the process of implementing an application in an environment that is

available to users. The database server should be established by an onsite database

administrator (DBA) who understands the company’s needs and the application’s

requirements.

The middleware for the application includes a web server and a tool capable of con-

necting the web server to the database server. The main objective is to have an

application on the Web that can communicate with a corporate database.

The Front-End Application
The front-end application is the part of an application with which an end user inter-

acts. The front-end application is either a commercial, off-the-shelf software product

that a company purchases or an application that is developed in-house using other

third-party tools. Commercial software can include web browsers such as Firefox or

Internet Explorer. In the Web environment, browsers are often used to access data-

base applications. Third-party tools are described in the following paragraphs.

Before the rise of many of the new front-end tools available today, users had to

know how to program in languages such as C++, HTML, or one of many other pro-

cedural programming languages that develop Web-based applications. Other lan-

guages, such as ANSI C, COBOL, Fortran, and Pascal, have been used to develop

front-end, onsite corporate applications, which were mainly character based. Today,

most newly developed front-end applications have a graphical user interface (GUI).

The tools available today are user friendly and object oriented, by way of icons, wiz-

ards, and dragging and dropping with the mouse. Some of the popular tools used to

port applications to the Web include C++Builder and IntraBuilder by Borland and

Accessing a Remote Database 361

Microsoft’s Visual Studio. Other popular applications used to develop corporate-

based applications on a LAN include PowerBuilder by Powersoft, Oracle Designer

and Oracle Forms by Oracle Corporation, Visual Studio by Microsoft, and Delphi by

Borland. Today, many applications are also being developed using Java and

JavaScript.

The front-end application promotes simplicity for the database end user. The
underlying database, code, and events that occur within the database are trans-
parent to the user. The front-end application is developed to relieve the end user
from guesswork and confusion, which might otherwise be caused by having to be
too intuitive to the system itself. The new technologies allow the applications to
be more intuitive, enabling the end users to focus on the true aspects of their par-
ticular jobs, thereby increasing overall productivity.

Figure 23.1 illustrates the back-end and front-end components of a database

application. The back end resides on the host server, where the database resides.

Back-end users include developers, programmers, DBAs, system administrators, and

system analysts. The front-end application resides on the client machine, which is

typically each end user’s PC. End users are the vast audience for the front-end com-

ponent of an application, which can include users such as data entry clerks and

accountants. The end user is able to access the back-end database through a net-

work connection—either a LAN or a wide area network (WAN). Some type of mid-

dleware (such as an ODBC driver) is used to provide a connection between the front

and back ends through the network.

By the
Way

Server
Machine

Client
Machine

Middleware

Network

DATABASE
Underlying

files, programs

GUI or
Character-based

User Tool

Back-End Front-End FIGURE 23.1
A database
application.

Accessing a Remote Database
Sometimes the database you are accessing is a local database, one to which you are

directly connected. For the most part, you will probably access some form of a

remote database. A remote database is one that is non-local, or located on a server

other than the server to which you are currently connected, meaning that you must

utilize the network and some network protocol to interface with the database.

362 HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet

You can access a remote database in several ways. From a broad perspective, a

remote database is accessed via the network or Internet connection using a middle-

ware product (ODBC and JDBC, standard middleware, are both discussed in the next

section). Figure 23.2 shows three scenarios for accessing a remote database.

MiddlewareNetwork

Remote
Database

Server

Local
Database

Server

Local
Front-End
Application

Local
Host

Server

Local Components

Non-local
Components

FIGURE 23.2
Accessing a
remote data-
base.

Figure 23.2 shows access to a remote server from another local database server, a

local front-end application, and a local host server. The local database server and

local host server are often the same because the database normally resides on

a local host server. However, you can usually connect to a remote database from

a local server without a current local database connection. For the end user, the

front-end application is the most typical method of remote database access. All

methods must route their database requests through the network.

ODBC
Open Database Connectivity (ODBC) allows connections to remote databases

through a library driver. An ODBC driver is used by a front-end application to inter-

face with a back-end database. A network driver might also be required for a con-

nection to a remote database. An application calls the ODBC functions, and a driver

manager loads the ODBC driver. The ODBC driver processes the call, submits the

SQL request, and returns the results from the database. ODBC is now a standard

and is used by several products, such as Sybase’s PowerBuilder, FoxPro, Visual C++,

Visual Basic, Borland’s Delphi, Microsoft Access, ASP.NET and many more.

As a part of ODBC, all the Remote Database Management System (RDBMS) vendors

have an Application Programming Interface (API) with their database. Oracle’s

Open Call Interface (OCI) and Centura’s SQLGateway and SQLRouter are some of

the available products.

Accessing a Remote Database 363

JDBC
JDBC is Java Database Connectivity. Like ODBC, JDBC allows connections to remote

databases through a Java library driver. The JDBC driver is used by a front-end Java

application to interface with a back-end database.

Vendor Connectivity Products
In addition to an ODBC driver, many vendors have their own products that allow a

user to connect to a remote database. Each of these vendor products is specific to the

particular vendor implementation and might not be portable to other types of data-

base servers.

Oracle Corporation has a product called Net8, which allows for remote database

connectivity. Net8 can be used with almost all the major network products, such as

TCP/IP, OSI, SPX/IPX, and more. In addition, Net8 runs on most of the major operat-

ing systems.

Sybase has a product called Open Client/C Developers Kit, which supports other

vendor products, such as Oracle’s Net8.

Accessing a Remote Database Through a Web
Interface
Accessing a remote database through a web interface is very similar to accessing

one through a local network. The main difference is that all requests to the database

from the user are routed through the web server (see Figure 23.3).

Remote
Database

Server

User
Web Browser

Interface

Web
Server

Applications on the
World Wide Web

Application
IP Address/URL

Local Client
IP Address

input

IP Address

input

output

output

FIGURE 23.3
A web interface
to a remote
database.

364 HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet

You can see in Figure 23.3 that an end user accesses a database through a web

interface by first invoking a web browser. The web browser is used to connect to a

particular URL, determined by the location of the web server. The web server

authenticates user access and sends the user request, perhaps a query, to the remote

database, which might also verify user authenticity. The database server then

returns the results to the web server, which displays the results on the user’s web

browser. Using a firewall can control unauthorized access to a particular server.

A firewall is a security mechanism that ensures against unauthorized connections to

and from a server. One or multiple firewalls can be enabled to patrol access to a

database or server.

Additionally, certain database implementations allow you to restrict access to them

via IP address. This provides another layer of protection because you can limit your

traffic that has access to the database to the actual set of web servers that are acting

as the application layer.

Be careful what information you make available on the Web. Always ensure that
precautions are taken to properly implement security at all appropriate levels; that
might include the web server, the host server, and the remote database. Privacy
act data, such as individuals’ Social Security numbers, should always be protect-
ed and should not be broadcast over the Web.

SQL and the Internet
SQL can be embedded or used in conjunction with programming languages such as

C and COBOL. SQL can also be embedded in Internet programming languages,

such as Java or ASP.NET. Text from HTML, another Internet language, can be trans-

lated into SQL to send a query to a remote database from a Web front-end. After the

database resolves the query, the output is translated back into HTML and displayed

on the web browser of the individual executing the query. The following sections dis-

cuss the use of SQL on the Internet.

Making Data Available to Customers Worldwide
With the advent of the Internet, data became available to customers and vendors

worldwide. The data is normally available for read-only access through a front-end

tool.

The data that is available to customers can contain general customer information,

product information, invoice information, current orders, back orders, and other

Watch
Out!

SQL and the Intranet 365

pertinent information. Private information, such as corporate strategies and

employee information, should not be available.

Home web pages on the Internet have become nearly a necessity for companies that

want to keep pace with their competition. A web page is a very powerful tool that

can tell surfers all about a company—its services, products, and other information—

with very little overhead.

Making Data Available to Employees and
Privileged Customers
A database can be made accessible, through the Internet or a company’s intranet, to

employees or its customers. Using Internet technologies is a valuable communica-

tion asset for keeping employees informed about company policies, benefits, train-

ing, and so on. However, great caution must be taken when making information

available to web users. Confidential corporate or individual information should not

be accessible on the Web if possible. Additionally, only a subset, or copy of a subset

of a database, should be accessible online. The main production database(s) should

be protected at all costs.

Front-End Web Tools Using SQL
Several tools can access databases. Many have a GUI, where a user does not neces-

sarily have to understand SQL to query a database. These front-end tools allow users

to point and click with the mouse, to select objects that represent tables, manipulate

data within objects, specify criteria on data to be returned, and so on. These tools

are often developed and customized to meet a company’s database needs.

SQL and the Intranet
IBM originally created SQL for use between databases located on mainframe com-

puters and the users on client machines. The users were connected to the main-

frames via a LAN. SQL was adopted as the standard language of communication

between databases and users. An intranet is basically a small Internet. The main

difference is that an intranet is for a single organization’s use, whereas the Internet is

accessible to the general public. The user (client) interface in an intranet remains

the same as that in a client/server environment. SQL requests are routed through

the web server and languages (such as HTML) before being directed to the database

for evaluation. An intranet is primarily used for inner-corporate applications, docu-

ments, forms, web pages, and email.

366 HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet

SQL requests made through the internet must be extremely conscience of perform-

ance. In these scenarios not only must the data be retrieved from the database but it

must also then be presented to the user through her browser. This normally involves

transforming the data into some kind of HTML-compliant code to be displayed on

the user’s browser. Additionally, the web connection might also be slower than a

normal intranet connection and therefore the sending of the data back and forth

might be slower as well.

Database security is much more stable than security on the Internet because
database security can be fine-tuned down to the specific levels of the data con-
tained in the system. Although you can implement some security features for data
access through the Internet, these are generally limited and not as easily changed
as those on the database. Always be sure to use the security features available to
you through your database server.

Summary
Some concepts behind deploying SQL and database applications to the Internet were

discussed as you near your last hour of study in this book. It is very important, in

this day and age, for companies to remain competitive. To keep up with the rest of

the world, it has proven beneficial—almost mandatory—to obtain a presence on the

World Wide Web. In accomplishing this presence, applications must be developed

and even migrated from client/server systems to the Internet on a web server. One of

the greatest concerns when publishing any kind or any amount of corporate data

on the Web is security. Security must be considered, adhered to, and strictly enforced.

Accessing remote databases across local networks as well as over the Internet was

discussed. Each major method for accessing any type of a remote database requires

the use of the network and protocol adapters used to translate requests to the data-

base. This has been a broad overview of the application of SQL over local networks,

company intranets, and the Internet. After digesting a few quiz and exercise ques-

tions, you should be ready to venture into the last hour of your journey through

SQL.

Watch
Out!

Workshop 367

Q&A
Q. What is the difference between the Internet and an intranet?

A. The Internet provides connections for the public to information reservoirs by

using a web interface. An intranet also uses a web interface, but only internal

access is allowed, such as to company employees and privileged customers.

Q. Is a back-end database for a web application any different than a back-end
database for a client/server system?

A. The back-end database itself for a web application is not necessarily any dif-

ferent than that of a client/server system. However, other requirements must

be met to implement a Web-based application. For example, a web server is

used to access the database with a web application. With a web application,

end users do not typically connect directly to the database.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. Can a database on a server be accessed from another server?

2. What can a company use to disseminate information to its own employees?

3. Products that allow connections to databases are called what?

4. Can SQL be embedded into Internet programming languages?

5. How is a remote database accessed through a Web application?

368 HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet

Exercises
1. Connect to the Internet and take a look at various companies’ home pages. If

your own company has a home page, compare it to the competition’s home

pages. Ask yourself these questions about the pages:

A. Does the page come up quickly or is it bogged down with too many

graphics?

B. Is the page interesting to read?

C. Do you know anything about the company, services, or products after

reading the available information?

D. If applicable, has access to the database been easy?

E. Do there appear to be any security mechanisms on the web page? Can a

login be entered to access data that might be stored in a database?

2. Visit the following websites and browse through the content, latest technolo-

gies, and the companies’ use of data on the Web (data that appears to be

derived from a database):

. www.amazon.com

. www.informit.com

. www.epinions.com

. www.mysql.com

. www.oracle.com

. www.ebay.com

. www.google.com

www.amazon.com
www.informit.com
www.epinions.com
www.mysql.com
www.oracle.com
www.ebay.com
www.google.com

HOUR 24

Extensions to Standard SQL

This hour covers extensions to ANSI-standard SQL. Although most implementations con-

form to the standard for the most part, many vendors have provided extensions to stan-

dard SQL through various enhancements.

The highlights of this hour include
. Various implementations
. Differences between implementations
. Compliance with ANSI SQL
. Interactive SQL statements
. Using variables
. Using parameters

Various Implementations
Numerous SQL implementations are released by various vendors. All the relational data-

base vendors could not possibly be mentioned; a few of the leading implementations,

however, are discussed. The implementations discussed here are Sybase, dBase, Microsoft

SQL Server, and Oracle. Other popular vendors providing database products other than

those mentioned previously include Borland, IBM, Informix, Progress, Ingres, and many

more.

Differences Between Implementations
Although the implementations listed here are relational database products, there are spe-

cific differences between each. These differences stem from the design of the product and

the way data is handled by the database engine; however, this book concentrates on the

370 HOUR 24: Extensions to Standard SQL

SQL aspect of the differences. All implementations use SQL as the language for com-

municating with the database, as directed by ANSI. Many have some sort of exten-

sion to SQL that is unique to that particular implementation.

Differences in SQL have been adopted by various vendors to enhance ANSI SQL
for performance considerations and ease of use. Vendors also strive to make
enhancements that provide them with advantages over other vendors, making
their implementation more attractive to the customer.

Now that you know SQL, you should have little problem adjusting to the differences

in SQL among the various vendors. In other words, if you can write SQL in a Sybase

implementation, you should be able to write SQL in Oracle. Besides, knowing SQL

for various vendors improves your résumé.

The following sections compare the SELECT statement’s syntax from a few major

vendors to the ANSI standard.

The following is the ANSI standard:

SELECT [DISTINCT] [* | COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE SEARCH_ CONDITION]
GROUP BY [TABLE_ALIAS | COLUMN1 [, COLUMN2]
[HAVING SEARCH_CONDITION]]
[{UNION | INTERSECT | EXCEPT}][ALL]
[CORRESPONDING [BY (COLUMN1 [, COLUMN2])]
QUERY_SPEC | SELECT * FROM TABLE | TABLE_CONSTRUCTOR]
[ORDER BY SORT_LIST]

The following is the syntax for SQLBase:

SELECT [ALL | DISTINCT] COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE SEARCH_CONDITION]
[GROUP BY COLUMN1 [, COLUMN2]
[HAVING SEARCH_CONDITION]]
[UNION [ALL]]
[ORDER BY SORT_LIST]
[FOR UPDATE OF COLUMN1 [, COLUMN2]]

The following is the syntax for Oracle:

SELECT [ALL | DISTINCT] COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE SEARCH_CONDITION]
[[START WITH SEARCH_CONDITION]
CONNECT BY SEARCH_CONDITION]
[GROUP BY COLUMN1 [, COLUMN2]
[HAVING SEARCH_CONDITION]]
[{UNION [ALL] | INTERSECT | MINUS} QUERY_SPEC]
[ORDER BY COLUMN1 [, COLUMN2]]
[NOWAIT]

By the
Way

Various Implementations 371

The following is the syntax for Informix:

SELECT [ALL | DISTINCT | UNIQUE] COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE SEARCH_CONDITION]
[GROUP BY {COLUMN1 [, COLUMN2] | INTEGER}
[HAVING SEARCH_CONDITION]]
[UNION QUERY_SPEC]
[ORDER BY COLUMN1 [, COLUMN2]
[INTO TEMP TABLE [WITH NO LOG]]

As you can see by comparing the syntax examples, the basics are there. All have

the SELECT, FROM, WHERE, GROUP BY, HAVING, UNION, and ORDER BY clauses. Each of

these clauses works conceptually the same, but some have additional options that

might not be found in other implementations. These options are called enhance-

ments.

Compliance with ANSI SQL
Vendors do strive to comply with ANSI SQL; however, none are 100 percent ANSI

SQL-standard. Some vendors have added commands or functions to ANSI SQL, and

many of these new commands or functions have been adopted by ANSI SQL. It is

beneficial for a vendor to comply with the standard for many reasons. One obvious

benefit to standard compliance is that the vendor’s implementation will be easy to

learn, and the SQL code used is portable to other implementations. Portability is def-

initely a factor when a database is being migrated from one implementation to

another.

For a database to be considered ANSI compliant, however, it only needs to corre-

spond to a small subset of the functionality of the ANSI standard. Therefore, most

implementations are considered ANSI compliant even though their SQL implemen-

tations might vary widely between one another. Therefore, limiting your code to

only strict ANSI compliant statements would improve portability but would most

likely severely limit database performance. So in the end, you need to balance the

demands of portability with the performance needs of your users.

Extensions to SQL
Practically all the major vendors have an extension to SQL. A SQL extension is

unique to a particular implementation and is generally not portable between imple-

mentations. However, popular standard extensions are reviewed by ANSI and are

sometimes implemented as a part of the new standard.

372 HOUR 24: Extensions to Standard SQL

PL/SQL, which is a product of Oracle Corporation, and Transact-SQL, which is used

by both Sybase and Microsoft SQL Server, are two examples of standard SQL exten-

sions. Both extensions are discussed in relative detail for the examples during this

hour.

Example Extensions
Both PL/SQL and Transact-SQL are considered fourth-generation programming lan-

guages. Both are procedural languages, whereas SQL is a non-procedural language.

We will also briefly discuss MySQL.

The non-procedural language SQL includes statements such as the following:

. INSERT

. UPDATE

. DELETE

. SELECT

. COMMIT

. ROLLBACK

A SQL extension considered a procedural language includes all the preceding state-

ments, commands, and functions of standard SQL. In addition, extensions include

statements such as

. Variable declarations

. Cursor declarations

. Conditional statements

. Loops

. Error handling

. Variable incrementing

. Date conversions

. Wildcard operators

. Triggers

. Stored procedures

Example Extensions 373

These statements allow the programmer to have more control over the way data is

handled in a procedural language.

Standard SQL is primarily a non-procedural language, which means that you issue
statements to the database server. The database server decides how to optimally
execute the statement. Procedural languages allow the programmer to request the
data to be retrieved or manipulated and to tell the database server exactly how to
carry out the request.

Transact-SQL
Transact-SQL is a procedural language used by Microsoft SQL Server, which means

you tell the database how and where to find and manipulate data. SQL is non-pro-

cedural, and the database decides how and where to select and manipulate data.

Some highlights of Transact-SQL’s capabilities include declaring local and global

variables, cursors, error handling, triggers, stored procedures, loops, wildcard opera-

tors, date conversions, and summarized reports.

An example Transact-SQL statement follows:

IF (SELECT AVG(COST) FROM PRODUCTS_TBL) > 50
BEGIN

PRINT “LOWER ALL COSTS BY 10 PERCENT.”
END
ELSE

PRINT “COSTS ARE REASONABLE.”
END

This is a very simple Transact-SQL statement. It states that if the average cost in

the PRODUCTS_TBL table is greater than 50, the text “LOWER ALL COSTS BY 10

PERCENT.” will be printed. If the average cost is less than or equal to 50, the text

“COSTS ARE REASONABLE.” will be printed.

Notice the use of the IF...ELSE statement to evaluate conditions of data values.

The PRINT command is also a new command. These additional options are not even

a drop in the bucket of Transact-SQL capabilities.

PL/SQL
PL/SQL is Oracle’s extension to SQL. Like Transact-SQL, PL/SQL is a procedural lan-

guage. PL/SQL is structured in logical blocks of code. A PL/SQL block contains three

sections, two of which are optional. The first section is the DECLARE section and is

optional. The DECLARE section contains variables, cursors, and constants. The second

section is called the PROCEDURE section and is mandatory. The PROCEDURE section

By the
Way

374 HOUR 24: Extensions to Standard SQL

contains the conditional commands and SQL statements. This section is where the

block is controlled. The third section is called the EXCEPTION section, and it is

optional. The EXCEPTION section defines how the program should handle errors and

user-defined exceptions. Highlights of PL/SQL include the use of variables, constants,

cursors, attributes, loops, handling exceptions, displaying output to the program-

mer, transactional control, stored procedures, triggers, and packages.

An example PL/SQL statement follows:

DECLARE
CURSOR EMP_CURSOR IS SELECT EMP_ID, LAST_NAME, FIRST_NAME, MID_INIT

FROM EMPLOYEE_TBL;
EMP_REC EMP_CURSOR%ROWTYPE;

BEGIN
OPEN EMP_CURSOR;
LOOP

FETCH EMP_CURSOR INTO EMP_REC;
EXIT WHEN EMP_CURSOR%NOTFOUND;
IF (EMP_REC.MID_INIT IS NULL) THEN

UPDATE EMPLOYEE_TBL
SET MID_INIT = ‘X’
WHERE EMP_ID = EMP_REC.EMP_ID;
COMMIT;

END IF;
END LOOP;
CLOSE EMP_CURSOR;

END;

Two out of the three sections are being used in this example: the DECLARE section

and the PROCEDURE section. First, a cursor called EMP_CURSOR is defined by a

query. Second, a variable called EMP_REC is declared, whose values have the same

data type (%ROWTYPE) as each column in the defined cursor. The first step in the

PROCEDURE section (after BEGIN) is to open the cursor. After the cursor is opened, you

use the LOOP command to scroll through each record of the cursor, which is eventu-

ally terminated by END LOOP. The EMPLOYEE_TBL table should be updated for all

rows in the cursor. If the middle initial of an employee is NULL, the update sets the

middle initial to ‘X’. Changes are committed and the cursor is eventually closed.

MySQL
MySQL is a multi-user, multi-threaded SQL database client/server implementation.

MySQL consists of a server daemon, a terminal monitor client program, and several

client programs and libraries. The main goals of MySQL are speed, robustness, and

ease of use. MySQL was originally designed to provide faster access to very large

databases.

Interactive SQL Statements 375

MySQL can be downloaded from http://www.mysql.com. To install a MySQL bina-

ry distribution, you need GNU gunzip to uncompress the distribution and a reason-

able TAR to unpack the distribution. The binary distribution file will be named

mysql-VERSION-OS.tar.gz, where VERSION is the version ID of MySQL, and OS is

the name of the operating system.

The above installation instructions are mainly true for Linux distributions. For
Windows users, you may pull down the appropriate zip installation and use a prod-
uct like WinZip or Windows XP’s compressed files to unzip the packages and run
the executable.

An example query from a MySQL database follows:

mysql> select current_date(),version();

+----------------+-----------+
| current_date() | version() |
+----------------+-----------+
| 1999-08-09 | 3.22.23b |
+----------------+-----------+

1 row in set (0.00 sec)
mysql>

Interactive SQL Statements
Interactive SQL statements are SQL statements that ask you for a variable, parame-

ter, or some form of data before fully executing. Say you have a SQL statement that

is interactive. The statement is used to create users into a database. The SQL state-

ment could prompt you for information such as user ID, name of user, and phone

number. The statement could be for one or many users and would be executed only

once. Otherwise, each user would have to be entered individually with the CREATE

USER statement. The SQL statement could also prompt you for privileges. Not all

vendors have interactive SQL statements; you must check your particular implemen-

tation.

Another interesting aspect of using interactive SQL statements is the ability to use

parameters. Parameters are variables that are written in SQL and reside within an

application. Parameters can be passed into a SQL statement during runtime, allow-

ing more flexibility for the user executing the statement. Many of the major imple-

mentations allow use of these parameters. The following sections show examples of

passing parameters for Oracle and Sybase.

By the
Way

http://www.mysql.com

376 HOUR 24: Extensions to Standard SQL

Parameters in Oracle can be passed into an otherwise static SQL statement, as the

following code shows:

SELECT EMP_ID, LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE EMP_ID = ‘&EMP_ID’

The preceding SQL statement returns the EMP_ID, LAST_NAME, and FIRST_NAME for

whatever EMP_ID you enter at the prompt. The next statement prompts you for the

city and the state. The query returns all data for those employees living in the city

and state that you entered.

SELECT *
FROM EMPLOYEE_TBL
WHERE CITY = ‘&CITY’
AND STATE = ‘&STATE’

Parameters in Sybase can also be passed into a stored procedure:

CREATE PROC EMP_SEARCH
(@EMP_ID)
AS
SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE EMP_ID = @EMP_ID

Type the following to execute the stored procedure and pass a parameter:

SP_EMP_SEARCH “443679012”

Summary
This hour discussed extensions to standard SQL among vendors’ implementations

and their compliance with the ANSI standard. After you learn SQL, you can easily

apply your knowledge—and your code—to other implementations of SQL. SQL is

portable between vendors, being that most SQL code can be utilized among most

implementations with a few minor modifications.

The last part of this hour was spent showing two specific extensions used by three

implementations. Transact-SQL is used by Microsoft SQL Server and Sybase, and

PL/SQL is used by Oracle. You should have seen some similarities between Transact-

SQL and PL/SQL. One thing to note is that these two implementations have first

sought their compliance with the standard, and then added enhancements to their

implementations for better overall functionality and efficiency. Also discussed was

MySQL, which was designed to increase performance for large database queries.

This hour intended to make you aware that many SQL extensions do exist and to

teach the importance of a vendor’s compliance to the ANSI SQL standard.

Workshop 377

If you take what you have learned in this book and apply it (build your code, test it,

and build upon your knowledge), you are well on your way to mastering SQL.

Companies have data and cannot function without databases. Relational databases

are everywhere—and because SQL is the standard language with which to commu-

nicate and administer a relational database, you have made an excellent decision

by learning SQL. Good luck!

Q&A
Q. Why do variations in SQL exist?

A. Variations in SQL exist between the various implementations because of the

way data is stored, the various vendors’ ambition for trying to get an advan-

tage over competition, and new ideas that surface.

Q. After learning basic SQL, will I be able to use SQL in different implementa-
tions?

A. Yes. However, remember that there are differences and variations between the

implementations. The basic framework for SQL is the same among most

implementations.

Workshop
The following workshop is composed of a series of quiz questions and practical exer-

cises. The quiz questions are designed to test your overall understanding of the cur-

rent material. The practical exercises are intended to afford you the opportunity to

apply the concepts discussed during the current hour, as well as build upon the

knowledge acquired in previous hours of study. Please take time to complete the

quiz questions and exercises before continuing. Refer to Appendix C, “Answers to

Quizzes and Exercises,” for answers.

Quiz
1. Is SQL a procedural or non-procedural language?

2. What are some of the reasons differences in SQL exist?

3. What are the three basic operations of a cursor, outside of declaring the

cursor?

378 HOUR 24: Extensions to Standard SQL

4. Procedural or non-procedural: With which does the database engine decide

how to evaluate and execute SQL statements?

Exercises
Try some research about the SQL variations among the various vendors. Go to the

following websites and review the implementations of SQL that are available:

www.oracle.com

www.sybase.com

www.microsoft.com

www.mysql.com

www.informix.com

www.pgsql.com

www.ibm.com

www.oracle.com
www.sybase.com
www.microsoft.com
www.mysql.com
www.informix.com
www.pgsql.com
www.ibm.com

PART IX

Appendixes

APPENDIX A Common SQL Commands 381

APPENDIX B Using MySQL for Exercises 387

APPENDIX C Answers to Quizzes and Exercises 391

APPENDIX D CREATE TABLE Statements for Book Examples 435

APPENDIX E INSERT Statements for Book Examples 437

APPENDIX F Bonus Exercises 441

Glossary 447

This page intentionally left blank

APPENDIX A

Common SQL Commands

The following Appendix details some of the most common SQL commands that you will

use. As we have stated throughtout the book, check your database documentation as

some of the statements will vary depending upon your implementation.

SQL Statements

ALTER TABLE
ALTER TABLE TABLE_NAME
[MODIFY | ADD | DROP]
[COLUMN COLUMN_NAME][DATATYPE|NULL NOT NULL] [RESTRICT|CASCADE]

[ADD | DROP] CONSTRAINT CONSTRAINT_NAME]

Description: Alters a table’s columns.

COMMIT
COMMIT [TRANSACTION]

Description: Saves a transaction to the database.

CREATE DOMAIN
CREATE DOMAIN DOMAIN_NAME AS DATA_TYPE [NULL | NOT NULL]

Description: Creates a domain—an object that is associated with a data type and con-

straints.

CREATE INDEX
CREATE INDEX INDEX_NAME
ON TABLE_NAME (COLUMN_NAME)

Description: Creates an index on a table.

382 APPENDIX A: Common SQL Commands

CREATE ROLE
CREATE ROLE ROLE NAME
[WITH ADMIN [CURRENT_USER | CURRENT_ROLE]]

Description: Creates a database role to which system and object privileges can be

granted.

CREATE TABLE
CREATE TABLE TABLE_NAME
(COLUMN1 DATA_TYPE [NULL|NOT NULL],
COLUMN2 DATA_TYPE [NULL|NOT NULL])

Description: Creates a database table.

CREATE TABLE AS
CREATE TABLE TABLE_NAME AS
SELECT COLUMN1, COLUMN2,...
FROM TABLE_NAME
[WHERE CONDITIONS]
[GROUP BY COLUMN1, COLUMN2,...]
[HAVING CONDITIONS]

Description: Creates a database table based on another table.

CREATE TYPE
CREATE TYPE typename AS OBJECT
(COLUMN1 DATA_TYPE [NULL|NOT NULL],
COLUMN2 DATA_TYPE [NULL|NOT NULL])

Description: Creates a user-defined type that can be used to define columns in a

table.

CREATE VIEW
CREATE VIEW AS
SELECT COLUMN1, COLUMN2,...
FROM TABLE_NAME
[WHERE CONDITIONS]
[GROUP BY COLUMN1, COLUMN2,...]
[HAVING CONDITIONS]

Description: Creates a view of a table.

SQL Statements 383

DELETE
DELETE
FROM TABLE_NAME
[WHERE CONDITIONS]

Description: Deletes rows of data from a table.

DROP INDEX
DROP INDEX INDEX_NAME

Description: Drops an index on a table.

DROP TABLE
DROP TABLE TABLE_NAME

Description: Drops a table from the database.

DROP VIEW
DROP VIEW VIEW_NAME

Description: Drops a view of a table.

GRANT
GRANT PRIVILEGE1, PRIVILEGE2, ... TO USER_NAME

Description: Grants privileges to a user.

INSERT
INSERT INTO TABLE_NAME [(COLUMN1, COLUMN2,...]
VALUES (‘VALUE1’,’VALUE2’,...)

Description: Inserts new rows of data into a table.

INSERT...SELECT
INSERT INTO TABLE_NAME
SELECT COLUMN1, COLUMN2
FROM TABLE_NAME
[WHERE CONDITIONS]

Description: Inserts new rows of data into a table based on data in another table.

384 APPENDIX A: Common SQL Commands

REVOKE
REVOKE PRIVILEGE1, PRIVILEGE2, ... FROM USER_NAME

Description: Revokes privileges from a user.

ROLLBACK
ROLLBACK [TO SAVEPOINT_NAME]

Description: Undoes a database transaction.

SAVEPOINT
SAVEPOINT SAVEPOINT_NAME

Description: Creates transaction savepoints in which to rollback if necessary.

SELECT
SELECT [DISTINCT] COLUMN1, COLUMN2,...
FROM TABLE1, TABLE2,...
[WHERE CONDITIONS]
[GROUP BY COLUMN1, COLUMN2,...]
[HAVING CONDITIONS]
[ORDER BY COLUMN1, COLUMN2,...]

Description: Returns data from one or more database tables; used to create queries.

UPDATE
UPDATE TABLE_NAME
SET COLUMN1 = ‘VALUE1’,

COLUMN2 = ‘VALUE2’,...
[WHERE CONDITIONS]

Description: Updates existing data in a table.

SQL Clauses
SELECT
SELECT *

SELECT COLUMN1, COLUMN2,...

SELECT DISTINCT (COLUMN1)

SELECT COUNT(*)

Description: Defines columns to display as part of query output.

SQL Clauses 385

FROM
FROM TABLE1, TABLE2, TABLE3,...

Description: Defines tables from which to retrieve data.

WHERE
WHERE COLUMN1 = ‘VALUE1’
AND COLUMN2 = ‘VALUE2’

...

WHERE COLUMN1 = ‘VALUE1’
OR COLUMN2 = ‘VALUE2’

...

WHERE COLUMN IN (‘VALUE1’ [, ‘VALUE2’])

Description: Defines conditions (criteria) placed on a query for data to be returned.

GROUP BY
GROUP BY GROUP_COLUMN1, GROUP_COLUMN2,...

Description: A form of a sorting operation; used to divide output into logical groups.

HAVING
HAVING GROUP_COLUMN1 = ‘VALUE1’

AND GROUP_COLUMN2 = ‘VALUE2’
...

Description: Similar to the WHERE clause; used to place conditions on the GROUP BY

clause.

ORDER BY
ORDER BY COLUMN1, COLUMN2,...

ORDER BY 1,2,...

Description: Used to sort a query’s results.

This page intentionally left blank

APPENDIX B

Using MySQL for Exercises

The instructions for installing MySQL have been included in this appendix for your con-

venience for both the Windows and Linux operating systems. MySQL is also available in

MacOS and most versions of Unix.These instructions are accurate as of the date this book

was written. Neither the authors nor Sams Publishing place any warranties on the MySQL

software or provide MySQL software support. For any installation problems or to inquire

about software support, refer to the MySQL documentation or contact MySQL.

You might want to review the current documentation for MySQL. To get
to the online documentation, go to http://www.mysql.com and look
under the Developer Zone tab for the link to the documentation.

Windows Installation Instructions
Use the following instructions if you will be installing MySQL on a computer with

Microsoft Windows. Note that steps 1–6 might vary according to the format of the MySQL

website and the version of MySQL.

1. Go to http://www.mysql.com to download MySQL. WinZip, or an equivalent pro-

gram, will be required to unzip the download.

2. Select Downloads from the main menu.

3. Select the latest stable version, currently MySQL 6.0.

4. Review the provided information about version 6.0.

5. Find the appropriate Windows download with installer for your system, and then

click on the Download selection.

6. Select a mirror site for download that is close to your location. Save the file to your

computer.

7. Create a folder under C:\ called mysql.

8. Double-click on the Zip file that was downloaded, and then extract all files to your

mysql folder.

By the
Way

http://www.mysql.com
http://www.mysql.com

388 APPENDIX B: Using MySQL for Exercises

9. Go to your mysql folder, and then double-click on the file setup.exe.

10. Follow the instructions to install MySQL on your computer.

11. After MySQL is successfully installed, test the software installation by execut-

ing mysql.exe under C:\Program Files\MySQL\<Version Number>. You can

execute mysql.exe from an MS-DOS prompt.

12. You should get a mysql> prompt. At the mysql> prompt, type help. You

should see a list of commands.

If all the preceding steps were successful, you are ready to use MySQL for exercises in

this book.

If you experience problems during the installation, uninstall MySQL and repeat

steps 1–12. If you are still unable to obtain or install MySQL, contact MySQL for sup-

port and also check their support forums at http://forums.mysql.com.

Linux Installation Instructions
Use the following instructions if you will be installing MySQL on a computer with

Linux. Note that steps 1–6 might vary according to the format of the MySQL website

and the version of MySQL.

MySQL provides both RPM and Zip files for the MySQL installation on Linux,
depending on the platform. The recommended installation method for MySQL on
Linux is to use the RPM files. However, Zip files are available for certain installa-
tions of Linux. Please refer to the MySQL online documentation to determine the
best installation method for your version of Linux.

If you have Red Hat Linux 7.1, MySQL should already be included with Linux.

1. Go to http://www.mysql.com to download MySQL.

2. Select Downloads from the main menu.

3. Select the latest stable version, currently MySQL 6.0.

4. Review the provided information about version 6.0.

5. Find the appropriate Linux download for your system, and then click on the

Download selection. More than likely, you will need to download and install

the following file: MySQL-client-VERSION.i386.rpm.

By the
Way

http://www.mysql.com
http://forums.mysql.com

Linux Installation Instructions 389

6. Select a mirror site for download that is close to your location. Save the file to

your computer.

7. Copy the file MySQL-client-VERSION.i386.rpm to your Linux computer.

8. Execute the following command as root to install MySQL. This is the standard

minimal installation. If you are new to Linux, it is best practice to log in as a

non-root user, and then use the su command to switch to the user root.

shell> rpm -i MySQL-VERSION.i386.rpm MySQL-client-VERSION.i386.rpm

9. After installation, MySQL data should be located in /var/lib/mysql. The

exact location might vary according to the platform and version of MySQL.

Please verify this information with the applicable documentation for MySQL.

10. After MySQL is successfully installed, test the software installation by following

the instructions in the post-installation portion of the online documentation.

If all the above steps were successful, you are ready to use MySQL for exercises in

this book.

If you experience problems during the installation, uninstall MySQL and repeat the

previous steps. If you are still unable to obtain or install MySQL, contact MySQL for

support.

This page intentionally left blank

APPENDIX C

Answers to Quizzes and
Exercises

Hour 1, “Welcome to the World of SQL”

Quiz Answers
1. What does the acronym SQL stand for?

A. SQL stands for Structured Query Language.

2. What are the six main categories of SQL commands?

A. Data Definition Language (DDL)

Data Manipulation Language (DML)

Data Query Language (DQL)

Data Control Language (DCL)

Data Administration Commands (DAC)

Transactional Control Commands (TCC)

3. What are the four transactional control commands?

A. COMMIT

ROLLBACK

SAVEPOINT

SET TRANSACTIONS

4. What is the main difference between client/server and web technologies as they

related to database access?

A. The connection to the database would be the main difference. Using the client to

connect would log on to the server directly to the database. When using the Web,

you log on to the Internet to reach the database.

392 APPENDIX C: Answers to Quizzes and Exercises

5. If a field is defined as NULL, does that mean that something has to be entered

into that field?

A. No. If a column is defined as NULL, nothing has to be in the column. If a

column is defined as NOT NULL, something has to be entered.

Exercise Answers
1. Identify in what categories the following SQL commands fall:

CREATE TABLE
DELETE
SELECT
INSERT
ALTER TABLE
UPDATE

A. CREATE TABLE—DDL, Data Definition Language

DELETE—DML, Data Manipulation Language

SELECT—DQL, Data Query Language

INSERT—DML, Data Manipulation Language

ALTER TABLE—DDL, Data Definition Language

UPDATE—DML, Data Manipulation Language

2. Study the following tables and pick out the column that would be a good can-

didate for the primary key.

EMPLOYEE_TBL INVENTORY_TBL EQUIPMENT_TBL

name item model

phone description year

start date quantity serial number

address item number equipment number

employee number location assigned to

A. The primary key for the EMPLOYEE_TBL would be the employee number.

Each employee is assigned a unique employee number. Employees could

have the same name, phone, start date, and address.

Hour 2, “Defining Data Structures” 393

The primary key for the INVENTORY_TBL would be the item number. The

other columns could possibly be duplicated.

The primary key for the EQUIPMENT_TBL would be the equipment num-

ber. Once again, the other columns could be duplicated.

3. Requires no answer.

Hour 2, “Defining Data Structures”

Quiz Answers
1. True or false: An individual’s Social Security number, entered in the format

‘111111111’, can be any of the following data types: constant length

character, varying length character, numeric.

A. True, as long as the precision is the correct length.

2. True or false: The scale of a numeric value is the total length allowed for

values.

A. False. The precision is the total length, where the scale represents the

number of places reserved to the right of a decimal point.

3. Do all implementations use the same data types?

A. No. Most implementations differ in their use of data types. The data types

prescribed by ANSI are adhered to, but might differ between implementa-

tions according to storage precautions taken by each vendor.

4. What are the precision and scale of the following:

DECIMAL(4,2)
DECIMAL(10,2)
DECIMAL(14,1)

A. DECIMAL(4,2)—Precision = 4, scale = 2

DECIMAL(10,2)—Precision = 10, scale = 2

DECIMAL(14,1)—Precision = 14, scale = 1

394 APPENDIX C: Answers to Quizzes and Exercises

5. Which numbers could be inserted into a DECIMAL(4,1)?

a. 16.2

b. 116.2

c. 16.21

d. 1116.2

e. 1116.21

A. The first three fit, although 16.21 is rounded off. The numbers 1116.2 and

1116.21 exceed the maximum precision, which was set at 4.

6. What is data?

A. Data is a collection of information stored in a database as one of several

different data types.

Exercise Answers
1. Take the following column titles, assign them to a data type, decide on the

proper length, and give an example of the data you would enter into that col-

umn.

A. SSN—Constant-length character; ‘111111111’

CITY—Varying-length character; ‘INDIANAPOLIS’

STATE—Varying-length character; ‘INDIANA’

ZIP—Constant-length character; ‘46113’

PHONE_NUMBER—Constant-length character; ‘(555)555-5555’

LAST_NAME—Varying-length character; ‘JONES’

FIRST_NAME—Varying-length character; ‘JACQUELINE’

MIDDLE_NAME—Varying-length character; ‘OLIVIA’

SALARY—Numeric data type; 30000

HOURLY_PAY_RATE—Decimal; 35.00

DATE_HIRED—Date; ‘01/01/2007’

Hour 3, “Managing Database Objects” 395

2. Take the same column titles and decide if they should be NULL or NOT NULL.

A. SSN—NOT NULL

STATE—NOT NULL

CITY—NOT NULL

PHONE_NUMBER—NULL

ZIP—NOT NULL

LAST_NAME—NOT NULL

FIRST_NAME—NOT NULL

MIDDLE_NAME—NULL

SALARY—NULL

HOURLY_PAY_RATE—NULL

DATE_HIRED—NOT NULL

Every individual might not have a phone (however rare that might be) and

not everyone has a middle name, so these columns should allow NULL values.

In addition, not all employees are paid an hourly rate.

3. No answer required.

Hour 3, “Managing Database Objects”

Quiz Answers
1. Will the following CREATE TABLE statement work? If not, what needs to be

done to correct the problem(s)?

CREATE TABLE EMPLOYEE_TABLE AS:
(SSN NUMBER(9) NOT NULL,
LAST_NAME VARCHAR2(20) NOT NULL,
FIRST_NAME VARCHAR(20) NOT NULL,
MIDDLE_NAME VARCHAR2(20) NOT NULL,
ST_ADDRESS VARCHAR2(20) NOT NULL,
CITY CHAR(20) NOT NULL,
STATE CHAR(2) NOT NULL,
ZIP NUMBER(4) NOT NULL,
DATE_HIRED DATE);

396 APPENDIX C: Answers to Quizzes and Exercises

A. The CREATE TABLE statement will not work because there are several errors

in the syntax. The corrected statement follows. A listing of what was incor-

rect follows a corrected statement.

CREATE TABLE EMPLOYEE_TABLE
(SSN NUMBER() NOT NULL,
LAST_NAME VARCHAR2(20) NOT NULL,
FIRST_NAME VARCHAR2(20) NOT NULL,
MIDDLE_NAME VARCHAR2(20),
ST_ADDRESS VARCHAR2(30) NOT NULL,
CITY VARCHAR2(20) NOT NULL,
STATE CHAR(2) NOT NULL,
ZIP NUMBER(5) NOT NULL,
DATE_HIRED DATE);

The following needs to be done:

1. The AS: should not be in this CREATE TABLE statement.

2. A comma is missing after the NOT NULL for the LAST_NAME column.

3. The MIDDLE_NAME column should be NULL because not everyone has a

middle name.

4. The column ST ADDRESS should be ST_ADDRESS. Being two words, the

database looked at ST as being the column name, which would make

the database look for a valid data type, where it would find the word

ADDRESS.

5. The CITY column works, although it would be better to use the

VARCHAR2 data type. If all city names were a constant length, CHAR

would be okay.

6. The STATE column is missing a left parenthesis.

7. The ZIP column length should be (5), not (4).

8. The DATE HIRED column should be DATE_HIRED with an underscore to

make the column name one continuous string.

9. The comma after 3K in the STORAGE clause should not be there.

2. Can I drop a column from a table?

A. Yes. However, even though it is an ANSI standard, you must check your

particular implementation to see if it has been accepted.

Hour 3, “Managing Database Objects” 397

3. What statement would you issue in order to create a primary key constraint

on the preceding EMPLOYEE_TABLE?

A. ALTER TABLE EMPLOYEE_TBL
ADD CONSTRAINT EMPLOYEE_PK PRIMARY KEY(SSN);

4. What statement would you issue on the preceding EMPLOYEE_TABLE to allow

the MIDDLE_NAME column to accept NULL values?

A. ALTER TABLE EMPOYEE_TBL
MODIFY MIDDLE_NAME VARCHAR(20), NOT NULL;

5. What statement would you use in order to restrict the people added into the

preceding EMPLOYEE_TABLE to only reside in the state of New York (‘NY’)?

A. ALTER TABLE EMPLOYEE_TBL
ADD CONSTRAINT CHK_STATE CHECK(STATE=’NY’);

6. What statement would you use in order to add an auto-incrementing column

called ‘EMPID’ to the preceding EMPLOYEE_TABLE?

A. ALTER TABLE EMPLOYEE_TBL
ADD COLUMN EMPID INT AUTO_INCREMENT;

Exercise Answers
1. No answer required.

2. No answer required.

3. No answer required.

4. No answer required.

5. No answer required.

6. No answer required.

398 APPENDIX C: Answers to Quizzes and Exercises

Hour 4, “The Normalization Process”

Quiz Answers
1. True or false: Normalization is the process of grouping data into logical relat-

ed groups.

A. True.

2. True or false: Having no duplicate or redundant data in a database and hav-

ing everything in the database normalized is always the best way to go.

A. False. Not always; normalization can and does slow performance because

more tables must be joined, which results in more I/O and CPU time.

3. True or false: If data is in the third normal form, it is automatically in the first

and second normal forms.

A. True.

4. What is a major advantage of a denormalized database versus a normalized

database?

A. The major advantage is improved performance.

5. What are some major disadvantages of denormalization?

A. Having redundant and duplicate data takes up valuable space; it is harder

to code, and much more data maintenance is required.

6. How do you determine if data needs to be moved to a separate table when

normalizing your database?

A. If the table has redundant groups of data, this data would be a candidate

to remove into a separate table.

7. What are the disadvantages of over-normalizing your database design?

A. Overnormalization can lead to excess CPU and memory utilization, which

can put excess strain on the server.

Hour 4, “The Normalization Process” 399

Exercise Answers
1. You are developing a new database for a small company. Take the following

data and normalize it. Keep in mind that there would be many more items for

a small company than you are given here.

Employees:

Angela Smith, secretary, 317-545-6789, RR 1 Box 73, Greensburg, Indiana,

47890, $9.50 hour, date started January 22, 1996, SSN is 323149669.

Jack Lee Nelson, salesman, 3334 N Main St, Brownsburg, IN, 45687, 317-852-

9901, salary of $35,000.00 year, SSN is 312567342, date started 10/28/95.

Customers:

Robert’s Games and Things, 5612 Lafayette Rd, Indianapolis, IN, 46224, 317-

291-7888, customer ID is 432A.

Reed’s Dairy Bar, 4556 W 10th St, Indianapolis, IN, 46245, 317-271-9823, cus-

tomer ID is 117A.

Customer Orders:

Customer ID is 117A, date of last order is February 20, 1999, product ordered

was napkins, and the product ID is 661.

A.

Employees Customers Orders

SSN CUSTOMER ID CUSTOMER ID

NAME NAME PRODUCT ID

STREET ADDRESS STREET ADDRESS PRODUCT

CITY CITY DATE ORDERED

STATE STATE

ZIP ZIP

PHONE NUMBER PHONE NUMBER

SALARY

HOURLY PAY

START DATE

POSITION

2. No answer required.

3. No answer required.

400 APPENDIX C: Answers to Quizzes and Exercises

Hour 5, “Manipulating Data”
Quiz Answers

1. Using the EMPLOYEE_TBL with the structure:

column data type (not)null
last_name varchar2(20) not null
first_name varchar2(20) not null
ssn char(9) not null
phone number(10) null

LAST_NAME FIRST_NAME SSN PHONE
SMITH JOHN 312456788 3174549923
ROBERTS LISA 232118857 3175452321
SMITH SUE 443221989 3178398712
PIERCE BILLY 310239856 3176763990

What would happen if the following statements were run?

a. INSERT INTO EMPLOYEE_TBL
(‘’JACKSON’, ‘STEVE’, ‘313546078’, ‘3178523443’);

A. The INSERT statement would not run because the keyword VALUES is miss-

ing in the syntax.

b. INSERT INTO EMPLOYEE_TBL VALUES
(‘JACKSON’, ‘STEVE’, ‘313546078’, ‘3178523443’);

A. One row would be inserted into the EMPLOYEE_TBL.

c. INSERT INTO EMPLOYEE_TBL VALUES
(‘MILLER’, ‘DANIEL’, ‘230980012’, NULL);

A. One row would be inserted into the EMPLOYEE_TBL, with a NULL value in

the PHONE column.

d. INSERT INTO EMPLOYEE_TBL VALUES
(‘TAYLOR’, NULL, ‘445761212’, ‘3179221331’);

A. The INSERT statement would not process because the FIRST_NAME column

is NOT NULL.

e. DELETE FROM RMPLOYEE_TBL;

A. All rows in the EMPLOYEE_TBL would be deleted.

f. DELETE FROM EMPLOYEE_TBL
WHERE LAST_NAME = ‘SMITH’;

A. All employees with the last name of SMITH would be deleted from the

EMPLOYEE_TBL.

Hour 5, “Manipulating Data” 401

g. DELETE FROM EMPLOYEE_TBL
WHERE LAST_NAME = ‘SMITH’
AND FIRST_NAME = ‘JOHN’;

A. Only JOHN SMITH would be deleted from the EMPLOYEE_TBL.

h. UPDATE EMPLOYEE_TBL
SET LAST_NAME – ‘CONRAD’;

A. All last names would be changed to CONRAD.

i. UPDATE EMPLOYEE_TBL
SET LAST_NAME = ‘CONRAD’
WHERE LAST_NAME = ‘SMITH’;

A. Both JOHN and SUE SMITH would now be JOHN and SUE CONRAD.

j. UPDATE EMPLOYEE_TBL
SET LAST_NAME = ‘CONRAD’,
FIRST_NAME = ‘LARRY’;

A. All employees are now LARRY CONRAD.

k. UPDATE EMPLOYEE_TBL
SET LAST_NAME = ‘CONRAD’,
FIRST_NAME = ‘LARRY’
WHERE SSN = ‘312456788’;

A. JOHN SMITH is now LARRY CONRAD.

Exercise Answers
1. No answer required.

2. Use the PRODUCTS_TBL for the next exercise.

a. Add the following products to the product table:
PROD_ID PROD_DESC COST
301 FIREMAN COSTUME 24.99
302 POLICEMAN COSTUME 24.99
303 KIDDIE GRAB BAG 4.99

A. INSERT INTO PRODUCTS_TBL VALUES
(‘301’,’FIREMAN COSTUME’,24.99);
INSERT INTO PRODUCTS_TBL VALUES
(‘302’,’POLICEMAN COSTUME’,24.99);
INSERT INTO PRODUCTS_TBL VALUES
(‘303’,’KIDDIE GRAB BAG’,4.99);

402 APPENDIX C: Answers to Quizzes and Exercises

b. Write DML to accomplish the following:

Correct the cost of the two costumes added. The cost should be the same

as the witch’s costume.

A. UPDATE PRODUCTS_TBL
SET COST = 29.99
WHERE PROD_ID = ‘301’;

UPDATE PRODUCTS_TBL
SET COST = 29.99
WHERE PROD_ID = ‘302’;

c. Now we have decided to cut our product line, starting with the new

products. Remove the three products you just added.

A. DELETE FROM PRODUCTS_TBL WHERE PROD_ID = ‘301’;
DELETE FROM PRODUCTS_TBL WHERE PROD_ID = ‘302’;
DELETE FROM PRODUCTS_TBL WHERE PROD_ID = ‘303’;

Hour 6, “Managing Database
Transactions”

Quiz Answers
1. True or false: If you have committed several transactions and have several

more transactions that have not been committed and you issue a ROLLBACK

command, all your transactions for the same session will be undone.

A. False. When a transaction is committed, the transaction cannot be rolled

back.

2. True or false: A savepoint actually saves transactions after a specified amount

of transactions have executed.

A. False. A savepoint is only used as a point for a rollback to return to.

3. Briefly describe the purpose of each one of the following commands: COMMIT,

ROLLBACK, and SAVEPOINT.

A. COMMIT saves changes made by a transaction. ROLLBACK undoes changes

made by a transaction. SAVEPOINT creates logical points in the transaction

to which to roll back.

Hour 7, “Introduction to the Database Query” 403

Exercise Answers
1. Take the following transactions and create a savepoint after the first three

transactions. Then place a rollback statement to your savepoint at the end.

Try to determine what the CUSTOMER_TBL will look like after you are done.

A. INSERT INTO CUSTOMER_TBL VALUES(615,’FRED WOLF’,’109 MEMORY
LANE’,’PLAINFIELD’,’IN’,46113,’3175555555’,NULL);
INSERT INTO CUSTOMER_TBL VALUES(559,’RITA THOMPSON’,
‘125PEACHTREE’,’INDIANAPOLIS’,’IN’,46248,’3171111111’,NULL);
INSERT INTO CUSTOMER_TBL VALUES(715,’BOB DIGGLER’,
‘1102 HUNTINGTON ST’,’SHELBY’,’IN’,41234,’3172222222’,NULL);
SAVEPOINT SAVEPOINT1;
UPDATE CUSTOMER_TBL SET CUST_NAME=’FRED WOLF’ WHERE CUST_ID=’559’;
UPDATE CUSTOMER_TBL SET CUST_ADDRESS=’APT C 4556 WATERWAY’
WHERE CUST_ID=’615’;
UPDATE CUSTOMER_TBL SET CUST_CITY=’CHICAGO’ WHERE CUST_ID=’715’;
ROLLBACK;

2. Take the following group of transactions and create a savepoint after the first

three transactions.

Then place a COMMIT statement at the end followed by a ROLLBACK statement

to your savepoint. What do you think should happen?

A. UPDATE CUSTOMER_TBL SET CUST_NAME=’FRED WOLF’ WHERE CUST_ID=’559’;
UPDATE CUSTOMER_TBL SET CUST_ADDRESS=’APT C 4556 WATERWAY’
WHERE CUST_ID=’615’;
UPDATE CUSTOMER_TBL SET CUST_CITY=’CHICAGO’ WHERE CUST_ID=’715’;
SAVEPOINT SAVEPOINT1;
DELETE FROM CUSTOMER_TBL WHERE CUST_ID=’615’;
DELETE FROM CUSTOMER_TBL WHERE CUST_ID=’559’;
DELETE FROM CUSTOMER_TBL WHERE CUST_ID=’615’;
COMMIT;
ROLLBACK;

Because the statement is committed, the ROLLBACK statement doesn’t have any

effect.

Hour 7, “Introduction to the Database
Query”

Quiz Answers
1. Name the required parts for any SELECT statement.

A. The SELECT and FROM keywords, also called clauses, are required for all

SELECT statements.

404 APPENDIX C: Answers to Quizzes and Exercises

2. In the WHERE clause, are single quotation marks required for all the data?

A. No. Single quotation marks are required when selecting alphanumeric data

types. Number data types do not require single quotation marks.

3. Under what part of the SQL language does the SELECT statement (database

query) fall?

A. The SELECT statement is considered Data Query Language.

4. Can multiple conditions be used in the WHERE clause?

A. Yes. Multiple conditions can be specified in the WHERE clause of SELECT,

INSERT, UPDATE, and DELETE statements. Multiple conditions are used with

the operators AND and OR, which are thoroughly discussed in Hour 8, “Using

Operators to Categorize Data.”

5. What is the purpose of the DISTINCT option?

A. The DISTINCT option will suppress the display of duplicates.

6. Is the ALL option required?

A. No. Even though the ALL option can be used, it is not really required.

7. How are numeric characters treated when ordering based upon a character

field?

A. They are sorted as ASCII characters. This means that numbers would be

ordered like this: 1,12,2,222,22222,3,33.

Exercise Answers
1. Invoke MySQL on your computer. Using your learnsql database, enter the

following SELECT statements at the mysql> command prompt. Determine

whether the syntax is correct. If the syntax is incorrect, make corrections to the

code as necessary. We are using the EMPLOYEE_TBL here.

A. SELECT EMP_ID, LAST_NAME, FIRST_NAME,
FROM EMPLOYEE_TBL;

A. This SELECT statement does not work because there is a comma after

the FIRST_NAME column that does not belong there. The correct syntax fol-

lows:

SELECT EMP_ID, LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL;

Hour 7, “Introduction to the Database Query” 405

b. SELECT EMP_ID, LAST_NAME
ORDER BY EMP_ID
FROM EMPLOYEE_TBL;

A. This SELECT statement does not work because the FROM and ORDER BY

clauses are in the incorrect order. The correct syntax follows:

SELECT EMP_ID, LAST_NAME
FROM EMPLOYEE_TBL
ORDER BY EMP_ID;

c. SELECT EMP_ID, LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE EMP_ID = ‘213764555’
ORDER BY EMP_ID;

A. The syntax for this SELECT statement is correct.

d. SELECT EMP_ID SSN, LAST_NAME
FROM EMPLOYEE_TBL
WHERE EMP_ID = ‘213764555’
ORDER BY 1;

A. The syntax for this SELECT statement is correct. Notice that the EMP_ID col-

umn is renamed SSN.

e. SELECT EMP_ID, LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE EMP_ID = ‘213764555’
ORDER BY 3, 1, 2;

A. The syntax is correct for this SELECT statement. Notice the order of the

columns in the ORDER BY. This SELECT statement returns records from the

database that are sorted by FIRST_NAME, and then by EMP_ID, and finally

by LAST_NAME.

2. Does the following SELECT statement work?

SELECT LAST_NAME, FIRST_NAME, PHONE
FROM EMPLOYEE_TBL
WHERE EMP_ID = ‘333333333’;

A. The syntax is correct and the statement worked, even though no data was

returned. No data was returned because there was no row with an EMP_ID

of 333333333.

406 APPENDIX C: Answers to Quizzes and Exercises

3. Write a SELECT statement that returns the name and cost of each product

from the PRODUCTS_TBL. Which product is the most expensive?

A. SELECT PROD_DESC,COST FROM PRODUCTS_TBL;

The Witches Costume is the most expensive.

4. Write a query that generates a list of all customers and their telephone num-

bers.

A. SELECT CUST_NAME,CUST_PHONE FROM CUSTOMER_TBL;

Hour 8, “Using Operators to Categorize
Data”

Quiz Answers
1. True or false: Both conditions when using the OR operator must be TRUE.

A. False. Only one of the conditions must be TRUE.

2. True or false: All specified values must match when using the IN operator.

A. False. Only one of the values must match.

3. True or false: The AND operator can be used in the SELECT and the WHERE

clauses.

A. False. The AND operator can only be used in the WHERE clause.

4. True or false: The ANY operator can accept an expression list.

A. False. The ANY operator cannot take an expression list.

5. What is the logical negation of the IN operator?

A. NOT IN.

6. What is the logical negation of the ANY and ALL operators?

A. <>ANY and <>ALL.

Hour 8, “Using Operators to Categorize Data” 407

7. What, if anything, is wrong with the following SELECT statements?

a. SELECT SALARY
FROM EMPLOYEE_PAY_TBL
WHERE SALARY BETWEEN 20000, 30000;

A. The AND is missing between 20000, 30000. The correct syntax is
SELECT SALARY
FROM EMPLOYEE_PAY_TBL
WHERE SALARY BETWEEN 20000 AND 30000;

b. SELECT SALARY + DATE_HIRE
FROM EMPLOYEE_PAY_TBL;

A. The DATE_HIRE column is a DATE data type and is in the incorrect format

for arithmetic functions.

c. SELECT SALARY, BONUS
FROM EMPLOYEE_PAY_TBL
WHERE DATE_HIRE BETWEEN 1999-09-22
AND 1999-11-23
AND POSITION = ‘SALES’
OR POSITION = ‘MARKETING’
AND EMP_ID LIKE ‘%55%’;

A. The syntax is correct.

Exercise Answers
1. Using the following CUSTOMER_TBL:

DESCRIBE CUSTOMER_TBL
Name Null? Type
------------------------------ --------- ------------
CUST_ID NOT NULL VARCHAR (10)
CUST_NAME NOT NULL VARCHAR (30)
CUST_ADDRESS NOT NULL VARCHAR (20)
CUST_CITY NOT NULL VARCHAR (12)
CUST_STATE NOT NULL VARCHAR (2)
CUST_ZIP NOT NULL VARCHAR (5)
CUST_PHONE VARCHAR (10)
CUST_FAX VARCHAR (10)

408 APPENDIX C: Answers to Quizzes and Exercises

Write a SELECT statement that returns customer IDs and customer names

(alpha order) for customers who live in Indiana, Ohio, Michigan, and Illinois,

with names that begin with the letters A or B.

A. SELECT CUST_ID, CUST_NAME, CUST_STATE
FROM CUSTOMER_TBL
WHERE CUST_STATE IN (‘IN’, ‘OH’, ‘MI’, ‘IL’)
AND CUST_NAME LIKE ‘A%’
OR CUST_NAME LIKE ‘B%’
ORDER BY CUST_NAME;

2. Using the following PRODUCTS_TBL:

DESCRIBE PRODUCTS_TBL
Name Null? Type
------------------------------- -------- ------------
PROD_ID NOT NULL VARCHAR (10)
PROD_DESC NOT NULL VARCHAR (25)
COST NOT NULL DECIMAL(6,2)

Write a SELECT statement that returns the product ID, product description,

and the product cost. Limit the product cost to range from $1.00 to $12.50.

A. SELECT *
FROM PRODUCTS_TBL
WHERE COST BETWEEN 1.00 AND 12.50;

3. Assuming that you used the BETWEEN operator in exercise 2, rewrite your SQL

statement to achieve the same results using different operators. If you did not

use the BETWEEN operator, do so now.

A. SELECT *
FROM PRODUCTS_TBL
WHERE COST >= 1.00 AND COST <= 12.50;

SELECT *
FROM PRODUCTS_TBL
WHERE COST BETWEEN 1.00 AND 12.50;

4. Write a SELECT statement that returns products that are either less than 1.00

or greater than 12.50. There are two ways to achieve the same results.

A. SELECT *
FROM PRODUCTS_TBL
WHERE COST < 1.00 OR COST > 12.50;

SELECT *
FROM PRODUCTS_TBL
WHERE COST NOT BETWEEN 1.00 AND 12.50;

Also keep in mind that BETWEEN is inclusive of the upper and lower values,

whereas NOT BETWEEN is not inclusive.

Hour 9, “Summarizing Data Results from a Query” 409

5. Write a SELECT statement that returns the following information from

PRODUCTS_TBL: product description, product cost, and 5% sales tax for each

product. List the products in order from most to least expensive.

A. SELECT PROD_DESC, COST, COST * .05
FROM PRODUCTS_TBL
ORDER BY COST DESC;

6. Write a SELECT statement that returns the following information from

PRODUCTS_TBL: product description, product cost, 5% sales tax for each prod-

uct, and total cost with sales tax. List the products in order from most to least

expensive. There are two ways to achieve the same results. Try both.

A. SELECT PROD_DESC, COST, COST * .05, COST + (COST * .05)
FROM PRODUCTS_TBL
ORDER BY COST DESC;

SELECT PROD_DESC, COST, COST * .05, COST * 1.05
FROM PRODUCTS_TBL
ORDER BY COST DESC;

Hour 9, “Summarizing Data Results
from a Query”

Quiz Answers
1. The AVG function returns an average of all rows from a select column, includ-

ing any NULL values.

A. False. The NULL values are not considered.

2. The SUM function is used to add column totals.

A. False. The SUM function is used to return a total for a group of rows.

3. The COUNT(*) function counts all rows in a table.

A. True.

410 APPENDIX C: Answers to Quizzes and Exercises

4. Will the following SELECT statements work? If not, what will fix the state-

ments?

a. SELECT COUNT *
FROM EMPLOYEE_PAY_TBL;

A. This statement will not work because the left and right parentheses are

missing around the asterisk. The correct syntax is

SELECT COUNT(*)
FROM EMPLOYEE_PAY_TBL;

b. SELECT COUNT(EMP_ID), SALARY
FROM EMPLOYEE_PAY_TBL
GROUP BY SALARY;

A. Yes, this statement will work.

c. SELECT MIN(BONUS), MAX(SALARY)
FROM EMPLOYEE_PAY_TBL
WHERE SALARY > 20000;

A. Yes, this statement will work.

d. SELECT COUNT(DISTINCT PROD_ID) FROM PRODUCTS_TBL;

A. Yes, this statement will work.

e. SELECT AVG(LAST_NAME) FROM EMPLOYEE_TBL;

A. No, this statement will not work because LAST_NAME needs to be a numer-

ic value.

f. SELECT AVG(PAGER) FROM EMPLOYEE_TBL;

A. Yes, this statement will work with the current set of data in the database.

Exercise Answers
1. Use EMPLOYEE_PAY_TBL to construct SQL statements to solve the following

exercises:

a. What is the average salary?

A. The average salary is $30,000.00. The SQL statement to return the

data is

SELECT AVG(SALARY)
FROM EMPLOYEE_PAY_TBL;

Hour 9, “Summarizing Data Results from a Query” 411

b. What is the maximum bonus?

A. The maximum bonus is $2000.00. The SQL statement to return the

data is

SELECT MAX(BONUS)
FROM EMPLOYEE_PAY_TBL;

c. What is the total of all the salaries?

A. The sum of all the salaries is $90,000.00. The SQL statement to return the

data is

SELECT SUM(SALARY)
FROM EMPLOYEE_PAY_TBL;

d. What is the minimum pay rate?

A. The minimum pay rate is $11.00 an hour. The SQL statement to return the

data is

SELECT MIN(PAY_RATE)
FROM EMPLOYEE_PAY_TBL;

e. How many rows are in the table?

A. The total row count of the table is six. The SQL statement to return the

data is

SELECT COUNT(*)
FROM EMPLOYEE_PAY_TBL;

2. How many employees do we have whose last names begin with a G?

A. We should get 2 employees using the syntax below.

SELECT COUNT(*)
FROM EMPLOYEE_TBL
WHERE LAST_NAME LIKE ‘G%’;

3. If every product cost $10.00, what would be the total dollar amount for all

orders?

A. We should get $1580.00 as the total dollar amount using the query below.

SELECT SUM(QTY) * 10
FROM ORDERS_TBL;

412 APPENDIX C: Answers to Quizzes and Exercises

Hour 10, “Sorting and Grouping Data”

Quiz Answers
1. Will the following SQL statements work?

a. SELECT SUM(SALARY), EMP_ID
FROM EMPLOYEE_PAY_TBL
GROUP BY 1 and 2;

A. No, this statement will not work. The and in the GROUP BY clause does not

belong there, and you cannot use an integer in the GROUP BY clause. The

correct syntax is

SELECT SUM(SALARY), EMP_ID
FROM EMPLOYEE_PAY_TBL
GROUP BY SALARY, EMP_ID;

b. SELECT EMP_ID, MAX(SALARY)
FROM EMPLOYEE_PAY_TBL
GROUP BY SALARY, EMP_ID;

A. Yes, this statement will work.

c. SELECT EMP_ID, COUNT(SALARY)
FROM EMPLOYEE_PAY_TBL
ORDER BY EMP_ID
GROUP BY SALARY;

A. No, this statement will not work. The ORDER BY clause and the GROUP BY

clause are not in the correct sequence. Also, the EMP_ID column is required

in the GROUP BY clause. The correct syntax is

SELECT EMP_ID, COUNT(SALARY)
FROM EMPLOYEE_PAY_TBL
GROUP BY EMP_ID
ORDER BY EMP_ID;

d. SELECT YEAR(DATE_HIRE) AS YEAR_HIRED,SUM(SALARY)
FROM EMPLOYEE_PAY_TBL
GROUP BY 1
HAVING SUM(SALARY)>20000;

A. Yes, this statement will work.

Hour 10, “Sorting and Grouping Data” 413

2. True or false: You must also use the GROUP BY clause whenever using the

HAVING clause.

A. False. The HAVING clause can be used without a GROUP BY clause.

3. True or false: The following SQL statement returns a total of the salaries by

groups.

SELECT SUM(SALARY)
FROM EMPLOYEE_PAY_TBL;

A. False. The statement cannot return a total of the salaries by groups because

there is no GROUP BY clause.

4. True or false: The columns selected must appear in the GROUP BY clause in the

same order.

A. False. The order of the columns in the SELECT clause can be in a different

order in the GROUP BY clause.

5. True or false: The HAVING clause tells the GROUP BY which groups to include.

A. True.

Exercise Answers
1. No answer required.

2. No answer required.

3. No answer required.

4. No answer required.

5. Modify the query in exercise 3 by ordering the results in descending order,

from highest count to lowest.

A. SELECT CITY, COUNT(*)
FROM EMPLOYEE_TBL
GROUP BY CITY
ORDER BY 2 DESC;

6. Write a query to list the average pay rate by position from the

EMPLOYEE_PAY_TBL table.

A. SELECT POSITION, AVG(PAY_RATE)
FROM EMPLOYEE_PAY_TBL
GROUP BY POSITION;

414 APPENDIX C: Answers to Quizzes and Exercises

7. Write a query to list the average salary by position from the

EMPLOYEE_PAY_TBL table.

A. SELECT POSITION, AVG(SALARY)
FROM EMPLOYEE_PAY_TBL
GROUP BY POSITION;

8. Write a query to list the average salary by position from the

EMPLOYEE_PAY_TBL where the average salary is greater than 20000.

A. SELECT POSITION, AVG(SALARY)
FROM EMPLOYEE_PAY_TBL
GROUP BY POSITION
HAVING AVG(SALARY)>20000;

Hour 11, “Restructuring the
Appearance of Data”

Quiz Answers
1. Match the descriptions with the possible functions.

A.

Descriptions Functions

a. Used to select a portion of a character string SUBSTR

b. Used to trim characters from either the right LTRIM/RTRIM

or left of a string

c. Used to change all letters to lowercase LOWER

d. Used to find the length of a string LENGTH

e. Used to combine strings ||

2. True or false: Using functions in a select statement to restructure the appear-

ance of data in output will also affect the way the data is stored in the data-

base.

A. False.

Hour 11, “Restructuring the Appearance of Data” 415

3. The outermost function is always resolved first when functions are embedded

within other functions in a query.

A. False. The innermost function is always resolved first when embedding

functions within one another.

Exercise Answers
1. No answer required.

2. No answer required.

3. Write a SQL statement that lists employee emails. Email is not a stored col-

umn. The email for each employee should be as follows:

FIRST.LAST@PERPTECH.COM

For example, John Smith’s email address would be

JOHN.SMITH@PERPTECH.COM.

A. SELECT CONCAT(FIRST_NAME, ‘.’, LAST_NAME, ‘@PERPTECH.COM’)
FROM EMPLOYEE_TBL;

4. Write a SQL statement that lists employee emails. Email is not a stored col-

umn. The email for each employee should be as follows:

FIRSTINITIAL.LAST@PERPTECH.COM

For example, John Smith’s email address would be JMITH@PERPTECH.COM.

A. SELECT CONCAT(SUBSTRING(FIRST_NAME,1,1), LAST_NAME, ‘@PERPTECH.COM’)
FROM EMPLOYEE_TBL;

5. Write a SQL statement that lists each employee’s name and phone number in

the following formats:

. NAME = SMITH, JOHN

. EMP_ID = 999-99-9999

. PHONE = (999)999-9999

A. SELECT CONCAT(LAST_NAME, ‘, ‘, FIRST_NAME),EMP_ID,
CONCAT(‘(‘,SUBSTRING(PHONE,1,3),’)’,SUBSTRING(PHONE,4,3),’-’,
SUBSTRING(PHONE,7,4))

FROM EMPLOYEE_TBL;

416 APPENDIX C: Answers to Quizzes and Exercises

Hour 12, “Understanding Dates and
Time”

Quiz Answers
1. From where are the system date and time normally derived?

A. The system date and time are derived from the current date and time of the

operating system on the host machine.

2. List the standard internal elements of a DATETIME value.

A. YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.

3. What could be a major factor concerning the representation and comparison

of date and time values if your company is an international organization?

A. The awareness of time zones might be a concern.

4. Can a character string date value be compared to a date value defined as a

valid DATETIME data type?

A. A DATETIME data type cannot be accurately compared to a date value

defined as a character string. The character string must first be converted to

the DATETIME data type.

5. What would you use in MySQL to get the current date and time?

A. NOW().

Exercise Answers
1. No answer required.

2. No answer required.

3. No answer required.

4. No answer required.

5. On what day of the week was each employee hired?

A. Use the following statement to find the answer:

SELECT EMP_ID, DAYNAME(DATE_HIRE)
FROM EMPLOYEE_PAY_TBL;

Hour 13, “Joining Tables in Queries” 417

6. What is today’s Julian date (day of year)?

A. Use the following statement to find the answer:

SELECT DAYOFYEAR(CURRENT_DATE);

7. No answer required.

Hour 13, “Joining Tables in Queries”

Quiz Answers
1. What type of join would you use to return records from one table, regardless

of the existence of associated records in the related table?

A. You would use an outer join.

2. The JOIN conditions are located in what part of the SQL statement?

A. The JOIN conditions are located in the WHERE clause.

3. What type of JOIN do you use to evaluate equality among rows of related

tables?

A. You would use an equijoin.

4. What happens if you select from two different tables but fail to join the tables?

A. You receive a Cartesian product by not joining the tables (this is also called

a cross join).

5. Use the following tables:

ORDERS_TBL
ORD_NUM VARCHAR2(10) NOT NULL primary key
CUST_ID VARCHAR2(10) NOT NULL
PROD_ID VARCHAR2(10) NOT NULL
QTY INTEGER NOT NULL
ORD_DATE DATE

PRODUCTS_TBL
PROD_ID VARCHAR2(10) NOT NULL primary key
PROD_DESC VARCHAR2(40) NOT NULL
COST DECIMAL(,2) NOT NULL

Is the following syntax correct for using an outer join?

SELECT C.CUST_ID, C.CUST_NAME, O.ORD_NUM
FROM CUSTOMER_TBL C, ORDERS_TBL O
WHERE C.CUST_ID(+) = O.CUST_ID(+)

418 APPENDIX C: Answers to Quizzes and Exercises

A. No, the syntax is not correct. The (+) operator should only follow the

O.CUST_ID column in the WHERE clause. The correct syntax is

SELECT C.CUST_ID, C.CUST_NAME, O.ORD_NUM
FROM CUSTOMER_TBL C LEFT JOIN ORDERS_TBL O
ON C.CUST_ID = O.CUST_ID;

Exercise Answers
1. No answer required.

2. No answer required.

3. Rewrite the SQL query from exercise 2 using the INNER JOIN syntax.

A. SELECT E.LAST_NAME, E.FIRST_NAME, EP.DATE_HIRE
FROM EMPLOYEE_TBL E INNER JOIN
EMPLOYEE_PAY_TBL EP ON
E.EMP_ID = EP.EMP_ID;

4. Write a SQL statement to return the EMP_ID, LAST_NAME, and FIRST_NAME

columns from the EMPLOYEE_TBL, and SALARY and BONUS columns from the

EMPLOYEE_PAY_TBL. Use both types of join techniques.

A. SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.SALARY, EP.BONUS
FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP
WHERE E.EMP_ID = EP.EMP_ID;

SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.SALARY, EP.BONUS
FROM EMPLOYEE_TBL E INNER JOIN
EMPLOYEE_PAY_TBL EP
ON E.EMP_ID = EP.EMP_ID;

5. What is the average employee salary per city?

A. SELECT E.CITY, AVG(SALARY)
FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP
WHERE E.EMP_ID = EP.EMP_ID
GROUP BY E.CITY;

6. Answers will vary.

Hour 14, “Using Subqueries to Define Unknown Data” 419

Hour 14, “Using Subqueries to Define
Unknown Data”

Quiz Answers
1. What is the function of a subquery when used with a SELECT statement?

A. The main function of a subquery when used with a SELECT statement is to

return data that the main query can use to resolve the query.

2. Can you update more than one column when using the UPDATE statement in

conjunction with a subquery?

A. Yes, you can update more than one column using the same UPDATE and

subquery statement.

3. Are the following syntaxes correct? If not, what is the correct syntax?

a. SELECT CUST_ID, CUST_NAME
FROM CUSTOMER_TBL
WHERE CUST_ID =

(SELECT CUST_ID
FROM ORDERS_TBL
WHERE ORD_NUM = ‘16C17’);

A. Yes, this syntax is correct.

b. SELECT EMP_ID, SALARY
FROM EMPLOYEE_PAY_TBL
WHERE SALARY BETWEEN ‘20000’

AND (SELECT SALARY
FROM EMPLOYEE_PAY_TBL
WHERE SALARY = ‘40000’);

A. No. The BETWEEN operator cannot be used in this format.

c. UPDATE PRODUCTS_TBL
SET COST = 1.15
WHERE PROD_ID =

(SELECT PROD_ID
FROM ORDERS_TBL
WHERE ORD_NUM = ‘32A132’);

A. Yes, this syntax is correct.

420 APPENDIX C: Answers to Quizzes and Exercises

4. What would happen if the following statement were run?

DELETE FROM EMPLOYEE_TBL
WHERE EMP_ID IN

(SELECT EMP_ID
FROM EMPLOYEE_PAY_TBL);

A. All rows that were retrieved from the EMPLOYEE_PAY_TBL would be deleted

from the EMPLOYEE_TBL. A WHERE clause in the subquery is highly advised.

Exercise Answers
1. No answer required.

2. Using a subquery, write a SQL statement to update the CUSTOMER_TBL table,

changing the customer name to DAVIDS MARKET, with order number 23E934.

A. UPDATE CUSTOMER_TBL
SET CUST_NAME = ‘DAVIDS MARKET’
WHERE CUST_ID =

(SELECT CUST_ID
FROM ORDERS_TBL
WHERE ORD_NUM = ‘23E934’);

3. Using a subquery, write a query that returns the names of all employees who

have a pay rate greater than JOHN DOE, and whose employee identification

number is 343559876.

A. SELECT E.LAST_NAME, E.FIRST_NAME, E.MIDDLE_NAME
FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL P
WHERE P.PAY_RATE > (SELECT PAY_RATE

FROM EMPLOYEE_PAY_TBL
WHERE EMP_ID = ‘343559876’);

4. Using a subquery, write a query that lists all products that cost more than the

average cost of all products.

A. SELECT PROD_DESC
FROM PRODUCTS_TBL
WHERE COST > (SELECT AVG(COST)

FROM PRODUCTS_TBL);

Hour 15, “Combining Multiple Queries into One” 421

Hour 15, “Combining Multiple Queries
into One”

Quiz Answers
Refer to the Oracle syntax covered in this hour for the following quiz questions.

1. Is the syntax correct for the following compound queries? If not, what would

correct the syntax? Use the EMPLOYEE_TBL and the EMPLOYEE_PAY_TBL shown

as follows:

EMPLOYEE_TBL
EMP_ID VARCHAR(9) NOT NULL,
LAST_NAME VARCHAR(15) NOT NULL,
FIRST_NAME VARCHAR(15) NOT NULL,
MIDDLE_NAME VARCHAR(15),
ADDRESS VARCHAR(30) NOT NULL,
CITY VARCHAR(15) NOT NULL,
STATE VARCHAR(2) NOT NULL,
ZIP INTEGER(5) NOT NULL,
PHONE VARCHAR(10),
PAGER VARCHAR(10),

EMPLOYEE_PAY_TBL
EMP_ID VARCHAR(9) NOT NULL, primary key
POSITION VARCHAR(15) NOT NULL,
DATE_HIRE DATETIME,
PAY_RATE DECIMAL(4,2) NOT NULL,
DATE_LASTRAISE DATE,
SALARY DECIMAL(8,2),
BONUS DECIMAL(6,2),

a. SELECT EMP_ID, LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
UNION
SELECT EMP_ID, POSITION, DATE_HIRE
FROM EMPLOYEE_PAY_TBL;

A. This compound query does not work because the data types do not match.

The EMP_ID columns match, but the LAST_NAME and FIRST_NAME data types

do not match the POSITION and DATE_HIRE data types.

b. SELECT EMP_ID FROM EMPLOYEE_TBL
UNION ALL
SELECT EMP_ID FROM EMPLOYEE_PAY_TBL
ORDER BY EMP_ID;

A. Yes, the statement is correct.

422 APPENDIX C: Answers to Quizzes and Exercises

c. SELECT EMP_ID FROM EMPLOYEE_PAY_TBL
INTERSECT
SELECT EMP_ID FROM EMPLOYEE_TBL
ORDER BY 1;

A. Yes, this compound query works.

2. Match the correct operator to the following statements:

A.

Statement Operator

a. Show duplicates UNION ALL

b. Return only rows from the first query that match those INTERSECT

in the second query

c. Return no duplicates UNION

d. Return only rows from the first query not returned EXCEPT

by the second

Exercise Answers
Refer to the Oracle syntax covered in this hour for the following exercises. Write

your queries out by hand on a sheet of paper because MySQL does not support the

operators covered in this hour. When you are finished, compare your results to ours.

Using the CUSTOMER_TBL and the ORDERS_TBL as listed:

CUSTOMER_TBL
CUST_IN VARCHAR(10) NOT NULL primary key
CUST_NAME VARCHAR(30) NOT NULL,
CUST_ADDRESS VARCHAR(20) NOT NULL,
CUST_CITY VARCHAR(15) NOT NULL,
CUST_STATE VARCHAR(2) NOT NULL,
CUST_ZIP INTEGER(5) NOT NULL,
CUST_PHONE INTEGER(10),
CUST_FAX INTEGER(10)

ORDERS_TBL
ORD_NUM VARCHAR(10) NOT NULL primary key
CUST_ID VARCHAR(10) NOT NULL,
PROD_ID VARCHAR(10) NOT NULL,
QTY INTEGER(6) NOT NULL,
ORD_DATE DATETIME

1. Write a compound query to find the customers who have placed an order.

A. SELECT CUST_ID FROM CUSTOMER_TBL
INTERSECT
SELECT CUST_ID FROM ORDERS_TBL;

Hour 16, “Using Indexes to Improve Performance” 423

2. Write a compound query to find the customers who have not placed an order.

A. SELECT CUST_ID FROM CUSTOMER_TBL
EXCEPT
SELECT CUST_ID FROM ORDERS_TBL;

Hour 16, “Using Indexes to Improve
Performance”

Quiz Answers
1. What are some major disadvantages of using indexes?

A. Major disadvantages of an index include slowing batch jobs, storage space

on the disk, and maintenance upkeep on the index.

2. Why is the order of columns in a composite important?

A. Because query performance is improved by putting the column with the

most restrictive values first.

3. Should a column with a large percentage of NULL values be indexed?

A. No. A column with a large percentage of NULL values should not be

indexed because the speed of accessing these rows degrades when the value

of a large percentage of rows is the same.

4. Is the main purpose of an index to stop duplicate values in a table?

A. No. The main purpose of an index is to enhance data retrieval speed,

although a unique index stops duplicate values in a table.

5. True or false: The main reason for a composite index is for aggregate function

usage in an index.

A. False. The main reason for composite indexes is for two or more columns in

the same table to be indexed.

6. What does cardinality refer to? What would be considered a column of high-

cardinality?

A. Cardinality refers to the uniqueness of the data within a column. The SSN

column would be an example of such a column.

424 APPENDIX C: Answers to Quizzes and Exercises

Exercise Answers
1. Decide whether an index should be used in the following situations, and if so,

what type of index should be used.

a. Several columns, but a rather small table.

A. Being a very small table, no index is needed.

b. Medium-sized table, no duplicates should be allowed.

A. A unique index could be used.

c. Several columns, very large table, several columns are used as filters in

the WHERE clause.

A. A composite index on the columns used as filters in the WHERE clause

should be the choice.

d. Large table, many columns, lots of data manipulation.

A. A choice of a single-column or composite index should be considered,

depending on filtering, ordering, and grouping. For the large amount of

data manipulation, the index could be dropped and re-created after the

INSERT, UPDATE, or DELETE jobs were done.

2. No answer required.

3. Study the tables used in this book. What are some good candidates for

indexed columns based on how a user might search for data?

A. EMPLOYEE_TBL.LAST_NAME
EMPLOYEE_TBL.FIRST_NAME
EMPLOYEE_TBL.EMP_ID
EMPLOYEE_PAY_TBL.EMP_ID
EMPLOYEE_PAY_TBL.POSITION
CUSTOMER_TBL.CUST_ID
CUSTOMER_TBL.CUST_NAME
ORDERS_TBL.ORD_NUM
ORDERS_TBL.CUST_ID
ORDERS_TBL.PROD_ID
ORDERS_TBL.ORD_DATE
PRODUCTS_TBL.PROD_ID
PRODUCTS_TBL.PROD_DESC

4. Create a multi-column index on the ORDERS_TBL table. Include the following

columns: CUST_ID, PROD_ID, ORD_DATE.

A. CREATE INDEX ORD_IDX ON ORDERS_TBL (CUST_ID, PROD_ID, ORD_DATE);

5. Answers will vary.

Hour 17, “Improving Database Performance” 425

Hour 17, “Improving Database
Performance”

Quiz Answers
1. Would the use of a unique index on a small table be of any benefit?

A. The index might not be of any use for performance issues, but the unique

index would keep referential integrity intact. Referential integrity is dis-

cussed in Hour 3, “Managing Database Objects.”

2. What happens when the optimizer chooses not to use an index on a table

when a query has been executed?

A. A full table scan occurs.

3. Should the most restrictive clause(s) be evaluated before or after the join con-

dition(s) in the WHERE clause?

A. The most restrictive clause(s) should be evaluated before the join condi-

tion(s) because join conditions normally return a large number of rows.

Exercise Answers
1. Rewrite the following SQL statements to improve their performance. Use the

EMPLOYEE_TBL and the EMPLOYEE_PAY_TBL as described here:

EMPLOYEE_TBL
EMP_ID VARCHAR(9) NOT NULL Primary key
LAST_NAME VARCHAR(15) NOT NULL,
FIRST_NAME VARCHAR(15) NOT NULL,
MIDDLE_NAME VARCHAR(15),
ADDRESS VARCHAR(30) NOT NULL,
CITY VARCHAR(15) NOT NULL,
STATE VARCHAR(2) NOT NULL,
ZIP INTEGER(5) NOT NULL,
PHONE VARCHAR(10),
PAGER VARCHAR(10),

EMPLOYEE_PAY_TBL
EMP_ID VARCHAR(9) NOT NULL primary key
POSITION VARCHAR(15) NOT NULL,
DATE_HIRE DATETIME,
PAY_RATE DECIMAL(4,2) NOT NULL,
DATE_LAST_RAISE DATETIME,
SALARY DECIMAL(8,2),
BONUS DECIMAL(8,2),

426 APPENDIX C: Answers to Quizzes and Exercises

a. SELECT EMP_ID, LAST_NAME, FIRST_NAME,
PHONE

FROM EMPLOYEE_TBL
WHERE SUBSTRING(PHONE, 1, 3) = ‘317’ OR

SUBSTRING(PHONE, 1, 3) = ‘812’ OR
SUBSTRING(PHONE, 1, 3) = ‘765’;

A. SELECT EMP_ID, LAST_NAME, FIRST_NAME,
PHONE

FROM EMPLOYEE_TBL
WHERE SUBSTRING(PHONE, 1, 3) IN (‘317’, ‘812’, ‘765’);

From our experience, it is better to convert multiple OR conditions to an

IN list.

b. SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE LAST_NAME LIKE ‘%ALL%’;

A. SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE LAST_NAME LIKE ‘WAL%’;

You cannot take advantage of an index if you do not include the first

character in a condition’s value.

c. SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME,
EP.SALARY

FROM EMPLOYEE_TBL E,
EMPLOYEE_PAY_TBL EP
WHERE LAST_NAME LIKE ‘S%’
AND E.EMP_ID = EP.EMP_ID;

A. SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME,
EP.SALARY

FROM EMPLOYEE_TBL E,
EMPLOYEE_PAY_TBL EP
WHERE E.EMP_ID = EP.EMP_ID
AND LAST_NAME LIKE ‘S%’;

List join operations first in the WHERE clause (check with your implementation

of SQL on how the optimizer reads conditions in the WHERE clause). Many

implementations’ optimizers evaluate data listed last in the WHERE clause first.

It is important to filter data before all rows between tables are joined. Also try

to evaluate indexed conditions first.

Hour 18, “Managing Database Users” 427

Hour 18, “Managing Database Users”

Quiz Answers
1. What command is used to establish a session?

A. The CONNECT TO statement.

2. Which option must be used to drop a schema that still contains database

objects?

A. The CASCADE option allows the schema to be dropped if there are still

objects under that schema.

3. What command is used in MySQL to create a schema?

A. The CREATE SCHEMA command.

4. What statement is used to remove a database privilege?

A. The REVOKE statement is used to remove database privileges.

5. What command creates a grouping or collection of tables, views, and privi-

leges?

A. The CREATE SCHEMA statement.

Exercise Answers
1. Describe how you would create a new user ‘John’ in your learnsql database.

A. USE LEARNSQL:
CREATE USER JOHN

2. How would you grant access to the EMPLOYEE_TBL to your new user ‘John’?

A. GRANT SELECT ON TABLE EMPLOYEE_TBL TO JOHN;

3. Describe how you would assign permissions to all objects within the learnsql

database to ‘John’.

A. GRANT SELECT ON TABLE * TO JOHN;

4. Describe how you would revoke the previous privileges from ‘John’ and then

remove his account.

A. DROP USER JOHN CASCADE;

428 APPENDIX C: Answers to Quizzes and Exercises

5. At the mysql> prompt, type the following to show the status of your current

MySQL session:

status;

A. If you are using Microsoft Windows, the user is probably root@localhost.

Hour 19, “Managing Database Security”

Quiz Answers
1. What option must a user have to grant another user privileges to an object

not owned by the user?

A. GRANT OPTION.

2. When privileges are granted to PUBLIC, do all users of the database acquire

the privileges, or just a listing of chosen users?

A. All users of the database will be granted the privileges.

3. What privilege is required to look at data in a specific table?

A. The SELECT privilege.

4. What type of privilege is the SELECT privilege?

A. An object-level privilege.

5. What option is used for revoking a user’s privilege to an object as well as the

other users that they might have granted privileges to by use of the GRANT

option?

A. The CASCADE option is used with the REVOKE statement to remove other

users’ access that was granted by the affected user.

Exercise Answers
1. No answer required.

2. No answer required.

3. No answer required.

4. No answer required.

5. No answer required.

Hour 20, “Creating and Using Views and Synonyms” 429

Hour 20, “Creating and Using Views and
Synonyms”

Quiz Answers
1. Can a row of data be deleted from a view that was created from multiple

tables?

A. No. The DELETE, INSERT, and UPDATE commands can only be used on views

created from a single table.

2. When creating a table, the owner is automatically granted the appropriate

privileges on that table. Is this true when creating a view?

A. Yes. The owner of a view is automatically granted the appropriate privi-

leges on the view.

3. What clause is used to order data when creating a view?

A. The GROUP BY clause functions in a view much as the ORDER BY clause (or

GROUP BY clause) does in a regular query.

4. What option can be used, when creating a view from a view, to check integrity

constraints?

A. The WITH CHECK OPTION.

5. You try to drop a view and receive an error because there are one or more

underlying views. What must you do to drop the view?

A. Re-execute your DROP statement with the CASCADE option. This allows the

DROP statement to succeed by also dropping all underlying views.

Exercise Answers
1. Write a statement to create a view based on the total contents of the

EMPLOYEE_TBL table.

A. CREATE VIEW EMP_VIEW AS
SELECT * FROM EMPLOYEE_TBL;

430 APPENDIX C: Answers to Quizzes and Exercises

2. Write a statement that creates a summarized view containing the average pay

rate and average salary for each city in the EMPLOYEE_TBL table.

A. CREATE VIEW AVG_PAY_VIEW AS
SELECT E.CITY, AVG(P.PAY_RATE), AVG(P.SALARY)
FROM EMPLOYEE_PAY_TBL P,
EMPLOYEE_TBL E
WHERE P.EMP_ID = E.EMP_ID
GROUP BY E.CITY;

3. Write statements that drop the two views that you created in Exercises 1

and 2.

A. DROP VIEW EMP_VIEW;
DROP VIEW AVG_PAY_VIEW;

Hour 21, “Working with the System
Catalog”

Quiz Answers
1. The system catalog is also known as what in some implementations?

A. The system catalog is also known as the data dictionary.

2. Can a regular user update the system catalog?

A. Not directly; however, when a user creates an object such as a table, the

system catalog is automatically updated.

3. What Sybase system table would be used to retrieve information about views

that exist in the database?

A. SYSVIEWS would be used.

4. Who owns the system catalog?

A. The owner of the system catalog is often a privileged database user account

called SYS or SYSTEM. The system catalog can also be owned by the owner

of the database, but is not ordinarily owned by a particular schema in the

database.

5. What is the difference between the Oracle system objects ALL_TABLES and

DBA_TABLES?

A. ALL_TABLES shows all tables that are accessible by a particular user, where-

as DBA_TABLES shows all tables that exist in the database.

Hour 22, “Advanced SQL Topics” 431

6. Who makes modifications to the system tables?

A. The database server itself.

Exercise Answers
1. No answer required.

2. No answer required.

3. Type the following command to see the current status of MySQL:

STATUS;

What is the current database?

A. mysql

4. At the mysql> prompt, change your database from mysql to learnsql, and

then check the status again.

A. USE LEARNSQL;
STATUS;

5. Write a query to gather all of the usernames in your MySQL instance.

A. SELECT USER FROM USER;

6. Now write a query to get a list of all of the users and their associated privi-

leges for the learnsql database by using the system catalogs.

A. SELECT * FROM USER_PRIVILEGES;

Hour 22, “Advanced SQL Topics”

Quiz Answers
1. Can a trigger be altered?

A. No, the trigger must be replaced or re-created.

2. When a cursor is closed, can you reuse the name?

A. This is implementation specific. In some implementations, the closing of

the cursor will allow you to reuse the name and even free the memory,

whereas for other implementations you must use the DEALLOCATE statement

before the name can be reused.

432 APPENDIX C: Answers to Quizzes and Exercises

3. What command is used to retrieve the results after a cursor has been opened?

A. The FETCH command.

4. Are triggers executed before or after an INSERT, DELETE, or UPDATE statement?

A. Triggers can be executed before or after an INSERT, DELETE, or UPDATE

statement. Many different types of triggers can be created.

5. What MySQL function is used to retrieve information from an XML fragment?

A. EXTRACTVALUE is used.

6. Why do Oracle and MySQL not support the DEALLOCATE syntax for cursors?

A. They do not support the statement because they automatically deallocate

the cursor resources when the cursor is closed.

Exercise Answers
1. No answer required.

2. Write a SELECT statement that generates the SQL code to count all rows in

each of your tables (Hint: It is similar to exercise 1).

A. SELECT CONCAT(‘SELECT COUNT(*) FROM ‘,TABLE_NAME,’;’) FROM TABLES;

Hour 23, “Extending SQL to the
Enterprise, the Internet, and the
Intranet”

Quiz Answers
1. Can a database on a server be accessed from another server?

A. Yes, by using a middleware product. This is called accessing a remote data-

base.

2. What can a company use to disseminate information to its own employees?

A. An intranet.

3. Products that allow connections to databases are called what?

A. Middleware.

Hour 24, “Extensions to Standard SQL” 433

4. Can SQL be embedded into Internet programming languages?

A. Yes. SQL can be embedded in Internet programming languages, such as

Java.

5. How is a remote database accessed through a web application?

A. Via a web server.

Exercise Answers
1. Answers will vary.

2. No answer required.

Hour 24, “Extensions to Standard SQL”

Quiz Answers
1. Is SQL a procedural or non-procedural language?

A. SQL is non-procedural, meaning that the database decides how to execute

the SQL statement. The extensions discussed during this hour were proce-

dural.

2. What are some of the reasons differences in SQL exist?

A. Differences exist in SQL among the vendors because of storage require-

ments, advantages over competitors, ease of use, and performance consid-

erations.

3. What are the three basic operations of a cursor outside of declaring the

cursor?

A. OPEN, FETCH, and CLOSE.

4. Procedural or non-procedural: With which does the database engine decide

how to evaluate and execute SQL statements?

A. Non-procedural.

Exercise Answers
No specific answer.

This page intentionally left blank

APPENDIX D

CREATE TABLE Statements for
Book Examples

This appendix is very useful. The CREATE TABLE statements used in the examples are list-

ed. You can use these statements to create your own tables in MySQL for performing

hands-on exercises.

EMPLOYEE_TBL
CREATE TABLE EMPLOYEE_TBL
(
EMP_ID VARCHAR(9) NOT NULL,
LAST_NAME VARCHAR(15) NOT NULL,
FIRST_NAME VARCHAR(15) NOT NULL,
MIDDLE_NAME VARCHAR(15),
ADDRESS VARCHAR(30) NOT NULL,
CITY VARCHAR(15) NOT NULL,
STATE CHAR(2) NOT NULL,
ZIP INTEGER(5) NOT NULL,
PHONE CHAR(10),
PAGER CHAR(10),
CONSTRAINT EMP_PK PRIMARY KEY (EMP_ID)
);

EMPLOYEE_PAY_TBL
CREATE TABLE EMPLOYEE_PAY_TBL
(
EMP_ID VARCHAR(9) NOT NULL primary key,
POSITION VARCHAR(15) NOT NULL,
DATE_HIRE DATE,
PAY_RATE DECIMAL(4,2),
DATE_LAST_RAISE DATE,
SALARY DECIMAL(8,2),
BONUS DECIMAL(6,2),
CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL (EMP_ID)
);

436 APPENDIX D: CREATE TABLE Statements for Book Examples

CUSTOMER_TBL
CREATE TABLE CUSTOMER_TBL
(
CUST_ID VARCHAR(10) NOT NULL primary key,
CUST_NAME VARCHAR(30) NOT NULL,
CUST_ADDRESS VARCHAR(20) NOT NULL,
CUST_CITY VARCHAR(15) NOT NULL,
CUST_STATE CHAR(2) NOT NULL,
CUST_ZIP INTEGER(5) NOT NULL,
CUST_PHONE CHAR(10),
CUST_FAX INTEGER(10)
);

ORDERS_TBL
CREATE TABLE ORDERS_TBL
(
ORD_NUM VARCHAR(10) NOT NULL primary key,
CUST_ID VARCHAR(10) NOT NULL,
PROD_ID VARCHAR(10) NOT NULL,
QTY INTEGER(6) NOT NULL,
ORD_DATE DATE
);

PRODUCTS_TBL
CREATE TABLE PRODUCTS_TBL
(
PROD_ID VARCHAR(10) NOT NULL primary key,
PROD_DESC VARCHAR(40) NOT NULL,
COST DECIMAL(6,2) NOT NULL
);

APPENDIX E

INSERT Statements for Book
Examples

This appendix contains the INSERT statements that were used to populate the tables that

are listed in Appendix D, “CREATE TABLE Statements for Book Examples.” These INSERT

statements can be used to populate the tables in MySQL after you create them.

EMPLOYEE_TBL
INSERT INTO EMPLOYEE_TBL VALUES

(‘311549902’, ‘STEPHENS’, ‘TINA’, ‘DAWN’,’RR 3 BOX 17A’, ‘GREENWOOD’,

‘IN’, ‘47890’, ‘3178784465’,NULL);

INSERT INTO EMPLOYEE_TBL VALUES

(‘442346889’, ‘PLEW’, ‘LINDA’, ‘CAROL’, ‘3301 BEACON’, ‘INDIANAPOLIS’,

‘IN’, ‘46224’, ‘3172978990’, NULL);

INSERT INTO EMPLOYEE_TBL VALUES

(‘213764555’, ‘GLASS’, ‘BRANDON’, ‘SCOTT’, ‘1710 MAIN ST’, ‘WHITELAND’,

‘IN’, ‘47885’, ‘3178984321’, ‘3175709980’);

INSERT INTO EMPLOYEE_TBL VALUES

(‘313782439’, ‘GLASS’, ‘JACOB’, NULL, ‘3789 WHITE RIVER BLVD’,

‘INDIANAPOLIS’, ‘IN’, ‘45734’, ‘3175457676’,’8887345678’);

INSERT INTO EMPLOYEE_TBL VALUES

(‘220984332’, ‘WALLACE’, ‘MARIAH’, NULL, ‘7889 KEYSTONE AVE’,

‘INDIANAPOLIS’, ‘IN’, ‘46741’, ‘3173325986’, NULL);

INSERT INTO EMPLOYEE_TBL VALUES

(‘443679012’, ‘SPURGEON’, ‘TIFFANY’, NULL, ‘5 GEORGE COURT’,

‘INDIANAPOLIS’, ‘IN’, ‘46234’, ‘3175679007’, NULL);

438 APPENDIX E: INSERT Statements for Book Examples

EMPLOYEE_PAY_TBL
INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘311549902’, ‘MARKETING’, ‘1989-05-23’,NULL,’1999-05-01’,’40000’, NULL);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘442346889’, ‘TEAM LEADER’, ‘1990-06-17’, ‘14.75’, ‘1999-06-01’, NULL, NULL);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘213764555’, ‘SALES MANAGER’, ‘1994-08-14’,NULL, ‘1999-08-01’, ‘30000’,

‘2000’);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘313782439’, ‘SALESMAN’, ‘1997-06-28’,NULL, NULL, ‘20000’, ‘1000’);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘220984332’, ‘SHIPPER’, ‘1996-07-22’, ‘11.00’, ‘1999-07-01’, NULL, NULL);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

(‘443679012’, ‘SHIPPER’, ‘1991-01-14’, ‘15.00’, ‘1999-01-01’, NULL, NULL);

CUSTOMER_TBL
INSERT INTO CUSTOMER_TBL VALUES

(‘232’, ‘LESLIE GLEASON’, ‘798 HARDAWAY DR’, ‘INDIANAPOLIS’,

‘IN’, ‘47856’, ‘3175457690’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘109’, ‘NANCY BUNKER’, ‘APT A 4556 WATERWAY’, ‘BROAD RIPPLE’,

‘IN’, ‘47950’, ‘3174262323’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘345’, ‘ANGELA DOBKO’, ‘RR3 BOX 76’, ‘LEBANON’, ‘IN’, ‘49967’,

‘7658970090’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘090’, ‘WENDY WOLF’, ‘3345 GATEWAY DR’, ‘INDIANAPOLIS’, ‘IN’,

‘46224’, ‘3172913421’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘12’, ‘MARYS GIFT SHOP’, ‘435 MAIN ST’, ‘DANVILLE’, ‘IL’, ‘47978’,

‘3178567221’, ‘3178523434’);

ORDERS_TBL 439

INSERT INTO CUSTOMER_TBL VALUES

(‘432’, ‘SCOTTYS MARKET’, ‘RR2 BOX 173’, ‘BROWNSBURG’, ‘IN’,

‘45687’, ‘3178529835’, ‘3178529836’);

INSERT INTO CUSTOMER_TBL VALUES

(‘333’, ‘JASONS AND DALLAS GOODIES’, ‘LAFAYETTE SQ MALL’,

‘INDIANAPOLIS’, ‘IN’, ‘46222’, ‘3172978886’, ‘3172978887’);

INSERT INTO CUSTOMER_TBL VALUES

(‘21’, ‘MORGANS CANDIES AND TREATS’, ‘5657 W TENTH ST’,

‘INDIANAPOLIS’, ‘IN’, ‘46234’, ‘3172714398’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘43’, ‘SCHYLERS NOVELTIES’, ‘17 MAPLE ST’, ‘LEBANON’, ‘IN’,

‘48990’, ‘3174346758’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘287’, ‘GAVINS PLACE’, ‘9880 ROCKVILLE RD’, ‘INDIANAPOLIS’,

‘IN’, ‘46244’, ‘3172719991’, ‘3172719992’);

INSERT INTO CUSTOMER_TBL VALUES

(‘288’, ‘HOLLYS GAMEARAMA’, ‘567 US 31 SOUTH’, ‘WHITELAND’,

‘IN’, ‘49980’, ‘3178879023’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘590’, ‘HEATHERS FEATHERS AND THINGS’, ‘4090 N SHADELAND AVE’,

‘INDIANAPOLIS’, ‘IN’, ‘43278’, ‘3175456768’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘610’, ‘REGANS HOBBIES INC’, ‘451 GREEN ST’, ‘PLAINFIELD’, ‘IN’,

‘46818’, ‘3178393441’, ‘3178399090’);

INSERT INTO CUSTOMER_TBL VALUES

(‘560’, ‘ANDYS CANDIES’, ‘RR 1 BOX 34’, ‘NASHVILLE’, ‘IN’,

‘48756’, ‘8123239871’, NULL);

INSERT INTO CUSTOMER_TBL VALUES

(‘221’, ‘RYANS STUFF’, ‘2337 S SHELBY ST’, ‘INDIANAPOLIS’, ‘IN’,

‘47834’, ‘3175634402’, NULL);

ORDERS_TBL
INSERT INTO ORDERS_TBL VALUES

(‘56A901’, ‘232’, ‘11235’, ‘1’, ‘1999-10-22’);

440 APPENDIX E: INSERT Statements for Book Examples

INSERT INTO ORDERS_TBL VALUES

(‘56A917’, ‘12’, ‘907’, ‘100’, ‘1999-09-30’);

INSERT INTO ORDERS_TBL VALUES

(‘32A132’, ‘43’, ‘222’, ‘25’, ‘1999-10-10’);

INSERT INTO ORDERS_TBL VALUES

(‘16C17’, ‘090’, ‘222’, ‘2’, ‘1999-10-17’);

INSERT INTO ORDERS_TBL VALUES

(‘18D778’, ‘287’, ‘90’, ‘10’, ‘1999-10-17’);

INSERT INTO ORDERS_TBL VALUES

(‘23E934’, ‘432’, ‘13’, ‘20’, ‘1999-10-15’);

PRODUCTS_TBL
INSERT INTO PRODUCTS_TBL VALUES

(‘11235’, ‘WITCHES COSTUME’, ‘29.99’);

INSERT INTO PRODUCTS_TBL VALUES

(‘222’, ‘PLASTIC PUMPKIN 18 INCH’, ‘7.75’);

INSERT INTO PRODUCTS_TBL VALUES

(‘13’, ‘FALSE PARAFFIN TEETH’, ‘1.10’);

INSERT INTO PRODUCTS_TBL VALUES

(‘90’, ‘LIGHTED LANTERNS’, ‘14.50’);

INSERT INTO PRODUCTS_TBL VALUES

(‘15’, ‘ASSORTED COSTUMES’, ‘10.00’);

INSERT INTO PRODUCTS_TBL VALUES

(‘9’, ‘CANDY CORN’, ‘1.35’);

INSERT INTO PRODUCTS_TBL VALUES

(‘6’, ‘PUMPKIN CANDY’, ‘1.45’);

INSERT INTO PRODUCTS_TBL VALUES

(‘87’, ‘PLASTIC SPIDERS’, ‘1.05’);

INSERT INTO PRODUCTS_TBL VALUES

(‘119’, ‘ASSORTED MASKS’, ‘4.95’);

APPENDIX F

Bonus Exercises

The exercises in this appendix are bonus walkthrough exercises and are specific to

MySQL. We provide an explanation or question, and then provide the SQL code that you

need to type into the mysql> prompt. Please study the question, code, and results carefully

to improve your knowledge of SQL.

1. Invoke MySQL and create a new database for bonus exercises.

CREATE DATABASE BONUS;

2. Point MySQL to your new database.

USE BONUS;

3. Create a table to keep track of basketball teams.

CREATE TABLE TEAMS
(TEAM_ID INTEGER(2) NOT NULL,
NAME VARCHAR(20) NOT NULL);

4. Create a table to keep track of basketball players.

CREATE TABLE PLAYERS
(PLAYER_ID INTEGER(2) NOT NULL,
LAST VARCHAR(20) NOT NULL,
FIRST VARCHAR(20) NOT NULL,
TEAM_ID INTEGER(2) NULL,
NUMBER INTEGER(2) NOT NULL);

5. Create a table to keep track of players’ personal information.

CREATE TABLE PLAYER_DATA
(PLAYER_ID INTEGER(2) NOT NULL,
HEIGHT DECIMAL(4,2) NOT NULL,
WEIGHT DECIMAL(5,2) NOT NULL);

6. Create a table to keep track of games played.

CREATE TABLE GAMES
(GAME_ID INTEGER(2) NOT NULL,
GAME_DT DATETIME NOT NULL,
HOME_TEAM_ID INTEGER(2) NOT NULL,
GUEST_TEAM_ID INTEGER(3) NOT NULL);

442 APPENDIX F: Bonus Exercises

7. Create a table to keep track of each team’s score for each game.

CREATE TABLE SCORES
(GAME_ID INTEGER(2) NOT NULL,

TEAM_ID INTEGER(2) NOT NULL,
SCORE INTEGER(3) NOT NULL,
WIN_LOSE VARCHAR(4) NOT NULL);

8. View all the tables that you created.

SHOW TABLES;

9. Create records for the basketball teams.

INSERT INTO TEAMS VALUES (‘1’,’STRING MUSIC’);
INSERT INTO TEAMS VALUES (‘2’,’HACKERS’);
INSERT INTO TEAMS VALUES (‘3’,’SHARP SHOOTERS’);
INSERT INTO TEAMS VALUES (‘4’,’HAMMER TIME’);

10. Create records for the players.

INSERT INTO PLAYERS VALUES (‘1’,’SMITH’,’JOHN’,’1’,’12’);
INSERT INTO PLAYERS VALUES (‘2’,’BOBBIT’,’BILLY’,’1’,’2’);
INSERT INTO PLAYERS VALUES (‘3’,’HURTA’,’WIL’,’2’,’32’);
INSERT INTO PLAYERS VALUES (‘4’,’OUCHY’,’TIM’,’2’,’22’);
INSERT INTO PLAYERS VALUES (‘5’,’BYRD’,’ERIC’,’3’,’6’);
INSERT INTO PLAYERS VALUES (‘6’,’JORDAN’,’RYAN’,’3’,’23’);
INSERT INTO PLAYERS VALUES (‘7’,’HAMMER’,’WALLY’,’4’,’21’);
INSERT INTO PLAYERS VALUES (‘8’,’HAMMER’,’RON’,’4’,’44’);
INSERT INTO PLAYERS VALUES (‘11’,’KNOTGOOD’,’AL’,NULL,’0’);

11. Create records for the players’ personal data.

INSERT INTO PLAYER_DATA VALUES (‘1’,’71’,’180’);
INSERT INTO PLAYER_DATA VALUES (‘2’,’58’,’195’);
INSERT INTO PLAYER_DATA VALUES (‘3’,’72’,’200’);
INSERT INTO PLAYER_DATA VALUES (‘4’,’74’,’170’);
INSERT INTO PLAYER_DATA VALUES (‘5’,’71’,’182’);
INSERT INTO PLAYER_DATA VALUES (‘6’,’72’,’289’);
INSERT INTO PLAYER_DATA VALUES (‘7’,’79’,’250’);
INSERT INTO PLAYER_DATA VALUES (‘8’,’73’,’193’);
INSERT INTO PLAYER_DATA VALUES (‘11’,’85’,’310’);

12. Create records in the GAMES table based on games that have been scheduled.

INSERT INTO GAMES VALUES (‘1’,’2002-05-01’,’1’,’2’);
INSERT INTO GAMES VALUES (‘2’,’2002-05-02’,’3’,’4’);
INSERT INTO GAMES VALUES (‘3’,’2002-05-03’,’1’,’3’);
INSERT INTO GAMES VALUES (‘4’,’2002-05-05’,’2’,’4’);
INSERT INTO GAMES VALUES (‘5’,’2002-05-05’,’1’,’2’);
INSERT INTO GAMES VALUES (‘6’,’2002-05-09’,’3’,’4’);
INSERT INTO GAMES VALUES (‘7’,’2002-05-10’,’2’,’3’);
INSERT INTO GAMES VALUES (‘8’,’2002-05-11’,’1’,’4’);
INSERT INTO GAMES VALUES (‘9’,’2002-05-12’,’2’,’3’);
INSERT INTO GAMES VALUES (‘10’,’2002-05-15’,’1’,’4’);

Bonus Exercises 443

13. Create records in the SCORES table based on games that have been played.

INSERT INTO SCORES VALUES (‘1’,’1’,’66’,’LOSE’);
INSERT INTO SCORES VALUES (‘2’,’3’,’78’,’WIN’);
INSERT INTO SCORES VALUES (‘3’,’1’,’45’,’LOSE’);
INSERT INTO SCORES VALUES (‘4’,’2’,’56’,’LOSE’);
INSERT INTO SCORES VALUES (‘5’,’1’,’100’,’WIN’);
INSERT INTO SCORES VALUES (‘6’,’3’,’67’,’LOSE’);
INSERT INTO SCORES VALUES (‘7’,’2’,’57’,’LOSE’);
INSERT INTO SCORES VALUES (‘8’,’1’,’98’,’WIN’);
INSERT INTO SCORES VALUES (‘9’,’2’,’56’,’LOSE’);
INSERT INTO SCORES VALUES (‘10’,’1’,’46’,’LOSE’);

INSERT INTO SCORES VALUES (‘1’,’2’,’75’,’WIN’);
INSERT INTO SCORES VALUES (‘2’,’4’,’46’,’LOSE’);
INSERT INTO SCORES VALUES (‘3’,’3’,’87’,’WIN’);
INSERT INTO SCORES VALUES (‘4’,’4’,’99’,’WIN’);
INSERT INTO SCORES VALUES (‘5’,’2’,’88’,’LOSE’);
INSERT INTO SCORES VALUES (‘6’,’4’,’77’,’WIN’);
INSERT INTO SCORES VALUES (‘7’,’3’,’87’,’WIN’);
INSERT INTO SCORES VALUES (‘8’,’4’,’56’,’LOSE’);
INSERT INTO SCORES VALUES (‘9’,’3’,’87’,’WIN’);
INSERT INTO SCORES VALUES (‘10’,’4’,’78’,’WIN’)

14. What is the average height of all players?

SELECT AVG(HEIGHT) FROM PLAYER_DATA;

15. What is the average weight of all players?

SELECT AVG(WEIGHT) FROM PLAYER_DATA;

16. View a list of player information as follows:

NAME=LAST NUMBER=N HEIGHT=N WEIGHT=N
SELECT CONCAT(‘NAME=’,P1.LAST,’ NUMBER=’,P1.NUMBER,’
HEIGHT=’,P2.HEIGHT,’ WEIGHT=’,P2.WEIGHT)
FROM PLAYERS P1,

PLAYER_DATA P2
WHERE P1.PLAYER_ID = P2.PLAYER_ID;

17. Create a team roster that looks like the following:

TEAM NAME LAST, FIRST NUMBER
SELECT T.NAME, CONCAT(P.LAST,’, ‘,P.FIRST), P.NUMBER
FROM TEAMS T,

PLAYERS P
WHERE T.TEAM_ID = P.TEAM_ID;

18. What team has scored the most points of all games?

SELECT T.NAME, SUM(S.SCORE)
FROM TEAMS T,

SCORES S
WHERE T.TEAM_ID = S.TEAM_ID
GROUP BY T.NAME
ORDER BY 2 DESC;

444 APPENDIX F: Bonus Exercises

19. What are the most points scored in a single game by one team?

SELECT MAX(SCORE)
FROM SCORES;

20. What are the most points scored collectively by both teams in a single game?

SELECT GAME_ID, SUM(SCORE)
FROM SCORES
GROUP BY GAME_ID
ORDER BY 2 DESC;

21. Are there any players who are not assigned to a team?

SELECT LAST, FIRST, TEAM_ID
FROM PLAYERS
WHERE TEAM_ID IS NULL;

22. How many teams are there?

SELECT COUNT(*) FROM TEAMS;

23. How many players are there?

SELECT COUNT(*) FROM PLAYERS;

24. How many games were played on the 5th of May, 2002?

SELECT COUNT(*) FROM GAMES
WHERE GAME_DT = ‘2002-05-05’;

25. Who is the tallest player?

SELECT P.LAST, P.FIRST, PD.HEIGHT
FROM PLAYERS P,

PLAYER_DATA PD
WHERE P.PLAYER_ID = PD.PLAYER_ID
ORDER BY 3 DESC;
OR
SELECT MAX(HEIGHT) FROM PLAYER_DATA;
SELECT P.LAST, P.FIRST, PD.HEIGHT
FROM PLAYERS P,

PLAYER_DATA PD
WHERE HEIGHT = 85;

Bonus Exercises 445

26. Ron Hammer received too many flagrant fouls and has been ejected. Remove

his record from the database and replace him with Al Knotgood.

SELECT PLAYER_ID
FROM PLAYERS
WHERE LAST = ‘HAMMER’

AND FIRST = ‘RON’;
DELETE FROM PLAYERS WHERE PLAYER_ID = ‘8’;
DELETE FROM PLAYER_DATA WHERE PLAYER_ID = ‘8’;
SELECT PLAYER_ID
FROM PLAYERS
WHERE LAST = ‘KNOTGOOD’

AND FIRST = ‘AL’;
UPDATE PLAYERS
SET TEAM_ID = ‘4’
WHERE PLAYER_ID = ‘11’;

27. Who is Al Knotgood’s new teammate?

SELECT TEAMMATE.LAST, TEAMMATE.FIRST
FROM PLAYERS TEAMMATE,

PLAYERS P
WHERE P.TEAM_ID = TEAMMATE.TEAM_ID

AND P.LAST = ‘KNOTGOOD’
AND P.FIRST = ‘AL’;

28. Generate a list of all games and game dates. Also list home and guest teams

for each game.

SELECT G.GAME_ID, HT.NAME, GT.NAME
FROM GAMES G,

TEAMS HT,
TEAMS GT

WHERE HT.TEAM_ID = G.HOME_TEAM_ID
AND GT.TEAM_ID = G.GUEST_TEAM_ID;

29. Create indexes for all names in the database. Names are often indexed

because you often search by name.

CREATE INDEX TEAM_IDX
ON TEAMS (NAME);
CREATE INDEX PLAYERS_IDX
ON PLAYERS (LAST, FIRST);

30. Which team has the most wins?

SELECT T.NAME, COUNT(S.WIN_LOSE)
FROM TEAMS T,

SCORES S
WHERE T.TEAM_ID = S.TEAM_ID

AND S.WIN_LOSE = ‘WIN’
GROUP BY T.NAME
ORDER BY 2 DESC;

446 APPENDIX F: Bonus Exercises

31. Which team has the most losses?

SELECT T.NAME, COUNT(S.WIN_LOSE)
FROM TEAMS T,

SCORES S
WHERE T.TEAM_ID = S.TEAM_ID

AND S.WIN_LOSE = ‘LOSE’
GROUP BY T.NAME
ORDER BY 2 DESC;

32. Which team has the highest average score per game?

SELECT T.NAME, AVG(S.SCORE)
FROM TEAMS T,

SCORES S
WHERE T.TEAM_ID = S.TEAM_ID
GROUP BY T.NAME
ORDER BY 2 DESC;

33. Generate a report that shows each team’s record. Sort the report by teams with

the most wins, and then by teams with the least losses.

SELECT T.NAME, SUM(REPLACE(S.WIN_LOSE,’WIN’,1)) WINS,
SUM(REPLACE(S.WIN_LOSE,’LOSE’,1)) LOSSES

FROM TEAMS T,
SCORES S

WHERE T.TEAM_ID = S.TEAM_ID
GROUP BY T.NAME
ORDER BY 2 DESC, 3;

34. What was the final score of each game?

SELECT G.GAME_ID,
HOME_TEAMS.NAME “HOME TEAM”, HOME_SCORES.SCORE,
GUEST_TEAMS.NAME “GUEST TEAM”, GUEST_SCORES.SCORE

FROM GAMES G,
TEAMS HOME_TEAMS,
TEAMS GUEST_TEAMS,
SCORES HOME_SCORES,
SCORES GUEST_SCORES

WHERE G.HOME_TEAM_ID = HOME_TEAMS.TEAM_ID
AND G.GUEST_TEAM_ID = GUEST_TEAMS.TEAM_ID
AND HOME_SCORES.GAME_ID = G.GAME_ID
AND GUEST_SCORES.GAME_ID = G.GAME_ID
AND HOME_SCORES.TEAM_ID = G.HOME_TEAM_ID
AND GUEST_SCORES.TEAM_ID = G.GUEST_TEAM_ID

ORDER BY G.GAME_ID

alias Another name or term for a table
or column.

ANSI American National Standards
Institute.

application A set of menus, forms,
reports, and code that performs a busi-
ness function using a database.

buffer An area in memory for editing
or execution of SQL.

Cartesian product The result of not
joining tables in the WHERE clause of a
SQL statement. When tables in a query
are not joined, every row in one table is
paired with every row in all other tables.

client The client is typically a PC, but
can be another server that is dependent
on another computer for data, services,
or processing. A client application
enables a client machine to communi-
cate with a server.

column A part of a table that has a
name and a specific data type.

COMMIT Makes changes to data perma-
nent.

composite index An index that is com-
posed of two or more columns.

condition Search criteria in a query’s
WHERE clause that evaluates to TRUE or
FALSE.

constant A value that does not change.

constraint Restrictions on data that are
enforced at the data level.

cursor A work area in memory where
the current SQL statement is stored.

data dictionary Another name for the
system catalog. See system catalog.

data type Defines data as a type, such
as number, date, or character.

database A collection of data.

DBA Database administrator. An indi-
vidual who manages a database.

Glossary

DDL Data Definition Language.The
part of the SQL syntax that specifically
deals with defining database objects such
a tables, views, and functions.

default A value used when no specifi-
cation has been made.

distinct Unique; used in the SELECT
clause to return unique values.

DML Data Manipulation Language.
The part of the SQL syntax that specifi-
cally deals with manipulating data such
as those used in update statements.

domain An object that is associated
with a data type to which constraints
may be attached; similar to a user-
defined type.

DQL Data Query Language. The part of
the SQL syntax that specifically deals
with querying data using the SELECT
statement.

end user Users whose jobs require them
to query or manipulate data in the data-
base. The end user is the individual for
which the database exists.

field Another name for a column in a
table. See column.

foreign key One or more columns
whose values are based on the primary
key column values in another table.

full table scan The search of a table
from a query without the use of an
index.

function An operation that is prede-
fined and can be used in a SQL statement
to manipulate data.

GUI Graphical user interface.

host The computer on which a data-
base is located.

index Pointers to table data that make
access to a table more efficient.

JDBC Java Database Connectivity.
Software that allows a Java program to
communicate with a database in order to
process data.

join Combines data from different
tables by linking columns. Used in the
WHERE clause of a SQL statement.

key A column or columns that identify
rows of a table.

normalization Designing a database to
reduce redundancy by breaking large
tables into smaller, more manageable
tables.

NULL value A value that is unknown.

objects Elements in a database, such as
triggers, tables, views, and procedures.

ODBC Open Database Connectivity is
software that allows for standard commu-
nication with a database. ODBC is typi-
cally used for inter-database communica-
tion between different implementations
and for communication between a client
application and a database.

operator A reserved word or symbol
used to perform an operation, such as
addition or subtraction.

optimizer Internal mechanism of the
database (consists of rules and code) that
decides how to execute a SQL statement
and return an answer.

448

DDL

parameter A value or range of values
that is used to resolve a part of a SQL
statement or program.

primary key A specified table column
that uniquely identifies rows of the table.

privilege Specific permissions that are
granted to users to perform a specific
action in the database.

procedure A set of instructions that are
saved for repeated calling and execution.

public A database user account that
represents all database users.

query A SQL statement that is used to
retrieve data from a database.

record Another name for a row in a
table. See row.

referential integrity Assures that val-
ues from one column depend on the val-
ues from another column. Referential
integrity is normally used between two
tables, but in some tables, can be used so
that a table references itself. A self-refer-
enced table is referred to as a recursive
relationship.

relational database A database that is
organized into tables that consist of rows,
which contain the same sets of data
items, where tables in the database are
related to one another through common
keys.

role A database object that is associat-
ed with a group of system and/or object
privileges, used to simplify security man-
agement.

ROLLBACK A command that undoes all
transactions since the last COMMIT or
SAVEPOINT command was issued.

row Sets of records in a table.

savepoint A specified point in a trans-
action to which you can roll back or
undo changes.

schema A set of related objects in a
database owned by a single database
user.

security The process of ensuring that
data in a database is fully protected at all
times.

SQL Structured Query Language.

stored procedure SQL code that is
stored in a database and ready to exe-
cute.

subquery A SELECT statement embed-
ded within another SQL statement.

synonym Another name given to a
table or view.

syntax for SQL A set of rules that
shows mandatory and optional parts of a
SQL statement’s construction.

system catalog Collection of tables or
views that contain information about the
database.

table The basic logical storage unit for
data in a relational database.

transaction One or more SQL state-
ments that are executed as a single unit.

transaction

449

trigger A stored procedure that exe-
cutes upon specified events in a database,
such as before or after an update of a
table.

user-defined type A data type that is
defined by a user, which can be used to
define table columns.

variable A value that does not remain
constant.

view A database object that is created
from one or more tables and can be used
the same as a table. A view is a virtual
table that has no storage requirements of
its own.

450

trigger

Symbols

+ (addition operator), 135, 210

/ (division operator), 136

|| (double pipe signs), 353

= (equal operator), 118

> (greater than operator), 119-120

< (less than operator), 119-120

* (multiplication operator), 135-136

!= (non-equality operator), 119

; (semicolons), 46

“ (single quotation marks), 353

- (subtraction operator), 135

A

abandoned privileges, 304

ABS (absolute value) function, 178

accessing

remote databases, 361

JDBC, 363

ODBC, 362

vendor connectivity tools, 363

web interface, 363-364

user access, controlling, 302, 361

columns, 304

GRANT statement, 302-303

groups of privileges, 305

PUBLIC database account, 304

REVOKE statement, 303-304

adding

auto-incrementing columns to tables, 48

characters to strings, 176-177

columns to tables, 48

data to tables, 74-75

from another table, 76-78

NULL values, 78-79

into specified columns, 75-76

rows into views, 321

time to dates, 190-191

addition operator (+), 135

ADD_MONTHS function, 190

ADMIN OPTION (GRANT statement), 303

Index

aggregate functions

AVG, 146-147

COUNT, 142-144

definition, 141-142

GROUP BY clause, 153-156

MAX, 147

MIN, 147-148

SUM, 144-146

aliases

columns, 112-113

tables, 208

ALL operator, 126

ALL option (SELECT statement), 104

ALTER TABLE statement, 47-48, 381

American National Standards Institute. See ANSI

AND operator, 127-128

ANSI (American National Standards Institute), 8

character functions, 165

concatenation, 166-168

INSTR, 172

LOWER, 170

LTRIM, 173

REPLACE, 169

RTRIM, 173-174

SUBSTR, 170-171

substrings, 166

TRANSLATE, 166-169

UPPER, 169

object privileges, 300

SELECT statement syntax, 370

trigger creation syntax, 349

ANSI SQL, 8, 371

ANY operator, 126

arithmetic operators, 134

addition, 135

combining, 136-137

division, 136

multiplication, 135-136

subtraction, 135

ascending order, 106

ASCII characters, returning, 178

ASCII chart website, 178

ASCII function, 178

authIDs (Authorization Identifiers), 283

authority levels, 305

AUTHORIZATION keyword (CREATE SCHEMA state-

ment), 290

auto-incrementing columns, 48

automated population, 74

AVG function, 146-147

avoiding

indexes, 259-260

large sort operations, 275

B

back-end applications, 360-361

base tables, join considerations, 214-215

BETWEEN operator, 122, 222

BLOB data type, 30

book website, 9

BOOLEAN data types, 34

C

call-level interface (CLI), 352

Cartesian product, 215-217

CASCADE option (REVOKE statement), 303

452

aggregate functions

case sensitivity (queries), 108

CEIL function, 178

ceiling values function, 178

Center for Internet Security website, 298

CHAR data type, 29

character functions, 165

ASCII, 178

COALESCE, 176

combining, 181-182

concatenation, 166-168

DECODE, 174-175

IFNULL, 175-176

INSTR, 172

LENGTH, 175

LOWER, 170

LPAD, 176-177

LTRIM, 173

REPLACE, 169

RPAD, 177

RTRIM, 173-174

SUBSTR, 170-171

substrings, 166

TRANSLATE, 166-169

UPPER, 169

character string conversions

dates, 196-197

to numbers, 179-180

characters

adding to strings, 176-177

ASCII, returning, 178

constant, 29

lowercase, 170

positions, 172

replacing, 169

trimming, 173-174

uppercase, 169

CHK (check) constraints, 55-56

clauses

FROM, 385

SELECT statement, 104

table arrangement, 269

GROUP BY, 152, 385

aggregate functions, 153-156

compared to ORDER BY clause, 156-159

compound queries, 244-245

CREATE VIEW statement, 323

functions, 152

ordering column names with numbers, 156

selected data, 152

HAVING, 159-160, 275, 385

ORDER BY, 385

compared to GROUP BY clause, 156-159

compound queries, 242-244

SELECT statement, 106-108

views, 323

SELECT, 102, 384

WHERE, 385

DELETE statement, 81

restrictive condition, 270-271

SELECT statement, 105-106

CLI (call-level interface), 352

client/server systems, 12

closing cursors, 345-346

COALESCE function, 176

Codd, Dr. E.F., 8

columns, 21, 44-45

adding, 48

aliases, 112-113

attributes, editing, 48

How can we make this index more useful? Email us at indexes@samspublishing.com

columns

453

auto-incrementing, adding, 48

averaging values, 146-147

cardinality, 260

check constraints, 55-56

counting values, 142-144

data, adding, 75-76

dropping constraints, 56

editing, 49

foreign keys, 53-54

index considerations, 258

maximum values, 147

minimum values, 147-148

NOT NULL constraints, 55

NULL values, 78-79

ordering with numbers, 156

primary keys, 52-53

qualifying, 205

totaling values, 144-146

unique constraints, 53

updating, 79-80

user access control, 304

combining

arithmetic operators, 136-137

character functions, 181-182

comparison operators, 120-121

commands. See statements

COMMIT statement, 89-90, 381

comparison operators, 118

combining, 120-121

equal, 118

less than, greater than, 119-120

non-equality, 119

composite indexes, 257

compound queries, 235

clauses

GROUP BY, 244-245

ORDER BY, 242-244

data retrieval, 246

operators

EXCEPT, 241-242

INTERSECT, 240-241

UNION, 237-240

concatenation, 166-168

conditions, queries, 105-106

conjunctive operators, 127

AND, 127-128

OR, 128-130

CONNECT statement, 14

CONNECT group, 305

connecting sessions, 14

constant characters, 29

constraints (integrity), 52

check, 55-56

dropping, 56

foreign keys, 53-54

NOT NULL, 55

primary keys, 52-53

unique, 53

controlling

data, 16

transactions, 88-89

COMMIT statement, 89-90

performance, 95

RELEASE SAVEPOINT statement, 94

ROLLBACK statement, 90-92

ROLLBACK TO SAVEPOINT statement, 92-94

SAVEPOINT statement, 92

SET TRANSACTION statement, 94

statements, 17

454

columns

user access, 302

columns, 304

GRANT statement, 302-303

groups of privileges, 305

PUBLIC database account, 304

REVOKE statement, 303-304

conversion functions, 179

character strings to numbers, 179-180

numeric strings to characters, 180-181

converting dates, 192

character strings, 196-197

date pictures, 193-195

correlated subqueries, 229-230

COUNT function, 111, 142-144

counting table records, 111

CREATE DOMAIN statement, 381

CREATE INDEX statement, 255, 381

CREATE ROLE statement, 306, 382

CREATE SCHEMA statement, 289-290

CREATE TABLE AS statement, 382

CREATE TABLE statement, 45-47, 50-51, 382

CUSTOMER TBL statement, 436

EMPLOYEE PAY TBL statement, 435

EMPLOYEE TBL statement, 435

ORDERS TBL statement, 436

PRODUCTS TBL statement, 436

CREATE TRIGGER statement, 349-350

CREATE TYPE statement, 382

CREATE VIEW statement, 316, 382

GROUP BY clause, 323

views from multiple tables, 318-319

views from other views, 319-320

views from single tables, 316-318

WITH CHECK OPTION, 320-321

creating

indexes, 255

roles, 306

schemas, 289-290

SQL with SQL, 352-353

synonyms, 324-325

system catalog, 331

tables, 45-47

existing tables, 50-51

from views, 322

triggers, 349-350

users, 286

MySQL, 289

Oracle, 287-288

SQL Server, 288-289

Sybase, 288-289

views

from single tables, 316-318

from multiple tables, 318-319

from other views, 319-320

WITH CHECK OPTION, 320-321

cross joins, 215-217

current date/time function, 188

cursors

closing, 345-346

current values, 344

declaring, 344

definition, 343

fetching data from, 345

opening, 345

overview, 344

How can we make this index more useful? Email us at indexes@samspublishing.com

cursors

455

D

data

administration, 17

controlling, 16

definition, 27

fetching from cursors, 345

for indexes, 272

grouping, 151

GROUP BY clause, 152-156

GROUP BY clause versus ORDER BY clause,

156-159

HAVING clause, 159-160

manipulating, 16, 73

populating tables, 74

redundancy, 63

retrieving from compound queries, 246

selecting

statements, 16

multiple tables, 203

simplifying with views, 314

summarized data maintenance, 315-316

system catalog, 331-332

tables

deleting, 81

examples in book, 18-20

inserting, 74-75

inserting from another table, 76-78

inserting into specified columns, 75-76

inserting NULL values, 78-79

selecting from another table, 112

updating, 79-80

views, updating, 321

Data Control Language (DCL), 16

Data Definition Language (DDL), 15

data dictionaries. See system catalog

Data Manipulation Language. See DML

Data Query Language (DQL), 16

data types

basic, 28

BLOB, 30

BOOLEAN, 34

CHAR, 29

date and time, 32-33, 186-187

decimal, 31-32

definition, 27

domains, 35

DOUBLE PRECISION, 32

fixed-length strings, 29

floating-point decimals, 32

integers, 32

large objects, 30

lengths, 37

literal strings, 33-34

NULL, 34

numeric, 30-31

REAL, 32

TEXT, 30

user-defined, 35

VARCHAR, 29

varying-length strings, 29

database administrators (DBAs), 285

database management system (DBMS), 7

databases

client/server systems, 12

definition, 10

denormalizing, 69

design information, 332

full table scans, 254

Internet access tools, 365

456

data

logical, 62-63

MySQL examples/exercises, 22

normalizing

benefits, 67-68

disadvantages, 68

names, 67

normal forms, 61, 64-66

overview, 61-62

objects

definition, 41

schemas, 42-43

parsing, 275

queries. See also subqueries

case sensitivity, 108

column aliases, 112-113

compound. See compound queries

conditions, 105-106

counting table records, 111

definition, 16, 101

examples, 109-110

grouping results. See groups, data

ordering output, 106-108

searching, 174-175

SELECT statement, 101-104

SELECT statement with case sensitivity, 108

SELECT statement with FROM clause, 104

SELECT statement with ORDER BY clause,

106-108

SELECT statement with WHERE clause,

105-106

selecting data from another table, 112

single, 235

raw, 62

relational, 11

remote, 361-364

security, 297-298

privileges. See privileges

user access control, 302-305

structures statements, 15

transactions

statements, 17

controlling, 88-90

definition, 87

initiating, 94

overview, 87

performance, 95

savepoints, 92-94

saving changes, 89-90

undoing, 90-92

tuning, 266

users

authIDs, 283

creating, 286-287

creating in MySQL, 289

creating in Oracle, 287-288

creating in SQL Server, 288-289

creating in Sybase, 288-289

deleting, 293

editing, 291

GUI tools, 293

managing, 285

roles/privileges, 285

schemas, 286-290

sessions, 292

types, 284

vendors, 13-14

web-based systems, 12-13

date and time data types, 32-33

How can we make this index more useful? Email us at indexes@samspublishing.com

date and time data types

457

DATEADD function, 190

DATEDIFF function, 192

DATENAME function, 192

DATEPART function, 192

dates

conversions, 192

character strings, 196-197

date pictures, 193-195

data types

implementation-specific, 187

standard, 186

date functions, 187

adding time, 190-191

comparing dates/times, 191

current, 188

miscellaneous, 192

time zones, 189

DATETIME elements, 186

parts, 194-195

pictures, 193-195

storing, 186

system, 188

DATETIME data types, 32

DATETIME element, 186

DAYNAME function, 192

DAYOFMONTH function, 192

DAYOFWEEK function, 192

DAYOFYEAR function, 192

DBA group, 305

DBAs (database administrators), 285

dBASE, 333

DBMS (database management system), 7

DCL (Data Control Language), 16

DDL (Data Definition Language), 15

DECIMAL data type, 31

decimals, 31-32

DECODE function, 174-175

DELETE statement, 383

subqueries, 226

table data, 81

WHERE clause, 81

deleting

rows into views, 321

savepoints, 94

schemas, 290

table data, 81

users, 293

denormalization, 69

descending order, 106

differences in vendor implementations, 369-371

direct SQL, 353

DISCONNECT statement, 14

disconnecting sessions, 14

DISTINCT statement, 104, 142

division operator (/), 136

DML (Data Manipulation Language), 16

DELETE statement

deleting table data, 81

subqueries, 226

INSERT statement

adding data from another table, 76-78

adding data to specific columns, 75-76

adding data to tables, 74-75

subqueries, 224-225

NULL values, 78-79

overview, 73

UPDATE statement

multiple columns, 80

single columns, 79-80

458

DATEADD function

subqueries, 225-226

tables, 79

domain data types, 35

double pipe signs (||), 353

DOUBLE PRECISION data type, 32

DQL (Data Query Language), 16

DROP statement, 51

indexes, 260-261

users, 293

DROP INDEX statement, 383

DROP ROLE statement, 306

DROP SCHEMA statement, 290

DROP TABLE statement, 383

DROP TRIGGER statement, 351

DROP VIEW statement, 323, 383

dropping

constraints, 56

indexes, 260-261

roles, 306

synonyms, 325

tables, 51, 57

triggers, 351

views, 323

dynamic SQL, 351-352

E

editing

columns, 49

tables, 47-49

users, 291

embedded SQL, 353

embedding subqueries, 227-228

enhancements, 371

enterprise, 359-361

equal operator (=), 118

equijoins, 204-206

example extensions, 372-373

MySQL, 374-375

PL/SQL, 373-374

Transact-SQL, 373

EXCEPT operator (compound queries), 241-242

EXISTS operator, 125

EXIT statement, 14

exiting sessions, 14

EXP (exponential values) function, 178

extensions, 371-372

MySQL, 374-375

PL/SQL, 373-374

Transact-SQL, 373

F

FETCH statement, 345

fetching data from cursors, 345

fields (tables), 20

firewalls, 364

first normal forms, 64

fixed-length strings, 29

FLOAT data type, 32

floating-point decimals, 32

FLOOR function, 178

floor values function, 178

FOR EACH ROW syntax (triggers), 351

foreign keys, 53-54

forgotten passwords, 308

How can we make this index more useful? Email us at indexes@samspublishing.com

forgotten passwords

459

formatting statements, 266

FROM clause table arrangement, 269

join order, 269-270

readability, 267-269

WHERE clause condition, 270-271

FROM clause, 385

SELECT statement, 104

table arrangement, 269

front-end applications, 360-361

front-end tools, 63

full table scans, 254, 272

functions

ADD_MONTHS, 190

aggregate

AVG, 146-147

COUNT, 142-144

definition, 141-142

GROUP BY clause, 153-156

MAX, 147

MIN, 147-148

SUM, 144-146

character, 165

ASCII, 178

COALESCE, 176

combining, 181-182

concatenation, 166-168

DECODE, 174-175

IFNULL, 175-176

INSTR, 172

LENGTH, 175

LOWER, 170

LPAD, 176-177

LTRIM, 173

REPLACE, 169

RPAD, 177

RTRIM, 173-174

SUBSTR, 170-171

substrings, 166

TRANSLATE, 166-169

UPPER, 169

conversion

character strings to numbers, 179-180

numeric strings to characters, 180-181

COUNT, 111

date, 187

adding time, 190-191

comparing dates/times, 191

current, 188

miscellaneous, 192

time zones, 189

DATEADD, 190

DATEDIFF, 192

DATENAME, 192

DATEPART, 192

DAYNAME, 192

DAYOFMONTH, 192

DAYOFWEEK, 192

DAYOFYEAR, 192

definition, 141, 347

GETDATE(), 188, 192

GROUP BY clause, 152

mathematical, 178

MONTHS_BETWEEN, 192

NEXT_DAY, 192

NOW, 188

460

formatting statements

G

GETDATE() function, 188, 192

GRANT statement, 383

ADMIN OPTION, 303

GRANT OPTION, 303

privileges, 301

user access control, 302-303

granting privileges, 301

greater than operator (), 119-120

GROUP BY clause, 385

aggregate functions, 153-156

compared to ORDER BY clause, 156-159

compound queries, 244-245

CREATE VIEW statement, 323

functions, 152

ordering column names with numbers, 156

selected data, 152

groups

data, 151

GROUP BY clause, 152-156

GROUP BY clause versus ORDER BY clause,

156-159

HAVING clause, 159-160

privileges, 305

GUI tools, 293

H - I

HAVING clause, 159-160, 275, 385

IFNULL function, 175-176

implementation-specific data types, 187

implementations

ANSI SQL compliance, 371

cursors, 344

differences, 369-371

extensions, 371

SQL, 10

system catalog, 333-334

implicit indexes, 257

IN operator, 123

indexes

avoiding, 259-260

column considerations, 258

creating, 255

data for, 272

definition, 253

disabling during batch loads, 275-276

dropping, 260-261

function, 254-255

overview, 253-254

performance, 260, 275-276

types, 255

composite, 257

implicit, 257

single-column, 256

unique, 256-258

Informix, 371

initiating transactions, 94

INSERT object privilege, 300

INSERT statement, 383

adding data to tables, 74

from another table, 76-78

specified columns, 75-76

CUSTOMER TBL statement, 438

EMPLOYEE PAY TBL statement, 438

How can we make this index more useful? Email us at indexes@samspublishing.com

INSERT statement

461

EMPLOYEE TBL statement, 437

ORDERS TBL statement, 439

PRODUCTS TBL statement, 440

subqueries, 224-225

INSERT(column_name) object privilege, 300

INSERT…SELECT statement, 383

installing MySQL

Linux, 388-389

Windows, 387-388

INSTR function, 172

integers, 32

integrity constraints, 52

check, 55-56

dropping, 56

foreign keys, 53-54

NOT NULL, 55

primary keys, 52-53

unique, 53

interactive SQL statements, 375-376

International Standards Organization (ISO), 8

Internet

data availability for employees/customers, 365

database access tools, 365

security, 366

worldwide availability, 364

INTERSECT operator (compound queries), 240-241

intranets, 365-366

INX suffix, 18

IS NOT NULL operator, 133

IS NULL operator, 121-122

ISO (International Standards Organization), 8

J

JDBC (Java Database Connectivity), 363

joins

base tables, 214-215

Cartesian product, 215-217

component locations, 204

equijoins, 204-206

multiple keys, 213-214

natural, 206-207

non-equijoins, 208-209

ordering, 269-270

outer, 210-211

self, 212-213

table aliases, 208

types, 204

K-L

keys

foreign, 53-54

joining, 213-214

primary, 21, 52-53

large object data types, 30

LENGTH function, 175

lengths

data types, 37

strings, 175

less than operator (<), 119-120

LIKE operator, 123-124, 273

Linux, MySQL installation, 388-389

literal strings, 33-34

logical databases, 62-63

462

INSERT statement

logical operators, 121

ALL, 126

ANY, 126

BETWEEN, 122

EXISTS, 125

IN, 123

IS NULL, 121-122

LIKE, 123-124

SOME, 126

LOWER function, 170

lowercase strings, 170

LPAD function, 176-177

LTRIM function, 173

M

managing users, 285

creating users, 286-287

MySQL, 289

Oracle, 287-288

SQL Server, 288-289

Sybase, 288-289

deleting, 293

editing, 291

GUI tools, 293

schemas, 289-290

sessions, 292

manipulating data, 16, 73

manual population of data, 74

mathematical functions, 178

MAX function, 147

Microsoft

Access, 333

SQL Server, users, 288-289

MIN function, 147-148

MONTHS_BETWEEN function, 192

multiplication operator (*), 135-136

MySQL, 374-375

cursor declaration, 344

examples/exercises, 22

installing

Linux, 388-389

Windows, 387-388

stored procedure syntax, 347-348

system catalog implementations, 334

system privileges, 300

trigger creation syntax, 350

users, creating, 289

website, 375

N

names

normalization, 67

saving points, 92

synonyms, 326

tables, 18, 47

natural joins, 206-207

negative operators, 130

IS NOT NULL, 133

NOT BETWEEN, 131-132

not equal, 131

NOT EXISTS, 134

NOT IN, 132

NOT LIKE, 133

nesting

queries. See subqueries

stored procedures, 346

How can we make this index more useful? Email us at indexes@samspublishing.com

nesting

463

Net8, 363

NEXT_DAY function, 192

non-equality operator (!=), 119

non-equijoins, 208-209

normal forms, 61, 64

first, 64

second, 65

third, 66

normalization

benefits, 67-68

disadvantages, 68

names, 67

normal forms, 61

first, 64

second, 65

third, 66

overview, 61-62

NOT BETWEEN operator, 131-132

NOT EXISTS operator, 134

NOT IN operator, 132

NOT LIKE operator, 133

NOT NULL constraints, 55

NOW function, 188

NULL data types, 34

NULL value checker, 175-176

NULL values

adding to columns, 78-79

checking, 175-176

replacing, 176

tables, 22

NUMERIC data type, 30-31

numeric strings, converting to characters, 180-181

O

object privileges, 300-301

ODBC (Open Database Connectivity), 362

Open Client/C Developers Kit, 363

opening cursors, 345

operators

arithmetic, 134

addition, 135

combining, 136-137

division, 136

multiplication, 135-136

subtraction, 135

BETWEEN, 222

comparison

combining, 120-121

equal, 118

less than, greater than, 119-120

non-equality, 119

conjunctive

AND, 127-128

OR, 128-130

definition, 105, 117

EXCEPT, 241-242

INTERSECT, 240-241

LIKE, 273

logical

ALL, 126

ANY, 126

BETWEEN, 122

EXISTS, 125

IN, 123

IS NULL, 121-122

LIKE, 123-124

SOME, 126

464

Net8

negative, 130

IS NOT NULL, 133

NOT BETWEEN, 131-132

not equal, 131

NOT EXISTS, 134

NOT IN, 132

NOT LIKE, 133

OR, 274-275

OVERLAPS, 191

UNION, 235-239

UNION ALL, 239-240

options

ADMIN OPTION, 303

ALL, 104

CASCADE, 303

DISTINCT, 104

GRANT OPTION, 303

RESTRICT, 303

WITH CHECK, 320-321

OR operator, 128-130, 274-275

Oracle

cursor declaration, 344

Net8, 363

parameters, 376

PL/SQL, 373-374

roles, 305

SELECT statement syntax, 370

stored procedure syntax, 347-348

system catalog implementations, 334

system privileges, 299

trigger creation syntax, 350

users, creating, 287-288

ORDER BY clause, 385

compared to GROUP BY clause, 156-159

compound queries, 242-244

SELECT statement, 106-108

views, 323

outer joins, 210-211

OVERLAPS operator, 191

owners (schemas), 42

P

parameters, 375

parent/child table relationships, 54

parsing, 275

parts of dates, 194-195

passwords

forgotten, 308

system catalog, 338

performance

definition, 265-266

formatting, 266

FROM clause table arrangement, 269

full table scans, 272

HAVING clause, 275

indexes, 260, 275-276

join order, 269-270

large sort operations, 275

LIKE operator, 273

OR operator, 274-275

readability, 267-269

stored procedures, 275

statistics stored in system catalog, 332

tools, 276

transactional control, 95

WHERE clause condition, 270-271

wildcard placement, 273

How can we make this index more useful? Email us at indexes@samspublishing.com

performance

465

PL/SQL, 373-374

plus (+) symbol, 210

populating tables with data, 74-75

from another table, 76-78

NULL values, 78-79

into specified columns, 75-76

positioning characters, 172

POWER function, 178

precision, 31

primary keys, 21, 52-53

PRIVATE synonyms, 324

privileges, 298

abandoned, 304

controlling with roles, 305-307

granting/revoking, 301

groups, 305

object, 300-301

system, 299-300

pseudocolumns, 188

PUBLIC database account, 304

PUBLIC synonyms, 324

Q

qualifying columns, 205

queries. See also subqueries, 221

case sensitivity, 108

column aliases, 112-113

compound, 235

data retrieval, 246

EXCEPT operator, 241-242

GROUP BY clause, 244-245

INTERSECT operator, 240-241

ORDER BY clause, 242-244

UNION ALL operator, 239-240

UNION operator, 237-239

conditions, 105-106

counting table records, 111

definition, 16, 101

examples, 109-110

grouping results, 151

GROUP BY clause, 152-156

GROUP BY clause versus ORDER BY clause,

156-159

HAVING clause, 159-160

ordering output, 106-108

searching, 174-175

SELECT statement, 101

case sensitivity, 108

FROM clauses, 104

ORDER BY clauses, 106-108

selecting data, 102-104

WHERE clauses, 105-106

selecting data from another table, 112

single, 235

system catalog, 335-336

R

raw databases, 62

RDBMS (relational database management

system), 7

readability of statements, 267-269

REAL data type, 32

records (tables), 21, 111

redundancy (data), 63

REFERENCES object privilege, 301

466

PL/SQL

REFERENCES(column_name) object privilege, 301

referential integrity, 68

relational database management system

(RDBMS), 7

relational databases, 11

RELEASE SAVEPOINT statement, 94

remote databases, accessing, 361

JDBC, 363

ODBC, 362

vendor connectivity tools, 363

web interface, 363-364

REPLACE function, 169

replacing

characters, 169

NULL values, 176

RESOURCE group, 305

RESTRICT keyword

DROP SCHEMA statement, 290

REVOKE statement, 303

REVOKE statement, 384

privileges, 301

user access control, 303-304

users, 293

revoking privileges, 301

roles

creating, 306

dropping, 306

Oracle, 305

setting, 307

ROLLBACK statement, 90-92, 384

ROLLBACK TO SAVEPOINT statement, 92-94

rolling back savepoints, 92-94

ROUND function, 178

rows, 21, 45

averaging values, 146-147

counting, 142-144

maximum values, 147

minimum values, 147-148

totaling values, 144-146

views, 321

RPAD function, 177

RTRIM function, 173-174

S

SAVEPOINT statement, 92, 384

savepoints

deleting, 94

names, 92

rolling back, 92-94

schemas

creating, 289-290

definition, 42

deleting, 290

overview, 42-43

owners, 42

users, compared, 286

searching queries, 174-175

second normal forms, 65

security

databases, 297-298

firewalls, 364

information stored in system catalog, 332

Internet, 366

privileges, 298

abandoned, 304

controlling with roles, 305-307

How can we make this index more useful? Email us at indexes@samspublishing.com

security

467

granting/revoking, 301

groups, 305

object, 300-301

system, 299-300

roles, 305

creating, 306

dropping, 306

setting, 307

user access

columns, 304

GRANT statement, 302-303

groups of privileges, 305

PUBLIC database account, 304

REVOKE statement, 303-304

views, 315

security officers, 285

SELECT statement, 384

clauses, 102

column aliases, 112-113

COUNT function, 111

EXCEPT operator, 241-242

GROUP BY clause, 244-245

aggregate functions, 153-156

compared to ORDER BY clause, 156-159

functions, 152

ordering column names with numbers, 156

selected data, 152

HAVING clause, 159-160

implementation differences, 370

INTERSECT operator, 240-241

ORDER BY clause, 242-244

queries, 101

ALL option, 104

case sensitivity, 108

DISTINCT option, 104

FROM clause, 104

ORDER BY clause, 106-108

selecting data, 102-104

WHERE clause, 105-106

selecting data from another table, 112

single queries, 235

subqueries, 223-224

UNION ALL operator, 239-240

UNION operator, 237-239

SELECT object privilege, 300

selecting data

from another table, 112

statements, 16

multiple tables, 203

self joins, 212-213

semicolons (;), 46

sessions

connecting, 14

definition, 14

disconnecting, 14

exiting, 14

users, 292

SET ROLE statement, 307

SET TRANSACTION statement, 94

SIGN function, 178

sign values function (SIGN), 178

single queries, 235

single quotation marks (“), 353

single-column indexes, 256

SOME operator, 126

sort operations, 275

SQL (Structured Query Language), 8

definition, 8

generation with SQL, 352-353

implementation, 10

468

security

on the Internet

data availability for employees/customers,

365

database access tools, 365

worldwide availability, 364

optimizer, 267

SQL Server

cursor declaration, 344

stored procedure syntax, 347-348

system catalog implementations, 333

Transact-SQL, 373

trigger creation syntax, 350

users, creating, 288-289

SQL-2003, 9-10

SQLBase

authority levels, 305

SELECT statement syntax, 370

SQRT (square root) function, 178

standard data types, 186

standards

ANSI SQL, 8

SQL-2003, 9-10

table-naming, 18

statements

ALTER TABLE, 47-48, 381

COMMIT, 89-90, 381

CONNECT, 14

CREATE DOMAIN, 381

CREATE INDEX, 255, 381

CREATE ROLE, 306, 382

CREATE SCHEMA, 289-290

CREATE TABLE, 45-47, 50-51, 382

CUSTOMER TBL, 436

EMPLOYEE PAY TBL, 435

EMPLOYEE TBL, 435

ORDERS TBL, 436

PRODUCTS TBL, 436

CREATE TABLE AS, 382

CREATE TRIGGER, 349-350

CREATE TYPE, 382

CREATE VIEW, 382

GROUP BY clause, 323

views from multiple tables, 318-319

views from other views, 319-320

views from single tables, 316-318

WITH CHECK OPTION, 320-321

DELETE, 383

subqueries, 226

table data, 81

WHERE clause, 81

DISCONNECT, 14

DISTINCT, 142

DROP, 51

indexes, 260-261

users, 293

DROP INDEX, 383

DROP ROLE, 306

DROP SCHEMA, 290

DROP TABLE, 383

DROP TRIGGER, 351

DROP VIEW, 323, 383

EXIT, 14

FETCH, 345

formatting, 266

GRANT, 383

ADMIN OPTION, 303

GRANT OPTION, 303

privileges, 301

user access control, 302-303

How can we make this index more useful? Email us at indexes@samspublishing.com

statements

469

INSERT, 383

adding data to columns, 75-76

adding data to tables, 74-78

CUSTOMER TBL, 438

EMPLOYEE PAY TBL, 438

EMPLOYEE TBL, 437

ORDERS TBL, 439

PRODUCTS TBL, 440

subqueries, 224-225

INSERT…SELECT, 383

interactive, 375-376

RELEASE SAVEPOINT, 94

REVOKE, 384

privileges, 301

user access control, 303-304

users, 293

ROLLBACK, 90-92, 384

ROLLBACK TO SAVEPOINT, 92-94

SAVEPOINT, 92, 384

SELECT, 384

ALL option, 104

case sensitivity, 108

clauses, 102

column aliases, 112-113

COUNT function, 111

DISTINCT option, 104

EXCEPT operator, 241-242

FROM clause, 104

GROUP BY clause, 152-159, 244-245

HAVING clause, 159-160

implementation differences, 370

INTERSECT operator, 240-241

ORDER BY clause, 106-108, 242-244

queries, 101-104

selecting data from another table, 112

single queries, 235

subqueries, 223-224

UNION ALL operator, 239-240

UNION operator, 237-239

WHERE clause, 105-106

SET ROLE, 307

SET TRANSACTION, 94

tuning, 265-266

formatting, 266

FROM clause table arrangement, 269

full table scans, 272

HAVING clause, 275

indexes, 275-276

join order, 269-270

large sort operations, 275

LIKE operator, 273

OR operator, 274-275

readability, 267-269

stored procedures, 275

tools, 276

WHERE clause condition, 270-271

wildcard placement, 273

types

data administration, 17

data control, 16

defining database structures, 15

manipulating data, 16

selecting data, 16

transactional control, 17

UPDATE, 384

multiple columns, 80

single columns, 79-80

subqueries, 225-226

table data, 79

470

statements

static SQL, 351

stored procedures

advantages, 348

definition, 346

MySQL syntax, 347-348

nesting, 346

Oracle syntax, 347-348

overview, 347

performance, 275

SQL Server syntax, 347-348

storing dates/times, 186

DATETIME elements, 186

implementation-specific data types, 187

standard data types, 186

strings

characters

adding, 176-177

ASCII, 178

date conversions, 196-197

functions, 165

positions, 172

replacing, 169

concatenation, 166-168

conversions

character to numbers, 179-180

numeric to characters, 180-181

fixed-length, 29

lengths, 175

literal, 33-34

lowercases, 170

NULL values, 175-176

query searches, 174-175

substrings, 166, 170-171

translating, 166-169

trimming, 173-174

uppercase, 169

varying-length, 29

Structured Query Language. See SQL

subqueries

BETWEEN operator, 222

correlated, 229-230

definition, 221

DELETE statement, 226

embedded, 227-228

INSERT statement, 224-225

overview, 221-222

rules, 222

SELECT statement, 223-224

syntax, 222

UPDATE statement, 225-226

SUBSTR function, 170-171

substrings, 166, 170-171

subtraction operator (-), 135

SUM function, 144-146

summarized data maintenance, 315-316

Sybase

Open Client/C Developers Kit, 363

parameters, 376

system catalog implementations, 334

system privileges, 299

users, creating, 288-289

synonyms

creating, 324-325

definition, 324

dropping, 325

names, 326

overview, 324

PRIVATE, 324

PUBLIC, 324

How can we make this index more useful? Email us at indexes@samspublishing.com

synonyms

471

system catalog

creating, 331

data, 331-332

definition, 329

implementations, 333-334

maintenance, 332

overview, 330

passwords, 338

querying, 335-336

table queries, 338

updating, 337

systems

analysts, 285

client/server, 12

date, 188

privileges, 299-300

web-based database, 12-13

T

tables

aliases, 208

arranging in FROM clauses, 269

base, 214-215

columns, 21, 44-45

adding, 48

adding data, 75-76

aliases, 112-113

attributes, editing, 48

auto-incrementing, adding, 48

averaging values, 146-147

cardinality, 260

check constraints, 55-56

counting values, 142-144

dropping constraints, 56

editing, 49

foreign keys, 53-54

index considerations, 258

maximum values, 147

minimum values, 147-148

NOT NULL constraints, 55

NULL values, 78-79

ordering with numbers, 156

primary keys, 52-53

qualifying, 205

totaling values, 144, 146

unique constraints, 53

updating, 79-80

user access control, 304

creating, 45-47

existing table, 50-51

views, 322

data

deleting, 81

inserting, 74-75

inserting from another table, 76-78

inserting into specified columns, 75-76

inserting NULL values, 78-79

populating, 74

selecting from another table, 112

updating, 79-80

data examples in book, 18, 20

dropping, 51, 57

editing, 47-49

fields, 20

joins

base tables, 214-215

Cartesian product, 215-217

component locations, 204

472

system catalog

equijoins, 204-206

multiple keys, 213-214

natural, 206-207

non-equijoins, 208-209

outer, 210-211

self, 212-213

table aliases, 208

types, 204

names, 18, 47

NULL values, 22

parent/child relationships, 54

primary keys, 21

records, 21, 111

relational databases, 11

rows, 21, 45

averaging values, 146-147

counting, 142-144

maximum values, 147

minimum values, 147-148

totaling values, 144-146

selecting data from multiple, 203

system catalog, 338

windowed table functions, 354

TBL suffix, 18

TEXT data type, 30

third normal forms, 66

time zone function, 189

times

adding to dates, 190-191

data types

implementation-specific, 187

standard, 186

date functions, 187

adding time, 190-191

comparing dates/times, 191

current, 188

miscellaneous, 192

time zones, 189

DATETIME elements, 186

storing, 186

tools

front-end, 63

GUI, 293

performance, 276

web database access, 365

Transact-SQL, 373

transactions

controlling, 88-90

databases, 17

definition, 87

initiating, 94

overview, 87

savepoints

deleting, 94

names, 92

performance, 95

rolling back, 92-94

saving changes, 89-90

undoing, 90-92

TRANSLATE function, 166-169

translating strings, 166-169

triggers

creating, 349-350

definition, 349

dropping, 351

FOR EACH ROW syntax, 351

trimming strings, 173-174

troubleshooting passwords, 308

How can we make this index more useful? Email us at indexes@samspublishing.com

troubleshooting passwords

473

tuning

databases, 266

SQL statements

definition, 265-266

formatting, 266

FROM clause table arrangement, 269

full table scans, 272

HAVING clause, 275

indexes, 275-276

join order, 269-270

large sort operations, 275

LIKE operator, 273

OR operator, 274-275

readability, 267-269

stored procedures, 275

tools, 276

WHERE clause condition, 270-271

wildcard placement, 273

types

statements

data administration, 17

data control, 16

defining database structures, 15

manipulating data, 16

selecting data, 16

transactional control, 17

data

basic, 28

BLOB, 30

BOOLEAN, 34

CHAR, 29

date and time, 32-33, 186-187

DECIMAL, 31-32

definition, 27

domains, 35

DOUBLE PRECISION, 32

fixed-length strings, 29

FLOAT, 32

floating-point decimals, 32

integers, 32

large objects, 30

lengths, 37

literal strings, 33-34

NULL, 34

numeric, 30-31

REAL, 32

TEXT, 30

user-defined, 35

VARCHAR, 29

varying-length strings, 29

indexes, 255

composite, 257

implicit, 257

single-column, 256

unique, 256-258

joins

equijoins, 204-206

natural, 206-207

non-equijoins, 208-209

outer, 210-211

self, 212-213

users, 284

U

undoing transactions, 90-92

UNION ALL operator, 239-240

UNION operator, 235-239

unique column constraints, 53

474

tuning

unique indexes, 256-258

UPDATE object privilege, 301

UPDATE statement, 384

subqueries, 225-226

table data, 79-80

UPDATE(column_name) object privilege, 301

updating

system catalog, 337

table data, 79-80

view data, 321

UPPER function, 169

uppercase strings, 169

USAGE object privilege, 300

user-defined data types, 35

users

access, controlling

columns, 304

GRANT statement, 302-303

groups of privileges, 305

PUBLIC database account, 304

REVOKE statement, 303-304

authIDs, 283

creating, 286-287

MySQL, 289

Oracle, 287-288

SQL Server, 288-289

Sybase, 288-289

data, system catalog, 332

deleting, 293

editing, 291

GUI tools, 293

logical database design considerations, 63

managing, 285, 298

roles/privileges, 285

schemas, 289-290

schemas, compared, 286

sessions, 292

types, 284

V

values

ceiling and floor function, 178

exponential function, 178

NULL

adding to columns, 78-79

checking, 175-176

replacing, 176

tables, 22

VARCHAR data type, 29

varying-length strings, 29

vendors

databases, 13-14

implementations, 369-371

views

creating, 316

multiple tables, 318-319

other views, 319-320

single tables, 316-318

WITH CHECK OPTION, 320-321

creating tables from, 322

data updates, 321

definition, 313

dependencies, 320

dropped tables, 326

dropping, 323

ORDER BY clause, 323

How can we make this index more useful? Email us at indexes@samspublishing.com

views

475

overview, 314

rows, 321

security, 315

simplifying data, 314

summarized data maintenance, 315-316

W

web interfaces, 363-364

web-based database systems, 12-13

websites

ASCII chart, 178

book, 9

Center for Internet Security, 298

MySQL, 375

WHERE clause, 385

DELETE statement, 81

restrictive condition, 270-271

SELECT statement, 105-106

wildcard performance, 273

windowed table functions, 354

WITH CHECK OPTION (CREATE VIEW statement),

320-321

X-Z

XML, 354-355

476

views

	Sams Teach Yourself SQL in 24 Hours, Fourth Edition
	Table of Contents
	Introduction
	What This Book Intends to Accomplish
	What We Added to This Edition
	What You Need
	Conventions Used in This Book
	ANSI SQL and Vendor Implementations
	Understanding the Examples and Exercises

	Part I: A SQL Concepts Overview
	HOUR 1: Welcome to the World of SQL
	SQL Definition and History
	SQL Sessions
	Types of SQL Commands
	The Database Used in This Book
	Summary
	Q&A
	Workshop

	Part II: Building Your Database
	HOUR 2: Defining Data Structures
	What Is Data?
	Basic Data Types
	Summary
	Q&A
	Workshop

	HOUR 3: Managing Database Objects
	What Are Database Objects?
	What Is a Schema?
	A Table: The Primary Storage for Data
	Integrity Constraints
	Summary
	Q&A
	Workshop

	HOUR 4: The Normalization Process
	Normalizing a Database
	Denormalizing a Database
	Summary
	Q&A
	Workshop

	HOUR 5: Manipulating Data
	Overview of Data Manipulation
	Populating Tables with New Data
	Updating Existing Data
	Deleting Data from Tables
	Summary
	Q&A
	Workshop

	HOUR 6: Managing Database Transactions
	What Is a Transaction?
	Controlling Transactions
	Transactional Control and Database Performance
	Summary
	Q&A
	Workshop

	Part III: Getting Effective Results from Queries
	HOUR 7: Introduction to the Database Query
	What Is a Query?
	Introduction to the SELECT Statement
	Examples of Simple Queries
	Summary
	Q&A
	Workshop

	HOUR 8: Using Operators to Categorize Data
	What Is an Operator in SQL?
	Comparison Operators
	Logical Operators
	Conjunctive Operators
	Negative Operators
	Arithmetic Operators
	Summary
	Q&A
	Workshop

	HOUR 9: Summarizing Data Results from a Query
	What Are Aggregate Functions?
	Summary
	Q&A
	Workshop

	HOUR 10: Sorting and Grouping Data
	Why Group Data?
	The GROUP BY Clause
	GROUP BY Versus ORDER BY
	The HAVING Clause
	Summary
	Q&A
	Workshop

	HOUR 11: Restructuring the Appearance of Data
	ANSI Character Functions
	Various Common Character Functions
	Miscellaneous Character Functions
	Mathematical Functions
	Conversion Functions
	Combining Character Functions
	Summary
	Q&A
	Workshop

	HOUR 12: Understanding Dates and Times
	How Is a Date Stored?
	Date Functions
	Date Conversions
	Summary
	Q&A
	Workshop

	Part IV: Building Sophisticated Database Queries
	HOUR 13: Joining Tables in Queries
	Selecting Data from Multiple Tables
	Types of Joins
	Join Considerations
	Summary
	Q&A
	Workshop

	HOUR 14: Using Subqueries to Define Unknown Data
	What Is a Subquery?
	Embedded Subqueries
	Correlated Subqueries
	Summary
	Q&A
	Workshop

	HOUR 15: Combining Multiple Queries into One
	Single Queries Versus Compound Queries
	Compound Query Operators
	Using ORDER BY with a Compound Query
	Using GROUP BY with a Compound Query
	Retrieving Accurate Data
	Summary
	Q&A
	Workshop

	Part V: SQL Performance Tuning
	HOUR 16: Using Indexes to Improve Performance
	What Is an Index?
	How Do Indexes Work?
	The CREATE INDEX Command
	Types of Indexes
	When Should Indexes Be Considered?
	When Should Indexes Be Avoided?
	Dropping an Index
	Summary
	Q&A
	Workshop

	HOUR 17: Improving Database Performance
	What Is SQL Statement Tuning?
	Database Tuning Versus SQL Statement Tuning
	Formatting Your SQL Statement
	Full Table Scans
	Other Performance Considerations
	Performance Tools
	Summary
	Q&A
	Workshop

	Part VI: Using SQL to Manage Users and Security
	HOUR 18: Managing Database Users
	Users Are the Reason
	The Management Process
	Tools Utilized by Database Users
	Summary
	Q&A
	Workshop

	HOUR 19: Managing Database Security
	What Is Database Security?
	What Are Privileges?
	Controlling User Access
	Controlling Privileges Through Roles
	Summary
	Q&A
	Workshop

	Part VII: Summarized Data Structures
	HOUR 20: Creating and Using Views and Synonyms
	What Is a View?
	Creating Views
	WITH CHECK OPTION
	Updating Data Through a View
	Creating a Table from a View
	Views and the ORDER BY Clause
	Dropping a View
	What Is a Synonym?
	Summary
	Q&A
	Workshop

	HOUR 21: Working with the System Catalog
	What Is the System Catalog?
	How Is the System Catalog Created?
	What Is Contained in the System Catalog?
	System Catalog Tables by Implementation
	Querying the System Catalog
	Updating System Catalog Objects
	Summary
	Q&A
	Workshop

	Part VIII: Applying SQL Fundamentals in Today’s World
	HOUR 22: Advanced SQL Topics
	Cursors
	Stored Procedures and Functions
	Triggers
	Dynamic SQL
	Call-Level Interface
	Using SQL to Generate SQL.
	Direct Versus Embedded SQL
	Windowed Table Functions
	Working with XML
	Summary
	Q&A
	Workshop

	HOUR 23: Extending SQL to the Enterprise, the Internet, and the Intranet
	SQL and the Enterprise
	Accessing a Remote Database
	SQL and the Internet
	SQL and the Intranet
	Summary
	Q&A
	Workshop

	HOUR 24: Extensions to Standard SQL
	Various Implementations
	Example Extensions
	Interactive SQL Statements
	Summary
	Q&A
	Workshop

	Part IX: Appendixes
	APPENDIX A: Common SQL Commands
	SQL Statements
	SQL Clauses

	APPENDIX B: Using MySQL for Exercises
	Windows Installation Instructions
	Linux Installation Instructions

	APPENDIX C: Answers to Quizzes and Exercises
	Hour 1, “Welcome to the World of SQL”
	Hour 2, “Defining Data Structures”
	Hour 3, “Managing Database Objects”
	Hour 4, “The Normalization Process”
	Hour 5, “Manipulating Data”
	Hour 6, “Managing Database Transactions”
	Hour 7, “Introduction to the Database Query”
	Hour 8, “Using Operators to Categorize Data”
	Hour 9, “Summarizing Data Results from a Query”
	Hour 10, “Sorting and Grouping Data”
	Hour 11, “Restructuring the Appearance of Data”
	Hour 12, “Understanding Dates and Time”
	Hour 13, “Joining Tables in Queries”
	Hour 14, “Using Subqueries to Define Unknown Data”
	Hour 15, “Combining Multiple Queries into One”
	Hour 16, “Using Indexes to Improve Performance”
	Hour 17, “Improving Database Performance”
	Hour 18, “Managing Database Users”
	Hour 19, “Managing Database Security”
	Hour 20, “Creating and Using Views and Synonyms”
	Hour 21, “Working with the System Catalog”
	Hour 22, “Advanced SQL Topics”
	Hour 23, “Extending SQL to the Enterprise, the Internet, and the Intranet”
	Hour 24, “Extensions to Standard SQL”

	APPENDIX D: CREATE TABLE Statements for Book Examples
	EMPLOYEE_TBL
	EMPLOYEE_PAY_TBL
	CUSTOMER_TBL
	ORDERS_TBL
	PRODUCTS_TBL

	APPENDIX E: INSERT Statements for Book Examples
	EMPLOYEE_TBL
	EMPLOYEE_PAY_TBL
	CUSTOMER_TBL
	ORDERS_TBL
	PRODUCTS_TBL

	APPENDIX F: Bonus Exercises

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	N
	O
	P
	Q
	R
	S
	T
	U
	V

	Index
	A
	B
	C
	D
	E
	F
	G
	H-I
	J
	K-L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Z

