

PostgreSQL 9 High
Availability Cookbook

Over 100 recipes to design and implement a highly
available server with the advanced features of PostgreSQL

Shaun M. Thomas

BIRMINGHAM - MUMBAI

PostgreSQL 9 High Availability Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1100714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-696-9

www.packtpub.com

Cover image by Pratyush (tysoncinematics@gmail.com)

Credits

Author
Shaun M. Thomas

Reviewers
Hans-Jürgen Schönig

Sheldon E. Strauch

Vasilis Ventirozos

Tomas Vondra

Acquisition Editors
Anthony Albuquerque

Harsha Bharwani

Content Development Editor
Sriram Neelakantan

Technical Editor
Tanvi Bhatt

Copy Editors
Janbal Dharmaraj

Sayanee Mukherjee

Karuna Narayanan

Project Coordinator
Kartik Vedam

Proofreaders
Maria Gould

Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Tejal Soni

Priya Subramani

Graphics
Sheetal Aute

Disha Haria

Abhinash Sahu

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Shaun M. Thomas has been working with PostgreSQL since late 2000. He is a frequent
contributor to the PostgreSQL Performance and General mailing lists, assisting other DBAs
with the knowledge he's gained over the years. In 2011 and 2012, he gave presentations
at the Postgres Open conference on topics such as handling extreme throughput, high
availability, server redundancy, and failover techniques. Most recently, he has contributed
the Shard Manager extension and the walctl WAL management suite.

Currently, he serves as the database architect at OptionsHouse, an online options brokerage
with a PostgreSQL cluster that handles almost 2 billion queries per day. Many of the
techniques used in this book were developed specifically for this extreme environment.

He believes that PostgreSQL has a stupendous future ahead, and he can't wait to see the
advancements subsequent versions will bring.

I'd like to thank my wife, Jennifer, for putting up with the weeks of long
nights and for providing the encouragement I needed to get it all done. This
book is my thank you letter to the PostgreSQL community, which helped me
out of jams more times than I can count. I'd also like to thank OptionsHouse
for putting me in charge of the busiest database I'd ever seen, forcing me to
learn enough to keep it all running smoothly.

About the Reviewers

Hans-Jürgen Schönig is the founder and CEO of Cybertec Schönig & Schönig GmbH
(www.postgresql-support.de), a company that focuses on PostgreSQL support, training,
and consulting, as well as on scalable PostgreSQL solutions.

He has 15 years of experience in the field of PostgreSQL and has written several books that
deal with PostgreSQL in the past couple of years.

Sheldon E. Strauch is a 20 year veteran of software consulting at companies such
as IBM, Sears, Ernst & Young, and Kraft Foods. He has a Bachelor's degree in Business
Administration and leverages his technical skills to improve business self-awareness. His
interests include data gathering, management, and mining; maps and mapping; business
intelligence; and application of data analysis for continuous improvement. He is currently
focused on the development of end-to-end data management and mining at Enova
International, a financial services company located in Chicago. In his spare time,
he enjoys the performing arts, particularly music, and traveling with his wife Marilyn.

Vasilis Ventirozos has been working with databases for more than a decade on mission
critical applications for companies in both the telecom and lottery industries. While he has
worked with a number of database technologies, he considers PostgreSQL his database
of choice. He currently works at OmniTI, a full-stack IT services company focused on highly
scalable web infrastructure, providing PostgreSQL-related consulting and management.

Tomas Vondra has been working with PostgreSQL since 2003; although he's been working
with various other databases since then (both open source and commercial), he instantly fell
in love with PostgreSQL and the wonderful community built around it.

He is currently working at GoodData, a company that operates a BI cloud platform built
on PostgreSQL, as a "performance specialist" and is mainly responsible for tracking and
improving performance. In his free time, he's usually writing PostgreSQL extensions and
patches or hacking something else related to PostgreSQL.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt
ff Copy and paste, print and bookmark content
ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Hardware Planning	 7

Introduction	 7
Planning for redundancy	 8
Having enough IOPS	 11
Sizing storage	 14
Investing in a RAID	 18
Picking a processor	 21
Making the most of memory	 24
Exploring nimble networking	 26
Managing motherboards	 31
Selecting a chassis	 34
Saddling up to a SAN	 36
Tallying up	 39
Protecting your eggs	 41

Chapter 2: Handling and Avoiding Downtime	 43
Introduction	 43
Determining acceptable losses	 44
Configuration – getting it right the first time	 46
Configuration – managing scary settings	 50
Identifying important tables	 53
Defusing cache poisoning	 58
Exploring the magic of virtual IPs	 62
Terminating rogue connections	 64
Reducing contention with concurrent indexes	 68
Managing system migrations	 70
Managing software upgrades	 73

ii

Table of Contents

Mitigating the impact of hardware failure	 76
Applying bonus kernel tweaks	 81

Chapter 3: Pooling Resources	 85
Introduction	 86
Determining connection costs and limits	 87
Installing PgBouncer	 89
Configuring PgBouncer safely	 92
Connecting to PgBouncer	 96
Listing PgBouncer server connections	 97
Listing PgBouncer client connections	 99
Evaluating PgBouncer pool health	 101
Installing pgpool	 105
Configuring pgpool for master/slave mode	 108
Testing a write query on pgpool	 112
Swapping active nodes with pgpool	 114
Combining the power of PgBouncer and pgpool	 117

Chapter 4: Troubleshooting	 121
Introduction	 121
Performing triage	 122
Installing common statistics packages	 125
Evaluating the current disk performance with iostat	 126
Tracking I/O-heavy processes with iotop	 129
Viewing past performance with sar	 131
Correlating performance with dstat	 133
Interpreting /proc/meminfo	 136
Examining /proc/net/bonding/bond0	 139
Checking the pg_stat_activity view	 142
Checking the pg_stat_statements view	 145
Debugging with strace	 148
Logging checkpoints properly	 151

Chapter 5: Monitoring	 155
Introduction	 156
Figuring out what to monitor	 156
Installing and configuring Nagios	 158
Configuring Nagios to monitor a database host	 162
Enhancing Nagios with check_mk	 166
Getting to know check_postgres	 169
Installing and configuring collectd	 172
Adding a custom PostgreSQL monitor to collectd	 175
Installing and configuring Graphite	 179

iii

Table of Contents

Adding collectd data to Graphite	 182
Building a graph in Graphite	 186
Customizing a Graphite graph	 188
Creating a Graphite dashboard	 191

Chapter 6: Replication	 195
Introduction	 195
Deciding what to copy	 196
Securing the WAL stream	 198
Setting up a hot standby	 201
Upgrading to asynchronous replication	 205
Bulletproofing with synchronous replication	 209
Faking replication with pg_receivexlog	 212
Setting up Slony	 214
Copying a few tables with Slony	 217
Setting up Bucardo	 221
Copying a few tables with Bucardo	 224
Setting up Londiste	 227
Copying a few tables with Londiste	 230

Chapter 7: Replication Management Tools	 233
Introduction	 234
Deciding when to use third-party tools	 235
Installing and configuring Barman	 237
Backing up a database with Barman	 240
Restoring a database with Barman	 242
Installing and configuring OmniPITR	 244
Managing WAL files with OmniPITR	 247
Installing and configuring repmgr	 250
Cloning a database with repmgr	 254
Swapping active nodes with repmgr	 257
Installing and configuring walctl	 260
Cloning a database with walctl	 264
Managing WAL files with walctl	 266

Chapter 8: Advanced Stack	 269
Introduction	 269
Preparing systems for the stack	 273
Getting started with the Linux Volume Manager	 275
Adding block-level replication	 279
Incorporating the second LVM layer	 281
Verifying a DRBD filesystem	 284
Correcting a DRBD split brain	 285

iv

Table of Contents

Formatting an XFS filesystem	 288
Tweaking XFS performance	 290
Maintaining an XFS filesystem	 293
Using LVM snapshots	 295
Switching live stack systems	 298
Detaching a problematic node	 300

Chapter 9: Cluster Control	 303
Introduction	 303
Installing the components	 305
Configuring Corosync	 307
Preparing startup services	 310
Starting with base options	 312
Adding DRBD to cluster management	 315
Adding LVM to cluster management	 318
Adding XFS to cluster management	 321
Adding PostgreSQL to cluster management	 323
Adding a virtual IP to hide the cluster	 326
Adding an e-mail alert	 328
Grouping associated resources	 329
Combining and ordering related actions	 331
Performing a managed resource migration	 333
Using an outage to test migration	 336

Chapter 10: Data Distribution	 339
Introduction	 339
Identifying horizontal candidates	 340
Setting up a foreign PostgreSQL server	 344
Mapping a remote user	 347
Creating a foreign table	 349
Using a foreign table in a query	 352
Optimizing foreign table access	 356
Transforming foreign tables into local tables	 358
Creating a scalable nextval replacement	 361
Building a sharding API	 366
Talking to the right shard	 368
Moving a shard to another server	 371

Index	 375

Preface
Welcome to PostgreSQL 9 High Availability Cookbook! As a database, PostgreSQL is beginning
to take its place in the world of high transaction rates and very large data installations. With
this comes an increasing demand for PostgreSQL to act as a critical piece of infrastructure.
System outages in these environments can be spectacularly costly and demand a higher
caliber of management and tooling.

It is the job of a DBA to ensure that the database is always available for application demands
and clients' needs. Yet, this is extremely difficult to accomplish without the necessary skills
and experience with a common operating system and PostgreSQL tools. Installing, configuring,
and optimizing a PostgreSQL cluster is a tiny fraction of the process. We also need to know
how to find and recognize problems, manage a swarm of logical and physical replicas, and
scale to increasing demands, all while preventing or mitigating system outages.

This book is something the author wishes existed 10 years ago. Back then, there were no
recipes to follow to build a fault-tolerant PostgreSQL cluster; we had to improvise. It is our
aim to prevent other DBAs from experiencing the kind of frustration borne from reinventing
the wheel. We've done all the hard work, taken notes, outlined everything we've ever learned
about keeping PostgreSQL available and written it all down in here.

We hope you find this book useful and relevant; it is the product of years of trial, error, testing,
and a large amount of input from the PostgreSQL community.

What this book covers
Chapter 1, Hardware Planning, sets the tone by covering the part that the appropriate
hardware selection plays in a successful PostgreSQL cluster of any size.

Chapter 2, Handling and Avoiding Downtime, provides safe settings and defaults for a
stable cluster and explains the basic techniques for responding to mishaps.

Chapter 3, Pooling Resources, presents PgBouncer and pgpool, two tools geared toward
controlling PostgreSQL connections. Together, these can provide an abstraction layer to
reduce the effect of outages and increase system performance.

Preface

2

Chapter 4, Troubleshooting, introduces a battery of common Unix and Linux tools and
resources that can collect valuable diagnostic information. It also includes a couple of
PostgreSQL views that can assist in finding database problems.

Chapter 5, Monitoring, further increases availability by adding Nagios, check_mk, collectd,
and Graphite to watch active PostgreSQL clusters. This chapter helps us stay informed, and
find potential problems before they happen.

Chapter 6, Replication, discusses several PostgreSQL replication scenarios and
techniques for more durable data. This includes logical replication tools such as Slony,
Bucardo, and Londiste.

Chapter 7, Replication Management Tools, brings WAL management to the forefront.
It talks about integrating Barman, OmniPITR, repmgr, or walctl into PostgreSQL to further
prevent data loss and control complicated multiserver clusters.

Chapter 8, Advanced Stack, explains how to use LVM, DRBD, and XFS to build a solid
foundation and keep data on two servers simultaneously to prevent costly outages.

Chapter 9, Cluster Control, incorporates Pacemaker into the advanced stack. Fully automate
PostgreSQL server migrations in case of impending maintenance or hardware failure.

Chapter 10, Data Distribution, shows how PostgreSQL features such as foreign data wrappers
and materialized views can produce a scalable cluster. Included with this chapter is a simple
data-sharding API technique to reduce dependency on a single PostgreSQL server.

What you need for this book
This book is written for Unix systems with a focus on Linux in particular. Such servers have
become increasingly popular to host databases for companies both large and small. As such,
we highly recommend that you have a virtual machine or development system running a
recent copy of Debian, Ubuntu, Red Hat Enterprise Linux, or a variant such as CentOS or
Scientific Linux.

You will also need a copy of PostgreSQL. If your chosen Linux distribution isn't keeping the
included PostgreSQL packages sufficiently up to date, the PostgreSQL website maintains
binaries for most popular distributions. You can find these at http://www.postgresql.
org/download/.

Users of Red Hat Enterprise Linux and its variants should refer to the following URL
to add the official PostgreSQL YUM repository to important database systems:
http://yum.postgresql.org/repopackages.php.

Users of Debian, Ubuntu, Mint, and other related Linux systems should refer to the
PostgreSQL APT wiki page at the following URL instead: https://wiki.postgresql.org/
wiki/Apt.

 http://www.postgresql.org/download/
 http://www.postgresql.org/download/
http://yum.postgresql.org/repopackages.php
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt

Preface

3

Be sure to include any "contrib" packages in your installation. They include helpful utilities
and database extensions we will use in some recipes.

Users of BSD should still be able to follow along with these recipes. Some commands may
require slight alterations to run properly on BSD, so be sure to understand the intent before
executing them. Otherwise, all commands have been confirmed to work on BASH and recent
GNU tools.

Who this book is for
This book is written for PostgreSQL DBAs who want an extremely fault-tolerant database
cluster. While PostgreSQL is suitable for enterprise environments, there are a lot of tertiary
details even a skilled DBA might not know. We're here to fill in those gaps.

There is a lot of material here for all levels of DBA. The primary assumption is that you are
comfortable with a Unix command line and maintain at least some regular exposure to
PostgreSQL as a DBA or system administrator.

If you've ever experienced a database outage, restored from a backup, or spent hours trying
to repair a malfunctioning cluster, we have material that covers all these scenarios. This book
holds the key to managing a robust PostgreSQL cluster environment and should be of use to
anyone in charge of a critical piece of database infrastructure.

Sections
This book contains the following sections:

Getting ready
This section tells us what to expect in the recipe, and describes how to set up any software
or any preliminary settings needed for the recipe.

How to do it…
This section characterizes the steps to be followed for "cooking" the recipe.

How it works…
This section usually consists of a brief and detailed explanation of what happened in the
previous section.

There's more…
It consists of additional information about the recipe in order to make the reader more
anxious about the recipe.

Preface

4

See also
This section may contain references to the recipe.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "The final query is a bit more
complicated since it uses a CASE statement."

A block of code is set as follows:

SELECT name, setting

 FROM pg_settings

WHERE context = 'postmaster';

Any command-line input or output is written as follows:

sudo apt-get install postgresql-9.3-pgfincore

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Click on the Dashboard
link on the top menu bar."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

5

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.packtpub.com/authors

Hardware Planning

In this chapter, we will learn about selection and provisioning of hardware necessary to build
a highly available PostgreSQL database. We will cover the following recipes in this chapter:

ff Planning for redundancy

ff Having enough IOPS

ff Sizing storage

ff Investing in a RAID

ff Picking a processor

ff Making the most of memory

ff Exploring nimble networking

ff Managing motherboards

ff Selecting a chassis

ff Saddling up to a SAN

ff Tallying up

ff Protecting your eggs

Introduction
What does high availability mean? In the context of what we're trying to build, it means we
want our database to start and remain online for as long as possible. A critical component of
this is the hardware that hosts the database itself. No matter how perfect a machine and its
parts may be, failure or unexpected behavior along any element can result in an outage.

1

Hardware Planning

8

So how do we avoid these unwanted outages? Expect them. We must start by assuming
hardware can and will fail, and at the worst possible moment. If we start with that in mind,
it becomes much easier to make decisions regarding the composition of each server we
are building.

Make no mistake! Much of this planning will rely on worksheets, caveats, and compromise.
Some of our choices will have several expensive options, and we will have to weigh the
benefits offered against our total cost outlay. We want to build something stable, which is
not always easy. Depending on the size of our company, our purchasing power, and available
hosting choices, we may be in for a rather complicated path to that goal.

This chapter will attempt to paint a complete picture of a highly available environment in such
a way that you can pick and choose the best solution without making too many detrimental
compromises. Of course, we'll offer advice to what we believe is the best overall solution,
but you don't always have to take our word for it.

For the purposes of this chapter, we will not cover cloud computing or
other elastic allocation options. Many of the concepts we introduce can be
adapted to those solutions, yet many are implementation-specific. If you
want to use a cloud vendor such as Amazon or Rackspace, you will need to
obtain manuals and appropriate materials for applying what you learn here.

Planning for redundancy
Redundancy means having a spare. A spare for what? Everything. Every single part, from
motherboard to chassis, power supply to network cable, disk space to throughput, should
have at least one piece of excess equipment or capacity available for immediate use. Let's
go through as many of these as we can imagine, before we do anything that might depend
on something we bought.

Getting ready
Fire up your favorite spreadsheet program; we'll be using it to keep track of all the parts that
go into the server, and any capacity concerns. If you don't have one, Open Office and Libre
Office are good free alternatives for building these spreadsheets. Subsequent sections will
help determine most of the row contents.

Chapter 1

9

How to do it...
We simply need to produce a hardware spreadsheet to track our purchase needs. We can do
that with the following steps:

1.	 Create a new spreadsheet for parts and details.

2.	 Create a heading row with the following columns:

�� Type

�� Capacity

�� Supplier

�� Price

�� Count

�� Total cost

3.	 Create a new row for each type of the following components:

�� Chassis

�� CPU

�� Hard Drive (3.5")

�� Hard Drive (2.5")

�� Hard Drive (SSD)

�� Motherboard

�� Network Card

�� Power Supply

�� RAID Controller

�� RAM

�� SAN

4.	 In the Chassis row, under the Total cost column, enter the following formula:
=D2*E2

5.	 Copy and paste the formula into the Total Cost column for all the rows we created.
The end result should look something like the following screenshot:

Hardware Planning

10

How it works...
What we've done is prepare a spreadsheet that we can fill in with information collected from
the rest of this chapter. We will have very long discussions regarding each part of the server
we want to build, so we need a place to collect each decision we make along the way.

The heading column can include any other details you wish to retain about each part, but
for the sake of simplicity, we are stuck to the bare minimum. This also goes for the parts we
chose for each column. Depending on the vendor you select to supply your server, many of
these decisions will already be made. It's still a good idea to include each component in case
you need an emergency replacement.

The Total Cost column exists for one purpose: to itemize the cost of each part, multiplied
by how many we will need to complete the server.

To make sure we account for the redundancy element of the
spreadsheet, we strongly suggest inflating the number you use for the
Count column, which will also increase the price automatically. This
helps so we automatically include extra capacity in case something fails.
If you would rather track this separately, add a Spare Count column to
the spreadsheet instead.

We'll have discussions later as to failure rates of different types of hardware, which will
influence how many excess components to allocate. Don't worry about that for now.

There's more...
It's also a very good idea to include a summary for all of our Total Cost columns, so we get
an aggregate cost estimate for the whole server. To do that with our spreadsheet example,
keep in mind that the Total Cost column is listed as column F.

To add a Sum Total column to your spreadsheet on row 15, column F, enter the formula
=SUM(F2:F12). If you've added more columns, substitute for column F whichever column
now represents the Total Cost. Likewise, if you have more than 13 rows of different parts,
use a different row to represent your summary price than row 15.

See also
There are a lot of spreadsheet options available. Many corporations supply a copy of Microsoft
Excel. However, if this is not the case, there are many alternatives as follows:

ff Google Docs: http://docs.google.com/

ff Open Office: http://www.openoffice.org/

ff Libre Office: http://www.libreoffice.org/

Chapter 1

11

All of these options are free to use and popular enough that support and documentation are
readily available.

Having enough IOPS
IOPS stands for Input/Output Operations Per Second. Essentially, this describes how many
operations a device can perform per second before it should be considered saturated. If a
device is saturated, further requests must wait until the device has a spare bandwidth. A server
overwhelmed with requests can amount to seconds, minutes, or even hours of delayed results.

Depending on application timeout settings and user patience, a device with low IOPS appears
as a bottleneck that reduces both system responsiveness and the perception of quality. A
database with insufficient IOPS to service queries in a timely manner is unavailable for all
intents and purposes. It doesn't matter if PostgreSQL is still available and serving results in
this scenario, as its availability has already suffered. We are trying to build a highly available
database, and to do so, we need to build a server with enough performance to survive daily
operation. In addition, we must overprovision for unexpected surges in popularity, and account
for future storage and throughput needs based on monthly increases in storage utilization.

Getting ready
This process is more of a thought experiment. We will present some very rough estimates of
IO performance for many different disk types. For each, we should increment entries in our
hardware spreadsheet based on perceived need.

The main things we will need for this process are numbers. During development, applications
commonly have a goal, expected client count, table count, estimated growth rates, and so on.
Even if we have to guess for many of these, they will all contribute to our IOPS requirements.
Have these numbers ready, even if they're simply guesses.

If the application already exists on a development or stage environment,
try to get the development or QA team to run operational tests. This
is a great opportunity to gather statistics before choosing potential
production hardware.

How to do it...
We need to figure out how many operations per second we can expect. We can estimate this
by using the following steps:

1.	 Collect the amount of simultaneous database connections. Start with the expected
user count, and divide by 50.

Hardware Planning

12

2.	 Obtain the average number of queries per page. If this is unavailable, use ten.

3.	 Count the amount of tables used in those queries. If this is unavailable, use three.

4.	 Multiply these numbers together, then double it. Then multiply the total by eight.

5.	 Increment the Count column in our hardware spreadsheet for one or more of the
following, and round up:

�� For 3.5" hard drives, divide by 500

�� For 2.5" hard drives, divide by 350

�� For SSD hard drives, divide by 25000, then add two

6.	 Add 10 percent to any count greater than 0 and then round up.

How it works...
Wow, that's a lot of work! There's a reason for everything, of course.

In the initial three steps, we're trying to figure out how many operations might touch an object
on disk. For every user that's actively loading a page, for every query in that page, and for
every table in that query, that's a potential disk read or write.

We double that number to account for the fact we're estimating all of this. It's a common
engineering trick to double or triple calculations to absorb unexpected capacity, variance
in materials, and so on. We can use that same technique here.

Why did we suggest dividing the user count by 50 to get the connection
total? Since we do not know the average query runtime, we assume 20
ms for each query. For every query that's executing, a connection is in
use. Assuming full utilization, up to 50 queries can be active per second.
If you have a production system that can provide a better query runtime
average, we suggest using that value instead.

However, why do we then multiply by eight? In a worst (or best) case scenario, it's not
uncommon for an application to double the amount of users or requests on a yearly basis.
Doubled usage means doubled hardware needs. If requirements double in one year, we would
need a server three times more powerful (1 + 2) than the original estimates. Another doubling
would mean a server seven times better (1 + 2 + 4). CPUs, RAM, and storage are generally
available as powers of two. Since it's fairly difficult to obtain storage seven times faster than
what we already have, we multiply the total by eight.

That gives a total IOPS value roughly necessary for our database to immediately serve every
request for the next three years, straight from the disk device. Several companies buy servers
every three or four years as a balance between cost and capacity, so these estimates are
based on that assumption.

Chapter 1

13

In the next step, we get a rough estimate to the amount of disks necessary to serve the
necessary IOPS. Our numbers in these steps are based on hard drive performance. A 15,000
RPM hard drive can serve under ideal conditions, 500 operations per second. Likewise, a
10,000 RPM can provide roughly 350 operations per second. Current SSDs as of this writing
commonly reach 100,000 IOPS. However, because they are so fast, we need far fewer of
them, and thus risk is not as evenly distributed. We artificially increase the amount of these
drives because, again, we are erring toward availability.

Finally, we add a few extra devices for spares that will go in a closet somewhere, just in
case one or more drives fail. This also insulates us from the rare event that hardware is
discontinued or otherwise difficult to obtain.

There's more...
Figuring out the number of IOPS we need and the devices involved is only part of the story.

A working example
Sometimes these large lists of calculations make more sense if we see them in practice.
So let's make the assumption that 2,000 users will use our application each second.
This is how that would look:

ff 2000 / 50 = 40

ff Default queries per page = 10

ff Default tables per query = 3

ff 40 * 10 * 3 * 2 = 2400

ff 2400 * 8 = 19200

ff 19200 IOPS in drives:

�� 3.5" drives: 19200 / 500 = 38.4 ~ 39

�� 2.5" drives: 19200 / 350 = 54.9 ~ 55

�� SSDs: 2 + (19200 / 25000) = 2.8 ~ 3

ff Add 10 percent.

ff 3.5" drives: 39 + 3.9 = 42.9 ~ 43

�� 2.5" drives: 55 + 5.5 = 60.5 ~ 61

�� SSDs: 3 + 0.3 = 3.3 ~ 4

We are not taking space into account either, which would also increase our SSD count. We will
be discussing capacity soon.

Hardware Planning

14

Making concessions
Our calculations always assume worst case scenarios. This is both expensive and in many
cases, overzealous. We ignore RAM caching of disk blocks, we don't account for application
frontend caches, and the PostgreSQL shared buffers are also not included.

Why? Crashes are always a concern. If a database crashes, buffers are forfeit. If the
application frontend cache gets emptied or has problems, reads will be served directly from
the database. Until caches are rebuilt, query results can be multiple orders of magnitude
slower than normal for minutes or hours. We will discuss methods of circumventing these
effects, but these IOPS numbers give us a baseline.

The number of necessary IOPS, and hence disk requirements, are subject to risk evaluation
and cost benefit analysis. Deciding between 100 percent coverage and an acceptable fraction
is a careful balancing act. Feel free to reduce these numbers; just consider the cost of an
outage as part of the total. If a delay is considered standard operating procedures, fractions
up to 50 percent are relatively low risk. If possible, try to run tests for an ultimate decision
before purchase.

Sizing storage
Capacity planning for a database server involves a lot of variables. We must account for table
count, user activity, compliance storage requirements, indexes, object bloat, maintenance,
archival, and more. We may even have to consider application features that do not exist.
New functionality often brings new tables, new storage standards, and archival needs.
Planning done now may have little relevance to future usage.

So how do we produce functional estimates for disk space, with so many uncertain or fluctuating
elements? Primarily, we want to avoid a scenario where we do not have enough space. Running
out of disk space results in ignored queries at best, and a completely frozen and difficult to
repair database at worst. Neither are ingredients of a highly available environment.

So we have a lower bound in this case, enough to avoid catastrophe though it's in our best
interest to allocate more than the bare minimum.

Getting ready
Since there are a lot of variables that contribute to the volume of storage we want, we need
information about each of them. Gather as many data points as possible regarding things
such as: largest expected tables and indexes, row counts per day, indexes per table, desired
excess, and anything else imaginable. We'll use all of it.

Chapter 1

15

This is much easier if we already have a database, and are now trying to
ensure it is highly available. Even if the database is only in development
or staging environments at this moment, a few activity simulations at
expected user counts should provide a basis for many of our numbers. No
matter the case, revisit estimates as concrete details become available.

How to do it...
We can collect some of the information we want from PostgreSQL if we have a running
instance already. If not, we can use baseline numbers. Follow these steps if you already
have a PostgreSQL database available:

1.	 Submit this query to get the amount of space used by all databases:
SELECT pg_size_pretty(sum(pg_database_size(oid))::BIGINT)
 FROM pg_database;

2.	 Wait one week.

3.	 Perform the preceding query again.

4.	 Subtract the first reading from the second.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

If we don't have an existing install and are working with a project that has yet to start
development, we can substitute a few guesses instead. Without a running PostgreSQL
instance, use the following assumptions:

ff Our databases have a total size of 100 GB

ff After one week, our install grew by 1.5 GB

Next, we can calculate our growth needs for the next three years. Perform the following steps:

1.	 Multiply the change in install size by four.

2.	 Apply the following formula, where x is the most recent size of the databases,
and y is the value from the previous step: x * (1 + y/x)^36.

3.	 Multiply the previous result by two.

http://www.packtpub.com/support
http://www.packtpub.com/support

Hardware Planning

16

How it works...
In the end, this is the magic of compounding interest. If we have an existing database
installed, it can tell us not only how much space it currently consumes, but also how quickly
it's currently growing. If not, we can start with a medium size and substitute a growth
assumption that will cause the cumulative total to double in size every year. Remember,
we begin by working with worst case scenarios, and modify the numbers afterwards.

What if we don't need compounding interest because our expected growth
is linear? It's always easier to start with too much space than to add more
later. If you know your table count will rarely change, users will not increase
in number, or data streams are relatively consistent, feel free to drop the
compounded interest formula. Otherwise, we suggest using it anyway.

The PostgreSQL query we used takes advantage of the system catalog and known statistics
regarding the database contents. The pg_database_size function always returns the
number of bytes a database uses, so we must use the pg_size_pretty function to make it
more human readable.

Once we know the size of the database instance and its growth rate, we can apply a simple
compounding interest function to estimate the volume at any point in the future. This not only
accounts for the current growth rate, but incorporates additional accumulation caused by
increases in clients, table counts, and other unspecified sources. It's extremely aggressive,
since we take the weekly growth rate, translate that to a monthly rate, and apply the
compounding monthly instead of yearly.

And then we use a standard engineering tactic and double the estimate, just in case. Using
the provided values—that of a 100 GB database that grows at 1.5 GB per week—we would
have an 815 GB database install in three years. With a system that large, we should allocate
at least 1630 GB. If we simply added the 1.5 GB weekly growth rate for three years, the final
tally would only be 334 GB, and we could get by with 668 GB.

There's more...
Don't let our formulas define your only path. Let's explore how they apply in a real world
situation, and how we can modify them to better fit our systems.

Real-world example
There are quite a few very large databases using PostgreSQL. Whether or not they have
thousands of tables and indexes, billions of rows, or handle billions of queries per day,
statistics help us plan for the future. Let's apply the previous steps to an example database
that actually exists:

Chapter 1

17

ff The database is currently 875 GB

ff The database was 865 GB last week

ff The database grows by 10 GB per week

ff Thus, the database grows by 40 GB every four weeks

ff Using the formula we discussed in the step two of this recipe, the number become
this: 875 * (1 + 40/875)^36 = 4374 GB

ff Doubled, this is 8748 GB

Keep in mind that this estimation technique may grossly exaggerate the necessary space.
If we take the existing 40 GB monthly growth rate, the database would only be 2315 GB
in three years. Of course, 2.3 TB is still a very large database, it's just half as large as
our estimate.

Adjusting the numbers
We already mentioned that the growth curve used here is extremely aggressive. We can't risk
ever running out of space in a production database and still consider ourselves highly available.
However, there is probably a safe position between the current growth rate of the database, and
the compounded estimate, especially since we are doubling the allocation anyway.

In the preceding real-world example, the database is likely to have a size between 2315 GB
and 4374 GB. If we split the difference, that's 3345 GB. Further more, we don't necessarily
have to double that number if we're comfortable having a disk device that's 70 percent full
three years from now instead of 50 percent. With that in mind, we would probably be safe with
5 TB of space instead of 9 TB. That's a vast saving if we're willing to make those assumptions.

Incorporate the spreadsheet
At the beginning of this chapter, we created a hardware cost spreadsheet to estimate the total
cost of a highly available server. If we were following the chapter, our spreadsheet already
accounts for the minimum number of devices necessary to provide the IOPS we want.

Suppose we needed 15,000 IOPS, and decided to use 2.5-inch drives. That would require over
40 drives. Even at only 300 GB each, that's 12 TB of total available space. Yet the case for
SSDs is the opposite. For our previous example, we would need at least five 1 GB SSD drives,
or one very large PCIe SSD to provide 5 TB of space for the adjusted sample.

Whichever solution we finally choose, we can take the advice from every section so far. At this
point, the spreadsheet should have a device count that should satisfy most, if not all, of our
space and IOPS requirements.

Hardware Planning

18

Investing in a RAID
RAID stands for Redundant Array of Independent (or Inexpensive) Disks, and often requires
a separate controller card for management. The primary purpose of a RAID is to combine
several physical devices into a single logical unit for the sake of redundancy and performance.

This is especially relevant to our interests. Carnegie Mellon University published a study in
2007 on hard drive failure rates. They found that hard drives fail at about 3 percent per year.
Further more, they found that drive type and interface contributed little to disk longevity, and
that hard drives do not reflect a tendency to fail early as was commonly accepted. These
findings were largely corroborated by a parallel study released the same year by Google.

What does this mean? For our purposes in building a highly available server, it means hard
drives should be looked at with great disdain. Larger databases will depend on tens or
hundreds of hard drives in order to represent several terabytes of data. With a 3 percent
failure rate per year, a 100-drive array would lose roughly nine devices after three years.

This is the primary reason that all of our calculations regarding disk devices automatically
assume a 10 percent excess inventory allotment. If a drive fails, we need an immediate
replacement. Vendors are not always capable of delivering a new drive quickly enough.
Having a spare on hand, ideally at the hosting facility or in the server itself, helps ensure
continuous uptime.

So how does RAID figure into this scenario? If we hosted our database on several bare hard
drives, knowing that around 10 percent of these drives will fail in three years, outages would
be inevitable. What we want is an abstraction layer, one that can present any amount of hard
drives as a single whole, keeping reserves for drive errors, handling checksums for integrity,
and mirroring for redundancy.

RAID provides all of that in several convenient configurations. Good controller cards often
include copious amounts of cache and other management capabilities. Instead of manually
assigning dozens of drives, split them into several usable array allocations that reflect much
lower operational risk.

Knowing all of this, databases have special needs when it comes to RAID and the performance
characteristics associated with each RAID type. Now we will explore the selection criteria for our
database, and how to simplify the process.

Getting ready
That was a long introduction, wasn't it? Well, we also strongly suggest taking a look at the
Having enough IOPS and Sizing storage recipes before continuing. Make sure the hardware
spreadsheet has a drive count for the type of drives going into the server we're designing.
If we're using PCIe instead of standard SSD drives, this section can be skipped.

Chapter 1

19

How to do it...
Only a few RAID levels matter in a database context. Perform these steps to decide which one
is right for this server:

ff If this is an OLTP (Online Transaction Processing) database primarily for handling
very high speed queries, use RAID level 1+0

ff If this is a non-critical development or staging system, use RAID level 5

ff If this is a non-critical OLAP (Online Analytic Processing) reporting system, use RAID
level 5

ff If this is a critical OLAP reporting system, use RAID level 6

ff If this is a long-term storage OLAP warehouse, use RAID level 6

How it works...
We made a lot of snap decisions here. There are quite a few RAID levels we simply ignored,
so there should be some discussion regarding the reasoning we used.

Let's begin with RAID level 0. Level 0 stripes data across all disks at once. It's certainly
convenient, but a single drive failure will lose all stored information in the array. What about
RAID level 1? Level 1 acts as a full mirror of all data stored. For every set of drives, a second
set of drives has an exact copy. If a drive fails in one set, the second set is still available.
However, if that set also experiences any failure, all data is lost.

When we talk about RAID 1+0, we actually combine the mirroring capability of RAID 1 with the
striping of RAID 0. How? Take a look at the following diagram for six disks:

Drive 2

Drive 1

Mirror 1

Drive 2

Drive 1

Mirror 2

Drive 2

Drive 1

Mirror 3Stripe Stripe

Hardware Planning

20

In this RAID 1+0, we have three sets, each consisting of two disks. Each of the two disks
mirror each other, and the data is striped across all three sets. We could lose a disk from each
set and still have all of our data. We only have a problem if we lose two disks from the same
set, since they mirror each other. Overall, this is the most robust RAID level available, and the
most commonly used for OLTP systems.

RAID level 5 and 6 take a different approach. Again, let's look at six drives and see a very
simplified view of how RAID 5 would operate in that situation:

Drive 6Drive 5Drive 4Drive 3Drive 2Drive 1

The solid line shows that the data is spread across all six drives. The dotted line is the parity
information. If a drive fails and the block can't be read directly from the necessary location, a
RAID 5 will use the remaining parity information from all drives to reconstruct the missing data.
The only real difference between a RAID 5 and a RAID 6 is that a RAID 6 contains a second
parity line, so up to two drives can fail before the array begins operating in a degraded manner.

Using a RAID 5 or 6 offers more protection than a RAID 0, with less cost than a RAID 1+0,
which requires double the amount of desired space. We selected these for non-critical OLAP
systems because they usually need space over performance, and are not as sensitive to
immediate availability pressures as an OLTP system.

There's more...
We mentioned controller cards earlier, and noted that they also offer on-board cache. RAID
has been around for a long time, and though disks are getting much larger, they haven't
experienced an equivalent increase in speed. In scenarios that use RAID 5 or 6, writes can
also be slowed since each write must be committed to several devices simultaneously in the
form of parity.

To combat this, RAID controllers allow configuration of the cache itself, to buffer writes in favor
of reads, or vice versa. Don't be afraid to adjust this and run tests to determine the best cache
mix. If everything else fails, start with a 100 percent for writes, as they are the most in need of
caching. Keep a close eye on write performance, and give it priority. Generally, the OS cache
does a better job of caching reads, and has much more memory available to do so.

Chapter 1

21

See also
ff Disk failures in the real world: http://www.cs.cmu.edu/~bianca/fast07.pdf

ff Failure Trends in a Large Disk Drive Population: http://research.google.com/
pubs/pub32774.html

ff RAID: http://en.wikipedia.org/wiki/RAID

Picking a processor
In selecting a CPU for our server, we have a lot to consider. At the time of this writing, the
current trend among processors in every space—including mobile—is toward multiple cores
per chip. CPU manufacturers have found that providing a large number of smaller processing
units spreads workload horizontally for better overall scalability.

As users of PostgreSQL, this benefits us tremendously. PostgreSQL is based on processes
instead of threads. This means each connected client is assigned to a process that can use a
CPU core when available. The host operating system can perform such allocations without any
input from the database software. Motherboards have limited space, so we need more cores
on the same limited real estate, which means more simultaneously active database clients.

Once again, our discussion veers toward capacity planning for a three or four year cycle.
Limited processing capability leads to slow or delayed queries, or a database that is incapable
of adequately handling increasing amounts of simultaneous users. Yet simply choosing the
fastest CPU with the most cores and filling the motherboard can be a staggering waste of
resources. So how, then, do we know what to buy?

That's what we're here to figure out.

Getting ready
Luckily, there are only really two manufacturers that produce commodity server-class CPUs.
Further more, each vendor has a line of CPU designed specifically for server use. AMD and Intel
both provide a good similar price to performance curves, but that's where the comparison ends.

At the time of this writing, the Intel Xeon CPUs benchmark significantly higher than
equivalently priced AMD Opterons. This is true for both mid-range and high-end processors.
Before going through this recipe, it would be a good idea to visit AnandTech, Tom's Hardware,
Intel, and AMD, just to get a basic idea of the landscape. There are a lot of benchmarks that
compare various models of CPUs, so don't take our word for it.

Because of this current performance disparity, we'll focus exclusively on Intel processors for
now. This situation has changed in the past, and may do so again in the future.

http://research.google.com/pubs/pub32774.html
http://research.google.com/pubs/pub32774.html

Hardware Planning

22

How to do it...
We can collect some of the information we want from the database if we have one already.
If we already have a PostgreSQL database available, we can execute a query to start our
calculations. This works best if used at the most active time of day.

Execute this query as a superuser to get the count of simultaneous active users if you have
PostgreSQL 9.2 or higher:

SELECT count(1) FROM pg_stat_activity
WHERE state = 'active';

Use this query if you have an older version:

SELECT count(1) FROM pg_stat_activity
WHERE current_query NOT LIKE '<IDLE>%';

If we don't have a PostgreSQL server, we need to make an educated guess. Use these steps
to approximate:

1.	 Work with the application developers to obtain a count of expected clients active
per second.

2.	 Divide the previous number by 50.

Once we have some idea of how many queries will be active simultaneously, we need to figure
out the processor count. Follow these steps:

1.	 If we already know how many disks will store our data, use this number. In the case
of an SSD base, use 0.

2.	 Subtract the previous number from our count of active users.

3.	 Divide the previous result by two.

4.	 Apply the following formula, where x is the value from the previous step: x * (1.4)^3.

How it works...
Before we can even begin to decide on a processor count, we need a baseline. With a working
PostgreSQL server to base our numbers on, we can just use the amount of existing users
during a busy period. Without that, we need to guess. This guess can actually be pretty close,
depending on how the application was targeted. If the intent is to service 1000 users per
second, we should start there since that's the same assumption the company is using to buy
application and web servers.

Chapter 1

23

After that, we are applying a commonly accepted formula used by PostgreSQL administrators
for a very long time. The ideal number of active connections is equal to twice the amount
of available processor cores, plus the amount of disk spindles. Amusingly, the disk spindles
increase the ideal number of connections because they contribute seek times, which forces
the processor to wait for information. While a processor is waiting for input for one connection,
the operating system may decide to lend the processor to another until the data is retrieved.

So, we apply that accepted formula in reverse. First, we subtract the number of spindles, and
then divide by two to obtain how many CPUs we should have for our expected workload.

Afterward, we assume a 40 percent increase in active clients on a yearly basis, and increase
the CPU core count accordingly for three years. Note that this is a very aggressive growth rate.
If we have historical growth data available, or the company is expecting a different value, we
should use that instead.

When purchasing CPUs, no matter how cores are distributed, the final total should be equal or
greater than the number we calculated. If it isn't, the application may require more aggressive
caching than expected, or we may need to horizontally scale the database. We're not ready to
introduce that yet, but keep it in mind for later.

There's more...
The processor count is only part of the story. Intel CPUs have a few added elements we need
to consider.

Hyperthreading
Newer generations of Intel processors often provide a feature called hyperthreading,
which splits each physical processor core into two virtual cores. Historically, this was
not well received, as benchmarks often illustrated performance degradation when the
feature was enabled.

Since the introduction of Nehalem-based architecture in 2008, this is no longer the case.
While doubling the processor count does not result in a doubling of throughput, we've run
several tests that show up to 40 percent improvement over using physical cores alone.
This may not be universal, but it does apply to PostgreSQL performance tests. What this
means is that the commonly accepted formula for determining ideal connection count
requires modification.

Current advice is to only multiply the physical core count by two. Assuming a 40 percent
increase by enabling hyperthreading, the new formula becomes: 2 * 1.4 * CPUs + spindles.
With that in mind, if we wanted to serve 1000 connections per second, and used SSDs to host
our data, our minimum CPU count would be: 1000 / 50 / 1.4, or 14. Half of that is seven,
but no CPU has seven physical cores, so we would need at least eight. If we used the physical
cores alone for our calculation, we would need 10.

Hardware Planning

24

Turbo Boost
Recent Intel processors also have something called Turbo Boost. Some vendor motherboards
disable this by default. Make sure to go through BIOS settings before performing acceptability
tests, as turbo mode can provide up to 25 percent better performance in isolated cases.

This is possible because the maximum speed of the core itself is increased when resources
are available. A 2.6 GHz core might operate temporarily at 3.0 GHz. For queries that are
dependent on nested loops or other CPU-intensive operations, this can drastically reduce
query execution times.

Power usage
Intel family chips often have low voltage versions of their high performance offerings. While
these processors require up to 30 percent less electricity, they also run up to 25 percent
slower. Low power name designations are not always consistent, so when choosing a
processor, make sure to compare specifications of all similarly named chips.

Beware of accidentally choosing a low power chip meant for a high performance database.
However, these chips may be ideal for warehouse or reporting database use, since those
systems are not meant for high throughput or vast amounts of simultaneous users. They
often cost less than their high-performance counterparts, making them perfect for systems
expecting low utilization.

See also
ff Intel Xeon CPUs: http://en.wikipedia.org/wiki/Xeon

ff AMD Opteron CPUs: http://en.wikipedia.org/wiki/Opteron

ff AnandTech: http://www.anandtech.com/

ff Tom's Hardware: http://www.tomshardware.com/

Making the most of memory
The primary focus when selecting memory for a highly available system is stability. It's no
accident that most, if not all, server-class RAM is of the error-correcting variety. There are a
few other things to consider, which may not appear obvious at first glance.

Due to the multi-core nature of our CPUs, the amount of addressable memory may depend
on the core count. In addition, speed, latency, and parity are all considerations. We also must
consider the number of channels reported by each CPU; failing to match this with an equal
count of memory sticks will drastically reduce performance.

Let's make our server fast and stable by considering our memory options.

Chapter 1

25

Getting ready
Some of the decisions we will make depend on the capabilities of the CPU. Make sure to read
through the Picking a processor recipe before continuing. If we have a PostgreSQL database
available, there's also a query that can prepare us for selecting the most advantageous count
of memory modules. It's also a very good idea to complete the Sizing storage recipe to get a
better idea for choosing an amount of memory.

How to do it...
We can collect some of the information we want from PostgreSQL if we have an install already.
Follow these steps if there's an existing database install that we can use:

1.	 Execute the following query to obtain the size of all databases in the instance:
SELECT pg_size_pretty(sum(pg_database_size(oid))::BIGINT)
 FROM pg_database;

2.	 Multiply the result by eight.

If we don't have an existing database, we should use a size estimate of the database install
after three years. Refer to the Sizing storage recipe to obtain this estimate. Then, perform the
following steps:

1.	 Divide the current or estimated database storage size by ten to obtain the minimum
amount of memory.

2.	 Multiply our ideal CPU chip count by four to get the memory module count.

3.	 Divide the minimum memory amount by the module count to get the minimum
module size.

4.	 Round up to the nearest available memory module size.

How it works...
The important part of this recipe is starting with a viable estimate of the database size. Since
a lack of RAM won't cause the database to crash or operate improperly, we can use looser
guidelines to obtain this number. Hence, three years down the road, an existing database
install could be eight times larger than its current size.

Why do we then divide that number by ten? Our goal here is to maximize the benefit of the
OS-level cache, which will consume a majority of our RAM. This estimate gives us a value
that is ten times smaller than the space our database consumes. At this scale, data that is
frequently fetched from disk is likely to be served from memory instead. The alternative is
read latency due to insufficient memory for disk caching.

Hardware Planning

26

Most current CPUs are quad-channel, and thus operate best when the number of modules
per processor is a multiple of four. Since we should have determined how many processor
cores would be ideal for our system in the Picking a processor recipe, we automatically know
the most efficient memory module count. Why do we multiply by four, regardless of how many
memory channels the CPU has? Adding more memory modules is not wasted on chips with
fewer channels, and provides a possible upgrade path.

Dividing the memory amount by the module count gives our minimum module size. RAM
comes in many dimensions, and our calculation is not likely to match any of the available
dimensions for purchase, so we need to round up. Why not round down? The operating
system will utilize all available RAM to cache and buffer important data. Unless the greater
amount is extremely expensive in comparison, any excess memory will not be wasted.

There's more...
We didn't focus on memory speed, timings, or latency here. Timing and latency can affect
performance, but our primary focus is stability. We're always free to order faster or better
memory as our budget allows.

Memory speed, on the other hand, is a more visible factor. Every memory speed works with
a multiplier to match the highest compatible motherboard bus speed. This directly controls
how quickly the CPU can utilize available RAM. Before buying memory, research the stated
clock speed and try to match it with one of the faster settings compatible with both the CPU
and motherboard.

For example, DDR3-1600 is twice as fast as DDR3-800 since it operates at 200 MHz, as
opposed to 100 MHz. Database benchmarks would be vastly different between these two
memory speeds, even with the same CPU. Fast memory means PostgreSQL can make more
immediate use of cached data, and produce results more quickly.

Exploring nimble networking
The network card enables the database server to exchange data with the outside world. This
includes far more than web servers, spreadsheets, loading jobs, application servers, and
other data consumers. The database server is part of a large continuum of activity, much of
which will center around maintenance, management, and even filesystem availability.

Little of this other traffic involves PostgreSQL directly. Much happens in the background
regardless of the database and its current workload. Yet even one mishandled network packet
across an otherwise normal driver can render the entire server invisible to the outside world,
or in extreme cases, even lead to a system panic and subsequent shutdown. On a busy
database server, network cards can handle several terabytes of traffic on a daily basis;
the margin of error for such a critical piece of hardware is exceptionally slim.

Chapter 1

27

What's more, network bandwidth can easily be saturated by an aggressive backup strategy,
which is something critical to a highly available database. For PostgreSQL systems utilizing
streaming replication or WAL archival, that traffic contributes quite a bit of bandwidth to the
overall picture. If our backups are delayed, or replicas sit idle waiting for network packets,
our exposure to risk is high indeed.

That's not to say everything is doom and gloom! With the right network setup and
accompanying hardware, there should be more than enough room for any and all traffic our
database server needs. Let's explore all the copious options for connecting our database to
the outside world, and making sure it stays there.

Getting ready
This is one of those times it pays to do research. At the time of this writing, the current
high-speed network standards include 1 Gb/s, 10 Gb/s, 40 Gb/s, and even 100 Gb/s
Ethernet. However, 40 Gb/s network cards are still extremely rare, and 100 Gb/s is
generally reserved for fiber-based switches and data center use.

This means we will be covering 1 Gb/s and 10 Gb/s interfaces. While we will do our best
to outline all important aspects of these technologies to simplify the process, we strongly
encourage using the Internet to validate current availability and performance characteristics.

How to do it...
Let's begin with a few basic calculations. Look at these following numbers that represent
an estimate of interface speed after accounting for overhead:

ff 1000 Mb/s * B/10 b = 100 MB/s

ff 10,000 Mb/s * B/10 b = 1,000 MB/s

Next, consider how many ways this will be distributed. If we have an existing PostgreSQL
setup, follow these steps:

1.	 Execute the following query to determine the number of existing replicas:
SELECT count(1)+1 AS streams
 FROM pg_stat_replication;

2.	 Multiply streams by 160 for maximum MB/s needed by replication streams.

Hardware Planning

28

3.	 Execute the following queries together in a psql connection during a busy time of day
on a production database:
SELECT SUM(pg_stat_get_db_tuples_fetched(oid)) AS count1
 FROM pg_database;
SELECT pg_sleep(1);
SELECT SUM(pg_stat_get_db_tuples_fetched(oid)) AS count2
 FROM pg_database;

4.	 Subtract the results of count1 from count2 for the number of rows fetched
from the database per second.

5.	 Divide the number of rows per second by 10,000 for MB/s used by
PostgreSQL connections.

6.	 Add MB/s for streams to MB/s for connections.

Without an existing database, follow these steps for some basic bandwidth numbers:

1.	 Multiply the desired number of PostgreSQL replicas by 160 for the maximum MB/s
needed by replication streams.

2.	 Assume one WAL stream for an off-site disaster recovery database copy.

3.	 Start with at least one live hot streaming standby copy.

4.	 Include any additional database mirrors.

5.	 Estimate the active client count as discussed in Picking a Processor.

6.	 Multiply the active client count estimate by 5 for MB/s used by
PostgreSQL connections.

7.	 Add MB/s for streams to MB/s for connections.

No matter which checklist we follow, we should double the final tally.

How it works...
If we have an existing database, there is a wealth of statistical information at our fingertips.
The first query we ran gave us a slightly inflated count of copies of our database. For each
copy, data must be transferred from the database to another server. This data is based
on PostgreSQL WAL output, and these files are 16 MB each. A busy server can produce
more than ten of these per second, so we multiply the count of streams by 160 to produce
an aggressive amount of network overhead used by database replicas. As usual, this may
be overzealous; it's always best to observe an actual system to measure maximum WAL
segments generated during heavy write loads.

Chapter 1

29

In PostgreSQL 9.2 and higher, database replicas can stream from other
database replicas. This means network traffic can be distributed better
among streaming clients, reducing network bandwidth pressure on
production systems. PostgreSQL 9.2 also allows direct backup of streaming
replicas. This means one or two replicas may be the most the production
database ever needs to supply with WAL traffic.

For the next set of numbers, we need to know how much data database connections
commonly retrieve. PostgreSQL tracks the number of table rows fetched, but it's a cumulative
total. By waiting until a busy time of day and asking the database how many rows have been
fetched before and after a one-second wait, we know how many rows are fetched per second.

However, we still don't know how many bytes these rows consume. A good estimate of this
is 100 bytes per row. Then we only have to multiply the number of rows by 100 to find the
amount of bandwidth we would need. So why do we divide by 10,000? What's 10,000
multiplied by 100? One million. On dividing by 10,000, we produce the number of megabytes
per second those tuple fetches probably used.

If an average of 100 bytes per row isn't good enough, we can connect to
one of our primary databases and ask what the average is. Use this query:

SELECT sum(pg_relation_size(oid)) / sum(reltuples)
 FROM pg_class;

By adding the amount of streaming traffic to the amount of connection traffic, we have a good,
if slightly inflated, idea of how much bandwidth the server needs.

Without a working database to go by, we need to use a few guesses instead. Luckily, the
number of streams for a reliable database infrastructure starts at two: one for a live standby,
and one for an off-site archive. Each additional desired mirror should increase this total.
Again, we multiply by 160 to obtain the maximum megabytes per second that all these
streams are likely to require.

The amount of bandwidth client connections use is slightly harder to estimate. However, if we
worked through previous chapter sections, we have a CPU estimate, which also tells us the
maximum number of database clients the server can reliably support. If we take that value
and multiply by five, that provides a rough value in megabytes per second as well.

Again, we just add those two totals together, and we know the minimum speed of our network.

Finally, we multiply the final tally by two, to account for any unknown maintenance, backup,
and filesystem synchronization overhead.

Hardware Planning

30

There's more...
Besides producing an estimate through some simple calculations, we also want to make note
of a few other networking details.

A networking example
This may be easier to visualize with a real example. Let's start with a very active database that
has one streaming replica, and one off-site archive. Further more, connected clients regularly
fetch five-million rows per second. Now, let's go through our steps:

1.	 2 * 160 = 320 MB/s

2.	 5,000,000 / 10,000 = 50 MB/s

3.	 320 + 50 = 370 MB/s

4.	 370 * 2 = 740 MB/s

That's a very high value! A 1 Gb/s interface can only supply 100 MB/s at most, so we would
need eight of those to produce the necessary bandwidth. Yet a 10 Gb/s interface can supply
1000 MB/s, so it can easily handle 740 MB/s, and have room to spare. Would we rather have
eight network cables coming out of our server, or one?

Remember redundancy
One of the first things this chapter suggested was to consider extra inventory. What we
haven't really covered yet involves online backups. Most server-class motherboards include
not just one, but two on-board network modules. Each module commonly provides four
Ethernet interfaces.

Usually each interface is considered separate, and two interfaces from each module are
connected to two switches in the data center. This allows server administrators to seamlessly
perform maintenance on either switch without disrupting our network traffic. Further more,
if a switch or network module fails, there's always a backup available.

In our working example, we would need eight 1 Gb/s interfaces to avoid experiencing network
congestion. However, we've already used four of our eight available interfaces simply to satisfy
basic server hosting requirements. That doesn't leave enough available capacity, and as a
consequence, this server would experience a network bottleneck.

This would not be the case with a 10 Gb/s interface. Each of the interfaces connected to
redundant switches can carry the entire network requirements of the server.

Chapter 1

31

Save the research
We suggested doing research on 1 Gb/s and 10 Gb/s network cards. Well, don't do too
much. It's very likely the infrastructure department already has a standard server profile
for high-bandwidth systems. This is primarily due to the fact 10 Gb/s is a very complicated
standard compared to 1 Gb/s or lower. There are several different cable types available along
with complimentary network modules, one or more of which are probably already deployed in
the data center.

Just make sure that the infrastructure knows to allocate high-bandwidth resources if our
calculations call for it.

See also
ff To read more about how 10-gigabit Ethernet works, please visit the following URL:

http://en.wikipedia.org/wiki/10-gigabit_Ethernet

Managing motherboards
We have been working up to this for quite some time. None of our storage, memory, CPU,
or network matters if we have nothing to plug all of it into.

This could have been a long section dedicated to properly weighing the pros and cons of
selecting a motherboard manufacturer for maximum stability. It turns out most server vendors
have already done all the hard work in that regard. In fact, few vendors even disclose many
details about the motherboard in their servers outside of model documentation. We can't
really read hundreds of pages of documentation about every potential server we would like to
consider, so what is the alternative?

No matter where we decide to purchase our server, vendors will not sell—or even
present—incompatible choices. If we approached this chapter as intended, we already
have a long list of parts, counts, and necessary details to exclude potential offerings very
quickly. These choices will often come in the form of drop-down lists for every component
the motherboard and chassis will accept.

The chassis will come later. For now, let's focus on CPU, RAM, RAID, and network compatibility.

Keep in mind that motherboards and the requisite case are almost
exclusively a package deal. This means we can't keep an extra motherboard
available in case of failure, unlike other swappable elements. This breaks
our redundancy rule, but there are ways of circumventing that problem.

Hardware Planning

32

Getting ready
This is one of the times when the hardware spreadsheet will show its true usefulness. So,
as long as we have been keeping track of our counts through each section, this segment of
server selection will be much simpler. By this point, our spreadsheet should look something
like this:

We don't care about the total cost for each part yet. It might be a good idea to create a
separate tab or copy of the spreadsheet for each vendor we want to consider. This way, we
can comparison shop. Also remember that the counts are inflated by at least one replacement
in case of failure. So we want to look for two 10-core CPUs, eight 16 GB memory modules, and
so on.

How to do it...
Now it's time to do some research. Follow these steps:

1.	 Make a list of desired server vendors. This list may even be available from the
infrastructure department, if our company has one.

2.	 For each vendor, check their available 1U and 2U products.
3.	 For each 1U or 2U server, remove from consideration any that can't fulfill minimum

CPU requirements.
4.	 Repeat for RAM.
5.	 Repeat for RAID controller cards.
6.	 Repeat for network interface cards.
7.	 Fill in actual selections where appropriate to obtain unit prices.
8.	 Make corrections to the spreadsheet.

How it works...
While this is straightforward, it requires a lot of time. The amount of server variants available,
even from a single vendor, can be staggering. This is one of the reasons we only consider 1U
and 2U servers. The other is that 4U servers and larger are often designed for much different
use patterns related to vertical scaling, incorporating more CPUs, hard drives, even multiple
concurrent motherboards.

Chapter 1

33

For our purposes, that is simply too powerful. When purchasing servers with the explicit
intention to obtain multiple, redundant, and compatible examples, this becomes more difficult
as the cost and complexity of the servers increase.

Although we have reduced our sample size, there is still more work to do. When considering
the compatible CPUs, if we want ten-core chips, and the motherboard only supports up
to eight-core chips, we can remove that from consideration. This also applies to available
memory slots and sizes. Yet there's an unwritten element to RAM: maximum amount. If the
motherboard only supports up to 384 GB, and our earlier calculations show we may eventually
want 512 GB, we can immediately cross it off our list.

Since RAID and network cards must be plugged directly into the motherboard or an expansion
daughter card, it's the amount of these available slots that directly concerns us. We need at
least two for both cards that should drastically reduce the size of our list, especially in the
case of 1U servers.

While doing this compatibility verification, it is difficult to ignore prices listed next to each
choice, or the total price changing with each selection. We might as well take advantage of
that and fill in the rest of the spreadsheet, and make a copy for each vendor or configuration.
Some overall choices are likely to be better complete matches, or offer better future
expandability, or better price points, so tracking all of this is beneficial.

There's more...
RAID controllers and network interfaces are somewhat special cases. Some servers, in order
to reduce size, integrate these directly into the motherboard. This is especially true when it
comes to network modules. If at all possible, try to resist integrated components.

If these fail, the entire server will require replacement. This makes it much more difficult and
expensive to fulfill our redundancy requirement. Server-class motherboards without integrated
network interfaces are rare, but we can use these as our backup path if their minimum speed
matches what we've configured.

For instance, if we want a 10 GbE card, and the motherboard has integrated a 10 GbE
module, we can reduce the amount of excess cards on our spreadsheet by one. It's very
likely the integrated version is of lower quality, but it can suffice until the bad card is replaced.

Redundancy doesn't have to be expensive.

See also
Here is a list of well-known server vendors we could consider while completing this section:

ff Penguin Computing: www.penguincomputing.com
ff Dell: www.dell.com
ff HP: www.hp.com

Hardware Planning

34

Selecting a chassis
To round out our hardware selection phase, it's time to decide just what kind of case to order
from our server vendor. This is the final protective element that hosts the motherboard, drives,
and power supplies necessary to keep everything running. And like always, we place heavy
emphasis on redundancy.

For the purposes of this section, we will concentrate primarily on 1U and 2U rack-mounted
servers. Why not 4U or larger? Our goal is to obtain at least two of everything, with similar or
matching specifications in every possible scenario. The idea is to scale horizontally, in order
to more easily replace a failed component or server. As the size of the chassis increases, its
cost, complexity, and resource consumption also rise. In this delicate balancing act, it's safer
to err toward two smaller systems with respectable capabilities than one giant server that's
twice as powerful.

Getting ready
Since the server chassis and motherboard are generally a package deal, it's a good idea
to refer to the Managing motherboards recipe. We will be using a very similar process
to choose a server case. This time, we will focus on adequate room for hard drives and
redundant power supplies.

How to do it...
Now it's time to do some more research. Follow these steps:

1.	 Refer to the final list of servers from our motherboard selection.

2.	 For our ideal count of active (not replacement) hard drives, remove any choice that
doesn't have enough drive slots. Use this list if it's not immediately obvious:

�� Maximum 2.5" drives in a 2U server is 24

�� Maximum 3.5" drives in a 2U server is 8

�� Maximum 2.5" drives in a 1U server is 8

�� Maximum 3.5" drives in a 1U server is 4

3.	 Remove from consideration any chassis that does not support dual power supplies.
This should happen rarely in server-class systems.

4.	 As the list dwindles, give higher priority to cases with more fans or lower average
operating temperatures.

Chapter 1

35

How it works...
This time, our job was much easier than considering motherboard constraints. This time,
drives determine most of our decision.

Hot-swappable hard drives are slightly larger than their standard brethren, due to the swap
enclosure. Yet cases exist than can hold up to 24 hot-swap drives across the front when
stacked vertically. If we need that many storage devices, we save space by taking advantage
of cases that can accommodate them. We also need to remember to reserve two drives for
the operating system in a RAID-1, separate from our PostgreSQL storage. We can't diagnose
problems on a server that can't boot.

Some cases reserve mounts inside, or at the rear, for operating-system
drives. They are harder to replace, but make more room for storage
dedicated to PostgreSQL. Here, operating system drives are treated as
operating overhead without sacrificing case functionality.

If we need more drives than are available in any configuration, we should consider Direct
Attached Storage (DAS), Network Attached Storage (NAS), or Storage Area Network (SAN).
Some vendors supply drive extension cages specifically to provide more hot-swap bays for
specific server models. While we want to conserve space when possible, these are relatively
inexpensive and much smaller than a NAS or SAN if we haven't progressed to requiring such
a device.

Regarding the dual power supplies, this is not negotiable. Many data centers provide
two power rails per server rack. The intent is to provide two separate sources of power to
the server in case the server's power supply fails, or power is cut to one of the sources.
Sometimes these power sources even have separate generators. We're not the only ones
interested in redundancy; data centers want to avoid outages too.

The last, more optional element involves investigating the case itself. Many server cases have
several fans inside and along the rear, and as a consequence, are very loud. This won't matter
when the server is in the data center, but the number of fans and the shape of the airflow
will directly affect the server temperature. Higher temperatures decrease system stability.
It's not uncommon for vendors to list maximum operating temperatures of each case,
so try to gravitate toward the cooler ones if all else is equal.

There's more...
We use the word vendor frequently, and there's a reason for that. Short of outright accusing
bare cases and motherboards of being faulty, they are simply not stable enough for our use.
There are some great cases available that in many ways exceed the capabilities provided by
established server providers.

Hardware Planning

36

We don't suggest the smaller vendors for a few reasons. Larger companies often have
replacement policies for each server component, including the case and motherboard.
Building a system ourselves may provide more satisfaction, but vendors presumably spend
time testing for compatibility and failure conditions. They produce manuals hundreds of pages
long detailing viable parts, configurations, and failure conditions of the entire unit.

However, one could just as easily argue that redundant servers increase failure tolerance, as
there's always an available backup. Bare cases and motherboards are usually cheaper, and
user-serviceable besides. That is a completely valid path, and if risk assessment suggests it's
viable, give it a try. The advice we give is by no means set in stone.

Saddling up to a SAN
SAN stands for Storage Area Network. Working in the industry, you may have encountered NAS
as well. How exactly is that different, and how is it relevant to us?

It's subtle, but important. While both introduce networked storage, only a SAN grants direct
block-level access, as if the allocation were raw, unformatted disk space. NAS systems
operate one level higher, providing a fully formatted file system such as NFS or CIFS. This
means our PostgreSQL database does not have direct control over the filesystem; locks,
flushes, allocation, and read cache management are all controlled by a remote server.

When building a highly available server, raw I/O and synchronization messages are very
important, and NFS is more for sharing storage than extending the storage capabilities of
a server. So what must we consider when deciding on how to best utilize a SAN, and when
should we do this instead of using a cheaper solution such as direct attached storage?

We won't be discussing how to evaluate a SAN, which vendors produce the best hardware,
or even basic configuration strategies. There are several entire books dedicated to SAN
management and evaluation that are far beyond the scope of our overview. For building a highly
available PostgreSQL architecture, all we need to consider is the when and why, not the how.

Getting ready
Because we're going to cover both SAN performance and storage allocation, we recommend
referring to the Having enough IOPS and Sizing storage recipes. Just like physical disks,
we need to know how much space we need, and roughly how fast it should be to fulfill our
transaction and query requirements.

Do we need a SAN? We can ask ourselves a few questions:

ff Do our IOPS or storage requirements demand more than 20 hard drives?
ff Will the size of our database reach or exceed 3TB within the next three years?
ff Would the risk to the company be too high if we ever ran out of space?
ff Is there already a SAN available for testing?

Chapter 1

37

If we answer yes to any of these, a SAN might be in our best interests. In that case, we can
determine if it would fulfill our needs.

How to do it...
Follow these steps if possible:

1.	 Request a LUN from the infrastructure department with the necessary IOPS
and storage requirements.

2.	 If a SAN isn't available, many SAN vendors will provide testing equipment to
encourage purchase. Try to obtain one of these.

3.	 Have the infrastructure department format the allocation and attach it to a testing
server. Keep note of the path to the storage.

4.	 Create a basic PostgreSQL testing database with the following command-line
operations as the postgres user:
createdb pgbench
pgbench -i -s 4000 pgbench

5.	 Drop the system caches as a user capable of performing root-level commands,
as follows:
echo 3 | sudo tee /proc/sys/vm/drop_caches

6.	 Test the storage read IOPS with one final command as the postgres user:
pgbench -S -c 24 -T 60 pgbench

How it works...
The first part of our process is to decide whether or not we actually need a SAN at all. If the
database will remain relatively small, capable of residing easily on local hard drives for several
years, we don't need a SAN just yet.

While it might seem arbitrary, setting 3 TB as a cutoff for local storage comes with a few
justifications. First, consider the local drives. Even if they were capable of saturating a 6 Gbps
disk controller, 3 TB would require over an hour to transfer to another local storage device.
If that weren't a bottleneck, there is still the network. With a 10 Gbps NIC and assuming no
overhead, that's 40 minutes of transfer at full speed.

That directly affects speed of backups, synchronization, emergency data restores, and any
number of other critical operations. Some RAID cards also require special configuration
when handling over 4 TB of storage, out of which 3 TB is uncomfortably close if we ever
need an extension. SAN devices can perform local storage snapshots for nearly instant
data copies intended for other servers. If the other server also uses the same SAN, there's
no transfer overhead.

Hardware Planning

38

And lastly, while RAID devices can be extended when online, there is a limit imposed by
how many local disks are available to our server, either directly in the chassis, or from direct
attached storage extensions. If there's ever any risk we can reach that maximum, SAN devices
do not have any of these inherent limitations, which we can use to our advantage.

If a SAN is ever available for testing, we're still not done. Depending on the speed of
configuration of the SAN or the storage allocation itself, performance may not be sufficient,
so we should test the claims made by the SAN manufacturer before committing all of our
storage to it.

A very easy way to do this is with a basic pgbench test. The pgbench command is provided
by the PostgreSQL software, and can test various aspects of a server. For our uses, we want
to focus on the disk storage. We start by creating a new pgbench database with createdb,
so the pgbench command has somewhere to store its test data. The -i option to pgbench
tells it to initialize new test data, and the -s option describes the scale of test data we want.
A scale of 4000 creates a database of roughly 60 GB. Feel free to adjust this scale to be
larger than the amount of available RAM, which guarantees that the server cannot cache all
of the test data and taint our performance results by inflating the numbers.

After initializing a new test database, there is a Linux command that can instruct the server
to drop all available cached data. This means none of our test data is in memory before we
start the benchmark. Again, we don't want to inflate our results, otherwise the SAN looks more
capable than it really is.

The test itself comes from pgbench again, which is instructed to only read the test data
with the -S option. Further more, we tell the benchmark to launch 24 clients with the -c
parameter, and to run the test for a full minute with the -T option. While we used 24 clients
here, consider any amount up to three times the number of available processor cores.

This process should reveal how capable the SAN is, and if our production database will be
safe and have good performance while relying on remote storage.

There's more...
Notice how we never ask for a specific number of disks when requesting a SAN allocation.
Modern SAN equipment operates on an implied service level agreement based on installed
components. In effect, if we need 6,000 IOPS and 10 TB of space, the SAN will combine disks,
cache, and even SSDs if necessary, to match those numbers as closely as possible.

This not only reduces the amount of risky micromanagement we perform as DBAs, but acts
as an abstraction layer between storage and server. In this case, storage can be modified
any number of ways, enhanced, adjusted, or copied, without affecting the database
installation itself.

The main problem we encounter when using a SAN instead of several servers configured with
local storage, is that the SAN becomes a single point of failure. This is something to keep in
mind as our journey to high availability progresses.

Chapter 1

39

See also
Here is a list of several SAN vendors, from well known companies, to companies with
great potential:

ff EMC: www.emc.com

ff NetApp: www.netapp.com

ff Whiptail: www.whiptail.com

ff VCE: www.vce.com

Tallying up
Now it's time to get serious. For several pages, we have discussed all the components that go
into a stable server, and have strongly suggested obtaining multiple spares for each. Well, that
applies to the server itself. Not only does this mean having a spare idle server in case of a
catastrophic failure, but it means having an online server as well.

Determining how many excess servers we should have isn't quite that simple, but it's fairly
close. This is where the project starts to get expensive, but high availability is never cheap;
the company itself might depend on it.

Getting ready
For this, we want to consider the overall state of the application architecture. The database
doesn't exist in a vacuum. Work with the system and application teams to get an idea of the
other servers that depend on the database.

How to do it...
This won't be a very long list. In any case, follow these steps:

1.	 For every critical OLTP system, allocate one online replica.

2.	 For each two non-cached application or web servers, consider one online replica.

3.	 For each ten cached application or web servers, consider one online replica.

4.	 For every stage or QA database server analog, allocate one spare server.

Hardware Planning

40

How it works...
OLTP systems, by their very nature, produce a very high transactional volume. Any disruption
to this volume is extremely visible and costly. A primary goal with running a highly available
service such as a database, is to minimize downtime. So for any database instance that is
a critical component, there should be a copy of the server configured in such a manner that
near-immediate promotion to production status is possible.

Any server that needs direct access to the database, whether it be a queue system, application
server, or web frontend, is sensitive to database overload. One way of diffusing this risk is to set
up one database copy for every two to four directly-connected servers. These copies are only
usable for reads and not writes, but a properly designed application can accommodate this
limitation. Not only does this reduce contention on the database instance that must handle data
writes, it all but eliminates the likelihood of one misbehaving query from taking down the entire
constellation of client-visible services.

When a sophisticated cache is involved, the risk to the frontend is greatly reduced. Properly
designed, a failed read from the database can default to a cached copy until reads can be
re-established. This means we can subsist on fewer database replicas. If the application does
not provide that kind of cache, our job as database advocate becomes one of working with
appropriate technical leads until such a cache is established.

The extra QA resource may seem excessive at first, but it has a very important role. While the
testing teams may never touch the spare server, we can use it in their stead. We can never
safely configure a production system for online failover without first testing that configuration
on two similarly equipped systems. To do otherwise risks failure of the automatic activation
of alternate production servers, which is a de facto outage. Database migrations, upgrades,
resynchronization, backup restores, all of these can be tested in the QA environment before
they are needed for production use. Without a second server, none of this would be possible.

There's more...
We have brought this up as a tip before, but this deserves special attention. PostgreSQL 9.2
and above now has the capability to stream replicated data from one database standby to
another. Even with 10 GbE network cards, there is a limit to the amount of data our master
server can or should transmit before its role is put at risk.

While there is still a limit to the number of replicas, we can maintain with this new
functionality, overall traffic—and therefore risk—is mitigated. If our database is stuck on
a version before 9.2, we may never realize these new benefits. At the time of this writing,
PostgreSQL 9.3 is the latest release, and 9.4 is well underway. A crafty DBA can encourage
the company to adopt a forward stance regarding upgrades by providing an upgrade proposal,
procedural checklist, and deployment integration tests.

Chapter 1

41

Now that pg_upgrade is a standard part of PostgreSQL, producing a robust upgrade plan
and associated compatibility tests is much easier than in the past. By pushing for upgrades
early, we can use new features such as cascading replication, and with PostgreSQL, that can
heavily influence our resulting architecture. Consider this when choosing your hardware.

Protecting your eggs
Did we suggest that having several servers was serious? We lied. The place where our servers
live, the data center, also has several redundancies in place. Extra network lines, separate
power sources, multiple generators, air conditioning and ventilation, everything a server
can require.

Yet, some have joked that a common backhoe is the natural enemy of the Internet. There is
more truth to that statement than its apparent lack of gravitas might suggest. Data centers
are geographically insecure. Inclement weather, natural disasters, disrupted backbones,
power outages, and of course, accidentally damaged trunk lines (from an errant backhoe?),
and simple human-error can all remove a data center from the grid. When a data center
vanishes from the Internet, our servers become collateral damage.

However, we've done everything right! We have duplicates of everything, multiple parts,
cables, even whole servers. What can we possibly do about the data center?

Well, it's complicated...

Getting ready
For this section, we will need a list of every database server in our proposed architecture,
and the desired role for each.

How to do it...
This won't be a very long list. In any case, follow these steps:

1.	 For every critical OLTP operating pair, allocate at least one standby.
2.	 For every two online standby replicas, consider at least one standby.
3.	 For every other database instance, allocate one standby.

How it works...
This type of scenario is known as Disaster Recovery. In order to truly diffuse a data center
outage, we need backups of every major database server, and even minor servers. The
reasoning is simple: we don't know how long we have to operate at reduced capacity. At that
point, even non-critical reporting services still need analogs, otherwise business decisions
that depend on activity analysis may not be possible.

Hardware Planning

42

We only really need half the amount of database servers, as most disaster recovery scenarios
are severe enough for raised alertness, reduced refresh times, manually extended queue
timeouts, and more. Not only is this less expensive than having a copy of every server as the
primary data center, but it also encourages closer monitoring until it can be restored. Larger
companies can opt for complete parity between data centers, but this is not a requirement.

As DBAs, our scenario often resembles this:

Mirror Mirror

Orders

Node 1

Orders

Node 2 Reports

Primary Data Center

Orders Mirror Reports

Secondary Data Center

Notice that we didn't make any reservations for QA or development database servers.
In the case of a disaster, the primary concern is ensuring the continued availability of the
application platform. Further development or testing is likely on hold for the duration of the
outage in any case.

There's more...
We cannot stress the importance of this section strongly enough. Some may consider an
entire extra data center as optional due to the cost. It is not. Others may think a total of three
servers for every primary system is too much maintenance overhead. Again, it is not. The price
of a few servers must be weighed against the future of the company itself; it is the cost of
admission into the world of high availability.

By the time we begin utilizing failover nodes, or any replicas in a separate data center,
the damage has already been done. In the absence of these resources, a database crash
can result in hours or even days of unavailability depending on the size of our database,
exponentially compounding the effects of the original problem.

With this in mind, all critical production systems the author designs always have a minimum
of four nodes: two mirrored production systems, and two mirrored disaster recovery analogs.
This ensures even the disaster recovery system is online with one node while the other node
is experiencing maintenance. Outages are unexpected, and we must always be prepared
for them.

Handling and Avoiding
Downtime

In this chapter, we will learn how we should react when outages inevitably occur and how
to prepare ourselves for them. We will cover the following recipes in this chapter:

ff Determining acceptable losses

ff Configuration – getting it right the first time

ff Configuration – managing scary settings

ff Identifying important tables

ff Defusing cache poisoning

ff Exploring the magic of virtual IPs

ff Terminating rogue connections

ff Reducing contention with concurrent indexes

ff Managing system migrations

ff Managing software upgrades

ff Mitigating the impact of hardware failure

ff Applying bonus kernel tweaks

Introduction
Every piece of software has bugs. All hardware eventually fails or becomes obsolete.
No environment is perfect. As a consequence, even a perfectly healthy database will
require downtime periodically. How do we reconcile this need with client expectations,
which imply that data is always available, no matter the circumstances?

2

Handling and Avoiding Downtime

44

As users ourselves, we know the frustration associated with attempting to use an application
or website that isn't responding. Maybe the only impediment is a message indicating
maintenance. No matter the cause, we have to remember to come back later and hope
everything is working normally by then. Even with our knowledge about the complexity of
software and databases, it is sometimes difficult to ignore an error message that prevents
us from managing a bank account or making an online purchase.

Every day, users will be less understanding. Business owners and investors who may be
losing millions in potential sales and liabilities while a system is unavailable are even less
understanding. Yet, there are several tools available that decrease the likelihood of outages
and others that help guarantee we're agile enough to handle them when outages—despite our
best efforts—occur anyway.

As is often the case with high availability architecture, the trick is planning ahead.

Determining acceptable losses
We know that the PostgreSQL database will be offline at some point in the future. Maybe we
need an upgrade to remove a critical security vulnerability or address a potential data corruption
issue. Perhaps a RAM module is producing errors and needs immediate replacement. Maybe
the primary data center was struck by lightning.

No matter the reason, we need to make decisions quickly. A helpful way is to ensure that the
decision-making process is basing the answers on what the user expects for various levels of
liability and on the context of the user. The QA department will not require the same response
level as 10,000 shoppers who can't make a holiday purchase during a critical sale.

System outage and response escalation expectations are generally codified in a Service
Level Agreement (SLA). How long should the maintenance last? How often should planned
outages occur? When should users be informed and to what extent? Who is included in the
set of potential database users? All of these things, and more, should be defined before a
production system is released. Otherwise, we risk alienating clients with unexpected and
arbitrary downtime or outages that persist for hours.

Clients who have their trust broken may leave and never return. So, let's teach them when to
expect short amounts of unavailability and set their minds at ease with prompt contact and
status management.

Getting ready
Much of our work depends on knowing how much downtime the business is willing to tolerate
and who uses the database and when. We also need to know how long the application can
obscure a PostgreSQL outage through caches, queues, and connection management. Try to
get a complete picture of the database's role before continuing.

Chapter 2

45

How to do it...
Try to answer all of these questions:

ff Who uses the database? For each type of user, answer these questions:

�� When does this user access the database?

�� What is the maximum query timeout they will tolerate?

�� Will the user lose money during an outage?

�� Is the user likely to return later?

�� Should this user be included in maintenance notifications?

�� Should this user be included in emergency notifications?

ff Can we get the user to agree to or even sign the SLA?

ff What uptime percentage is expected? 99 percent? 99.9 percent? 99.99
percent? More?

ff What are the company's official business hours?

ff When should notifications be sent?

ff How long can the platform operate without the database?

ff How long should regular maintenance windows be?

ff How often can maintenance occur?

ff Which weekdays can we consider for maintenance?

ff What is an emergency?

ff What situations require the activation of disaster recovery nodes?

ff Can we get a lawyer to write all of these into a contract?

How it works...
That is a lot of questions, and the list probably isn't even complete. It is, however, a very good
start. Notice how we want to know who (or what) is using the database on a regular basis. This
is not the same as a user who connects to the database. In this context, we want to know the
type of user. Is it the business, another department, a critical application component, or even
just a regular website user? Each of these will have different expectations, reactions, usage
times, and impact.

The next question we need to answer is how uptime is defined. One frequently quoted value
is the number of nines, referring to a percentage approaching 100 percent. Three nines for
example, would be 99.9 percent of a year, which is almost nine hours. Four nines is only
about 50 minutes. Keep in mind that the SLA can be written to include or exclude planned
maintenance, depending on the audience. Unplanned outages definitely count, and remember
that this is the total cumulative time for the entire year.

Handling and Avoiding Downtime

46

The next important aspect is the latest time a business is officially available. Maintenance
should begin after this time and no sooner. Critical PostgreSQL nodes should not be taken
offline if more than 5 percent of active users are utilizing the platform and database. It is not
uncommon for regular maintenance windows to appear very late at night. Disaster recovery
systems, standby nodes, and stage or development copies are all excellent candidates for
updates following official business hours. We still want these systems available for developers
and QA staff or in case of an unexpected production-level outage, so it pays to be a little
more cautious.

The rest are a mix of important questions that need answers, the last of which implies the
involvement of a lawyer. If possible, have the SLA in a contract form for all applicable clients
and users. A signed agreement acts as a barrier to litigation and liability and sets very definite
boundaries to user expectations early in the process.

Configuration – getting it right the first time
An important aspect of setting up a highly available database is starting with a stable
configuration that will not require a lot of future modifications. Even settings that can
be changed during database operation can drastically alter its performance profile and
behavior. Other settings may require a full database restart, which can lead to a short
outage, depending on how resilient the frontend application is.

We want to avoid introducing instability into our PostgreSQL database from the very beginning.
To that end, we are going to explore common (and perhaps, uncommon) configuration options
to use in a highly available installation.

Getting ready
The PostgreSQL documentation describes all of the settings we will be discussing. We
recommend that you visit the PostgreSQL.org website and read the documentation
regarding server configuration. There's probably too much to absorb before continuing with
this section, but we recommend that you familiarize yourself with the settings presented here.

We will approach each setting in the order commonly encountered in a recent postgresql.
conf file generated in a new database.

How to do it...
Find these settings in the postgresql.conf file for the desired PostgreSQL instance and
perform the following steps:

1.	 Set max_connections to three times the number of processor cores on the server.
Include virtual (hyperthreading) cores. Set shared_buffers to 4GB for servers with
up to 64 GB of RAM. Use 8GB for systems with more than 64 GB of RAM.

Chapter 2

47

2.	 Set work_mem to 8MB for servers with up to 32 GB of RAM, 16MB for servers
with up 64 GB of RAM, and 32MB for systems with more than 64 GB of RAM.
If max_connections is greater than 400, divide this by two.

3.	 Set maintenance_work_mem to 1GB.

4.	 Set wal_level to hot_standby.

5.	 Set checkpoint_segments to (system memory in MB / 20 / 16).

6.	 Set checkpoint_completion_target to 0.8.

7.	 Set archive_mode to on.

8.	 Set archive_command to /bin/true.

9.	 Set max_wal_senders to 5.

10.	 Set wal_keep_segments to (3 * checkpoint_segments).

11.	 Set random_page_cost to 2.0 if you are using RAID or SAN; 1.0
for SSD-based storage.

12.	 Set effective_cache_size to half of the available system RAM.

13.	 Set log_min_duration_statement to 1000.

14.	 Set log_checkpoints to on.

How it works...
The commonly accepted formula for estimating max_connections is to take the number
of processor cores, multiply them by two, and add disk spindles. With the relatively recent
improvement of virtual cores, contributing factors such as SSD or other high-performance
storage, and so on, we have a bit more freedom than we had earlier. In addition, even if we
were to follow this estimation method, allowing a few extra connections can prevent highly
visible connection rejections. A slightly lower performance is a small price to pay for availability.

The advice for shared_buffers is very different from the accepted practice of simply setting
it to a quarter of the available RAM. We must consider buffer flushing and the synchronization
time. In the case of a forced checkpoint, an amount of RAM equal to shared_buffers
could be flushed to disk. This kind of write storm can easily cripple even high-end hardware.
Highly available hardware often has far more RAM that could easily be flushed to a disk in an
emergency. As such, we don't recommend that you use more than 8 GB until this situation
improves substantially.

Handling and Avoiding Downtime

48

The work_mem setting is the amount of memory used by several temporary operations,
including data sorts. Thus, a single query can consume multiple instances of this amount
simultaneously. A good estimate is to assume that each connection will use up to four
instances at a time. Setting this too high can lead to over-committed memory and cause the
kernel to start killing processes until RAM is available. This can lead to PostgreSQL shutdown
or a server crash, depending on what processes are stopped. Systems with very high
connection counts (over 400) have increased risk for such a cascade, so we reduce
work_mem in these cases.

The maintenance_work_mem setting is similar to the work_mem setting in that there can be
multiple instances. However, this is reserved for background workers and maintenance such
as vacuum, analyze, or create index activities. Starving these kinds of Memory operations can
drastically increase the disk I/O, which can detrimentally affect query performance. For the
cost of a few GBs of RAM, we get a more stable server.

The only reason we set wal_level to hot_standby is because in a highly available
environment, we should have at least one online streaming standby. Other recipes will
detail how we set these up, but this is the starting point.

The number of checkpoint_segments is not a simple thing to set. The calculation we used
assumes up to 5 percent of system memory, which could be in transit as checkpoint data, and
each segment is 16 MB in size. This time, we are trying to avoid forced checkpoints, because
we ran out of segments during data acquisition.

We also want to reduce disk contention when possible, so we increase checkpoint_
completion_target to 0.8. We don't want to overwhelm the disk subsystem, and this
setting will cause PostgreSQL to spread writes over 80 percent of the time specified by
checkpoint_timeout. By default, checkpoint_timeout is set to 5 minutes, which
should suffice until we start working with larger batches of data or a busy OLTP system.

Next, we enable archive_mode by setting it to on. This setting can only be changed by
restarting PostgreSQL, which we want to avoid. It's very likely that we will be using WAL
archival in some respect, even if we don't yet know which method to use at this point. This
means we also need to set archive_command to a command that always succeeds, or
PostgreSQL will fill our logs with complaints that it couldn't archive old WAL files. Using /bin/
true as a placeholder, we can change it when we choose an archival method.

We increase max_wal_senders because it's needed for certain synchronization and backup
methods. Five is a good starting point, and we can always decrease it later; we definitely need
more than zero. Additionally, wal_keep_segments is set to a relatively high number. In this
case, we keep it up to three multiples of checkpoint_segments worth, in case a streaming
standby falls behind.

If this count of segments is exhausted while the standby is behind, it can never catch up until
the remaining WAL segments are provided some other way or the standby is re-imaged. We'll
discuss this more when it's time to talk about WAL archival. This uses more disk space, so
multiply the total number of these segments by 16 MB to estimate total disk usage.

Chapter 2

49

The cost of reading a random disk block, as opposed to reading it sequentially, directly affects
how the query planner decides to execute a query. By decreasing random_page_cost, we
tell PostgreSQL that our storage's random read performance is very fast. A highly available
server should have equally capable storage, so we lower this to something more reasonable.
In the case of SSD or PCIe-based storage, there is effectively no difference between a random
or sequential read, so the setting should reflect this.

The last setting that modifies server behavior is effective_cache_size, which tells the
query planner how much RAM is probably being used by the OS to cache data. Generally, this
makes PostgreSQL prefer indexes, because it's likely that the indexed data is in memory. As
most Unix systems are fairly aggressive when caching, at least half of the available RAM on a
dedicated database server will be full of cached data.

Finally, we want better logging. We increase the logging of slow queries by setting log_min_
duration_statement to 1000. This is in milliseconds, so any query that runs for over one
second will be logged. This helps us find slow queries without flooding the logs with thousands
or even millions of entries by logging everything. Similarly, we want log_checkpoints
enabled, because it provides extremely beneficial information on checkpoints. We can see
how long they took, how frequently they ran, and also how much disk-sync time they required.
We need to know if checkpoints start taking too long or occur too frequently so that some
values can be adjusted. This setting really should be enabled in all PostgreSQL servers.

There's more...
Many, if not most of these settings, show up frequently in the PostgreSQL mailing lists.
As a result, we used many of the prescribed values or formulas. However, several of these
settings show up very often; a tool is available to estimate them by analyzing the server
hardware and by taking parameter hints. The pgtune program is a contributed utility for
automatically estimating many system-dependent server settings.

We urge caution if you are relying primarily on this utility. It is extremely liberal
when estimating work_mem and shared_buffers and doesn't seem to modify
checkpoint_segments at all. Still, we feel that the values it produces are much
better than the defaults for larger servers, so feel free to experiment.

See also
There are many more configuration settings we haven't included. We recommend that you
browse the PostgreSQL documentation to learn more. In addition, we've included a link to the
pgtune utility, which may be useful in optimizing your postgresql.conf file:

ff PostgreSQL Server Configuration: http://www.postgresql.org/docs/9.3/
static/runtime-config.html

ff pgtune: https://github.com/gregs1104/pgtune

http://www.postgresql.org/docs/9.3/static/runtime-config.html
http://www.postgresql.org/docs/9.3/static/runtime-config.html

Handling and Avoiding Downtime

50

Configuration – managing scary settings
When it comes to highly available database servers and configuration, a very important aspect
is whether or not a changed setting requires a database restart before taking effect. While
it is true that many of these are important enough and they should be set correctly before
starting the server, our requirements evolve sometimes.

If or when this happens, there is no alternative but to restart the PostgreSQL service. There
are, of course, steps we can take to avoid this fate. Perhaps, an existing server didn't need the
WAL output to be compatible with hot standby servers. Maybe, we need to move the logfile,
enable WAL archival, or increase the amount of connections.

These are all scenarios that require us to restart PostgreSQL. We can avoid this by identifying
these settings early and paying special attention to them.

Getting ready
PostgreSQL has a lot of useful views for DBAs to get information about the database and its
current state. For this section, we will concentrate on the pg_settings view, which supplies
a wealth of data regarding the current server settings, defaults, and usage context. We
recommend that you peruse the PostgreSQL documentation for this view.

How to do it...
Follow these steps to learn more about PostgreSQL settings:

1.	 Execute the following query to obtain a list of settings that require a server restart
and their current value:
SELECT name, setting

 FROM pg_settings

WHERE context = 'postmaster';

2.	 Execute this query for a list of only those settings that are not changed from the
default and require restart:
SELECT name, setting, boot_val

FROM pg_settings

 WHERE context = 'postmaster'

 AND boot_val = setting;

Chapter 2

51

3.	 Execute the following query for a list of all settings and a translation of how the
setting is managed:
SELECT name,

 CASE context

 WHEN 'postmaster' THEN 'REQUIRES RESTART'

 WHEN 'sighup' THEN 'Reload Config'

 WHEN 'backend' THEN 'Reload Config'

 WHEN 'superuser' THEN 'Reload Config / Superuser'

 WHEN 'user' THEN 'Reload Config / User SET'

 END AS when_changed

 FROM pg_settings

 WHERE context != 'internal'

 ORDER BY when_changed;

How it works...
The first query, and the simplest one, merely identifies the name and value for each setting
that can only be modified by restarting PostgreSQL. In relation to all the available settings,
this list is relatively short. However, there are a few notable settings that could affect us.

We already mentioned wal_level, shared_buffers, max_connections, and max_wal_
senders in another recipe. However, this list also includes parameters related to SSL and
WAL archival. We will eventually discuss WAL archival separately, so that leaves SSL. When
setting up a secure PostgreSQL server that encrypts connection traffic, we require a host SSL
certificate. If this certificate is ever compromised, we need to regenerate it. Unfortunately,
we can't simply tell PostgreSQL to re-read the existing certificate; if we overwrite it, the entire
database must be restarted.

The second query only shows the settings that we have not already changed but would require
server restart. This list is potentially more interesting and concise, as we are presumably
seeking further parameters to modify. Of course, the opposite can also be argued; we have
only modified the settings we care about.

Handling and Avoiding Downtime

52

The final query is a bit more complicated as it uses a CASE statement, yet it also simplifies
the contents of the view. First, consider the WHERE clause, which purges internal settings.
We don't care about these specifically because they can only be set when compiling
PostgreSQL itself. While such an action may be necessary to apply an emergency patch from
the PostgreSQL developers, we cannot modify several of these parameters without rebuilding
the entire contents of every affected database. These settings are for experts only, and these
experts rarely even consider changing them.

Within SELECT, we fetch the setting name as well as how it is modified. Note that all settings
that require a server reload to take effect are found in postgresql.conf. Subsequent
changes applied at the session level can also be overridden using SET syntax, so we included
that as well.

There's more...
Of course, the pg_settings view can provide more than just an insight into the parameters
that require a server restart.

Distinct settings
A common request on the PostgreSQL mailing lists is for users to provide a list of settings
they've changed. This helps everyone diagnose where a problem could originate or give us an
idea of a database's usage pattern. Now that we know about this view, we can easily provide
that data with the following query:

SELECT name, setting
 FROM pg_settings
 WHERE boot_val IS DISTINCT FROM setting;

The IS DISTINCT FROM clause isn't as well known as it should be. It can be easy to forget
that != or <> evaluates to NULL when either side of the equation is NULL. Thus, if the default
boot_val value is NULL, we would fail to obtain the entire list of modified settings.

The IS DISTINCT FROM clause considers NULL as a distinct value instead of an unknown
one, permitting direct comparisons.

More information
The pg_settings view also provides the short_desc and extra_desc columns. We can
use these as shortcuts to remember why we might have changed a setting, without pulling up
the PostgreSQL documentation.

Chapter 2

53

See also
ff The pg_settings view has a lot more information than what we have presented

here. Check the documentation at http://www.postgresql.org/docs/9.3/
static/view-pg-settings.html for more details.

Identifying important tables
Another aspect of maintaining a highly available database is to know all important information
about the contents of the database itself. In this case, we aim to focus on tables and indexes
that receive the most activity. If any problems that might require maintenance or a restart
arise, the most active portions are the likely origin.

What is activity? Inserts, updates, deletes, and selects are a good start. PostgreSQL collects
statistics on all of this information, making it easy to collect and track. It also tracks how
often indexes or tables are scanned and how many rows were affected by each. In addition,
we can find out how much disk space any object consumes, and given the help of a couple
contributed tools, we can also find out how much of this space is currently reusable.

Data like this tells us which tables and indexes are the most active, which objects have the
highest row turnover, and which objects require a high disk I/O. Armed with these statistics,
we can properly distribute tables to high performance tablespaces, direct extra maintenance
toward particularly active tables, or remove inefficient indexes.

All of these operations increase the stability, responsiveness, and throughput of a PostgreSQL
database. First, however, we need to isolate our targets.

Getting ready
Many of these techniques rely on functions and views described in greater detail within
the PostgreSQL documentation. In particular, we use a few system administration functions
such as pg_relation_size and pg_total_relation_size and system views such as
pg_class, pg_index, pg_stat_user_tables, and pg_stat_user_indexes. We also
make use of a contributed module named pgstattuple.

We strongly recommend that you get familiar with these functions and views in the
PostgreSQL documentation before continuing. After we are finished, we hope to convey just
how useful these views are and encourage further exploration. When you are building a highly
available database, there is rarely such a thing as too much information about the database.

http://www.postgresql.org/docs/9.3/static/view-pg-settings.html
http://www.postgresql.org/docs/9.3/static/view-pg-settings.html

Handling and Avoiding Downtime

54

How to do it...
Follow these steps to learn a little about the database:

1.	 Use this query to get a list of the top 20 largest tables in the current database:
SELECT oid::REGCLASS::TEXT AS table_name,

 pg_size_pretty(
 pg_total_relation_size(oid)
) AS total_size

 FROM pg_class

 WHERE relkind = 'r'

 AND relpages > 0

 ORDER BY pg_total_relation_size(oid) DESC

 LIMIT 20;

2.	 Use this query to get a list of the top 20 largest indexes in the current database and
their parent tables:
SELECT indexrelid::REGCLASS::TEXT AS index_name,

 indrelid::REGCLASS::TEXT AS table_name,

 pg_size_pretty(
 pg_relation_size(indexrelid)
) AS total_size

 FROM pg_index

 ORDER BY pg_relation_size(indexrelid) DESC

 LIMIT 20;

3.	 Use this query to find the top 20 most active tables by determining the ones that
receive the most inserts, updates, or deletes:
SELECT relid::REGCLASS AS table_name,

 n_tup_ins AS inserts,

 n_tup_upd + n_tup_hot_upd AS updates,

 n_tup_del AS deletes

 FROM pg_stat_user_tables

 ORDER BY (n_tup_ins + n_tup_upd +
 n_tup_hot_upd + n_tup_del) DESC

 LIMIT 20;

Chapter 2

55

4.	 Use this variant to obtain top tables with fetch activity by checking index and
table scans:
SELECT relid::REGCLASS AS table_name,

 coalesce(seq_scan, 0) AS sequential_scans,

 coalesce(idx_scan, 0) AS index_scans,

 coalesce(seq_tup_read, 0) AS table_matches,

 coalesce(idx_tup_fetch, 0) AS index_matches

 FROM pg_stat_user_tables

 ORDER BY (coalesce(seq_scan, 0) +
 coalesce(idx_scan, 0)) DESC,

 (coalesce(seq_tup_read, 0) +
 coalesce(idx_tup_fetch, 0)) DESC

 LIMIT 20;

5.	 Use this query for the top 20 indexes with read activity in the current database:
SELECT indexrelid::REGCLASS AS index_name,

 coalesce(idx_scan, 0) AS index_scans,

 coalesce(idx_tup_read, 0) AS rows_read,

 coalesce(idx_tup_fetch, 0) AS rows_fetched

 FROM pg_stat_user_indexes

 ORDER BY (coalesce(idx_scan, 0) +
 coalesce(idx_tup_read, 0)) DESC

 LIMIT 20;

How it works...
Each of these queries offers a distinct piece of information about the database. Simply
executing them in a vacuum offers very little insight. We have to look at the results of each to
learn anything. In addition, all of the system catalog views only return statistics for the current
database we're connected to.

If the PostgreSQL instance has dozens of databases and we're only connected to one, the
statistics will only apply to that particular database. To obtain stats on every database in the
instance, we would need to connect to each one and collect the information separately.

Handling and Avoiding Downtime

56

The first query returns the 20 largest tables in the database, including associated indexes and
the The Oversize Attribute Storage Technique (TOAST) data. This way, if a table has a large
amount of excessively long row data or several indexes, we still get its true size in relation
to all other tables. We will likely make use of the pg_size_pretty function several times
through this book. When given a size in bytes, it converts it to a more convenient and readable
notation such as megabytes or gigabytes.

The next query returns the 20 largest indexes in the database. While it is very likely that these
will be associated with the largest tables, this won't necessarily be the case. Indeed, large
composite indexes, functional indexes, or bloated indexes will also be listed here. Indexes
(which are not primary keys) that show up in this list are good candidates for optimization,
either by substituting them with partial indexes or replacing them with a more efficient version.

After size, we move on to table activity. The third query returns the 20 most active tables
based on writes. In many cases, this will immediately identify tables with high turnover that
will frequently invoke autovacuum or autoanalyze and may require manual adjustment.
Often, user session tables appear here due to inefficient storage of web session data;
identification provides ammunition for process revision. Overly active tables are bottlenecks
and should be minimized if possible.

Then, we may wish to know table select information. The fourth query is somewhat crude, but
the intent is to return 20 tables that are most often read by user sessions. Again, it will likely
identify tables with extremely inflated read activity in comparison to the database average.
These cases can often be reduced by better frontend data caches, and identifying them is the
first step down this path.

Finally, we can see the top 20 indexes using read activity. This can further isolate potential
indexes that should be monitored. If we invert the sorting of this query, we can also identify
indexes that are not producing many matches at all and are simply wasting space.

There's more...
Though we've already obtained a wealth of information from PostgreSQL, it still has a few
tricks up its sleeve.

Reset stats
Running these queries multiple times in a row, it's hard to ignore the fact that the numbers
increase, and there's no associated timestamp. Several statistics-tracking systems will track
the differences between readings and display this as the rate, but if we're doing this by hand,
we need another way to zero out statistics for ease of analysis. Use this function to reset all
activity statistics to zero:

SELECT pg_stat_reset();

Of course, we suggest that you capture this data before resetting it.

Chapter 2

57

Use pgstattuple
The pgstattuple contributed extension is also useful for analysis, but it produces a deep
scan of single objects identified through other means. It's best to use the extension to get
storage-related data regarding indexes or tables matched with the preceding queries.
To use it, it must first be installed by a superuser account. It can also only be utilized by
a superuser account.

To install the extension, execute this SQL query:

CREATE EXTENSION pgstattuple;

To use it, select from it as if it were a normal table or view. The only difference is that we use
it as a function with the name of the table we want to analyze. For example, to obtain storage
statistics on the pg_class table, we could execute this:

SELECT * FROM pgstattuple('pg_class');

Of particular interest is the free_percent column. If this is very high, the table mostly has
empty space and could benefit from CLUSTER or VACUUM FULL. In addition, we should tell
developers if this table becomes bloated frequently, as it is possible that they can modify the
application to use it more efficiently.

If this isn't possible, we can also set autovacuum to be more aggressive for each specific
table if necessary.

See also
The tools discussed in this section have a lot of documentation and examples. Please refer to
these sites for more information:

ff System Administration Functions: http://www.postgresql.org/docs/9.3/
static/functions-admin.html

ff The Statistics Collector: http://www.postgresql.org/docs/9.3/static/
monitoring-stats.html

ff pgstattuple: http://www.postgresql.org/docs/9.3/static/
pgstattuple.html

ff pgAgent: http://www.pgadmin.org/docs/1.18/pgagent.html

http://www.postgresql.org/docs/9.3/static/functions-admin.html
http://www.postgresql.org/docs/9.3/static/functions-admin.html
http://www.postgresql.org/docs/9.3/static/monitoring-stats.html
http://www.postgresql.org/docs/9.3/static/monitoring-stats.html
http://www.postgresql.org/docs/9.3/static/pgstattuple.html
http://www.postgresql.org/docs/9.3/static/pgstattuple.html

Handling and Avoiding Downtime

58

Defusing cache poisoning
Not every DBA has experienced disk cache poisoning. Those who have recognize it as a bane
to any critical OLTP system and a source of constant stress in a highly available environment.

When the operating system fetches disk blocks into memory, it also applies arbitrary aging,
promotion, and purging heuristics. Several of these can invalidate cached data in the
presence of an originating process change such as a database crash or restart. Any memory
stored by PostgreSQL in shared memory is also purged upon database shutdown.

Perhaps the worst thing a DBA can do following a database crash or a restart is to
immediately make the database available to applications and users. Unless storage is based
on SSD or a very capable SAN, random read performance will drop by two or three orders
of magnitude as data is being supplied by slow disks instead of by memory. As a result, all
subsequent queries will greatly over-saturate the available disk bandwidth. This delays query
results and slows down the cache rebuild, potentially multiplying query execution times for
several hours.

In a highly available system, we cannot ignore this kind of risk. Saturated disk bandwidth
means random reads are spread very thin. We need to figure out how to reinstate the disk
cache and possibly, the PostgreSQL shared buffers before declaring that the database is
usable. Otherwise, the claim turns out to be false. Queries can often become so slow that
applications will ignore results and return errors to users.

Getting ready
We recommend that you check the PostgreSQL documentation for system administration
functions and views maintained by the statistics collector. We will be using the pg_
relation_filepath function and the pg_stat_user_tables view.

We will also make use of a contributed utility named pgFincore. This utility is not included
with standard PostgreSQL but is often packaged for popular Linux distributions. To install it on
an Ubuntu server along with the PostgreSQL server, use this command:

sudo apt-get install postgresql-9.3-pgfincore

Afterwards, activate it in the database with this query:

CREATE EXTENSION pgfincore;

Chapter 2

59

How to do it...
First, follow these steps to create a static table that stores the top 20 active tables
and indexes:

1.	 Execute the following query as a superuser and ignore any errors:
DROP TABLE IF EXISTS active_snap;

2.	 Next, recreate the snapshot table by running this query as a superuser:
CREATE TABLE active_snap AS
(SELECT t.relid AS objrelid,
 s.setting || '/' ||
 pg_relation_filepath(t.relid) AS file_path
 FROM pg_stat_user_tables t, pg_settings s
 WHERE s.name = 'data_directory'
 ORDER BY coalesce(idx_scan, 0) DESC
 LIMIT 20)
UNION
(SELECT t.indexrelid AS objrelid,
 s.setting || '/' ||
 pg_relation_filepath(t.indexrelid) AS file_path
 FROM pg_stat_user_indexes t, pg_settings s
 WHERE s.name = 'data_directory'
 ORDER BY coalesce(idx_scan, 0) DESC
 LIMIT 20);

To restore the disk cache to the operating system easily, follow these steps:

1.	 As a superuser in the database connected with psql, execute the following query
in the critical OLTP database before shutting down the database:
COPY active_snap (file_path) TO '/tmp/frequent_tables.txt';

2.	 Shut down PostgreSQL.

3.	 Perform maintenance, updates, or recovery.

4.	 Execute these commands from the command-line:
for x in $(tac /tmp/frequent_tables.txt); do
 for y in $x*; do
 dd if=$y of=/dev/null bs=8192
 dd if=$y of=/dev/null bs=8192
 done
done

5.	 Restart PostgreSQL.

Handling and Avoiding Downtime

60

If we're not comfortable with Unix commands, this pure SQL method will work as well.
Follow these steps instead:

1.	 Shut down PostgreSQL.

2.	 Perform maintenance, updates, or recovery.

3.	 Restart the database.

4.	 As a superuser in the database, execute the following SQL query in the critical
OLTP database:
UPDATE pg_database
 SET datallowconn = FALSE
 WHERE datname != 'template1';

5.	 Next, execute the entire contents of this SQL block:
DO $$
DECLARE
 obj_oid oid;
BEGIN
 FOR obj_oid IN SELECT objrelid FROM active_snap
 LOOP
 PERFORM pgfadvise_willneed(obj_oid::regclass);
 END LOOP;
END;
$$ LANGUAGE plpgsql;

6.	 Finally, execute the following query to re-enable connections:
UPDATE pg_database SET datallowconn = TRUE;

How it works...
The first part of this recipe has two steps. We could perform this work at any time, so the
table may have existed from our previous work. Therefore, the first step is to drop the
active_snap table. None of the steps following this one remove this table, because in the
case of a crash, we want its contents as a starting point for restoring the cache contents.

After dropping the active_snap table, we recreate it with the top 20 tables and top 20 indexes
that are sorted by how often they're used in selects. This is only a close approximation based on
the collected database statistics, but it's better than leaving the data entirely uncached.

Though it is not available at the time of writing this book,
PostgreSQL 9.4 introduces the pg_prewarm extension.
It can load database objects into the operating system
cache or PostgreSQL shared buffers.

Chapter 2

61

After creating the list of the most accessed tables and indexes, we have one of two paths. In
the first and simplest one, we merely preserve the file_path contents of the active_snap
table, as this tells us exactly where the files are located. After preserving the table, we can do
anything we want, including restarting the database server.

After we're done with maintenance or crash recovery, we can actually restore the file cache
before starting the PostgreSQL service. To do this, we use an imposing block of shell scripting.
While it looks complex, it's actually just two loops to get a full list of every file that has a name
similar to the ones we identified. As PostgreSQL objects exist in 1 GB chunks, there can be
several of these that we may have to find. Then, we use the dd utility to read the file into
memory, twice. We do it twice because the first time, it loads the data into memory, and the
second time, it encourages marking of the blocks as frequently used so that the OS is less
likely to purge them.

Afterward, we can start PostgreSQL and enjoy a database that is much less likely to have
problems retrieving frequently used data. If we don't have command-line access to the
system where PostgreSQL runs, this process is a little more complicated but still manageable.

In the second scenario, we actually stop the database first. Any of our cache recovery must
come after the database is restarted. Until that time, we're free to perform any activity
necessary to get the server or database contents in order. After we start the database,
the fun begins.

We need to reject user connections while we load the database cache. The easiest way to
do this without complicated scripts is to simply reject all connections that don't target the
template1 database. It's extremely unlikely that applications or users will use this, as it
generally contains nothing and they have no permissions within it. For our use, it allows us to
reconnect and re-enable connections from template1 if we get disconnected for some reason.

Then, we can use the contents of our previously initialized active_snap table to tell
the pgFincore module to load all of those tables and indexes into memory. After this is
complete, we re-enable database connections and our work is finished.

Our active_snap table is pretty handy, but it depends on the existence
of statistical data that might not be available in the case of a system
crash. Be wary of using this approach if statistical information is not
trustworthy or is missing.

Handling and Avoiding Downtime

62

See also
The tools discussed in this section have a lot of documentation and examples. Please refer to
these sites for more information:

ff System Administration Functions: http://www.postgresql.org/docs/9.3/
static/functions-admin.html

ff The Statistics Collector: http://www.postgresql.org/docs/9.3/static/
monitoring-stats.html

ff pgFincore: https://github.com/klando/pgfincore

Exploring the magic of virtual IPs
As we're running a highly available database, we have at least one standby copy available at
all times, right? Of course we do. However, after promoting a standby copy to act as a primary,
we need to redirect traffic to the new server. How can we do this easily?

One common method is to use a database connection pool. The pool acts as a connection
proxy and simply needs each known node to be registered so that it can redirect connections
to the proper primary database server. We will eventually discuss this approach, but there's
actually a simpler tool available to us that requires no additional software.

Another method is to change DNS to redirect network connections to the new server. The
beauty of this technique is that it masquerades the entire access path to the server so that
services other than PostgreSQL can access the new server as well. Unfortunately, subdomains
are tied to a single IP address. As DBAs, we probably don't have access to most of the network
hardware; that means relying on an external infrastructure department.

Instead, we can tie the subdomain to an IP address that isn't associated with any particular
server. Then, it's simply a matter of changing the server that claims it owns that IP address.
Luckily, this is something we can control directly.

Getting ready
To perform this process, we need both the ifconfig and the arping commands.
The arping command may not be present by default, so install it before continuing.
If you are on a Debian or Ubuntu system, issue this command:

sudo apt-get install arping

 http://www.postgresql.org/docs/9.3/static/functions-admin.html
 http://www.postgresql.org/docs/9.3/static/functions-admin.html
 https://github.com/klando/pgfincore

Chapter 2

63

How to do it...
For these steps, assume eth0 is the primary interface and 127.0.0.10 is the IP we are
trying to claim. Follow these steps to move or create a virtual IP:

1.	 First, connect to the PostgreSQL node that had the IP address earlier. This is often
the primary server.

2.	 Release the IP address with the following command:
sudo ifconfig eth0:pgvip down

3.	 Ping the desired IP address with this command:
ping -c 3 127.0.0.10

4.	 If the preceding command reaches any PostgreSQL server, restart from the beginning
with this system instead.

5.	 Next, connect to the new server that should own the IP address.

6.	 Claim the IP address with the following command:
sudo ifconfig eth0:pgvip 127.0.0.10

7.	 Tell the network about the location of the new IP address with this command:
sudo arping -c 3 -A -I eth0 127.0.0.10

How it works...
If we haven't created a virtual IP yet, we can skip the first three steps. Otherwise, in order
to use an IP address, it must be available. Setting up an IP address on multiple servers can
wreak havoc on network traffic routing.

It's important to never operate while two PostgreSQL servers claim the
same IP address.

Next, we ping the desired address to ensure there are no replies. This should prove that our IP
address is free for use. It should end with something like this:

--- 127.0.0.10 ping statistics ---
3 packets transmitted, 0 received, +3 errors, 100% packet loss,
 time 2015ms

We want to see 100 percent packet loss. This means that the IP address is currently
unclaimed. If this results in an active server, we need to repeat the command that we
used to shut down the existing virtual IPs there as well.

Handling and Avoiding Downtime

64

Provided the address is available, we simply connect to the desired server and use ifconfig
to create a new virtual IP. We named the virtual IP pgvip, and attached it to the eth0
interface, and used 127.0.0.10 as the target address to claim.

After this step, the IP address is only visible on the local server, so we need to tell the
upstream switches and routers that the IP is in use. The arping command does precisely this
when passed the -A parameter. We use the -c setting to send three gratuitous broadcasts to
help ensure that at least one was accepted. Like ifconfig, we need to tell arping to use
eth0 with the -I parameter; otherwise, traffic may be misrouted.

There's more...
This is really only a demonstration of virtual IP functionality. In the case of a server reboot,
network assignments created through ifconfig will disappear. For our purposes, this is
actually the desired result. If a PostgreSQL server tried claiming a virtual IP address upon
reboot and we had already assigned it to a different system, traffic could go to either system
and result in severe consequences. Would either database handle the requests? Would the
misrouted network packets cause invalid data or some other result? We don't know; network
routing can affect any level of the communication process. The end result is that the database
is unusable in this state.

That said, the process of maintaining virtual IP addresses is easily automated. Later in this
book, we will discuss at least one tool that automatically assigns the virtual IP to the current
primary PostgreSQL server. Until then, this is still a very powerful tool to add to our arsenal.

Terminating rogue connections
There comes a time in every DBA's life when they must disconnect a PostgreSQL client from
the server; for us, that time is now. There are varying degrees of escalation available for this
purpose, and several system catalog views to provide viable targets. Why would we want to
forcefully cancel a query or disconnect a user?

To prevent utter havoc, should a user forget an important clause, a query could require several
hours to complete. During this time, it is consuming an entire CPU and saturating the storage
bandwidth while doing so. A buggy application could start a transaction and stop responding,
leaving an idle transaction potentially holding locks and causing a wait backlog.

There are many reasons to evict a connection, and most of them revolve around maintaining a
regular flow of queries. If we're unable to maintain low latency and high throughput, our work
in building a highly available environment is wasted.

Chapter 2

65

Getting ready
Luckily, PostgreSQL provides most of the tools we need. However, there is a more advanced
command-line utility named tcpkill that we may need to use later. If it's not already
installed, we recommend that you do so before continuing. Debian or Ubuntu-based systems
can use this command as a root-capable user:

sudo apt-get install dsniff

How to do it...
The full escalation path starts very subtly to avoid major disruptive action. Try to follow these
steps carefully, assuming eth0 is the network interface that PostgreSQL is using:

1.	 Connect to the database as a superuser and execute the following query for
PostgreSQL 9.2 and higher versions:
SELECT pid, client_port, state,
 now() - query_start AS duration, query
 FROM pg_stat_activity
 WHERE now() - query_start > INTERVAL '2 seconds'
 AND state != 'idle'
 ORDER BY duration DESC;

2.	 Use this query for 9.1 and lower versions:
SELECT procpid AS pid, client_port,
 now() - query_start AS duration, current_query
 FROM pg_stat_activity
 WHERE now() - query_start > INTERVAL '2 seconds'
 AND current_query != '<IDLE>'
 ORDER BY duration DESC;

3.	 Starting from the top, carefully examine the queries in this list. Make note of pid for
any query that should be disconnected.

4.	 Stop the currently executing query for the selected pids with the following query:
SELECT pg_cancel_backend(pid);

5.	 Execute the first query again and check the results for the targeted pid.

6.	 If the query is still running or the state has switched to idle in transaction, execute
the following query:
SELECT pg_terminate_backend(pid);

7.	 Execute the first query again and check the results for the targeted pid.

8.	 If the query is still running, disconnect from the database and connect to the server
as a root-capable user.

Handling and Avoiding Downtime

66

9.	 Run the following command to terminate the client's network connection, using the
contents of the client_port column:
sudo tcpkill -i eth0 -9 port client_port

10.	 Wait until the output from tcpkill resembles several identical lines.

How it works...
We begin the process by getting a list of every process ID, duration, and query currently
running for longer than 2 seconds. Though 2 seconds is arbitrary; it helps filter out short and
fast queries that we aren't interested in. If we examine the queries listed in these results,
we may decide that one or more need to be canceled or disconnected. The results should
resemble this output:

If this is the case, the pid column conveys important information necessary to target the
client connection. We begin by invoking pg_cancel_backend in an attempt to terminate the
currently running query. Often, this is enough to clear locks or stop a query from consuming
excessive resources. It's important to rerun the status query to ensure that the command
successfully stopped the client's activity.

If the target connection is still active, we need to escalate to the next step: disconnect the
client from the database. For this, we use pg_terminate_backend instead. This is roughly
equivalent to using an operating system utility to terminate the client process, but it is
something we can do directly from PostgreSQL. Again, we check for success using the status
query, just in case.

In very rare cases, pg_terminate_backend can fail, and the client connection will remain
unscathed. How is this possible? Networks, despite their apparent maturity, are notoriously
unreliable. Misrouted packets, retransmissions, blocked sockets, timeouts, stalls, and more
issues wait to disrupt the communication line between PostgreSQL and a connected client.

Sometimes the network socket is in such a state that PostgreSQL was interrupted while
writing output. In this case, PostgreSQL is waiting for the client to acknowledge receipt
of the data, or for the operating system to mark the network connection as broken. If this
never happens, PostgreSQL will wait patiently forever until the client properly handles the
terminate command.

Chapter 2

67

This isn't ideal for us if the process is locking necessary tables or rows. If we can't get
PostgreSQL to terminate the client, we need to use another approach. The tcpkill
command gives us the ability to interrupt a network connection directly; this causes the
operating system to close the network socket. When this happens, the PostgreSQL client
exits automatically.

All we need to do is run tcpkill with the -i parameter to tell it about the network interface
the database is using, the port to focus on, and how aggressive to be. We know the port from
the client_port column of our status query, and specifying -9 tells tcpkill to block all
incoming and outgoing packets so that there's no ambiguity regarding our intent.

The output from a tcpkill command should look like this towards the end:

127.0.0.10:5432 > 127.0.0.1:37601: R 315492496:315490496(0) win 0

127.0.0.10:5432 > 127.0.0.1:37601: R 315492538:315490538(0) win 0

127.0.0.10:5432 > 127.0.0.1:37601: R 315492622:315490622(0) win 0

It's important to not be impatient. Sometimes, it can take a minute or two before the
connection finally dies.

There's more...
If a connected application encounters a bug and goes haywire, it might be convenient to
disconnect several clients simultaneously. PostgreSQL lets us run query results through
functions, so we could kill all connections that were idle in the transaction for at least 2
minutes by running this query as a superuser:

SELECT pg_terminate_backend(pid)

 FROM pg_stat_activity

 WHERE now() - query_start > INTERVAL '2 minutes'

 AND state = 'idle in transaction';

The pg_stat_activity view offers a lot of characteristics to differentiate target queries.
We could terminate only connections from a specific IP address or those that connected to
the database over a week ago. There is a lot of opportunity here to maintain a highly available
system through direct intervention.

Handling and Avoiding Downtime

68

Reducing contention with concurrent
indexes

When administering a PostgreSQL installation, we will eventually need to create new tables
and indexes. In the case of new indexes, the table is locked in shared exclusive access mode
for the duration of the creation process, blocking any insert, update, or delete activity. This
both prevents inconsistencies, and allows the database to modify the table structure to reflect
the new index.

Unfortunately, this process is fundamentally incompatible with maintaining a highly available
server. While building the index, PostgreSQL needs to examine every valid table row, which
means loading it from the disk into memory. For large or active tables, this can cause
excessive strain on the system. Other database activities will reduce available disk bandwidth,
and the required lock will block all modifications of data in that table. Combined, this can lead
to a table being locked for a very long time.

Beginning with PostgreSQL 8.2, indexes can be created concurrently with other activities.
This means PostgreSQL constructs the index in the background and only requests an
exclusive lock that is long enough to attach it to the table. Early after its introduction, some
DBAs felt reluctant to use it and have not changed their evaluation of its safety as it matured.

This may seem trivial as the feature has been around for a very long time, but not enough new
administrators know about this functionality. Using it properly and knowing the caveats can
avert several DBA headaches.

Getting ready
We just need to find an index to create. For the purposes of this discussion, we may also
want to create a small pgbench database for demonstration purposes. Execute the following
commands as the postgres user to build a sufficient sample:

createdb pgbench
pgbench -i -s 200 pgbench

How to do it...
Follow these steps to test concurrent index creation:

1.	 Connect to the pgbench database and execute the following command as a
superuser or the postgres user:
CREATE INDEX CONCURRENTLY idx_account_bid

 ON pgbench_accounts (bid);

Chapter 2

69

2.	 In another connection, attempt to execute the following insert before the preceding
command completes:
INSERT INTO pgbench_accounts

VALUES (50000000, 100, 15000, 'testing');

How it works...
By adding the CONCURRENTLY modifier, PostgreSQL will begin the process of building an
index. While it does this, it also tracks the incoming insert, update, and delete activities to
include them in the new index.

In the connection where we invoked the CREATE INDEX statement, we will not see a prompt
again until PostgreSQL finishes building the index. So, how can we tell it apart from any
regular index creation? One of the reasons we built an example was to prove that concurrency
is present. The INSERT statement in the second connection should succeed before the index
is complete. The process is the same for a production PostgreSQL instance. Any incoming
writes to a table undergoing a concurrent index creation will complete normally until the final
lock is necessary.

There's more...
While concurrent indexes are very useful, they have some very important elements we need
to consider.

No transactions
As of PostgreSQL 9.3, concurrent index creation cannot take place inside a transaction.
Why not? Remember that the process needs to look inside all the incoming transactions
that could modify the table being indexed. PostgreSQL normally never allows what most
experienced DBAs know as dirty reads of uncommitted data. As a consequence, concurrent
indexes must be built outside of a transaction by internal database mechanisms.

One at a time
As concurrent index creation is not transaction safe, PostgreSQL will only build one at a time.
Some enterprising DBAs have circumvented this limitation by building a queue system to send
concurrent index-creation requests until the queue is empty. More advanced PostgreSQL
installations may want to consider a similar system to utilize concurrent indexes extensively.

Handling and Avoiding Downtime

70

Danger with OLTP use
Concurrent indexes are not a panacea; they still follow rules for lock acquisition. Specifically,
PostgreSQL cannot acquire a lock to attach the index so long as any earlier transactions are
still running. While it waits for the lock, any new transactions that need to modify the table
contents will also wait. This feedback loop of waits can quickly consume all available client
connections on a busy OLTP system.

It's best to avoid this situation by following the normal index-creation protocol on OLTP
systems: only create indexes when the volume is low. We can also massively reduce the risk
by avoiding long-running transactions that could potentially block the final lock request. OLTP
systems should have few of these in any case.

See also
PostgreSQL has an excellent manual page discussing indexes and concurrency. Please refer
to this page for more information:

ff http://www.postgresql.org/docs/9.3/static/sql-createindex.html

Managing system migrations
As DBAs, it is likely that we will eventually preside over a server replacement. Whether this is
to avoid failed hardware or due to system upgrades, our job is to move PostgreSQL from one
system to the next.

It is not simple to perform a server migration while simultaneously maintaining maximum
availability. One of the easiest methods is limited to users of shared storage such as a SAN.
Such storage can be reassigned to another server easily. Without a SAN or other means of
shared storage, we need to utilize another method.

Luckily, PostgreSQL added streaming database replication in Version 9.1. With this, we can
make a copy on the new server and switch to it when we're ready.

Getting ready
For this demonstration, we will need another server or virtual machine to receive a copy of our
database. Have one ready to follow along. We will also be using a PostgreSQL tool named pg_
basebackup. Check the PostgreSQL documentation regarding this utility for more information.

If the donor server is configured as described in the Configuration – getting it right the first
time recipe, modify its pg_hba.conf file and add the following line:

host replication rep_user 0/0 md5

Chapter 2

71

Then, create a user to control replication with this SQL query issued as a superuser:

CREATE USER rep_user WITH PASSWORD 'rep_test' REPLICATION;

Then, reload the server to activate the configuration line. If you are attempting this in a real
production system, use a better password and replace 0/0 with the actual IP address of the
new server.

How to do it...
Assuming 192.168.1.10 is our donor server, follow these steps to create a copy:

1.	 Connect to the new server as the postgres user.

2.	 Issue the following command to copy data from the donor system:
pg_basebackup -U rep_user -h 192.168.1.10 -D /path/to/database

3.	 Create a file named recovery.conf in /path/to/database with the
following contents:
standby_mode = 'on'
primary_conninfo = 'host=192.168.1.10 port=5432 user=rep_user'

4.	 Create a file named .pgpass in the home directory of the postgres user with the
following line:
*:5432:replication:rep_user:rep_test

5.	 Set the correct permissions for the .pgpass file with this command:
chmod 0600 ~postgres/.pgpass

6.	 Start the new server using the following command:
pg_ctl -D /path/to/database start

7.	 Inform application owners to stop their applications or bring available services up
with a maintenance message.

8.	 Issue the following command on the donor server to write any pending data to
the database:
CHECKPOINT;

9.	 Connect to PostgreSQL on the donor server and issue the following query to check
replication status:
SELECT sent_location, replay_location
 FROM pg_stat_replication
 WHERE usename = 'rep_user';

Handling and Avoiding Downtime

72

10.	 Periodically, repeat the preceding query until sent_location and
replay_location match.

11.	 Issue a command on the primary server to stop the database. This command
should work on most systems:
pg_ctl -D /path/to/database stop -m fast

12.	 Issue this command on the new server:
pg_ctl -D /path/to/database promote

13.	 Inform application owners to start their applications or bring available services up
normally configured to use the new database server address.

How it works...
We start the somewhat long journey on the new server by invoking the pg_basebackup
command. When PostgreSQL introduced streaming replication, they also made it possible for
a regular utility to obtain copies of database files through the client protocol. To create a copy
of every file in the donor system, we specify its address with the -h parameter. Using the -U
parameter, we can tell pg_basebackup to use the rep_user user we created specifically to
manage database replication.

When PostgreSQL detects the presence of a recovery.conf file, it begins to recover as if
it crashed. The value we used for the primary_conninfo setting will cause the replica to
connect to the primary server. Once established, the replica will consume changes from the
primary database server until it is synchronized. After starting the database, any activity that
occurs in the primary system will also eventually be replayed in the copy.

As we created the replication user with a password, we need an automatic method to convey
the password from the replica to the primary. PostgreSQL clients often seek .pgpass files to
obtain credentials automatically; used in this context, the new server acts as a client.

Once we start the new server, everything should be ready, so we need all sources of new data
in the database to stop temporarily. Once this has happened, we issue CHECKPOINT to flush
the activity to disk. Afterward, we monitor the status of the replication stream until it is fully
synchronized with the donor.

After the synchronization is verified with our replication lag query, we stop the source
PostgreSQL database; its job is complete. All that remains is to promote the new database to
full production status and tell various departments and application owners that the database
is available at the new location. Before replication, this was a much more involved process.

Chapter 2

73

There's more...
We can use what we learned in the Exploring the magic of virtual IPs recipe to make this even
simpler for end users. Until near the end, the process is the same. However, if applications
and users were using the virtual address instead of the actual server IP for the old database,
they can continue to use the virtual location after the migration.

Simply detach the virtual IP from the old database server, and attach it on the new one before
informing the users that the migration is complete. As an added benefit, we can use the virtual
IP address as a form of security. Until we create it, users will be unable to locate the database.
We can take advantage of this and perform database checks before going fully online.

Once we have created the virtual IP address, any applications that were using the database
before we started the migration will need to reconnect. Yet, even this necessity can be
removed; we will discuss this in a future chapter.

See also
System migrations are extremely complicated. This section only touches on a small number of
concepts. Please refer to these PostgreSQL documentation links for a deeper exploration of
the material we covered:

ff The pg_basebackup Utility: http://www.postgresql.org/docs/9.3/
static/app-pgbasebackup.html

ff Log-Shipping Standby Servers: http://www.postgresql.org/docs/9.3/
static/warm-standby.html

ff Hot Standby: http://www.postgresql.org/docs/9.3/static/hot-
standby.html

Managing software upgrades
Software in the server space is normally fairly stable. However, elements such as security
updates and bug fixes must be applied. Highly available servers can't be stopped often, but
without important upgrades, they could crash or experience a breach, which would be far
more serious.

Then how do we ensure that updates can be applied safely while maintaining consistent
availability? Once again, this often comes down to preparation. We prepare by having
duplicate online data copies and by abstracting access paths. With architecture like this in
place, we can switch to a backup server while upgrading the primary; thus, the database
never actually goes offline.

We'll explore this scenario here, especially as it will be a very common one.

 http://www.postgresql.org/docs/9.3/static/app-pgbasebackup.html
 http://www.postgresql.org/docs/9.3/static/app-pgbasebackup.html
 http://www.postgresql.org/docs/9.3/static/warm-standby.html
 http://www.postgresql.org/docs/9.3/static/warm-standby.html
http://www.postgresql.org/docs/9.3/static/hot-standby.html
http://www.postgresql.org/docs/9.3/static/hot-standby.html

Handling and Avoiding Downtime

74

Getting ready
For this section, we need at least one extra server with PostgreSQL installed. This server should
be running a copy of our database. We can follow the Managing system migrations recipe to
build a copy if we don't already have one available. We will also use ideas introduced in the
Exploring the magic of virtual IPs recipe. Reviewing these recipes now might be a good idea.

How to do it...
For this scenario, assume that we have two servers with the addresses 192.168.1.10 and
192.168.1.20, where 192.168.1.10 is currently the primary server. In addition, we have
a virtual IP address of 192.168.1.30 on the eth0:pgvip Ethernet device. To upgrade the
PostgreSQL software on both nodes, follow these steps:

1.	 Stop the database copy on 192.168.1.20 as the postgres user using
this command:
pg_ctl -D /path/to/database stop -m fast

2.	 Perform any necessary software upgrades. For example, to upgrade a Debian
or Ubuntu server to the latest PostgreSQL 9.3, use the following command as
a root-capable user on 192.168.1.20:
sudo apt-get install postgresql-9.3

3.	 Start the database copy on 192.168.1.20 as the postgres user:
pg_ctl -D /path/to/database start

4.	 As a root-capable user on 192.168.1.10, stop the virtual IP address with the
following command:
sudo ifconfig eth0:pgvip down

5.	 As a database superuser, issue a checkpoint to the database on 192.168.1.10:
CHECKPOINT;

6.	 Connect to PostgreSQL on 192.168.1.10 and issue the following query to
check replication status:
SELECT sent_location, replay_location
 FROM pg_stat_replication
 WHERE usename = 'rep_user';

7.	 Periodically, repeat the preceding query until sent_location and
replay_location match.

8.	 As postgres, stop the PostgreSQL service on 192.168.1.10 with this command:
pg_ctl -D /path/to/database stop -m fast

Chapter 2

75

9.	 As postgres, promote the PostgreSQL replica on 192.168.1.20 with this command:
pg_ctl -D /path/to/database promote

10.	 As a root-capable user on 192.168.1.20, start the virtual IP address with the
following command:
sudo ifconfig eth0:pgvip 192.168.1.30 up

11.	 If necessary, inform the developers and support staff to restart the application's
database connection pools.

12.	 Repeat any necessary software upgrades on 192.168.1.10 as already performed
on 192.168.1.20.

13.	 Erase the existing database on 192.168.1.10 as the postgres user this way:
rm -Rf /path/to/database

14.	 Use pg_basebackup on 192.168.1.10 to make a copy of the upgraded database
on 192.168.1.20:
pg_basebackup -U rep_user -h 192.168.1.20 -D /path/to/database

15.	 Create a file named recovery.conf in /path/to/database with the
following contents:
standby_mode = 'on'
primary_conninfo = 'host=192.168.1.20 port=5432
 user=rep_user'

16.	 Start the newly created copy as the postgres user on 192.168.1.10 using the
following command:
pg_ctl -D /path/to/database start

How it works...
This entire process is very long, but we hope to illustrate that it is actually very straightforward.
The first step is to upgrade the mirror copy of the database under the assumption that it is not
actively utilized by applications or users. The role of the secondary node in this case is to act as
an emergency backup for the primary database node. As it's not being used, we are able to stop
the database, perform any updates necessary, and start it and allow it to synchronize again.

Afterwards, we isolate the primary database node by disabling the virtual IP address.
This allows the streaming replica to replay the last few active transactions so that it's fully
synchronized before we make it the new primary database. We accomplish this by issuing
CHECKPOINT and watching the replication status until it matches on both systems. When the
replication status matches, we can stop the primary PostgreSQL server; its role in the process
is complete.

Handling and Avoiding Downtime

76

As software upgrades may take some time to complete or require a server restart, we need
to immediately make the secondary node available as the primary database. We start by
promoting the replica to become the new primary by sending the promote command to
pg_ctl. Once the database is writable, we reinstate the 192.168.1.30 virtual IP address
so that applications and users can reconnect safely.

This process of node switching is fairly quick, provided we already have a replica ready to take
over. With the replica acting as a primary, the next step is to perform any upgrades necessary,
just as we did on the secondary node. After the upgrades are finished, we cannot simply
restart the primary database again, as the replica has been acting as a primary database for
a period of time.

This means that we need to rebuild the primary database as a new replica. This makes both
nodes ready for the next upgrade and maintains the two-node relationship. We start this
process by erasing the old contents of the database and then use pg_basebackup to copy
the current primary database. Then, we create a new recovery.conf file and direct it to
act as a new replica. Once the replica is started, we have the same configuration as we had
earlier, but now, the roles are reversed; 192.168.1.20 is the primary, and 192.168.1.10
is the replica.

There's more...
Astute readers may have noticed that using pg_basebackup to copy the entire database
following a minor upgrade is somewhat wasteful. We agree! In the later recipes, we will make
use of rsync or PostgreSQL-specific software to perform these tasks instead. This recipe was
already pretty long, and setting up rsync properly for this operation would have added quite
a bit more time. The point is to show you the switching process; feel free to substitute better
methods you know for synchronizing data.

See also
ff In addition to rsync, a newer utility named pg_rewind can make resetting replicas

much easier. It is beyond the scope of this chapter, so we recommend that you read
more about it at https://github.com/vmware/pg_rewind.

Mitigating the impact of hardware failure
Software can have bugs, and PostgreSQL is no exception. Bugs in the database software
rarely, if ever, lead directly to data corruption. Hardware can fail too, but hardware problems
are not always so straightforward.

Chapter 2

77

Disk, CPU, or memory failures don't always cause the server to crash. In fact, these failures
can persist for weeks or even months before their detection by a monitoring infrastructure.
Disk failures are generally abstracted away by RAID or SAN devices, and these arrays are
designed to readily handle online rebuilds. Other types of failures are more subtle.

CPU or memory problems can manifest in several different ways. In order for PostgreSQL
to function, the data from disk must be read into memory to be processed by the CPU.
During any of these transition states, a bad CPU or RAM module can inject an invalid
checksum or data value inconsistent with the rest of the database. However, PostgreSQL
generally assumes that the database is consistent and that transaction logs have been
faithfully recorded and applied.

When running a dual-node database, where one node is always connected and synchronized
with the other, a failure like this can corrupt data on both nodes nearly simultaneously.
When both nodes contain invalid data, our promise of providing a highly available system is
impossible. We have no backup to switch to or no alternate node to host the database while
we repair the problem. Data corruption can require intricate investigative and mitigation
efforts, which are much harder to complete while the database is online.

The only reasonable way to prevent this type of scenario is by exercising extreme caution and
with some extra preparation work.

Getting ready
We need to cover a few different scenarios here. One of the things we want to do is transfer
files from one server to another. A popular way to do this is with the rsync command.
On Debian or Ubuntu systems, we can install it as a root-capable user this way:

sudo apt-get install rsync

We also need it properly configured in order to use it. Create a file named /etc/rsyncd.
conf and fill it with this content:

[archive]
 path = /db/wal_archive
 comment = Archived Transaction Logs
 uid = postgres
 gid = postgres
 read only = true

We're now ready to protect our data from hardware problems.

Handling and Avoiding Downtime

78

How to do it...
The first thing we need to do is secure the WAL stream. Follow these steps to build a
semipermanent copy of archived WAL data in the /db/wal_archive directory:

1.	 On the primary node, modify the postgresql.conf file to include the
following setting:
archive_command = 'cp -an %p > /db/wal_archive/%f'

2.	 Create the /db/wal_archive directory as a root-capable user using the
following commands:
sudo mkdir -p -m 0700 /db/wal_archive

sudo chown -R postgres /db/wal_archive

3.	 Reload the PostgreSQL service using the following command:
pg_ctl -D /path/to/database reload

4.	 As a root-capable user, create a script named del_archives in the /etc/cron.
daily directory and fill it with this content as a single line:
find /db/wal_archive -name '0000*' -type f -mtime +2 -
delete

5.	 Make sure that the script is executable using the following command:
chmod a+x /etc/cron.daily/del_archives

Next, we should set up a copy on a remote location. In this case, let's assume that the
database is at 192.168.1.10 and we have another server set up specifically for WAL
storage at 192.168.1.100. Impose an hour's delay by following these steps:

1.	 On 192.168.1.100, create a /db/wal_archive directory as a root-capable user
with these commands:
sudo mkdir -p -m 0700 /db/wal_archive

sudo chown -R postgres /db/wal_archive

2.	 Ensure that the server at 192.168.1.100 has the rsync.conf file we
discussed earlier.

3.	 As a root-capable user on 192.168.1.10, create a script named sync_archives
in the /etc/cron.d directory with this content:

* * * * * postgres find /db/wal_archive -name '0000*' \
 -type f -mmin +60 | \
 xargs -I{} rsync {} 192.168.1.100::archive

Chapter 2

79

How it works...
To ensure that WAL data is available for recovery or emergency restore, we need to secure
it on a tertiary location away from the primary or secondary server. We start this by telling
PostgreSQL to store the old WAL files instead of deleting them. The cp command we used
to copy the files will not overwrite the existing archives due to the -n setting. This prevents
accidentally corrupting the existing transaction logs.

Then, we need to create the directory where the files will reside. The mkdir command
does this, and the chown command ensures that the PostgreSQL server can write to that
directory. Once the directory is in place, we need to reload the server because we changed
archive_command.

Once a WAL file is no longer needed by PostgreSQL, it's stored in our /db/wal_archive
directory until it gets deleted. This is why we create the del_archives script. We only really
need two or three days worth of live WAL files. This allows us to send very old files to tape,
and newer files are available for Point In Time Recovery (PITR) or restore. Once we make the
script executable with the chattr command, we will not have to worry about accidentally
filling the disks with WAL files.

The final steps might be the most important of all. We create a directory on a completely
different server rather than on any of our existing database nodes. Once this directory is
there, we create an automated rsync job on the database master that will run every minute
and copy all WAL files older than 1 hour to the new storage area. Why only an hour? Current
versions of PostgreSQL don't have the ability to delay the replay stream, so if we encounter a
hardware problem, corrupt data will immediately synchronize to our spare server. This gives
us up to an hour for monitors, maintenance, and logs to discover the problem before the
corrupted WAL files pollute the tertiary storage server.

We could use PITR instead at this point. However, an imposed 1 hour delay
allows us to have live access to databases that obtain their WAL files from
the tertiary server. Otherwise, we would have to restore from backup and
apply WAL files to reach our desired point in time.

There's more...
In securing the WAL stream, there are a few other options available to us.

Copy WAL files more easily
If we have a version of PostgreSQL of 9.2 or above, there is a new command that, much
like pg_basebackup, utilizes the replication mechanism for a new purpose. Assuming
PostgreSQL is configured as described in the Configuration – getting it right the first time
recipe, there should be five available replication streams. As we're smart and have a
dual-node cluster, we are already using at least one to create a copy of the database.

Handling and Avoiding Downtime

80

The next step would be to have a copy of the WAL files alone, as they are critical to PITR, which
helps isolate the database. Instead of using rsync to copy these between nodes, we can
simply pull them directly from the primary node. With 192.168.1.30 as the virtual database
IP address and rep_user as the name of the replication user, we could use the following
command to obtain WAL data:

pg_receivexlog -h 192.168.1.30 -U rep_user -D /db/wal_archive

This command acts like a service. This means it will only copy from the replication stream
while it is actually running. To use pg_receivexlog effectively, it needs to be started as a
background service and should be restarted if the virtual IP is moved or the server it's running
on is ever restarted.

Add compression
PostgreSQL WAL files are very compressible. As such, we can save quite a bit of space while
storing them for long periods of time. Since PostgreSQL archive_command can be anything
we wish, we can incorporate compression right into the process. For example, we could use
this postgresql.conf setting instead:

archive_command = 'gzip -qc %p > /db/wal_archive/%f'

Now, whenever PostgreSQL moves a WAL file into the archive, it also compresses it.

Secondary delay
We have already discussed maintenance in the previous sections. What we never covered
was self-imposed archival delay. If we're performing maintenance or the primary node
crashes, it is a very good idea to either delete the /etc/cron.d/sync_archive script or
comment out the rsync command itself until the maintenance is complete. This hour-long
barrier helps avoid propagating corrupt data, but there's no reason to take excess risks.

Some environments have another pair of servers in a different data center that acts as
disaster recovery. If this is our setup, any running server on the disaster-recovery side should
be stopped while we modify or rebuild the primary or secondary servers. The reasoning is the
same: if there is a problem with the maintenance, we have an untainted copy of everything.

Feel free to re-enable all the synchronization after verifying that crash recovery or
maintenance hasn't introduced invalid data.

See also
ff As we introduced the pg_receivexlog utility, we would be remiss if we didn't

include its helpful documentation as well. Follow this link for more information:
http://www.postgresql.org/docs/9.3/static/app-pgreceivexlog.
html.

http://www.postgresql.org/docs/9.3/static/app-pgreceivexlog.html
http://www.postgresql.org/docs/9.3/static/app-pgreceivexlog.html

Chapter 2

81

Applying bonus kernel tweaks
Most operating system kernels are optimized for generalized use. While this does not preclude
operation as a server, we have to change a few settings to fully utilize our available hardware.
This isn't simply a series of configuration modifications meant to increase performance but
critical kernel-related tweaks meant to prevent outages.

Though, while we're on the subject, there's no reason to not include purely performance-
enhancing changes. Getting the most out of our hardware prevents unnecessary operating
strain on existing resources. A server running too close to its limits cannot be considered
highly available; an unexpected increase in demand can render a server unusable under the
right circumstances.

Getting ready
While the following settings are based on Linux servers, some of the concepts are universal.
We'll try to provide enough information to illustrate this. However, keep that in mind for this
recipe. Otherwise, look for a directory named /etc/sysctl.d. Any system with this directory
can be easily configured by adding a file that contains extra settings here. Otherwise, we need
to find a file named /etc/sysctl.conf, which servers a similar purpose but requires
direct modification.

The settings we are going to change include the following:
kernel.sched_migration_cost = 5000000
kernel.sched_autogroup_enabled = 0
vm.dirty_background_ratio = 1
vm.dirty_ratio = 5
vm.zone_reclaim_mode = 0
vm.swappiness = 0

How to do it...
If there's a /etc/sysctl.d directory, follow these steps to activate:

1.	 Create a file named 30-postgresql.conf in the /etc/sysctl.d directory
with the settings we mentioned earlier.

2.	 Execute this command as a root-capable user to activate:
sudo sysctl -p /etc/sysctl.d/30-postgresql.conf

Handling and Avoiding Downtime

82

Otherwise, follow these steps:

1.	 Place the settings in /etc/sysctl.conf.

2.	 Execute this command as a root-capable user to activate:
sudo sysctl -p

How it works...
In this case, it's all about the settings. Each of our two illustrated steps simply ensures that
the settings are in a location where they become permanent parts of the server. Any future
reboot will automatically apply these newly selected values instead of the defaults. The sysctl
command activates them immediately, so we don't need to reboot to modify system behavior.

The sched_migration_cost setting is the total time the scheduler will consider a migrated
process cache hot and, thus, less likely to be remigrated. By default, this is 0.5 ms (500000 ns).
As the size of the process table increases, the complexity inherited by the process scheduler
eventually results in high CPU overhead, merely to assign processors to PostgreSQL tasks.

Depending on the count of database clients, we have observed overhead as high as 70
percent, greatly reducing database performance. Our suggested setting of 5 ms gives
PostgreSQL enough time to process one or more queries before the task is eligible for
migration and prevents the CPU task scheduler from being overworked.

The sched_autogroup_enabled setting causes the operating system to group tasks by origin
to improve perceived responsiveness. On server systems, large daemons such as PostgreSQL
are launched from the same system task. As they're all in the same large group, they can be
effectively choked out of CPU cycles in favor of less important tasks. The default setting is 1
(enabled) on some platforms. By setting this to 0 (disabled), PostgreSQL query performance
can be improved by up to 30 percent on databases with hundreds of user connections.

We modify zone_reclaim_mode to completely disable its operation by setting it to 0.
According to the Linux kernel documentation, it may be beneficial to switch off zone reclaim
when memory should be used for caching files from disk. Without this, the kernel aggressively
balances memory between zones, causing excess overhead and reducing available memory
for caching disk data.

The dirty_background_ratio setting is a percentage, which we've set to 1. This is the
amount of memory that can be marked as modified before the operating system begins
writing data to disk in the background. It is closely tied to dirty_ratio, which is the
percentage of memory where the operating system blocks all other write activities and
aggressively writes dirty memory until everything has been flushed. This kind of occurrence
effectively stops all database activity until the flush is complete.

Chapter 2

83

By setting the background ratio to such a low value, the constant background writes make it
much less likely that we will reach that trigger point. A highly available server can not afford
long unplanned periods of stopped query handling. The constant writing actually slightly
reduces performance, which is a risk we have to weigh against the stability of the server.

Lastly, we set swappiness to 0; this disables memory swapping. When Linux runs low on
memory, it normally starts moving idle processes to disk to free up RAM. We don't want to risk
any of our PostgreSQL clients getting this treatment, so we tell Linux to only swap if there is no
other option. This is common to dedicated servers such as a critical PostgreSQL system.

There's more...
Some kernel settings have different names with different versions. For instance,
sched_migration_cost is renamed sched_migration_cost_ns in the newer
kernel releases. In addition, dirty_background_bytes and dirty_bytes have
been added to newer systems due to the amount of memory available on new servers.

Imagine a server with 512 GB of RAM. In such a case, up to 5 GB of memory could be dirty
before the operating system writes anything to disk. In the event of an emergency flush,
the disk subsystem may not be capable of handling such a large amount. The new settings
allow us to use the same logic as before, but with bytes instead of percentages. In systems
with more than 64 GB of RAM, these settings should be used instead of dirty_ratio and
dirty_background_ratio.

A good place to start for setting dirty_background_bytes is up to double the size of the
RAID or disk controller cache. This ensures that there is never more memory waiting to be
written than the controller can handle. Similarly, we can set dirty_bytes to eight to ten
times the size of the controller cache. This prevents long flushing delays if the background
writer ever falls behind.

As always, your mileage may vary. Some PostgreSQL servers may experience slightly faster
writes with larger amounts of dirty memory buffers. However, the goal of this book is to reduce
the overall risk, even if that's at the cost of some performance. Long periods of database
timeouts due to an overwhelmed disk subsystem do not fit this model.

Pooling Resources

In this chapter, we will learn to combine and abstract connectivity to isolate and protect the
database. We will cover the following recipes in this chapter:

ff Determining connection costs and limits

ff Installing PgBouncer

ff Configuring PgBouncer safely

ff Connecting to PgBouncer

ff Listing PgBouncer server connections

ff Listing PgBouncer client connections

ff Evaluating PgBouncer pool health

ff Installing pgpool

ff Configuring pgpool for master/slave mode

ff Testing a write query on pgpool

ff Swapping active nodes with pgpool

ff Combining the power of pgBouncer and pgpool

3

Pooling Resources

86

Introduction
Abstraction can protect a database from even the busiest platform. At the time of writing this
book, applications and web services often involve hundreds of servers. If we follow a simple
and naïve development cycle where applications have direct access to the database, each of
these servers may require dozens of connections per program, even with a small server pool
that can result in hundreds or thousands of direct connections to the database. Is this what
we want? Consider the scenario illustrated in the following diagram:

Servers
InternetDB

We need a way to avoid overwhelming the database with the needs of too many clients.
As we suggested in the previous chapter, a PostgreSQL server experiences its best performance
when the amount of active connections is less than three times the available CPU count.
With a thousand incoming client connections, we will need hundreds of CPU cores to satisfy
the formula.

Every incoming connection requires resources such as memory for query calculations and
results, file-handle and port allocations for network traffic, process management, and so on.
In addition, each connection is another process the OS has to schedule for CPU time. Very
large servers are extremely capable, but resources are not infinite. Even if the database
can handle thousands of connections, performance will suffer for each in excess of design
capacity. We need to change the map to something slightly different, as seen here:

Servers
Internet

DB
Pool

By inserting a connection pool in front of the database, hundreds of PostgreSQL server
processes are reduced to dozens. A database pool works by recycling database connections
as soon as the client completes its current transaction or when its database work is complete.
Instead of hundreds of mostly idle database connections, we maintain a specific set of highly
active connections.

Two popular tools for PostgreSQL that provide pooling capability are pgBouncer and pgpool.
In this chapter, we will explore how to use these services properly and reduce overhead and
database availability.

Chapter 3

87

Determining connection costs and limits
Excessive database connections are not without risk. The level of risk we incur and what
exactly qualifies as excessive are important to determine early. The company and our
customers will find it extremely inconvenient if normal database activity exhausted system
memory, caused timeouts due to increased context-switching, or overwhelmed the kernel
with an overly large process table.

To maintain a highly available server, we must know the full impact of every single connection
in terms of required memory and CPU resources. Servicing several disparate applications
from various external servers is difficult, so we must provide availability while simultaneously
avoiding resource exhaustion. If we properly assess the ideal balance between connection
count and performance early on, we can avoid costly emergencies.

Irrespective of whether we helped specify the hardware that will host our PostgreSQL
installation, it's still our job to figure out how many clients it can comfortably support.
Since this chapter is primarily focused on database pools, we can use this opportunity
to choose a practical pool size as well.

Getting ready
We will make a few rough calculations in this section. If possible, obtain data regarding the
amount of CPU cores, available RAM, and the number of disk spindles in the storage pool.

Linux systems have a live filesystem that tracks most of this information. To obtain the
number of CPUs, simply execute this at the command line, and add one to the highest
value since indexing starts at zero:

grep ^processor /proc/cpuinfo

For the amount of RAM in kilobytes, use this command:

grep MemTotal /proc/meminfo

Finding the amount of disk spindles can vary greatly between RAID and SAN implementations,
so we suggest you obtain the number from the infrastructure department.

How to do it...
Start by calculating the number of connections that the RAM can accommodate by following
these steps:

1.	 Begin the estimate with 8 MB used per connection.

2.	 Add four times the value of the work_mem PostgreSQL configuration setting in
megabytes, for a per-client total.

Pooling Resources

88

3.	 Obtain the amount of RAM in megabytes.

4.	 Divide half of the RAM size by the per-client MB total.

Next, calculate the number of connections the CPU and disk resources can support by
following these steps:

1.	 Obtain the CPU count in cores, including virtual if present.

2.	 Double the CPU core count.

3.	 Add the number of disk spindles.

Use the lower of the two values as the final ideal connection count.

How it works...
To know how much RAM a connection may use, we start with a baseline of eight megabytes.
This accounts for library overhead, likelihood of using temporary table space, and other
various allocations necessary for a session to function. To that, we add four times the
work_mem setting used by the server to sort and query calculations.

Why four? Large and complex queries will use more, while short and simple queries will use
less, so we start with something in the middle. It's actually possible that this multiplier is
somewhat pessimistic, so it trends toward assuming higher memory use. That's fine, since
overestimating in this case is safer than running out of memory in the presence of several
simultaneous complex queries.

With this total, we can see how many connections will use half of the available RAM. We only
use half of the system RAM here, since the database itself needs memory. In addition, queries
are much faster when tables are available in the operating system page cache. If too much
RAM is reserved for client use, query performance can suffer considerably.

In the next set of calculations, we start with the CPU total and double this amount. The more
disk spindles available, the less time each CPU spends waiting for results. By adding the
number of disks, we get an approximation of how many connections our CPUs can actually
support without excessive idling.

By taking the lower of these two calculations, we account for whatever bottleneck will
constrain system performance the most. This is our ideal connection count, and it works
as a first approximation for the size of any connection pool we create.

There's more...
For an example of this in action, consider a system with 32 GB of RAM, eight CPU cores, and
eight disk spindles. We used 8 MB for our work_mem setting, so this means we may need
up to 40 MB per database connection. 16 GB of RAM can then safely support about 409
connections, assuming memory is our only resource limit.

Chapter 3

89

Otherwise, our eight CPUs and eight disks can support up to 24 connections. This is quite
a discrepancy! However, 24 is the safer of the two limits to prevent latency. If we find that a
certain amount of latency is not overly disruptive, we can increase the connection count,
but not higher than 400, otherwise we risk actually exhausting the available RAM.

Please keep in mind that the focus of this book is high availability at
nearly all costs, and as such, our formulas are extremely pessimistic.
We encourage experimentation with these values; you may find a better
balance than what we suggest here.

Installing PgBouncer
The first pooling resource we will explore is named PgBouncer. This is a very popular
connection pool written by Skype developers in 2007. The project has been maintained by
various developers in subsequent years, but its role of lowering the cost of connecting to
PostgreSQL has never changed.

PgBouncer allows PostgreSQL to interact with orders of magnitude of clients than is otherwise
possible because its connection overhead is much lower. Instead of huge libraries, accounting
for temporary tables, query results, and other expensive resources, it essentially just tracks
each client connection in a queue. Then, based on configuration settings, it creates several
PostgreSQL connections and assigns them to the connections on a first-come, first-served basis.

This means hundreds, or even thousands of database clients, can theoretically share a
single PostgreSQL connection. Of course, we will never suggest implementing a ratio that
absurd without testing, yet the possibility presents several new opportunities for better
resource allocation.

The first step to get this exciting new functionality is installation of the software. PgBouncer
is popular enough for most Linux systems to package it along with other PostgreSQL tools, so
we will cover some of the most popular distributions. For the sake of completeness, we also
intend to cover pure source installs, which means we can utilize the latest release regardless
of the distribution.

Getting ready
Obtain a copy of the latest PgBouncer source code to complete the installation. At the time of
writing this book, the latest version is 1.5.4, released on November 28, 2012.

In order to compile the source code properly, we need the PostgreSQL development libraries
in addition to the normally installed system binaries. For example, to build on a Debian- or
Ubuntu-based system, we will need to install libraries by executing this at the command line:

sudo apt-get install postgresql-server-dev-9.3

Pooling Resources

90

We also need the libevent development libraries. Install these from the distribution
package repository on a Debian- or Ubuntu-based system with this command:

sudo apt-get install libevent-dev

Then, we simply need a root-capable user to install PgBouncer as a system-wide service.

How to do it...
To install in a Debian- or Ubuntu-based system, execute this command:

sudo apt-get install pgbouncer

To install in a CentOS, Fedora, or other RHEL-based system, execute this command:

sudo yum install pgbouncer

Otherwise, follow these steps to complete a full source-based installation:

1.	 Use these commands to extract the PgBouncer source and enter the source directory:
tar -xzf pgbouncer-1.5.4.tar.gz

cd pgbouncer-1.5.4/

2.	 Next, build and install the actual software with these commands:
./configure --prefix=/usr

make

sudo make install

3.	 Create a location where PgBouncer can maintain activity logs with these commands:
sudo mkdir /var/log/pgbouncer

sudo chown postgres /var/log/pgbouncer

4.	 Create a directory where PgBouncer can keep its service lock file with
these commands:
sudo mkdir /var/run/pgbouncer

sudo chown postgres /var/run/pgbouncer

5.	 Create a configuration directory and fill it with a sample configuration file with
these commands:
sudo mkdir /etc/pgbouncer

sudo cp etc/pgbouncer.ini /etc/pgbouncer

sudo chown -R postgres /etc/pgbouncer

6.	 Copy the init/pgbouncer initialization script from this chapter's provided source
code into the /etc/init.d directory on the server.

Chapter 3

91

7.	 Change the copied initialization script to make it executable with this command:
sudo chmod a+x /etc/init.d/pgbouncer

8.	 Finally, add the service to system startup and shutdown.

�� For Debian or Ubuntu systems, use this command: sudo update-rc.d
pgbouncer defaults

�� For CentOS, Fedora, or RHEL systems, use this command: sudo
chkconfig --add pgbouncer

How it works...
As we said before, it's very likely that a system with the vendor-supplied PostgreSQL packages
provides packages for PgBouncer. These versions are likely to install to the expected
directories; they include initialization scripts and basic working configuration files.

In case we want or need to install PgBouncer ourselves, the process is a bit more involved.
Assuming that we downloaded a version from the PgBouncer project page, we start the
process by extracting the source from the archive, and then enter the resulting directory to
perform the necessary installation steps.

The first of these steps is to compile the source into binaries and libraries. PostgreSQL supplies
a tool named pg_config that lists all of the flags and configuration settings used when it
was compiled. In order to pass these to the configure script for PgBouncer, we invoke it for
these options, and execute them as one single operation. Afterwards, regular make and make
install commands as a root-capable user, distribute the software to all expected locations
within the operating system so that they match the PostgreSQL installation.

When we launch PgBouncer, it will try to log connection and service activity to /var/log/
pgbouncer, so we need to create the location and ensure it's writable by the postgres
user. Similarly, PgBouncer keeps track of its process ID by saving information in /var/run/
pgbouncer. Again, this location should exist and be writable by the postgres user.

The PgBouncer source code provides a fairly rudimentary initialization script to start and stop
the service, but it only works properly in Debian or derivatives such as Ubuntu or Mint. Also,
it doesn't account for location flags defined by the source configure script, so it will require
quite a bit of manual modification to be functional.

Thus, we wrote a generic initialization script that should work on any Linux distribution.
This script is included as code accompanying this chapter, so feel free to use it instead of
attempting to locate or build one from scratch. If we move it into the /etc/init.d directory
and mark it as executable, standard operating system tools will be able to manage PgBouncer.

Pooling Resources

92

Finally, we add PgBouncer to the list of other services that start or stop when the server is
shut down or booted up. This ensures the service is always available, and we don't have to
remember to start or stop it ourselves. Depending on our Linux distribution, the command
that registers the script will vary, so we supplied two very common samples.

There's more...
Why did we provide a separate initialization script instead of simply modifying the one within
the source distribution? It turns out that only three changes are required for it to work on a
Debian-based system. However, as we said before, this ignores operating systems based
on Red Hat, SUSE, Slackware, and several others. We wish the authors of this tool were
more inclusive.

Fortunately, the initialization script we supplied should support most major Linux distributions.
Further, it is fully Linux Standard Base (LSB) compliant. Some major high-availability tools
assume service control scripts and exit with specific codes under various conditions. When we
start discussing the more powerful techniques for automated failover and server control, we
will be ready.

See also
ff The PgBouncer site contains version downloads, documentation, and much more.

Feel free to visit the site to learn more about the project at http://pgfoundry.
org/projects/pgbouncer.

Configuring PgBouncer safely
Once PgBouncer is installed, we need to configure it to honor our ideal pool size calculations.
The settings included with the supplied configuration file are for demonstration purposes only
and are unlikely to match our requirements. This situation is easy to rectify, but it requires a
bit of research on our part.

Getting ready
The PgBouncer settings are explained in detail in the example configuration file. However,
we suggest making full use of the service documentation while following this recipe. We will
endeavor to explain important parameters, but there's more available than we cover here.

When we installed PgBouncer, we ensured the configuration directory was writable by the
postgres system user, which is the same user that owns the PostgreSQL service. For the
sake of simplicity, we suggest using either this user or a root-capable user that can modify
files on its behalf.

http://pgfoundry.org/projects/pgbouncer
http://pgfoundry.org/projects/pgbouncer

Chapter 3

93

We also need the calculated pool size from the Determining connection costs and limits
recipe, so keep it handy.

How to do it...
Presuming that our calculated pool size was 25, with a memory-imposed maximum of 350,
follow these steps to properly configure PgBouncer:

1.	 Execute this query as the postgres user while connected to any database
within PostgreSQL:
COPY (
 SELECT '"' || rolname || '" "' ||
 coalesce(rolpassword, '') || '"'
 FROM pg_authid
)
TO '/etc/pgbouncer/userlist.txt';

2.	 Open the /etc/pgbouncer/pgbouncer.ini file as the postgres system user.

3.	 Under the section labeled [databases], create the following entry:
postgres = host=localhost

4.	 Under the section labeled [pgbouncer], find the listen_addr entry and change it
to the following:
listen_addr = *

5.	 Under the section labeled [pgbouncer], find the auth_type entry and change it to
the following:
auth_type = md5

6.	 Under the section labeled [pgbouncer], find the admin_users entry and change it
to the following:
admin_users = postgres

7.	 Under the section labeled [pgbouncer], find the max_client_conn entry and
change it to the following:
max_client_conn = 1000

8.	 Under the section labeled [pgbouncer], find the default_pool_size entry and
change it to the following:
default_pool_size = 25

9.	 Under the section labeled [pgbouncer], find the reserve_pool_size entry and
change it to the following:
reserve_pool_size = 5

Pooling Resources

94

10.	 Start the PgBouncer service by executing the following at the command line as
a root-capable user:
sudo service pgbouncer start

How it works...
The first thing we do is create an authentication file that PgBouncer can use. As a third-
party daemon, it does not have direct access to PostgreSQL authentication. Yet, it still must
authenticate users before assigning pool resources. Unfortunately, this means we need to
create a copy of the current users and their encrypted passwords that PgBouncer can use.
This file should be regenerated any time new users are created or passwords are changed.

The next thing we do is alter the pgbouncer.ini file where configuration settings are stored.
The first section that concerns us is the [databases] section, which keeps track of every
database that PgBouncer has mapped. This can be a one-to-one association or an alias
that changes various connection parameters such as port, host, or username. Feel free
to experiment.

All the subsequent settings are to change the operation of PgBouncer. By changing
listen_addr, PgBouncer will monitor all IP addresses assigned to this server. If we make
use of virtual IPs, this is especially important. Later, we ensure that the auth_type is set to
md5 so that all the encrypted passwords we exported are actually used. We set admin_users
to postgres because PgBouncer has an administration console that we can use to control
pooling behavior. For now, setting it to the database superuser is a good start.

The max_client_conn setting does not restrict PostgreSQL clients, but it restricts
PgBouncer clients. This is mainly to prevent clients from waiting too long before being
assigned a connection. If throughput is generally good, feel free to increase this.

The default_pool_size and reserve_pool_size settings are actually per-user and
per-database. Thus, even if we only have one primary database in our instance, every user
can have 25 connections before PgBouncer puts them in the wait queue. If the number of
PostgreSQL connections gets too high and starts affecting query throughput, we may need to
reduce these settings. It may be best to reserve the pool for applications that need it, so we
have better control of PostgreSQL connections that it might create.

Once the settings are saved, we start PgBouncer. When we do that, it will watch port 6432 on
the same server where the database is running, assuming that we installed it there.

There's more...
Now that PgBouncer is running, there are a couple things that require further explanation.

Chapter 3

95

What about pool_mode?
Perceptive readers probably noticed the pool_mode configuration setting both in the
documentation and in the example file. The possible options for this setting can basically
be summarized this way:

ff Session: A PostgreSQL setting is assigned to a client until the client disconnects.
This is considered the safest method, but greedy applications can monopolize
limited connections by never freeing them. This is the default, and we didn't change
it in our instructions.

ff Transaction: Connections are assigned to clients until they complete a single
transaction. Once the transaction is either committed or aborted, the connection
re-enters the pool and is assigned to another client. This is a good setting to use
for applications that insist on holding persistent database connections as it still
enables connection cycling within the pool. Unfortunately, some applications that
use cursors expect them to persist between transactions for fetching purposes.
Since the connection is reset between every transaction, these cursors are also
deallocated and the application will not function normally.

ff Statement: After every single SQL statement completes, the connection re-enters the
pool for reassignment to another client. There are few, if any, valid situations where
this setting should be used. Only servers that never make use of features such as
transactions, cursors, or prepared queries should use this value. Most PostgreSQL
systems can avoid it completely.

Problems with prepared statements
Database applications and object relation mappers that uses prepared queries will have a
problem if we enable transaction-level pooling. Once a statement is prepared for execution,
it can be reused until it is deallocated. By default, we know that connections are reset
between sessions, so these prepared statements are lost. We can fix this by changing
server_reset_query in /etc/pgbouncer/pgbouncer.ini to the following:

server_reset_query =

By setting a blank value, objects allocated between transactions can persist. However, this
also means that the application should check for a prepared statement before creating it.
Since the connections are recycled, the application may be assigned a connection where
prepared statements are not in their expected states. This is a lot of extra work on the
application side, so we generally don't suggest using transaction mode while prepared
statements or cursors are present.

Pooling Resources

96

See also
Although our suggestions on proper configuration will get things working, there are more options
available. We suggest reading the following documentation to learn more about PgBouncer:

ff PgBouncer Config File: http://pgbouncer.projects.pgfoundry.org/doc/
config.html.

ff PgBouncer FAQ: http://pgbouncer.projects.pgfoundry.org/doc/faq.
html.

Connecting to PgBouncer
Once PgBouncer is installed, configured, and operational, we still need to utilize it. How do we
connect to PgBouncer instead of PostgreSQL?

Getting ready
Make sure PgBouncer is configured and running. Take a look at the Configuring PgBouncer
safely recipe. Then, execute this at the command line to check for the service:

pgrep -lf pgbouncer

We should see a line similar to this:

21281 /usr/bin/pgbouncer -d /etc/pgbouncer/pgbouncer.ini

If this is not the case, we need help beyond the scope of this book. Feel free to check the
PgBouncer mailing list for assistance. The community is willing to help too, so let them.

How to do it...
If our PostgreSQL server is on 192.168.56.30, we can connect to PgBouncer by using
port 6432. With psql, we can connect to the postgres database through PgBouncer
with this command:

psql -p 6432 -h 192.168.56.30 postgres

With PgAdmin, we will just change the connection settings to resemble this:

 http://pgbouncer.projects.pgfoundry.org/doc/config.html
 http://pgbouncer.projects.pgfoundry.org/doc/config.html
http://pgbouncer.projects.pgfoundry.org/doc/faq.html
http://pgbouncer.projects.pgfoundry.org/doc/faq.html

Chapter 3

97

How it works...
PgBouncer works like a simulated PostgreSQL server. Thus, any standard PostgreSQL client or
driver should be fully compatible. The only difference is that the default port is 6432 instead
of 5432. Effectively, this makes PgBouncer a connection proxy, and it can be treated as such.

See also
ff After we connect to PgBouncer, we may want community assistance with common

problems. We suggest the PgBouncer mailing list, which is active with community
members willing to offer assistance; check http://lists.pgfoundry.org/
mailman/listinfo/pgbouncer-general.

Listing PgBouncer server connections
PgBouncer provides an administration console to view pool status or control the service.
For now, we will focus on viewing the list of server connections that PgBouncer maintains.
These connections are held for distribution to database clients as necessary, and they can
tell us much more about the health of the pool. Let's explore the PgBouncer console a bit.

Getting ready
We need to know how to connect to PgBouncer instead of PostgreSQL, so check the
Connecting to PgBouncer recipe for a refresher. In this section, we will use something known
as a pseudo-database. When in use, PgBouncer reserves the database name pgbouncer
for its own internal purposes to access its administration console. This database does not
actually exist, but it will still connect from the perspective of our PostgreSQL client.

In the highly unlikely event that the pgbouncer database actually exists within your
PostgreSQL installation, we recommend renaming it to avoid confusion.

How to do it...
Follow these steps to get the status of PgBouncer connections to PostgreSQL:

1.	 Connect to the pgbouncer database on port 6432 of the PostgreSQL server as the
postgres user.

2.	 Issue the following query:
SHOW SERVERS;

http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general
http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general

Pooling Resources

98

How it works...
By connecting to the pgbouncer database name on port 6432, we connect to PgBouncer
using a simulated database that doesn't actually exist. This name tells PgBouncer that we
want the administration console. If we configured PgBouncer according to the Configuring
PgBouncer safely recipe, the postgres user is the only database user allowed to use
the console.

The author wishes that this information was also available as a view so that we could fetch
only interesting fields, but the PgBouncer syntax is easier to type. By sending SHOW SERVERS
as a query, PgBouncer responds with a list of every connection to PostgreSQL it is using to
fulfill client requests. Fields of particular interest include the following:

ff user: This column lists the users that are currently connected to the database.
If we used advanced settings, this could differ from the user that connected
to PgBouncer.

ff database: This shows the database that the connection is attached to. A PostgreSQL
server can host many databases, so this is very helpful information. Again, advanced
settings can change this from the database name used to create the connection to
PgBouncer.

ff state: This column answers the question: is the connection active, used, or idle?
Connections are marked as active when they are assigned to a client. Connections
marked as used have handled at least one query, but haven't been checked for
validity. Used connections are still idle and available, they merely haven't been
verified by PgBouncer. The idle status means the connection is verified as available,
and it hasn't been used recently. On active servers, PgBouncer connections will
almost never be marked as idle.

ff connect_time: It displays the exact time PgBouncer created the connection to
PostgreSQL. We can use this to determine connection freshness. If most of these
are recent, it means that the connections are probably opening and closing too
frequently. Connections to PostgreSQL are relatively expensive to allocate, and
connection pools are partially meant to reduce this cost. We may need to consider
changing some of the PgBouncer connection timeout settings based on the contents
of this field.

ff request_time: This column provides the last time the listed connection handled
query activity. On busy servers, this should always be a very recent timestamp.
Otherwise, we are potentially wasting server resources by maintaining unnecessary
idle connections. In this case, we need to examine the pool size settings and consider
reducing them. Alternatively, there may be a problem with the marked PostgreSQL
connection, or the assigned client can be frozen. This indicates that we need to check
the database health, or ask the development or support departments to investigate
applications for normal operation.

Feel free to browse the PgBouncer documentation for other available fields.

Chapter 3

99

There's more...
We like referring readers to external resources on occasion. Unfortunately, the PgBouncer
documentation is incomplete in important ways. Our explanation of the state field is a good
example of this. The interpretation we used for that field came from a post in the mailing list
by one of the authors. Keep this in mind when seeking assistance not covered by this book.
Mailing lists can fill a huge void left by spartan documents meant to cover bare necessities.

See also
We know that we've listed these documentation links before, but we're still working with
complicated configuration settings and usage. We've listed them here again for convenience:

ff PgBouncer Usage: http://pgbouncer.projects.pgfoundry.org/doc/
usage.html.

ff PgBouncer General Mailing List: http://lists.pgfoundry.org/mailman/
listinfo/pgbouncer-general.

Listing PgBouncer client connections
In addition to PostgreSQL server connection status, PgBouncer's administration console can
provide details regarding clients within its queue. Maintaining a healthy and active PgBouncer
queue is the key to high throughput over limited resources. In this case, we artificially limited
the amount of server connections available to clients, which means that there is potential for
stubborn or broken clients to prevent connection turnover.

This, of course, will effectively remove the connections from the pool, creating a bottleneck
that could lead to choking transaction throughput. Let's explore the PgBouncer console
a bit more to learn what it knows about the database clients attempting to communicate
with PostgreSQL.

Getting ready
In this section, we will continue our previous exploration into the PgBouncer console.
Check the Listing PgBouncer client connections recipe for a refresher. Remember to
use the pgbouncer database name to enter the administration console.

http://pgbouncer.projects.pgfoundry.org/doc/usage.html
http://pgbouncer.projects.pgfoundry.org/doc/usage.html
http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general
http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general

Pooling Resources

100

How to do it...
Follow these steps to get the status of PgBouncer clients:

1.	 Connect to the pgbouncer database on port 6432 of the PostgreSQL server as the
postgres user.

2.	 Issue the following query:
SHOW CLIENTS;

How it works...
As before, we connect to the pgbouncer database name on port 6432 to use the
administration console. By sending SHOW CLIENTS as a query, PgBouncer responds with a
list of every client using or waiting for a PostgreSQL connection. Fields of particular interest
include the following:

ff user: This displays the user that is currently connected to the database. If we used
advanced settings, this could differ from the user that is connected to PgBouncer.

ff database: This column indicates the database that the client is attached to.
A PostgreSQL server can host many databases, so this is very helpful information.
Again, advanced settings can change this from the database name used to create
the connection to PgBouncer.

ff state: This column shows whether the connection is active, used, waiting, or idle.
Clients are marked as active when they are currently using a connection. If the client
is queued prior to a connection becoming available, they are marked as waiting. The
used and idle status assignments do not seem to actually be valid for the client state,
so don't worry about them.

ff connect_time: This provides the exact time PgBouncer created the connection
to PostgreSQL. Although we specifically ask about the client status, this element is
associated with the connection to PostgreSQL. Since connections are recycled, they
can be hours or even days old. In determining health, we actually want slightly older
connections in this list, as that suggests low connection turnover, and connection
turnover can be expensive.

ff request_time: This lists the last time the listed client transmitted query activity.
On busy servers, this should always be a very recent timestamp. Otherwise, we are
potentially wasting server resources by maintaining unnecessary idle connections.
In this case, we need to examine the pool size settings and consider reducing them.
Alternatively, there may be a problem with the marked PostgreSQL connection, or
the assigned client could be frozen. This will indicate that we need to investigate the
database health, poll the development, or support departments to check applications
for normal operation.

Chapter 3

101

Feel free to browse the PgBouncer documentation for other available fields.

There's more...
If this recipe looked familiar, that's because the important fields are exactly the same as those
in the Listing PgBouncer server connections recipe. Though their interpretation is slightly
different, and the list itself is probably more dynamic due to active client states, it's effectively
the same data.

The primary difference is the waiting state that we discussed, which doesn't exist when listing
server connections. If there are too many clients waiting for too long, it can be a sign of a
potential issue. Perhaps the connection pool is too small, resulting in insufficient connection
assignments. Maybe a client has gone haywire and is opening hundreds of connections and
never closing them, which could lock up all the available connections in the pool.

Whatever the case is, we look for regular state transitions between waiting and active. It
is unfortunate that there is no field that details the connection assignment time. With this
datum, we can readily discover the clients that are unfairly monopolizing database resources.

See also
We know that we've listed these documentation links before, but we're still working with
complicated configuration settings and usage. We've listed them again for convenience:

ff PgBouncer Usage: http://pgbouncer.projects.pgfoundry.org/doc/
usage.html

ff PgBouncer General Mailing List: http://lists.pgfoundry.org/mailman/
listinfo/pgbouncer-general

Evaluating PgBouncer pool health
Though PgBouncer provides similar information regarding both server and client database
connections, the status and health of each pool are also available. If we didn't already clarify,
PgBouncer pools are separated by username, database name, and the server's hostname.
Thus, each PostgreSQL server may have as many connection pools as there are different
databases a user might access via PgBouncer.

PgBouncer supplies somewhat detailed information when seeking server or client status.
However, these are not database views, so we can't summarize or aggregate the output to
make it more usable. When running a highly available database server, we need to monitor
aggregate values, if possible, to watch for potential patterns of misconfiguration or abuse.

http://pgbouncer.projects.pgfoundry.org/doc/usage.html
http://pgbouncer.projects.pgfoundry.org/doc/usage.html
http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general
http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general

Pooling Resources

102

Unfortunately, since PgBouncer acts as a proxy, we can't rely on the pg_stat_activity
system view for summaries. This means PgBouncer and its administrative console are the
main sources of debugging and status information. Thankfully, there is quite a lot of useful
information. Let's explore.

Getting ready
As before, we continue to use the PgBouncer administration console, so we recommend
following the Listing PgBouncer client connections recipe before continuing here.
Remember to use the pgbouncer database name to enter the administration console.

How to do it...
Follow these steps to get the status of PgBouncer clients:

1.	 Connect to the pgbouncer database on port 6432 of the PostgreSQL server as the
postgres user.

2.	 Issue the following query for pool status:
SHOW POOLS;

3.	 Issue the following query for pool statistics:
SHOW STATS;

How it works...
Connecting to the pgbouncer database name on port 6432 connects us to PgBouncer using
a simulated database that doesn't actually exist. This name tells PgBouncer that we want the
administration console. If we configured PgBouncer according to the Configuring PgBouncer
safely recipe, the postgres user is the only database user allowed to use the console.

By sending SHOW POOLS as a query, PgBouncer responds with a row for every PostgreSQL
database to which it is acting as a proxy. Each column is a summary for various client and
server metrics, mainly related to activity or status. Here is a detailed summary of the columns:

ff cl_active: This column shows the number of clients that are currently assigned
a server connection. This number should not exceed the value we get by adding
default_pool_size and reserve_pool_size from the pgbouncer.ini
configuration file. If the total is regularly below the maximum, we may consider
reducing the pool size.

ff cl_waiting: It denotes the number of clients waiting for a server connection.
Since this is a snapshot of the current activity, the number can fluctuate drastically
between checks. However, if it regularly remains above zero, and the maxwait
column is increasing, the pools are probably too small.

Chapter 3

103

ff sv_active: This column details how many PostgreSQL server connections are
assigned to the PgBouncer clients. These clients are not necessarily active, just
associated with the connection. The cl_active and sv_active columns should
always be equal.

ff sv_idle: This column provides a count of PostgreSQL server connections that are
not in use at all. PgBouncer marks connections as idle after it sends a reset query to
clear out the allocated objects and settings. Thus, not only is the connection idle but
it's also immediately ready for assignment. If there are several of these, it's because
PgBouncer doesn't need them; think about reducing the pool size.

ff sv_used: This indicates the count of dirty PostgreSQL server connections. These
connections are actually idle, but they have not yet been reset by PgBouncer for
reuse. This means we need to add sv_used to sv_idle to get the real count of
idle connections for this database and user combination. As with sv_idle, a large
amount of used connections indicate reducing pool size limits.

ff maxwait: This column outlines the maximum number of seconds a client has waited
for a connection. Combined with the cl_waiting cumulative total, we can infer
either an excess or shortage of throughput based on the connection availability. This
statistic is constantly updated, so if no clients are waiting, it will show zero. This kind
of live feedback allows us to adjust our pool sizes to ideal levels.

By sending SHOW STATS as a query, PgBouncer responds with a row for every PostgreSQL
database to which it is acting as a proxy. Each column is a summary of various network and
time metrics. Here is a detailed summary of these columns:

ff total_requests: This column represents the total number of transactions that
PgBouncer has directed through the pool. The documentation suggests that the
SQL requests are summarized here, but this is probably a miscommunication. Tests
clearly show that only queries outside of transactions, or transactions themselves,
increase the counter. As transactions are more expensive than simple queries, they
can represent a larger ratio of excess work.

ff total_received: This column tracks the total amount of data in bytes sent to
PgBouncer through the network for this database and user combination. In order
to have a healthy pool, we need to illustrate high throughput. Thus, we must also
examine the next column.

ff total_sent: This column tracks the total amount of data in bytes sent from
PgBouncer to the clients accessing the database. The ratio of this value to
total_received can indicate that PgBouncer is handling too many large
queries, which reduces pool connection throughput. It's also possible that a
misconfigured batch job is improperly accessing the database via PgBouncer.

ff total_query_time: This is the amount of time in microseconds that PgBouncer
has spent communicating with a client in this pool. This can be a particularly difficult
column to read because it's cumulative, based on all clients accessing PostgreSQL
connections. For now, we suggest ignoring it.

Pooling Resources

104

ff avg_req: This column shows the average number of requests per second since the
last stat update. As with total_requests, this is the amount of transactions, not
queries, handled by PgBouncer.

ff avg_recv: This column details the average number of bytes sent to PgBouncer by
each client since the last stat update. In low activity pools, this may reset to zero
between samples.

ff avg_sent: This column indicates the average amount of bytes that PgBouncer has
sent to each client since the last stat update. In low activity pools, this may reset to
zero between samples. Along with avg_recv, we can again obtain a ratio of sent
bandwidth versus received to look for potential excessive query output.

ff avg_query: This column provides the average query duration in microseconds for
all connections in this pool. This is a much more useful metric than total_query_
time as it actually tells us the average throughput of the pool. If the average query
time is 50 ms, for example, we can expect each PostgreSQL connection to handle 20
clients per second. This is valuable data to properly size the connection pools.

Feel free to browse the PgBouncer documentation for other available fields.

There's more...
We've mentioned adjusting pool size several times in this recipe. Since pgpool acts as a single
proxy for several database and user combinations, we can actually override the default in
cases where pools require more direct management. For instance, if we change our entry in
/etc/pgbouncer.ini for the postgres database to postgres = host=localhost
pool_size=5, no user connecting to the postgres database can use more than five
connections, even if the default is 50 per pool. Keep this in mind when analyzing the pools,
clients, servers, and other statistics that PgBouncer collects on our behalf. We will most
likely need several adjustments before reaching an ideal state that won't overwhelm the
PostgreSQL server, yet adequately supplies client requirements.

See also
We know we've listed these documentation links before, but we're still working with
complicated configuration settings and usage. We've listed them again for convenience:

ff PgBouncer Usage: http://pgbouncer.projects.pgfoundry.org/doc/
usage.html.

ff PgBouncer General Mailing List: http://lists.pgfoundry.org/mailman/
listinfo/pgbouncer-general.

http://pgbouncer.projects.pgfoundry.org/doc/usage.html
http://pgbouncer.projects.pgfoundry.org/doc/usage.html
http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general
http://lists.pgfoundry.org/mailman/listinfo/pgbouncer-general

Chapter 3

105

Installing pgpool
The next pooling resource we will explore is named pgpool-II, but we'll refer to it simply
as pgpool. This is another popular connection proxy, but it predates PgBouncer by almost
a year, having been available since late 2006. The scope of pgpool is also much larger,
providing functionality such as query-based replication, connection pooling, load balancing,
parallel-query, and more.

Perhaps surprisingly, we won't discuss most of these features in this book. Interesting as they
may be, these advanced features don't directly apply to building a highly available PostgreSQL
cluster. Of course, we always encourage experimentation.

One feature pgpool exposes, which is directly relevant to this book, is server pooling. What
does this mean? If we have two PostgreSQL servers, we can make use of a virtual IP address
so that clients need not modify configuration files when we switch the primary database
server. However, in order to move the IP address between servers, it must first be removed
from one server and recreated on the other. This disconnects all active clients and causes a
small disruption in availability.

However, pgpool can pool servers so that the active primary server is hidden from database
clients. We can promote the secondary within pgpool, and it will handle failover internally.
From the application or client's perspective, the database was never offline.

The first step to gain this ability is installation. The pgpool proxy is so popular that many Linux
systems package it along with other PostgreSQL tools, so we will cover some of the more
popular distributions. For completeness, we also intend to cover pure source installs since
that means we can utilize the latest release, regardless of distribution.

Getting ready
For the sake of completeness, obtain a copy of the latest pgpool source code. At the time
of writing this book, the latest version is 3.3.2, released on November 29, 2013.

In order to properly compile the source code, we need PostgreSQL development
libraries in addition to the normally installed system binaries. For example, to build
properly on a Debian- or Ubuntu-based system, we need to install libraries by executing
this at the command line:

sudo apt-get install postgresql-server-dev-9.3

Later, we simply need a root-capable user to install PgBouncer as a system-wide service.

Pooling Resources

106

How to do it...
To install in a Debian- or Ubuntu-based system, execute this command:

sudo apt-get install pgpool2

To install in a CentOS, Fedora, or other RHEL-based systems, execute this command:

sudo yum install pgpool-II-93

Otherwise, follow these steps to complete a full source-based installation:

1.	 Use these commands to extract the pgpool source and enter the source directory:
tar -xzf pgpool-II-3.3.2.tar.gz

cd pgpool-II-3.3.2

2.	 Next, build and install the actual software with these commands:
./configure --prefix=/usr --sysconfdir=/etc/pgpool/

make

sudo make install

3.	 Create a location where pgpool can maintain activity logs with these commands:
sudo mkdir /var/log/pgpool

sudo chown postgres /var/log/pgpool

4.	 Create a directory where pgpool can keep its service lock file with these commands:
sudo mkdir /var/run/pgpool

sudo chown postgres /var/run/pgpool

5.	 Copy the init/pgpool initialization script from this chapter's provided source code
into the /etc/init.d directory on the server.

6.	 Change the copied initialization script to make it executable with this command:
sudo chmod a+x /etc/init.d/pgpool

7.	 Finally, add the service to system startup and shutdown:

�� For Debian or Ubuntu systems, use this command: sudo update-rc.d
pgpool defaults

�� For CentOS, Fedora, or RHEL systems, use this command: sudo
chkconfig --add pgpool

Chapter 3

107

How it works...
It's very likely that any system with vendor-supplied PostgreSQL packages also provides
packages for pgpool. These versions are likely to install to expected directories, including
initialization scripts and basic working configuration files. This is definitely not the case with
the source distribution.

If, for any reason, we would rather install the source package, we have a lot of work ahead.
Assuming that we downloaded a version from the pgpool project page, we start the process
by extracting the source from the archive, and then enter the resulting directory to perform the
necessary installation steps.

The first of these steps is to compile the source into binaries and libraries. The pgpool
configure script is fairly standard, so we can change the location of the configuration
files with the sysconfdir flag. For the purposes of these instructions, we do not need to
alter any other installation or compilation settings.

To get a list of all the parameters recognized by the pgpool build process,
issue this command while in the source directory:
./configure –help

This applies to most software that use configure scripts.

Later, regular make and make install commands as a root-capable user, distributes
the software to all expected locations within the operating system so that they match the
PostgreSQL installation.

When we launch pgpool, it will try to log connection and service activity to /var/log/
pgpool, so we need to create that location and ensure it's writable by the postgres user.
Similarly, pgpool keeps track of its process ID by saving information in /var/run/pgpool.
Again, this location should exist and be writable by postgres.

The pgpool source code provides a fairly robust initialization script to start and stop the
service, but it only works properly in Red Hat derivatives such as Fedora, CentOS, or Scientific
Linux. Also, it doesn't account for the location flags defined by the source configure script,
so it would require quite a bit of manual modification to be functional.

Thus, we wrote a generic initialization script that should work on any Linux distribution. This
script is included in the code accompanying this chapter, so feel free to use it instead of
attempting to locate or build one from scratch. If we move it into the /etc/init.d directory
and mark it as executable, standard operating system tools will be able to manage pgpool.

Finally, we add the service to the list of other services that start or stop when the server
is shut down or booted up. This ensures pgpool is always available, and we don't have to
remember to start or stop it ourselves. Depending on our Linux distribution, the command
that registers the script will vary, so we supplied two very common samples.

Pooling Resources

108

There's more...
As with PgBouncer, we provided a very similar initialization script for pgpool. While the pgpool-
supplied script is very capable, it does not account for operating systems based on Debian,
SUSE, Slackware, and several others. While distributions often supply their own control
scripts, anyone compiling from source is simply out of luck.

Thankfully, the initialization script that we supplied should support most major Linux
distributions. As usual, it is fully LSB compliant as well. We suggest using our script if at
all possible as it is specifically designed to facilitate other recipes in this book. Feel free to
examine its contents to see how and why we can make such a bold claim.

See also
ff The pgpool website is currently written as a large informative wiki. This makes finding

downloads a little more difficult than usual. We've listed the proper download location
so that you can easily obtain the software at http://pgpool.net/mediawiki/
index.php/Downloads.

Configuring pgpool for master/slave mode
When creating a highly available PostgreSQL server, one important element to consider is
server load. One database server, no matter how powerful its hardware may be, cannot scale
infinitely. Regardless of any frontend application-side caching, the database should be able to
weather cache failures or unexpected demand.

We can offset much of this risk by leveraging database replicas. Each replica is available
for read-only use, and applications are welcome to use them instead of the primary server.
Unfortunately, as the amount of replicas increase, the application must track the connection
settings for each, and it may even need to know which is currently configured as the
primary server.

Server additions, configuration changes, and deep knowledge of the database architecture
complicate the application layer and may result in connection management problems.
However, we've installed pgpool specifically to avoid mangling the application in order to fit
database needs.

The pgpool service provides load balancing through a mechanism designated master/slave
mode. Due to the design of PostgreSQL, pgpool always knows which server is the primary
server, and which servers can only accept read-only queries. This abstraction layer allows
applications to connect to pgpool and relinquish traffic management to its capable design.

http://pgpool.net/mediawiki/index.php/Downloads
http://pgpool.net/mediawiki/index.php/Downloads

Chapter 3

109

Getting ready
In order to properly demonstrate pgpool's master/slave mode, we suggest installing
PostgreSQL on two servers or virtual machines as a test. Then, configure one as the primary
and the second as a streaming replica. Chapter 6, Replication, specifically details how to
create and maintain PostgreSQL replicas.

Then, install pgpool on the primary server according to the Installing pgpool recipe. We also
need the calculated pool size from the Determining connection costs and limits recipe, so
keep it handy.

How to do it...
For these instructions, assume we have two servers. The primary server is located at
192.168.56.10 and the replicated server is at 192.168.56.20. Our PostgreSQL data
is located in the /db/pgdata directory. In addition, our calculated pool size is 25, with
a memory-imposed maximum of 350. Follow these steps to properly configure pgpool for
master/slave mode:

1.	 Bootstrap the configuration file with some basic defaults by executing the following
commands as a root-capable user:
cd /etc/pgpool/

cp pgpool.conf.sample-stream pgpool.conf

2.	 As a root-capable user, open the /etc/pgpool/pgpool.conf file for modifications.

3.	 Change the listen_addresses setting to read as follows:
listen_addresses = '*'

4.	 Search for backend_ in the configuration file. Erase all of the entries and replace
them with the following text:
Host number 1 (primary)
backend_hostname0 = '192.168.56.10'
backend_weight0 = 1
backend_data_directory0 = '/db/pgdata'
backend_flag0 = 'DISALLOW_TO_FAILOVER'

Host number 2 (replica)
backend_hostname1 = '192.168.56.20'
backend_weight1 = 1
backend_data_directory1 = '/db/pgdata'
backend_flag1 = 'DISALLOW_TO_FAILOVER'

Pooling Resources

110

5.	 Change the num_init_children setting to read as follows:
num_init_children = 25

6.	 Change the max_pool setting to read as follows:
max_pool = 10

7.	 Find the replication_mode setting as follows, and make sure it reads:
replication_mode = off

8.	 Find the load_balance_mode setting as follows, and make sure it reads:
load_balance_mode = on

9.	 Find the master_slave_mode setting as follows, and make sure it reads:
master_slave_mode = on

10.	 Find the master_slave_sub_mode setting as follows, and make sure it reads:
master_slave_sub_mode = 'stream'

11.	 Find the parallel_mode setting as follows, and make sure it reads:
parallel_mode = off

12.	 Start the pgpool service by executing the following at the command line as a root-
capable user:
sudo service pgpool start

How it works...
The first thing we do is copy the pgpool.conf.sample-stream file to act as our default
configuration settings. This file has already been customized to contain several of the
settings we need for pgpool to operate in master/slave mode. Later, we open it to make
a few modifications and double-check to ensure that all the necessary settings are correct.

The first setting we change is the listen_addresses value. The default value of
localhost will only allow connections that originate from the server where pgpool is
installed. Since pgpool is supposed to act as a connection proxy, this severely limits its
functionality. The setting we used will allow it to listen on all network interfaces available to
the server.

The next thing we do is create two entries for PostgreSQL server hosts. This allows pgpool to
connect to both the primary database and the replica. There are two settings that may be
non-obvious in their intent.

Chapter 3

111

The first is backend_weight, which allows us to customize the ranking of each database
server. Higher ranks mean a greater ratio of database traffic from pgpool. With this, more
powerful servers will handle more client connections, or we can reduce query pressure on an
overwhelmed server.

The next is backend_flag, which currently has only two possible values. The default value
of ALLOW_TO_FAILOVER tells pgpool that the listed server is part of the automated failover
system. Properly configuring the failover system is beyond the scope of this recipe, so we
disable that for now by using the value DISALLOW_TO_FAILOVER.

Next, we need to limit the potential size of the connection pool. We start the process by
setting num_init_children to 25 to reflect our calculated ideal pool size. Next, we limit
the number of pools by setting max_pools to 10. This means there could be up to 250
PostgreSQL connections to each server, lower than our maximum of 350.

Finally, we ensure that replication_mode and parallel_mode are disabled, while
load_balance_mode and master_slave_mode are enabled. Replication mode is what
pgpool uses to keep servers in sync when there is no other replication mechanism available.
It will just interfere with our setup. Parallel mode requires the replication mode, so we can't
use that either.

When pgpool is using load balancing, it honors backend_weight for each server. By
connecting to pgpool, database clients can potentially access one of several PostgreSQL
databases. Once a client is assigned to a server, it will never deviate until it disconnects.
This prevents excessive connection management by pgpool and avoids race conditions
based on replication pace of each PostgreSQL server.

When using master/slave mode with a database replica, we must set master_slave_sub_
mode to stream. This tells pgpool to use regular PostgreSQL replication status functions
to differentiate primary PostgreSQL servers from replicas. With this knowledge, pgpool can
directly write queries to the primary node, while replicas absorb read-only activity.

Once the settings are saved, we start pgpool. Once we do that, it will watch port 9999 on the
same server where the primary database is running, assuming that we installed it there.

There's more...
Perceptive readers may notice that this is very different from how PgBouncer manages pools.
Each pool is still defined by the user login and database name, but max_pools is actually
a hard limit. Once ten users and database combinations are allocated due to incoming
connections, there can be no more. Further more, each pool can only have a maximum of
num_init_children clients.

Pooling Resources

112

Unlike PgBouncer, pgpool does not queue excess connections beyond this maximum. If we
start noticing application problems due to insufficient connections, we may need to increase
num_init_children. Despite the name, pgpool is more of a server abstraction layer than a
database pool.

See also
The pgpool software is extremely complicated due to its extensive feature-set. We strongly
recommend perusing its manual and the following indicated tutorial:

ff Pgpool Manual: http://www.pgpool.net/docs/latest/pgpool-en.html.

ff pgpool-II Tutorial (watchdog in master-slave mode): http://www.pgpool.net/
pgpool-web/contrib_docs/watchdog_master_slave/en.html.

Testing a write query on pgpool
The load-balancing mode in pgpool presumably distributes connections according to server
weight. Then, master/slave mode defines which servers are read-only as opposed to writable.

But can we depend on this behavior? We should at least verify these claims before using such
a configuration in a production environment. Our uptime depends upon it.

Getting ready
Make sure pgpool is installed and configured according to the Installing pgpool and
Configuring pgpool for master/slave mode recipes. We will follow these two recipes by
testing a pool setup with write activity, so we need a fully functional pgpool environment.

To simplify this recipe, perform all the tests as the postgres system user. To facilitate this,
we may need to set all the pg_hba.conf authentication types to trust, though we strongly
suggest user and password combinations instead.

If our primary PostgreSQL server is on 192.168.56.10, we can connect to pgpool by
using port 9999. With psql, we can connect to the postgres database through pgpool
with this command:

psql -p 9999 -h 192.168.56.10 postgres

How to do it...
Follow these steps to test as the postgres database user. Feel free to substitute
where appropriate:

http://www.pgpool.net/pgpool-web/contrib_docs/watchdog_master_slave/en.html
http://www.pgpool.net/pgpool-web/contrib_docs/watchdog_master_slave/en.html

Chapter 3

113

1.	 Connect to the primary database and create a test table with the following SQL:
CREATE TABLE foo (bar INTEGER);

2.	 Connect to pgpool and issue a query that will write to the test table with the
following SQL:
INSERT INTO foo SELECT generate_series(1, 100);

3.	 Execute the following bash snippet at the command line to test the
INSERT redirection:
for x in {1..10}; do
 psql -h 192.168.56.10 -p 9999
 -U postgres -d postgres \
 -c "INSERT INTO foo SELECT generate_series(1, 100)"
done

4.	 Execute the following bash snippet at the command line to test the DELETE redirection:
for x in {1..100}; do
 psql -h 192.168.56.10 -p 9999 \
 -U postgres -d postgres \
 -c "DELETE FROM foo WHERE bar=$x"
done

How it works...
In order to successfully test the capabilities of pgpool, we will try a couple of different
scenarios that cause PostgreSQL to write to the database. If we tried to write to the replica
instead of the primary server, we will get an error like this:

ERROR: cannot execute INSERT in a read-only transaction

Our first step is to create a table where we can try to insert data. We connect directly to the
primary server for this step so that we know the table exists and that pgpool didn't get a
chance to taint our results. The test table has only one column, so we can populate it with the
generate_series PostgreSQL function.

The first test we attempt is with a single connection to pgpool that we create manually.
Since the server weight is equal for both the primary and replica servers, we have a 50
percent chance of being assigned to the read-only replica server. This test should succeed,
but there's still a 50 percent chance that it was just a coincidence.

Therefore, our second test runs the same INSERT statement ten times in a loop. Each psql
line is a separate connection attempt, so each should carry a 50 percent chance of being
directed to the read-only server. Yet, all of these tests will also succeed.

Pooling Resources

114

Finally, we run one final loop that will delete all the rows we inserted, and this time the loop
will invoke 100 times. Again, all of these are separate connection attempts, and all of them
will execute without an error.

There's more...
There is one caveat to this functionality. It is not uncommon for databases to perform the
write activity within a function body. For example:

CREATE FUNCTION test_insert()
RETURNS VOID AS
$$
 INSERT INTO foo SELECT generate_series(1, 100);
$$ LANGUAGE SQL;

By creating this function, we obfuscate the INSERT statement enough that pgpool won't
recognize it. This means that pgpool will improperly send the query to a read-only server and
produce an error. We can avoid this by using the black_function_list configuration
setting. For example, if we add our new function to this setting, it resembles this:

black_function_list = 'currval,lastval,nextval,setval,test_insert'

Now, pgpool will understand that queries which include a call to test_insert should
only execute on the primary node. This configuration setting also honors regular expressions,
so it's a very good idea to follow a naming scheme when building functions that may alter
database contents.

Swapping active nodes with pgpool
With pgpool installed, we have an abstraction layer above PostgreSQL, which hides the active
node from the client. This allows us to change the primary node so that we can perform
maintenance, and yet we never have to actually stop the database.

This kind of design will work best when pgpool is not installed on one of the PostgreSQL
servers, but it has its own dedicated hardware or virtual machine. This allows us full control
over each PostgreSQL server, including the ability to reboot for kernel upgrades, without
potentially disrupting pgpool.

Let's discuss the elements involved in switching the primary server with a replica so that we
can have high availability in addition to regular maintenance.

Chapter 3

115

Getting ready
Make sure pgpool is installed and configured according to the Installing pgpool and
Configuring pgpool for master/slave mode recipes. We will need two nodes so that we can
promote one and demote the other.

Next, we will ready the operating system so that pgpool can invoke remote commands. If we
have two PostgreSQL servers at 192.168.56.10 and 192.168.56.20, we should execute
these commands as the postgres system user on each, as shown:

ssh-keygen

ssh-copy-id 192.168.56.10

ssh-copy-id 192.168.56.20

The ssh-keygen command will prompt for a key password. This can
make SSH keys more secure, but it also makes them extremely difficult
to use within an automated context. For this and future SSH keys, use a
blank password.

We will also use scripts located in the pgpool_scripts directory of the code for this
chapter. Have these scripts available before continuing.

How to do it...
Assuming our database is located at /db/pgdata, follow all of these steps to enable and
configure automatic and forced pgpool primary server migration:

1.	 Copy the scripts from the pgpool_scripts directory of this book to the PostgreSQL
cluster data directory.

2.	 Execute this command as a root-level user to make them executable:
chmod a+x /db/pgdata/pgpool_*

3.	 Execute the following at the command line as a root-capable user:
sudo sed -i "s/'DISALLOW/'ALLOW/" /etc/pgpool/pgpool.conf

4.	 Execute these commands as a root-capable user to enable pgpool control operations,
where pass is a password defined for pgpool administration:
mv /etc/pgpool/pcp.conf.sample /etc/pgpool/pcp.conf
echo postgres:$(pg_md5 pass) >> /etc/pgpool/pcp.conf

5.	 Edit the /etc/pgpool/pgpool.conf file and make the following changes:
failover_command = '%D/pgpool_failover %d %P %h %H %D %R'
recovery_1st_stage_command = 'pgpool_recovery'

Pooling Resources

116

6.	 Execute this command as a root-capable user to restart pgpool:
sudo service pgpool restart

7.	 Detach the primary node from pgpool with this command, where pass is the
password we created in step four:
pcp_detach_node 10 192.168.56.10 9898 postgres pass 0

8.	 Perform some fake maintenance as the postgres user on the primary node with
this command:
pg_ctl -D /db/pgdata status

9.	 Reattach the primary node as a replica with these commands, again using pass as
the pgpool control password:
pcp_recovery_node 10 192.168.56.10 9898 postgres pass 0

pcp_attach_node 10 192.168.56.10 9898 postgres pass 0

How it works...
pgpool depends on external helper scripts to perform remote operations on the servers it
proxies. The pgpool source includes a few examples, but they use antiquated commands and
may not work on our system. The scripts included in this book should work on most major
Linux distributions. Thus, we move them into the PostgreSQL data directory and mark them as
executable. They must reside here for pgpool to invoke them.

Next, we enable failover on all nodes by changing nodes marked DISALLOW_TO_FAILOVER
to ALLOW_TO_FAILOVER with a quick command-line operation. Without this change, pgpool
will not perform any migrations, regardless of how many nodes have crashed or how many
times we request one.

Next, pgpool won't let us use the control commands until we create a user and password.
This is not the same as any PostgreSQL user or operating system users. We use postgres
to simplify, but any username will work. We encrypt the password with pg_md5, so pgpool will
check against the encrypted value it expects.

Then, we need to tell pgpool that we defined scripts for failover and recovery operations. We
do that by setting failover_command and recovery_1st_stage_command properly in
pgpool.conf. Perceptive readers may note that we didn't change any settings to include the
pgpool_remote_start script. This is because pgpool specifically seeks it by name. Don't
forget to install it with the others. After we restart pgpool, all of our changes are incorporated,
and failover should work as expected.

Chapter 3

117

By calling the pcp_detach_node command on the primary server at port 9898, pgpool
removes the indicated node from the active list of available servers. If the server is the
primary node, it automatically promotes the replica to act as the new primary. Our version
of the failover script also shuts down the primary PostgreSQL server to prevent unpooled
connections from making changes that won't be caught by the newly promoted server.

At this point, we can do anything to the PostgreSQL server, including upgrade of
the PostgreSQL software to the latest bugfix for our current version. Later, we use
pcp_recovery_node to tell pgpool that it should refresh node zero with a copy of the
node currently serving as the primary server. If the command succeeds, we can reattach
it to the pool by invoking pcp_attach_node.

There's more...
If pgpool doesn't seem to call our scripts, we may need to install the pgpool_recovery
extension. Assuming that we still have the pgpool source available, follow these steps as a
root-capable user to install the pgpool PostgreSQL extension library:

cd pgpool-II-3.3.2/sql/

make

sudo make install

Then, connect to the template1 PostgreSQL database and install the pgpool_recovery
extension with the following SQL query:

CREATE EXTENSION pgpool_recovery;

See also
ff The steps in this recipe are particularly sensitive. If you require clarification not

covered by this recipe, you can find the pgpool manual at http://www.pgpool.
net/docs/latest/pgpool-en.html.

Combining the power of PgBouncer
and pgpool

While pgpool works well as an abstraction layer above PostgreSQL, its handling of excess
client connection attempts is less than ideal. If the maximum number of clients per pool
was twenty, for instance, any connections over twenty with the same login credentials and
target database will simply wait indefinitely. Further, there is no concept of transaction-level
connection reuse.

http://www.pgpool.net/docs/latest/pgpool-en.html
http://www.pgpool.net/docs/latest/pgpool-en.html

Pooling Resources

118

PgBouncer can allow prospective client connections to number in the thousands and still
maintain high throughput. We can also tell it to reuse connections after any client completes
a transaction so that clients do not have to disconnect between operations. Yet, it cannot
balance connections across multiple PostgreSQL servers, and it certainly has no concept of
primary server or replica. In this respect, it really is a bouncer, holding users at the door with
minimal knowledge of what's inside the building.

Until there's a product that combines the best elements of these two services, we can do so
manually. This way, we get the best of both utilities, while still maintaining high availability and
isolation of the PostgreSQL cluster from the outside world.

Getting ready
Install pgpool according to the instructions in the Installing pgpool recipe. Then, install
pgbouncer according to the instructions in the Installing PgBouncer recipe. Then, configure
both as described in the Configuring pgpool for master/slave mode and Configuring
PgBouncer safely recipes.

With that done, we simply need to change a few configuration settings to gain full integration.

How to do it...
Assuming PgBouncer and pgpool are installed on the same node as the primary server at
192.168.56.10, we can combine PgBouncer and pgpool with one change. Follow these steps:

1.	 Open the /etc/pgbouncer/pgbouncer.ini configuration file, and add the
following line under the [databases] section:
* = host=192.168.56.10 port=9999

2.	 Then, reload PgBouncer with the following command:
sudo service pgbouncer reload

How it works...
We did much of the really hard work in all the previous installation and configuration
instructions. By adding a single line in the pgbouncer.ini configuration file and reloading
Pgbouncer, every connection to PgBouncer will automatically pass through pgpool as well.

We now have automatic server load balancing and robust connection pooling.

Chapter 3

119

There's more...
When adding final touches to the configuration files, pay close attention to default_pool_
size in pgbouncer.ini and num_init_children in pgpool.conf. Since pgpool doesn't
like having more connections than num_init_children, no PgBouncer pool should exceed
this number of connections. Thus, the value of default_pool_size added to reserve_
pool_size should always be equal to or less than num_init_children in PgBouncer.

Troubleshooting

In this chapter, we will learn several techniques to track sources of poor performance or stop
potential outages before they occur. We will cover the following recipes in this chapter:

ff Performing triage

ff Installing common statistics packages

ff Evaluating the current disk performance with iostat

ff Tracking I/O-heavy processes with iotop

ff Viewing past performance with sar

ff Correlating performance with dstat

ff Interpreting /proc/meminfo

ff Examining /proc/net/bonding/bond0

ff Checking the pg_stat_activity view

ff Checking the pg_stat_statements view

ff Debugging with strace

ff Logging checkpoints properly

Introduction
A DBA managing a highly available database server is charged with a huge responsibility.
The amount of integration, speed of operations, and urgency behind resolving performance
degradation can be extremely stressful. Some personalities thrive under this kind of pressure,
while others will find it impossible to concentrate and will become paralyzed in fear.

4

Troubleshooting

122

We're not going to claim that every DBA in this position is a battle-weary veteran, typing
furiously to save the day while disaster looms. This kind of scenario only exists in movies and
often leads to compounding the original problem. In reality, a DBA's job includes many more
calculated reactions even when managing a transaction-heavy database with frightfully low
tolerance for downtime. The best tip we can give and the whole reason behind this book is to
have an expansive bag of tricks.

For the purposes of this chapter, our bag is full of common Linux utilities useful for
troubleshooting. With them, we approach system malfunctions like scientists. Given the
behavior of the database or the underlying operating system, it is our job to produce a
hypothesis for the cause. The tools serve as our instruments, ready to measure and sample,
to either prove or disprove until we successfully isolate and address the problem.

With enough practice, we can begin to expect certain output, given PostgreSQL's behavior.
Like a good mechanic who can diagnose an engine by its sound, we will hear the subtle tone
of distress deep in the database cluster and have an answer. The first step towards this goal is
to learn the tools.

Performing triage
When things go wrong or begin to look strange to an experienced eye, it is time to investigate.
But where do we start?

Is the RAID running in parity mode, thereby drastically reducing the I/O throughput? Is the
upstream switch saturated, robbing the database of bandwidth? Are we out of memory and
swapping to disk or are we causing memory reclamation threads to terminate processes?
Has the operating system task scheduler gotten overloaded and spiraled into oblivion?

Maybe! We've seen all of these scenarios and many more. We can't fix a problem that we are
unable to locate. Any time that we spend analyzing an unlikely path is ultimately wasted, and it
only increases downtime. We must take an inventory of the known symptoms and extrapolate
this evidence into one or more avenues of investigation.

Anything less is simply guesswork.

Getting ready
We do not need a spreadsheet for this. A computer with a network connection should be
enough to quickly rule out several possibilities. Enough practice will render this process
second nature and some checks unnecessary.

Chapter 4

123

How to do it...
When deciding how to analyze a possible system problem, consider the items in this checklist:

ff Can ping reach the PostgreSQL server?

ff Is it possible to use ssh to enter the server?

ff Do simple commands such as echo immediately return a command prompt?

ff Does uptime show the following:

�� A system load higher than the number of available CPUs

�� Whether the server has rebooted recently

ff Can psql connect to PostgreSQL locally?

ff Does the free command show the following:

�� Any swap space used?

�� Less free memory than used memory after accounting for cache?

ff Does the df command indicate that the database storage is:

�� Present and accounted for?

�� Used below 95 percent?

How it works...
With the exclusion of psql, all of the commands we use in this checklist are present on
almost every Unix system. They do nothing more than provide a very general idea of the
system's health.

If we can ping a server, that doesn't mean it is running. The network service is one of the first
things that the operating system starts and one of the last things it stops. The server can
be stuck somewhere in its boot process or equally frozen in a shutdown. It does indicate,
however, that something is available for further checks.

The next thing we try is to ssh to the server. If this command hangs indefinitely or returns
with any kind of error, the server is effectively unusable. At this point, we would request the
infrastructure or server administration departments to attempt to log in through the local
console. Unfortunately, a failed ssh attempt often means that the server requires a manual
reboot and further analysis. If we have a replication server, now would be a good time to use it
until we have a diagnosis.

The next thing we will check is shell responsiveness. Commands such as echo, ls, or
cat are frequently used and should return control immediately after completing. If there
is a significant delay, it's also likely that we experienced a long delay after logging in to the
server. This is usually caused by an overloaded CPU, but extremely high I/O can also result in
intermittent lag.

Troubleshooting

124

We can check the CPU tangentially using the uptime command. Its output looks like this:

08:53:57 up 9 days, 4:07, 12 users, load average: 9.38, 8.01, 6.53

This particular system has been up for 9 days, indicating that it hasn't rebooted recently.
If it had, this would be a sign that the system kernel might be at fault, since it can result in
unexpected system crashes and reboots. The last three numbers indicate how stressed the
CPU is at an average of 1, 5, and 15 minutes. If this server has only four CPUs, it is currently
overloaded, and we should consider upgrading it.

If we use psql while we are logged in to the server locally, we don't have to contend with
network overhead. If the server isn't running, we'll see output like this:

psql: could not connect to server: No such file or directory
 Is the server running locally and accepting
 connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

Output like this would demand investigation, starting with the PostgreSQL logs. If we
can connect, there are system views that we can analyze, which we will explain in the
subsequent sections.

The free command is very inexpensive, and its output tells us a lot. For example:

 total used free shared buffers cached

Mem: 2002 1559 443 0 153 1258

-/+ buffers/cache: 147 1855

Swap: 2043 0 2043

Invoked with the -m parameter, the free output is listed in megabytes. We can see that
this system has 2 GB of RAM, and only 147 MB is used after we account for disk cache and
buffers. We can also see that we are not using swap space. If the used column shows that
more than 50 percent of the system memory is allocated or any swap is active, we don't have
enough memory.

Finally, we use df to detail how much space we are using on our disks. Provided we know
the source of the database storage, we can immediately see how much space is used. For
example, this output suggests a problem:

Filesystem Size Used Avail Use% Mounted on

/dev/sda1 40G 5.6G 34.2G 14% /

/dev/sdc1 2T 1.9T 50M 97% /db

Invoked with the -h setting, the df output becomes human readable instead of a very large
number of kilobytes. We can instantly see that our database mount is nearly full, and the
amount of available space is so low that the database might actually be in danger.

Chapter 4

125

There's more...
These types of at a glance commands are our first means of defense. We need quick methods,
which do not require complex interpretation, to assess the server. Given that a problem exists,
one or more of these tests should show abnormal results right away. If not, more advanced
techniques are necessary. We will endeavor to describe as many of these as possible.

Installing common statistics packages
There are several common data-gathering tools, and each of them has its own place. Several
are already installed for extremely basic information, but for the purposes of this chapter, we
need more depth.

For instance, we may want to know the exact distribution of CPU resources, aggregate
views of memory paging volume, or disk I/O utilization. For more in-depth needs, we could
analyze specific processes for storage interaction or resource locks. If we weren't watching
at the exact time a problem occurred, we might want a historical record of various server
performance metrics.

In order to have all these capabilities, we must first install the requisite tools. We might
find it quite shocking that these tools are not installed by default, considering their role in
server administration.

Packages installed in this section will be referenced in all the subsequent
sections, so please, don't skip this section!

Getting ready
Red Hat-based systems such as Fedora, RHEL, CentOS, and Scientific Linux have a
prerequisite package that is not part of the included distribution repositories. To install one
of our statistic tools, we need to add the RepoForge library. Red Hat systems can do this
by obtaining the most recent RepoForge package for their OS version and architecture at
http://repoforge.org/use/.

Once the package is downloaded, it can be installed with this command as a root-level user:

sudo rpm -ivh rpmforge-release-*.rpm

http://repoforge.org/use/

Troubleshooting

126

How to do it...
Debian, Mint, or Ubuntu users can install the tools by executing this command as a
root-level user:

sudo apt-get install dstat iotop sysstat

Red Hat, Fedora, CentOS, and Scientific Linux users can install the tools by executing this
command as a root-level user:

sudo yum install dstat iotop sysstat

How it works...
Red-Hat-based systems do require a bit of preparation. However, Debian-based distributions
have all the necessary elements from the beginning. Once the software sources are
accounted for, the only command we need installs all three statistics and monitoring
tools simultaneously.

See also
As Red-Hat-based systems require extra work, we've listed two links that provide more
information on installing RepoForge on these systems:

ff RepoForge: http://repoforge.org/

ff CentOS—installing RPMforge: http://wiki.centos.org/
AdditionalResources/Repositories/RPMForge

Evaluating the current disk performance
with iostat

Due to the disparity in speed between storage and RAM, one of the first signs of distress that
a DBA will observe is directly related to disk utilization. A badly written query, an unexpected
batch-loading process, a forced checkpoint, overwhelmed write caches—the number of things
that can ruin disk performance is vast.

The first step in tracking down the culprit(s) is to visualize the activity. The iostat utility is
fairly coarse in that it does not operate at the process level. However, it does output storage
activity by device and includes columns such as reads or writes per second, the size of the
request queue, and how busy it is compared to its maximum throughput.

This allows us to see the devices that are actually slow, busy, or overworked. Furthermore, we
can combine this information with other methods of analysis to find the activity's source. For
now, let's explore the tool itself.

http://wiki.centos.org/AdditionalResources/Repositories/RPMForge
http://wiki.centos.org/AdditionalResources/Repositories/RPMForge

Chapter 4

127

Getting ready
As iostat is part of the sysstat package, we should ensure that the statistics-gathering
elements are enabled. Debian, Mint, and Ubuntu users should modify the /etc/default/
sysstat file and make sure that the ENABLED variable resembles this line:

ENABLED="true"

Red Hat, Fedora, CentOS, and Scientific Linux users should make sure that the SADC_
OPTIONS variable in /etc/sysconfig/sysstat is set to the following:

SADC_OPTIONS="-d"

Once these changes are complete, restart the sysstat service with this command as a root-
level user:

sudo service sysstat restart

How to do it...
Leverage some sample iostat output by following these steps:

1.	 Obtain the statistics of the disk activity every second, with this command:
iostat -d 1

2.	 Show 10 seconds of disk activity in megabytes per second with this command:
iostat -dm 1 10

3.	 Show extended disk activity in megabytes per second for the sda device with
this command:
iostat -dmx sda 1

How it works...
The iostat utility has a rather unique method of interpreting command-line arguments. If
no recognized disks are part of the command, it simply shows information about all of them.
After devices, it checks for timing statistics. To get a second-by-second status, we specify 1
second as the final argument. By providing the -d argument, we remove CPU utilization from
the report.

The default output rate of iostat is in kilobytes per second. Current hardware is often so fast
that these results can be almost too high to easily compare, so we set the -m parameter in
the second command to change the output to megabytes per second. We also take advantage
of the fact that the last two parameters are related to timing. The first parameter specifies
the interval, and the second is the number of samples. So, the second command takes 10
samples at the rate of one per second.

Troubleshooting

128

The last command adds two more elements. First, we place a disk device (sda) before the
timing interval. We can list as many devices as we want, and iostat will restrict the output to
not include any other devices. This is especially helpful in servers that can have dozens of disk
devices, thus making it hard to isolate potential performance issues. Then, we include the -x
argument, which lists extended statistics.

Without extended statistics, the output is not very useful. For example, watching the sda
device for 1 second will normally look like this:

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn

sda 806.59 3147.25 4742.86 5728 8632

The last two columns only list the cumulative activity for the sampling interval. This is
of limited use. However, the first three columns display the number of transactions per
second (tps) and how much data was either read from or written to that device per second.
Depending on the hardware we purchased, we might actually know its limits regarding these
measurements, so we have a basic idea of how busy it might be.

If we enable extended statistics with the -x argument, we gain several extra fields, including
the following:

ff r/s: This column lists the number of reads per second from the device. This was
previously aggregated into the tps field.

ff w/s: This column shows the number of writes per second to the device. This was
previously aggregated into the tps field.

ff avgqu-sz: This column describes the amount of requests in the disk's queue. If this
gets very large, the disk will have trouble keeping up with requests.

ff await: This column outlines the average time a request spends waiting in the queue
and being serviced, in milliseconds. An overloaded disk will often have a very high
value in this column as it is unable to keep up with requests.

ff r_await: This column details the average time read requests spend waiting in the
queue and being serviced, in milliseconds. This helps isolate whether or not the read
activity is overloading the disk.

ff w_await: This column depicts the average time write requests spend waiting in the
queue and being serviced, in milliseconds. This helps isolate whether or not the write
activity is overloading the disk.

ff %util: This column represents the percentage of time the device was busy servicing
I/O requests. This is actually a function of the queue size and the average time
waiting in the queue. It is also one of, if not the most important, metrics. If this is at
or near 100 percent for long periods of time, we need to start analyzing the sources
of I/O requests and think about upgrading our storage.

Chapter 4

129

There's more...
Our examples of iostat always include the -d argument to only show disk information.
By default, it shows both CPU and disk measurements. The CPU data looks like this:

avg-cpu: %user %nice %system %iowait %steal %idle

 9.38 0.00 16.67 11.46 0.00 62.50

This can be useful for analysis as well, though there are several other tools that also provide
this data. If we use the -c parameter instead of -d, we will see only the CPU statistics, and no
information about disk devices will be included in the output.

See also
ff Always examine the manual for the tools that we use in these recipes. In this case,

the manual for iostat is available by executing this command:
man iostat

Tracking I/O-heavy processes with iotop
Many DBAs and system administrators are familiar with the top command, which displays the
processes that use the most CPU or RAM. However, this does not help us find the processes
that cause high amounts of system I/O.

Fortunately, there is a command, much like top, that is designed specifically for displaying
the processes that make storage requests. The iotop utility displays a continuously updated
list of the processes and any I/O they are handling. Provided that the server is dedicated to
PostgreSQL, we can use this information to almost instantly identify one or more database
backends that make disk requests.

Just like top, processes are only sorted to the head of the list as long as their I/O continues
to limit its long-term usefulness. Let's learn more about iotop and see if we can benefit from
its functionality.

Getting ready
The iotop command can only be executed by root-level users, as it uses some kernel
resources available only to superusers. Be ready with the sudo command!

Troubleshooting

130

How to do it...
Follow these steps to obtain a sample output from the iotop command:

1.	 Enter interactive mode with this command (exit by pressing q):
sudo iotop

2.	 Obtain batch output for 10 seconds with this command:
sudo iotop -b -n 10

3.	 Restrict batch output to only active processes, include a timestamp, and suppress
the headers with this command:
sudo iotop -bot -qqq

How it works...
While it may be somewhat inconvenient to need superuser access to invoke iotop, we're
willing to make that sacrifice in this case. Our first command simply starts iotop like we
would use top interactively. We can sort the output into different columns with the arrow
keys, reverse the sort order by pressing the r key, and quit by pressing q. Of the columns
presented here, we may be interested in the following:

ff TID: This column provides the PID of the process that makes I/O requests. This can
be used to investigate or terminate the program.

ff DISK READ: This column illustrates the number of bytes read per second by the
listed process.

ff DISK WRITE: This column details the number of bytes written per second by the
listed process.

ff IO: This column shows the percentage of time that the listed process spent issuing
I/O requests.

ff COMMAND: This column depicts the name of the process that handles I/O. If this is a
master process, it might include command-line switches as well.

While this kind of use is informative for live troubleshooting, it's less applicable for historical
applications. Thus, for the second command, we add the -b argument to put iotop in batch
mode. This means that all the output is simply printed to the screen, which we can redirect
to a file if desired. In addition, we used the -n parameter to only obtain 10 readings—one for
each second—for later analysis.

Readers working along by trying these examples might notice that the amount of output in
batch mode is overwhelming. By default, iotop lists every process it can see, whether or
not it is actually utilizing disk resources. We can stop this behavior with the -o parameter, so
only active processes are included in any output. By adding the -t argument, we also gain a
timestamp that we can use to correlate disk activity across data-gathering techniques.

Chapter 4

131

The -q argument acts to suppress excessive iotop output. By specifying it once, iotop
only includes the column labels at the top of the output. If you specify it twice, it will never
include the column labels. If you specify it a third time, it will also remove the summary data
that iotop normally prints after every iteration. This type of output is ideal for importing into
reporting tools or even analyzing by hand by searching for interesting time periods.

There's more...
While the iotop data is not actually part of the statistics gathered automatically by the
sysstat package, we can log the data for posterity anyway. Follow these steps as a root-level
user to log the iostat data:

1.	 Create a file named iotop at /etc/cron.d/ and fill it with this line:
* * * * * root iotop -boat -qqq -d 5 -n 2 >> /var/log/iotop

2.	 Reload the configuration files of the cron service with this command:
sudo service cron reload

By adding the -a parameter, iotop will log the cumulative total of the I/O used between the
readings, instead of the I/O per second. We use the -d argument to add a 5 second delay
between two readings, as specified by the -n parameter. Together, this means that we get
a 5 second sample logged to /var/log/iotop every minute.

See also
ff Always examine the manual for the tools that we use in these recipes. In this case,

the manual for iotop is available by executing this command:
man iotop

Viewing past performance with sar
While there are many tools to view or analyze the current server performance and behavior,
how do we examine historical activity? Most Linux systems rotate logfiles in /var/log for
varying periods of time. Unfortunately, these are programs and system logs, not performance
measurements.

When we installed the sysstat package in a previous recipe, we gained the use of the sar
utility. Some argue that sar is the Swiss Army knife of metric collection. A simple invocation
can display past data regarding memory, CPUs, IRQs, disk devices, networks, or even TTYs.

When administering a highly available server, there are a few things as helpful as performance
trends. Let's examine them.

Troubleshooting

132

Getting ready
As sar and iostat are both part of the sysstat package, we recommend that you review
the Evaluating the current disk performance with iostat recipe before continuing.

How to do it...
Collect some sample sar data by following these steps:

1.	 Display the default sar output with the following command:
sar

2.	 Show the disk device status every 5 seconds with this command:
sar -d 5

3.	 View memory usage between 4:00 A.M. and 6:00 A.M. today with this command:
sar -r -s 04:00:00 -e 06:00:00

Examine the I/O statistics for any existing past dates by following these steps:

1.	 Find the appropriate sysstat log directory:

�� Red Hat, Fedora, CentOS, and Scientific Linux should use the /var/log/sa
directory

�� Debian, Mint, and Ubuntu users should use the /var/log/sysstat
directory

2.	 List the contents of that directory and choose a file. Files are simply binary formats
containing sar data for each retained date. Files are prefixed with sa. Thus, sa23 is
the sar data for the 23rd of the month.

3.	 Execute the following command to view past I/O statistics for the 3rd of the month:
sar -f /var/log/sysstat/sa03 -b

How it works...
By default, sar operates in CPU mode. Simply using the command as named, we will receive
CPU activity samples for every 10 minutes of the current day. Once sar produces this output,
it exits. If we want the current data, we must invoke it much like we did with iostat.

In our second example, we've chosen to emulate the iostat output by providing a summary
of disk activity every 5 seconds until we cancel the command. The -d argument tells sar to
display the disk statistics. Just like iostat, sar accepts two optional parameters for interval
and count. As we didn't specify a count, sar will print disk performance every 5 seconds.

Chapter 4

133

The third example is where we finally begin leveraging the real power of sar. If we had
examined our PostgreSQL log and noticed a large amount of idle queries between 4:00 A.M.
and 6:00 A.M., we would need a method to obtain data for that time period. Well, sar has
one argument (-s) to specify the start time of a data extract and another (-e) to set the end
time. These parameters must be written in HH:MM:SS format, or sar will ignore them with an
error. We also elected to use the -r argument to display memory usage data, just to illustrate
another metric that sar can expose.

Our final example depends entirely on what Linux distribution we're using. Unfortunately,
each stores its collected sar data in different areas within /var/log. With that said, the
directory assigned to sysstat for data storage keeps a default of 7 days worth of historical
information for analysis.

Everyday, this data is collected in a file prefixed with sa and suffixed with the current month's
day. On weeks that span 2 months, the count simply restarts with 01. Once again, we use a
different output mode for sar and display the I/O activity.

There's more...
Seven days may not be enough for some administrators. To increase this amount, modify /
etc/sysconfig/sysstat or /etc/sysstat/sysstat and change the HISTORY setting
to the desired amount of days to retain data. For example, to keep 3 weeks of records, we
could use this:

HISTORY=30

See also
ff Always examine the manual for the tools that we use in these recipes. In this case,

the manual for sar is available by executing this command:
man sar

This is especially true for sar, as it has so many different operating modes and display formats.

Correlating performance with dstat
Eventually, we will want to view multiple types of system activity simultaneously. While sar
has many operating modes, its output is linear. Without a tool to interpret its exhaustive data,
we are left with a lot of manual analysis of several sar invocations. While iostat and iotop
are wonderful tools, they are rather limited in scope by comparison.

Troubleshooting

134

So, let us introduce dstat. While dstat can't access historical data like sar, it can display
output from several different operation modes side by side. It also includes color coding to
easily distinguish units. It's a very pretty command-line tool and summarizes several different
metrics at a glance.

For servers that are of particular importance, we actually keep a terminal window that displays
the dstat results open so that we get an early warning when numbers begin to look bad.

Getting ready
Unlike the sysstat package, dstat is ready to use immediately after being installed.

How to do it...
The output from dstat is very colorful. Obtain a few samples with these steps:

1.	 Display default information with this command:
dstat

2.	 Display only system load and network activity with this command:
dstat -n -l

3.	 Display CPU usage, I/O, and disk utilization averaged over 5 second intervals with this
command:
dstat -c -r --disk-util 5

4.	 For the next 10 seconds, display the time, memory usage, interrupts and context
switches, disk activity from only the sda device, and the process using the most I/O.
In addition, capture the results to a csv file, all with this command:
dstat -tmyd -D sda --top-io --output /tmp/stats.csv 1 10

How it works...
We hope it's obvious by now that the number of combinations available for the dstat output
is effectively infinite. By default, the dstat output resembles this:

Chapter 4

135

The default output from dstat enables CPU, disk, network, memory paging, and system
modules. In this particular example, we can see that the wai column is extremely high,
suggesting that the server is currently I/O bound.

Another interesting thing about dstat is that it really only displays the exact modules we
request. For the second example, the output becomes this:

In this second example, we've only enabled the network (-n) and system load (-l) modules,
thus extremely reducing the output width. Yet, at the same time, this sparse format makes it
very easy to combine several different metrics without absurdly wide terminal windows.

The third sample begins using dstat plugins. By activating the --disk-util argument,
dstat will show the utilization percentage for all active storage devices. This is in addition to
the CPU stats (-c) and I/O (-r) that we already activated.

By adding the last parameter (5), we again take advantage of a common trend for system view
utilities. The last two optional parameters are for sample interval and count. In the case of
dstat, any number printed while the interval is greater than one is actually the average of all
the metrics collected during that time period. So, for our third example, these numbers are all
5 second cumulative averages. For posterity, the output looks like this:

This may be difficult to see, but the last line in this output is not bold like the rest. This means
that this particular line had not yet reached the requested interval of 5 seconds. It's not an
important detail, but it shows just how much attention the dstat developers paid to convey
information visually. We easily see a high percentage of CPU waits, and the sda device is
utilized over 90 percent by the read and write activity. It looks like a visual presentation works
pretty well.

Troubleshooting

136

For our fourth and final example, we try to include as many separate types of data as possible.
At the beginning, we enable the -t, -m, -y, and -d switches. This adds timestamp, memory
performance, interrupts and context switches, and device activity to the dstat output. We
also take advantage of the -D parameter to limit disk statistics to the sda device. Default disk
statistics are inclusive, but now, we can actually restrict the output to interesting devices.

Next, we add --top-io to list the process that's using the most I/O while dstat runs.
Earlier, we needed iotop to get that data. Of course, iotop provides more depth and lists
more than one culprit, but for quick identification, it's hard to beat dstat. Then, we use the
--output parameter to send the csv output to /tmp/stats.csv so that we can potentially
use a spreadsheet program to analyze or graph the data we gathered.

Finally, we take advantage of both the interval and count parameters so that we capture only
10 seconds of statistics. For all of that work, we're rewarded with this output:

Oh! It looks like all of the I/O and load we saw earlier was due to a pgbench test.
How embarrassing!

See also
ff Always examine the manual for the tools that we use in these recipes. In this case,

the manual for dstat is available by executing this command:
man dstat

Interpreting /proc/meminfo
Administrators familiar with the Linux /proc filesystem know that it a valuable source for both
device status and performance information. The meminfo entry in this directory will always
provide copious data regarding the status, contents, and state of the memory in our server.

We care about this as DBAs because file cache and write buffering can drastically affect disk
I/O. We are not especially interested in analyzing PostgreSQL's memory usage itself. At the
time of writing this book, current recommendations suggest that PostgreSQL's performance
doesn't really improve after shared buffers reach 8 GB. However, for client connections, inode
caches, and dirty page flushing, it's more than relevant.

Chapter 4

137

On a modern Linux kernel, there are over 40 different lines of information in /proc/
meminfo. Much of this data is not exceptionally useful to a DBA, so this recipe will focus on
important fields only.

Getting ready
We will be using the watch and grep commands in this recipe. It will be a good idea to
experiment with them and, perhaps, skim the man pages before continuing.

How to do it...
Follow these steps to capture an interesting memory status from /proc/meminfo:

1.	 Obtain basic memory states with the following command:
grep -A3 MemTotal /proc/meminfo

2.	 Execute this command to extract dirty memory buffers and pending writes:
grep -A1 Dirty /proc/meminfo

3.	 View the state of various memory caches with the following command:
grep -A1 Active /proc/meminfo

4.	 Show swap usage with the following command:
grep Swap /proc/meminfo

How it works...
The first command we execute is nothing but a basic summary of the current memory state.
For a test system with 2 GB of RAM running PostgreSQL, it would resemble this:

MemTotal: 2050908 kB

MemFree: 840088 kB

Buffers: 9288 kB

Cached: 1102228 kB

This output is similar to what we would learn using the free command. The MemTotal row
should speak for itself, as it is the total size of the memory in the system. The MemFree row
is the total amount of completely unallocated system memory, including buffers or cache. The
Buffers row in this context is mostly related to internal kernel bookkeeping, so we can ignore
it. If we examine the value reported by the Cached row, we can see that over 1 GB of data is
cached in memory.

Troubleshooting

138

The second command outlines dirty memory. Dirty memory, in this case, is the memory
that is modified and awaiting synchronization to disk. On the same 2 GB test system, a long
pgbench test might produce results like this:

Dirty: 29184 kB

Writeback: 40 kB

As we've said, the Dirty row details how much memory is waiting to be written to disk. On
systems with very large amounts of RAM, this value can indicate that too much RAM is dirty.
The consequences of this can include long query execution times or system stalls if the
underlying storage is unable to quickly absorb that many disk writes. In practice, this should
rarely be larger than the size of the disk controller's write cache.

However, what about the Writeback row? This field details how much of the dirty memory
is currently being written to disk. When storage is overwhelmed, the amount reflected here
will rise, as the write-back buffer fills with more write requests. This is a definite sign that the
system has encountered far more writes than it was designed to handle. In this essence,
each of these fields is a warning sign that the application must be modified to reduce write
workload or the database needs faster storage with a bigger write cache.

With our next command, we examine the contents of the cache itself. Still using our
2 GB test system, the cache looks like this:

Active: 1105760 kB

Inactive: 32764 kB

Active(anon): 207696 kB

Inactive(anon): 9340 kB

Active(file): 898064 kB

Inactive(file): 23424 kB

We won't get into too much detail regarding how the kernel actually works, but we will note
that all the fields named Inactive are something of a misnomer. Any time something is
loaded into cache, it first gets included in the Inactive list. Based on the subsequent
amount and timing of requests for this data, it might be promoted into the Active set. Once
it is in that list, various aging algorithms might eventually return it to the inactive list. Inactive
cache data is always a candidate for replacement by more important data.

In the context of PostgreSQL, we need to pay attention to the Active(file) entry. This
is the amount of disk pages in cache. Disk reads are expensive, and as databases process
data from disk, this is very important to us. We want as many disk pages as possible to be in
the Active(file) list, but this doesn't mean we discount Inactive(file). Remember,
inactive cache is still in memory and eligible for database use; it simply hasn't been promoted
to the active list. Thus, we want the total amount of file cache to be as high as possible,
reflecting the prioritization of disk reads for database processing.

Chapter 4

139

We include Active(anon) and Inactive(anon) for one reason: database clients.
Temporary data allocated to database clients is often assigned to anonymous cache. This is
good for the client program, but with enough of these, we lose valuable memory from use as
disk cache. One remedy for this is to buy more memory, but another more scalable solution is
to utilize database connection pooling. This book includes a chapter specifically dedicated to
optimizing the connection count, as this helps preserve memory for data caching.

The last extract we obtain from /proc/meminfo is related to swap usage and looks like this:

SwapCached: 0 kB

SwapTotal: 2093052 kB

SwapFree: 2093052 kB

Again, we can get this kind of data using the free command as well. We mainly include it
here in case any readers want to search for all of these fields with a single command for
monitoring purposes.

There's more...
The watch utility will execute any command and its arguments until it is canceled with
Ctrl + C. Instead of using those grep statements every time we want to see interesting fields
in the /proc/meminfo file, we can simply use watch. For example, to observe the state of
dirty buffers waiting to be committed to disk, we can use the following command:

watch -n 5 grep -A1 Dirty /proc/meminfo

See also
The Linux kernel documentation is somewhat verbose. Nonetheless, more technically apt
readers can find much more information regarding /proc/meminfo at https://www.
kernel.org/doc/Documentation/filesystems/proc.txt.

Examining /proc/net/bonding/bond0
Highly available databases often come in pairs for redundancy purposes. These servers can
have any number of procedures to keep the data synchronized, and this book suggests direct
connections when possible. Direct connections between servers ensure fast communication
between redundant servers, and it resembles the following network design:

eth3

eth4
Node 1 Node 2

https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt

Troubleshooting

140

In some cases, it can be advantageous to connect the database servers to a general network
fabric. Depending on the interaction of the upstream network devices, this can significantly
increase the network packet's round-trip-time (RTT). This is usually fine for PostgreSQL
replication, but OLTP systems may be more sensitive. Block-level replication systems, such as
DRBD, which operate beneath the filesystem, fare even worse.

Each of our database servers should be equipped with at least two independent network
interfaces. In order to prevent downtime, these interfaces must be linked with a bond.
Network bonds act as an abstract layer that can route traffic over either interface, and like
many kernel-level services, bond status can be checked via the Linux /proc filesystem.

The health and current communication channel of the server network bond is surprisingly
relevant to throughput. In order to rule out potential delays caused by upstream network
hardware, we need to understand how the bond is operating.

Getting ready
As we are going to examine the network bond on two paired PostgreSQL servers, connect to
each before continuing. We don't need any special permissions or attributes for this recipe.

How to do it...
In order to check the status of the network bond, follow these steps:

1.	 Determine the current bonding method by executing this command:
grep Mode /proc/net/bonding/bond0

2.	 Check the currently active interface with this command:
grep Active /proc/net/bonding/bond0

How it works...
Surprised that it's so simple? Don't be. Much like /proc/meminfo and /proc/cpuinfo, the
difficulty is not in obtaining the information we need, but in interpreting it. The first thing that
concerns us is the bond mode. There are several modes, but only one is relevant to us for a
dual-failover configuration. The mode should reflect some kind of an active-backup status;
otherwise, it's combining the interfaces for bandwidth and throughput purposes. The line we
want looks like this:

Bonding Mode: fault-tolerance (active-backup)

Chapter 4

141

Next, we check the currently active interface. If the system was configured so that the network
bond is in active-backup mode, only one is active at any one time. The other serves act
as a backup in case the network connection or the interface itself fails. In an ideal situation,
similar interfaces on both servers—eth3, for instance—are attached to the same switch. If
not, we should talk to our network and server administrators to correct the setup.

We suggest that you use the same interface name on both the servers for one simple reason:
it's difficult to diagnose network routes on bonded interfaces. For best throughput and RTT,
our network should look like this:

eth3

eth4

eth3

eth4

Node 1

Switch 1

Switch 2

Node 2

We hope it's clear from the diagram that this architecture introduces a possible source
of network lag. As the servers cannot transfer data to each other directly, at least one
extra switch that increases the RTT is involved. As our servers hopefully have two network
interfaces, each server is communicating with the same two switches. However, if each server
is currently working through a different switch, this actually adds at least two more jumps, as
the switches must communicate with an upstream router. If we follow the dotted path, that
unfortunate situation looks like this:

eth3

eth4

eth4

eth3

Node 1Router

Switch 1

Switch 2

Node 2

We've seen this increase ping time from 0.03 ms to 0.3 ms. This may not seem like
much, but when the network RTT is 10 times slower, replication and monitoring can suffer
significantly. This is one of the few obscure troubleshooting techniques that can elude
even experienced network administrators. Armed with this, we should be able to diagnose
replication and idle-wait problems using nothing more than grep.

See also
ff By their nature, networks are standardized to encourage intercommunication. As a

result of this, link aggregation (bonding) is available on Wikipedia as a standard term.
If you want to learn more about how it works, please visit the longer explanation on
Wikipedia at http://en.wikipedia.org/wiki/Link_aggregation.

http://en.wikipedia.org/wiki/Link_aggregation

Troubleshooting

142

Checking the pg_stat_activity view
Another source of valuable troubleshooting information is PostgreSQL itself. There are
numerous views, tables, and functions dedicated to tracking and reporting various statistics
and operating statuses for each hosted database. Principal among these is the pg_stat_
activity view.

This view tells us what every database client is doing, where it is connected from, which
user account it is operating under, and other important values. When administering a highly
available database, we must either have an iron control over what executes in the database
or the ability to quickly and easily assess its execution state. Besides using this data to track
suspicious activity, we can also cancel long-running queries or Cartesian Products, or simply
examine the connection turnover.

We probably use this view into the database more than any other, and it forms the backbone of
several monitoring utilities as well. Let's explore just why this system catalog is so indispensable.

Getting ready
While any user can view the contents of the pg_stat_activity view, only a superuser can
freely examine the contents of every column. To avoid security exploits, regular users cannot
view the current query activity, any connection information, or fields related to query time
or status.

To get the most out of this view safely, we want to grant elevated privileges to specific users
dedicated to monitoring and status checks. In order to do this, we must first connect to the
database as a superuser (such as the postgres user) for the duration of this recipe.

How to do it...
Perform the following steps to prepare pg_stat_activity for generalized use:

1.	 Execute this SQL statement as a database superuser to create a function:
CREATE OR REPLACE FUNCTION pg_stat_activity()
RETURNS SETOF pg_stat_activity AS $$
 SELECT * FROM pg_stat_activity;
$$ LANGUAGE sql SECURITY DEFINER;

2.	 Execute this SQL statement to secure the function we created:
REVOKE ALL ON FUNCTION pg_stat_activity() FROM PUBLIC;

3.	 Create a user dedicated to monitoring with this SQL statement:
CREATE USER db_mon WITH PASSWORD 'somepass';

Chapter 4

143

4.	 Grant the monitoring user the ability to use our function with this SQL statement:
GRANT EXECUTE ON FUNCTION pg_stat_activity() TO db_mon;

Now, connect to PostgreSQL as the db_mon user and examine the contents of
pg_stat_activity by executing this SQL query:

SELECT * FROM pg_stat_activity();

How it works...
The pg_stat_activity view is a wealth of information for a database administrator.
However, it is all but useless for monitoring due to the security measures that encumber it.
However, these fields are obfuscated specifically to prevent system compromises and data
leaks. So, our entire goal is to prevent abusing the view while still loosening the security.

The first step we take is to create a function that is capable of returning a set of rows similar
to the pg_stat_activity view itself. The SETOF modifier tells PostgreSQL that our function
does exactly that. It's no coincidence that the body of our function is merely a SELECT
statement on the pg_stat_activity view.

Why did we use a function to abstract the view? After all, it seems excessive to create a whole
function for such a simple statement. The answer is in the SECURITY DEFINER function
modifier that we added; it allows the function to execute as the user that created it. Thus, if we
create the function as the postgres user, it runs as if the postgres user invoked it. As the
postgres user is a superuser, the function can see all of the hidden columns, no matter who
runs the function.

By default, all new functions are available to all users. However, this function executes as a
superuser, and we don't want just anyone to execute it and see what everyone else is doing.
So, we revoke all permissions from the PUBLIC context. At this point, only a superuser can
call our function.

As we want to be able to monitor database status values, we create a user for this very
purpose. We named our user db_mon, but any user name works just as well. As long as
it has a secure password or is only used locally, our security exposure is minimal. Then, we
grant EXECUTE privileges on the pg_stat_activity function, and our work is complete.
The db_mon user can now view all user queries. We can also grant EXECUTE to other DBAs
or support staff who may need it.

What data is available? Important fields include, but are not limited to, the following:

ff pid or procpid: In versions of PostgreSQL 9.2 and above, this field is named pid;
all older versions use procpid. This tells us that the process ID assigned to the
backend server process by the operating system is extremely valuable for debugging
or connection-management purposes.

ff username: This displays the name of the user who owns this connection.

Troubleshooting

144

ff backend_start: This provides the date and time when the connection
was established.

ff xact_start: This tracks the date and time when the current transaction started,
if any.

ff query_start: This reports the date and time of the last query submitted.

ff waiting: This tells us whether or not the connection is currently blocked by
something and will show either t for true or f for false.

ff state: In versions of PostgreSQL 9.2 and above, this column reports the current
state of the connection. States marked as active are executing a query; the idle
ones are not. If a connection is marked idle in a transaction, look carefully
at the query_start and xact_start fields for excessive delays. If a connection
was in a transaction and encountered an error, it will report idle in the
transaction (aborted); applications should catch errors and either roll back
the transaction or disconnect, so idle aborted transactions are a possible source of
trouble. Unfortunately, this field does not exist in older versions, so a certain context
is lost during investigation.

ff query: In versions of PostgreSQL 9.1 and above, this column contains most
or all of the last known query this connection executed. This field does not exist
in older versions.

ff current_query: In versions of PostgreSQL 9.1 and below, this column contains
most or the entire last known query that this connection executed. In newer versions,
this field was split into the state and query fields to provide better insight into the
connection activity during transactions.

There's more...
Mind the version! PostgreSQL versions below 9.2 do not have the state or query fields
and supply only the current_query column. While it might be tempting to use query and
current_query interchangeably, older PostgreSQL versions are strictly at a disadvantage.

In PostgreSQL 9.1 and below, queries are only reflected in the pg_stat_activity view
while they are actually executing. As soon as the query finishes, the current_query column
will be empty or report idle in transaction if the query was part of a transaction.
This means we lose a lot of operating context unless we just happened to be logging every
database query.

On very high-volume OLTP systems, recording every query is not feasible. We've personally
administered databases that handle over 1 billion queries per day, at a rate of 60,000 per
second. Even with a conservative query length of 50 characters, we would produce over 50
GB of logs every day.

Troubleshooting stuck, idle, or otherwise faulty connections is much easier in the newer
versions of PostgreSQL. If at all possible, upgrade to 9.2 or above.

Chapter 4

145

See also
ff PostgreSQL has extremely informative documentation regarding how it collects and

maintains statistics. The pg_stat_activity view is described in more depth
there, so take a look at http://www.postgresql.org/docs/9.3/static/
monitoring-stats.html.

Checking the pg_stat_statements view
We mentioned in another recipe that logging every query on a highly available database that
handles high volumes of query traffic is undesirable. DBAs often solve this problem by only
logging slow queries by setting log_min_duration_statement to a reasonable number of
milliseconds in postgresql.conf. Later, only queries that cross this threshold are logged,
along with binding parameters if the query was a prepared statement.

We strongly encourage this practice, as it is invaluable for catching outlying queries that could
benefit from optimization. Unfortunately, faster queries are still invisible to us. Worse, queries
that execute often probably have their data sources cached in memory, so it's unlikely that
they contribute to I/O. The database could be executing an inefficient or redundant query
thousands of times per second, and besides an elevated server load, we would never know.

This situation is not conducive to long-term viability of a highly available database. Phantom
queries like this don't simply gorge on valuable CPU resources; they can multiply unseen until
the combined load requires more expensive hardware or the database buckles under the stress.

However, PostgreSQL can see everything, and now, so can we, with pg_stat_statements.

Getting ready
Activating and using this extension requires us to modify the postgresql.conf
configuration file and restart PostgreSQL. As usual, we need to ensure that we have access to
a PostgreSQL superuser and a user capable of restarting the service, such as the postgres
or root system users.

How to do it...
Begin by installing the pg_stat_statements module. Follow these steps:

1.	 Modify the shared_preload_libraries line in postgresql.conf to include
the module:
shared_preload_libraries = 'pg_stat_statements'

2.	 If you are using PostgreSQL 9.1 or older, add this line to postgresql.conf:
custom_variable_classes = 'pg_stat_statements'

http://www.postgresql.org/docs/9.3/static/monitoring-stats.html
http://www.postgresql.org/docs/9.3/static/monitoring-stats.html

Troubleshooting

146

3.	 Restart PostgreSQL with a command similar to this:
pg_ctl -D /db/pgdata restart

4.	 Log in to PostgreSQL as a superuser into any database that should have access to
pg_stat_statements and execute the following SQL statement:
CREATE EXTENSION pg_stat_statements;

Perform the following steps to prepare pg_stat_statements for generalized use:

1.	 Execute this SQL statement as a database superuser to create a function:
CREATE OR REPLACE FUNCTION pg_stat_statements()
RETURNS SETOF pg_stat_statements AS $$
 SELECT * FROM pg_stat_statements;
$$ LANGUAGE sql SECURITY DEFINER;

2.	 Execute this SQL statement to secure the function we created:
REVOKE ALL ON FUNCTION pg_stat_statements() FROM PUBLIC;

3.	 Create a user dedicated to monitoring with this SQL statement:
CREATE USER db_mon WITH PASSWORD 'somepass';

4.	 Grant the monitoring user the ability to use our function with this SQL statement:
GRANT EXECUTE ON FUNCTION pg_stat_statements() TO db_mon;

Now, connect to PostgreSQL as the db_mon user, and examine the contents of pg_stat_
statements by executing this SQL statement:

SELECT * FROM pg_stat_statements();

How it works...
In our opinion, the first set of instructions should not be required. The pg_stat_statements
module is so valuable that we feel everyone can benefit from its contents. In any case, the
first thing we must do is add pg_stat_statements to the shared_preload_libraries
configuration setting. Several PostgreSQL modules are only available after being added this way.

The next step is only necessary if we are running a version older than PostgreSQL 9.2.
The custom_variable_classes setting allows us to further configure the pg_stat_
statements module later. Current versions of PostgreSQL will handle this for us.

As the pg_stat_statements module depends on activating an external library, we must
restart PostgreSQL for it to take effect. Once the module is loaded, there are necessary
functions that access the module; we must also install these functions in any database where
we want pg_stat_statements to be available. By executing the CREATE EXTENSION
statement, we register these functions with the current database.

Chapter 4

147

The next set of instructions focuses on making the pg_stat_statements module usable
to nonsuperusers and mirrors the process we used in the Checking the pg_stat_activity view
recipe. We begin by creating a function that runs as the user who defined it. As we created
the function as a superuser, this means regular users can use it to examine the contents of
pg_stat_statements.

To prevent any user from executing this elevated privilege function, we revoke all access from
the public context. Then, if we don't already have a user set aside for monitoring database
activity, we create one and then grant it access to execute pg_stat_statements(),
because this is one of its acknowledged roles.

Newer versions of PostgreSQL add more fields to this view, seemingly with every release.
Many of the new fields focus on the I/O related to disk timing and blocks being dirtied,
so they are intended for more advanced usage. However, the columns we can count on
include the following:

ff query: This column displays up to 1024 characters of the query being tracked

ff calls: This column contains the total number of times the SQL has been executed

ff total_time: This column provides the total time spent processing the query, in
milliseconds

ff rows: This column lists the total number of rows ever returned by the query

This is actually enough to perform quite a bit of investigation. We can divide total_time
by calls to obtain the average execution speed. Perhaps, we want to know the total ratio
of insert statements to select statements. Simply sorting the data by the calls column
can reveal outliers that execute far more often than most queries. We used these ourselves
to find a query that represented more than 50 percent of all the calls in the database. Our
developers were very happy to cache the results of this query for us.

There's more...
Of course, this extremely useful view has a few extra features that we want to explain.

Reset the stats
Statistics stored in the pg_stat_statements view accumulate until they are forcefully
reset. If we don't want to monitor value deltas between checks, we can simply reset the status
of the module and cause it to erase the data it has collected. To do that, execute this SQL
statement as a superuser:

SELECT pg_stat_statements_reset();

Troubleshooting

148

Catch more queries
By default, the pg_stat_statements module only tracks the first 1,000 queries it
encounters during database operation. Normally, this is enough, especially in versions of
PostgreSQL above 9.1. Newer versions provide better aggregation, because they remove SQL
variables and constants from the query before including them in the view. However, older
versions or databases that experience a high variance in query construction may want to
increase this number. To do that, add this line to the postgresql.conf file:

pg_stat_statements.max = 10000

Then, we have to restart PostgreSQL again. Once this is finished, the pg_stat_statements
module will track 10,000 queries instead of 1,000. Feel free to experiment with other values.

See also
ff We feel strongly that the pg_stat_statements view is indispensable, but we

can only convey a tiny amount in a usage recipe. For an in-depth explanation
of its contents and usage, please check the documentation at: http://www.
postgresql.org/docs/9.3/static/pgstatstatements.html.

Debugging with strace
Sometimes, the only way to truly observe a server process is by using the kernel itself.
This kind of data is invaluable for troubleshooting or research into PostgreSQL activity.

The Linux strace utility provides detailed system trace data for any process or service
running on the server. For use with PostgreSQL, this utility means we can target the database
itself or any of the background processes it uses for maintenance.

Perhaps, more importantly, we can debug or examine any client connection. Is the network
connection permanently hung? Is the client sending thousands of simple SQL requests instead
of bulk-handling the results of a single large query? The strace command output is both
intricate and verbose. Let's use strace to inspect our server and see what we can discover.

Getting ready
There are certain limitations to using strace. Because of its high-level access to process
information, only root-level users are allowed to examine an application's activity. Make sure
to have this capability before continuing.

As we want activity we can depend on, open a connection to PostgreSQL for us to locate later.
We will be using this connection to generate debug output.

http://www.postgresql.org/docs/9.3/static/pgstatstatements.html
http://www.postgresql.org/docs/9.3/static/pgstatstatements.html

Chapter 4

149

How to do it...
Follow these steps to examine the PostgreSQL processes in various ways:

1.	 In our PostgreSQL connection, execute the following query to find the process ID of
the server backend assigned to us:
SELECT pg_backend_pid() AS pid;

2.	 As our root-capable user, attach strace to the preceding pid (4200, for example)
with this command:
sudo strace -p 4200

3.	 In our PostgreSQL connection, execute the following query to generate some activity:
SELECT 1;

4.	 In the terminal where strace is running, press Ctrl + C to disconnect.

5.	 Attach strace again, but collect the statistics with the following command:
strace -c -S calls -p 4200

6.	 Now, execute the following query to generate some complex activity:
SELECT * FROM information_schema.columns;

7.	 In the terminal where strace is running, press Ctrl + C to disconnect.

8.	 Attach strace a final time, but limit the output with the following command:
strace -e recvfrom -p 4200

9.	 Execute the following query to generate a simple activity:
SELECT 1;

How it works...
We can connect to any process with strace, but for demonstrative purposes, we elect to
control the environment by watching a connection we directly control. The pg_backend_pid
function returns the process ID of the backend process that serves our client, which then lets
us monitor its activity on the server.

Troubleshooting

150

With the pid of the backend, we can monitor it with the -p parameter to strace, which
watches the listed process ID. As we don't want too much output, we elect to execute a
very simple query that does not touch the tables, functions, or views. Our output should
resemble this:

Process 4200 attached - interrupt to quit

recvfrom(11, "Q\0\0\0\16SELECT 1;\0", 8192, 0, NULL, NULL) = 15

sendto(11, "T\0\0\0!\0\1?colu
mn?\0\0\0\0\0\0\0\0\0\0\27\0\4\377\377\377\377"...,
66, 0, NULL, 0) = 66

Once we press Ctrl + C, strace exits, and we can try a different combination of parameters.
For example, the -c setting disables the normal output in favor of summarizing the kernel
calls. If we use the -S parameter to change the sort column, we can focus on repeated calls.
As counts will be boring with only a few columns, we've suggested a query that will touch on
several database objects. Once we exit from the second strace command, the output looks
like this:

Finally, we would like to introduce the -e parameter, which limits the strace output to the
calls listed. In our case, we chose recvfrom, which is a network-related call that the backend
uses to await requests. When in this mode, strace will only print recvfrom calls and
nothing else.

The -e setting also provides several shortcuts. If the first keyword is
trace, instead of a recognized call, we can specify a type of call to
watch. For example, this revision of our last strace command would
watch all network-related activities:
strace -e trace=network -p 4200

Chapter 4

151

There's more...
Output from strace can be somewhat esoteric, especially as it limits the content length by
default to increase readability. If we want to really capture a lot of data with extreme verbosity
that will help a human make a diagnosis, we need to increase the string length. For strace,
the parameter for that is -s. If we wanted to greatly extend the length of the string output, we
can do that with this command:

strace -p 4200 -s 2000

Then, if we execute the following query:

SELECT 'This is a very long query to view.';

We would see this output:

recvfrom(11, "Q\0\0\0001select 'This is a very long query to
view.';\0", 8192, 0, NULL, NULL) = 50

Instead of this:

recvfrom(11, "Q\0\0\0001select 'This is a very long"..., 8192, 0,
NULL, NULL) = 50

This is all that is required to monitor PostgreSQL, as even simple queries and data are
truncated with default settings.

See also
ff Always examine the manual for the tools that we use in these recipes. In this case,

the manual for strace is available by executing this command:
man strace

Logging checkpoints properly
Checkpoints are an integral part of a PostgreSQL server. Table data is not modified during
query execution until modified rows, index pages, and other structures are committed to the
Write Ahead Log (WAL). WAL files are also known as checkpoint segments. When the count
of these segments reaches checkpoint_segments—or the time since the last checkpoint
exceeds checkpoint_timeout—the data files are modified to reflect the changes.

Troubleshooting

152

This decoupled writing ensures database integrity at the cost of doubling the necessary disk
writes. This is the main reason why experienced PostgreSQL DBAs interested in performance
move the WAL location to a separate storage device. However, even moving the WAL files to
another device may not sufficiently reduce write pressure. Database activity is variable in nature,
and checkpoints only happen every few minutes or after a threshold of data modifications.

As PostgreSQL tries to avoid overwhelming the operating system, writes necessary to satisfy
a checkpoint are spread evenly over the checkpoint interval. Unfortunately, the operating
system may choose to buffer these writes unevenly, resulting in unexpected write spikes.
A busy database might have saturated disk bandwidth already, thus tying up any resources
necessary for writing data modifications.

The way we combat this is by logging all checkpoints and analyzing the output of our
log for checkpoint activity. We may need to leverage tablespaces, storage improvements,
or application revisions to really address resource collisions like this, so it's in our best interest
to be proactive.

Getting ready
You need to know where to find PostgreSQL logs. We usually suggest a few specific
modifications to the postgresql.conf file for logging, including the following:

log_directory = 'pg_log'
log_checkpoints = on

This means logs will be found within our PostgreSQL data directory, in a subdirectory named
pg_log. Some distributions use /var/log/postgresql instead. Regardless, find where
the logs are kept. To ensure access, examine these as the postgres user, who should either
own the logs directly or have the necessary read access.

How to do it...
Assuming our logs are located at /db/pgdata/pg_log, follow these steps to examine the
checkpoint activity:

1.	 Execute this command to find the most recent logfile:
ls -lt /db/pgdata/pg_log/postgres*.log | head -n 1

2.	 If the latest log is named postgresql-2014-02-02.log, view all the checkpoints
in this log with the following command:
grep checkpoint /db/pgdata/pg_log/postgresql-2014-02-02.log

Chapter 4

153

3.	 Execute the following command to obtain the five longest disk syncs:
grep 'checkpoint complete:' \

 /db/pgdata/pg_log/postgresql-2014-02-02.log \

 | sed 's/.* sync=/sync=/; s/total=.*; //;' \

 | sort -n | tail -n 5

How it works...
We need to first find the most recent logfile. The ls command's -t parameter will sort
the data by the last modified time, which the head command limits to one line of results.
Distributions that provide PostgreSQL may adhere to a log-rotation scheme instead. In these
cases, the latest logfile will reside in /var/log/postgresql and always have the same
name. Older logs will have a number appended until the retention period passes.

No matter how we locate the most recent logfile, we use two relatively simple commands to
examine its contents. These logfiles can be extremely useful; however, for now, we will focus
on the checkpoint activity. Of those two commands, the first simply isolates all the checkpoint
data in the order it occurred. One complete checkpoint will resemble these lines:

2014-02-02 19:54:02 CST LOG: checkpoint starting: time

2014-02-02 20:00:36 CST LOG: checkpoint complete: wrote 129631
buffers (24.7%); 0 transaction log file(s) added, 0 removed, 2
recycled; write=392.875 s, sync=1.789 s, total=394.667 s; sync
files=203, longest=1.004 s, average=0.008 s

This data is helpful in determining the time period of the checkpoint. Combined with other
troubleshooting tools such as sar, we can correlate the checkpoint with disk activity. In the
case of this example, we wrote 24.7 percent of a 4 GB buffer as well, which is quite a bit of
data. However, these writes are spread over more than 6 minutes, reducing contention.

As useful as the raw log lines are, we can apply a few filters and sorting to expose the disk
synchronization time. Our last command makes use of grep to isolate the checkpoints, sed
to remove excess data, sort to focus on the longest syncs, and tail to restrict the output
to the top five. Of these, the sed command is the most complex. However, it merely removes
all the content before the first sync field and removes the total field, leaving only the data
related to disk synchronization. Then, our top five most expensive checkpoints look like this:

sync=0.891 s, sync files=87, longest=0.470 s, average=0.010 s

sync=1.203 s, sync files=129, longest=0.302 s, average=0.009 s

sync=1.789 s, sync files=203, longest=1.004 s, average=0.008 s

sync=2.004 s, sync files=187, longest=1.031 s, average=0.010 s

sync=5.083 s, sync files=104, longest=3.076 s, average=0.048 s

Troubleshooting

154

The first four could be improved, but the last example is clearly much larger than we would
normally expect or desire. Relatively few files were synchronized, yet the longest sync of over 3
seconds would likely adversely affect query performance. Disk synchronization times exhibited
here indicate a high level of contention. If we were to execute sar for the time periods
indicated by the longest checkpoint, we would most likely see 100 percent disk utilization.

If this utilization is primarily data reads, we may be able to ignore it if the checkpoint time
occurred outside of operational hours. In such cases, the cause is probably related to
maintenance or voluminous batch jobs. Otherwise, we should expand our investigation to
track the source of the disk activity until all the checkpoints are below a desirable threshold.

There's more...
Some checkpoint data is stored in a PostgreSQL view named pg_stat_bgwriter. This is more
of a summary view of the checkpoint activity, but it is available to any user who can execute SQL
statements in the database. Within this view, there are three fields related to this recipe that
directly concern us:

ff checkpoints_timed: This column provides the number of checkpoints that occur
based on a schedule. These are normal checkpoints and indicate regular operation.

ff checkpoints_req: This column stores the number of checkpoints that PostgreSQL
has forced to occur in order to keep up with write activity. If there are too many of
these, database performance can be extremely reduced and disk contention can
have other adverse affects.

ff checkpoint_sync_time: This column describes the total amount of time that the
checkpoint system has spent in sync status, in milliseconds. This is basically a sum
of all of the sync columns for all the checkpoints since the statistics were last reset.
This is a good value to graph if you are monitoring the database, as a sudden spike in
the elapsed sync time can indicate trouble.

See also
The WAL is integral to how PostgreSQL operates. We strongly recommend that you learn as
much about its functionality as possible. The PostgreSQL documentation provides a great
deal of depth in its explanation of how the WAL really works. Please make use of these links:

ff WAL Configuration: http://www.postgresql.org/docs/9.3/static/wal-
configuration.html

ff Write Ahead Log: http://www.postgresql.org/docs/9.3/static/
runtime-config-wal.html

ff The Statistics Collector: http://www.postgresql.org/docs/9.3/static/
monitoring-stats.html

http://www.postgresql.org/docs/9.3/static/wal-configuration.html
http://www.postgresql.org/docs/9.3/static/wal-configuration.html
http://www.postgresql.org/docs/9.3/static/runtime-config-wal.html
http://www.postgresql.org/docs/9.3/static/runtime-config-wal.html
http://www.postgresql.org/docs/9.3/static/monitoring-stats.html
http://www.postgresql.org/docs/9.3/static/monitoring-stats.html

Monitoring

In this chapter, we will learn how to effectively monitor PostgreSQL's server status
and database performance. Primarily, we will focus on using Nagios, check_mk,
check_postgres, collectd, and Graphite; all of these tools excel at system monitoring.
We will cover the following recipes in this chapter:

ff Figuring out what to monitor

ff Installing and configuring Nagios

ff Configuring Nagios to monitor a database host

ff Enhancing Nagios with check_mk

ff Getting to know check_postgres

ff Installing and configuring collectd

ff Adding a custom PostgreSQL monitor to collectd

ff Installing and configuring Graphite

ff Adding collectd data to Graphite

ff Building a graph in Graphite

ff Customizing a Graphite graph

ff Creating a Graphite dashboard

5

Monitoring

156

Introduction
One aspect of PostgreSQL administration, which is unfortunately ignored too frequently, is
system monitoring. Provisioning, constructing, and maintaining a high availability cluster is
difficult by itself, without the extra complications inherent in setting up yet more infrastructure.

Larger companies with an established Network Operations Center (NOC) probably have
extremely mature incidence response and escalation procedures in place. Others may rely
on a few basic monitors and alerts or ad hoc scripts set to trigger on certain thresholds. If we
aren't part of the first group, we certainly can't include ourselves in the second and consider
our cluster protected. When availability is important for business continuity, we should take
the time to ensure that its activity is continuously reported, graphed, and summarized.

In this chapter, we will focus on what we should monitor, how often we should check system
status, and how to present the data for easy consumption. When the database goes down,
we need to know immediately. When the storage is higher than our projected limits, we need
to plan accordingly. When database behavior is unexpected or abnormal, we should have a
baseline for comparison. There are several tools available to do all of these things, and we're
going to examine a stack of complementary services to automate everything.

There's no need to build any of our own tools. System monitoring is a very mature field; we'd
be wasting our time and needlessly putting our database architecture at risk. Let's protect
our investment properly with professional tools vetted by hundreds or thousands of equally
concerned and attentive DBAs.

Figuring out what to monitor
Modern servers have a lot of active hardware and software that can stop working at any time.
A failure can start with the operating system, storage, database, network connectivity, heat,
or a number of other sources.

So, which elements do we rank highest to ensure system availability? Which hardware needs
the closest monitoring? What kind of tests should we use to ensure that the software is
operating as expected?

When dedicating monitoring resources to check hardware and software, we must answer
several questions to distribute effort efficiently. Every test takes time, uses network resources,
and must save its results to a status file. If our system checks are too frequent or numerous,
we could end up overwhelming our monitor server. Failing to prioritize the alerting criteria
can actually be more dangerous; if we become too accustomed to ignoring irrelevant alerts,
legitimate system issues can propagate unchecked.

Thus, the first step in building a monitoring infrastructure is to decide what it will monitor
and why.

Chapter 5

157

Getting ready
We're going to be building a spreadsheet. This spreadsheet will rank all of our hardware
and software so that we know which systems deserve the most focus. Have a spreadsheet
program available before starting.

How to do it...
Follow these steps to rank the priority and frequency of monitoring hardware and software:

1.	 Create a spreadsheet with six columns labeled Monitor, Importance, Frequency,
Warning Level, Critical Level, and Action.

2.	 Under the Monitor column, list every piece of hardware and software on the server.

3.	 Under the Importance column, rank every monitor at one of these three levels:
minor, major, or critical.

4.	 Under the Frequency column, choose a monitoring interval. We suggest that you
use one of these choices: 10 seconds, 30 seconds, 1 minute, 1 hour, 12 hours,
or 1 day.

5.	 Under the Warning Level column, choose a threshold where the status of this
resource should be considered a warning and might require further examination.

6.	 Under the Critical Level column, choose a threshold where the status of this
resource should be considered critical and in need of immediate attention.

7.	 Under the Action column, pick an appropriate action that the monitor should take
when a check triggers an alert. We suggest one of these choices: ignore, email
support, email DBAs, and panic.

How it works...
The spreadsheet we're making requires only six columns to fit this recipe. Feel free to include
any other relevant information when making your own spreadsheet. In fact, we suggest that
you retain this document in source control for reference purposes and revisions. Its mere
existence can prove beneficial as a necessary compliance document.

When we say to list every piece of hardware or software under the Monitor column, we
expect a few to be forgotten. Part of this step is a mental filter; if we can't think of the
resource, it probably isn't important enough to watch. There are limits to this, and we strongly
suggest that you have at least two other objectives for people to verify that the list is complete.

For Importance and Frequency, we're really deciding how active this resource is and its
likelihood to fail or require intervention. For example, consider a disk space monitor. Usable
disk space is a major concern, but it's not likely to grow quickly. We can safely check disk
space every hour or even every day and remain completely covered.

Monitoring

158

The Warning Level and Critical Level columns are essential to route the triggered
alerts. A level of warning means a resource may need someone to double-check its status or
acknowledge a problem for later review. If a resource reaches a critical status, every person
interested in the server should be alerted immediately.

Finally, the monitoring software needs to know what action to take if an alert is triggered. If we
ever choose ignore, we should simply disable that particular alert entirely. On the other hand,
the support staff can usually solve simple resource problems or forward the alert to a DBA. At
other times, we want the DBA to know immediately due to the importance or complexity of the
hardware or software being monitored. As a last resort, the alert can merely panic and alert
everyone in every contact list in the hope that at least one person is available to address
the issue.

In the end, the first few lines of our spreadsheet may look something like this:

There's more...
If we have access to a collaborative spreadsheet tool such as Google Docs or an internal Wiki,
we should maintain this information there. Not only does this act as a central resource, but it
ensures that all monitors have a logical reason to exist and have a predetermined escalation
path. When problems arise, any time spent on deciding what to do or who to inform only
serves to increase the overall amount of risk.

In the rare instance that management or business interests question our system monitoring
policies, we have an immediate answer. As DBAs, we want our company to know that the
database is in good hands, and a strict monitoring policy helps accomplish this.

Installing and configuring Nagios
Nagios is a well-known monitoring tool. We won't make any claims that it is the best or most
suited tool for watching a highly available PostgreSQL installation. However, the community is
large, the functionality is extensive and established, and interoperability with other tools and
libraries is high.

As an unfortunate consequence, the amount of installation prerequisites is rather lengthy.
To get Nagios working properly, we need an HTTP server, Perl, and a mail daemon. Some
plugins require PHP, while others need MySQL, SNMP, or any number of esoteric utilities and
acronyms. There might be DBAs who also have strong skills as webmasters, but we can't

Chapter 5

159

depend on that. Getting Nagios installed with all of its foundation services is very complex, so
we don't recommend that you do so.

Due to its history, the likelihood that Nagios is available on major Linux distributions is very
high. Installing Nagios through the distribution will handle most, if not all, configuration and
interoperability concerns. While an installation of this type only has minimal settings enabled
and only monitors the monitoring server itself, it's a step in the right direction.

This recipe will focus on using distribution packaging tools such as yum or apt-get to install
and configure a basic Nagios setup.

Getting ready
Red-Hat-based systems such as Fedora, RHEL, CentOS, and Scientific Linux have a
prerequisite package that is not part of the included distribution repositories. To install
Nagios, we need to add the Extra Packages for Enterprise Linux (EPEL) library. Red Hat
systems can do this by obtaining the most recent EPEL package for their OS versions and
architectures from http://download.fedoraproject.org/pub/epel.

Look for the package file that begins with epel-release and download it to the monitoring
server. Once the package is downloaded, it can be installed with this command as a
root-level user:

sudo rpm -ivh epel-release-*.rpm

How to do it...
Follow these steps to install and configure Nagios on a Debian, Mint, or Ubuntu
monitoring server:

1.	 Execute these commands as a root-level user to install Nagios and useful plugins:
sudo apt-get install nagios3 nagios-plugins-extra

Sudo apt-get install nagios-nrpe-plugin

2.	 When prompted, enter a password for the nagiosadmin user.

Follow these steps to install Nagios on a Red Hat, Fedora, CentOS, and Scientific Linux
monitoring server:

1.	 Open the /etc/selinux/config file and change the SELINUX parameter
to match the following:
SELINUX=permissive

2.	 Execute the following command as a root-level user:
sudo setenforce 0

http://download.fedoraproject.org/pub/epel

Monitoring

160

3.	 Execute this command as a root-level user to install Nagios:
sudo yum install nagios nagios-plugins-all

4.	 Set the nagiosadmin password by executing this command as a root-level user:
htpasswd -c /etc/nagios/passwd nagiosadmin

5.	 Execute these commands as a root-level user to start Nagios on system boot:
sudo chkconfig nagios on

sudo chkconfig httpd on

6.	 Execute these commands as a root-level user to start Nagios:
sudo service httpd start

sudo service nagios start

How it works...
Red Hat-based distributions focus primarily on system stability and lack many third-party
utilities and daemons. Luckily, this is not a concern for us, as groups exist to rectify this
situation. One such group maintains EPEL, which we can exploit to simplify the process of
installing Nagios.

Debian-based servers, for better or worse, are not so strict. Though they are often just as
stable, the package repository is much more extensive. Thus, we can install Nagios with one
invocation of apt-get. When installing the nagios3 package, all the necessary prerequisites
are retrieved and installed as well. The process even prompts us for a password for the
nagiosadmin user, which we use to access the web-based administration console.

Installing the nagios package on Red-Hat-based systems is somewhat more complicated.
RHEL servers, especially, will often enable SELinux by default for the sake of security. We
choose to set SELinux in permissive mode so that it warns us of potential security problems
but still allows basic functionality. Nagios makes use of external servers, which SELinux would
otherwise block. Using the setenforce utility, we also manually switch to permissive mode
without rebooting the server. Due to our modification of /etc/selinux/config, future
server reboots will leave SELinux in permissive mode.

With SELinux out of our way, we can install Nagios with yum, which should resolve and install
any prerequisites for us. Unlike the Debian-based install, it will not automatically prompt us
for a password for the nagiosadmin user. Thus, we must use the htpasswd utility to create
one. To do so, we use the -c parameter to set the location of the password file we want to
modify. Then we set the second parameter to nagiosadmin, as that's the name of the user
for whom we are creating a password.

Next, we need to configure Nagios to start when the server starts. On Red-Hat-based systems,
the chkconfig utility handles this for us. Finally, we can leverage the service utility to
actually start Nagios.

Chapter 5

161

There's more...
We know that Nagios is running by accessing its HTTP location. By default, provided we know
the name or IP address of the monitor server, we can access Nagios via a web browser.
Assuming that 192.168.56.20 is the IP of the server we're using to monitor PostgreSQL,
the web interface would exist at http://192.168.56.20/nagios.

The Debian-based install will be at http://192.168.56.20/nagios3.

Our default Nagios dashboard should resemble this:

See also
As we mentioned earlier, installing Nagios is not easy due to all the other resources it depends
on. Please refer to the following links to learn more about installing and configuring Nagios.
We've also included a link to a comparison of various monitoring tools in case you want to try
one of the Nagios alternatives:

ff Nagios Quickstart Installation Guides: http://nagios.sourceforge.net/
docs/3_0/quickstart.html

ff Nagios Core Documentation: http://nagios.sourceforge.net/docs/
nagioscore/3/en/toc.html

ff Comparison of network monitoring systems: http://en.wikipedia.org/
wiki/Comparison_of_network_monitoring_systems

http://nagios.sourceforge.net/docs/3_0/quickstart.html
http://nagios.sourceforge.net/docs/3_0/quickstart.html
http://nagios.sourceforge.net/docs/nagioscore/3/en/toc.html
http://nagios.sourceforge.net/docs/nagioscore/3/en/toc.html
http://en.wikipedia.org/wiki/Comparison_of_network_monitoring_systems
http://en.wikipedia.org/wiki/Comparison_of_network_monitoring_systems

Monitoring

162

Configuring Nagios to monitor a database
host

Once Nagios is installed, it will automatically configure a few basic monitors directed toward
its own server. If we click on the Hosts link in the web administration site, we are presented
with this:

The local server is all that we are currently watching. This is useful to verify that Nagios is
working as intended, but we need to monitor one or more database servers as well. In this
recipe, we will learn how to watch external servers. By the end, we should see at least one
more server listed by Nagios.

Getting ready
Initially, Nagios can only monitor remote servers by checking exposed services such as HTTP,
FTP, or PostgreSQL. To check items such as CPU, RAM, or disk space, we need to rely on
Nagios Remote Plugin Executor (NRPE) to forward system information to the monitoring
server upon request. This means that NRPE must be installed on any server we want to
monitor, including our PostgreSQL servers.

To install this on Debian-based servers, use the following command:

sudo apt-get install nagios-nrpe-server

Red Hat derivatives will need to use this command:

sudo yum install nrpe

Next, open /etc/nagios/nrpe.cfg and change the allowed_hosts setting to include
the IP address or hostname of the monitor server. If 192.168.56.5 is the monitor server,
it should look like this:

allowed_hosts=192.168.56.5

Chapter 5

163

How to do it...
Follow these steps on the monitoring system to watch the 192.168.56.10 server, which is
the first node of our PostgreSQL cluster:

1.	 Find the configuration directory for Nagios:

�� Debian-based servers should use this path: /etc/nagios3/conf.d
�� Red-Hat-based servers should use this path: /etc/nagios/objects

2.	 As a root-level user, create a file named db_conf.cfg in the preceding path.

3.	 In the db_conf.cfg file, define a hostgroup entry by adding this text:
define hostgroup {
 hostgroup_name pg-servers
 alias PostgreSQL Servers
}

4.	 In the db_conf.cfg file, define a host entry by adding this text:
define host {
 use generic-host
 host_name pg-1
 alias PostgreSQL Node 1
 address 192.168.56.10
 hostgroups pg-servers
}

5.	 In the db_conf.cfg file, define a service entry by adding this text:
define service {
 use generic-service
 hostgroup_name pg-servers
 service_description Current Load
 check_command check_nrpe_1arg!check_load
}

6.	 Red-Hat-based systems should modify commands.cfg in /etc/nagios/
objects/ to include the following code:
define command {
 command_name check_nrpe_1arg
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$
}

7.	 Reload the Nagios configuration files:

�� Debian-based servers should use this command: sudo service nagios3
reload

�� Red-Hat-based servers should use this command: sudo service nagios
reload

Monitoring

164

How it works...
This recipe has a lot of moving parts, but it merely looks more complicated than it really is.
We begin by locating the directory where supplementary configuration files are stored. Once
this is located, we can create an entry to watch our PostgreSQL servers. To do this, we create
a file named db_conf.cfg.

You don't have to use db_conf.cfg. Nagios should recognize any file
that ends with a .cfg extension. If you'd rather separate hosts, host
groups, and services, feel free to do so.

The order of the elements that we are creating does not matter; Nagios has a very advanced
parser that checks configuration entries all at once. Knowing this, we feel it's logical to begin
with the PostgreSQL hostgroup so that we have a way of grouping all of our database
servers together. Once this is defined, we can create dozens or hundreds of PostgreSQL
servers and apply the same checks to all of them.

The second entry we create in our db_conf.cfg file tells Nagios that this is a host it should
monitor. Unless told otherwise, Nagios will ping this server to ensure that it's online, and this
will be the only check until we configure more.

The meaning of the use line is probably not obvious. Nagios has several requirements to
define a configuration entry. Instead of copying the same settings over and over again, we can
create a template and then use it later. In this case, Nagios comes preconfigured with several
basic templates, and we're making use of one for our newly created hosts.

The next entry we create in db_conf.cfg is a service we want to check. In this case,
we are going to take advantage of NRPE to obtain the current system load. By setting
hostgroup-name to pg-servers, Nagios will check the system load on all PostgreSQL
servers; there's no need to create a service entry for each host.

The check-command is probably somewhat opaque as well. Every service requires a command
to execute. Commands are defined like other Nagios objects and must be named for reference.
The check_nrpe_1arg command is defined elsewhere, and we're using it here. Nagios
separates commands from their parameters with an exclamation point. Therefore, in this
example, we're invoking NRPE to check the system load on the remote server.

Red-Hat-based systems don't have a Nagios command named check_nrpe_1arg, so we
create this one manually on those servers. With the newly defined command block, Nagios will
use NRPE whenever the services invoke check_nrpe_1arg.

Finally, we tell Nagios to reload its configuration files. This causes Nagios to reread all
configuration files, including the one we created. If everything goes well, clicking on Host
Groups in the web interface should produce this summary:

Chapter 5

165

There's more...
Wait a minute! We never added a check for PostgreSQL itself! As we can't allow PostgreSQL to
remain unmonitored, create a user on our PostgreSQL server with the following command:

CREATE USER nagios;

Then, make an entry in the pg_hba.conf file to allow trusted checks from the monitoring
server with this line:

host template1 nagios 192.168.56.5/32 trust

Then, reload the PostgreSQL configuration with this command :

pg_ctl -D $PGDATA reload

Next, add a service entry to our db_conf.cfg file like this:

define service {
 use generic-service
 hostgroup_name pg-servers
 service_description PostgreSQL Status
 check_command check_pgsql
}

After reloading our Nagios configuration files, click on the Services link in the web interface.
It should now list two monitored services for the pg-1 server as seen here:

See also
ff Nagios configuration objects are fairly complicated. To use them properly, we strongly

suggest that you browse the Nagios object manual located at http://nagios.
sourceforge.net/docs/3_0/objectdefinitions.html.

http://nagios.sourceforge.net/docs/3_0/objectdefinitions.html
http://nagios.sourceforge.net/docs/3_0/objectdefinitions.html

Monitoring

166

Enhancing Nagios with check_mk
While Nagios is well established in the system administration community, it retains a few
shortcomings due to its long legacy. This is not to suggest that Nagios is a bad platform!
However, we can make it better for our own uses and for other administrators that help us
monitor our database clusters.

check_mk is a popular extension to Nagios that provides a better interface, more built-in
monitors, and—for those interested—a GUI management system. This management GUI is
actually one of the main things we will cover in this recipe, as it has some idiosyncrasies of its
own. However, once we're done presenting the basics, we encourage you to experiment with
some of its more powerful features.

Getting ready
To complete this recipe, we will need a configured Nagios installation. Please follow the steps
in the Installing and configuring Nagios recipe. However, either skip the Configuring Nagios to
monitor a database host recipe or follow these two steps:

1.	 Delete the db_conf.cfg file that we created for our database host.

2.	 Reload the nagios service.

How to do it...
For the purposes of this recipe, our database has a local hostname of pg-1, and the monitor
server is named monitor-server. Follow these steps to use check_mk to create and
configure the host and service monitors for our PostgreSQL server:

1.	 Install check_mk according to the comprehensive instructions at
https://mathias-kettner.com/checkmk_manual_install.html.

2.	 Navigate to the monitor server in a web browser to the check_mk URL:
http://monitor-server/check_mk

3.	 Enter nagiosadmin as the username and the password created during the
installation of Nagios in the Installing and configuring Nagios recipe.

4.	 Click on Hosts in the WATO – Configuration segment of the left sidebar.

5.	 Click on the Create new folder icon.

6.	 Name the folder PostgreSQL Servers, and click on Save & Finish.

7.	 Click on the PostgreSQL Servers folder.

8.	 Click on the Create new host icon.

9.	 Set the Hostname to pg-1, the Alias to PostgreSQL Node 1, and click on
Save & Finish.

https://mathias-kettner.com/checkmk_manual_install.html

Chapter 5

167

10.	 Click on the highlighted inventory link in the information box above the list of hosts.

11.	 Click on Activate missing above the list of hosts.

12.	 Click on the orange icon that says there are 2 Changes.

13.	 Click on the Activate Changes! icon.

14.	 Wait for 5 minutes; then, click on All services in the Views segment of the
left sidebar.

How it works...
While we could have included instructions on installing check_mk, they are actually very
long and would have required several pages of explanation. The official check_mk site does
an admirable job presenting the installation process, so why duplicate it? The abundant
documentation is a great reason to use check_mk.

Once we log in, we see a very large and somewhat imposing interface. However, for now, we
are only interested in the left sidebar. What we're looking for is the web administration tool
(WATO) section, as seen here:

The interface is actually very friendly to new users. Once we click on Hosts, we can either
create a new host right away or create a folder first. We recommend that you always group
the servers in specific folders to make bulk actions easier. Thus, we click on this enticing icon:

After we name and save the folder, we can enter the folder and create the new host.
After creating the host and saving its configuration, we are presented with this notice:

Monitoring

168

When check_mk inventories a server, it attempts to automatically detect the services and
resources it can monitor. Nagios definitely can't do this! Once we activate all of the changes
we made, we need to wait for a minute or two for check_mk to add the new checks and
collect the status of each. Once some time has elapsed, we can click on All services to see
our newly monitored PostgreSQL server:

On our particular test server, check_mk found over 20 services it knew how to monitor. We
don't have to select all of them, of course, but adding the same services to Nagios would have
been much more difficult.

There's more...
check_mk doesn't just provide a handy web interface, but it actually has a very advanced
command-line utility. For instance, if we stopped the recipe after creating the folder and
server and then activated the changes, we could have performed the server inventory with
these two commands:

cmk -I pg-1

cmk -O

The first command checks the pg-1 server for new services. The second saves the services
it found and reloads Nagios so that it can see them as well. The command-line tool makes a
great companion to the web interface when handling several server clusters.

See also
We really like the check_mk documentation. It's comprehensive, verbose, and full of
examples. Check some of the following links for more information:

ff Quick Manual Installation Guide: https://mathias-kettner.com/checkmk_
turbostart.html

ff Calling check_mk: https://mathias-kettner.com/checkmk_calling.html

ff Catalog of check plugins: https://mathias-kettner.com/checkmk_check_
catalogue.html

https://mathias-kettner.com/checkmk_turbostart.html
https://mathias-kettner.com/checkmk_turbostart.html
https://mathias-kettner.com/checkmk_calling.html
https://mathias-kettner.com/checkmk_check_catalogue.html
https://mathias-kettner.com/checkmk_check_catalogue.html

Chapter 5

169

Getting to know check_postgres
Our friends at Bucardo created a useful, general purpose PostgreSQL checking utility.
The check_postgres tool currently has an inventory of more than 50 checks to monitor
PostgreSQL servers.

While this is an exceptionally useful tool, integrating it into our overall stack is necessary to
fully take advantage of its capabilities. This recipe will cover the basic usage and integration
with Nagios for easy PostgreSQL monitoring of large database clusters.

Getting ready
Though some Linux distributions package the check_postgres utility for easy installation,
the versions that are included are usually very old. We recommend that you obtain a copy of
the latest check_postgres source code. At the time of writing this book, the latest version
is 2.21.0, released on September 24, 2013. Obtain the latest copy of the check_postgres
source code from http://bucardo.org/wiki/Check_postgres.

As we want to use Nagios to execute the check_postgres, please follow the steps in the
Configuring Nagios to monitor a database host recipe to produce a working installation with a
basic database host configuration. We will be making further modifications to the db_conf.
cfg file introduced there.

How to do it...
Install check_postgres by following these steps:

1.	 Use these commands to extract the check_postgres source and enter the
source directory:
tar -xzf check_postgres-2.21.0.tar.gz

cd check_postgres-2.21.0/

2.	 Next, build and install the actual software with these commands:
perl Makefile.PL

make

sudo make install

As the postgres user on a PostgreSQL server, try using these commands to obtain
database information:

1.	 Check the state of the database size with this command:
check_postgres.pl --action=database_size -w 100MB -c 200MB

http://bucardo.org/wiki/Check_postgres

Monitoring

170

2.	 Create a large table by executing this SQL as the postgres user in the postgres
database:
CREATE TABLE bigtable AS
SELECT generate_series(1,1000000) AS vals;

3.	 Cause a critical alert by executing this command:
check_postgres.pl --action=table_size -w 10MB -c 20MB

Integrate check_postgres.pl into Nagios by following these steps:

1.	 Create a command section in the db_conf.cfg file with this content:
define command {
 command_name check_pg
 command_line /usr/local/bin/check_postgres.pl -H $HOSTADDRESS$
--action $ARG1$ -w $ARG2$ -c $ARG3$
}

2.	 Create a service section in the db_conf.cfg file that looks like this:
define service {
 use generic-service
 hostgroup_name pg-servers
 service_description PostgreSQL Database Size
 check_command check_pg!database_size!100MB!200MB
}

3.	 Reload the Nagios configuration files:

�� Debian-based servers should use this command: sudo service nagios3
reload

�� Red-Hat-based servers should use this command: sudo service nagios
reload

How it works...
This recipe comes in three parts because we're doing three distinctly different things.
Installing check_postgres itself is actually very easy. The entirety of the utility is contained
within a single file, so we can simply move check_postgres.pl to a suitable location in
our PATH environment setting. However, we suggest that you use the standard installation
process as we did.

While executing sudo make install, look for this line near the end:
Installing /usr/local/bin/check_postgres.pl

This will indicate where the check_postgres.pl script is located. Ours
was installed in /usr/local/bin, but yours may be elsewhere.

Chapter 5

171

Next, we try a couple of basic commands to ensure that check_postgres works. The first
command makes use of the database_size action and alerts us if our database is larger
than the warning (-w) or critical (-c) thresholds that we set. The table_size action performs
a similar task but applies the thresholds to every table in the database. By default, check_
postgres connects to the postgres database, so we placed a large table there to trigger a
critical alert. The output is very large as it lists every table, but it should begin like this:

POSTGRES_TABLE_SIZE CRITICAL: DB "postgres" (host:192.168.56.10)
largest table is "public.bigtable": 35 MB

As we have verified that the check works, we want Nagios to invoke it instead. This removes
the need to create ad hoc invocations and allows us to search for large tables on all the
database servers that Nagios is monitoring.

We will start the process by adding a command to Nagios in the db_conf.cfg file we
created for our single test server. Remember where check_postgres.pl was installed,
because we need to specify the full path to the script, just in case it's not part of the standard
PATH environment. We will set the first argument to set the action we want to perform and
reserve the second and third for the warning and critical levels respectively. By making our
check_pg command so generic, we can use it for every action that check_postgres
supports. Otherwise, we would have needed a separate command section for each check.

Then, we will add a service check. We will need to add one of these for each
check_postgres action that we want to enact. In our example, we only enabled the
database_size check and applied the same thresholds that we used when manually
invoking the script. By reloading the Nagios configuration files, it will incorporate the
new PostgreSQL database size check and apply it to any server that we have in the
pg-servers group.

There's more...
Though the documentation explains all the actions available for check_postgres, it may
be inconvenient to refer to it regularly. Though the check_postgres.pl script accepts the
usual --help parameter, it has a notable ability as well. If we specify the --man parameter
instead, check_postgres will actually display the entire manual. This is similar to
investigating the check_postgres man page like this:

man check_postgres

Sometimes, man pages don't get installed properly or are not available for one reason
or another. The --man parameter should always work on any system that also contains
the perl documentation package.

Monitoring

172

See also
As check_postgres is developed by Bucardo, their site contains various resources related
to its operation. We recommend these links for more information:

ff The check_postgres Wiki: http://bucardo.org/wiki/Check_postgres

ff The check_postgres Documentation: http://bucardo.org/check_postgres/
check_postgres.pl.html

Installing and configuring collectd
When monitoring multiple clusters of servers, we need a data collection method that's both
scalable and configurable. The collectd daemon is a scalable statistics-gathering service,
perfect for large clusters as it operates on a client-server model. A common collectd cluster
may look like this, with collectd running on every server:

pg1

Monitor
server

pg2

pg3

pg4

We can direct the statistics of several PostgreSQL servers to a central aggregate server. This
server may process the data directly or forward it to a graph system for easy visualization. To
gain this type of functionality, we need to spend some time installing and configuring collectd.

Getting ready
For the sake of completeness, obtain a copy of the latest collectd source code. At the time of
writing this book, the latest version is 5.4.1, released on January 26, 2014. Obtain the latest
copy of the collectd source code from http://collectd.org/download.shtml.

In order for collectd to interface with PostgreSQL, we need PostgreSQL development
libraries in addition to the normally installed system binaries. For example, to build properly
on a Debian-based system, we would also need to install libraries by executing this on the
command line:

sudo apt-get install postgresql-server-dev-9.3

Red-Hat-based systems can sometimes lag behind, so we suggest that you obtain the
postgresql93-libs package from http://yum.postgresql.org/rpmchart.php.

Later, we simply need a root-capable user to install collectd as a system-wide service.

http://bucardo.org/check_postgres/check_postgres.pl.html
http://bucardo.org/check_postgres/check_postgres.pl.html
http://collectd.org/download.shtml
http://yum.postgresql.org/rpmchart.php

Chapter 5

173

Some companies have policies that disallow development tools from being
installed on production hardware. If this is the case in your company, it may
be necessary to use a staging or development server for these steps. Once
the binaries are available, they should be deployed to the production system
following the standard deployment protocol. This applies to all the recipes
that call for development libraries.

How to do it...
Assume that we have a monitor server named mon1 and a PostgreSQL server named pg1.
Follow these steps on both servers unless notified otherwise:

1.	 Use these commands to extract the collectd source and enter the source directory:
tar -xzf collectd-5.4.1.tar.gz

cd collectd-5.4.1/

2.	 Next, build and install the actual software with these commands:
./configure --sysconfdir=/etc/collectd

make

sudo make install

3.	 Copy the init/collectd initialization script from the source code provided with
this chapter, into the /etc/init.d directory on the server.

4.	 Change the copied initialization script to make it executable with this command:
sudo chmod a+x /etc/init.d/collectd

5.	 In the /etc/collectd directory, create a file named collectd.conf with the
following contents:
PIDFile "/var/run/collectd.pid"

LoadPlugin load
LoadPlugin syslog

Include "/etc/collectd/network.conf"
Include "/etc/collectd/local.conf"

6.	 On the mon1 server only, create a file named network.conf in the /etc/
collectd directory with the following contents:
LoadPlugin network
<Plugin network>
 Listen "*" "25826"
</Plugin>

Monitoring

174

7.	 On the pg1 server only, create a file named network.conf in the /etc/collectd
directory with the following contents:
LoadPlugin network
<Plugin network>
 Server "192.168.56.10" "25826"
</Plugin>

8.	 On the mon1 server only, create a file named local.conf in the /etc/collectd
directory with the following contents:
LoadPlugin csv
<Plugin csv>
 DataDir "/tmp/collectd"
</Plugin>

9.	 Then, add the service to the system startup and shutdown process:

�� For Debian or Ubuntu systems, use this command: sudo update-rc.d
collectd defaults

�� For CentOS, Fedora, or RHEL systems, use this command: sudo
chkconfig --add collectd

10.	 Finally, start the collectd service on both servers:
sudo service collectd start

How it works...
Our initial steps focus mainly on extracting and building the collectd source. We pass one
parameter to the configure script to set the configuration file's location and leave the rest
at their defaults.

By default, collectd installs in the /opt/collectd directory. If you are
unhappy with this arrangement, we suggest that you change the --prefix
and --exec-prefix parameters when executing the configure script.

Our next steps involve copying the provided initialization script into the server's /etc/
init.d directory to start and stop collectd. While there are several contributed scripts and
configurations in the contrib directory of the collectd source code, ours will work with
almost any Linux distribution.

Once collectd is installed, we need to configure it. The provided configuration file is a good
example, but we need something simpler. The collectd.conf file we created is enough to
ensure that collectd starts and operates as expected. We included two other configuration
files as well so that we can share multiple configuration files on several servers.

Chapter 5

175

The first of these is network.conf. This file should contain network-related collectd settings.
In our particular example, the monitor server is configured to Listen, while our PostgreSQL
server sends data to a collectd Server.

For the sake of demonstration, we configured the monitor server to store collected data to
the /tmp/collectd directory in CSV format. We don't recommend this configuration in a
production environment, but it's safe to use for now. After adding collectd to the list of services
on this server and starting it, both servers should be linked. How can we prove this?

On the monitoring server, we should see a file named after the current date in the /tmp/
collectd/pg1/load/ directory. The file should contain one or more lines like this:

1392592062.376,0.000000,0.010000,0.050000

In this case, the load plugin we declared in the collectd.conf file provides data on system
load. Using commas as separators, the first column is the Unix time in seconds, followed by an
average of 1, 5, and 15 minutes. In the preceding example, the server is essentially idle.

The file in /tmp/collectd/pg1/load/ may not appear immediately.
collectd uses buffers and cache to avoid excessive traffic and output. Be
patient and check every minute or two until it appears.

See also
As collectd works on a client-server model and has several collection plugins available, it also
has a lot of documentation. Please use these links for more information:

ff The collectd Documentation: http://collectd.org/documentation.shtml

ff The collectd Manpage: http://collectd.org/documentation/manpages/
collectd.conf.5.shtml

Adding a custom PostgreSQL monitor
to collectd

The primary reason we chose to install collectd stems from its ability to monitor arbitrary data
points. Due to the existence of a PostgreSQL plugin for collectd, we can actually collect data
from the database itself. Monitoring PostgreSQL becomes as easy as writing a query!

We'll include a few sample queries we developed for monitoring PostgreSQL servers. Feel free
to develop your own as we explain how to leverage the PostgreSQL collectd module.

http://collectd.org/documentation.shtml
http://collectd.org/documentation/manpages/collectd.conf.5.shtml
http://collectd.org/documentation/manpages/collectd.conf.5.shtml

Monitoring

176

Getting ready
As the collectd PostgreSQL module needs to log in to a database within the cluster to gather
its statistics, we should create a user specifically for this purpose. Execute this SQL query with
an appropriate password:

CREATE USER perf_mon WITH PASSWORD 'testpw';

In addition, follow the instructions in the Installing and configuring collectd recipe so that
there is a fully functional collectd client and server.

How to do it...
To create a collectd custom PostgreSQL query, simply follow these steps on a server running
both collectd and PostgreSQL:

1.	 Create a file named local.conf in the /etc/collectd directory with
these contents:
LoadPlugin postgresql

<Plugin postgresql>
 <Query tps>
 Statement "SELECT datname, \
 xact_commit + xact_rollback AS tps \
 FROM pg_catalog.pg_stat_database;"

 <Result>
 Type derive
 InstancePrefix "TPS"
 InstancesFrom "datname"
 ValuesFrom "tps"
 </Result>
 </Query>

 <Database postgres>
 Host "localhost"
 User "perf_user"
 Password "testpw"
 Instance "Production"

 Query tps
 </Database>
</Plugin>

Chapter 5

177

2.	 Reload the collectd configuration files with this command:
sudo service collectd reload

3.	 Wait for 2 to 5 minutes.

4.	 Check the contents of the files in the /tmp/collectd/pg1/postgresql-
Production/ directory on the monitor server.

How it works...
This recipe is almost entirely based on the PostgreSQL collectd plugin. The large block of code
that we inserted into the local.conf file will configure that module with a single query that
it will execute and transmit to the monitor server. The monitor system will automatically accept
these results and integrate them into any data that it's already storing.

The <Query> block deserves some explanation. Every custom query that we define must
have a name. In this case, TPS stands for Transactions Per Second, and it is a common
database metric. The first thing we add is the statement being executed. The statement we
included gathers basic data from the pg_stat_database table for every database in this
particular PostgreSQL instance.

However, it is within the <Result> section that we truly make use of the query. In collectd,
data is classified by the type of information it represents. For our purposes, these types are
gauge and derive. Gauges represent values that are valid only at the time of observation. For
example, most cars have a gauge to display their current speed. Derived values, on the other
hand, are the difference in value between two subsequent readings. Transaction counters in
the pg_stat_database statistics table are cumulative; thus, we must use the derive type
when declaring results to collectd.

The InstancePrefix setting simply helps us distinguish query results when sending them
to collectd. It will associate this prefix with all the results and will help us find the data when
it's time to view it. The InstancesFrom setting has a similar purpose. By giving a column
name (datname here), each row is labeled with the value in that column. For example, a
database named pgbench would be given an instance name of pgbench.

The ValuesFrom setting also needs a column name to gather data. We took the contents
of the xact_commit and xact_rollback columns, added them together, and named
the result tps. Combined with the InstancesFrom setting, each database now has an
associated transaction count.

The PostgreSQL collectd module allows us to create as many <Query> sections as we desire.
But we need to execute the queries somewhere. By creating a <Database> section, we provide
connection information to the module so that it can execute specified queries and gather the
results. The name we give the <Database> block both defines which database name collectd
should use when connecting, and what label it should use for tracking purposes.

Monitoring

178

Within the <Database> section, we can specify an Instance name, but we prefer to think
of it as an environment designator. Why is this? If we have multiple environments, such as
development, stage, testing, reporting, production, and so on, each one may have the same
database name. By giving the instance itself a name, we can tell all the statistics apart from
one another.

At the end of the <Database> section, we tell collectd which <Query> sections it should
apply to that particular database. This means we can have multiple database sections, where
some of our custom queries apply to specific instances.

Once we reload the configuration files, collectd will activate the PostgreSQL module and begin
checking each database for the transaction count. If we wait for this information to reach the
monitor server, it should eventually appear in the /tmp/collectd/pg2/postgresql-
Production directory. Using these settings, this directory should contain one file for each
database that it's tracking. For example, the contents of this directory on our test server looks
like this:

This makes use of every keyword we defined: the instance prefix, database name, type of
graph, and database instance. collectd takes every precaution to separate data for manual
consumption or for graphing purposes.

There's more...
We know that CSV data is not very exciting. collectd is primarily a transmission and
aggregation system with plugin capabilities. This makes it very good at collecting performance
data and sending that data to other presentation systems, but its own output is minimal to
nonexistent. This is by design and keeps collectd efficient when handling data from hundreds
of servers.

However, don't fret! This chapter has several sections devoted to viewing collectd data.

See also
We found some information pertaining to collectd data types as well as the PostgreSQL
module for collectd. We suggest that you use these links for more insight:

ff Data source: https://collectd.org/wiki/index.php/Data_source

ff PostgreSQL Plugin: https://collectd.org/wiki/index.php/
Plugin:PostgreSQL

 https://collectd.org/wiki/index.php/Data_source
 https://collectd.org/wiki/index.php/Plugin:PostgreSQL
 https://collectd.org/wiki/index.php/Plugin:PostgreSQL

Chapter 5

179

Installing and configuring Graphite
When viewing the collected data and statistics regarding our highly available database, we
can simply settle for the raw numbers. They tell a story and include precise measurements
necessary for making decisions regarding architecture and incidence response. However,
many would argue that this is much easier with graphs and charts, as they enable the
identification of trends.

There are a lot of graphing libraries and tools, but relatively few of them are tailored to the
needs of an agile monitoring team. The makers of Graphite helped fill this role, and they did
so with an extremely versatile tool. Graphite makes visualizing the collected system statistics
easy. Unfortunately, due to the number of its installation requirements, administrators might
skip it in favor of something easier to use.

We don't want this to happen to our readers! Follow along, and we'll help you take advantage
of one of the most powerful system visualization suites available.

Getting ready
Red-Hat-based systems will need to add the EPEL library. The most recent EPEL packages are
available for several Red-Hat-based distributions at http://download.fedoraproject.
org/pub/epel.

Look for the package file that begins with epel-release and download it to the monitoring
server. Once the package is downloaded, install it with this command as a root-level user:

sudo rpm -ivh epel-release-*.rpm

Once epel has been installed, install the python-pip, django, and cairo packages and
their requirements with this command:

sudo yum install python-pip django cairo

Debian-based systems should have an easier time due to the larger standard repositories.
Execute these commands to install equivalent packages:

sudo apt-get install python-django python-django-tagging

sudo apt-get install python-pip python-cairo

Some build requirements include Python development libraries. These will depend on
the Linux distribution in use but will likely be called python-dev, python26-devel,
or some variant. Find and install the latest version available in the package repository
before continuing.

http://download.fedoraproject.org/pub/epel
http://download.fedoraproject.org/pub/epel

Monitoring

180

How to do it...
Follow these steps to install, configure, and start Graphite on the dedicated monitoring server:

1.	 Install the web-based visualization frontend with this command:
sudo pip install graphite-web

2.	 Install the data-caching daemon with this command:
sudo pip install carbon Twisted=11.1

3.	 Install the data storage engine with this command:
sudo pip install whisper

4.	 Create a file named local_settings.py in the /opt/graphite/webapp/
graphite/ directory with these contents:
SECRET_KEY = 'Put some unique text here.'

5.	 Initialize the Graphite management database with this command:
sudo python /opt/graphite/webapp/graphite/manage.py syncdb

6.	 Copy two of the default storage configuration files with these commands:
cd /opt/graphite/conf

sudo mv carbon.conf.example carbon.conf

sudo mv storage-schemas.conf.example storage-schemas.conf

7.	 Start the carbon daemon with the following command:
sudo /opt/graphite/bin/carbon-cache.py start

8.	 Start the Graphite website with the following commands:
cd /opt/graphite/bin

sudo su -c "./run-graphite-devel-server.py \
 /opt/graphite &> /var/log/graphite.log &"

Chapter 5

181

How it works...
Once the prerequisites are installed, we need to install all of the pieces Graphite needs in
order to function. These modules include Graphite-web for web-based graph construction,
carbon for aggregating inputs, and whisper to store raw graph data. In the case of carbon,
we must also specify which version of the twisted module to use, as carbon is currently
incompatible with newer versions.

The next step isn't strictly necessary, but each Graphite installation maintains a unique secret
series of characters. We recommend that you generate one and save it in the SECRET_KEY
variable of the local_settings.py file. When it is time to secure the Graphite installation,
having a secret key will make it easier.

As we have changed no other configuration settings, initializing the Graphite management
database will create a sqlite database file in the /opt/graphite/storage directory. This
file will store Graphite users, saved graphs and dashboards, and other elements specific to
Graphite. We could have installed this in a PostgreSQL database as well. If the amount of
Graphite users increases significantly, we recommend that you reinstall the management
database into a PostgreSQL database to avoid usage contention. Until then, SQLite
should suffice.

Next, there are two configuration files that carbon uses to control its cache and aggregation
abilities as well as the output storage format. When we copy the example configuration files
for carbon.conf and storage-schemas.conf, carbon will save data with the whisper
module that we installed earlier. Furthermore, whisper will aggregate and store data
according to the contents of storage-schemas.conf.

Finally, we start the carbon daemon and Graphite itself. Starting carbon is fairly easy due
to the manner in which its management script was written. However, Graphite is meant to
be displayed through a web server such as Apache or Nginx. As we're skipping the process
of integrating Graphite with a web server, we have the option of starting Graphite with a
Python-based development web server instead. The command we invoke sets up this Python
development web server and directs it to serve Graphite pages. We recommend that you use
a more formal installation process on an actual monitoring server.

Monitoring

182

If everything was successful, we should be able to see Graphite. The default port is 8080, so if
we direct a web browser to the monitoring server on that port, we should see this:

We selected a basic data point that carbon tracks for itself, and set the graph time range
for 10 minutes. Currently the data available to Graphite is very minimal, but we hope to fix
that soon.

See also
Graphite has rather extensive documentation as does the pip utility that we used to install
most of its components. We suggest that you read further on these topics if possible, as our
installation and configuration examples were extremely minimalistic. Use the following links
for more information:

ff Graphite wiki: http://graphite.wikidot.com/

ff Updated Graphite Documentation: http://graphite.readthedocs.org/en/
latest/

ff Python Package Index | pip: https://pypi.python.org/pypi/pip

Adding collectd data to Graphite
Graphite has a good interface and a lot of graph options but no real data. collectd gathers
a lot of data but has no real interface. Luckily, we can combine the two, thanks to a collectd
module named write_graphite.

 http://graphite.wikidot.com/
 http://graphite.readthedocs.org/en/latest/
 http://graphite.readthedocs.org/en/latest/
https://pypi.python.org/pypi/pip

Chapter 5

183

In order to feed the collectd data into Graphite, we simply need to modify two configuration
files on the monitoring server and restart collectd. After we do this, we can enable more
collectd modules, add more PostgreSQL queries, and so on. All the collectd data will be
transmitted to Graphite until we break the connection.

This is powerful functionality, as we will demonstrate.

Getting ready
In this recipe, we will be using both collectd and Graphite. Please follow the instructions
in the Installing and configuring collectd and Installing and configuring Graphite recipes
before continuing.

How to do it...
To send the collectd data to Graphite, follow these steps only on the server monitoring our
PostgreSQL nodes:

1.	 Add the following section to the top of the storage-schemas.conf file in
the /opt/graphite/conf directory:
[collectd]
pattern = ^collectd\.
retentions = 10s:1d,1m:7d,5m:30d,10m:90d,1h:1y

2.	 Restart the carbon daemon with the following commands:
sudo /opt/graphite/bin/carbon-cache.py stop

sudo /opt/graphite/bin/carbon-cache.py start

3.	 Replace the contents of the local.conf file in /etc/collectd with the
following contents:
LoadPlugin write_graphite

<Plugin write_graphite>
 <Node "mon1">
 LogSendErrors true
 Prefix "collectd."
 StoreRates true
 SeparateInstances true
 </Node>
</Plugin>

4.	 Restart the collectd daemon with the following command:
sudo service collectd restart

Monitoring

184

How it works...
The first thing we need to do is prepare carbon and whisper for the data that will be arriving
from collectd. By default, whisper will apply storage settings in the order they appear in the
storage-schemas.conf file and has an existing default at the end. Thus, we must place
our settings at the top of the file to ensure they're properly applied.

After naming the storage schema [collectd], we specify a pattern for carbon to recognize
the collectd data. Any incoming data that fits this expression will use the retention periods
that we've configured. Regarding these retention periods, we should be able to see detailed
statistics for recent data and observe trends when viewing them over longer periods.

As such, we've told Graphite to keep every 10 seconds for 1 day, every minute for a week,
every 5 minutes for a month, every 10 minutes for 3 months, and every hour for a year. Feel
free to adjust these periods to reflect your preferences. Afterwards, we restart carbon to
ensure that it reads the new configuration values we've set.

The next step is to configure the local collectd daemon on the monitoring server to send data
to Graphite. Remember, collectd on the monitoring server is also aggregating performance
metrics from several other servers. The collectd daemons in Listen mode will forward all the
data to Graphite, so it makes sense to make our changes there.

We begin by loading the write_graphite module. The next step is to configure this module
with the settings we want. Many of the default values are actually desirable, so we'll ignore
them. Note that we set Prefix to collectd, because Graphite uses periods as separators
for data points. This means that the interface will group all the collectd data under a single
heading, as seen here:

This makes it easier to group data. This also matches the pattern we used when setting the
data retention periods. In our preceding example, we have two PostgreSQL servers monitored
by collectd, and they're easy to find.

Chapter 5

185

The other notable setting is SeparateInstances, which further groups related data. As
an example, if data was named pg2.postgresql-production, it will now be named
pg2.postgresql.production instead. By separating the sections with a period, the
sections do not get their own header but are grouped together instead. This means we can
group environments under the postgresql banner, for instance. Otherwise, we would have
postgresql-production, postgresql-stage, postgresql-dev, or other separate entries for each
system variation.

Finally, we restart the collectd daemon so that it incorporates the write_graphite plugin
safely. If we wait for a few moments and reload our Graphite web interface, we should see
new graph activity. After finding the appropriate node to view, we should be greeted by this:

See also
As we've used write_graphite from collectd and storage schema settings for Graphite,
we've included manuals for both. You may have to search, but these pages should provide
more information on the elements covered in this recipe:

ff Configuring Carbon: http://graphite.readthedocs.org/en/latest/
config-carbon.html

ff The collectd.conf Manpage: http://collectd.org/documentation/
manpages/collectd.conf.5.shtml

ff The write_graphite Plugin: https://collectd.org/wiki/index.php/
Plugin:Write_Graphite

 http://graphite.readthedocs.org/en/latest/config-carbon.html
 http://graphite.readthedocs.org/en/latest/config-carbon.html
http://collectd.org/documentation/manpages/collectd.conf.5.shtml
http://collectd.org/documentation/manpages/collectd.conf.5.shtml
 https://collectd.org/wiki/index.php/Plugin:Write_Graphite
 https://collectd.org/wiki/index.php/Plugin:Write_Graphite

Monitoring

186

Building a graph in Graphite
The Graphite interface introduces several extensive capabilities. In order to use its complete
functionality, we must log in. After doing so, we can save graphs, delete saved graphs, load
graphs that other users have created and customized, and much more.

This recipe will take you through the interface to create a graph, save it, and load it later.
Finally, we can avoid extremely technical discussions for a while!

Getting ready
In this recipe, we will be combining the results of all the previous recipes related to collectd
and Graphite. We recommend that you have a functional monitor server configured, as
discussed in those recipes.

When we installed and configured Graphite, it should have asked for a username and
password for the primary administrative user. This information will be necessary to log
in to the interface.

How to do it...
Follow these instructions to build, save, and load a saved graph:

1.	 Direct a web browser at the monitor server on port 8080.

2.	 Click on the Login link located at the top of the page.

3.	 Enter the username and password as requested, and click on login.

4.	 Click on the Graphite link on the left pane.

5.	 Click on the collectd link on the left pane.

6.	 Click on the name of the server you wish to view.

7.	 Continue by clicking on postgresql, Production, and then on derive.

8.	 Select the item corresponding to a busy database or default to TPS-postgres.

9.	 Select another item from the derive list so that both data points are in the
same graph.

10.	 Click on the save icon shaped like a floppy disk, and name this graph. We suggest
that you name it Production TPS.

11.	 Reload the browser window to clear out any selections.

12.	 Click on My Graphs on the left pane.

13.	 Choose the Production TPS graph.

Chapter 5

187

How it works...
Regular guest users can view graphs, but they cannot save views for later. When we installed
Graphite, it created a default user, probably named root. For now, we can use this for
demonstration purposes. The login screen is very terse:

Once we have logged into Graphite, we are free to build a graph. When we click on a link
on the left pane, we expand its contents. Every expanded section leads to a list of one or
more further sections. As such, we keep clicking on them until we reach items that can be
represented on the graph pane. The data we are interested in is being supplied by collectd,
so we start with it after expanding the Graphite section.

We recommended that you select two data series for two reasons. First, it shows that multiple
data points can exist in the same graph. Secondly, we believe that saving a graph with only one
data point is boring. After the two data points are activated, our interface should look like this:

The active line through the graph represents the pgbench database in our test system, and
it is quite busy. The dashed line at the bottom of the graph is the postgres database, which
nobody uses, and it is zero for the duration of our view window. Regardless of the contents, we
save this graph so that we can load it again later.

Monitoring

188

After we reload the browser window and expand the My Graphs link, we should see the graph
that we just saved:

Click on the Production TPS chart, and it should load on the right pane automatically.

There's more...
Graphite groups the items that contain a period anywhere in their names. We suggest that
you develop a naming scheme to take advantage of this. A good naming scheme should
incorporate the environment and a descriptive explanation of the graph's contents. If we
used Trading | Database Write Activity, our saved graphs would look like this:

Customizing a Graphite graph
Graphite graphs are very helpful in their default form, even though it simply reflects the data
it can access. One of the less obvious features that Graphite offers is data transformation.
Graphite has several choices for line and background colors, legend names, and so on. We
can calculate moving averages, standard deviations, and logs.

There is a lot of extra functionality available in Graphite, and only exploration will truly unveil
much of it. We'll introduce a few basic examples in this recipe.

Getting ready
In this recipe, we will be combining the results of all the previous recipes related to collectd
and Graphite. We recommend that you have a functional monitor server configured, as
discussed in those recipes.

Chapter 5

189

How to do it...
Follow these instructions to apply several transformations to a simple graph:

1.	 Direct a web browser at the monitor server on port 8080.

2.	 Click on the Graphite and collectd links on the left pane.

3.	 Click on the name of the server to view.

4.	 Continue by clicking on postgresql, Production, and then on derive.

5.	 Select the item corresponding to a busy database or default to TPS-postgres.

6.	 Click on the Graph Options button on the graph composer; then, click on Graph Title.

7.	 Enter Production TPS Graph as the new graph name.

8.	 Click on the Graph Data button on the graph composer.

9.	 Click on the only existing data point.

10.	 Select Apply Function, Calculate, and then Moving Average.

11.	 Enter 60 as the number of data points.

12.	 Select Apply Function, Special, and then Set Legend Name.

13.	 Enter TPS - Moving Average as the new legend name.

14.	 Close the Graph Data pane.

How it works...
To begin creating a graph, we first need data to display. The first few steps simply dictate what
elements we should select to drill down to an appropriate level where data points are stored.
Once we've selected one, it's time to customize the data.

The graph composer has two buttons that directly interest us: Graph Options and Graph Data.
They will look like this:

The Graph Options button groups the items that apply to the entire graph. This is the menu
we would use to change the graph's title, its line mode, fonts, colors, and so on. For now,
we've kept it simple and changed the graph's name.

Monitoring

190

The Graph Data button is the more complicated one of the two. It actually launches a
submenu, which looks like this:

This is where we apply transformations to specific data points or modify the ones that are
included in the graph. Of the functions available, we chose to apply a moving average of 60
readings. By default, collectd takes 1 reading every 10 seconds. Thus, 60 readings equates
to 10 minutes worth of readings. We now have a 10 minute moving average on our graph
instead of the raw data.

However, the full path to the collectd data point is also used as the label in the legend. Even
worse, now that we have applied a function to the data, it's included in the label as well. So,
our next steps involve changing the label under the Special menu to make it more readable.
Once we've changed the legend name, our graph should resemble this:

If we were to save this graph, all of the customizations would be saved as well. This allows
others to reuse the graphs that we've prepared, whether for system monitor dashboards
or presentations.

Chapter 5

191

Creating a Graphite dashboard
Perhaps we saved the best Graphite feature for last. A major concern when monitoring the
activity of a highly available PostgreSQL server is that of visibility. So far, we've seen that
Graphite makes data visible and offers a lot of customization. However, we still need a
solution to view multiple graphs at once.

This at-a-glance usage is invaluable for watching several servers at once or viewing multiple
aspects of a single server in depth. Thankfully, Graphite has us covered in this regard and
provides a robust dashboard view specifically to view multiple graphs simultaneously.

Let's explore this final exciting feature.

Getting ready
In this recipe, we will be combining the results of all the previous recipes related to collectd
and Graphite. We recommend that you have a functional monitor server configured, as
discussed in those recipes. We also recommend that you create at least one saved graph
that we can load in the dashboard we construct.

How to do it...
Follow these instructions to build, save, and load a monitor dashboard:

1.	 Direct a web browser at the monitor server on port 8080.

2.	 Click on the Dashboard link located at the top of the page.

3.	 Click on the icon in the upper-right corner of the window to collapse the search pane.

4.	 Click on the Graphs link on the top menu bar.

5.	 Continue by selecting New Graph and then From Saved Graph.

6.	 Expand the list of saved graphs and navigate to any previously saved graph.

7.	 Click on the desired graph name, and check Select.

8.	 Repeat as necessary until the dashboard is finished.

9.	 Click on the Dashboard link on the top menu bar.

10.	 Continue by selecting Save As, give the graph a name, and click on OK to confirm.

11.	 Click on OK to confirm new dashboard name.

12.	 Reload the browser window to clear out any selections.

13.	 Click on the Dashboard link on the top menu bar.

14.	 Continue by selecting Finder, and navigate to the desired dashboard name.

15.	 Choose Open to load the dashboard.

Monitoring

192

How it works...
The first thing we need to do is enter the dashboard view itself by clicking on the Dashboard
link in the main menu. Once there, we can load as many graphs as we desire to view at once.
The first step is to navigate through the Graphs menu as seen here:

Once we have added one or more graphs using this method, we have created our dashboard.
When we installed collectd, we also enabled the system load plugin, which reports how busy
the server is. We took the opportunity to create a graph for this and saved it as an example.
Your dashboard may look different, but ours has these two saved graphs:

To save this dashboard, we can simply select Save or Save As in the Dashboard menu.
Afterwards, this dashboard is available for anyone to use. We can see that for ourselves
by locating the dashboard within the Finder menu. Here's ours, for reference:

Chapter 5

193

There's more...
A handy technique that the dashboard gives us is the ability to adjust the display range of all
the graphs at the same time. If we click on Relative Time Range in the top menu, this pop
up appears:

With this, we can observe the past few minutes, hours, days, weeks, or months of data
trends for every graph currently being displayed. This functionality is further extended in the
Absolute Time Range menu, which allows us to choose any date or time range since we
installed Graphite.

Explore further to fully leverage the dashboard view!

Replication

In this chapter, we will learn several methods to copy entire databases or individual tables.
We will cover the following recipes in this chapter:

ff Deciding what to copy

ff Securing the WAL stream

ff Setting up a hot standby

ff Upgrading to asynchronous replication

ff Bulletproofing with synchronous replication

ff Faking replication with pg_receivexlog

ff Setting up Slony

ff Copying a few tables with Slony

ff Setting up Bucardo

ff Copying a few tables with Bucardo

ff Setting up Londiste

ff Copying a few tables with Londiste

Introduction
One element that is absolutely required for any highly available PostgreSQL installation is
replication. It does not matter if we have a SAN that provides disk redundancy, nor is DRBD
or other block-level replication sufficient to protect our investment. Duplicating and backing up
data is always a good practice, but when it comes to availability, we need online copies of
the database.

6

Replication

196

Similarly, if other departments need data that resides in our OLTP database, how can we
provide it safely? In ideal circumstances, we can supply a copy of the necessary tables. This
way, we don't strain the primary database with ad hoc report-based queries. A new DBA might
try to accomplish this by building a synchronization library or performing scheduled extracts
and copies into a remote database. However, there are easier ways!

PostgreSQL gives us methods to build and maintain a fully online copy of our primary
database. Furthermore, there are existing utilities to duplicate tables when we don't need a
copy of the whole database. In this chapter, we will utilize PostgreSQL replication as well as
third-party table-synchronization tools. Building the best stack requires familiarity with the
tools available.

Deciding what to copy
Before copying anything, we need to determine what to copy. In some instances, it might be
necessary to copy the entire database for disaster-recovery purposes. At other times, such a
copy would waste resources. We need to differentiate between these two scenarios.

Once we've done this, we should decide what to do when we don't want to copy the whole
database. We need to know which tables to copy and where to send them. To accomplish this,
we will build a very small spreadsheet in this section to keep track of the resources we will
need for all of our table and database replicas.

Getting ready
We're going to build a spreadsheet. This spreadsheet will specify the type of replica we want to
maintain, as well as where it will reside. Have a spreadsheet program available before starting.

How to do it...
Follow these steps to determine replication resource requirements:

1.	 Create a spreadsheet with six columns labeled Source Server, Target Server,
Type, DB Name, Table, and Set.

2.	 Under the Source Server column, list the role or name of the PostgreSQL server
that provides the data.

3.	 Under the Target Server column, list the role or name of the PostgreSQL server
that receives the data.

4.	 Under the Type column, select either Replica to copy the whole database or
Logical to copy individual tables.

5.	 Under the DB Name column, enter the name of the database where tables reside on
the source server. If you are using Replica for Type, enter All here.

Chapter 6

197

6.	 Under the Table column, enter All for every table in the listed database, or enter a
single table name. If you are copying multiple individual tables, create a single row for
each table.

7.	 Under the Set column, enter a name for the set of tables being copied. Do this only if
using Logical for the Type column.

8.	 Create at least one row in the spreadsheet for a Disaster Recovery (DR) copy of
every source server in your PostgreSQL clusters.

How it works...
The spreadsheet we're making only requires six columns to fit this recipe. Feel free to include
any other relevant information when making your own. In fact, we suggest that you retain this
document for reference purposes and revisions.

We begin by listing the name or role of the server where all the data will originate. This
Source Server column will help us—and everyone else—to keep track of where the original
data resides. If a server is listed too often in this column, we may want to reconsider removing
some replicas so that we don't overwhelm it.

Next, we need to decide where to send the data. The Target Server column lets us define
where the tables will reside after being replicated. This allows us to formally dictate how many
copies will live in how many locations. There are some limitations based on the type we define
for this replica entry.

When listing the type of replication, we have only two options. We can either mirror the entire
database as a Replica, or single tables in the case of a Logical copy. Any target server
can only appear once if its value in the Type column is Replica. Otherwise, a server might
receive several Logical sources.

Then, we need to list DB Name where we can find the table to copy. If we are copying the
entire database as a Replica, this value will always be All. Otherwise, we should list a
single database name.

Next, which table will we copy? In the case of a Replica type, this value will be All.
Otherwise, should we copy the entire listed database or an inventory of specific tables?
To mirror every table in the database, enter All here. Otherwise, use the name of the table
(including its schema) that we want to include.

Finally, if we are copying a list of individual tables or a named database, we should name the
replica as Set. Replication utilities commonly use these set names to address the objects
being copied, so we can define any sets we plan to use.

The final step we've listed is to determine where we require at least one copy of the entire
database. This replica will be an online copy that we can switch to in the case of server or
data center failure. In a truly high availability architecture, this is not optional.

Replication

198

With all of these entries, our spreadsheet might look something like this:

In this particular example, we have our Disaster Recovery copy of the database and another
full replica for departments to query without disturbing the primary system. Then, we copy
three tables to the reporting database for our Business Intelligence or Marketing teams to
integrate into their customer activity reports.

Securing the WAL stream
The primary mechanism that PostgreSQL uses to provide a data durability guarantee is
through its Write Ahead Log (WAL). All transactional data is written to this location before
ever being committed to database files. Once WAL files are no longer necessary for crash
recovery, PostgreSQL will either delete or archive them. For the purposes of a highly available
server, we recommend that you keep these important files as long as possible. There are
several reasons for this; they are as follows:

ff Archived WAL files can be used for Point In Time Recovery (PITR)

ff If you are using streaming replication, interrupted streams can be re-established by
applying WAL files until the replica has caught up

ff WAL files can be reused to service multiple server copies

In order to gain these benefits, we need to enable PostgreSQL WAL archiving and save these
files until we no longer need them. This section will address our recommendations for long-
term storage of WAL files.

Getting ready
In order to properly archive WAL files, we recommend that you provision a server dedicated to
backups or file storage. Depending on the transaction volume, an active PostgreSQL database
might produce thousands of these on a daily basis. At 16 MB apiece, this is not an idle
concern. For instance, for a 1 TB database, we recommend at least 3 TB of storage space.

In addition, we will be using rsync as a daemon on this archive server. To install this on a
Debian-based server, execute the following command as a root-level user:

sudo apt-get install rsync

Chapter 6

199

Red-Hat-based systems will need this command instead:

sudo yum install rsync xinetd

How to do it...
Our archive server has a 3 TB mount at the /db directory and is named arc_server on our
network. The PostgreSQL source server resides at 192.168.56.10. Follow these steps for
long-term storage of important WAL files on an archive server:

1.	 Enable rsync to run as a daemon on the archive server.

2.	 On Debian-based systems, edit the /etc/default/rsync file and change the
RSYNC_ENABLE variable to true.

3.	 On Red-Hat-based systems, edit the /etc/xinet.d/rsync file and change the
disable parameter to no.

4.	 Create a directory to store archived WAL files as the postgres user with
these commands:
sudo mkdir /db/pg_archived

sudo chown postgres:postgres /db/pg_archived

5.	 Create a file named /etc/rsyncd.conf and fill it with the following contents:
[wal_store]
 path = /db/pg_archived
 comment = DB WAL Archives
 uid = postgres
 gid = postgres
 read only = false
 hosts allow = 192.168.56.10
 hosts deny = *

6.	 Start the rsync daemon.

7.	 Debian-based systems should execute the following command: sudo service
rsync start.

8.	 Red-Hat-based systems can start rsync with this command instead: sudo service
xinetd start.

9.	 Change the archive_mode and archive_command parameters in postgresql.
conf to read the following:
archive_mode = on
archive_command = 'rsync -aq %p arc_server::wal_store/%f'

10.	 Restart the PostgreSQL server with the following command:
pg_ctl -D $PGDATA restart

Replication

200

How it works...
The rsync utility is normally used to transfer files between two servers. However, we can take
advantage of using it as a daemon to avoid connection overhead imposed by using SSH as
an rsync protocol. Our first step is to ensure that the service is not disabled in some manner,
which would make the rest of this guide moot.

Next, we need a place to store archived WAL files on the archive server. Assuming that we
have 3 TB of space in the /db directory, we simply claim /db/pg_archived as the desired
storage location. There should be enough space to use /db for backups as well, but we won't
discuss that in this recipe.

Next, we create a file named /etc/rsyncd.conf, which will configure how rsync operates
as a daemon. Here, we name the /db/pg_archived directory wal_store so that we can
address the path by its name when sending files. We give it a human-readable name and
ensure that files are owned by the postgres user, as this user also controls most of the
PostgreSQL-related services.

The next, and possibly the most important step, is to block all hosts but the primary
PostgreSQL server from writing to this location. We set hosts deny to *, which blocks every
server. Then, we set hosts allow to the primary database server's IP address so that only
it has access. If everything goes well, we can start the rsync (or xinetd on Red Hat systems)
service and we can see that in the following screenshot:

Next, we enable archive_mode by setting it to on. With archive mode enabled, we can
specify a command that will execute when PostgreSQL no longer needs a WAL file for crash
recovery. In this case, we invoke the rsync command with the -a parameter to preserve
elements such as file ownership, timestamps, and so on.

In addition, we specify the -q setting to suppress output, as PostgreSQL only checks the
command exit status to determine its success. In the archive_command setting, the %p
value represents the full path to the WAL file, and %f resolves to the filename. In this context,
we're sending the WAL file to the archive server at the wal_store module we defined in
rsyncd.conf.

Once we restart PostgreSQL, it will start storing all the old WAL files by sending them to the
archive server.

Chapter 6

201

In case any rsync command fails because the archive server is
unreachable, PostgreSQL will keep trying to send it until it is successful.
If the archive server is unreachable for too long, we suggest that you
change the archive_command setting to store files elsewhere. This
prevents accidentally overfilling the PostgreSQL server storage.

There's more...
As we will likely want to use the WAL files on other servers, we suggest that you make a list of
all the servers that could need WAL files. Then, modify the rsyncd.conf file on the archive
server and add this section:

[wal_fetch]
 path = /db/pg_archived
 comment = DB WAL Archive Retrieval
 uid = postgres
 gid = postgres
 read only = true
 hosts allow = host1, host2, host3
 hosts deny = *

Now, we can fetch WAL files from any of the hosts in hosts allow. As these are dedicated
PostgreSQL replicas, recovery servers, or other defined roles, this makes the archive server a
central location for all our WAL needs.

See also
ff We suggest that you read more about the archive_mode and archive_command

settings on the PostgreSQL site. We've included a link here: http://www.
postgresql.org/docs/9.3/static/runtime-config-wal.html

ff The rsyncd.conf file should also have its own manual page. Read it with this
command to learn more about the available settings:
man rsyncd.conf

Setting up a hot standby
It is a very good practice, if not an outright requirement, to have a second online copy of a
PostgreSQL server in high availability clusters. Without such an online server, recovery from
an outage may require hours of incidence response, backup recovery, and server provisioning.
We have everything to gain by having extra online servers.

http://www.postgresql.org/docs/9.3/static/runtime-config-wal.html
http://www.postgresql.org/docs/9.3/static/runtime-config-wal.html

Replication

202

In addition, the process of setting up a hot standby acts as the basis for creating PostgreSQL
streaming replicas. This means that we can reuse this recipe over and over again anytime we
need to create PostgreSQL mirrors, provision extra backup copies, set up test instances, and
so on.

All of this is made possible by the pg_basebackup command.

Getting ready
A hot standby server should have similar, if not exactly the same, specifications as the
PostgreSQL server it is subscribed to. Try to accomplish this if possible. Also refer to the
previous Securing the WAL stream recipe, as we will be consuming WAL files in this recipe.

How to do it...
For this scenario, the server at 192.168.56.10 is the primary PostgreSQL server, and
192.168.56.20 will be the new copy. Once again, arc_server will be the location of the
archive server with old WAL files. On all PostgreSQL servers, our data directory should be
located at /db/pgdata.

Follow these steps to build a PostgreSQL hot standby:

1.	 Ensure that the pg_hba.conf file on the primary server contains this line:
host replication rep_user 192.168.56.20/32 trust

2.	 Reload the configuration files on the primary server with the following command as
the postgres user:
pg_ctl -D /db/pgdata reload

3.	 Ensure that the wal_level and max_wal_senders settings in postgresql.conf
are set as follows on the primary server:
wal_level = hot_standby
max_wal_senders = 5

4.	 Create the replication user if it doesn't already exist with this SQL statement:
CREATE USER rep_user WITH REPLICATION;

5.	 On the new server replica, create the /db/pgdata and /db/pg_archived
directories with these commands as a root-level user:
sudo mkdir -p /db/pgdata /db/pg_archived

sudo chown postgres:postgres /db/*

sudo chmod 0700 /db/pgdata /db/pg_archived

Chapter 6

203

6.	 Create a file named /etc/cron.d/postgres with the following contents in
a single line:
* * * * * postgres flock /tmp/wal_sync rsync -aq --del
 arc_server::wal_fetch/ /db/pg_archived

7.	 Copy the primary server data with this command on the secondary server as the
postgres user:
pg_basebackup -D /db/pgdata -h 192.168.56.10 -U rep_user

8.	 Create a file named /db/pgdata/recovery.conf and fill it with the
following contents:
standby_mode = on
restore_command = 'pg_standby /db/pg_archived %f %p'

9.	 Ensure that the postgresql.conf file on the standby server contains the
following setting:
hot_standby = on

10.	 Start the PostgreSQL server on the standby server with this command:
pg_ctl -D /db/pgdata start

How it works...
The first thing we do with this recipe is allow the new PostgreSQL server to retrieve data from
the primary server. There are a few ways to do this, but for the sake of demonstration, we
created a rule for the server at 192.168.56.20 to connect to the replication pseudo-
database. This allows tools such as pg_basebackup to copy database files from the primary
database when we initialize the replica. Once we reload the configuration files, rep_user
should have sufficient access to copy PostgreSQL data files.

In a related concern, we must ensure that the wal_level setting of the primary server is set
to hot_standby and that max_wal_senders is a value greater than 0. Earlier chapters on
configuring PostgreSQL have already made this suggestion, but this recipe won't work at all if
these parameters are set wrong.

Next, we should make sure that rep_user exists. Earlier chapters contained instructions to
create this user, but it doesn't hurt to double-check. Regardless of what user we use to copy
data, it must have the replication permission used in the CREATE USER syntax.

Replication

204

Next, the new child server needs the same data directory as its parent. We also want to have
a location to synchronize WAL files so that the copy can process them and remain up to date.
We set the permissions so that only the postgres user can view their contents. We should
end up with something like this:

With these two directories in place, it's time to copy WAL files from the archive server. To
accomplish this, we create a file in /etc/cron.d that will execute an rsync command
every minute. This rsync command will copy WAL files from the archive server to the /db/
pg_archived directory. The -a parameter ensures that it will include file permissions and
ownership, and -q will suppress non-error messages so it's easier to tell if something went
wrong. We have also added the --del setting, which will cause rsync to delete any files that
don't exist on the archive server.

Why every minute? It prevents the hot standby from falling too far behind,
without making use of pure PostgreSQL replication. If you want to use this
server as an insurance policy, it might be a good idea to delay it behind
the source database by an hour. This way, mistakes will not appear on the
standby for an hour, giving us a chance to fix problems before they taint
database copies. To sync every hour, change the * * * * * portion of
the rsync command to 0 * * * *.

As we're launching rsync asynchronously, we use flock to create a temporary lock file in the
/tmp directory. This way, if the primary server produced a large burst of WAL files, we won't
have two conflicting rsync commands trying to copy the files to /db/pg_archived.

Once we've established a stream for WAL files, we need to copy the actual database. For this,
we use the pg_basebackup command. While pg_basebackup is, theoretically, a backup
utility, it serves a dual purpose. When launched with the -D parameter, it copies the server
data files from the host indicated by the -h parameter and saves them to the indicated
directory. Thus, our pg_basebackup command copied files from 192.168.56.10 to /db/
pgdata. This produces a PostgreSQL data directory capable of hosting a running database.
We also used the -U setting to use the rep_user user that we created specifically for
replication-related tasks.

Next, we want to start the PostgreSQL hot standby, but first we need to tell it how to recover
WAL files. We create a file named recovery.conf, and if this file exists, PostgreSQL will
enter recovery mode instead of normal operation. In this recovery mode, it expects to process
WAL files until there are no more available. However, we set standby_mode to on in this file,
which tells PostgreSQL to wait forever under the assumption that more WAL files will arrive
later. This is continuous recovery, and this is what makes a hot standby work.

Chapter 6

205

Another setting that we use in recovery.conf is restore_command. Here, we use the
pg_standby utility to regularly consume WAL files in the /db/pg_archived directory. We
could have simply copied the files with cp, but this produces annoying output in our logs that
looks like this:

These errors do nothing but add useless noise to the logs. We could suppress these errors
from cp, but if there was an actual error, we would miss it. Using pg_standby is just easier.

Before we start the PostgreSQL hot standby, there's one more thing to confirm. Simply having
a standby is useful, but having a readable standby is better. By enabling hot_standby in
the postgresql.conf file, we can execute the basic select statements against the
standby database.

Once we start the database on the replica, we should have a fully functional hot standby
PostgreSQL server.

See also
As this is such a common configuration, the PostgreSQL documents discuss it at great length.
We also made extensive use of the pg_basebackup and pg_standby commands. You can
find out more information about these from the following URLs:

ff Hot Standby: http://www.postgresql.org/docs/9.3/static/hot-
standby.html

ff pg_basebackup: http://www.postgresql.org/docs/9.3/static/app-
pgbasebackup.html

ff pg_standby: http://www.postgresql.org/docs/9.3/static/pgstandby.
html

Upgrading to asynchronous replication
Since the release of PostgreSQL 9.0, DBAs have had access to asynchronous streaming
replication. Unlike the older hot standby methods used in earlier versions, replica servers can
connect to an upstream PostgreSQL server and consume data modifications directly. With
low network latency and fast transactions, this means that it is fairly common for streaming
replicas to lag behind the master by only a few milliseconds.

 http://www.postgresql.org/docs/9.3/static/hot-standby.html
 http://www.postgresql.org/docs/9.3/static/hot-standby.html
 http://www.postgresql.org/docs/9.3/static/app-pgbasebackup.html
 http://www.postgresql.org/docs/9.3/static/app-pgbasebackup.html
 http://www.postgresql.org/docs/9.3/static/pgstandby.html
 http://www.postgresql.org/docs/9.3/static/pgstandby.html

Replication

206

In the context of high availability, this means we can scale horizontally by copying the
database to multiple servers. Of course, this means that we need to copy the entire
database to each server. For small-to medium-sized database instances, this is a relatively
minor requirement. This also means that we can produce up-to-date backups, perform ad hoc
queries on practically live data, and aggregate information into reports without disrupting our
primary database.

This recipe will explain how to set up a streaming asynchronous database replica and explore
some of the hidden caveats of doing so.

Getting ready
We will be continuing the work we performed in the Setting up a hot standby recipe, so please
refer to that recipe to build a working hot standby. We will alter the standby setup to include
streaming replication, and better security.

How to do it...
For this scenario, the server at 192.168.56.10 is the primary PostgreSQL server, and
192.168.56.20 will be the asynchronous replica. Follow these steps to build a PostgreSQL
asynchronous replica:

1.	 Give the rep_user user a password with this SQL statement:
ALTER USER rep_user WITH PASSWORD 'newpass';

2.	 On the primary server, modify the pg_hba.conf line and remove any references to
the rep_user user. Then, add this line:
host replication rep_user 192.168.56.20/32 md5

3.	 Reload the configuration files on the primary server with the following command as
the postgres user:
pg_ctl -D /db/pgdata reload

4.	 On the replica server, create a file named .pgpass in the postgres user's home
directory with the following contents:
192.168.56.10:*:replication:rep_user:newpass

5.	 Alter the .pgpass file to have the correct permissions with this command:
Chmod 600 ~/.pgpass

6.	 Modify the recovery.conf file on the recovery server to match these lines:
standby_mode = on
primary_conninfo = 'host=192.168.56.10 user=rep_user'
restore_command = 'cp /db/pg_archived/%f %p 2>/dev/null'

Chapter 6

207

7.	 Reload the configuration files on the streaming replica server with the following
command as the postgres user:
pg_ctl -D /db/pgdata reload

8.	 Confirm that the standby is connected by executing this SQL on the primary
PostgreSQL server:
SELECT client_addr, usename, state
 FROM pg_stat_replication;

How it works...
Using trust authentication is not generally a recommended practice. It is one thing to
copy the database without a password once, but quite another to leave a long-term security
hole for all database replicas. This means it is time to ensure that the rep_user user has
a password. We also need to change pg_hba.conf to reflect the fact that we want to use
regular md5 authentication instead of trust. Once we reload the configuration files on the
primary server, we move on to the streaming replica.

To get into the practice of using .pgpass files, we create one on the replica server for
the rep_user user. The line we created in this file will send our desired password when
the sections match; in this case, if we connect to 192.168.56.10 on any port to the
replication database as the rep_user user, authentication will succeed automatically
If any of these are different, the PostgreSQL client libraries will not send a password, and
the client will receive an error. This is a fairly easy way to automate password submissions
securely. PostgreSQL will also ignore this file if the permissions are wrong, so we set the
control flags with chmod so that only the postgres user can access it.

Next, we rewrite the contents of the recovery.conf file to include primary_conninfo.
This line is used to specify the connection information for establishing streaming replication.
Since our password is in the .pgpass file, we don't need to enter it here. We also removed
pg_standby in favor of a regular cp command with the errors suppressed. Now that our
primary method of WAL consumption is directly from another server, we only need WAL files
from /db/pg_archived as a fail back in case the stream is disrupted.

Why do we use .pgpass instead of entering the password in the
recovery.conf file? It is very common for system automation tools to
distribute configuration files to dozens or even hundreds of servers. Using
.pgpass, we can settle on and redistribute passwords easily. In addition,
tools that build recovery.conf will not need to know the password for
the replication user.

Replication

208

Once we reload the standby server, it should become a streaming replica instead
of a regular hot standby. We can confirm this with the SQL statement that checks the
pg_stat_replication view on the primary server. We should get output similar to this:

There's more...
Though streaming replication has existed since PostgreSQL 9.0, recent changes to 9.3 include
two very helpful additional features:

ff The pg_basebackup tool puts PostgreSQL in backup mode by invoking the
pg_start_backup() function. As this function writes to the database, it normally
can't be used on a streaming server. However, the developers made changes in 9.3
that make it possible to use pg_basebackup on standby servers. This can greatly
simplify the backup process and reduce overhead on the primary server.

ff In the event that we have several streaming replicas, older versions of PostgreSQL
required replica servers to connect directly to the primary server. In 9.3 and above
versions, PostgreSQL allows streaming replicas to subscribe to other replicas. With
this, we can further reduce strain on the primary database server by offloading
replication duties to a topology of alternate servers.

See also
There are good resources within the PostgreSQL documentation and Wiki regarding streaming
replication. For more information, please visit these URLs:

ff Log-Shipping Standby Servers: http://www.postgresql.org/docs/9.3/
static/warm-standby.html

ff Streaming Replication: http://wiki.postgresql.org/wiki/Streaming_
Replication

ff Standby Server Settings: http://www.postgresql.org/docs/9.3/static/
standby-settings.html

ff The Password File: http://www.postgresql.org/docs/9.3/static/
libpq-pgpass.html

 http://www.postgresql.org/docs/9.3/static/warm-standby.html
 http://www.postgresql.org/docs/9.3/static/warm-standby.html
 http://wiki.postgresql.org/wiki/Streaming_Replication
 http://wiki.postgresql.org/wiki/Streaming_Replication
 http://www.postgresql.org/docs/9.3/static/standby-settings.html
 http://www.postgresql.org/docs/9.3/static/standby-settings.html
 http://www.postgresql.org/docs/9.3/static/libpq-pgpass.html
 http://www.postgresql.org/docs/9.3/static/libpq-pgpass.html

Chapter 6

209

Bulletproofing with synchronous replication
Sometimes, in order to provide acceptable data durability, a high availability configuration
must utilize synchronous commits. Beginning with PostgreSQL 9.1, database servers can
now refuse to commit a transaction until the data is located on at least one alternate server.
Unlike asynchronous replication where this is optional, synchronous replicas enforce this
requirement to a fault.

Discussions in the PostgreSQL mailing list suggest that there is a long-standing misconception
that synchronous replication is similar to RAID-1 operation. In RAID-1, the same exact data
exists on two disks (or two disk sets), and if one of the pair fails, it continues to operate
in degraded mode until the problem is addressed. This is absolutely not the case with
PostgreSQL synchronous replication.

Unlike a RAID-1, PostgreSQL replicas can exist on different servers, on different networks, or
even in different countries. PostgreSQL synchronous replication is a guarantee that data is
written to at least two servers. Despite the necessary increase in latency to confirm this, the
guarantee is upheld at all times.

This recipe is for databases that need this kind of extreme durability.

Getting ready
We will be continuing the work we performed in the Upgrading to asynchronous replication
recipe, so please refer to that section to build a working asynchronous replica. We will alter
the standby setup to include synchronous streaming replication.

How to do it...
For this scenario, the server at 192.168.56.10 is still the primary PostgreSQL server.
Follow these steps to change an asynchronous PostgreSQL server into a synchronous replica:

1.	 Modify the recovery.conf file on the recovery server to match these lines:
standby_mode = on
primary_conninfo = 'host=192.168.56.10 user=rep_user
 application_name=node2'
restore_command = 'cp /db/pg_archived/%f %p 2>/dev/null'

2.	 Restart the streaming server with the following command as the postgres user:
pg_ctl -D /db/pgdata restart

3.	 Change the synchronous_standby_names setting in the postgresql.conf file
on the primary server to read the following:
synchronous_standby_names = 'node2'

Replication

210

4.	 Reload the configuration files on the primary server with the following command
as the postgres user:
pg_ctl -D /db/pgdata reload

5.	 Confirm that the standby is connected by executing this SQL on the primary
PostgreSQL server:
SELECT client_addr, state, sync_state, application_name
 FROM pg_stat_replication;

How it works...
Promoting an asynchronous standby server to synchronous mode is actually a fairly simple
procedure. We begin by modifying the primary_conninfo setting in the standby's
recovery.conf file to include the application_name value. PostgreSQL differentiates
replicas by their stated application name, so if we change this, we can specifically target that
particular replica. Any other synchronous standby nodes should be assigned different names.

Once we restart the PostgreSQL server on the streaming standby, it will reconnect to the primary
server with the new application_name that we assigned. From this point onward, we can
refer to the standby server as node2. Thus, when we alter the synchronous_standby_names
variable in the primary server's postgresql.conf file, we use the same name there.

Any time we want to change the synchronous_standby_names variable, we merely need to
tell PostgreSQL to reload its configuration files. Thus, after we do this, node2 should now act
as a synchronous standby server. Any transaction will only commit if it can write to this server
as well as the primary one.

This last point is extremely important. If, for any reason, the synchronous
standby becomes unavailable, the primary server will stop writing to the
database as well! If you are performing maintenance on the secondary
server, we suggest that you set synchronous_standby_names
to a blank value and reload the PostgreSQL server. This will break the
synchronous guarantee until the standby can be reconnected.

Once we have reloaded the primary server's configuration files, we can check the pg_stat_
replication view again to observe how streaming is currently functioning. After executing
the query, we should see something like this:

As we can see in this example, the primary server sees node2 as a synchronous
streaming replica.

Chapter 6

211

There's more...
We really want to confirm if the streaming replication works as advertised. To do this, let's shut
down the standby server with this command:

pg_ctl -D /db/pgdata stop -m fast

Then, try to write to the primary server. This simple SQL statement should wait indefinitely:

CREATE TABLE foo (bar INT);

If we then restart the streaming replica using the following command, we should see the
transaction complete:

pg_ctl -D /db/pgdata start

As you might imagine, this can be problematic in true high availability architectures that
handle thousands of transactions per second. As such, we don't actually recommend that you
use synchronous replication on OLTP servers. As these comprise the bulk of highly available
PostgreSQL clusters, opportunities to take advantage of this level of data durability are
somewhat slim.

However, synchronous commit is actually somewhat optional. If we want to try the experiment
again, we can first issue this SQL statement before trying a basic write query:

SET synchronous_commit TO false;

This disables synchronous replication temporarily for the current session. Subsequent write
queries in this connection should succeed normally as if the remote server was a standard
asynchronous copy.

See also
There are good resources within the PostgreSQL documentation and Wiki regarding streaming
replication. For more information, please visit these URLs:

ff Log-Shipping Standby Servers: http://www.postgresql.org/docs/9.3/
static/warm-standby.html

ff Streaming Replication: http://wiki.postgresql.org/wiki/Streaming_
Replication

ff Synchronous Replication: https://wiki.postgresql.org/wiki/
Synchronous_replication

 http://www.postgresql.org/docs/9.3/static/warm-standby.html
 http://www.postgresql.org/docs/9.3/static/warm-standby.html
 http://wiki.postgresql.org/wiki/Streaming_Replication
 http://wiki.postgresql.org/wiki/Streaming_Replication
 https://wiki.postgresql.org/wiki/Synchronous_replication
 https://wiki.postgresql.org/wiki/Synchronous_replication

Replication

212

Faking replication with pg_receivexlog
Some built-in tools deserve special mention. The pg_receivexlog command was
introduced with PostgreSQL 9.2. With this new utility, PostgreSQL has the ability to transmit
transaction logs to a remote system without the need for a dedicated PostgreSQL server.
This also means that we can avoid ad hoc tools such as rsync when maintaining an archive
server to save old WAL files.

This allows us to set up any server to pull transaction logs directly from the primary
PostgreSQL server. For highly available servers, PostgreSQL no longer needs to fork an
external command to safeguard transaction logs into an archive location. In addition, we can
monitor the state of the transmission through the pg_stat_replication system view.

In effect, we remove quite a bit of overhead from our PostgreSQL server and offload it to a less
sensitive system. This recipe will provide a quick outline for using this utility.

Getting ready
Before starting with this recipe, ensure that you have a good understanding of how
PostgreSQL replication works. To do this, follow the Upgrading to asynchronous replication
and Bulletproofing with synchronous replication recipes.

How to do it...
For this scenario, the server at 192.168.56.10 is still the primary PostgreSQL server, and
192.168.56.100 will be our archive server. Follow these steps to save WAL data remotely:

1.	 Ensure that the pg_hba.conf file on the primary server contains this line:
host replication rep_user 192.168.56.100/32 md5

2.	 Ensure that the wal_keep_segments and archive_mode settings in
postgresql.conf are set as follows on the primary server:
wal_keep_segments = 1000
archive_mode = off

3.	 Restart the configuration files on the primary server with the following command as
the postgres user:
pg_ctl -D /db/pgdata restart

4.	 On the archive server, create the /db/pg_archived directory with these commands
as a root-level user:
sudo mkdir -p /db/pg_archived

sudo chown postgres:postgres /db/pg_archived

sudo chmod 0700 /db/pg_archived

Chapter 6

213

5.	 Start the pg_receivexlog utility on the archive server with the following command:
pg_receivexlog -h 192.168.56.10 -U rep_user \
 -D /db/pg_archived -v \
 &> /db/pg_archived/wal_archive.log &

How it works...
First, we need to ensure that the archive server at 192.168.56.100 can connect to the
primary server to receive the transaction log traffic. Next, unlike other recipes that depend on
archive_mode to be enabled on the primary server, we want to disable it this time. Instead,
we are going to rely on pg_receivexlog itself.

One setting that we change might seem a bit odd at first. The wal_keep_segments
parameter defines how many transaction logs PostgreSQL should keep after it no longer
needs them. Normally, it would delete old files or call the archive command to process them
if archive_mode is on. By setting it to 1000, we are telling it to always have at least 1000
extra files. This helps avoid lost WAL archives if there's a network problem, or we have to
restart pg_receivexlog.

Is 1000 files too many? At 16 MB each, this accounts for 16 GB of space.
Providing this much space should be very easy with modern storage
devices. This many files should account for several hours of activity on all
but the most active databases. It may actually be prudent to increase the
limit further, depending on database activity.

Once these settings are in place, we need to restart PostgreSQL to disable WAL archival. At
this point, the primary server will no longer save or transmit old WAL files anywhere. To make
up for this, we make sure that the archive server has a location to store these files and that
the postgres user can write to it. To continue with our examples, we will continue to use the
/db/pg_archived directory.

Finally, we start the pg_receivexlog tool itself. We pass the -h parameter to connect to the
primary database and use -U to enforce the replication user, rep_user. The -D parameter
is required, and we use it to save WAL files to the /db/pg_archived directory we created.
Then, we enable verbose output with -v just so that we are always informed about what pg_
receivexlog is doing. We direct all output to a file named wal_archive.log and consider
our work complete. The final & character launches the command in the background so that it
functions even if we disconnect from the server.

Replication

214

If everything goes well, our /db/pg_archived directory should soon have some WAL files
and a log inside it, as shown in the following screenshot:

The file that ends in partial is a WAL transfer that is currently in progress.

See also
ff The pg_receivexlog utility has more extensive documentation on PostgreSQL's

site. Visit this URL to learn more: http://www.postgresql.org/docs/9.3/
static/app-pgreceivexlog.html.

Setting up Slony
While there are a few logical asynchronous replication systems for PostgreSQL, Slony-I (Slony
in short) was the first to gain wide adoption. Why would we use Slony when PostgreSQL
already has replication? Currently, PostgreSQL replication can only copy the entire installation.
Every database, schema, table, and user is copied at the binary level. In effect, streaming
replication creates perfect clones of PostgreSQL servers.

Slony is very different. It is designed to copy tables only, capturing changes on a master server
and sending them to one or more subscribers. If you want this type of replication, this section
will provide a basic installation recipe designed for one master and one subscriber.

Getting ready
In order to install Slony, we will need the source code. At the time of writing this book, the
latest version available is 2.2.2. You can obtain a copy of the source at http://slony.
info/downloads/2.2/source/.

We only need the primary source package, but feel free to download the documentation
as well.

How to do it...
For these instructions, 192.168.56.10 is the master PostgreSQL node, and
192.168.56.30 is our desired subscriber. Follow these instructions to activate Slony on the
postgres default database:

 http://www.postgresql.org/docs/9.3/static/app-pgreceivexlog.html
 http://www.postgresql.org/docs/9.3/static/app-pgreceivexlog.html
http://slony.info/downloads/2.2/source/
http://slony.info/downloads/2.2/source/

Chapter 6

215

1.	 Extract the source code and change to the resulting directory with these commands:
tar -xjf slony1-2.2.2.tar.bz2

cd slony1-2.2.2

2.	 Build and install Slony with these commands as a root-capable user:
./configure --prefix=/usr

make

sudo make install

3.	 Provide the rep_user database user with superuser capabilities by running this SQL
statement on both PostgreSQL nodes:
ALTER USER rep_user WITH SUPERUSER;

4.	 Enter the following line in the .pgpass file for the postgres user on both nodes:
::postgres:rep_user:passwordhere

5.	 Ensure that the following line exists within the pg_hba.conf file on the master node:
host postgres rep_user 192.168.56.30/32 md5

6.	 Ensure that the following line exists within the pg_hba.conf file on the
subscriber node:
host postgres rep_user 192.168.56.10/32 md5

7.	 Reload the PostgreSQL service on both nodes with the following command as the
postgres user:
pg_ctl -D /db/pgdata reload

8.	 Create a file named nodes.slonik in the /etc/slony directory of the master
node with the following contents:
cluster name = replication;
define master 'dbname=postgres host=192.168.56.10 user=rep_user';
define sub1 'dbname=postgres host=192.168.56.30 user=rep_user';
node 1 admin conninfo = @master;
node 2 admin conninfo = @sub1;

9.	 Create a file named init.slonik in the /etc/slony directory of the master node
with the following contents:
include </etc/slony/nodes.slonik>;
init cluster (id=1, comment = 'Master');
store node (id=2, comment = 'Subscriber', event node=1);
store path (server = 1, client = 2, conninfo = @master);
store path (server = 2, client = 1, conninfo = @sub1);

Replication

216

10.	 Install Slony on both nodes by executing the following command as the postgres
user on the master node:
slonik < /etc/slony/init.slonik

11.	 Start Slony on the master node with this command as the postgres user:
slon replication \
 'dbname=postgres host=192.168.56.10 user=rep_user' \
 &> /var/log/postgresql/slony.log &

12.	 Start Slony on the subscriber node with this command as the postgres user:
slon replication \
 'dbname=postgres host=192.168.56.30 user=rep_user' \
 &> /var/log/postgresql/slony.log &

How it works...
The first two steps are common to most Unix-based software. We start by extracting the
source code, bootstrapping the build process with configure, and building it with make.
We choose to install with a prefix of /usr so that Slony binaries are installed in /usr/bin.
This makes executables more easily available.

Once installed, we need to ensure that our rep_user user, which we've used in the past,
has PostgreSQL superuser capabilities. Slony performs many tasks that are only available to
superusers, so this step is not optional. Then, we modify the postgres user's .pgpass file
to allow the rep_user database user to connect from either node. While we're making user
changes, we also alter pg_hba.conf on both nodes so that each server can connect to the
other. Once we reload the PostgreSQL configuration files, the user setup is complete.

We should note that more advanced installations will probably have
a specific user for streaming replicas and a completely separate user
for logical replication solutions such as Slony due to the superuser
requirement. That wasn't entirely necessary for the purpose of this book,
but do consider it when using tools such as Slony.

With our preliminary work complete, we create a basic configuration file in the /etc/slony
directory named nodes.slonik. This file describes the name of the cluster as well as each
node and its connection parameters. We create this file because it is a preamble commonly
used in all Slony-related commands. Why not save some typing effort?

Next, we create init.slonik in the /etc/slony directory. This file actually initializes the
Slony cluster. We start by including the nodes.slonik file we created earlier, and then, we
initialize node 1 as the master node. After the cluster is created, we store the node for our
subscriber. The two store path commands are necessary so that each node knows how to
communicate with the other.

Chapter 6

217

We should create two path entries for each subscriber node that we create, as each channel
is unidirectional. Slony communicates like this, where each Slony box represents one path:

Master Subscribe

Slony

Slony

With our configuration files created, we need to install Slony on both nodes. We do this by
sending the contents of our init.slonik to the slonik command. The slonik tool has its
own language and interprets our configuration files as instructions. For now, these instructions
tell it to initialize a cluster named replication with one node, one subscriber, and two
communication paths.

Now that Slony is installed on both the master and subscriber nodes, we need to start the
slon utility. This tool does all of the actual work of the Slony software. It copies data to the
subscriber, schedules and executes internal events, performs maintenance, and so on.
It acts like a multipurpose daemon but does not fork or run in the background by itself.
Thus, we send the output to a logfile in /var/log/postgresql, and tell it to run in the
background by specifying & at the end of the command. Once again, we have to specify
connection information for these daemons to work properly.

See also
ff The Slony documentation is extremely extensive and includes a tutorial similar

to this one. It also includes much more in-depth explanations of the process.
To gain a deeper understanding of Slony and its use, we recommend this URL:
http://slony.info/documentation/2.2/index.html

Copying a few tables with Slony
Once Slony has been installed and is running on both nodes, we can actually make use of it
and copy tables to a remote database. For high availability PostgreSQL servers, making data
available to external systems means long-running and potentially disruptive ad hoc queries
run elsewhere. It also means that reporting environments have direct copies of relevant tables
and do not need to retrieve this data from our OLTP systems.

While it is possible for OLTP servers to act as OLAP systems as well, these workloads are quite
different. For the best performance possible and the least risk of outages, each server should
be specialized. So, let's use Slony to do just that.

 http://slony.info/documentation/2.2/index.html
 http://slony.info/documentation/2.2/index.html

Replication

218

Getting ready
We will be continuing where we left off in the Setting up Slony recipe. Please make sure to
have completed that recipe before continuing. As we want tables to test Slony with, we should
create some. The pgbench utility can do this quickly. Execute this command on the primary
PostgreSQL server as the postgres user:

pgbench -i postgres

How to do it...
For this recipe, 192.168.56.30 will remain our subscriber. Follow these instructions to copy
the pgbench tables and all future changes from pg1 to pg2:

1.	 Extract the table creation statements from the primary database with the following
command as the postgres user:
pg_dump -s -t 'pgbench*' postgres > /tmp/tables.sql

2.	 Create the empty tables on the subscriber node by executing this command as the
postgres user on the primary node:
psql -U rep_user -h 192.168.56.30 -f /tmp/tables.sql postgres

3.	 Confirm that the tables exist on the subscriber node by executing the following SQL
statement on that system:
SELECT schemaname, tablename FROM pg_tables
 WHERE tablename LIKE 'pgbench%';

4.	 Create a file named pgbench_set.slonik in the /etc/slony directory with the
following contents:
include </etc/slony/nodes.slonik>;
create set (id=1, origin=1, comment='pgbench Tables');
set add table (set id=1, origin=1, id=1,
 fully qualified name = 'public.pgbench_accounts');
set add table (set id=1, origin=1, id=2,
 fully qualified name = 'public.pgbench_branches');
set add table (set id=1, origin=1, id=3,
 fully qualified name = 'public.pgbench_tellers');

5.	 Create a file named subscribe_pgbench.slonik in the /etc/slony directory
with the following contents:
include </etc/slony/nodes.slonik>;
subscribe set (id = 1, provider = 1, receiver = 2,
 forward = no);

Chapter 6

219

6.	 Create the pgbench subscription set with this command:
slonik < /etc/slony/pgbench_set.slonik

7.	 Subscribe our secondary node to the new pgbench set with this command:
slonik < /etc/slony/subscribe_pgbench.slonik

8.	 Execute the following SQL on the subscriber node to confirm that data is
being copied:
SELECT count(1) FROM pgbench_accounts;

How it works...
Before we can copy any data, we need to begin by copying the table structures from the
primary node to the subscriber. Slony only copies data and assumes that the source and
target tables have the exact same columns. Therefore, we use pg_dump to obtain a schema-
only (-s) extract of any table that begins with pgbench (-t 'pgbench*'). Using the -h
parameter, we can execute the resulting SQL statement on the subscriber database and
create all of the pgbench tables as empty shells.

Before attempting to create the Slony set, we should first confirm that the tables exist on the
subscriber. We can check the pg_tables view and should see these records:

Once we've done this, we can continue by creating a slonik script that will create the
Slony subscription set itself. Sets can be sent to any node that requests a subscription and
only includes tables in that set. This lets us group tables by content if necessary. Observant
readers may notice that we didn't add the pgbench_history table to the subscription set.
This is because Slony only copies tables with primary keys by default.

Slony table IDs are assigned manually and must be unique across all sets.
We recommend skipping IDs between sets in case tables are added later.
An easy rule is to add 100 or 1000 between each set. Thus, if we created
another set, its table IDs could start at 100 to provide a sufficient buffer.

Replication

220

Next, we create one more slonik script for the subscription command itself. As this is our
first set, its id is 1. Though Slony supports chained table replication, we don't need that for
our setup, so we disable it by setting forward to no.

To send table contents to the remote server, we simply need to create the table set on the
primary node and subscribe the secondary node to the new set. This is one reason that we
created the two slonik scripts. Another reason is due to the chance that we might need to
rebuild this Slony replication cluster in the future. By having all of these scripts, we can do this
in a few quick steps by executing all of the slonik scripts.

Provided there were no errors returned by the slonik commands, we can confirm that data
is being sent to the subscriber with a single SQL query. We should see this:

Remember that we only extracted and copied the table definitions to the remote server. If we
see any rows there, they must have come from Slony.

There's more...
Slony operates by attaching triggers to both the source and target tables. Due to this,
creating a Slony set on a very active database can cause locking contention. Why does it
need triggers? The triggers on the source system capture insert, update, and delete activities
and forwards them to the remote system. On subscriber nodes, the triggers block any insert,
update, or delete activity that does not originate from Slony itself.

The triggers also make it possible to switch between which node is the subscriber, and which
is the origin without any further table locks. Keep this in mind when copying data via Slony, or
the locks could cause query timeouts and customer complaints. Try to schedule new sets and
set modifications during maintenance periods or low-usage periods.

See also
ff Once again, we recommend that you read the Slony documentation if you plan to use

it for logical table replication. The rich syntax and functionality is beyond the scope of
this book, but is available at http://slony.info/documentation/2.2/index.
html.

http://slony.info/documentation/2.2/index.html
http://slony.info/documentation/2.2/index.html

Chapter 6

221

Setting up Bucardo
Bucardo is another popular logical replication engine that actually seems to have originated
earlier than Slony, in 2002. Like Slony, it also uses triggers to perform its synchronization
activity, but its syntax is much simpler. Furthermore, it also provides multimaster capabilities;
this means that changes made in either the primary or secondary node will appear in both
copies of a replicated table.

There is something to be said for tools that encourage simplicity when maintaining a complex
high availability architecture. Let's explore Bucardo further.

Getting ready
The latest stable version of Bucardo at the time of writing this book is 4.5.0. Obtain the latest
source package from the following URL:

http://bucardo.org/wiki/Bucardo

Bucardo is written in Perl, so it requires quite a few Perl-based prerequisites. On Debian-based
systems, install them using the following apt-get commands:

sudo apt-get install libdbix-safe-perl libdbd-pg-perl

sudo apt-get install postgresql-plperl-9.3

Red-Hat-based systems require a bit more work. Install the EPEL package for your Red Hat
platform from the following URL:

https://fedoraproject.org/wiki/EPEL

Then, install these RPMs with the following yum command:

sudo yum install perl-DBI perl-DBD-Pg perl-DBIx-Safe

Next, if it isn't installed already, download and install the PostgreSQL repository by installing
the appropriate RPM from this URL:

http://yum.pgrpms.org/repopackages.php

Then, install the plperl PostgreSQL procedural language with this yum command:

sudo yum install postgresql93-plperl

http://bucardo.org/wiki/Bucardo
https://fedoraproject.org/wiki/EPEL
http://yum.pgrpms.org/repopackages.php

Replication

222

How to do it...
For these instructions, 192.168.56.10 is the master PostgreSQL node, and 192.168.56.30
is our desired subscriber. Follow these instructions on both servers to install Bucardo:

1.	 Extract the source code and change to the resulting directory with these commands:
tar -xzf Bucardo-4.5.0.tar.gz

cd Bucardo-4.5.0

2.	 Build and install Bucardo with these commands as a root-capable user:
Perl Makefile.PL

make

sudo make install

3.	 Next, install Bucardo onto the database by executing the following command as the
postgres user on both servers:
bucardo_ctl install

Follow these steps only on the primary server that will be running the Bucardo service:

1.	 Create a directory for Bucardo to store pid files with these commands as a root-
capable user:
sudo mkdir /var/run/bucardo

sudo chown postgres:postgres /var/run/bucardo

2.	 Add the postgres database from both PostgreSQL servers with these commands as
the postgres user:
bucardo_ctl add db postgres name=pg1 host=192.168.56.10

bucardo_ctl add db postgres name=pg2 host=192.168.56.30

3.	 Finally, start the Bucardo service by executing this command as the postgres user:
bucardo_ctl start

How it works...
While Bucardo has a lot of prerequisites, its installation and configuration process is actually
much easier. It also provides a proper daemon control utility in bucardo_ctl. As proof of
this, the usual process of extracting and building the source code is the most time-consuming
part. When Bucardo is installed on both servers, we merely have to invoke bucardo_ctl with
the install parameter to finish the process.

Chapter 6

223

When Bucardo is installed, it creates a user named bucardo and a database named
bucardo. The bucardo user acts like the rep_user user we created for replication, so it
must be a PostgreSQL superuser. As such, we need to ensure that we use a superuser for the
User configuration setting during the installation process. This is why we recommend that you
run the bucardo_ctl utility as postgres when possible. Here's what our installation screen
looked like for the second node:

Once we press P and hit Enter, Bucardo is installed. This means the only steps that remain
involve starting the Bucardo service itself.

To do this, we need to prepare the /var/run/bucardo directory so that Bucardo can create
files there. As we are going to launch it as the postgres user, the postgres system user
needs to own that directory.

Next, we configure Bucardo itself by adding an internal alias for the postgres database on
each server. The bucardo_ctl command has a lot of operation modes, but for now, all we
need to do is add the postgres database with a different name for each host. After doing
so, we can start Bucardo by calling bucardo_ctl with the start parameter. If everything
goes well, we can call bucardo_ctl with the status parameter and see that it's running,
as shown in the following screenshot:

See also
ff Bucardo has an easy-to-follow Wiki with instructions on installation and basic

configuration. To learn more, please visit their site at http://bucardo.org/wiki/
Bucardo/Installation.

http://bucardo.org/wiki/Bucardo/Installation
http://bucardo.org/wiki/Bucardo/Installation

Replication

224

Copying a few tables with Bucardo
Bucardo provides a very capable control mechanism in bucardo_ctl. Unlike Slony,
which depends on an arcane programming language to create new replication sets and
subscriptions, Bucardo is much more straightforward. As with Slony, we still want to copy
data to other servers to avoid overwhelming our primary server.

In this recipe, we will utilize bucardo_ctl to create what Bucardo refers to as a herd. Bucardo
herds contain one or more tables, and they are the basis of its synchronization system.

Let's begin.

Getting ready
We will be continuing where we left off in the Setting up Bucardo recipe. Please make sure
that you have completed that recipe before continuing. As usual, we will use the pgbench
utility to create an initial set of tables. Execute this command on the primary PostgreSQL
server as the postgres user if you haven't already done so:

pgbench -i postgres

How to do it...
As with all of the previous recipes, 192.168.56.30 will remain our replication subscriber.
Execute all commands in this recipe as the postgres system user. Follow these steps
to copy the sample pgbench tables:

1.	 Extract the table creation statements from the primary node with the
following command:
pg_dump -s -t 'pgbench*' postgres > /tmp/tables.sql

2.	 Create the empty tables on the subscriber node by executing this command on the
primary node:
psql -U rep_user -h 192.168.56.30 -f /tmp/tables.sql postgres

3.	 Add all of the pgbench tables to Bucardo with these commands:
bucardo_ctl add table pgbench_accounts db=pg1

bucardo_ctl add table pgbench_branches db=pg1

bucardo_ctl add table pgbench_tellers db=pg1

4.	 Confirm tables are being tracked by executing this command:
bucardo_ctl list tables

Chapter 6

225

5.	 Create a Bucardo herd by executing this command:
bucardo_ctl add herd pgbench pgbench_accounts \
 pgbench_branches pgbench_tellers

6.	 Execute the following command to add a synchronization set to Bucardo:
bucardo_ctl add sync pgbench source=pgbench \
 type=pushdelta targetdb=pg2 onetimecopy=1

7.	 Next, execute this command to begin synchronizing these tables:
bucardo_ctl activate pgbench

8.	 Finally, execute this command to view the status of Bucardo:
bucardo_ctl status

How it works...
As with Slony, we need to begin by duplicating table structures to the subscriber. Bucardo only
copies data and assumes that the source and target tables have the exact same columns.
Therefore, we use pg_dump to obtain a schema-only (-s) extract of any table that begins with
pgbench (-t 'pgbench*'). Using the -h parameter, we can execute the resulting SQL on
the subscriber database and create all of the pgbench tables as empty shells.

After copying the table definitions, we can use bucardo_ctl for all the remaining steps.
The first of these include configuring Bucardo to recognize each table we want to replicate.
The add table parameter to bucardo_ctl does this. By adding the db=pg1 segment, we
explicitly state which database owns the table we're adding. In this case, pg1 is the alias we
created for the 192.168.56.10 origin server during the installation of Bucardo.

To prove that Bucardo added these tables to its configuration, we can check with the list
tables parameter. Output from bucardo_ctl should resemble this:

Bucardo refers to tables as goats, and a gathering of goats becomes a herd. This is the
equivalent of a Slony table set. We can add one with the bucardo_ctl command by passing
the add herd parameter and a list of every table to include in the new herd. This herd will
stampede in any direction we specify.

To give directions to our herd, we use bucardo_ctl again. This time, we send the add sync
parameter and quite a few other elements. The source parameter tells Bucardo which herd
we will be copying, and the targetdb parameter specifies which database server the herd
should target.

Replication

226

Bucardo has three methods to synchronize data, and we choose one by setting the type
parameter. We choose pushdelta because Bucardo is only sending changes to the tables.
Any existing data is completely ignored. These tables are empty on the target, and this is not
the behavior we want. So, we also set the onetimecopy value to 1, indicating that it should
fill the tables before keeping them updated.

This behavior is much different from how Slony works. If the source and
target tables already contain data, Slony will truncate the target and copy
all data from the source. If a table has already been synchronized before
adding it to a replication set, this redundant copying can be very expensive.
Bucardo only copies all data if it is told to do so with the onetimecopy
parameter, which is a major benefit when running a sensitive high
availability cluster.

Having added the set, no data is being copied at this time. Bucardo maintains separate
child processes for each replication set so that it can handle multiple synchronization sets
simultaneously. We don't have to copy the set simply because we've created it. To do this,
the sync must be activated with the bucardo_ctl activate command.

After the sync has been activated, we should view Bucardo's status to confirm that it is active
and copying our herd properly. The status output from bucardo_ctl should look like this:

From this output, we can see that Bucardo is running as PID 10027 and that it has
copied 100,000 rows within the pgbench synchronization set. Furthermore, we can see that
the pgbench synchronization set process PID is 11449, indicating that Bucardo is indeed a
multiprocess daemon.

See also
ff The bucardo_ctl command is extremely versatile. You can learn more about how it

controls Bucardo replication at http://bucardo.org/wiki/Bucardo_ctl.

 http://bucardo.org/wiki/Bucardo_ctl

Chapter 6

227

Setting up Londiste
To complete our suite of popular logical replication tools, we would like to introduce Londiste.
It is one of the SkyTools PostgreSQL utilities contributed by Skype in 2007. Why another
replication system? Due to other capabilities offered by this suite of tools, you may decide to
use one or more of them. Knowing how to leverage Londiste can simplify the total software
stack and thereby increase server stability and simplicity.

In addition, like Bucardo, its usage is much simpler than Slony due to its suite of command-
line tools. Let's continue with the installation of Londiste on two PostgreSQL servers, and
perhaps, we might utilize other SkyTools functionality later.

Getting ready
At the time of writing this book, the latest version of Londiste is 3.1.5. Download the latest
source package from PGFoundry at http://pgfoundry.org/projects/skytools.

Londiste is written in Python and uses the psycopg2 PostgreSQL database library. Make sure
that this is installed before continuing. On Debian-based systems, this command will install
psycopg2 if it isn't already available:

sudo apt-get install python-psycopg2

Red-Hat-based systems should obtain the latest EPEL package from the following URL:

https://fedoraproject.org/wiki/EPEL

Then, install psycopg2 with the following yum command:

sudo yum install python-psycopg2

How to do it...
As before, 192.168.56.10 is the master PostgreSQL node and 192.168.56.30 is our
desired subscriber. All of the steps here should only be performed on the primary PostgreSQL
server. Follow these instructions to activate Londiste on the postgres default database:

1.	 Extract the source code and change to the resulting directory with these commands:
tar -xzf skytools-3.1.5.tar.gz

cd skytools-3.1.5

2.	 Build and install Londiste with these commands as a root-capable user:
./configure

make

sudo make install

http://pgfoundry.org/projects/skytools
https://fedoraproject.org/wiki/EPEL

Replication

228

3.	 Create a file named primary.ini in the /etc/skytools directory with the
following contents:
[londiste3]
job_name = primary
db = dbname=postgres host=192.168.56.10
queue_name = replication
logfile = /var/log/postgresql/londiste-%(job_name)s.log
pidfile = /var/run/postgresql/londiste-%(job_name)s.pid

4.	 Create a file named subscriber.ini in the /etc/skytools directory with the
following contents:
[londiste3]
job_name = subscriber
db = dbname=postgres host=192.168.56.30
queue_name = replication
logfile = /var/log/postgresql/londiste-%(job_name)s.log
pidfile = /var/run/postgresql/londiste-%(job_name)s.pid

5.	 Create a file named pgq.ini in the /etc/skytools directory with the
following contents:
[pgqd]
logfile = /var/log/postgresql/pgqd.log
pidfile = /var/run/postgresql/pgqd.pid

From this point on, all steps should be executed within the /etc/skytools directory as the
postgres user. Continue with these instructions:

1.	 Configure the Londiste primary node by executing this command:
londiste3 primary.ini create-root primary \
 "dbname=postgres host=192.168.56.10"

2.	 Configure the Londiste secondary node by executing this command:
londiste3 subscriber.ini create-leaf subscriber \
 "dbname=postgres host=192.168.56.30" \
 --provider="dbname=postgres host=192.168.56.10"

3.	 Launch the Londiste background workers with the following commands:
londiste3 -d primary.ini worker

londiste3 -d subscriber.ini worker

4.	 Finally, launch the communication queue with this command:
pgqd -d pgqd.ini

Chapter 6

229

How it works...
Unfortunately, Londiste is not as easy to install as Bucardo. Once we extract and install the
source code, we still need to create a few configuration files and launch several background
daemons to facilitate data movement.

The first of these configuration files is primary.ini. This file should tell Londiste everything
it needs to know about connecting to the primary PostgreSQL node where the original data
resides. When we launch the worker, it will operate under the job_name specified in this file.

Next, Londiste needs to know how to connect to the database it is copying. Here, we specify
the host of the primary server, and dbname should be postgres. The queue_name is
the communication channel Londiste will use to send data to the subscriber, so we choose
something that is easy to remember. Finally, we configure a directory for the PID file and logging
output. To save time, we reused the same directories that PostgreSQL uses for the PID file and
log output by default.

The subscriber also has a configuration file. This time we name it subscriber.ini, and only
change host for the database server and job_name of the worker. Otherwise, everything is
the same as in primary.ini.

The last configuration file we create is pgqd.ini. This file provides configuration information
to the pgqd queue process through which Londiste communicates. Without this configuration
file and the accompanying pgqd daemon, Londiste will simply not function. This is very
different from Slony, which operates entirely through worker processes. Imagine the situation
like this diagram:

SubscribePrimary

worker
pgqd worker

The queue reads from the database where the queue contents are stored, and workers can
interact with each database server in any direction. In turn, they can also communicate
with the queue. Due to this structure, the queue daemon can be relocated as long as the
communication channels are preserved. Some users of Londiste leave the queue on the
primary server and run the workers from subscriber nodes. This would be a good architecture
to try for high availability, as it leaves fewer services competing for primary server resources.

In any case, the time has come to configure nodes by installing various database-related
components. All management of Londiste is performed with the londiste3 command-
line utility. The first required parameter is always the name of a configuration file for the
node that should be affected. Thus, we change our location to /etc/skytools so that the
configuration files exist locally.

Replication

230

We begin by registering the master node. Londiste will do this for us on the primary node
when we specify the create-root parameter to londiste3. This parameter also requires
us to name the node, so we use primary to keep things clear. Finally, we need a connection
string where this database configuration will be stored. Again, for the sake of simplicity, we
repeat the connection information for the primary node.

Then, we register the subscriber as a leaf node by calling londiste3 with create-leaf.
Once again, we need to specify connection information. This time, it should not be for the
primary node, but for the subscriber. Yet, registering the subscriber is not enough; we must
also designate the node where the subscriber should be registered. In this case, the primary
node is where all node registrations reside, so we repeat the primary node connection string.

Now that the nodes are registered, we can launch the worker processes. This too is done with
the londiste3 utility and should be done for both nodes. The -d parameter tells the workers
to run in the background as standard Unix daemons, and the worker parameter instructs
londiste3 to launch a worker process. Assuming that these workers did not encounter an
error, we can see them with a quick execution of pgrep:

The last process we launch is the queue, which ties all of the Londiste pieces together.
This time, we rely on the pgqd command and use the -d parameter again so that it runs
as a background daemon.

See also
ff The Londiste documentation is primarily located at PGFoundry and isn't quite

as organized as what Slony and Bucardo provide. Nevertheless, the http://
skytools.projects.pgfoundry.org/skytools-3.0/doc/howto/
londiste3_simple_rep_howto.html URL contains their explanation of a very
basic Londiste setup, which is similar to this recipe.

Do not refer to the Londiste documents on the PostgreSQL Wiki; they are extremely
out of date with the current versions of Londiste.

Copying a few tables with Londiste
Londiste provides a very capable control mechanism in londiste3. Unlike Bucardo, we don't
need to create a herd or sync, nor do we have to launch the process that handles data for a
particular herd. With Londiste, it's all about the tables.

In this recipe, we will utilize londiste3 to register all of the tables we want to copy and verify
that the data is the same on each PostgreSQL server.

http://skytools.projects.pgfoundry.org/skytools-3.0/doc/howto/londiste3_simple_rep_howto.html
http://skytools.projects.pgfoundry.org/skytools-3.0/doc/howto/londiste3_simple_rep_howto.html
http://skytools.projects.pgfoundry.org/skytools-3.0/doc/howto/londiste3_simple_rep_howto.html

Chapter 6

231

Getting ready
We will be continuing where we left off in the Setting up Londiste recipe. Please make sure
that you have completed that recipe before continuing. Once again, we will use the pgbench
utility to create an initial set of tables. Execute this command on the primary PostgreSQL
server as the postgres user if you haven't already done so:

pgbench -i postgres

How to do it...
Execute all commands in this recipe as the postgres system user. Follow these steps to copy
the sample pgbench tables:

1.	 Extract the table creation statements from the primary node with the
following command:
pg_dump -s -t 'pgbench*' postgres > /tmp/tables.sql

2.	 Create the empty tables on the subscriber node by executing this command on the
primary node:
psql -U rep_user -h 192.168.56.30 -f /tmp/tables.sql postgres

3.	 Make sure that you are in the /etc/skytools directory for the following steps.

4.	 Register all of the pgbench tables with the primary PostgreSQL server with
these commands:
londiste3 primary.ini add-table pgbench_accounts

londiste3 primary.ini add-table pgbench_branches

londiste3 primary.ini add-table pgbench_tellers

5.	 Register all of the pgbench tables with the subscriber PostgreSQL server with
these commands:
londiste3 subscriber.ini add-table pgbench_accounts

londiste3 subscriber.ini add-table pgbench_branches

londiste3 subscriber.ini add-table pgbench_tellers

6.	 Compare data on both nodes with this command:
londiste3 subscriber.ini compare

Replication

232

How it works...
Once again, we need to begin by duplicating table structures to the subscriber. Londiste only
copies data and assumes that the source and target tables have the exact same columns.
Therefore, we use pg_dump to obtain a schema-only (-s) extract of any table that begins with
pgbench (-t 'pgbench*'). Using the -h parameter, we can execute the resulting SQL on
the subscriber database and create all of the pgbench tables as empty shells.

Next, we need to be in the /etc/skytools directory. This isn't strictly required, but as the
configuration file is always the first parameter to londiste3, we would need to type the full
path to each file every time.

To register each table with the primary server, we specify its configuration file, the add-table
parameter, and the table we want to register. As with Slony and Bucardo, we need to add the
three pgbench tables with primary keys. We repeat this process for the subscriber, using its
configuration file instead.

Once we have done this, Londiste will begin by checking the table contents on each server
and copying any data that is missing on the subscriber. All future modifications will also be
copied to the subscriber.

An interesting function that londiste3 provides is the ability to confirm that data is
synchronized by performing checksum comparisons. If we wait a moment for the data to
synchronize and execute londiste3 with the compare parameter, we should see these
lines for each table:

See also
ff The londiste3 utility is very versatile. We highly recommend that you use the

http://skytools.projects.pgfoundry.org/skytools-3.0/doc/
londiste3.html URL to learn more about its capabilities.

http://skytools.projects.pgfoundry.org/skytools-3.0/doc/londiste3.html
http://skytools.projects.pgfoundry.org/skytools-3.0/doc/londiste3.html

Replication
Management Tools

In this chapter, we will learn where to turn when management of large PostgreSQL clusters
becomes a concern. We will cover the following recipes in this chapter:

ff Deciding when to use third-party tools

ff Installing and configuring Barman

ff Backing up a database with Barman

ff Restoring a database with Barman

ff Installing and configuring OmniPITR

ff Managing WAL files with OmniPITR

ff Installing and configuring repmgr

ff Cloning a database with repmgr

ff Swapping active nodes with repmgr

ff Installing and configuring walctl

ff Cloning a database with walctl

ff Managing WAL files with walctl

7

Replication Management Tools

234

Introduction
When it comes to maintaining a single PostgreSQL cluster with a single source of WAL files,
our job is an easy one. Even a small number of streaming replicas is easily managed manually
with PostgreSQL-provided tools. However, what happens when we have a large constellation of
PostgreSQL servers, such as this:

Primary

WAL Archives/
BackupsTrading Trading WAL Archives/

Backups

Disaster Recovery

Clone Clone Clone Clone Clone

This diagram represents seven PostgreSQL servers for a single source of data. The Trading
server sends its WAL data to a secondary system for safekeeping. One replica subscribes
directly to the Trading database, while two others acquire their data through cascading
replication. All clones are attached to the WAL archive in case their respective streams
get disconnected.

Further complicating the situation, there's an off-site copy of the entire architecture for
disaster recovery. Even though the recovery copy in the alternate data center is reduced in
terms of capabilities, it still requires several servers for the client applications to run properly.
Worse still, in the event of a failure in the primary data center, we will need to promote the
Disaster Recovery systems into full write functionality. How then, do we rebuild the primary
architecture and all of its clones when it's time to revert?

There are too many moving parts to reliably handle so many servers. This chapter is dedicated
to managing several servers with automated tools, thus removing the risk of human error.
When maintaining a high availability cluster, leveraging these tools is essential.

Chapter 7

235

Deciding when to use third-party tools
Not every PostgreSQL cluster is as advanced as the example we used in the introduction,
yet some are far larger. How do we decide when a cluster architecture becomes unsafe to
manage by hand? How do we integrate backups, WAL archival, and streaming targets without
overloading the primary server? Are the included PostgreSQL tools sufficient, or do we need
something more advanced?

There are a lot of questions to ask, and thanks to the PostgreSQL community, we have
answers for many of them. This recipe will act as a worksheet to asses the interconnections
between all of the various necessary servers. Once we've properly summarized the intricacy
involved, we can decide if outside assistance is needed.

Getting ready
We will be filling out a very short spreadsheet inventory of our PostgreSQL servers. Be sure
to have access to a spreadsheet program before continuing. We also strongly recommend a
diagram of all PostgreSQL servers for each segment of your database architecture. Whether we
are in the planning or deployment phases, we need to know how servers will be interconnected.

How to do it...
Follow these steps to determine the extent of necessary automated tooling:

1.	 Create a spreadsheet with the following columns: Server Name, Source,
Environment, Streaming, Promotion, and Backup.

2.	 Create a row for each server indicating its Server Name and the Source of its data.

3.	 For each row, set the corresponding attribute column as follows:

�� For Environment, use Production or Disaster Recovery (DR)

�� Specify True or False for Streaming if the server is a streaming provider
or recipient

�� Mark the Promotion column as True or False if the server can be
promoted to be the master copy for the whole constellation of servers

�� Indicate True or False for Backup if the server is used for backups

4.	 Consider using an external tool if any of these are true:

�� The Disaster Recovery environment has three or more servers

�� Any server has more than two rows in the spreadsheet

�� Three or more servers use streaming replication

Replication Management Tools

236

How it works...
The idea behind this spreadsheet is that we want to list every connection between every
server. This means some servers may be listed multiple times. With this in mind, we start with
six columns to track important attributes. This example spreadsheet represents part of our
architecture in the introduction:

As the current production server has no data source, we leave that field blank. Otherwise,
each row has important attributes. The Environment column, for instance, helps us decide
whether or not we need tools to coordinate data movement between data centers or server
clusters. If there are too many Streaming servers or too many clones are eligible for
Promotion, rearranging might be excessively difficult.

However, why does Backup get its own attribute column? Backup servers deserve special
attention due to their importance. Not only might data or WAL backups be sources for new
clones, but their role might change based on the current primary server. If this is overly
complex, tools might be the best approach to management.

If we consider our rules, they are arbitrary for a reason. Some DBAs may find it easy to handle
server rebuilds, and we commend them. However, we believe three or more servers in any
major role render a constellation effectively unmanageable. This is true whether it is the DR
environment as a whole, any server is used in two or more relationships, or streams are
used extensively.

There's more...
Why do we think that three is the magic number when evaluating our ability to manage
PostgreSQL relationships? The answer is reorganization.

If we ever need to utilize the Disaster Recovery environment, the entire primary system must
eventually be rebuilt. Likewise, if a streaming replica is promoted, every server that once
depended on the primary must switch to its stream instead. These actions take time and must
be repeated at least twice as three or more servers are involved. Every time a command is
manually invoked, there's a chance for a mistake.

Chapter 7

237

Highly available servers do not have the luxury to withstand accidents. One misapplied stream
change might spell the difference between platform errors, a system outage, or normal
operation. We can't take that chance. So, we can either write our own tools to prevent these
types of problems or take advantage of those that are already available.

Installing and configuring Barman
Though PostgreSQL provides a very capable tool in pg_basebackup, it's not really a complete
backup management system. Barman is a Backup and Recovery Manager developed by
2ndQuadrant to remedy that situation.

Unlike included utilities, Barman can receive WAL archives, produce and restore database
backups, list available backups, control backup retention policies, and more. With a single
command, we can manage backups of any PostgreSQL server we've configured Barman to
recognize. Further, we can accomplish this from the backup server itself and not need to
perform any local post-installation tasks on any PostgreSQL servers.

However, before we can get any of these abilities, we must first install and configure Barman.
This recipe will walk you through this process as simply as possible.

Getting ready
At the time of writing this book, the most recent version of Barman is 1.3.0. Because of
2ndQuadrant's close interaction with the PostgreSQL community, it is available within the
PostgreSQL package repositories. If you are using a Debian or Ubuntu-based system, follow
the instructions at this URL to add the PostgreSQL repository to the system that will be
running Barman:

http://wiki.postgresql.org/wiki/Apt

Otherwise, Red-Hat-based systems should add the PostgreSQL repository by installing the
derivative-appropriate RPM located at this URL:

http://yum.postgresql.org/repopackages.php

We recommend that you use repositories only, as the repository-provided packages perform
tasks other than software installation, such as user creation.

How to do it...
For this procedure, we will need two servers. The backup server will be named pg-backup,
and our primary PostgreSQL server will be named pg-primary. Make sure to have
passwords for both the barman and postgres system users and the postgres database
user. As usual, our database is located at /db/pgdata.

http://wiki.postgresql.org/wiki/Apt
http://yum.postgresql.org/repopackages.php

Replication Management Tools

238

Follow these steps:

1.	 Install the Barman toolkit as a root-capable user:

�� For Red-Hat-based servers, use the following command: sudo yum
install barman

�� Debian-based systems should use this command instead: sudo apt-get
install barman

2.	 On the pg-backup server as the barman user, execute the following commands for
direct SSH access to pg-primary as the postgres user:
ssh-keygen -t rsa -N ''

ssh-copy-id postgres@pg-primary

3.	 On the pg-primary server as the postgres user, execute the following commands
for direct SSH access to pg-backup as the barman user:
ssh-keygen -t rsa -N ''

ssh-copy-id barman@pg-backup

4.	 Ensure that the following line exists in the pg_hba.conf file on pg-primary:
host all postgres pg-backup md5

5.	 Make sure that the following settings are configured in postgresql.conf on
pg-primary:
archive_mode = on
archive_command = 'rsync -aq %p \
 barman@pg-backup:primary/incoming/%f'

6.	 Enter the following line in the .pgpass file for the barman user on pg-backup:
::*:postgres:postgres-password

7.	 Restart the PostgreSQL service on pg-primary with the following command as the
postgres user:
pg_ctl -D /db/pgdata restart

8.	 Add the following to the end of /etc/barman.conf or /etc/barman/barman.
conf, depending on which exists:
[primary]
description = "Primary PostgreSQL Server"
conninfo = "host=pg-primary user=postgres"
ssh_command = "ssh postgres@pg-primary"

9.	 As the barman user on pg-backup, execute the following command to check the
primary server's configuration entry:
barman check primary

Chapter 7

239

How it works...
Our first step is to install Barman itself. As this book focuses on Red-Hat-based
and Debian-based Linux systems, this process is very simple. Barman is available
in the PostgreSQL repositories for either platform, making the first step the easiest.
Unfortunately, we have quite a few more steps to complete.

In order for Barman to work properly, it must be able to retrieve PostgreSQL files from the
pg-primary server. Similarly, the postgres user needs to be able to transmit files to
pg-backup through rsync. To facilitate this, we generate SSH keys on each server with
ssh-keygen. We set the key type to RSA with the -t parameter and set the pass-phrase
to a blank value with -N. This allows each server to communicate with the other without
a password, yet do so securely. The ssh-copy-id command sends the public key to the
desired server. This is why we need the barman and postgres system user passwords.

Next, we need to modify pg_hba.conf on the pg-primary server to allow the postgres
database user to connect from pg-backup. While we're changing PostgreSQL settings, we
also need to enable archive_mode and set archive_command to send archived WAL files to
the pg-backup server for storage in a directory where Barman expects to find them. Once we
restart PostgreSQL with pg_ctl, we are finished making changes on the pg-primary server.

When we install the Barman packages, they should create a configuration file named
barman.conf in either the /etc or /etc/barman directory. In order to manage our
pg-primary server, we need to add a few new lines to this file. The first is a label for the
section so that Barman knows primary refers to the pg-primary PostgreSQL server.
By setting conninfo, Barman can use internal Python libraries to perform management
functions that require direct database access. And ssh_command tells Barman how to
access files on the pg-primary server as the postgres system user.

That's a lot of preliminary work, but if everything goes well, the barman command-line tool will
be fully functional. We can test this by checking the status of the server that we've configured
under the primary label. It's important that we use barman with the check primary
parameters, because it doesn't just check the server status—it also creates various directories
and tracking files that it uses to manage the PostgreSQL server backups. If everything goes as
expected, server status should resemble this output:

Replication Management Tools

240

See also
Barman has a very clean and concise website, which includes basic documentation on
installation and usage. For further reading, we recommend these URLs:

ff Barman: http://www.pgbarman.org/

ff The Barman documentation: http://docs.pgbarman.org/

Backing up a database with Barman
After Barman is installed, we should be able to leverage any of its capabilities using the
barman command-line tool. For now, we will focus entirely on creating a backup, verifying
that the new backup exists, and examining its contents.

Barman doesn't just produce backups, it also catalogs them extensively. We will use this to
our advantage in this recipe to prove that Barman works as advertised.

Getting ready
This recipe depends on Barman being installed on a backup server. Please follow the
Installing and configuring Barman recipe before continuing.

How to do it...
All steps should be executed as the barman system user on the pg-backup server that
we were using in the previous recipe. Follow these steps to create, verify, and examine a
Barman backup:

1.	 Create the first backup with this command:
barman backup primary

2.	 Examine the list of backups with this command:
barman list-backup primary

3.	 View the metadata of the most recent backup with this command:
barman show-backup primary latest

4.	 View all of the files in the most recent backup with this command:
barman list-files primary latest

http://www.pgbarman.org/
http://docs.pgbarman.org/

Chapter 7

241

How it works...
Creating a backup is extremely easy. To do so, we merely need to invoke the barman
command with the backup parameter and specify primary as the label we want to back up.
When activated, Barman contacts the pg-primary server and tells it to enter backup mode.
It then retrieves all database files over SSH and saves them in its backup catalog. We can view
the contents of the catalog in several ways.

The first way to examine the catalog is using the list-backup parameter. On our test server,
we would expect to see output similar to this:

Backups are listed from least to most recent. The first column is the name of the server that
Barman backed up. The second column details the unique ID of the backup and is composed
primarily of the time and date the backup started. All further commands need this ID, as it
tells Barman which backup we want to view.

Barman provides a few convenient shortcuts to avoid needing the
backup IDs. The latest keyword, for example, always resolves to the
ID of the most recent backup.

We won't show the output of the next two commands because they're very large. However, we
can explain what they would display. In the case of the show-backup parameter to barman,
we get to see the metadata of the backup itself. Meta-data may include the start and stop
time of the backup, the timeline the server was on, the range of WAL files produced during the
backup, and so on.

We can also observe the full contents of the backup. If we invoke barman with the list-files
parameter and pass the ID of the backup we want to view, it sends a list of every file that it has
stored. This includes any WAL files necessary to restore this particular backup.

There's more...
We referred to retention policies at the beginning of this recipe. This means that we can
configure Barman to only retain a certain number of backups to avoid exhausting disk space.
We begin by adding this line to the barman.conf file under the primary label:

retention_policy = RECOVERY WINDOW OF 1 WEEK

Then, Barman will delete any backup files or WAL archives not necessary to restore backups less
than 1 week in age. To perform this maintenance, execute the following command regularly:

barman cron

Replication Management Tools

242

We suggest that you invoke barman with the cron parameter daily within cron itself to
automate the process.

See also
ff The barman command tool has a manual that we can view locally. Use this command

to learn more about what it can do:
man barman

ff We would also like to recommend the Barman documentation again. It really does
a very good job at describing some of the more advanced functionality. The URL for
reference is http://docs.pgbarman.org/.

Restoring a database with Barman
As you might expect, Barman does not just create backups, it can also restore them. This
functionality can be used to restore the current server, but its real power lies in its ability
to restore data remotely. With this capability and a little bit of preparation, we can clone
a PostgreSQL backup any number of times without straining the primary database server.

In this recipe, we will explore Barman's recovery aptitude and the steps necessary to start
a PostgreSQL server cloned by Barman.

Getting ready
This recipe depends on Barman being installed on a backup server and at least one backup
registered in the backup catalog. Please follow the Installing and configuring Barman and
Backing up a database with Barman recipes before continuing.

How to do it...
For this procedure, we will need one new server. The backup server will remain pg-backup,
but we need a target server for the restore. This sever will be named pg-clone. Make sure to
have the password for the postgres system user on this server. As usual, our database will
be located at /db/pgdata:

1.	 On the pg-backup server as the barman user, execute the following command for
direct SSH access to pg-clone as the postgres user:
ssh-copy-id postgres@pg-clone

2.	 Ensure that the target restore directory is empty on pg-clone with this command
executed as the postgres user:
rm -Rf /db/pgdata

http://docs.pgbarman.org/

Chapter 7

243

3.	 Transmit the backup to pg-clone by running this command as barman on the
pg-backup server:
barman recover --remote-ssh-command "ssh postgres@pg-clone" \
 primary latest /db/pgdata

4.	 As the postgres user on pg-clone, start the PostgreSQL service with the
following command:
pg_ctl -D /db/pgdata start

How it works...
As with our Barman installation process, we need to ensure that Barman can communicate
directly with the PostgreSQL clone system. Once more, we rely on ssh-copy-id to transmit
the necessary SSH key to the pg-clone server.

The next step is to erase any existing PostgreSQL files on the target server. This step should
not be necessary on a new server, but it never hurts to double-check. Assuming that the
postgres user has permission to write to the /db directory, we are now ready to recover the
backup to the pg-clone server.

At this point, we want to invoke the barman command with its recover operand.
Remember, the default recovery system is the local server. As we're executing commands
from pg-backup, that's not entirely useful to us. Instead, we want to send the data to
pg-clone. We do this using the --remote-ssh-command parameter and by specifying
the ssh command necessary to reach the pg-clone server. This is why we copied Barman's
public RSA key to pg-clone.

The next parameter to barman includes the label of the backup we want to restore, the ID of
the specific backup, and the directory where the files should be located. In this case, we are
restoring the primary database using the latest backup and restoring to the /db/pgdata
directory. We want the output of this command to look like this:

Replication Management Tools

244

If we follow the advice that Barman gives after this step completes, we should give a cursory
look at postgresql.conf to ensure that the server will run properly on pg-clone. Barman
also disabled the archive_command setting on the newly restored server. As this was a
command to send files to pg-backup, this is a very good thing! We don't want the new server
polluting our WAL archive with invalid files.

The final step is to start the PostgreSQL server on the new pg-clone server with pg_ctl.

There's more...
Barman does not have a mode to initialize the newly restored server as a streaming replica
of the original. To do this, create a file named recovery.conf in the /db/pgdata directory
with the following contents before starting PostgreSQL:

standby_mode = 'on'
primary_conninfo = 'host=pg-primary user=postgres'

If you've followed the recipes in the previous chapters, you may also consider using the
rep_user user instead, as we created it specifically for replication purposes.

See also
ff The barman command tool has a manual we can view locally. Use this command to

learn more about what it can do:
man barman

ff To get more immediate output of the restore mode's parameters, execute
this command:
barman recover

Installing and configuring OmniPITR
Up until now, we've been managing WAL files with tools such as cp or rsync. Our end goal
was to transmit these to a backup server so that the WAL files were safe long term in case we
needed them for PITR recovery. As a bonus, the backup server is a central location that can
be committed to tape regularly so that our PostgreSQL databases are preserved so long as we
retain the tapes.

While this is a valid and functional approach, logging options, debugging, and flexibility are
somewhat limited. Regular operating-system tools are not designed specifically to process
PostgreSQL WAL files. Though we can use them for that purpose, there are better utilities
available. OmniPITR is a powerful toolkit developed by OmniTI to manage PostgreSQL backup,
restore, and WAL files.

This recipe will focus on installing OmniPITR so that we can use it later.

Chapter 7

245

Getting ready
At the time of writing this book, the most recent version of OmniPITR is 1.3.2. In order to
install it, we would like to introduce the PostgreSQL Extension Network (PGXN). PGXN is
a site that attempts to collect PostgreSQL-related tools and extensions in a single place to
simplify usage. PGXN is located at http://pgxn.org/.

PGXN provides a command-line tool named pgxn to access the PGXN repository, which we can
install with Python's setuptools. Use this command to install pgxn:

sudo easy_install pgxnclient

How to do it...
For this procedure, we will continue to use two servers. The backup server will still be named
pg-backup, and our primary PostgreSQL server is still pg-primary. Make sure to have the
password for the postgres system user.

Follow these steps to install OmniPITR on both pg-backup and pg-primary:

1.	 Download OmniPITR using the pgxn utility with this command:
pgxn download omnipitr

2.	 Unzip and relocate the OmniPITR files with these commands as a root-capable user:
unzip omnipitr-1.3.2.zip

cd omnipitr-1.3.2

sudo cp bin/* /usr/local/bin

sudo cp -R lib/OmniPITR /usr/local/lib

sudo cp -R doc /usr/local

3.	 Check the OmniPITR installation with the following command:
sanity-check.sh

4.	 As the postgres user on pg-primary, generate an RSA key pair and transmit it to
pg-backup with these commands:
ssh-keygen -t rsa -N ''

ssh-copy-id postgres@pg-backup

5.	 As the postgres user on pg-backup, generate an RSA key pair and transmit it to
pg-primary with these commands:
ssh-keygen -t rsa -N ''

ssh-copy-id postgres@pg-primary

http://pgxn.org/

Replication Management Tools

246

How it works...
Unlike some other toolkits, OmniPITR is purely a set of command-line utilities. As such,
its authors never created a proper installation process. With this in mind, we start by
downloading the latest omnipitr package from PGXN. Unlike the omnipitr package's
install parameter, the download parameter simply retrieves the indicated package and
saves it in the local directory.

With the archive saved locally, we begin by extracting its contents and entering the resulting
directory. OmniPITR itself is the collection of tools located in the bin/ directory, so we move
those files into /usr/local/bin for easy invocation. Due to the way OmniPITR was written,
it searches for the doc/ and lib/ directories at the same level as the bin/ directory. This
means that the utilities should work if we copy the contents of these directories to /usr/
local as well.

The doc/ directory is important for one simple reason: usage. As
OmniPITR has no traditional manual pages, the only way to view help for
each command is with the --help or --man parameter. This will only
work if we install the doc/ directory where OmniPITR expects to find it.

Next, we should verify that OmniPITR is properly installed and will function as expected. It is
distributed with a file named sanity-check.sh, which we installed with the other files in the
bin/ directory. If we execute this command, it will examine various resources and produce a
report. The report for our test system looked like this:

Provided the sanity check succeeded, we still need to facilitate communication between
pg-backup and pg-primary. To do that, we generate an RSA key pair on each server as the
postgres user and send it to the other system. We've performed this task before, so it should
come as no surprise now. We do this so that automated tools can transmit files securely.

At this point in the book, it is extremely likely that you already have an
SSH key for the postgres user on pg-primary. If that's the case, you
only need to use the ssh-copy-id command to ensure that the key is
located on pg-backup. Don't overwrite the key you already have!

Chapter 7

247

See also
Both OmniPITR's documentation and the software itself are available on PGXN. To view their
installation and usage documents, please use the following URLs:

ff OmniPITR—Installation: http://pgxn.org/dist/omnipitr/doc/install.
html

ff OmniPITR—how to setup: http://pgxn.org/dist/omnipitr/doc/howto.
html

Managing WAL files with OmniPITR
We've stated on several occasions that WAL files are very important. Their role in PostgreSQL
crash recovery, backup restoration, and replication gives them a central role in maintaining a
high availability cluster. With OmniPITR, we can upgrade communication between servers to
ensure that we have logging for every step of a WAL file's movement. This is no small benefit,
and we can use it to audit the entire transmission path if we encounter a problem.

Though OmniPITR is a full suite of backup-related tools, we wish to focus on its ability to give
us better control of WAL archival and recovery. As a consequence, this recipe will describe
usage of the omnipitr-archive command.

Getting ready
This recipe depends on OmniPITR being installed on all servers that need to utilize it. Please
follow the Installing and configuring OmniPITR recipe before continuing.

How to do it...
For this procedure, we will continue to use two servers. The backup server will still be named
pg-backup, and our primary PostgreSQL server is pg-primary. As usual, the PostgreSQL
data directory will be located at /db/pgdata.

Follow these steps to send WAL files from pg-primary to pg-backup:

1.	 On the pg-backup server, create a directory writable to the postgres user with the
following commands as a root-capable user:
sudo mkdir /db/pg_archived

sudo chown postgres:postgres /db/pg_archived

http://pgxn.org/dist/omnipitr/doc/install.html
http://pgxn.org/dist/omnipitr/doc/install.html
 http://pgxn.org/dist/omnipitr/doc/howto.html
 http://pgxn.org/dist/omnipitr/doc/howto.html

Replication Management Tools

248

2.	 Create a file named omnipitr.conf in the /etc directory on pg-primary with the
following contents:
--data-dir /db/pgdata
--dst-remote postgres@pg-backup:/db/pg_archived
--log /var/log/postgresql/omnipitr.log

3.	 Modify the postgresql.conf file on pg-primary and ensure that the following
parameters are set:
archive_mode = on
archive_command = 'omnipitr-archive -- \
 cfg=/etc/omnipitr.conf %p'

4.	 Restart the PostgreSQL server with the following command as the postgres user:
pg_ctl -D /db/pgdata restart

5.	 Examine the contents of the omnipitr.log logfile with this command as the
postgres user:
tail /var/log/postgresql/omnipitr.log

How it works...
We start by ensuring that the postgres user can write to the /db/pg_archived directory
on the pg-backup server, which is the location we've set aside to hold WAL files. This is also
the only step we perform on the pg-backup server.

One interesting thing to consider about OmniPITR is that it reads configuration files in a similar
manner as command-line parameters. With this in mind, and to avoid long and confusing
command-lines, we save several in a configuration file for later use.

The first is the path to the PostgreSQL data directory. If this is unset, OmniPITR will assume
that the WAL files are local to the data directory in pg_xlog. While this will work, it's better
for logging purposes to set this explicitly to /db/pgdata. The second is the remote path to
WAL files. As we created the /db/pg_archived directory on pg-backup, we use that same
location here. Finally, we'll commit logs to the /var/log/postgresql directory, which
should already exist on most Red Hat and Debian-based servers.

Now, we need to ensure PostgreSQL uses OmniPITR to send the files to pg-backup.
Once we've confirmed that archive_mode is on, we can set archive_command to
invoke omnipitr-archive. Because of our earlier work, we only need to set two
parameters. The first is the full path to the configuration file we created, and the second
is %p, which represents the full path to the WAL file that PostgreSQL wants to archive.
Once PostgreSQL is restarted, it will use OmniPITR to manage its WAL files.

Chapter 7

249

We should note that we only need to fully restart PostgreSQL if archive_
mode was previously set to off. Otherwise, a simple reload will cause
PostgreSQL to use the newly defined archive_command value.

Unlike Barman, OmniPITR has no command to verify that it's working properly. To do this,
we must examine the logfile. If we look at the end of the omnipitr.log file in /var/log/
postgresql/ with tail, we should see something like this:

There's more...
Perceptive readers may have noticed that we don't present an analogous situation to pull
WAL files from the pg-backup server to a hot-standby. Unfortunately, while the provided
omnipitr-restore command will move WAL files to their expected locations and include
logging, it can not retrieve these files from a remote server. We are not entirely sure why the
authors of OmniPITR would neglect to include this functionality, but it is an issue that we can
not overcome.

As such, we do not recommend using OmniPITR to maintain clones or streaming replicas with
our suggested architecture. An off-site backup server is invaluable, which means that remote
WAL files are an inescapable reality.

This does not imply that OmniPITR is completely unsuited to manage certain elements of
larger clusters. If you have time, examine the documentation of each OmniPITR utility and
consider how each might be beneficial to your architecture.

See also
ff While OmniPITR does not install manuals locally, we can invoke its tools to learn more

about them. To see the full capabilities of omnipitr-archive, use this command:
Omnipitr-archive --help

ff OmniPITR's documentation is also available on PGXN. To view the manual
for omnipitr-archive there, please visit http://pgxn.org/dist/
omnipitr/doc/omnipitr-archive.html.

http://pgxn.org/dist/omnipitr/doc/omnipitr-archive.html
http://pgxn.org/dist/omnipitr/doc/omnipitr-archive.html

Replication Management Tools

250

Installing and configuring repmgr
It's time to address the elephant in the room. When managing a wide PostgreSQL cluster, we
will often need to rebuild, reassign, and repair nodes that are replicas of our primary server.
If we remember our rule-of-threes, three or more nodes make it difficult and error prone to
perform any task related to replication.

While Barman and OmniPITR are useful, neither of them is capable of managing a wide
network of PostgreSQL replicas. This is why we would like to thank 2ndQuadrant for repmgr.
With it, we can create new clones and add them to an existing cluster of PostgreSQL servers.
We can shut down the existing primary server and promote any node in this network. Further,
all of the existing replicas automatically consider the promoted node their new source of
streaming updates.

This may not be the first tool to perform this task, but it is one of the best available.
We'll tackle the process of installing it in this recipe before moving on to usage scenarios.

Getting ready
At the time of writing this book, the most recent version of repmgr is 2.0. As with Barman,
repmgr is available within the PostgreSQL package repositories. If you are using a Debian or
Ubuntu-based system, follow the instructions at http://wiki.postgresql.org/wiki/Apt
to add the PostgreSQL repository to any system that will be running as a repmgr server or client.

Otherwise, Red-Hat-based systems should add the PostgreSQL repository by installing the
derivative-appropriate RPM located at http://yum.postgresql.org/repopackages.php.

We recommend that you use repositories only, as the repository-provided packages perform
tasks other than software installation, such as user creation.

How to do it...
For the purposes of this recipe, we will need two servers. The primary PostgreSQL node
will be named pg-primary, and the replica will be pg-clone. Both servers exist on the
192.168.56.0 subnet. As always, the /db/pgdata path will be our default data directory.
Be sure to have the password for the postgres system user ready.

Follow these steps to install repmgr on both servers:

1.	 Red-Hat-based systems should use this command as a root-capable user:
sudo yum install repmgr

2.	 Debian-based systems should use this command instead:
sudo apt-get install repmgr postgresql-9.3-repmgr

http://wiki.postgresql.org/wiki/Apt
http://yum.postgresql.org/repopackages.php

Chapter 7

251

3.	 Optionally, copy the repmgr script from the /init directory in this chapter to
the /etc/init.d directory on each server.

4.	 If the supplied init script was copied, execute these commands as a
root-capable user:
sudo rm -f /etc/init.d/repmgrd

sudo chmod 755 /etc/init.d/repmgr

Next, follow these steps on pg-primary to set it up as a master node. We'll consider
pg-clone in the next section:

1.	 As the postgres user, generate an RSA key pair and transmit it to pg-clone with
these commands:
ssh-keygen -t rsa -N ''

ssh-copy-id postgres@pg-clone

2.	 Modify the postgresql.conf file and set the following parameters:
wal_level = hot_standby
archive_mode = on
archive_command = 'exit 0'
wal_keep_segments = 5000
hot_standby = on

3.	 Modify the pg_hba.conf file and add the following lines:
host all postgres 192.168.56.0/24 trust
host replication postgres 192.168.56.0/24 trust

4.	 Restart the PostgreSQL service as the postgres user with this command:
pg_ctl -D /db/pgdata restart

5.	 Execute this command to find the binary path to PostgreSQL tools:
pg_config --bindir

6.	 Create a file named /etc/repmgr.conf with the following contents:
cluster=pgnet
node=1
node_name=parent
conninfo='host=pg-primary dbname=postgres'
pg_bindir=[value from step 5]

7.	 Register the master node with the following command as the postgres user:
repmgr -f /etc/repmgr.conf master register

Replication Management Tools

252

8.	 Start the repmgrd daemon with the following command as a root-level user:
sudo service repmgr start

9.	 Examine the repmgr logfile with cat:
cat /var/log/repmgr/repmgr.log

How it works...
These may seem like a lot of instructions, but they're actually very simple, merely numerous.
We start the process by actually installing repmgr on both nodes. Depending on our OS, we
do this either with yum or apt-get. Afterwards, we have a choice. This chapter supplies an
initialization script for repmgr that we know is fully LSB compliant and functional. The script
bundled with the Debian-based packages didn't daemonize, log, or stop the service. We
suggest that you use ours, but it is not required.

Once we've installed repmgr, we want to focus on pg-primary as it will be the source of all
of our data clones. To facilitate secure communication, our first job is to establish an RSA SSH
key pair and transmit it to the clone. For repmgr to work best, every server should be able to
interact with every other server in this manner.

Then, we need to modify some PostgreSQL configuration files. We start with the postgresql.
conf file. Earlier chapters recommend that you set wal_level to hot_standby, but what
about the other settings? We've already used archive_mode in this chapter; however, we've
set archive_command to exit 0. In Unix, any command that exits with a status of 0 is
assumed to be functioning properly. Thus, PostgreSQL will believe that its archive process
always succeeds.

Next, we set wal_keep_segments to 5000. Why such a high value? That's almost 80 GB of
extra files! For one, it's required by repmgr, so we have no choice. Yet, it's a small price to pay for
easy management of multiple PostgreSQL clones. We enable hot_standby for similar reasons;
it's ignored on master nodes but ready when the configuration file is copied to a replica.

Next, we add two lines to the pg_hba.conf file to allow the postgres user to connect to
any database, including the replication pseudo-database. To follow our example, we allow
these connections to originate from anywhere within the 192.168.56.0 subnet.

Though our example uses trust authorization, we suggest that real
production systems utilize .pgpass files and md5 authentication instead.
Unless the PostgreSQL servers can communicate directly on a private
firewalled network, this setup allows any user on these servers to clone our
database. Further, only use the postgres database user when configuring
repmgr. There is currently a bug that prevents repmgr from working properly
if you are using any other superuser name.

Chapter 7

253

To finish our configuration duties, we create a single file named repmgr.conf in the /etc
directory. We named the repmgr cluster pgnet, noted that this is our first node, and named
our node parent as it is easy to remember. The connection information needs to match our
entry in pg_hba.conf; thus, we use the repmgr user that we added to the database earlier.
Finally, we set pg_bindir so that repmgr always knows where to find certain PostgreSQL
binaries. This setting is supposed to be optional, but we ran into several problems when we
tried to omit this entry; just keep it for now.

Now that everything is prepared, we can finally register the primary node and complete the
installation process by creating various database objects. These steps are all performed by
the repmgr command, provided we specify the configuration file with -f and use the master
register parameter. Our output should look something like this:

We're almost done! The repmgr system comes with a daemon that manages communication
and controls behavior between other repmgr nodes. If we start this daemon, repmgr will run
in the background and await the arrival of new clones. If we examine the log output in /var/
log/repmgr, we'll see the initial startup messages:

You will only see this output if you used our supplied initialization script.
The repmgr daemon is not overly verbose and would have produced no
output at all under normal launch conditions.

See also
ff The repmgr system exists mainly as a source repository. Though, like Barman, it is

maintained by 2ndQuadrant, its documentation is much more sparse. However, it
does provide a very lengthy installation and usage overview at https://github.
com/2ndQuadrant/repmgr.

https://github.com/2ndQuadrant/repmgr
https://github.com/2ndQuadrant/repmgr

Replication Management Tools

254

Cloning a database with repmgr
As repmgr is a client/server PostgreSQL management suite, we need at least two nodes
involved before we're really using it. We can perform the tasks outlined in this recipe as many
times as we wish, creating several clones and registering them with repmgr. Of course, this
book is for demonstration purposes, so we'll leave the larger clusters to you. With multiple
nodes involved, the chances of data loss or system outages decline, which is excellent for our
goal of high availability.

This recipe will focus on the process necessary to add a node to an existing repmgr cluster.
The existing cluster in our case is the one that we established on pg-primary in the
previous recipe.

Getting ready
This recipe depends on repmgr being installed on both a primary server and the clone that we
will use. Please follow the Installing and configuring repmgr recipe before continuing.

How to do it...
For the purposes of this recipe, pg-primary will remain our master node, and the replica will
be pg-clone. As always, the /db/pgdata path will be our default data directory. Be sure to
have the password for the postgres system user ready.

All of these commands should be executed from pg-clone. Follow these steps to produce
a fully functional repmgr replica:

1.	 As the postgres user, generate an RSA key pair and send it to pg-primary with
these commands:
ssh-keygen -t rsa -N ''

ssh-copy-id postgres@pg-primary

2.	 Clone the data on pg-primary with the following command as the postgres user:
repmgr -D /db/pgdata standby clone pg-primary

3.	 Start the new clone as the postgres user with pg_ctl:
pg_ctl -D /db/pgdata start

4.	 Execute this command to find the binary path to PostgreSQL tools:
pg_config --bindir

Chapter 7

255

5.	 Create a file named /etc/repmgr.conf and enter the following contents:
cluster=pgnet
node=2
node_name=child1
conninfo='host=pg-clone dbname=postgres'
pg_bindir=[value from step 4]

6.	 Register pg-clone with pg-primary as the postgres user:
repmgr -f /etc/repmgr.conf standby register

7.	 Start the repmgrd daemon with the following command as a root-level user:
sudo service repmgr start

8.	 Connect to the postgres database and view the status of repmgr with this
SQL statement:
SELECT standby_node, standby_name, replication_lag
 FROM repmgr_pgnet.repl_status;

How it works...
Because the replica is based on the primary, much of the preliminary work we performed
in the previous recipe is inherited. One thing we can't avoid is creating an SSH key for direct
server-to-server communication. Any time we create a new clone, it's a good practice to
generate a key with ssh-keygen and copy that key to the current primary server.

In fact, every server should have the postgres SSH key for every other
server. In situations where any server in the cluster can be promoted
to be the new primary, this ensures repmgr commands always work as
expected. We strongly recommend that you use system automation tools
such as Ansible, Chef, or Puppet to manage these keys.

With the SSH key established, we can clone pg-primary with the repmgr command. Because
no PostgreSQL instance exists on pg-clone yet, we can't use our configuration file just yet.
Instead, we specify -D to define the path to the database. Assuming that there were no errors,
the command should produce a lot of extremely verbose output, with this at the end:

Replication Management Tools

256

If we follow the advice in the last line and start PostgreSQL with pg_ctl, the clone should
immediately connect to pg-primary and begin replication. We can do this because repmgr
knows all of the connection information necessary to establish a streaming replication
connection with pg-primary. During the cloning process, it automatically created a
recovery.conf file suitable to start directly in replication mode.

Now, we must configure repmgr to recognize the clone. When we create /etc/repmgr.conf,
we need to use the same cluster name as we used on pg-primary. We also tell repmgr
that this is node 2, and it should be named child1. The conninfo value should always
reflect the connection string necessary for repmgr to connect to PostgreSQL on the named
node. As we did earlier, we set pg_bindir to avoid encountering possible repmgr bugs.

With the configuration file in place, we can register the new clone similarly to the process that
we used to register the primary. By calling the repmgr command with -f and the full path to
the configuration file, there are several operations we can invoke. For now, we will settle with
standby register to tell repmgr that it should track pg-clone as part of the pgnet cluster.

Once we start the repmgrd daemon, all nodes are aware of each other and the current status
of each. We can confirm this by checking the repl_status view on any node. If we execute
the supplied SQL statement, we should see this:

The repl_status view has other useful columns, but for now we can see that the cluster
considers child1 the only standby node, and it's not lagging behind the primary at all.

If you are using Version 2.0 of repmgr, this view will be empty unless the
repmgrd daemon is launched with the --monitoring-history
parameter. The authors of repmgr claim that the view is no longer
necessary for operation, but we feel more comfortable knowing that we can
check the status of the cluster via SQL at any time. As such, the default for
our included repmgr initialization script sets this option.

There's more...
There is another way to obtain cluster status. The repmgr command can also report how it
perceives the cluster from any active node, given the cluster show parameter. Here is the
entire command:

repmgr -f /etc/repmgr.conf cluster show

Chapter 7

257

The result of this command as executed on pg-clone is as follows:

See also
ff Though the process that we used differs slightly from the repmgr documentation,

it is fully viable. If you would like to see the entire process in greater detail, repmgr
documentation is available at https://github.com/2ndQuadrant/repmgr.

Swapping active nodes with repmgr
Creating a clone can be surprisingly dangerous. When using a utility such as rsync,
accidentally transposing the source and target can result in erasing the source PostgreSQL
data directory. This is especially true when swapping from one node to another and then
reversing the process. It's all too easy to accidentally invoke the wrong script when the source
and target are so readily switched.

We've already established how repmgr can ease the process of clone creation, and now it's
time to discuss node promotion. There are two questions we will answer in this recipe. How do
we swap from one active PostgreSQL node to another? How do we then reactivate the original
node without risking our data? The second question is perhaps more important due to the
fact that we are at reduced capacity following node deactivation.

Let's explore how to keep our database available through multiple node swaps.

Getting ready
This recipe depends on repmgr being installed on both a primary server and at least one
clone. Please follow the Installing and configuring repmgr and Cloning a database with
repmgr recipes before continuing.

How to do it...
For the purposes of this recipe, pg-primary will remain our master node, and the replica
will be pg-clone. As always, the /db/pgdata path will be our default data directory.

https://github.com/2ndQuadrant/repmgr

Replication Management Tools

258

Follow these steps to promote pg-clone to be the new cluster master:

1.	 Stop the PostgreSQL service on the pg-primary node with pg_ctl:
pg_ctl -D /db/pgdata stop -m fast

2.	 As the postgres user on pg-clone, execute this command to promote it from
standby status to primary:
repmgr -f /etc/repmgr.conf standby promote

3.	 View the status of the cluster with this command as postgres on pg-clone:

repmgr -f /etc/repmgr.conf cluster show

Follow these steps to rebuild pg-primary (while logged into pg-primary) to be the new
cluster standby:

1.	 Clone the data on pg-clone with the following command as the postgres user:
repmgr -D /db/pgdata --force standby clone pg-clone

2.	 Start the PostgreSQL service as the postgres user with pg_ctl:
pg_ctl -D /db/pgdata start

3.	 Start the repmgrd daemon with the following command as a root-level user:
sudo service repmgr start

4.	 View the status of the cluster with this command as postgres:
repmgr -f /etc/repmgr.conf cluster show

How it works...
To start the process, we simulate a failure of the pg-primary PostgreSQL node. The simplest
way to do this is to stop the PostgreSQL service. After the database stops serving requests,
repmgr will detect that pg-primary is no longer active. If we tried the next step before
stopping the existing master node, repmgr would refuse to honor the request. After all,
we can't promote a standby when there's already a functional master.

Next, we invoke the repmgr tool from pg-clone with standby promote. This tells repmgr
that this node should be the new master. This is necessary because repmgr allows several
nodes to act as standby systems, and any could be a candidate for promotion. Following this
action, it's a good idea to check the status of the repmgr cluster to ensure that it shows the
correct status. We expect pg-clone to be the new master, as seen here:

Chapter 7

259

We can also see that repmgr has properly detected pg-primary as FAILED. However, this is
not desirable long term. If we ever want to switch back to pg-primary, or our architecture
works best with two active nodes, we need to restart the old master node as the new standby.
Once again, we turn to the repmgr command-line utility.

If we log in to pg-primary as the postgres user, we can actually clone the standby the
same way we initially provisioned the data on pg-clone. This means that we call repmgr
once again with the standby clone parameter, except this time, we are cloning pg-clone as
it is the new data master. There is also another important addition: the --force parameter.
Without requesting that repmgr overwrite existing data on pg-primary, it will refuse. By
forcing the operation, repmgr only copies data that is different between pg-clone and
pg-primary.

After the data is copied, PostgreSQL should be ready to start on pg-primary, which we
do with pg_ctl as usual. With PostgreSQL running, we can safely launch the daemon to
reintegrate pg-primary into the repmgr cluster as a standby node. Once again, we can
invoke repmgr with cluster show to verify this has occurred:

We can complete the previous recipe as many times as we wish. If we followed the recipe
again, we could revert the cluster to its original layout, with pg-primary as the master node
and pg-clone as the standby.

Replication Management Tools

260

There's more...
Remember that we mentioned the possibility of multiple nodes acting as standby. As a
test, we created another clone using the process described in the Cloning a database with
repmgr recipe. Then, we followed the recipes in this section and stopped pg-primary before
promoting pg-clone. What do you think we saw while examining the repmgr logfile on the
second standby node? This:

Notice how the other standby started checking known repmgr cluster nodes to find a new
master to follow. Once we promoted pg-clone, the second standby had a new target. If
this doesn't happen automatically, you may have to bootstrap the process by running this
command on any standby that didn't transition properly:

repmgr -f /etc/repmgr.conf standby follow

See also
ff At the time of writing this book, the repmgr documentation has not been fully

updated to reflect functionality changes to the 2.0 version. As such, we refer you
to it with some trepidation. Regardless, we based our recipes on what we found at
https://github.com/2ndQuadrant/repmgr.

Installing and configuring walctl
There's something to be said for simplicity. So far, the tools we've discussed in this chapter are
larger client-server mechanisms or components of entire toolkits. One of the central tenets of
the Unix philosophy is to build tools that do one thing well. In this case, we turn to Peak6 and
their walctl WAL-management tools.

I created walctl specifically to address shortcomings in existing WAL-related utilities. Primarily
of note is the question of architecture. Existing WAL tools follow an architecture diametrically
opposed to the end goal of high availability. We often see this:

https://github.com/2ndQuadrant/repmgr

Chapter 7

261

Clone

Clone

Clone

Clone

Master

In this kind of model, the master node is tasked with transmitting transaction streams or
WAL files to every node in the cluster. This makes it fantastically difficult to change the active
master node and potentially overloads the master node itself. The primary write node of any
cluster should be focused on fulfilling client requests. The purpose of walctl is to impose a
structure like this:

Clone

Clone

Clone

CloneMaster

Master

Instead of forcing the master node to supply each standby, the master transmits WAL data
to a central archive server. Then, each clone can pull from that location as needed. In this
recipe, we will install walctl so that we can take advantage of the structure it advocates.

Getting ready
Currently, walctl is very new. As such, it resides primarily on GitHub. You can download a copy
of walctl from https://github.com/OptionsHouse/walctl.

We also suggest that you install rsync, openssh, and PostgreSQL server development
libraries. For most PostgreSQL servers, it's very likely these are already installed.

https://github.com/OptionsHouse/walctl

Replication Management Tools

262

How to do it...
For this procedure, we will need three servers. The archive server should be named pg-arc,
our primary PostgreSQL server is pg-primary, and the new standby will be pg-clone.
As usual, the PostgreSQL data directory will be located at /db/pgdata. For simplicity, the
system user on all machines will be postgres. Be sure to have the password for this user!

1.	 As a root-capable user on pg-primary and pg-clone, run these commands
to install walctl:
git clone https://github.com/OptionsHouse/walctl

cd walctl

sudo make install

2.	 As a root-capable user on pg-arc, create the WAL storage directory:
sudo mkdir -m 0600 /db/wal_archive

sudo chown postgres:postgres /db/wal_archive

3.	 On pg-primary, create and export an SSH key to the pg-arc and
pg-clone servers:
ssh-keygen -t rsa -N ''

ssh-copy-id pg-arc

ssh-copy-id pg-clone

4.	 Repeat the previous step on the pg-clone server:
ssh-keygen -t rsa -N ''

ssh-copy-id pg-arc

ssh-copy-id pg-primary

5.	 Execute this SQL on pg-primary to create a database user for walctl:
CREATE USER walctl
 WITH PASSWORD 'test' SUPERUSER REPLICATION;

6.	 Modify pg_hba.conf on pg-primary and add these lines:
host replication walctl pg-clone md5
host replication walctl pg-primary md5

7.	 On pg-clone and pg-primary, ensure this line appears in the .pgpass file for the
postgres user:
::*:walctl:test

Chapter 7

263

8.	 On pg-clone and pg-primary, create a file named /etc/walctl.conf with
these contents:
PGDATA=/db/pgdata
ARC_HOST=pg-arc
ARC_PATH=/db/wal_archive

9.	 On pg-primary, execute this command to set up walctl:
walctl_setup master

10.	 If instructed by walctl_setup, restart the PostgreSQL server:
pg_ctl -D /db/pgdata restart

How it works...
Currently, the best source for the walctl files is from GitHub. We suggest that you clone the
repository and install the latest version with the included Makefile. After doing so, most
of the installation steps are actually things that we've already done, such as creating and
distributing SSH keys, allowing host connections in pg_hba.conf, or adding authentication
information to .pgpass. It doesn't actually matter how you do this, but the end result must
match these requirements:

ff Both pg-primary and pg-clone must be able to communicate via SSH with
pg-arc

ff The pg-clone server must be able to connect to pg-primary to clone data and
potentially stream it as well

ff We don't suggest using trust-based authentication, so some higher-security method
such as md5 should be used to authenticate the walctl database user

Given the above has been accomplished—either by our instructions or otherwise—we can
configure walctl. A minimal configuration requires three settings before walctl will operate
normally. To read or write WAL files to their expected locations, PGDATA must be set. Then,
it needs ARC_HOST to send files to the archive server, and ARC_PATH so that it knows where
to store archived WAL files.

Replication Management Tools

264

The walctl_setup utility has one purpose: prepare PostgreSQL for walctl integration.
When called with the master parameter as we've done here, it modifies postgresql.conf
so that WAL files are compatible with archival, and streaming replicas can connect. In addition,
it enables archive mode and sets archive_command to invoke a walctl utility named
walctl_push, which sends WAL files to the archive server. While calling walctl_setup
on our test server, this was the output:

Walctl knows which settings can be changed by reloading PostgreSQL configuration files and
which require a full service restart. It even tells us how to do it if we don't already know. If that
last NOTICE doesn't appear in the output, the pg-primary server is already archiving WAL
files on pg-arc. Otherwise, restarting PostgreSQL will initialize the process.

See also
ff Currently, all documentation for walctl is located at the GitHub repository at

https://github.com/OptionsHouse/walctl

The README file in the source code also contains very similar instructions to what we
described in this recipe

Cloning a database with walctl
One of the utilities that walctl includes is a script dedicated to creating a copy of the source
database. Why don't we just use pg_basebackup? When dealing with large databases
common to high availability systems, we want to copy as little data as possible. The pg_
basebackup utility is a great basic tool, but it always copies every file. The walctl_clone
program that we use in this recipe relies on rsync.

https://github.com/OptionsHouse/walctl

Chapter 7

265

Of course, this raises another question: why not just use rsync directly? Due to its extensive
capabilities, rsync is inherently dangerous. Did you accidentally transpose the source and
target destination parameters? If you did so, you've just erased or corrupted your database
master. The walctl_clone tool wraps rsync in such a way that it can only retrieve data
from a master node. We can stay safe by limiting its use to clone servers.

In this recipe, we'll introduce and invoke the walctl_clone command, which does a
few other useful things on our behalf. Not only does it copy the database files, it creates
a recovery.conf to retrieve WAL files from a remote archive and starts the PostgreSQL
server. There isn't much manual work involved. Let's try it out!

Getting ready
This recipe depends on walctl being installed on both a primary server and the clone that we
will use. Please follow the Installing and configuring walctl recipe before continuing.

How to do it...
For this recipe, we only care about two servers. The primary PostgreSQL server is
pg-primary, and the new standby will be pg-clone. Execute this command as the
postgres system user on the pg-clone server:

walctl_clone pg-primary walctl

When the command finishes, we should have a fully operational clone of pg-primary.

How it works...
It may seem impossible that such a simple command can clone an entire database. Yet, in
the previous recipe, we wrote a configuration file, and that's all walctl needs to operate. The
walctl_clone command only has two parameters: the hostname of the database we are
cloning and the name of the database superuser necessary to invoke a backup. Given these
settings, walctl_clone performs a number of actions on our behalf:

ff Puts the master node into backup mode.

ff Retrieves all files from the database. If data files already exist in the PGDATA
directory, it only copies changed files.

ff Ends backup mode on the master node.

ff Creates a recovery.conf file that will continuously retrieve files from pg-arc
and connect as a streaming standby to pg-primary.

ff Starts the PostgreSQL server.

Replication Management Tools

266

We can't think of any other PostgreSQL clone utility that is as easy to use. This is important
when maintaining a high availability cluster, because simplicity prevents accidents.

Managing WAL files with walctl
The walctl toolkit provides two extra scripts that a DBA should never have to call manually:
walctl_push and walctl_pull. These are intended purely to facilitate the preferred
architecture of walctl. However, we also understand that many PostgreSQL servers exist
already, and not every cluster is new.

It's actually very likely that at least one clone exists now that such behavior is directly
supported by PostgreSQL 9.1 and above. In this recipe, we'll explore how to convert an
existing cluster to use walctl for WAL management instead.

Getting ready
This recipe depends on walctl being installed on a primary server and any existing PostgreSQL
clones. Please follow the Installing and configuring walctl recipe before continuing.

How to do it...
For this recipe, imagine we have four PostgreSQL servers. The primary PostgreSQL server is
pg-primary, and we also have three existing replicas named pg-clone1, pg-clone2, and
pg-clone3. Execute this command as the postgres system user on each of the existing
clone systems:

walctl_setup clone

Once again, this one command does all the work for us.

How it works...
The beauty of walctl_setup is that it never needs to communicate with pg-primary at all.
Everything this tool needs is in the /etc/walctl.conf file we created after installing walctl.
By calling walctl_setup with the clone parameter, it performs three basic actions:

ff Modifies archive_command in postgresql.conf to always produce a true value
in case we ever need to change it to walctl_push later

ff Removes any existing restore_command in recovery.conf
ff Sets restore_command to walctl_pull with necessary parameters

Chapter 7

267

Did you notice that walctl_setup does not touch the primary_conninfo setting in
recovery.conf? This means existing streaming standby servers will continue to operate
as they always have. The only difference is that they will retrieve WAL files from pg-arc
(or whatever ARC_HOST is set to) instead of the previous source.

There's more...
What happens if we ever need to promote a clone to be a fully operational master node? Well,
as we have subscribed to a detached design model, it means clones don't need pg-primary
to continue replication. All we need to do is alter one clone such that it writes to pg-arc so
that other clones will consume the new WAL files. We can do this using walctl_setup on
the node we're promoting:

walctl_setup master

pg_ctl -D /db/pgdata promote

This will make the same modifications on the clone as it did to the master when we
installed walctl. Principally, this means it sets archive_command in postgresql.conf
to walctl_push to send WAL files to pg-arc.

Now, perhaps it's easier to understand why we're such strong advocates of including an
archive server in the WAL-management process.

Advanced Stack

In this chapter, we will learn to build and manipulate a fault-tolerant, high-performance
foundation for our PostgreSQL clusters. We will cover the following recipes in this chapter:

ff Preparing systems for the stack

ff Starting with the Linux Volume Manager

ff Adding block-level replication

ff Incorporating the second LVM layer

ff Verifying a DRBD filesystem

ff Correcting a DRBD split brain

ff Formatting an XFS filesystem

ff Tweaking XFS performance

ff Maintaining an XFS filesystem

ff Using LVM snapshots

ff Switching live stack systems

ff Detaching a problematic node

ff Building and attaching a new node

Introduction
Thus far in this book, we've discussed quite an array of functionality and methodology
dedicated to keeping PostgreSQL systems online. By now, we have a burgeoning menagerie
of replication utilities, system monitoring tools, connection pooling layers, and even a handful
of troubleshooting tips. What could we possibly cover next?

8

Advanced Stack

270

As it turns out, simply installing PostgreSQL on a server can be done too early. Presuming that
we have all of the hardware and software we discussed earlier, our servers are still missing
the following three things:

ff The ability to synchronize data to two servers simultaneously

ff The capacity to freeze data to prevent changes for backup purposes

ff A durable filesystem designed for multiprocess I/O

There are several solutions for each of these missing elements, yet we've settled on three in
particular: DRBD, LVM, and XFS. Let's explore a bit about each of these technologies and why
we've chosen them to represent what we've deemed our Advanced Stack.

Why DRBD?
DRBD stands for Distributed Replicated Block Device. DRBD is meant to operate below the
filesystem layer, mirroring the contents of one server's storage to another at the block level.
This means the operating system doesn't even know that its data is located on another server
as well. Having trouble imagining how it works? We hope the following diagram will help:

Server 1 Server 2

Filesystem: /db

DRBD

Filesystem: /db

DRBD
StorageStorage StorageStorage

As we can see here, DRBD acts as an abstraction from the disk device that normally hosts our
PostgreSQL database. The primary benefit we gain from this situation is that data is always
located on at least two servers at all times. If one server crashes and its storage is rendered
unusable, we have a backup available.

Why not use streaming replication instead? Even PostgreSQL synchronous streaming
replication only guarantees that transactions are written to the standby, not replayed within
the actual database. As we've already discussed, streaming replication means that the master
node will halt on commit if there isn't at least one replica available at all times. With DRBD,
the other server has a copy, which is identical in all aspects. Any block written to one server is
always available on the other.

Chapter 8

271

Why LVM?
LVM is the Linux Volume Manager. Like DRBD, LVM is another abstraction layer that sits
between the filesystem and the underlying disk devices. Why is this necessary? LVM allows
us to dynamically manage disk devices as one single continuous piece of storage that we can
arbitrarily extend, group, freeze, or reorganize, all while remaining online.

Have you ever wanted to simply add storage to a filesystem without messy symbolic links or
a server reboot? What about moving data from one device to another after an upgrade? With
LVM, all of this is easy. Using a modern server with hot-swappable disks or a SAN, we never
even have to reboot the server to completely reconfigure its disk devices.

Through the entire process of almost any LVM change, PostgreSQL can remain online and
serve requests. This is the ultimate in high availability.

Why XFS?
XFS stands for eXtended File System. Some may consider this a somewhat controversial
selection, given that ext4 performs perfectly well and is the current default for all of the major
Linux distributions. Both XFS and ext4 are journaling filesystems; they provide online growth,
LVM freezing, and numerous maintenance and repair tools.

However, XFS still has something that ext4 does not: allocation groups. ext4, like all of its
predecessors, has a single file allocation table for the entire formatted device. XFS, on the
other hand, can split the allocation table into several segments so that multiple independent
CPU processes can write to the disk simultaneously. The end result of this is that large servers
with many CPUs and random writes, such as a PostgreSQL database, will perform better on an
XFS-formatted device.

If you are using Red Hat Enterprise Linux (RHEL) and have a support contract
with Red Hat, be wary of using XFS. Red Hat considers XFS enterprise-grade
storage and distributes it separately as a paid extension. If this becomes a
problem, please feel free to use ext4 and ignore the XFS-related sections of
this chapter.

Advanced Stack

272

The stack
At the end of this chapter, we will have a software stack that looks like the following:

Storage

Server 1 Server 2

XFS: /db

LVM

DRBDLVM

XFS: /db

LVM

DRBD LVM

Storage

Each of the following layers represents one enhancement necessary for best long-term
high availability:

ff The first LVM layer (starting at the storage) protects DRBD from inheriting
device-specific block sizes and allows for online resizing or migration to
new devices

ff The DRBD layer replicates data to another server for immediate use

ff The second LVM layer provides snapshot capabilities and other potentially
useful LVM functionality to the filesystem

ff The XFS layer is the last element where data resides and is available for direct
manipulation by programs such as PostgreSQL

The recipes we provide in this chapter should make this easier to understand, despite its
advanced nature.

These layers in our stack do come at a cost. Since each is an abstraction above
the raw storage device, performance will decrease slightly. We believe this
tradeoff is worth the security and availability the stack provides. The makers of
DRBD provide a good summary of how storage speed is affected at http://
blogs.linbit.com/p/469/843-random-writes-faster/.

http://blogs.linbit.com/p/469/843-random-writes-faster/
http://blogs.linbit.com/p/469/843-random-writes-faster/

Chapter 8

273

Preparing systems for the stack
Before we can use LVM, DRBD, or XFS on our servers, we must take some preliminary steps.
We've never encountered a Linux system that is optimized for this kind of advanced usage
directly after installation. In this recipe, we will modify several configuration files and even
reboot the server.

We're trying to put each system in a standard state that we'll use for all future database servers.
This means that LVM needs to ignore some devices to prevent disrupting DRBD, the initial RAM
disks during boot should reflect this same allocation, and device performance shouldn't be lost
between abstraction layers. We also need all of the tools that we'll use throughout this chapter.

This recipe will guarantee that these criteria are true, so be prepared!

Getting ready
The only things we should need at this point are the ability to run commands as root
and a device dedicated to database storage. However, if you are running a RHEL system
(not a derivative such as CentOS or Scientific Linux), you may need to contact Red Hat to
obtain necessary licenses and packages to add XFS functionality. Thus, we will approach
this recipe under the assumption that packages are available on Debian-based servers and
RHEL derivatives.

How to do it...
To keep things simple, we will assume that each server we prepare has a device
named /dev/sdb for database storage. Follow these steps as root:

1.	 Install the xfsprogs package with apt-get or yum.

2.	 Install drbd8-utils with apt-get on Debian-based systems, or drbd with yum on
Red Hat derivatives.

3.	 In the devices section of /etc/lvm/lvm.conf, change the filter setting to
read the following:
filter = ["a|/dev/sd.*|", "a|/dev/drbd.*|", "r|.*|"]

4.	 In the devices section of /etc/lvm/lvm.conf, change the write_cache_
state setting to read the following:
write_cache_state = 0

5.	 Remove the existing LVM cache file with the following command:
rm /etc/lvm/cache/.cache

6.	 Update the kernel's list of available devices with the following command:
update-initramfs -u

Advanced Stack

274

7.	 Create a file named /etc/udev/rules.d/20-postgresql.rules with the
following contents:
ACTION=="add|change", KERNEL=="sd[a-z]",
 ATTR{queue/read_ahead_kb}="4096"
ACTION=="add|change", KERNEL=="drbd[0-9]",
 ATTR{bdi/read_ahead_kb}="4096"

8.	 Finally, reboot the server using the following command:
reboot

How it works...
In order for the stack to work properly, we need to get the server ready. For now, this means
installing basic toolkits such as xfsprogs for XFS maintenance tools and drbd8-utils for
DRBD administrative scripts. Once this is complete, we move on to preparing LVM.

Since LVM is so highly integrated into the system, we need to perform several steps. The first
is to modify the primary lvm.conf file so that it only watches certain devices, and while
it does so, it never caches the result. Due to the way Linux is designed, there are several
different aliases and paths that point to the same device in the /dev filesystem. To remove
these extra paths, we set a very strict filter that only includes /dev/sd* devices and /
dev/drbd* devices.

We avoid caching by setting write_cache_state to 0 because the DRBD devices may
disappear or reappear based on their statuses. We don't want an invalid cache poisoning the
actual device state. Just to make sure there are no stale LVM caches, we remove the existing /
etc/lvm/cache/.cache so that all readings are current. By invoking initramfs with the
-u parameter, it generates a new device map that will be used when the system boots. This
ensures that devices are consistent at all availability levels in case we need emergency access.

Before we venture further, we need to address performance. In Greg Smith's PostgreSQL 9.0
High Performance, Packt Publishing, he suggests that we increase the read_ahead_kb
setting for every block device to 4096 kilobytes or higher. Unfortunately, due to the transient
nature of our devices, there is no static method we can use that would survive a device
appearing after boot. This is where the udev filesystem comes in. It watches as various system
devices change state, appear, or reappear. Thanks to this, we can give it parameters to use
when new storage devices appear, such as our DRBD or LVM devices.

The two lines we added to 20-postgresql.rules tell the udev filesystem to set the
read_ahead_kb value to 4096 any time a new device is added or modified. In our case,
we are specifically interested in the sdb and drbd0 devices, but we include all sd or drbd
devices for future expansion purposes if necessary. This ensures that we'll always have a large
read buffer for good PostgreSQL performance, no matter how many abstraction layers we
place between the device and the database.

Chapter 8

275

The last thing we do is reboot the server. This gives us a fresh slate, with a cleanly generated
device map based on the changes we made.

There's more...
The version of DRBD you receive with these instructions may vary considerably depending
on the age of your distribution. As DRBD 8.4 is the most recent stable version at the time of
writing this book, all recipes assume that this is the installed version. To see if you are using
8.4, execute drbdadm with the -V parameter, and check the module and tooling versions.
If these versions don't match, or are 8.3 or below, please follow the instructions from one of
these URLs to upgrade to 8.4:

ff For Red Hat systems: http://www.drbd.org/users-guide/s-build-rpm.html

ff For Debian systems: http://www.drbd.org/users-guide/s-build-deb.html

See also
ff The DRBD website has a good supplementary installation guide at http://www.

drbd.org/users-guide/s-distro-packages.html.

ff Greg Smith's PostgreSQL 9.0 High Performance book is another great resource from
Packt Publishing. It is available at http://www.packtpub.com/postgresql-90-
high-performance/book.

Getting started with the Linux Volume
Manager

The Linux Volume Manager (LVM) is something of an optional master control panel for Linux
storage devices. It can combine several devices into one, allows arbitrary storage grouping far
more granular than simple partitions, and provides functionality such as data snapshots
and reorganization. It's very powerful, and in the right hands, greatly improves potential
server uptime.

It is also the first layer above the raw storage device in our stack. We start with LVM instead of
DRBD, because DRBD at the device level is extremely messy. What do we gain by insulating
DRBD from the raw storage device?

ff We can easily add storage to the LVM device group assigned to DRBD

ff DRBD can be resized while in an online state

ff We can perform storage migrations without taking PostgreSQL offline

None of this is possible unless LVM is the first layer. For a high-availability server, this is
extremely desirable. Follow along to see how it works.

http://www.drbd.org/users-guide/s-build-rpm.html
http://www.drbd.org/users-guide/s-build-deb.html
http://www.drbd.org/users-guide/s-distro-packages.html.
http://www.drbd.org/users-guide/s-distro-packages.html.
http://www.packtpub.com/postgresql-90-high-performance/book.
http://www.packtpub.com/postgresql-90-high-performance/book.

Advanced Stack

276

Getting ready
At this point, all we need is a single unformatted device to use for database storage.
In addition, make sure you've prepared the system as described in the Preparing systems
for the stack recipe.

How to do it...
For the purposes of this recipe, we will assume that the /dev/sdb device has been
dedicated to PostgreSQL use. Follow these steps as the root user on two servers to
create the first LVM layer:

1.	 Create and verify a single LVM partition on the device with these commands:
parted /dev/sdb mklabel gpt

parted /dev/sdb mkpart primary 1 100%

parted /dev/sdb set 1 lvm on

parted /dev/sdb print

2.	 Register /dev/sdb as an LVM physical device with this command:
pvcreate /dev/sdb1

3.	 Create a single volume group to contain /dev/sdb1 with this command:
vgcreate VG_DRBD /dev/sdb1

4.	 Create a single logical volume as 100% of the outer volume group with this command:
lvcreate -n LV_DATA -l 100%VG VG_DRBD

5.	 Verify whether the new volume exists and is available with this command:
lvdisplay VG_DRBD/LV_DATA | grep LV

How it works...
Before we can use LVM safely, we should create at least one partition on the raw device.
For this, we use parted, a more advanced partition editor than fdisk. We need parted
because it can set the partition table type as GPT, which allows filesystems greater than 2 TB.
This is what the first invocation of parted does, with the mklabel parameter set to gpt.

To create the partition itself, we call parted with the mkpart parameter. By using mkpart,
we also need to specify the type of partition we want, and its starting and ending positions.
We keep things simple by starting at the beginning of the device and using 100% of the
available storage.

Chapter 8

277

Finally, we set the LVM flag to true by invoking parted with the set parameter. The set
parameter requires a partition number, the flag we want to set, and the value. In our case,
we are using the first partition and setting the lvm flag to on.

It's always a good idea to verify our creations, and parted has a print setting to output the
current partition table for a specified disk device. Here is /dev/sdb on our test system:

As you can see, the test device we've used for this example is very small, at just over 4 GB.
However, we can also see that the partition table is gpt, and the lvm flag is set as expected.

Now we can start with LVM itself. The first step is to use pvcreate to create a physical LVM
device. This allows LVM to manage the device, and only requires us to name /dev/sdb1 as
the device we're adding.

Next, we need a volume group. Volume groups can be comprised of multiple physical volumes
and be split into several logical volumes. By calling vgcreate, we need to name the group
with the first parameter. Every subsequent parameter is a device that should be part of
the new group. In our case, we only have the /dev/sdb1 device, so that becomes our
last parameter.

Since the volume group can host several logical volumes, we need to create at least one.
Unlike vgcreate, the lvcreate command does not assume the first parameter is the
volume name. Thus, we need to specify the -n parameter to name the volume. By using the
-l parameter, we can specify a percentage of the volume group as the size of our volume. For
the base volume, we want to use all available storage space (100%VG) since DRBD will be the
next layer. The last parameter for lvcreate is the name of the volume group we are using for
this logical volume.

Advanced Stack

278

The last thing we do is verify that the logical volume has the elements we expect. We can do
this with the lvdisplay command as seen here:

From this, we can see that the new logical volume is 4.00 GiB in size and is available for
use. We can also observe that LVM created a new device path at /dev/VG_DRBD/LV_DATA.
This path will be how we address the storage in the future. It can be formatted, mounted, or
treated just like any other Linux storage device.

As we'll discuss in the next recipe, this new /dev location can be used as the target device for
another resource such as DRBD.

There's more...
We hope you noticed the naming scheme inherent in all of the LVM commands. Commands
prefixed with pv are meant for physical volume management. Similarly, vg is used for volume
groups, and lv is for logical volumes. This greatly simplifies management of LVM devices.

We used pvcreate, vgcreate, and lvcreate in this recipe. However, it shouldn't surprise
you that there are also analogous pvremove, vgremove, and lvremove commands as well.
There are also commands to retrieve information about volumes and groups: pvdisplay,
vgdisplay, and lvdisplay.

This is one of the reasons we enjoy working with LVM; we rarely have to guess at commands.

See also
ff LVM itself is a conceptual architecture. To understand more about how it works,

we recommend the Linux Documentation Project discussion on the topic at
http://tldp.org/HOWTO/LVM-HOWTO/.

ff In addition, all of the LVM commands have their own man page. We highly
recommend at least viewing the man page for each utility before using it.
For example:
man lvextend

http://tldp.org/HOWTO/LVM-HOWTO/

Chapter 8

279

Adding block-level replication
DRBD is the next component of our software stack. Unlike LVM, it requires at least two
servers to function normally. One server acts as the data Primary, and the other acts as
a Secondary. These roles can be switched at any time, depending on which server is
running PostgreSQL.

For now, we are going to focus on configuring and activating DRBD as part of our stack.

Getting ready
By now, we hope you've followed the recipe in Getting started with the Linux Volume Manager
on two servers with /dev/sdb as physically identical storage on each server. While DRBD
can operate in standalone mode on a single server, this is actually more advanced usage.
The steps in this recipe are best applied the same on both of the servers simultaneously,
unless noted otherwise.

How to do it...
For the purposes of this recipe, we will assume that the /dev/VG_DRBD/LV_DATA device
already exists. The two PostgreSQL nodes for this example are named pg1 and pg2 and are
located on the 192.168.56.0 subnet. Follow these steps as the root user on each server
to add DRBD:

1.	 Create a file named /etc/drbd.d/pg.res with the following contents:
resource pg {
 device minor 0;
 disk /dev/VG_DRBD/LV_DATA;
 meta-disk internal;
 on pg1 {
 address 192.168.56.10:7788;
 }
 on pg2 {
 address 192.168.56.20:7788;
 }
}

2.	 Allocate the DRBD storage with this command:
drbdadm create-md pg

3.	 Restart the DRBD service:
service drbd restart

Advanced Stack

280

4.	 Use drbdadm on pg1 to invalidate the data on pg2:
drbdadm invalidate-remote pg

5.	 View the status of DRBD from any node, using this command:
cat /proc/drbd

6.	 Run this command on pg1 to declare it as the primary node:
drbdadm primary pg

How it works...
We begin by creating a configuration file for DRBD with the least amount of information
necessary. In the pg.res file, we define a DRBD resource named pg for our PostgreSQL
data. DRBD resource numbers start at zero, so we use the define keyword to set the
DRBD minor device number to 0. This means our DRBD device will be named /dev/drbd0.

After setting the device number, we specify which storage volume this DRBD resource should
use with the disk keyword. The meta-disk keyword allows us to define a device to store
DRBD metadata. To keep things simple, we've used the internal setting so that metadata is
stored on the same device as the data we are synchronizing.

The last thing we do in the resource configuration file is define each host involved in
replication. The on keyword expects a host name that matches our PostgreSQL nodes,
followed by a block of settings. The only setting we actually need is the IP address of the
server we name, followed by a port, which DRBD should use for communication and transfer
purposes. A common port number is 7788 as in our example, but really, this can be any
arbitrary unused value.

Once we have a valid configuration file, we need to initialize the DRBD device. When we
invoke drbdadm with the create-md parameter, it allocates metadata for the named DRBD
resource. Since pg is the name of our resource, we specify that here as well. We could have
also used all, which applies the command to any configured resources. This produces quite
a bit of output, but should look like the following near the end:

With metadata in place, we can start (or restart) the DRBD service. Once we do this, DRBD
will attempt to connect both nodes named in our resource definition file. This is why DRBD
should be started on both nodes consecutively, or the running node will wait indefinitely for
the other to start as well.

Chapter 8

281

At this point, DRBD is connected, but it doesn't know the state of the underlying storage
data. Due to this, we must invalidate one of the nodes so DRBD considers the other node
up-to-date. When we use drbdadm with invalidate-remote, we tell DRBD to consider
local data valid and all data on any other node in need of replacement. If we examine the
contents of /proc/drbd at this moment, we should see synchronization taking place:

The top line of this output actually provides most of the DRBD status information. The section
labeled ro stands for roles, and the slash always separates the current node from the remote
node. By default, both DRBD systems report their role as a Secondary node. Similarly, ds
represents disk states and tells us the status of data on each node. Based on this, we can
see that the current node is UpToDate, while the remote is Inconsistent. We invalidated
the data on pg2 from pg1, so this is exactly what we should expect.

Once synchronization is complete, it is time to declare one of the nodes as the primary
resource. For this task, we run drbdadm with the primary parameter. The only difference
we should see is a change in the ro reading in /proc/drbd. It should reflect Primary/
Secondary when viewed from pg1, and Secondary/Primary when viewed from pg2.
At this point, DRBD is working, and any data we save on one node should automatically
exist on the other as well.

See also
ff DRBD documentation is extremely detailed. We strongly recommend browsing

http://www.drbd.org/users-guide/drbd-users-guide.html to truly
understand how DRBD works.

ff In addition, the drbdadm tool that administers almost all DRBD functionality has a
man page:
man drbdadm

Incorporating the second LVM layer
In this recipe, we are going to create the second of our two LVM abstraction layers. While
the first layer provides an elastic base for DRBD, this one will provide most of the LVM
functionality that we will actually use on a regular basis.

http://www.drbd.org/users-guide/drbd-users-guide.html

Advanced Stack

282

Tasks such as creating filesystem snapshots or reorganizing data are within the domain of the
second layer. This is because we create the filesystem on top of this second LVM definition.
We can mount or otherwise manipulate a snapshot like any other filesystem. If we tried to
create a snapshot with the first LVM layer, we would still have a snapshot, but it would be of
an unreadable DRBD binary blob.

With that in mind, let's add the LVM layer necessary for filesystem manipulation.

Getting ready
Please follow all previous recipes before starting.

How to do it...
Perform these steps only on pg1 as the root user:

1.	 Register /dev/drbd0 as an LVM physical device, using this command:
pvcreate /dev/drbd0

2.	 Create a single volume group to contain /dev/drbd0, using this command:
vgcreate VG_POSTGRES /dev/drbd0

3.	 Create a single logical volume as 95% of the outer volume group, using
this command:
lvcreate -n LV_DATA -l 95%VG VG_POSTGRES

4.	 Verify that the new volume exists and is available, using this command:
vgdisplay VG_POSTGRES | grep Size

How it works...
Do these steps seem familiar? They should! With a few minor exceptions, this is almost the
same as the recipe we used in Getting started with the Linux Volume Manager. Unlike the
other instructions, we don't need to partition the /dev/drbd0 device and can immediately
add it to LVM with pvcreate.

Following this, we use vgcreate to define a new volume group named VG_POSTGRES
containing /dev/drbd0 as its only device. The definition for this volume group actually
exists on the /dev/drbd0 device itself, meaning it is replicated by DRBD to the other node.
This is why we only need to execute these commands on pg1.

Next, we use lvcreate with the -n parameter to create a logical volume named LV_DATA
within the VG_POSTGRES group. This time we use the -l parameter to set the volume size at
95%VG instead of 100%VG. This means LV_DATA will contain 95 percent of the total available
space within the VG_POSTGRES volume group.

Chapter 8

283

Why did we neglect to allocate the remaining 5 percent? Snapshot space.
We can use snapshots for backups, risky temporary work, or simply as a
placeholder. If you never plan on using filesystem snapshots, feel free to
use 100 percent of the VG_POSTGRES group instead.

Instead of verifying the allocation of our logical volume, our last command retrieves some of
the information about the volume group. On our testing system, it looks like the following:

We can see that the volume group is 3.99 GiB in size, that 3.79 GiB is allocated, and that
208.00 MiB is free. Based on this information, we can presume 3.79 GiB is allocated to
the LV_DATA volume, leaving us 208 MiB for allocating snapshots. We are glad this is only
an example, as 208 MiB is not very much free snapshot space!

There's more...
Is 5 percent too much space to set aside for snapshots, especially in multi-terabyte volumes?
Probably! Unfortunately, the only other mechanism available to define volume size is the -L
parameter to lvcreate, which only works with absolute measurements. Yet, we know the
size of our devices, and we are free to make loose estimates.

For example, imagine we have a 4 TB storage device, and we only want to leave around
50 GB for snapshots instead of 200 GB. This lvcreate command specifies the size of
our device in GB:

lvcreate -n LV_DATA -L 3950G VG_POSTGRES

See also
ff As before, we strongly recommend examining the LVM documentation and man pages

to fully leverage its capabilities. We leave http://tldp.org/HOWTO/LVM-HOWTO/
to the Linux Documentation Project once again, for posterity.

http://tldp.org/HOWTO/LVM-HOWTO/

Advanced Stack

284

Verifying a DRBD filesystem
A semi-common maintenance concern regarding synchronized devices is verification.
The question we should always ask ourselves in a high-availability scenario is how confident
we are that data on both nodes match.

The drbdadm utility provides a parameter specifically for addressing this need. However, there
are some caveats to consider when using it, which we will explain in this recipe.

Getting ready
Follow the recipes defined in all previous sections before starting here. At the very least,
we need a fully-operational DRBD node pair to follow this recipe.

How to do it...
Follow these steps as the root user on pg1:

1.	 Add this block of text inside the resource section defined in /etc/drbd.d/
pg.res:
net {
 verify-alg md5;
}

2.	 Run this command to make DRBD reread its configuration files:
drbdadm adjust pg

3.	 Begin verification with this command:
drbdadm verify pg

4.	 Monitor /proc/drbd until verification is complete:
watch cat /proc/drbd

5.	 Disconnect and reconnect the DRBD resource:
drbdadm disconnect pg

drbdadm connect pg

How it works...
Our first job is to define what we mean by verify. By default, DRBD is somewhat minimal, and
it has no default for the algorithm it should use for checksum comparisons. The verify-alg
setting is a network-oriented value and defines how DRBD should compare data segments.
We also know md5 as a widely-used checksum algorithm. Thus, we set the verify-alg in a
net block within the resource definition for pg.

Chapter 8

285

Afterwards, we need to reread the configuration files so that the verify-alg setting is
defined for the verification step. By invoking drbdadm with the adjust parameter, it will read
and apply any valid changes we made to /etc/drbd.d/pg.res. When we're ready, we can
launch the verification process by calling drbdadm with the verify parameter. Due to the
CPU overhead of md5, this will be noticeably slower than a full device synchronization. We can
watch its progress by paying attention to /proc/drbd:

We can see that our example verification is 26.8% complete, with an estimated completion
time of almost 2 minutes. The estimate is produced based on network speed, md5 speed, and
the amount of remaining data. These details can fluctuate frequently, as writes to the DRBD
device slow down the verification process.

The last step is to disconnect, then reconnect the pg resource from the DRBD network. During
verification, DRBD marks blocks that have unmatched md5 checksums, but does not resend
them until a new connection is established. We can't speculate about the reason for this step,
but it is required to correct errors.

The last step is only required if any block failed verification. Errors
(bad blocks) will be located in the kernel log according to DRBD
documentation. We recommend checking for drbd0 messages in /
var/log/syslog, /var/log/messages, and /var/log/kern.
log, depending on your distribution.

See also
ff The DRBD documentation explains online verification in more detail than we do.

Please refer to http://www.drbd.org/users-guide/s-use-online-verify.
html for a full discussion of the process.

Correcting a DRBD split brain
One looming danger when running any replication system is that of node status conflicts.
This happens when more than one node has been primary, and we want to reestablish the
previous mirror state. This can happen in many ways, but a common scenario can occur if
the existing primary node experiences a sudden failure and the remaining secondary node is
promoted to primary status.

http://www.drbd.org/users-guide/s-use-online-verify.html
http://www.drbd.org/users-guide/s-use-online-verify.html

Advanced Stack

286

In the case where we repair the old primary node, we can't simply reattach it to the DRBD
network and expect successful synchronization. In cases where the last status for each node
is that of a primary, DRBD will not resolve this conflict automatically. It is our job to manually
choose the best primary node from our available choices, and reattach the other node.

In this recipe, we'll explore the steps necessary to reattach a malfunctioning node to an
existing DRBD architecture. We can't have a highly available PostgreSQL cluster with only
one functional node.

Getting ready
Since we're working with DRBD and need a fully established mirror, please follow steps in
all the recipes up to Adding block-level replication before continuing. In addition, we need to
simulate a split brain. A very easy way to do this is to put both nodes in primary state while
disconnected from each other.

Assuming that we have nodes pg1 and pg2, where pg1 is the current primary node, follow
these instructions as the root user to cause a split brain:

1.	 On both nodes, disconnect from DRBD with this command:
drbdadm disconnect pg

2.	 On pg2, execute this command to force it into primary status:
drbdadm primary --force pg

If we were to use drbdadm to attempt and connect the nodes now, we would see the following
message in the system logs:

Split-Brain detected but unresolved, dropping connection!

How to do it...
Follow these instructions as the root user to repair a split-brain scenario:

1.	 First, decide which node should be the new primary. This should be relatively easy,
since some event likely precipitated the node mismatch. For the remainder of this
recipe, we will assume pg2 should be the new primary node.

2.	 Prepare each server by assuring that each is disconnected from the other:
drbdadm disconnect pg

3.	 Disable the VG_POSTGRES volume with vgchange on pg1:
vgchange -a n VG_POSTGRES

4.	 Use drbdadm to downgrade pg1 to secondary status:
drbdadm secondary pg

Chapter 8

287

5.	 Execute this command on pg1 to connect while discarding metadata:
drbdadm connect --discard-my-data pg

6.	 Execute this command on pg2 to connect to DRBD:
drbdadm connect pg

How it works...
The first step is clearly the most critical. We need to determine which node has the
most recent valid data. In almost all cases, there should be sufficient logs to make this
determination. However, in some network disruption scenarios coupled with automated
failover solutions, this may not be obvious. Unfortunately, resolving this step is too varied
to adequately express in a simple guide.

If you are unsure of how to continue following an extremely complicated
failure scenario, we strongly recommend contacting Linbit, which maintains
the DRBD software. Their support information is available at this URL:
http://www.linbit.com/en/products-and-services/drbd-
support

For our example, we manually promoted the pg2 node, so it should be the new primary.
With that in mind, there are many states DRBD could have right now, and we want one in
particular: StandAlone. By disconnecting both nodes, we don't have to worry about aborted
or premature connection attempts disrupting our progress. We want both nodes to report
StandAlone in /proc/drbd as the connection state (cs), as shown in this screenshot:

Our next step is actually related to LVM. If DRBD is primary on a node, the second LVM layer
is probably active as well. Since LVM uses the underlying DRBD device, we can't demote this
node to secondary status until we use vgchange to set the active (-a) state of VG_POSTGRES
to no (n).

Given that there are no other elements connected to /dev/drbd0, we can set its status to
secondary with drbdadm. While in secondary state, we can attempt to connect to the DRBD
network with drbdadm connect. Since both nodes were primary at one point, each was
maintaining a different map of modified blocks; these maps will not match. If this happens,
DRBD will refuse to connect to the network, and it will revert to the StandAlone status.

To prevent that, we add --discard-my-data to the connect operation. This option
acknowledges the situation, and it tells the secondary node to ignore its own change map in
favor of what the primary node may contain. If the secondary node is too out-of-date for the
update map, DRBD will simply resynchronize all data on the device.

http://www.linbit.com/en/products-and-services/drbd-support
http://www.linbit.com/en/products-and-services/drbd-support

Advanced Stack

288

Of course, none of this will happen until we invoke drbdadm connect from the new primary
node. We do this last because we can always change our minds and abort the process. If we
did this before connecting the secondary node, previously existing storage maps have already
been discarded, and resynchronization is already taking place.

See also
ff DRBD addresses this exact scenario in their documentation. We recommend reading

through http://www.drbd.org/users-guide/s-resolve-split-brain.
html for a different perspective on the operation.

Formatting an XFS filesystem
The next and last part of our stack is the filesystem layer. This is where the PostgreSQL data
will reside, so we need to ensure it's allocated properly. Unlike the underlying LVM layers, the
filesystem is not so easily modified.

In this recipe, we will discuss some common formatting options and why we recommend them
in addition to necessary commands.

Getting ready
Since this is the last layer in our complete stack, we strongly suggest following all the recipes
up to Incorporating the second LVM layer before starting here.

How to do it...
Assuming pg1 is our current primary node, follow these steps there as the root user:

1.	 Activate the second LVM volume with this command:
lvchange -a y VG_POSTGRES/LV_DATA

2.	 Count the number of CPUs on the primary node.

3.	 Multiply the CPU count by four.

4.	 If the total in the previous step is less than 256, use 256.

5.	 Use this command to find the Linux kernel version:
uname -r

6.	 For kernel versions 3.0 and above, format the XFS filesystem with this command,
setting agcount to the value derived in the preceding steps:
mkfs.xfs -d agcount=256 /dev/VG_POSTGRES/LV_DATA

http://www.drbd.org/users-guide/s-resolve-split-brain.html
http://www.drbd.org/users-guide/s-resolve-split-brain.html

Chapter 8

289

7.	 For kernels below 3.0, format with this command:
mkfs.xfs -d agcount=256 -l size=128m -l lazy-count=1 \

 -i attr=2 /dev/VG_POSTGRES/LV_DATA

How it works...
We begin by activating (-a y) the VG_POSTGRES/LV_DATA volume with lvchange. This is
like vgchange, but only affects the named volume, instead of every volume in the named
group. We used this command merely to demonstrate that either command will work for our
stack, especially since there is only one volume to activate.

The next three steps involve a simple calculation, but it deserves some explanation. The main
feature we want to exploit here is the count of allocation groups. Each allocation group can be
addressed independently when making filesystem modifications. Presumably, this enhances
performance in several different categories since it reduces allocation table contention.

To reach our desired number, we start with the total CPU count in our primary server. This is
the maximum number of concurrent processes that can touch the filesystem simultaneously.
However, we live in a world where upgrades are frequent and CPU core counts are only
increasing. Thus, we suggest multiplying the current CPU count by four, because we only get
one chance to create the XFS layer once it contains data. We want to keep time-consuming
data migrations to a minimum if possible.

With this calculated allocation group count in hand, we can begin formatting. The mkfs.xfs
utility supplied by xfsprogs will perform this step for us. The command we used contained
several parameters, separated into data (-d), log (-l), and inode (-i) settings. Here is a quick
summary of what these options do:

ff The agcount setting defines how many allocation groups XFS should create. Our
example uses 256, but you may have more.

ff We set the log size to 128m for a 128 MB journal. Journaling filesystems are not
new, but we need a sufficient size to track many concurrent changes on active
databases. On kernels at and above 3.0, this value is calculated based on the
device size, so we don't need to set it.

ff By setting lazy-count to 1, we get the full power of our agcount setting. Though
there are several allocation groups, there is still a master superblock that tracks
some universal counters. By enabling this, XFS uses other techniques to maintain
these values, avoiding sequential superblock access. On kernels 3.0 and higher,
this is set to 1 by default.

ff The attr inode setting configures an internal mechanism to store inline attributes.
This is more of an implementation detail, but Version 2 is more efficient. On kernels
above 2.6.16, this is set to 2 by default.

Advanced Stack

290

While this is a lot to digest, it should be clear by now that newer kernels make it much
easier to use XFS. Instead of all these other options, we merely need to set agcount and
format the filesystem. If everything works as expected, we should see this output from the
mkfs.xfs command:

From this, we can see that our agcount is indeed set to 256, lazy-count is set to 1, and
attr is set to 2.

See also
ff A definitive source of current XFS documentation is oddly difficult to find.

Instead, we recommend you examine the mkfs.xfs manual provided by
man for more information:
man mkfs.xfs

Tweaking XFS performance
When it comes to performance optimization on XFS filesystems, allocation groups are only the
beginning. To maintain a high-availability PostgreSQL server, we want to get the most out of
XFS. For us, this means using specific mount options.

Thankfully, unlike formatting, mount options can be changed frequently and require very
little downtime. Though it isn't essential that we apply these values immediately, the options
discussed in this recipe are our recommendation for this stack.

Getting ready
In order to mount an XFS filesystem, we need one to exist. Please follow the recipe contained
in Formatting an XFS Filesystem before continuing.

Chapter 8

291

How to do it...
Assuming pg1 is our current primary node, follow these steps as the root user:

1.	 Use this command to find the Linux kernel version:
uname -r

2.	 For kernel versions 3.0 and above, mount the filesystem with this command:
mount -t xfs -o noatime,nodiratime \
 -o logbsize=256k,allocsize=1m \
 /dev/VG_POSTGRES/LV_DATA /db

3.	 For kernels below 3.0, mount with this command:
mount -t xfs -o noatime,nodiratime \
 -o logbufs=8,logbsize=256k,attr2 \
 -o allocsize=1m /dev/VG_POSTGRES/LV_DATA /db

4.	 Execute this command to confirm a successful mount:
df /dev/mapper/VG_POSTGRES-LV_DATA

How it works...
Our first step is to find our current kernel version as this will dictate which settings are default
to our desired values. Then, we continue with the mount command and specify -t to set the
filesystem type to xfs. The last two parameters are to the mount command, define the device
we are mounting and which directory it should be attached to. In this case, we use our /dev/
VG_POSTGRES/LV_DATA device and the /db directory that we've discussed throughout
the book.

All of the parameters prefixed with -o are options that mount should apply during the
mounting process. These options define how certain aspects of the filesystem behave.
Here is a quick overview of the options we selected, and what they mean:

ff We use noatime to prevent file metadata from reflecting the last time the file
was accessed. In a PostgreSQL database, storage files are likely constantly being
accessed and modified, so tracking this information is a waste of time and incurs
unnecessary writes.

ff We use nodiratime for a similar reason regarding directory access times.

ff By ensuring logbufs is set to 8, we get the maximum amount of available buffers
for the filesystem data journal. On kernels 3.0 and above, this is set to 8 by default.

ff The maximum value for logbsize is 256k. This is a very small amount of memory,
and it ensures good performance for file deletion operations.

Advanced Stack

292

ff The attr2 option reflects the attr=2 value that we set when formatting XFS,
and it produces more efficient inode tables. On kernels 3.0 and above, this is
enabled by default.

ff The allocsize setting is extremely important. It defines the amount of space
associated with each newly created file. It's meant to prevent excessive file
fragmentation by preallocating larger amounts than requested. By setting this
to 1m, these allocations are limited to 1 MB in size.

In 3.0 kernels and above, XFS implemented a dynamic allocation
calculation that will often use values above 256 MB per file. Due to
aggressive kernel caching, these larger allocations may not be released for
hours or even days, causing a mismatch between used and free space in
the filesystem. This can result in 0 percent free space, even if the usage
percentage is very low. Never forget this setting in newer kernels.

A successful mount will return no output, so we need to confirm that the space is available
some other way. The df command will report the amount of used and free space on a device,
and we can pass it the -h parameter to make the output human readable. On our test system,
this is what we see:

There's more...
There is one final important mount option that we have not yet discussed: nobarrier.
Write barriers insert a flush operation between a filesystem write and disk sync to prevent
inadvertent data reordering. Some storage devices contain a battery-backed disk cache such
as high-end RAID solutions, SANs, and some solid state disks with on-board capacitors. This
kind of hardware can survive sudden power loss and does not require explicit barrier-imposed
data flushing.

Without this excessive data flushing, write performance can improve noticeably. To use this
setting, merely include nobarrier in the list of mount options. For example:

mount -t xfs -o noatime,nodiratime,logbsize=256k \

 -o allocsize=1m,nobarrier /dev/VG_POSTGRES/LV_DATA /db

Chapter 8

293

See also
ff The XFS FAQ contains a lot of information related to performance and tweaking XFS

in general. This is available at http://xfs.org/index.php/XFS_FAQ.

ff Otherwise, the mount manual provided by man has a section specifically pertaining to
XFS mount options:
man mount

Maintaining an XFS filesystem
Conventional wisdom regarding Linux filesystems suggests that file defragmentation is not
a necessary task. While this is true in general, file fragmentation isn't something we should
allow to spiral out of control. PostgreSQL storage files are limited to 1 GB in size, yet we
configured XFS to preallocate no more than 1 MB at a time.

This introduces the potential for data fragmentation on OLTP systems or any database cluster
where several tables experience high turnover. To prevent this from adversely affecting
sequential scans, and to promote good filesystem health in general, we need to track and
potentially correct overly fragmented files.

XFS provides two tools suited to this activity. The first is xfs_db, which provides information
about an XFS filesystem. The second is xfs_fsr, which allows us to defragment XFS while
it is still mounted and active. This recipe will cover the basic usage of these tools to keep our
high availability server performing well.

Getting ready
For this recipe, we want a formatted and active XFS filesystem. Follow the recipe in Formatting
an XFS filesystem before continuing. It may also be a good idea to set up a dummy database
where you mounted XFS. This way, you can run a pgbench test to create a lot of database
write activity so that there is a small amount of data fragmentation. This is not required to
follow along with this recipe.

How to do it...
Assuming pg1 is our current primary node and /dev/VG_POSTGRES/LV_DATA is the device
we formatted with XFS, follow these steps there as the root user:

1.	 Examine the current fragmentation status with this command:
xfs_db -f -c frag /dev/VG_POSTGRES/LV_DATA

2.	 Defragment the filesystem with xfs_fsr:
xfs_fsr -t 600 /dev/VG_POSTGRES/LV_DATA

http://xfs.org/index.php/XFS_FAQ

Advanced Stack

294

3.	 View real-time fragmentation status afterwards:
xfs_db -f -c frag -r /dev/VG_POSTGRES/LV_DATA

How it works...
We begin with the xfs_db utility to view the current fragmentation status of the filesystem.
The -c parameter lets us specify a command that xfs_db should invoke. In this case, we
want it to check the fragmentation status, so we set -c to frag. We set the -f parameter
as it allows us to use xfs_db on a mounted filesystem.

Fragmentation status is calculated by counting the number of non-contiguous extents
on all files and comparing that number to the total amount of files. To prepare for this,
we continuously invoked pgbench to cause a high amount of fragmentation. Here is the
fragmentation on our system:

As you can see, our filesystem is 41.52% fragmented. To correct this, we need to use xfs_
fsr to reorganize any fragmented files. To do this, we only need to call xfs_fsr with either
the device path or the path where the device is mounted. For the sake of consistency, we
choose the former.

We can also limit the amount of time XFS spends fixing fragmentation with the -t parameter,
which sets the run time in seconds. We chose 600 seconds for an even 10 minutes, but larger
systems might require an hour or longer. By setting the -t parameter, we can run xfs_fsr
regularly as a maintenance item, so fragmentation is regularly kept in check.

XFS defragmentation proceeds on a file-by-file basis. Thus, if the xfs_
fsr command is canceled, or does not defragment every file before it
exceeds our time limit, no progress is lost.

If we examine the filesystem again with xfs_db, our fragmentation should be significantly
reduced. Let's consider the following screenshot:

Now our fragmentation is down to 0.65%, which is well within tolerances for good sequential
access performance. However, you might have noticed that we added an -r setting just after
the -c frag declaration.

Chapter 8

295

Remember when we said XFS maintained an internal database? Due to caching and update
intervals, parts of the XFS database are not always accurate. The -r option to the -c frag
command tells XFS that we want real-time information about the filesystem, and not what is
currently stored in the tracking database.

There's more...
While we use the xfs_db command to obtain file fragmentation information, it can
actually do much more. XFS maintains a small internal database which xfs_db can view
or manipulate. Unfortunately, modifying XFS metadata can render the filesystem corrupt or
otherwise unusable. We highly recommend never using xfs_db for anything but checking
fragmentation statuses.

Only experts should ever use xfs_db command parameters other than frag.

See also
ff Both the xfs_db and xfs_fsr commands have fairly extensive manual pages.

We recommend using these to learn more about the other functionalities these
tools provide:
man xfs_db

man xfs_fsr

Using LVM snapshots
One of the reasons we created a second layer of LVM on top of DRBD was to provide
filesystem snapshot capabilities. When we create a snapshot, all files on a particular volume
will appear static on that snapshot until one of the following two things happens:

ff We destroy the snapshot

ff The amount of changes on the source volume is larger than the space we reserved
for the snapshot

This is the primary reason we left 5 percent space unused within our PostgreSQL volume
group. If we create a snapshot, up to 5 percent of the database can change before we have to
remove it. For larger storage devices, this should give us a lot of time to perform emergency
restores, create byte-stable backups, or any other operation that requires consistent data.

In this recipe, we'll learn how to properly allocate, use, and remove an LVM snapshot.

Advanced Stack

296

Getting ready
For this recipe, we want a formatted and active XFS filesystem. Please follow the recipe in
Formatting an XFS filesystem before continuing.

How to do it...
For this, we will assume pg1 is our current primary node and VG_POSTGRES/LV_DATA
is the principal data volume. Follow these steps as the root user to create and use an
LVM snapshot:

1.	 Create the snapshot with lvcreate:
lvcreate -l 100%FREE -s -n snap VG_POSTGRES/LV_DATA

2.	 Create a directory on which to mount the snapshot using this command:
mkdir /mnt/db_snap

3.	 Mount the snapshot as a regular XFS filesystem using this command:
mount -t xfs -o nouuid /dev/VG_POSTGRES/snap /mnt/db_snap

4.	 Enter the snapshot pgdata directory using this command:
cd /mnt/db_snap/pgdata

5.	 Examine snapshot information with lvdisplay:
lvdisplay VG_POSTGRES/snap | grep snap

Follow these steps as the root user to unmount and remove an LVM snapshot:

1.	 Unmount the snapshot with this command:
umount /mnt/db_snap

2.	 Destroy the snapshot with lvremove:
lvremove VG_POSTGRES/snap

How it works...
We can use the same lvcreate utility that helped us provision the PostgreSQL volume. We
start the command with the -l parameter set to 100%FREE to use any unallocated space in
the VG_POSTGRES volume group. While we can specify sizes in MB or GB with the -L setting,
we really only need to do this if we plan on creating multiple snapshots.

The -s parameter makes this volume a snapshot, which causes LVM to base its contents on
those of another volume. Thus, we specify VG_POSTGRES/LV_DATA as the origin volume
group and volume we want to use for the snapshot. We also use the -n parameter to set the
name of the new volume to snap, making our intentions more obvious.

Chapter 8

297

With the volume created, we simply need to mount it to access the contents. A quick mkdir
later, we have a location in /mnt/db_snap, where we can find the files after mounting.

The mount command itself contains the basic parts. We set the type to xfs with -t, while the
last two parameters dictate the device and the location where it should be mounted. Since we
are using an XFS filesystem, we also need to provide the nouuid mount option. By default,
XFS will not allow the same filesystem to be mounted more than once. The nouuid option
skips this check, allowing us to mount the snapshot.

At this point, the files in the /mnt/db_snap/pgdata directory will be the same as those
in /db/pgdata. The primary difference between the two lies in the fact that /db/pgdata
is our live database instance, and it has continued changing. The files at /mnt/db_snap/
pgdata are frozen in time from when the lvcreate command was completed. If we view the
snapshot volume with lvdisplay, we can see this in action:

Notice that LVM tells us that this is a snapshot volume and what the source volume is. We can
also see that 8.27% of the snapshot space is used. This means that files have changed on
the source volume, and the snapshot responded by storing the original blocks locally. When all
of its space is consumed, the snapshot will be marked as invalid by LVM. Periodic checks with
lvdisplay are important to determine the validity of the files we are using that reside on
a snapshot.

When we are finished with the snapshot, it's good practice to destroy it. We start the
process by unmounting the snapshot volume from /mnt/db_snap. Afterwards, we can use
lvremove for the first time to destroy the snapshot volume. The lvremove command only
requires the name of the volume we want to destroy, and it will confirm our intent before doing
so. Once a volume is removed, there's no way to restore it.

Be careful with keeping snapshots around too long or creating them
during business hours. Depending on the underlying device, performance
can suffer significantly due to the extra writes necessary to maintain the
snapshot.

See also
ff The Linux Documentation Project has a very simple usage example of snapshot

usage. Feel free to browse the example at http://www.tldp.org/HOWTO/LVM-
HOWTO/snapshots_backup.html.

http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html

Advanced Stack

298

Switching live stack systems
At this point, we have our data located simultaneously on two servers. The second system can
fulfill many possible roles. It can replace the current node in case of hardware failure, or allow
us to perform server maintenance or upgrades with very little downtime.

Regardless of our intent, properly utilizing the second system is the key to a highly available
database server. In this recipe, we'll discuss the proper method for activating the second
server in a two-node pair so that we can make changes to one or both nodes.

Getting ready
By now, we need the full stack and probably a fully active database server as well. Follow all
the recipes up to Tweaking XFS performance before starting here.

How to do it...
For this recipe, we will need two PostgreSQL servers, pg1 and pg2, where pg1 is the currently
active node. Follow these steps as the root user on the system indicated to move an active
PostgreSQL service from one node to another:

1.	 Stop the PostgreSQL service with pg_ctl on pg1:
pg_ctl -D /db/pgdata stop -m fast

2.	 Unmount the /db/pgdata filesystem on pg1:
umount /db/pgdata

3.	 Mark the VG_POSTGRES group as inactive using vgchange on pg1:
vgchange -a n VG_POSTGRES

4.	 Demote DRBD status to secondary with drbdadm on pg1:
drbdadm secondary pg

5.	 Promote DRBD status to primary with drbdadm on pg2:
drbdadm primary pg

6.	 Mark the VG_POSTGRES group as active using vgchange on pg2:
vgchange -a y VG_POSTGRES

7.	 Mount the /db/pgdata filesystem on pg2:
mount -t xfs -o noatime,nodiratime \
 -o logbsize=256k,allocsize=1m \
 /dev/VG_POSTGRES/LV_DATA /db

Chapter 8

299

8.	 Start PostgreSQL on pg2:
pg_ctl -D /db/pgdata start

How it works...
There is actually very little in this recipe that we have not done in this chapter. What we have
actually done here is formalized the steps necessary to tear down and build up an active
stack. We start the process by stopping the PostgreSQL service with pg_ctl, as we clearly
can't move the data while it's still in use.

Next, we use umount to decouple the /dev/VG_POSTGRES/LV_DATA device from the /db
directory. With no locks on the storage volume, we can use vgchange with the -a parameter
set to n to deactivate any volume in the VG_POSTGRES group. Since the VG_POSTGRES group
actually resides on the DRBD device, it can only be active on one node at a time.

Once the volumes are no longer active, we can set the DRBD status to secondary with
drbdadm. After we perform this step, the /dev/VG_POSTGRES directory and any corresponding
device will actually disappear. This is because a DRBD device in secondary status is only active
within DRBD. Here is what DRBD shows us in /proc/drbd regarding the situation:

DRBD sees the device as Secondary on both nodes; currently, neither node can access our
PostgreSQL data. From this point, we merely reverse the process to reactivate all of these
resources on pg2 instead.

We begin reactivating PostgreSQL by promoting the storage to primary status with drbdadm
on the pg2 node. This causes the requisite VG_POSTGRES volume group to appear on pg2,
making it a candidate for activation with vgchange.

Now we simply reuse the mount command that we discussed in the Tweaking XFS performance
recipe on the pg2 node, making the data available to us once again. If we start PostgreSQL with
the pg_ctl control script, our database will begin running as if it were still on the pg1 node.
PostgreSQL does not know anything has changed.

There's more...
Since data can switch nodes arbitrarily as demonstrated here, upgrades and maintenance
to server hardware are much easier. What can we do with the extra node? We can reboot
it, apply firmware or kernel updates, apply security patches, or even update the database
software to a bug-fix release.

Advanced Stack

300

Following any required or suggested changes to the secondary node, we merely promote it to
run PostgreSQL in place of the current server. Then, we can repeat modifications on the other
node. With this, we can limit outages to a matter of seconds while still providing high uptime
guarantees, all without skipping system maintenance.

In fact, this process is so standardized that we will be exploring it in great detail in the next
chapter. Once this tear-down and build-up procedure is automated, maintaining or replacing
servers is even easier.

Detaching a problematic node
There's one last thing we need to cover before ending this chapter. If a server is causing
problems, there's a good chance that the infrastructure department will want to reclaim,
rebuild, or replace it. Simply stopping the broken server is a possible solution, but there is a
safer way to decouple DRBD from another system.

In this recipe, we'll quickly cover partially dismantling a running DRBD system without
disrupting the active server.

Getting ready
By now, we need the full stack and probably a fully active database server as well. Follow all
the recipes up to Tweaking XFS performance before starting here.

How to do it...
For this recipe, we will need two PostgreSQL servers: pg1 and pg2, where pg1 is the currently
active node. Follow these steps as the root user on the system indicated to permanently
remove pg2 from the DRBD cluster:

1.	 Execute this command on both pg1 and pg2 to disconnect DRBD:
drbdadm disconnect pg

2.	 Invalidate the data on the remote node with drbdadm on pg1:
drbdadm invalidate-remote pg

3.	 Invalidate the data on the current node with drbdadm on pg2:
drbdadm invalidate pg

How it works...
This recipe is one of the easiest in our list, but it is equally important. We begin by using
drbdadm to disconnect each node from the communication link DRBD uses to copy data
between servers.

Chapter 8

301

Then we use drbdadm again to doubly invalidate the data on the bad node. First, we use the
invalidate-remote parameter on pg1 to ensure it sees pg2 as unusable. Then we use the
invalidate parameter on pg2, so it sees its own data as incorrect.

At this point, we can release pg2 to its fate, no matter what that might be.

There's more...
Some might claim that any data invalidation is excessive. DRBD has its own safeguards to
protect against inadvertent data copies. While true, server pools are not always cleaned
up properly. Invalidating the data on pg2 does more than protect pg1 from being adversely
affected if or when pg2 reconnects. We've effectively ensured pg2 cannot contribute data to
any other DRBD cluster as a primary node.

However, we can go even further. We can actually physically destroy all traces of DRBD data
on the decommissioned node. These commands on pg2 will do the work for us:

drbdadm down pg

drbdadm wipe-md pg

dd if=/dev/zero of=/dev/VG_DRBD/LV_DATA bs=1024 count=1024

The first drbdadm command stops the DRBD device itself. The second erases its metadata.
Why do we need the third, then?

The dd utility is absurdly dangerous because it can write arbitrary blocks to any device on a
server with almost no restrictions. We set the input file (if) to /dev/zero, and the output file
(of) to /dev/VG_DRBD/LV_DATA, which we know as the device DRBD was using. Then we
set the block size (bs) to 1024, and write a count of 1024 blocks to the device. Basically, we
just overwrite the first megabyte of data on the DRBD device with zeroes.

We did this because metadata can be extracted from other nodes and reapplied. Theoretically,
this means pg2 can be salvaged with enough expertise. By corrupting the data on the device
itself, this is no longer possible. Furthermore, if we use drbdadm with create-md later,
there's no existing data to interfere with the new metadata.

See also
ff Linbit, the maker of DRBD, has very extensive documentation on system

troubleshooting. Refer to http://www.drbd.org/users-guide/ch-
troubleshooting.html for more information.

http://www.drbd.org/users-guide/ch-troubleshooting.html
http://www.drbd.org/users-guide/ch-troubleshooting.html

Cluster Control

In this chapter, we will learn how to automate cluster management and ensure high
availability. We will cover the following recipes in this chapter:

ff Installing the components

ff Configuring Corosync

ff Preparing startup services

ff Starting with base options

ff Adding DRBD to cluster management

ff Adding LVM to cluster management

ff Adding XFS to cluster management

ff Adding PostgreSQL to cluster management

ff Adding a virtual IP to hide the cluster

ff Adding an e-mail alert

ff Grouping associated resources

ff Combining and ordering related actions

ff Performing a managed resource migration

ff Using an outage to test migration

Introduction
Almost everything that we've discussed so far has lead directly to this chapter. By now, we
have multiple servers, redundant alternates, backup, synchronization, and much more. If we
combine all of these techniques, management becomes more difficult with each component
we add.

9

Cluster Control

304

In the previous chapter, we covered all of the elements for a robust and elastic storage
structure. Even then, we noted the arduous nature of moving a running server from one
node to another. Typing commands safely takes time, as does conferring with a checklist
and verifying commands before running them in a production environment. We would never
recommend anything less.

Finally, we will learn how to configure the two linked nodes to manage themselves. It's not
entirely foolproof, yet the process we are about to undergo is robust and implemented safely
by many enterprises. Instead of a dozen commands to move an active PostgreSQL instance
to another server, we will need only one. Further, the software can detect several failure
scenarios and relocate PostgreSQL on our behalf if something goes wrong.

The safest cluster in a high-availability architecture is one that requires the least amount of
manual intervention. To that end, this chapter will cover Corosync and Pacemaker and the
steps to manage dual-node servers with this software. By the end of this chapter, we should
have something similar to this diagram:

Storage

Node 1 Node 2

Virtual IP

PostgreSQL

XFS

LVM 1 LVM 1

Storage

LVM 2

DRBD

Pacemaker Corosync

DRBD Replication

Pacemaker

Virtual IP

PostgreSQL

XFS

LVM 2

DRBD

Here, all of the grayed-out components are installed on both nodes, but they are unavailable
on node 2. Yet, we could use Pacemaker to reverse the graph so that node 2 is the active
server instead of node 1. That is a lot of changes to make manually.

Before we begin...
Before we spend any more time on this chapter, we should ask ourselves a question:
is automation necessary? It's certainly nice to have, but is it required? Will we benefit from
the admittedly esoteric incantations needed to install and configure these tools?

Chapter 9

305

The answer is not always so straightforward. While exceedingly powerful, Pacemaker is
infamously difficult to use and even a little overzealous in applying its rules. An improperly
built Pacemaker cluster might produce a database that moves to another node at the
slightest provocation. Worse, Pacemaker enforces its current status and will actively thwart
management attempts it didn't personally invoke.

We won't lie; the learning curve is immense and should extend far longer than what this
chapter teaches. If this is too much for now, skip this chapter with our best regards.

Otherwise, we want you to know that this chapter is only the beginning. We will guide you
through the creation of a functional Pacemaker-managed system, but we strongly recommend
experimenting frequently on a pair of virtual servers. This gives you a safe area to make
mistakes, break Pacemaker in all kinds of interesting ways, and learn more about the material
we present here.

None of this content is easy, but we promise it's worth the time to absorb. We will introduce
this material slowly to help aid in the process.

Installing the components
The two main components to the software we use in this chapter are Corosync and Pacemaker.
Each of these is comprised of or depends on several other elements and prerequisites.
For now, we'll simply refer to the entire suite as Pacemaker, as it comprises the bulk of how
we will control the failover system.

This recipe should be relatively short, as we will only discuss installation of Corosync and
Pacemaker, not their configuration.

Getting ready
Red-Hat-based systems such as Fedora, CentOS, and Scientific Linux will already have
Pacemaker in their repositories. Debian and its derivatives such as Ubuntu also include
Pacemaker as an optional install from standard repositories. Red Hat Enterprise Linux
(RHEL) itself, however, only offers the software as a paid add-on, available at http://www.
redhat.com/products/enterprise-linux-add-ons/high-availability/.

Whatever choice you make, it shouldn't be necessary to compile Pacemaker from source on
most Linux distributions.

http://www.redhat.com/products/enterprise-linux-add-ons/high-availability/
http://www.redhat.com/products/enterprise-linux-add-ons/high-availability/

Cluster Control

306

How to do it...
Follow these quick steps to install Pacemaker and Corosync on all PostgreSQL server pairs
running a Debian-based distribution:

1.	 Install the main packages and all dependencies with this command as
a root-capable user:
sudo apt-get install corosync pacemaker

2.	 Disable the cluster software from starting on system boot:
sudo update-rc.d corosync disable

For those running a Red-Hat-based operating system, follow these steps to install
and prepare Pacemaker:

1.	 Install the main packages and all dependencies with this command as a
root-capable user:
sudo yum install corosync pacemaker

2.	 Disable the cluster software from starting on system boot:
sudo chkconfig corosync off

How it works...
Each of these short recipes consists of two steps:

1.	 Install Corosync and Pacemaker.

2.	 Disable Corosync on server boot.

While the first step makes sense, why do we need the second? When running a highly
available cluster, caution is a beneficial attribute. A server may reboot for any number of
reasons, and many of those include crashes that require further investigation.

Were Pacemaker to start immediately following a server reboot, we could potentially lose
valuable diagnostic information. More importantly, a rebooted server should be considered
in an unknown or potentially damaged state until it is examined by an experienced system
administrator. We don't want a misbehaving server as part of our critical infrastructure.

Corosync is the communication layer between each Pacemaker node. It also launches the
Pacemaker management system. This means that we can prevent all node management
simply by disabling it.

Chapter 9

307

There's more...
If you believe we are being too wary, simply skip the second step in our recipe. However, it's
important to remember that services are easy to start on Linux servers. This command, for
instance, will start Corosync normally:

sudo service corosync start

If the server was rebooted as the result of maintenance, the preceding command will return
the system to normal operation. Otherwise, a few cursory checks through server logs may
determine that the cause of the system crash does not adversely affect PostgreSQL data.
If so, once again, it is easy to start Corosync and re-establish the dual-node cluster.

What we have done here is a very rudimentary form of STONITH, which means to Shoot The
Other Node In The Head. Dedicated STONITH hardware may power a server off completely
or remove it from the network, making it inaccessible through anything other than console
emulation or direct access. Truly high-availability systems cannot afford to introduce unknown
entities into a carefully crafted and manicured architecture. To do so invites undefined
behavior across the spectrum of database services that could lead to outages or data loss.

If we want to claim that our data is important and our uptime is essential, we need to adopt a
similar stance toward crashed or damaged servers. We haven't gone so far as to completely
disable the server in this recipe; we only prevent it from rejoining a functioning Pacemaker
pair. In a true STONITH-enabled organization, our measures would be much more drastic.

See also
ff The clusterlabs.org website is a repository of all things related to pacemaker.

It has several relevant tutorials, examples, and copious documentation. If you had
trouble installing with our recipe, try an alternative listed at http://clusterlabs.
org/wiki/Install.

Configuring Corosync
Once Corosync and Pacemaker are installed, we only need to modify a single configuration file
to activate them. As we've mentioned earlier and shown in the introduction diagram, Corosync
is the conduit that Pacemaker uses for communication. Corosync also binds itself to services
that rely on its channels, so it will also launch Pacemaker on our behalf.

This recipe will explain how to create a simple configuration for Corosync that will establish a
secure Pacemaker cluster.

clusterlabs.org
http://clusterlabs.org/wiki/Install
http://clusterlabs.org/wiki/Install

Cluster Control

308

Getting ready
We have already installed everything we need, but if we are running a Debian-based
system such as Ubuntu or Mint, we have one more step. Before Corosync will work properly,
we need to enable its startup script. Open the /etc/default/corosync file and make sure
it contains this line:

START=yes

Without it, Corosync won't run even if we start it manually. We removed it from system boot
time, but that doesn't mean we never want it to run at all!

How to do it...
For this recipe, we have two PostgreSQL nodes: pg1 and pg2, which are assigned IP
addresses in the 192.168.56.0 subnet. Follow these steps as a root-capable user:

1.	 On pg1, run this command to generate an authorization key file:
corosync-keygen

2.	 Open another connection to pg1 and perform several activities until corosync-
keygen completes.

3.	 Copy the resulting /etc/corosync/authkey file to pg2. Make sure it is copied to /
etc/corosync/authkey as well.

4.	 Modify the bindnetaddr line in the /etc/corosync/corosync.conf file on both
pg1 and pg2 so that it contains the following value:
bindnetaddr: 192.168.56.0

5.	 Modify the secauth line in the /etc/corosync/corosync.conf file on both pg1
and pg2 so that it contains the following value:
secauth: on

6.	 Start Corosync on both pg1 and pg2 with this command:
sudo service corosync start

7.	 Show the status of Pacemaker with the crm utility on pg1:
sudo crm status

Chapter 9

309

How it works...
The first step involves securing our Corosync communication channel. The corosync-keygen
utility will generate a 1024-bit key that helps Pacemaker nodes identify each other, but to do so,
it involves a lot of random input.

We can generate entropy by making the server perform tasks. If the server is otherwise idle,
running commands, testing SQL, or simply waiting, it will eventually exit and save a file named
authkey in the /etc/corosync configuration directory. As we want this file to be the same
on all nodes, we also copy it from pg1 to pg2.

Next, we only need to change two lines in the existing configuration files to suit our needs.
First, we need to tell Corosync which network interface it should bind to with bindnetaddr.
In our case, both servers are on the 192.168.56.0 network, so we can use that value.
This address will likely be different on your system, but it's easily obtained.

If you don't know how network subnets work, find the IP address of your
server and simply replace the last number with a zero. This skips a lot of
calculating, and works in our case. So, if the address is 10.2.8.14, use
10.2.8.0.

Then, we change secauth to on to enable secure and encrypted communication between
nodes. When this is done on both nodes, we can start Corosync with the service command,
and our work is done.

To verify that the Pacemaker cluster exists, we can use the crm command. What is crm? It
stands for Cluster Resource Manager and will be the command we use for all Pacemaker
interactions from now on. The status parameter displays the current state of the cluster, and
for our test systems, it looks like this:

As we can see, Pacemaker can communicate with both nodes, so it lists them as Online.
The rest of the information presented here regarding quorum and votes can be ignored for
now, but we'll cover it soon enough.

Cluster Control

310

See also
ff As mentioned earlier, the clusterlabs.org site should be considered the

ultimate resource regarding Corosync and Pacemaker. To learn more about the
process we used here, proceed to http://clusterlabs.org/wiki/Initial_
Configuration.

ff Otherwise, the corosync.conf file actually has its own extensive manual page
available via the man utility. It's extremely useful to create more advanced clusters.
Use the following command:
man corosync.conf

Preparing startup services
A common interpretation of a functional server is one that runs on its own recognizance. After
being rebooted, it starts all necessary services and does its job as configured. It might be hard
to believe, but we want to fight that inclination for two important reasons:

ff Pacemaker is a state machine

ff Pacemaker needs total control of any service it manages

Pacemaker wants to start services itself so it knows that the current status is the one it
created. It will perform tests to obtain this information, but for things like DRBD, this isn't
always reliable. It's generally safer to start from scratch. Beyond this, if a service that isn't
supposed to be running starts, Pacemaker will only have to stop it anyway.

In this recipe, we'll quickly cover which services to disable on each of our PostgreSQL nodes.

Getting ready
As we're continuing to configure Corosync and Pacemaker, make sure you've followed all the
previous recipes.

How to do it...
For this recipe, we will use the same two PostgreSQL nodes: pg1 and pg2. We will also
continue to assume that our PostgreSQL data is located at /db/pgdata.

On Red-Hat-based systems, follow these steps on both servers as a root-capable user:

1.	 Prevent the PostgreSQL service from starting automatically with this command:
sudo chkconfig postgresql off

clusterlabs.org
http://clusterlabs.org/wiki/Initial_Configuration
http://clusterlabs.org/wiki/Initial_Configuration

Chapter 9

311

2.	 Do the same for the DRBD service with this command:
sudo chkconfig drbd off

3.	 Create a file named /etc/sysconfig/postgresql with the following line:
PGDATA=/db/pgdata

On Debian-based systems, follow these steps on both servers as a root-capable user:

1.	 Prevent the PostgreSQL service from starting automatically with this command:
sudo update-rc.d postgresql disable

2.	 Do the same for the DRBD service with this command:
sudo update-rc.d drbd disable

3.	 Create a file named /etc/default/postgresql with the following line:
PGDATA=/db/pgdata

No matter what Linux system you are using, install the /init/postgresql script from this
book into the /etc/init.d directory.

How it works...
Both of these short recipes perform the same task. The first step is to remove PostgreSQL
from the list of services that start at system boot time. The next does the same to DRBD.
These are the only two services that are controlled via system startup scripts, so our work
here is very short indeed. Then, we create a file and provide a value for PGDATA so that
the /etc/init.d/postgresql startup script can find our PostgreSQL data.

Our final, and perhaps the most important step, is to replace any provided PostgreSQL
initialization script with one that is fully compatible with Pacemaker. Pacemaker is extremely
dependent on the expected Linux Standard Base exit codes. At least in the case of Debian
and Ubuntu, the provided initialization script does not return the proper exit code because it
expects to manage multiple PostgreSQL instances per server.

Without the correct exit value, Pacemaker will interpret the service as up, down, or unknown
and will make improper management decisions. This is excessively dangerous when trying
to run a highly available PostgreSQL installation. The script provided by this book has been
tested with Pacemaker, and we know it works as intended.

Cluster Control

312

There's more...
If you have another test server with PostgreSQL installed and running, try some of these tests
to confirm it works as described:

1.	 Start PostgreSQL and confirm the exit status is 0 for success with this command:
sudo service postgresql start

echo $?

2.	 Stop PostgreSQL and confirm the exit status is 0 for success with this command:
sudo service postgresql stop

echo $?

3.	 Finally, check the status of PostgreSQL and confirm the exit value is 3, indicating the
service isn't running with this command:
sudo service postgresql status

echo $?

The $? variable holds the exit status of the previous command. It's an easy way to visualize
what is normally an invisible piece of information. Any script that does not return these three
exit codes for these specific conditions cannot be used with Pacemaker.

See also
ff The Linux Standard Base specification for initialization scripts is fully documented.

We recommend that you read http://refspecs.linuxbase.org/LSB_3.1.1/
LSB-Core-generic/LSB-Core-generic/iniscrptact.html to see why we
used a script not supplied by the distribution.

Starting with base options
Pacemaker, as a cluster resource manager, has some defaults that we are interested in
changing. As Pacemaker is so powerful, it makes several assumptions about the composition
of cluster resources and nodes it controls. One of which is that there are several nodes, and
not just two.

http://refspecs.linuxbase.org/LSB_3.1.1/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
http://refspecs.linuxbase.org/LSB_3.1.1/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

Chapter 9

313

This works well for large cooperative networks of web servers or independent services
which can operate in a transient manner. However, we have two nodes that are very much
dependent on shared storage that can only be used by one node at a time. So, in this recipe,
we are going to perform three tasks:

ff Disable STONITH because we don't currently have STONITH-enabled hardware

ff Disable cluster quorum because two systems cannot produce a meaningful vote

ff Enable resource stickiness to prevent disruptive automated node swaps

Getting ready
As we're continuing to configure Corosync and Pacemaker, make sure you've followed all
previous recipes.

How to do it...
For this recipe, we will use the same two PostgreSQL nodes: pg1 and pg2. Perform the
following steps on either server as the root user:

1.	 Disable STONITH with this crm command:
crm configure property stonith-enabled=false

2.	 Ignore quorum voting with this crm command:
crm configure property no-quorum-policy=ignore

3.	 Increase the default resource stickiness with this crm command:
crm configure property default-resource-stickiness=100

4.	 Finally, view the current state of the cluster configuration with this command:
crm configure show

How it works...
This recipe differs from those in the previous sections in that we can execute these steps
from any server. Commands issued by the crm utility are sent to the cluster itself, so any
node will transmit them successfully, and Pacemaker will act accordingly. In the case of our
configuration changes, the only action that Pacemaker takes is to alter its stored settings.

The first thing we do is disable STONITH by calling crm with the configure property
parameter for stonith-enabled. While STONITH is an amusing acronym, there are actual
devices on the market that fill this role. These devices can isolate a node from a network in
several ways, and Pacemaker is designed to interact with them by default. As we don't have
one right now, it's best to tell Pacemaker that it shouldn't expect such functionality.

Cluster Control

314

Our next step includes shutting down our fledgling democracy by disabling quorum verification.
We only have two nodes, and votes comprised of only two voters are entirely meaningless
because they will always result in a tie. Without an odd number of nodes, no quorum
(agreement) can be reached. This time, we configure property for no-quorum-policy
and set it to ignore. This essentially means that the nodes will continue to vote, but we don't
care unless they can reach a quorum. As two servers can't reach a quorum, resources will run
where we tell them to run, and they have no say in the matter.

The last setting we change with configure property is default-resource-
stickiness. As we mentioned earlier, Pacemaker is really built for transient services that
act as independent agents. If an HTTP daemon moves from one node to another, nobody
really cares or notices. If PostgreSQL acted in a similar manner, there would be several broken
applications and irritated users.

By changing this setting to 100, we give every resource a default weight, so it sticks to whichever
server it started on. Unless there's a crash or forced migration, it will stay there indefinitely.

Our last step is to view our handiwork by issuing crm with configure show. Pacemaker
stores its configuration as XML, and while this is somewhat human readable, it's hardly
concise. On our test cluster, it produces this output:

As we can see, both pg1 and pg2 are each labeled as a node. In addition, stonith-
enabled, no-quorum-policy, and default-resource-stickiness are all set
as we described in the recipe.

We're well on our way to building a Pacemaker cluster.

There's more...
The crm command is actually a fully functional pseudo-shell. If executed without parameters,
it presents a prompt and waits for valid crm commands. These commands include help for
every level chosen. For example, to see what options are available when putting a node into
standby, we can type this input while in a crm shell:

node help standby

Chapter 9

315

Then, we can use what we learned previously and put the node into standby state until it is
rebooted and Corosync is started again. Like this:

node standby pg1 reboot

This is extremely helpful as Pacemaker has a lot of commands, and it's easy to forget the
proper syntax.

See also
ff The crm shell has undergone a lot of changes in the last few years, including

splitting from the Pacemaker project itself. As such, its documentation is somewhat
fragmented. The new crm shell maintainers have information that is mostly
compatible with versions packaged with Debian and Red-Hat-based systems at
http://crmsh.github.io/man-1.2/.

However, it might be easier to simply explore the help for each command as we
described earlier.

Adding DRBD to cluster management
DRBD is actually one of the most difficult resources to manage with Pacemaker. Unlike a
regular service that is started or stopped depending on where it is active, DRBD is always
active. The only thing that changes between two nodes running DRBD is the Primary or
Secondary state ascribed to each.

Due to this complication, DRBD is not one resource, but two:

ff A DRBD resource to manage starting and stopping DRBD

ff A master/slave resource to control which node acts as the Primary

In this recipe, we'll allocate both of these resources so that Pacemaker can manage
DRBD properly.

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all previous recipes.

http://crmsh.github.io/man-1.2/

Cluster Control

316

How to do it...
In the previous chapter, we created a DRBD resource named pg. With this in mind, follow
these steps as the root user to add DRBD to Pacemaker:

1.	 Create a basic Pacemaker primitive for DRBD with this command:
crm configure primitive drbd_pg ocf:linbit:drbd \

 params drbd_resource="pg" \

 op monitor interval="15" role="Master" \

 op monitor interval="20" role="Slave" \

 op start interval="0" timeout="240" \

 op stop interval="0" timeout="120"

2.	 Create a master/slave resource with this command:
crm configure ms ms_drbd_pg drbd_pg \

 meta master-max="1" master-node-max="1" \

 clone-max="2" clone-node-max="1" notify="true"

3.	 Clean up any errors that might have accumulated with crm:
crm resource cleanup drbd_pg

4.	 Display the status of our new resources with crm:
crm resource status

How it works...
Most of the resources we create in subsequent sections are called primitives. These should
be considered the base resource element that Pacemaker controls, as they have a one-to-one
relationship with each service. The first of these we create is for our DRBD service.

When creating new configuration entries with crm, we declare them with configure
primitive, and then we must supply a name. To keep things simple, we named this
resource drbd_pg. After the name, we must supply a resource agent to actually manage
this service. Pacemaker is shipped with several, but we are specifically interested in the
ocf:linbit:drbd agent, as it was written by the makers of DRBD themselves.

Next, we can configure the resource agent by specifying params, followed by the options it
recognizes, labeled with op. Among these options, we define a monitor interval for the
master server and one for the slave that isn't quite as frequent. Then, finally, we override the
start timeout and stop timeout so that they match the minimum values expected by
Pacemaker. It will complain if we use values lower than this, but feel free to increase them.

Chapter 9

317

Next, we create the master/slave resource that controls how Pacemaker views the drbd_pg
resource. Instead of adding and configuring a primitive, this time we configure a ms (master
slave resource) and name it ms_drbd_pg. After naming our ms resource, we designate
drbd_pg as the primitive to treat as a master or slave service. All of the entries after the
meta designation are somewhat confusing and arbitrary, so we hope these pointers help:

ff By setting master-max to 1, we tell Pacemaker that only one node in the cluster can
ever be promoted to master for this service.

ff Similarly, setting master-node-max to 1 limits Pacemaker to a single copy of this
resource per server.

ff The clone-max setting actually describes the amount of active copies for this
resource, which is 2 in our case.

ff Oddly enough, the clone-node-max setting means basically the same thing as
master-node-max. We set this to 1 as well to safeguard the DRBD resource from
potential Pacemaker bugs or future changes in default settings.

ff Finally, the notify setting effectively transmits master/slave notices to all
nodes so that Pacemaker knows the new status of the shared resource everywhere
it is running.

What do we mean by a resource copy? Internally, Pacemaker stores resources as defined
roles. If a single resource has two roles, it actually exists as two items within Pacemaker.
In Pacemaker lingo, these are referred to as clones. The crm system hides these details
from us, but they're still very real and difficult to manage.

The values we chose for all of the meta options are actually Pacemaker defaults. We could
have omitted them, but a high-availability system cannot remain safe while it is at the mercy
of malleable defaults. We set these in stone now to prevent Pacemaker upgrades from
potentially causing problems in the future.

When adding new resources, sometimes Pacemaker enters an undefined state and lists
errors that aren't actually valid. We can clear these out using the resource cleanup
parameter to target the drbd_pg primitive. It's always a good idea to keep Pacemaker
status clean to avoid possible conflicts later.

Our final job is to view the status of all configured resources by calling crm with resource
status. Our test system showed this output:

Cluster Control

318

Even though we created two primitive resources, we only see one entry: ms_drbd_pg.
Note, however, that it represents the drbd_pg resource. We can also see the Masters
and Slaves for this Set, though there should never be more than one of each with the
configuration we used.

There's more...
In Pacemaker, resource agents can be viewed separately with the crm program, and many are
available. To get a list of all the LSB resource agents (scripts in /etc/init.d) Pacemaker
can see, use this command:
crm ra list lsb

For a list of Pacemaker-specific agents, use this command:
crm ra list ocf

By itself, this information isn't entirely helpful. Knowing that the agents exist does not tell us
what parameters they have. To see this, we need to view the meta information for the agent.
We used the ocf:linbit:drbd agent in this recipe, and we can view its usage information
with this command:
crm ra meta ocf:linbit:drbd

If this is not convenient enough, we can actually use the man command for most agents as well.
If we know the class, provider, and name of an agent, we can view its Unix manual. For example,
to see the manual for the ocf:heartbeat:nginx agent, we could use this command:
man ocf_heartbeat_nginx

See also
ff Some of this information is also available within the DRBD documentation at

http://www.drbd.org/users-guide/s-pacemaker-crm-drbd-backed-
service.html.

Adding LVM to cluster management
To avoid potential conflicts, we will continue to add resources to Pacemaker in the same order
as if we were starting them manually. After DRBD comes our second LVM layer. The primary
purpose of Pacemaker in this instance is to activate or deactivate the VG_POSTGRES volume
group that we created in the previous chapter.

This is necessary because DRBD can not demote a primary resource to secondary status as
long as there are any open locks. Any LVM volume group that contains active volumes can
cause these kind of locks. Also, we cannot utilize a volume group that has no active volumes
when DRBD is promoted on the second node.

http://www.drbd.org/users-guide/s-pacemaker-crm-drbd-backed-service.html
http://www.drbd.org/users-guide/s-pacemaker-crm-drbd-backed-service.html

Chapter 9

319

This recipe will explain the steps necessary to manage our VG_POSTGRES/LV_DATA data
volume with Pacemaker.

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all the previous recipes.

Debian-derivative systems such as Ubuntu need to beware! To avoid
potential issues, immediately delete the /lib/udev/rules.d/85-
lvm2.rules file if it exists. It automatically mounts LVM devices when they
appear; these devices can interfere with Pacemaker LVM management.

How to do it...
Perform these steps on any Pacemaker node as the root user:

1.	 Add an LVM primitive to Pacemaker with crm:
crm configure primitive pg_lvm ocf:heartbeat:LVM \

 params volgrpname="VG_POSTGRES" \

 op start interval="0" timeout="30" \

 op stop interval="0" timeout="30"

2.	 Clean up any errors that might have accumulated with crm:
crm resource cleanup pg_lvm

3.	 Display the status of our new LVM resource with crm:
crm resource status

How it works...
As with the previous recipe, we begin by adding a primitive to Pacemaker. For the sake of
consistency and simplicity, we name this resource pg_lvm. In order to manage LVM, we also
need to specify the ocf:heartbeat:LVM resource agent.

Remember, to see the list of parameters for a resource agent, use the ra
meta command to the crm shell. For the LVM agent, this invocation would
display usage information:
crm ra meta ocf:heartbeat:LVM

Cluster Control

320

The only parameter (params) that concerns us regarding the LVM resource agent is
volgrpname, which we set to VG_POSTGRES. The other options we set are more advisory
minimum values, which reflect the number of seconds we should wait before considering an
operation as failed.

In our case, we wait 30 seconds before declaring a start or stop ping a failed action. If
Pacemaker is unable to start LVM, it will attempt to do so on other available nodes. In the
event where Pacemaker can't stop LVM, it will report an error and perform no further actions
until the error is cleared or corrected.

Speaking of clearing errors, it's a good practice to perform a resource cleanup after
adding a new resource to Pacemaker. While not strictly required, this keeps the status output
clean and ensures that Pacemaker will add the next resource as expected. Sometimes,
Pacemaker will refuse to perform further actions if the error list contains any entries.

As we will do with all recipes in this chapter, our last action is to view the status of the
resources to prove that the new addition is listed. Our test server shows that it is:

Now, in addition to the ms_drbd_pg resource that represents drbd_pg, we can see the new
pg_lvm resource. Pacemaker also checked the status of LVM and displays it as Started.

There's more...
If you're tired of always checking the status of Pacemaker manually, there is a tool we can
use instead. Much like top, which displays the current list of running processes, the crm_mon
command monitors the status of a Pacemaker cluster and prints the same output as crm
status. For our cluster in its current state, it looks like this:

Chapter 9

321

This will refresh regularly and makes it easy to watch live transition states as Pacemaker
performs actions related to cluster management. Feel free to keep this running in another
terminal window for the sake of convenience.

Adding XFS to cluster management
Next in our list of resources to manage with Pacemaker is the filesystem. As with LVM and
DRBD, Pacemaker needs the ability to start and stop the resource arbitrarily to clear locks or
enable activation. In addition, filesystems are somewhat more complex than LVM simply due
to the amount of necessary parameters required to use them.

In order for Pacemaker to manage a filesystem, we need to tell it about the device it's
mounting, which directory the mount should target, the type of filesystem, and any extra
options we want to use. While DRBD and LVM encode metadata within reserved storage
areas on the device, filesystem mounts require explicit parameters.

This recipe will explain the steps necessary to manage our XFS filesystem with Pacemaker.

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all the previous recipes.

Cluster Control

322

How to do it...
Perform these steps on any Pacemaker node as the root user:

1.	 Export our list of XFS mount options to avoid long lines by executing these commands:
OPS=noatime,nodiratime,logbufs=8,logbsize=256k

OPS=$OPS,attr2,allocsize=1m

2.	 Add an XFS primitive to Pacemaker with crm:
crm configure primitive pg_fs ocf:heartbeat:Filesystem \

 params device="/dev/VG_POSTGRES/LV_DATA" \

 directory="/db" \

 fstype="xfs" \

 options="$OPS" \

 op start interval="0" timeout="60" \

 op stop interval="0" timeout="120"

3.	 Clean up any errors that might have accumulated with crm:
crm resource cleanup pg_fs

4.	 Display the status of our new XFS resource with crm:
crm resource status

How it works...
Due to the limited format of this book, we wanted to avoid excessive line wrapping in
the commands we present. Thus, the first step simply saves all of the XFS mount options
from the previous chapter in a variable named OPS that we can reuse when adding the
Pacemaker primitive.

Regarding the primitive itself, we continue our preferred naming scheme and label it
pg_fs (for the PostgreSQL filesystem). As usual, we need a resource agent to facilitate
Pacemaker management, and the ocf:heartbeat:Filesystem agent fills that role nicely.

As with all agents, to see the list of parameters for a resource agent, use
the ra meta command to the crm shell. For the Filesystem agent,
this invocation would display usage information:
crm ra meta ocf:heartbeat:Filesystem

We highly recommend that you use this command in each recipe, if only to
verify the parameters act as we claim they do.

Chapter 9

323

This time, the list of parameters (params) we set for the resource agent is somewhat longer
than what we used for LVM. Here's a short explanation of each:

ff The device parameter tells Pacemaker which device it should try to mount. From the
previous chapter, this is /dev/VG_POSTGRES/LV_DATA.

ff The directory specifies where the device should be mounted. Following the
example set by our previous chapter, this is the /db directory.

ff By setting fstype, we explicitly tell Pacemaker we are attempting to mount an
xfs filesystem. Modern mount commands can often determine the filesystem
automatically, but we advocate a more cautious approach.

ff Finally, we set the mount options. Our list of options was very long, so we stored it
in the $OPS variable, which we used here.

The other options (op) we set are more advisory minimum values, which reflect the number
of seconds we should wait before considering an operation as failed. The timeouts to start
and stop a filesystem are somewhat longer than an LVM device, because filesystems can have
direct users. A filesystem user includes any terminals currently located in a mounted directory,
automated tasks using it as a file target, or files held open by a running process—any one of
these can prevent a filesystem from being unmounted.

As usual, we perform a resource cleanup on the pg_fs device to clear out any invalid
errors. Afterwards, we can view the clean resource status with crm, which looks like this
on our test system:

As expected, we can see that pg_fs has joined our growing list of Pacemaker resources.

Adding PostgreSQL to cluster management
By now, we've fulfilled a fairly long series of prerequisites simply to add PostgreSQL to the list
of services managed by Pacemaker. We're over half way through the chapter and are just now
getting to the parts relevant to a PostgreSQL DBA. If you're new to DBA work, this might come
as quite a shock, but it comes with the territory.

Once we add this resource, Pacemaker will be capable of starting and stopping everything
necessary to run a PostgreSQL server. We'll still need to add several more elements to control
factors such as start order and associated services, but we've reached a critical juncture.
We are very close to having a highly available PostgreSQL cluster.

In this recipe, we'll discuss the steps required to add PostgreSQL itself to Pacemaker control.

Cluster Control

324

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all the previous recipes.

How to do it...
Perform these steps on any Pacemaker node as the root user:

1.	 Add a PostgreSQL primitive to Pacemaker with crm:
crm configure primitive pg_lsb lsb:postgresql \

 op monitor interval="30" timeout="60" \

 op start interval="0" timeout="60" \

 op stop interval="0" timeout="60"

2.	 Clean up any errors that might have accumulated with crm:
crm resource cleanup pg_lsb

3.	 Display the status of our new PostgreSQL resource with crm:
crm resource status

How it works...
The next primitive that we add to Pacemaker will need to call the script we saved
as /etc/init.d/postgresql. Scripts in this location are known as Linux Standard
Base scripts, and Pacemaker knows to find LSB items in the /etc/init.d directory.
Thus, when we call crm with the call crm with the configure primitive parameters,
we name the new primitive pg_lsb to remain consistent and use the lsb:postgresql
resource agent. In reality, the lsb:postgresql agent is merely an alias for our script.

One of the consequences of this is that our resource agent is not fully integrated into
Pacemaker and has no configurable parameters. The only things we can change are the
generic options (op) such as monitor intervals and start or stop timeouts. For this agent,
we've set all of the timeouts to 1 minute, but you may need to adjust these based on your
PostgreSQL usage.

We set the monitor interval to 30 seconds and the timeout to 60 seconds for one reason:
system overload. If a checkpoint causes enough write activity, PostgreSQL may fail to respond,
though it is still running. If this happens frequently, we strongly recommend that you look into
the problem and correct it.

However, with Pacemaker, the problem is compounded. If a monitor action fails, Pacemaker
assumes that the service is dead, and it will try to restart it. If that fails, it will move everything
over to the alternate node. This can cause an outage seemingly at random, which is not good
in a high-availability environment.

Chapter 9

325

Following this, we continue our usual steps of clearing out any invalid errors and viewing the
Pacemaker cluster status. On our test system, the status shows this output:

As expected, we can see that pg_lsb is Started.

Until we add a few more rules, Pacemaker isn't very smart. On our test
system, Pacemaker repeatedly attempted to start PostgreSQL on the pg2
node, even though it was already running on pg1. Of course, this failed,
and it eventually checked pg1 to reach the preceding output. We were not
kidding when we said Pacemaker considers resources transitory until told
otherwise! Be wary of this behavior in the next few recipes.

There's more...
Though we provided our own PostgreSQL control script, the resource-agents repository
package installed with Pacemaker contains a resource agent specifically designed for
PostgreSQL. However, its usage is far more complicated. It can also monitor PostgreSQL by
querying it, instead of simply using a process ID test. If you want to use this agent instead,
follow these steps as root:

1.	 Set the path of pg_ctl with this command:
CTL=$(pg_config --bindir)/pg_ctl

2.	 Add the pgsql resource agent as a primary with this command:
crm configure primitive pg_agent ocf:heartbeat:pgsql \

 params pgctl="$CTL" \

 pgdata="/db/pgdata" \

 op monitor interval="30" timeout="60" \

 op start interval="0" timeout="60" \

 op stop interval="0" timeout="60"

Cluster Control

326

In order to get the full benefit of this resource agent, you'll also want to set the monitor_
user and monitor_password agent parameters. To see the full list of parameters for this
agent, use this crm command:

crm ra meta ocf:heartbeat:pgsql

Alternatively, view the man page:

man ocf_heartbeat_pgsql

Adding a virtual IP to hide the cluster
We discussed virtual IP addresses earlier; now, it's time to leverage them properly. A virtual
IP is not a service in the traditional sense, but it does provide functionality that we need in a
highly-available configuration. In cases where we also have control over DNS resolution, we
can even assign a name to the virtual IP address to insulate applications from future changes.

For now, this recipe will limit itself to outlining the steps required to add a transitory IP address
to Pacemaker.

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all the previous recipes.

How to do it...
We will assume that the 192.168.56.30 IP address exists as a predefined target for our
PostgreSQL cluster. Users and applications will connect to it instead of the actual addresses
of pg1 or pg2.

Perform these steps on any Pacemaker node as the root user:

1.	 Add an IP address primitive to Pacemaker with crm:
crm configure primitive pg_vip ocf:heartbeat:IPaddr2 \

 params ip="192.168.56.30" \

 iflabel="pgvip" \

 op monitor interval="5"

2.	 Try to view the IP allocation on pg1 and pg2:
ifconfig | grep -A3 :pgvip

3.	 Clean up any errors that might have accumulated with crm:
crm resource cleanup pg_vip

Chapter 9

327

4.	 Display the status of our new IP address with crm:
crm resource status

How it works...
This call to crm with configure primitive allows us to associate an arbitrary IP address
with our Pacemaker cluster. Once again, we follow the simple naming scheme and label our
resource pg_vip. As we always require a resource agent, we need one that is designed to
handle network interfaces. There are actually two that fit this role: IPaddr and IPaddr2.
Though we can use either, the IPaddr2 agent is designed specifically for Linux hosts,
so we might as well use it for maximum compatibility.

The minimum parameters (params) we need for this resource agent include the IP address
(ip) and a label for network management (iflabel). We chose to set these to the IP address
that we set aside earlier (192.168.56.30). We also chose a descriptive label to associate
with the interface (pgvip). Due to the nature of IP addresses, it's a good idea to check the
interface on both machines to see that it is properly listed. Our test system looks like this:

As our test system has a second interface representing the 192.168.56.255 mask,
pgvip was attached to eth1 instead of the usual eth0. We check both pg1 and pg2
because Pacemaker still starts resources independently, and the new IP address might be
on either node. We'll be resolving this soon, so don't worry if the IP address is allocated to the
wrong node.

As usual, we run a resource cleanup and then display the resource status of the
cluster. No matter where pgvip is running, we should see output similar to this:

As expected, the pg_vip Pacemaker resource is Started and part of our growing list
of resources.

Cluster Control

328

Adding an e-mail alert
The last thing we are going to add should be considered a requirement when building a high-
availability PostgreSQL cluster. Any time the status of Pacemaker changes, we can have it
transmit an e-mail alerting us to the activity. Not only is this possible with Pacemaker, it's
relatively easy to set up.

This recipe will outline the steps necessary to add an e-mail alert to Pacemaker.

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all the previous recipes.

How to do it...
Perform these steps on any Pacemaker node as the root user:

1.	 Add a PostgreSQL primitive to Pacemaker with crm:
crm configure primitive pg_mail ocf:heartbeat:MailTo \
 params email="dbas@mycompany.com" \
 subject="Pacemaker\ cluster\ status\ changed:\ "

2.	 Clean up any errors that might have accumulated with crm:
crm resource cleanup pg_mail

3.	 Display the status of our new e-mail alert with crm:
crm resource status

How it works...
To add an e-mail alert, we need to configure another primitive with crm. We name
this resource pg_mail so that it fits in with the other services that we've configured so far.
As always, we need a resource agent for Pacemaker to invoke when necessary, and the
ocf:heartbeat:MailTo agent works well for our use case.

The MailTo agent is not a regular resource, as it does not represent any actual system
service. It's more of a defined action that Pacemaker should invoke while managing other
cluster resources. This means it's essentially useless until we associate it with another
Pacemaker primitive.

The MailTo agent also has two parameters (params) we are interested in setting. We begin
by setting email to an e-mail address for a recipient tasked with monitoring the PostgreSQL
cluster. In most cases, this is either a single DBA or the entire team. In any case, we strongly
suggest that you transmit these alerts to anyone associated with the PostgreSQL database,
in case one or more members of the team are unavailable.

Chapter 9

329

If you don't already have one, speak with the infrastructure team or whoever
is in charge of setting up e-mail lists at your company. Using a generic
address that reaches everyone in the team, Pacemaker won't need to be
changed whenever you hire or fire a DBA.

The next setting that concerns us is the subject of the message. If we don't set this,
Pacemaker uses a suitable default, but it's good to have more control over the messages in
case we want to set up e-mail rules or filters. Use any message you like, but there are a couple
of important notes:

ff Spaces must be escaped by a backslash (\). Otherwise, Pacemaker will print out a lot
of errors and refuse to add the primitive.

ff The subject is more of a prefix. Pacemaker will add more detail to the subject and
body of the e-mail when the message is sent.

With that said, we are now ready to clean up and view our list of resources. Let's see the
output of resource status on our test system:

We can see from this output that pg_mail is listed as Started, even though it doesn't do
anything by itself. We'll be fixing this soon enough.

Grouping associated resources
Defining all of the critical resources within Pacemaker is a good start. However, Pacemaker
is not concerned with keeping related services operating together. It is designed to facilitate
service management for any series of resources over a large array of servers. This is a recurring
theme in this chapter, and one we have to overcome to fully leverage Pacemaker's abilities.

One way we can do this is by creating a group of related resources. When we do this,
the group represents every member as a whole and must run on one server or another.
This prevents the problems we had in the previous recipes, such as the possibility of new
resources being started on the wrong node.

We'll create a group in this recipe and discuss other important caveats.

Cluster Control

330

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all the previous recipes.

How to do it...
Perform these steps on any Pacemaker node as the root user:

1.	 Add a group to Pacemaker with crm:
crm configure group PGServer pg_lvm pg_fs pg_lsb pg_vip

2.	 Display the status of our new group with crm:
crm resource status

How it works...
For the first time in this chapter, we are not configuring a primitive, but a group.
Unlike primitives, which describe each resource we want to manage, a group tells
pacemaker how. In this case, any resource listed in the group has a few new attributes:

ff Resources must reside on the same node

ff Resources must be started in the specified order

ff Resources must be stopped by reversing the specified order

We named the group PGServer, and now we can address every member as a cohesive unit
using that name. The resource order mirrors the order in which we defined the primitives,
which is the logical order necessary to start (and stop) a PostgreSQL server.

When PGServer is started, Pacemaker will activate LVM, followed by XFS, then PostgreSQL,
and finally, it will add our virtual IP address. We didn't add the e-mail alert, because there's
no logical place for it within the group. If we list it in the beginning, we'll only get an alert if
everything is shut down. We can't place it at the end, or we won't see changes in DRBD.

DRBD has a related complication: it's only a single entry but represents two states. We can't
target specific states in the grouping, so we must omit it from the group. However, there is a
solution to associate the mail and DRBD resources with our new group; we'll cover this in the
next recipe.

Chapter 9

331

Until then, we can view the group with our usual resource status. Here's what we have on
our test system:

Now, we see a new Resource Group named PGServer. We can also see that all of the
items within the group are indented, making the association more obvious.

Combining and ordering related actions
There are two final pieces of the puzzle that will produce a fully functional Pacemaker
cluster. At this point, we have three independent base-level entries in Pacemaker: DRBD,
the PGServer group, and the e-mail alert. They are independent because Pacemaker may
start or stop them on any server in the list of active nodes.

We can fix this by defining a colocation between related resources. When we create a
colocation, we are effectively stating that wherever this service goes, this other service
should follow. Of course, this by itself is not sufficient. We also need to declare the expected
order necessary for the services to start.

In this recipe, we'll finish our Pacemaker setup by creating necessary colocation entries,
and define a service start order.

Getting ready
As we're continuing to configure Pacemaker, make sure that you've followed all the
previous recipes.

Cluster Control

332

How to do it...
Perform these steps on any Pacemaker node as the root user:

1.	 Add a colocation for DRBD to Pacemaker with crm:
crm configure colocation col_pg_drbd \

 inf: PGServer ms_drbd_pg:Master

2.	 Add a colocation for the e-mail alert with crm:
crm configure colocation col_pg_mail \

 inf: pg_mail PGServer

3.	 Add a resource order to Pacemaker with crm:
crm configure order ord_pg \

 inf: ms_drbd_pg:promote PGServer:start

4.	 Display the status of our new group with crm:
crm resource status

How it works...
As with all of our changes to Pacemaker, we configure the item we're adding. For this first
step, we are adding a colocation named col_pg_drbd to represent the dependency
between the PGServer group and the ms_drbd_pg master/slave resource. To do this,
we need three elements. They are as follows:

ff The strength of the relationship, as expressed as a score: We used inf: to
represent infinity, meaning that these two items should always be associated

ff The name of the resource we are trying to colocate: We use the group name
PGServer, as we want all Pacemaker resources to follow it to the same node

ff The name of a resource this entry should be colocated with, and is dependent
upon: By setting this to ms_drbd_pg:Master, we are telling Pacemaker that the
PGServer group must be on the same server where DRBD is the master node,
wherever that might be

We then repeat this process with the e-mail alert. This time, we name the colocation col_
pg_mail to express it as a colocation of the pg_mail resource. The score remains at inf:
for infinity, and we made one final and very important change. When defining a colocation,
the order is extremely important. In fact, all colocation entries should be read as: resource a
depends on resource b.

Chapter 9

333

With the e-mail alert colocation, we now have what amounts to a dependency chain. The
e-mail alert depends on the state of the PGServer group, and the PGServer group depends
on the DRBD master server. Yet, colocations are rules, so Pacemaker is still free to execute
these resources independently of each other, as long as the final result matches the defined
state we dictated.

As colocations have no inherent order, we need to impose one. We create one final
configure entry by defining an order named ord_pg. Once again, we need to provide a
score, and once again, we use inf: for infinity; the order of services is very important to us.
When we define the order of our resources, we can also dictate an action that Pacemaker
should take, as separated by a colon.

The order we defined tells Pacemaker that it should promote the ms_drbd_pg resource
before it is allowed to start the PGServer group. Why didn't we add the e-mail alert to our
order definition? Because its order doesn't matter. By being a colocation, it is associated with
the PGServer group, but since it has no imposed order, any change to the group or to DRBD
will trigger an e-mail alert.

One crm command we haven't used until now is configure show. Colocation and order
definitions don't alter the outward appearance of resource status, so we needed another way
to prove Pacemaker incorporated our changes. This is what we see on our test system:

Notice that we ran this command on the pg2 server, and we were still shown the current
Pacemaker configuration. Pacemaker also takes it upon itself to remove all of our formatting
for these particular entries. If we were to remove the egrep statement, we'd see the entire
Pacemaker configuration for our cluster, containing all of the additions we've made in
this chapter.

Performing a managed resource migration
Now that we have a working Pacemaker cluster-management system, we should put it to use.
There are a lot of scenarios where we might need to manually change the active PostgreSQL
node. Doing this with Pacemaker is much easier than the process we outlined in the previous
chapter. That was a long process composed of several manual steps, each of which we would
want to confirm in a perfect world.

With Pacemaker, we can change the active system by issuing a single command from any
node in the cluster. There are some safeguards we'll also need to discuss and possibly a
caveat or two to consider, but this will be our first use of Pacemaker as a piece of functional
software. We've done a lot of work setting everything up!

Let's make Pacemaker do some work on our behalf for a change.

Cluster Control

334

Getting ready
In order to migrate resources from one node to another, we need a fully functional Pacemaker
cluster that manages all of our software layers. Make sure you've followed all the previous
recipes before continuing.

How to do it...
This recipe will assume pg1 is currently the active node, and we want to move PostgreSQL
to pg2. Perform these steps on either Pacemaker node as the root user:

1.	 Initiate the migration with crm:
crm resource migrate PGServer pg2

2.	 Remove the continued forced migration with this command:
crm resource unmigrate PGServer

3.	 Use crm to display the currently active node:
crm resource status PGServer

How it works...
The process is as simple as we claimed. We can launch a migration by specifying resource
migrate as our primary crm arguments. There are only two remaining parameters for us to
set: the resource we want to migrate and the target location. The PGServer group represents
PostgreSQL and all of its prerequisite storage elements, so that is our third parameter.

The last parameter is the target node, and as pg2 is the only other node in this Pacemaker
configuration, it's an easy choice. What happens during a migration? The following is a
screenshot of crm_mon during a migration:

Chapter 9

335

As you can see, Pacemaker is doing just as we claimed in the previous section and is shutting
down PGServer resources in reverse order. It has already stopped pg_vip and pg_lsb
and will shortly proceed to the rest of the services. In fact, here is a full ordered list of what
Pacemaker does during a migration with our configuration:

1.	 Create a rule with an infinite score that the PGServer group should be running
on pg2.

2.	 Stop the pg_mail alert on pg1, causing an e-mail alert.

3.	 Start the pg_mail resource on pg2.

4.	 Stop the pg_vip resource on pg1.

5.	 Stop the pg_lsb resource on pg1.

6.	 Stop the pg_fs resource on pg1.

7.	 Stop the pg_lvm resource on pg1.

8.	 Demote ms_drbd_pg to Secondary on pg1.

9.	 Promote ms_drbd_pg to Primary on pg2.

10.	 Start the pg_lvm resource on pg2.

11.	 Start the pg_fs resource on pg2.

12.	 Start the pg_lsb resource on pg2.

13.	 Start the pg_vip resource on pg2.

We hope you can see the obvious linear progression Pacemaker is following, mirrors the
process we used when we performed these tasks manually. After the migration is over, we
call unmigrate to remove the infinite score that Pacemaker added. This way, PGServer can
remain on pg1 again in the future.

Our final step is to examine the resource status of the PGServer group itself. If we did
our job right, we should see this output:

Pacemaker reports that PGServer is running on pg2, just as we asked.

There's more...
When we call crm resource migrate, Pacemaker merely' but makes a simple configuration
change. As the PGServer resource is running on pg1 and we set stickiness to 100, any score
higher than that will override the current (and preferred) node.

Cluster Control

336

When we ask for a migration, Pacemaker sets the node score for pg2 at the highest value
possible. The next time the resource target evaluation system runs, it sees that the score has
changed and starts reorganizing the cluster to match. It's actually quite elegant. Unfortunately,
it means that we need to remove the score, or we could be in trouble later.

When we unmigrate the PGServer group, Pacemaker removes the infinite score assigned
to pg2, leaving it with the regular score of 100. This is enough to keep PGServer attached to
pg2, but nothing more. This is important because the score is absolute.

Imagine if the rule was still in place and Pacemaker vastly preferred pg2 over pg1. In the
event pg2 crashes, Pacemaker will dutifully move PostgreSQL over to pg1. This is exactly what
we want. However, what happens after we fix pg2 and reattach it to Pacemaker? That's right;
the infinite score means Pacemaker will move it to pg2 immediately. Oh no!

We can't overstate how important this is. Never invoke a resource
migration without using unmigrate as the second step. Failure to do
so can result in unplanned outages, which is not something we want in a
highly-available PostgreSQL cluster.

Using an outage to test migration
While planned migrations are always preferred, sometimes, hardware failures or server
instability will introduce an aspect of surprise. If we had not used Pacemaker, a server crash
would be a catastrophic event. Even if we had followed every chapter in this book this far
and had Nagios and e-mail alerts galore, a DBA would need to be available to activate the
alternate node.

If an outage occurred at night when everyone was sleeping, we would be faced with a worst
case scenario. Necessary personnel might not hear the alert for several minutes, and more
time is lost on triage and activation steps. Such an outage could extend from a few minutes
to over an hour. So much for our high availability!

Yet, at this point, we don't know if Pacemaker would negate the above scenario. While we've
tested how Pacemaker handles an expected and safe migration, what happens when a node
disappears entirely? Will Pacemaker cover us in the event there is an outage when nobody is
immediately available?

In this recipe, we'll attempt to answer all of those questions and test Pacemaker with
a server reboot.

Getting ready
For this final recipe, we need a complete and tested Pacemaker stack before causing an
automated migration. Make sure you've followed all the previous recipes prior to attempting this.

Chapter 9

337

How to do it...
This recipe will assume pg1 is currently the active node and pg2 is acting as the standby.
Perform these steps on the Pacemaker node indicated as the root user:

1.	 Start crm_mon on pg2.

2.	 Kill the corosync service on pg1:
pkill -9 corosync

3.	 Reboot pg1 with this command:
reboot

4.	 Watch Pacemaker start PostgreSQL on pg2.

How it works...
We've made use of crm_mon before. It's an easy way to view the current status of all
Pacemaker cluster resources. By starting this on pg2, we can watch what happens when pg1
shuts down. Unfortunately, simple reboots are too safe. The server will call the Pacemaker
shutdown script, which will cause it to migrate to pg2 like it did in the previous recipe.

By calling pkill with the -9 argument on the corosync service, Pacemaker can no longer
interfere. The Linux kernel will end the corosync process, negating any safeguards that
Pacemaker might try to impose when pg1 reboots. Once we reboot pg1, we should return to
pg2 in order to watch the output of crm_mon.

The final result should look something like this:

Note that pg1 shows up as OFFLINE, and pg2 is the only server in the Online list.

Cluster Control

338

There's more...
There's one final way to force a migration, and it's one we actually suggest for almost all
cases. One of the arguments we can pass to crm node is the desired state of the node.
Instead of killing the corosync service and rebooting pg1, we could run this command:

crm node standby pg1

This tells Pacemaker that pg1 should no longer be considered a valid target for resources.
Again, this causes Pacemaker to migrate PGServer and any dependencies over to pg2. No
matter what the state of Pacemaker is, pg1 will always be listed as Standby in the cluster by
crm status.

This is an easy way to perform maintenance that might require multiple reboots or other
potentially disruptive changes. To bring pg1 online once again, we would use this command:

crm node online pg1

The effect on Pacemaker is the same as a migrate followed by an unmigrate. The pg1
node is simply added to the list of possible target nodes, and the cluster remains on pg2.
The primary difference is that we've removed any chance of pg1 interfering with pg2.
A standby Pacemaker node cannot participate in the cluster, and we can see at a glance
that it's undergoing maintenance until we change it back to online status.

10
Data Distribution

In this chapter, we will learn how clever data management can increase uptime even further.
We will cover the following recipes in this chapter:

ff Identifying horizontal candidates

ff Setting up a foreign PostgreSQL server

ff Mapping a remote user

ff Creating a foreign table

ff Using a foreign table in a query

ff Optimizing foreign table access

ff Transforming foreign tables into local tables

ff Creating a scalable nextval replacement

ff Building a sharding API

ff Talking to the right shard

ff Moving a shard to another server

Introduction
Every business has the goal of being successful. The consequence of having a successful
business when there's a database involved is increasingly high volume. This volume can
be composed of query activity, data accumulation, or both. A PostgreSQL database that
is not prepared for vast amounts of data or transaction load will slowly falter until the
platform suffers.

Data Distribution

340

Customers notice bad performance just as readily as outages. If our database is struggling to
service queries, we have three options:

ff Spend time optimizing the platform to reduce database interaction

ff Buy a more capable database server

ff Store data on several PostgreSQL servers

Indeed, we should probably always implement step one in any case. Yet, there is a limit to
candidates for optimization. If the platform is using an ORM, making query changes can be
difficult. Frontend caching can prevent a vast amount of database accesses, but we need to
consider cold caches, refreshes, and write volume. Writes must touch the database regardless
of the cache state, so we need a solution independent of optimization.

We can also buy a newer, bigger, and better server. We can add CPUs, memory, and storage to
a single expensive server until we saturate its available slots and ports. If we've maximized the
most expandable server currently manufactured, we have a problem if the database volume
continues to increase. What can we do?

A good platform architect will see this potential disaster before it strikes. We must make the
assumption that our business and software will be successful beyond our wildest dreams, and
act accordingly. If we were Facebook, Instagram, or Skype, we would recognize the necessity
of using multiple database servers early, enabling horizontal growth. It just so happens that
PostgreSQL has a rich interface for database federation that we can leverage.

That will be the focus of this chapter. A highly available PostgreSQL cluster isn't only online
and responding now, it does so in the future as well. Whether we accomplish horizontal
distribution through assigned regions, associated groups, or at random, we need the
infrastructure in place to facilitate this type of access. We will use PostgreSQL features to split
up our data and ensure that the platform can run for years to come for the millions of users
that will follow.

The features we will discuss in this chapter rely on the PostgreSQL foreign
data wrapper, which wasn't introduced until PostgreSQL 9.3. We strongly
recommend that you upgrade any old PostgreSQL clusters to 9.3 when
possible if you foresee a future need for widely distributed data. You will not
be able to implement many of the ideas discussed here until then.

Identifying horizontal candidates
Before we can really decide how to spread our data across several database servers, we need
to find appropriate candidates. To do this, we should start at the database level for databases
that are extremely active. What qualifies as extremely active? Databases that fit any of these
criteria are a good start:

Chapter 10

341

ff The database experiences more than 10 million transactions per day

ff The database handles more than 100 million queries per day

ff The database writes more than 100 million tuples per day

Once we've chosen a database for horizontal scalability, we need to look at its tables and
decide which should be distributed. Tables that make good choices are those that fit one
or more of the following criteria:

ff Tables that contain more than 10 million rows

ff Tables that experience more than 1 million writes per day

ff Tables that are larger than 10 GB

This recipe will discuss easy ways to find prospective tables for further study.

Getting ready
This recipe uses an existing database for concrete numbers. If you do not have one of these,
create it with pgbench using the following commands as the postgres user:

createdb pgbench

pgbench -i -s 200 pgbench

The -i flag initializes a new series of benchmark tables, and the -s flag specifies the scale of
the data. We started with a scale of 200, so our largest table has 20 million rows and is about
3 GB in size. Feel free to use a higher scale for demonstrative purposes.

We will also be using the pg_stat_statements extension that we discussed in the Checking
the pg_stat_statements view recipe from Chapter 4, Troubleshooting. Make sure it's installed in
every database with the following SQL statement:

CREATE EXTENSION pg_stat_statements;

How to do it...
As the postgres user on a suitable PostgreSQL cluster, follow these steps to find horizontal
scalability candidates:

1.	 Execute the following query while connected to any database:
SELECT * FROM (
SELECT d.datname AS database_name,
 d.xact_commit + d.xact_rollback AS transactions,
 d.tup_inserted + d.tup_updated +
 d.tup_deleted AS writes,
 (SELECT sum(calls)

Data Distribution

342

 FROM pg_stat_statements s
 WHERE s.dbid = d.datid) AS queries
 FROM pg_stat_database d
 LEFT JOIN pg_stat_statements s ON (s.dbid = d.datid)
 WHERE d.datname NOT IN ('template0', 'template1',
 'postgres')
) db
 WHERE db.transactions > 10000000
 OR db.writes > 100000000
 OR db.queries > 100000000;

2.	 Create the following view in the candidate database with this SQL statement:
CREATE OR REPLACE VIEW v_shard_candidates AS
SELECT c.oid::regclass::text AS table_name,
 c.reltuples::NUMERIC AS num_rows,
 pg_total_relation_size(c.oid) / 1048576 AS size_mb,
 t.n_tup_ins + t.n_tup_upd + t.n_tup_del AS writes
 FROM pg_class c
 JOIN pg_namespace n ON (n.oid = c.relnamespace)
 JOIN pg_stat_user_tables t ON (t.relid = c.oid)
 WHERE n.nspname NOT IN ('pg_catalog',
 'information_schema')
 AND c.relkind = 'r'
 AND (c.reltuples > 10000000
 OR
 t.n_tup_ins + t.n_tup_upd + t.n_tup_del > 1000000
 OR
 pg_total_relation_size(c.oid) / 1048576 > 10240);

3.	 Use this query to check the view to match tables:
SELECT *
 FROM v_shard_candidates
 ORDER BY size_mb DESC;

How it works...
The first step checks the pg_stat_database system view. This provides various global
statistics about all databases in the PostgreSQL database cluster. This is a very easy way to
obtain a list of extremely active databases that we can break into smaller pieces. The query
gives us all three numbers we want regarding database statistics.

Chapter 10

343

Our example database isn't quite busy enough, so we omitted the entire WHERE clause to
show the pgbench database statistics:

To get specific table measurements, we need to connect to any databases named by the
database activity query. Then, we create a view that will always provide a list of tables that
match our three criteria. This will probably be used much more often than the database query,
so it's handy to have it defined at all times.

If you create the view in the template1 database, all future databases
created within this cluster will automatically have the view defined.

The view itself isn't too complicated but deserves some explanation. The pg_total_
relation_size function provides the size of the table, including all indexes and TOAST
data. This is important because the full impact of a table is much more than the data it
contains. The pg_total_relation_size function returns results in bytes, so we transform
it to megabytes so that it's more useful to us.

We restrict relkind to r because this restricts matches to relations, which is how
PostgreSQL identifies tables. The last thing we do is apply our three conditions for candidate
tables such that any criterion is enough for the table to appear in our list. The last query
simply invokes the view and orders the results nicely for us.

Our pgbench database contained a single matching table, as seen here:

We can see that the pgbench_accounts table contains 20,000,000 rows and is 2997 MB
in size.

Data Distribution

344

There's more...
Growth rates are also important. We recommend that you create a scheduled task that checks
these results at the end of every day and either e-mails them to you or saves them into a table
for further examination. After statistics are checked and logged, call these two functions to
reset them to zero:

SELECT pg_stat_statements_reset();
SELECT pg_stat_reset();

Any tables that are growing quickly are even more critical to identify early.

See also
We used quite a few system views in this recipe. Please use the following URLs to PostgreSQL
documentation that provides further depth regarding statistic tables and system catalogs:

ff The Statistics Collector: http://www.postgresql.org/docs/9.3/static/
monitoring-stats.html

ff pg_stat_statements: http://www.postgresql.org/docs/9.3/static/
pgstatstatements.html

ff pg_class: http://www.postgresql.org/docs/9.3/static/catalog-pg-
class.html

Setting up a foreign PostgreSQL server
The first requirement of data federation is the ability to connect to remote databases. With
this capability, we can read or write to a remote PostgreSQL database table as if it were
local. By doing so, certain query elements can be offloaded to the other server. We can also
access metadata that is stored in some central location that acts as a shared resource for all
database servers.

This recipe will describe how to create a foreign PostgreSQL server and will be the basis for
several of the upcoming segments.

Getting ready
Before we can use the PostgreSQL foreign data wrapper functionality, we need to add the
postgres_fdw extension to the database that will use it. Execute this SQL statement as the
postgres user in the database that will be contacting foreign servers (pgbench, for example):

CREATE EXTENSION postgres_fdw;

 http://www.postgresql.org/docs/9.3/static/monitoring-stats.html
 http://www.postgresql.org/docs/9.3/static/monitoring-stats.html
 http://www.postgresql.org/docs/9.3/static/pgstatstatements.html
 http://www.postgresql.org/docs/9.3/static/pgstatstatements.html
http://www.postgresql.org/docs/9.3/static/catalog-pg-class.html
http://www.postgresql.org/docs/9.3/static/catalog-pg-class.html

Chapter 10

345

How to do it...
For this recipe, we have two servers: pg-primary as our main data source and pg-report
as a reporting server. As with the previous recipe, we will use pgbench as our sample database.
Follow these steps to create a connection from pg-report to pg-primary within pgbench.

1.	 Connect to pgbench on the pg-report PostgreSQL server as the postgres user.

2.	 Execute the following SQL statement:
CREATE SERVER primary_db
 FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS (host 'pg-primary', dbname 'pgbench');

3.	 Execute this SQL statement to check for the foreign server entry:
SELECT srvname, srvoptions
 FROM pg_foreign_server;

How it works...
We start by connecting to the database where we will be accessing remote data. As our test
database is pgbench, this is where the foreign server will reside.

The server creation itself consists of a server name, a foreign data wrapper, and options to
the foreign data wrapper. For the server name, we used primary_db to keep things simple,
but anything relatively descriptive is a good choice.

The CREATE SERVER statement can use several available foreign data wrappers, but to
contact a PostgreSQL server, we need postgres_fdw. This data wrapper will accept many
standard PostgreSQL connection parameters, including host, dbname, port, and so on.

We only used the dbname and host settings because we don't want to force this server
connection to always use any specific user or password combination. This allows us to map
one or more local users to users on the remote database. When new connections are created
to the foreign server, each user will access the remote data as themselves. This is a much
more secure usage pattern.

Finally, we check the pg_foreign_server view to make sure PostgreSQL registered it with
the options we specified. Once this is verified, we can move on to the next step. Here is our
test server's output:

Data Distribution

346

There's more...
Foreign data servers have a couple more pieces of functionality that we should discuss.

Altering foreign servers
Assume for a moment that we need the definition of the primary_db foreign server to
change. For instance, what if we integrated pgBouncer to reduce user contention and we
need to use a nondefault port of 5433? Here's how we would add the port option:

ALTER SERVER primary_db OPTIONS (ADD port '5433');

If we need to change this again later, we would use this syntax instead:

ALTER SERVER primary_db OPTIONS (SET port '5444');

We must admit that this difference in syntax is something of an oddity. To PostgreSQL, SET
only modifies the settings that were specified when we called CREATE SERVER. We must
use ADD to override a default, even though SET could have been overloaded to perform both
actions. This merely means ADD might fail with an error, noting that the option isn't found. If
this happens, simply use SET instead.

Dropping foreign servers
If we no longer want a foreign server, we can drop it along with all dependent objects. This use
case is probably the only one that will work, unless we simply never referenced the foreign
server at all. Use this SQL statement as a database superuser:

DROP SERVER primary_db CASCADE;

See also
The PostgreSQL foreign data wrapper has quite a bit of documentation available. The CREATE
SERVER statement has its own entry as well. Please refer to these URLs for more information:

ff postgres_fdw: http://www.postgresql.org/docs/9.3/static/postgres-
fdw.html

ff CREATE SERVER: http://www.postgresql.org/docs/9.3/static/sql-
createserver.html

ff pg_foreign_server: http://www.postgresql.org/docs/9.3/static/
catalog-pg-foreign-server.html

http://www.postgresql.org/docs/9.3/static/postgres-fdw.html
http://www.postgresql.org/docs/9.3/static/postgres-fdw.html
http://www.postgresql.org/docs/9.3/static/sql-createserver.html
http://www.postgresql.org/docs/9.3/static/sql-createserver.html
http://www.postgresql.org/docs/9.3/static/catalog-pg-foreign-server.html
http://www.postgresql.org/docs/9.3/static/catalog-pg-foreign-server.html

Chapter 10

347

Mapping a remote user
Database users and the permissions they are granted may vary between PostgreSQL clusters.
This is especially true if we do not directly administer the remote server. The role of user
mappings is to overcome this obstacle by linking a local database user with a remote
database user.

User mappings must be created for any local user that is going to utilize the remote server.
Furthermore, these mappings are only valid for the remote server for which they're defined. In
situations where all or most local users will be accessing remote data, this can be somewhat
inconvenient. This is, however, a small price to pay for the security inherent in such a design.

In this recipe, we will create a user mapping to access our remote server.

Getting ready
As we will be using a foreign server in this recipe, please follow the Setting up a foreign
PostgreSQL server recipe before proceeding.

How to do it...
For this recipe, we will continue to use two servers: pg-primary as our main data source
and pg-report as a reporting server. We will keep pgbench as our sample database. Follow
these steps to create and map a user from pg-report to pg-primary within pgbench:

1.	 Execute this SQL statement on both PostgreSQL servers as the postgres user:
CREATE USER bench_user WITH PASSWORD 'testing';

2.	 Connect to pgbench on the pg-report PostgreSQL server as the postgres user.

3.	 Execute the following SQL statement to create the mapping:
CREATE USER MAPPING FOR bench_user
 SERVER primary_db
 OPTIONS (user 'bench_user', password 'testing');

4.	 Execute this SQL statement to check for the foreign server entry:
SELECT u.rolname AS user_name,
 s.srvname AS server_name,
 um.umoptions AS map_options
 FROM pg_user_mapping um
 JOIN pg_authid u ON (u.oid = um.umuser)
 JOIN pg_foreign_server s ON (s.oid = um.umserver);

Data Distribution

348

How it works...
The first thing we need is a user we know exists on both servers. While we can link a local user
with any remote user, this is easiest when they have the same name. This prevents confusion
or connection problems in the future. If we are linking to a remote server we don't administer,
this may not be possible. For now, however, we have control over both systems, so we can
create the bench_user safely with a simple password for testing purposes.

Next, we create the user mapping itself. As with the server, we need to fill in three sections: a
local user name, the server to use, and options for the mapping. We just created bench_user,
so this will be our local user to associate with the mapping. Next, we specify the primary_db
server that we created in the previous recipe. Finally, we set the options for the mapping, which
consists of the name of the remote user and their password.

The password option is required for non-superusers. This is not noted in
the documentation for foreign servers, user mappings, or foreign tables.
The PostgreSQL developers included it as a security precaution to prevent
mapped users from accessing unauthorized entries in .pgpass files or
other automated password entry systems.

As a last step, we want to verify that PostgreSQL is storing the user mapping with the options
we specified. It's always good to visualize database changes when possible, if only to put
our minds at ease. The query we use gets its data from pg_user_mapping, though we do
perform a couple of joins to transform meaningless IDs into useful information. Here's how it
looks on our test server:

As we can see, the bench_user is properly associated with the primary_db server and
shows the correct remote user mapping name and associated password.

There's more...
As we said in the introduction, every user must have a mapping if they are to access the
remote data. This is rather onerous to do manually, so we can use PostgreSQL anonymous
blocks to make things easier. This SQL statement, for instance, will map all local users under
the assumption that the remote system has the same users:

DO $$
DECLARE
 user_name VARCHAR;

Chapter 10

349

BEGIN
 FOR user_name IN
 SELECT usename FROM pg_user
 LOOP
 EXECUTE
 'CREATE USER MAPPING FOR ' || user_name || '
 SERVER primary_db
 OPTIONS (user ' || quote_literal(user_name) || ')';
 END LOOP;
END;
$$ LANGUAGE plpgsql;

Feel free to modify the SELECT we used to only target certain groups of users. This isn't the only
way PostgreSQL anonymous blocks make maintenance easier. Learn more about them here:

http://www.postgresql.org/docs/9.3/static/sql-do.html

Keep in mind that you will need to either use a non-password
authentication system in pg_hba.conf on the remote server or simply
use trust authentication. By not specifying passwords, PostgreSQL
will refuse to check any local password source, making authentication
impossible otherwise.

See also
The CREATE USER MAPPING statement has good documentation in the PostgreSQL manual,
as does the pg_user_mapping view. Please refer to these URLs for more information:

ff CREATE USER MAPPING: http://www.postgresql.org/docs/9.3/static/
sql-createusermapping.html

ff pg_user_mapping: http://www.postgresql.org/docs/9.3/static/
catalog-pg-user-mapping.html

Creating a foreign table
The last step in initializing foreign data access is the creation of the foreign table itself. While
doing so, we are limited to specifying column names, types, default values, and whether or not
each column is nullable. This table skeleton helps the PostgreSQL query planner interact with
the remote data as efficiently as possible.

In this recipe, we will create a foreign table and make it ready for use by our mapped user.

http://www.postgresql.org/docs/9.3/static/sql-do.html
http://www.postgresql.org/docs/9.3/static/sql-createusermapping.html
http://www.postgresql.org/docs/9.3/static/sql-createusermapping.html
http://www.postgresql.org/docs/9.3/static/catalog-pg-user-mapping.html
http://www.postgresql.org/docs/9.3/static/catalog-pg-user-mapping.html

Data Distribution

350

Getting ready
As we will be using a foreign server and a user mapping in this recipe, please follow all the
previous recipes before proceeding.

How to do it...
For this recipe, we will perform all actions on the pg-report PostgreSQL server in the
pgbench database. Follow these steps to create a table in pg-report, which refers to
a table on pg-primary within pgbench:

1.	 Create a user mapping for the postgres user with this SQL statement:
CREATE USER MAPPING FOR postgres
 SERVER primary_db
 OPTIONS (user 'postgres');

2.	 Drop the existing pgbench_accounts table with this SQL statement:
DROP TABLE pgbench_accounts;

3.	 Execute the following SQL statement to create the foreign table:
CREATE FOREIGN TABLE pgbench_accounts
(
 aid INTEGER NOT NULL,
 bid INTEGER,
 abalance INTEGER,
 filler CHAR(84)
)
SERVER primary_db
OPTIONS (table_name 'pgbench_accounts');

4.	 Analyze pgbench_accounts to create local statistics:
ANALYZE pgbench_accounts;

5.	 Grant bench_user access to pgbench_accounts with this SQL statement on both
pg-primary and pg-report:
GRANT ALL ON pgbench_accounts TO bench_user;

6.	 Describe the contents of the pgbench_accounts table with psql:
psql pgbench -c '\d pgbench_accounts'

Chapter 10

351

How it works...
In the first step, we create a user mapping for the postgres user. This is primarily a security
step; remote tables should be as locked down as possible under the assumption that their
contents are untrusted or otherwise sensitive. This allows us to create the foreign table as
the postgres database superuser, preventing any unauthorized use of the remote server.

Next, we drop the local copy of the pgbench_accounts table on the pg-report server.
This is both the largest table created by pgbench and the table we identified as a potential
candidate for remote access of some kind. We drop it because we are going to replace it with
a foreign table that refers to the same table on pg-primary.

To create the foreign table itself, we can look at the table definition of pgbench_accounts
and ignore things such as primary keys, indexes, and other types of constraint. By issuing
a CREATE FOREIGN TABLE statement instead of CREATE TABLE, PostgreSQL looks for
some additional table specification settings. As with user mappings, we set the SERVER to
primary_db. For OPTIONS, we simply need to name the remote table that this foreign table
represents: pgbench_accounts.

The next step is not strictly necessary but one we strongly recommend. PostgreSQL knows very
little about the contents of the remote database or the table we've just created. The PostgreSQL
query planner makes much better decisions when it is fully informed of table contents. By
running ANALYZE on pgbench_accounts, PostgreSQL fetches enough data to perform
statistical analysis and stores that information in pg_stats for query-planning purposes.

Then, the bench_user user mapping we created needs specific access granted before it can
use the new table. If we simply granted access locally, the remote bench_user would still
not be able to use the table, so we would receive an error by doing so. Any grants for foreign
tables must be equivalent on both servers involved.

Finally, we use psql to examine the foreign table structure. This is what PostgreSQL sees
when a foreign table is used in a query. Our test server provided this output:

Data Distribution

352

PostgreSQL makes it fairly clear that this is a Foreign table. The FDW Options column
lists any column options that we might have attached, though it's empty in our case. We
can see that this table resides on the primary_db server and that it corresponds to the
pgbench_accounts table on that system. All of this allows us to see that this isn't a regular
table; it also allows us to see where its data is actually stored.

There's more...
PostgreSQL enforces foreign table statements everywhere. For instance, let's try to drop this
table using a regular DROP TABLE statement:

DROP TABLE pgbench_accounts;

The server would quickly respond with this output:

Similarly, if we checked the relkind column in the pg_class catalog table, its type would
be listed as f for foreign table instead of r for relation. PostgreSQL saves several hints and
other bread crumbs so that there is never any question as to the nature of foreign tables.
Doing so prevents bugs and can even produce better performance, as remote access is taken
into consideration before it selects the most efficient query plan. The more you use foreign
tables, the more of these reminders you'll encounter.

See also
ff If you'd like to learn more about foreign table creation syntax and possible caveats,

please visit the PostgreSQL documentation at http://www.postgresql.org/
docs/9.3/static/sql-createforeigntable.html

Using a foreign table in a query
Foreign tables exist as empty shells on the local database, lending merely their structure
for query-planning and data-fetching purposes. The foreign data wrapper transforms data
requests to something the remote server can understand and presents it in a way PostgreSQL
will recognize.

As we're using the postgres_fdw wrapper, the situation is simplified. A PostgreSQL server
should have less trouble communicating with another PostgreSQL server than an Oracle
server, for instance. Though this means less transformation, there are still limitations to
what functionality a foreign table might provide compared to a local table.

http://www.postgresql.org/docs/9.3/static/sql-createforeigntable.html
http://www.postgresql.org/docs/9.3/static/sql-createforeigntable.html

Chapter 10

353

In this recipe, we'll use a foreign table in a few scenarios and examine how it performs in
each. We'll also explore some of the common caveats involved in foreign table access.

Getting ready
As we will be using the pgbench_accounts foreign table in this recipe, please follow all the
previous recipes before proceeding.

How to do it...
All queries in this recipe should be performed by the bench_user mapped user in the
pgbench database on the pg-report PostgreSQL server. Follow these steps:

1.	 Execute the following simple query to view a remote query plan:
EXPLAIN VERBOSE
SELECT aid, bid, abalance
 FROM pgbench_accounts
 WHERE aid BETWEEN 500000 AND 500004;

2.	 Execute this SQL statement to examine how PostgreSQL handles remote aggregates:
EXPLAIN VERBOSE
SELECT sum(abalance)
 FROM pgbench_accounts
 WHERE aid BETWEEN 500000 AND 500004;

3.	 Execute this SQL statement to see a query plan involving a JOIN:
EXPLAIN VERBOSE
SELECT a2.aid, a2.bid, a2.abalance
 FROM pgbench_accounts a1
 JOIN pgbench_accounts a2 USING (aid)
 WHERE a1.aid BETWEEN 500000 AND 500004

How it works...
The first query is very simple. We only fetch the five inclusive records from 500,000 to
500,004. We chose these values because they are so far into the table that scanning to
find them would be very slow. This encourages the remote system to use the index on the
aid column, and we can easily tell if it does not.

Data Distribution

354

As we used EXPLAIN VERBOSE, PostgreSQL reports the query it would have performed on
the remote server as well. This is how the full explain looks on our test server:

PostgreSQL tries to send WHERE clauses to the remote server when possible. We can see from
the Remote SQL lines that aside from some inconsequential transformations, it sent the
entire query to the remote server unaltered.

In the next query, we made a very minor change that should have caused the remote server
to aggregate the abalance column as a sum and send it back to us. However, the current
foreign data wrapper API included with PostgreSQL 9.3 cannot handle aggregates of any
kind. Again, let's see the actual output on our test system:

What happened here? The Remote SQL that PostgreSQL sent to the remote server includes
no sum aggregate at all. This means that PostgreSQL fetches all five rows before producing a
sum for us. This is probably OK for such a small amount of data, but consider the overhead
involved if we had wanted a sum of a million rows.

All of these rows must be fetched from storage, sent over the network, received, and then
summarized into an aggregate locally. The situation becomes even more dire when we try
to join two foreign tables. We only have the pgbench_accounts table, so we joined it with
itself. The query still only asks for five rows, and both of its inputs are on the remote server,
so we might expect the remote server to perform the join.

Chapter 10

355

This expectation would be wrong. To illustrate, here's the EXPLAIN output for the last query
on our test server:

Don't worry too much about most of this output. Simply direct your attention to both of the
Remote SQL sections. First, observe that there are two of these sections. This means our
single query was transformed into two remote queries. Next, notice that one of the queries
has no WHERE clause and is fetching all 200 million of the rows in pgbench_accounts.

The foreign data wrapper is literal in its interpretation of our WHERE clause. We supplied one
WHERE clause for the first instance of pgbench_accounts, and in normal circumstances,
this would be enough. Unfortunately, search conditions are not transitive when foreign tables
are concerned. One of the queries returns five rows as we expected, while the other must
process 200 million rows to find the matching aid values for those five rows.

Foreign tables are very powerful, but they must be used judiciously. Failing to observe the
previous lessons will result in the same scenarios, or worse.

There's more...
There's actually a very simple reason PostgreSQL is failing our expectations in the last two of
our query examples. The answer lies in the structure of foreign tables themselves. When we
defined the pgbench_accounts table, we specified four column names. PostgreSQL expects
to see one or more of those column names within the SELECT clause in every interaction with
the foreign table.

The second query example changes the SELECT clause to read sum(abalance).
While the abalance column is part of our foreign table definition, sum is not. A functional
transformation of any kind renders the column mappings moot, and PostgreSQL must apply
them after data is retrieved from the remote server.

Data Distribution

356

The third query example performs badly for a different reason. If we ignore the problem with
the nontransitive WHERE clause, there's still another issue. We could add another WHERE
clause for the second instance of pgbench_accounts in that query, but as the EXPLAIN
output shows, we would still be executing two queries on the remote server instead of one.

This is due to how PostgreSQL currently handles foreign data. If we imagine the
postgres_fdw wrapper as a worker carrying a large box, every box requires a new
worker. In this scenario, every foreign table is a box, and every box is separate. Each time
PostgreSQL encounters a foreign table, it dispatches a worker with his box and waits for the
results. As JOIN is a distinctly separate action, we get two workers and two boxes.

This may change in the future, but for now, this means that the remote server cannot combine
requests for foreign tables.

Optimizing foreign table access
If you read the end of the previous recipe, you might assume we don't recommend that you
use foreign tables at all. However, we would like to reassure you that foreign tables are not all
doom and gloom. To prove it, we're going to use a disarmingly simple technique to optimize
them: views.

It's true that PostgreSQL foreign data wrappers cannot combine queries for multiple tables on
the same server. Provided we have access to the remote server, we can rectify this situation
by creating a view to encapsulate the core of the query we want to perform. We can do this
because PostgreSQL only knows the name of remote objects, not their composition. We can
take advantage of this and use views to force remote joins.

In this recipe, we will describe how to use a remote view in place of a foreign table.

Getting ready
As we will be using the pgbench_accounts foreign table in this recipe, please follow all the
previous recipes before proceeding.

How to do it...
For this recipe, we will continue to use the pg-primary and pg-report database servers.
All queries should be performed by the postgres user in the pgbench database. Follow
these steps to enforce better remote JOIN performance:

Chapter 10

357

1.	 Create a view for the basis of the join on pg-primary:
CREATE VIEW v_pgbench_accounts_self_join AS
SELECT a1.aid, a2.bid, a2.abalance
 FROM pgbench_accounts a1
 JOIN pgbench_accounts a2 USING (aid);

2.	 Grant access to bench_user on the new view on pg-primary:
GRANT SELECT ON v_pgbench_accounts_self_join
 TO bench_user;

3.	 Create a foreign table that references the view on pg-report:
CREATE FOREIGN TABLE pgbench_accounts_self
(
 aid INTEGER NOT NULL,
 bid INTEGER,
 abalance INTEGER
)
SERVER primary_db
OPTIONS (table_name 'v_pgbench_accounts_self_join');

4.	 Grant access to bench_user on the foreign table on pg-report:
GRANT SELECT ON pgbench_accounts_self
 TO bench_user;

5.	 Examine the new query plan on pg-report with this SQL statement:
EXPLAIN VERBOSE
SELECT aid, bid, abalance
 FROM pgbench_accounts_self
 WHERE aid BETWEEN 500000 AND 500005;

How it works...
For the first step, we create a view named v_pgbench_accounts_self_join on
pg-primary that uses the same columns and the same self-join we attempted in the
previous recipe. Then, we grant access to bench_user so that the view is usable on the
pg-report server.

Next, we create a foreign table just as we did in the Creating a foreign table recipe, but this
time, we name the local foreign table pgbench_accounts_self even though the view has
a much different name. This should illustrate that names do not have to necessarily match
and that PostgreSQL doesn't care whether the remote object is a table or a view. Once again,
we grant access to the foreign table to the mapped bench_user user and consider our
work complete.

Data Distribution

358

Before we consider this operation a success, let's examine a verbose EXPLAIN that uses the
foreign table. Here's the output from our test system:

This is much better! Now, we can see that the WHERE clause is being sent to restrict
output from the v_pgbench_accounts_self_join view. As this view is evaluated on
the pg-primary server, the join happens there as well. We have successfully combined
two foreign tables into one.

There's more...
As powerful as this technique might be, its utility is limited by the fact that we're using views
to circumvent normal table access methods. This means our foreign table now has the same
limitations as views. Unless the view is very simple—which would defeat the purpose of using
a view like this—we cannot perform any of the following actions:

ff We cannot insert into a foreign table view

ff We cannot update records in a foreign table view

ff We cannot delete from a foreign table view

However, there is one thing we can do with a foreign table view that we can't do with a local
view. As foreign tables can be analyzed to gather statistics, we can analyze foreign table views
as well. This produces local statistics that may include correlations that PostgreSQL would
normally not find.

In the current state of the PostgreSQL foreign data architecture, this might not mean much.
Yet, as techniques and the underlying code improve, what is now merely an interesting fluke
might become an advanced optimization approach. Only time will tell.

Transforming foreign tables into local tables
Remote tables provide an easy and convenient way to access remote data in a PostgreSQL
database. This is good for highly available systems, as a properly compartmentalized system
invites segmented maintenance. Yet, remote data comes with a rather drastic cost regarding
data fetching and handling overhead.

Chapter 10

359

With the release of PostgreSQL 9.3 comes internal support of materialized views.
Traditionally, materialized views merely instantiate a view into a physical structure to avoid
expensive or complicated query plans and result sets. They also make it possible to index
or optimize a view in ways not normally possible. Now, imagine what we can do with such a
structure when utilizing foreign tables.

In this recipe, we will explore how materialized views can drastically increase local data
access capability within a PostgreSQL database.

Getting ready
As we will be using the pgbench_accounts foreign table in this recipe, please follow all
recipes up to Creating a foreign table before proceeding.

How to do it...
For this recipe, we will focus on the pg-report database server. All queries should be
performed by the postgres user in the pgbench database. Follow these steps to create
and use a materialized view:

1.	 Rename the pgbench_accounts foreign table with this SQL statement:
ALTER FOREIGN TABLE pgbench_accounts
 RENAME TO remote_accounts;

2.	 Use this SQL statement to create a materialized view:
CREATE MATERIALIZED VIEW pgbench_accounts AS
SELECT *
 FROM remote_accounts
 WHERE bid = 5
 WITH DATA;

3.	 Add an index to pgbench_accounts to make it usable:
CREATE INDEX idx_pgbench_accounts_aid
 ON pgbench_accounts (aid);

4.	 Execute this SQL statement to produce a simple query plan:
EXPLAIN ANALYZE
 SELECT *
 FROM pgbench_accounts
 WHERE aid BETWEEN 400001 AND 400050;

Data Distribution

360

How it works...
When it comes to this recipe, we begin by moving the existing pgbench_accounts table out
of the way. The intent in this case is to prove that we can treat a materialized view similar to
a local table. To do this, we want to create it with the same name the foreign table currently
uses. Thus, pgbench_accounts becomes remote_accounts and better illustrates its
relationship with the foreign server as a bonus.

Next, we create the actual materialized view. We could define all of the columns manually,
but in this case, we want it to simply mirror the remote table. Think of this as object-oriented
programming; we have a class named pgbench_remote, and we will instantiate it as
pgbench_accounts.

Notice, however, that we added a WHERE clause to restrict the results to rows where bid
is 5. For our particular set of test data, this represents only 100,000 rows of the total 20
million. We did this to illustrate that we could have a central repository of data and maintain
only a small subset on each local server for better scalability purposes. By finishing the
statement with WITH DATA, PostgreSQL executes the query and stores the result in our new
materialized view. If we had omitted this, the view would be empty and unusable.

At this point, we created an index on the aid column. This reflects the primary key that exists
on the remote table, and it means any local queries that expect it will perform normally. To
prove this, our final step is to perform a basic query that retrieves 50 rows from the table and
examines the path that PostgreSQL used to execute our request.

Our test system produced this output:

We can see a few important things from this EXPLAIN output. First, our results are being
supplied by the idx_pgbench_accounts_aid index we created. The query run time is
reported as 0.024 ms, which is less than 1/40th of a millisecond. This is the performance
we would expect from an indexed retrieval with such a small amount of rows.

There's more...
There are a few unfortunate aspects of materialized views that we must consider:

ff The contents are completely static

ff They cannot be the target of INSERT, UPDATE, or DELETE statements

ff Refreshing their contents may be slow

Chapter 10

361

By static, we mean that the rows stored in the materialized view are the result of the
SELECT statement we used to define it. It would be a great way to bootstrap a reporting
table of some kind, but then, we see the next item in our list: no modifications. A natural
consequence of this is that we can't build manual maintenance procedures designed to top
off the contents. This means we must refresh the contents of the materialized view all at
once with this statement:

REFRESH MATERIALIZED VIEW pgbench_accounts;

If the query that builds the output is slow and we have several materialized views like
it, maintenance times could increase dramatically. Some contributed materialized view
architectures do not have this limitation, and it's entirely possible future versions of
PostgreSQL will also improve this aspect. For now though, we'll want to limit our materialized
view definitions to queries that are very well optimized.

Refreshing a materialized view requires an exclusive lock, because its entire
contents are replaced during the refresh. Be wary of queries or batch jobs
that depend on these views, as they may be temporarily blocked until the
refresh is complete.

See also
The PostgreSQL documentation does a pretty good job of explaining materialized views.
Please refer to these resources to learn more:

ff CREATE MATERIALIZED VIEW: http://www.postgresql.org/docs/9.3/
static/sql-creatematerializedview.html

ff REFRESH MATERIALIZED VIEW: http://www.postgresql.org/docs/9.3/
static/sql-refreshmaterializedview.html

You can also build your own materialized view library. The techniques described at
http://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
worked well for several users before the feature was included in PostgreSQL 9.3.

Creating a scalable nextval replacement
Now that we have all of the tools to communicate between disparate servers, we can start
building a very rudimentary API to generate ID values that are distinct across a pool of
database servers. By doing so, database-level function calls are available to the application
and encourage data distribution, otherwise known as application-level sharding. This, in turn,
increases our scalability and availability, as it will take far more than a single database outage
to truly derail the application.

 http://www.postgresql.org/docs/9.3/static/sql-creatematerializedview.html
 http://www.postgresql.org/docs/9.3/static/sql-creatematerializedview.html
 http://www.postgresql.org/docs/9.3/static/sql-refreshmaterializedview.html
 http://www.postgresql.org/docs/9.3/static/sql-refreshmaterializedview.html
http://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views

Data Distribution

362

A company that did this early in the development cycle of their platform is Instagram.
In fact, they're very open about the process they used, as described in this blog post:

http://instagram-engineering.tumblr.com/post/10853187575/sharding-
ids-at-instagram

The idea they implemented may seem complicated but is actually deceptively simple. Here's a
basic breakdown of what they were trying to create:

ff The system should accommodate several thousand logical shards

ff Generated SERIAL IDs should be unique across all logical shards

ff The ID generator should remain viable for several decades at minimum

ff The ID generator must handle extremely high insert traffic

For us to accomplish these goals in the same manner as Instagram, we can utilize a standard
64-bit BIGINT column type separated into three sections:

ff Bits 1-42 represent the number of milliseconds since an arbitrary epoch.
This is viable for roughly 140 years.

ff Bits 43-53 represent the logical shard number, for up to 2048 shards.

ff Bits 54-64 are used for the actual generated ID, for up to 2048 ID values.

This may not seem like much, but this means that we can generate 2048 IDs per 2048
shards per millisecond for almost 140 years. Taken to its extreme, this is over 4 billion IDs per
second. It's possible there are systems that have higher insert volumes than this, but we can't
think of any.

In this recipe, we'll build such a function using PostgreSQL's plpgsql language and explain
how each part works.

Getting ready
We will actually be starting from scratch in this recipe and will no longer use the pgbench
tables. Instead, we want to start with new shell tables designed specifically for sharding.
Execute these SQL statements as the postgres user on an empty database to get ready:

CREATE SCHEMA myapp;
CREATE TABLE myapp.msg_log (
 id SERIAL PRIMARY KEY,
 message TEXT NOT NULL
);

We will be using this schema and table for the rest of this chapter.

http://instagram-engineering.tumblr.com/post/10853187575/sharding-ids-at-instagram
http://instagram-engineering.tumblr.com/post/10853187575/sharding-ids-at-instagram

Chapter 10

363

How to do it...
Execute the following SQL statements as the postgres user to create a function that can
generate IDs as we described:

1.	 Create the schema to hold shard-related functionality:
CREATE SCHEMA shard;

2.	 Create a sequence to act as an ID generator:
CREATE SEQUENCE shard.table_id_seq;

3.	 Create the function that will generate IDs:
CREATE OR REPLACE FUNCTION shard.next_unique_id(
 shard_id INT
)
RETURNS BIGINT AS
$BODY$
DECLARE
 epoch DATE := '2014-01-01';
 epoch_ms BIGINT;
 now_ms BIGINT;
 next_id BIGINT;
BEGIN
 epoch_ms := floor(
 extract(EPOCH FROM epoch) * 1000
);
 now_ms := floor(
 extract(EPOCH FROM clock_timestamp()) * 1000
);
 next_id := (now_ms - epoch_ms) << 22
 | (shard_id << 11)
 | (nextval('shard.table_id_seq') % 2048);
 RETURN next_id;
END;
$BODY$ LANGUAGE plpgsql;

4.	 Execute the following query to generate an ID and view its contents:
SELECT (newval & 2047) AS id_value,
 (newval >> 11) & 2047 AS shard_id,
 (newval >> 22) / 1000 / 3600 / 24 AS days
 FROM (SELECT shard.next_unique_id(15)
 AS newval) nv

Data Distribution

364

How it works...
Our first two steps aren't all that interesting; we merely create the shard schema and a
sequence named table_id_seq for the IDs needed for value increments. Our design saves
on implementation complexity using the same sequence for every table within a shard, but
this is not a requirement.

The bulk of the work is defined in the next_unique_id function we create. We start the
function with the epoch variable, set to the beginning of 2014. This is an arbitrary starting
date and could have been any date in the past. The important thing to remember is that this
value is used as a baseline for how long the IDs will remain unique.

Next, we have this section of code:

epoch_ms = floor(
 extract(EPOCH FROM epoch) * 1000
);

The extract PostgreSQL function will obtain the date in any format we want. By passing
EPOCH, we get the date as the number of seconds since January 1, 1970, with a decimal
representing the number of milliseconds as well. If we multiply this by 1000, we're left with the
number of milliseconds since the beginning of 1970 to our chosen epoch of 2014-01-01.

We repeat this process for now_ms, but this time, we use the clock_timestamp function
instead of a static date. The clock_timestamp function always returns a timestamp
obtained from the execution time of the function call. This is important because functions
such as now will return the start time of the surrounding transaction. If we used now,
we could theoretically experience ID collisions after using more than 2048 IDs.

In this block of code, we calculate the ID we return as a fully unique value:

next_id = (now_ms - epoch_ms) << 22
 | (shard_id << 11)
 | (nextval('shard.table_id_seq') % 2048);

Remember what we said about using the full size of a 64-bit integer. We begin with the time
elapsed since our epoch and shift that value to the left by 22 bits. This left shift makes room
for the shard ID and the generated ID, both of which should be between 0 and 2047.

After shifting our time delta, we shift the shard ID by 11 bits to make room for the generated
ID and append it to the cumulative ID. Again, 2048 values are represented by 11 bits, so
these modifications are nondestructive. The shard ID is unharmed but packed into 43-53
bytes of next_id.

Finally, we append an ID obtained from the sequence that we created at the beginning,
modded by 2048 to ensure we don't overflow the 11 bits we're using for this portion. In
the end, we are left with an encoded ID with all of the attributes that we discussed at the
beginning of this recipe.

Chapter 10

365

If we call our new function once or twice, we should see it generate ID values. However, to
prove it's doing what we claim, we need to reverse the encoding process to see what the ID
actually contains. On our test system, one call of next_unique_id produces this output:

We called the function and passed it 15 as the shard number to use, and after decoding the
ID, we can see that it's unchanged. If we called this function several times in a row, we would
see the id_value increment as well. We discarded a lot of information in our rush to decode
the number of days since our epoch date, so we only see that 115 days have elapsed. In
reality, that portion of the ID represents days, hours, minutes, seconds, and milliseconds
since the beginning of 2014.

There's more...
If we wanted to use our new ID generator in a table, we could do it very simply. Assuming we
already have our myapp.msg_log table, we could create a new table based on it with this
SQL statement:

CREATE SCHEMA myapp1;
CREATE TABLE myapp1.msg_log (
 LIKE myapp.msg_log INCLUDING INDEXES
);

ALTER TABLE myapp1.msg_log
ALTER id TYPE BIGINT,
ALTER id SET DEFAULT shard.next_unique_id(1);

This structure would correspond with shard number 1. All we need to do is modify the id
column so that it can store our 64-bit integer and then set the default value to invoke our
next_unique_id function. By doing so, we can create up to 2048 schemas holding tables
like this, and every generated ID will be unique across all of them.

Data Distribution

366

Building a sharding API
When building a horizontally scalable system, we need a database library that facilitates its
use. Without this, ad hoc tables can derail the whole process by producing a heterogeneous
environment incompatible with a horizontal architecture. We need consistency if we also
want reliability.

In the previous recipe, we discussed the necessary components of a function that can
generate unique IDs across thousands of logical shards. This will form the core of our API
as it ensures that ID collisions are avoided within our application. However, what about the
rest? How do we manage each shard? How do we add tables to the application? How can we
automate as much management as possible to encourage adhering to the API?

This recipe will attempt to answer these questions and many more by having you create the
necessary functions to manage a shard-driven system.

Getting ready
This recipe depends on the work we performed in the Creating a scalable nextval replacement
recipe. Please review that part of this chapter before continuing.

How to do it...
Follow these steps to build a complete database-sharding API:

1.	 Learn one of the PostgreSQL procedural languages.

2.	 Create a table to track shard-configuration settings.

3.	 Write one or more functions to manage shard-configuration settings.

4.	 Create a table to track shard tables and source schemas.

5.	 Write a next_unique_id equivalent function.

6.	 Write one or more functions to control which tables are managed.

7.	 Write one or more functions to build or alter each shard's structure based on the
tables it contains.

8.	 Create a table to track logical to physical shard mappings.

9.	 Write one or more functions to manage logical to physical shard mappings.

10.	 Write one or more functions to grant sufficient permissions to users tasked with using
all of the above functions.

Chapter 10

367

How it works...
Before we discuss these steps, we readily admit there is a lot of work involved here, and
most of it is beyond the scope of this book. However, this is the minimum list of components
necessary for a functional shard API. Fortunately, we only have to build this once!

The first step is to learn one of the procedural languages that PostgreSQL provides for
database interaction. The core PostgreSQL server comes with PL/pgSQL, PL/Tcl, PL/Perl, or
PL/Python as possible choices, though there are many more such as Java, Ruby, or even PHP.
Each of these has different performance characteristics and varying levels of difficulty, so
choose whichever you are most comfortable with or whichever produces the best results. We
used the pgSQL language for our next_unique_id function, but this doesn't mean you must
follow our lead.

Next, we need a table and associated functions to manage shard-configuration settings.
Perhaps this means a table named shard_config and two functions named get_shard_
config and set_shard_config. We use functions so that we can protect the boundaries
of our 64-bit integer or to prevent changes to settings that would adversely affect the cluster
of shards. Like any API, we should never trust user input.

Now, we need a table and associated functions to manage the architecture of our shards.
For instance, the table of API-managed tables might be called shard_table. Then, we might
create register_base_table to add tables to shard management and unregister_
base_table to remove them.

Then, we might add create_next_shard to increment the active shard counter and create
an empty schema based on this new value. We might also want create_id_function to
generate an optimized shard-specific ID generation function whenever a new shard is added.
We'll probably need init_shard_tables to create table copies of all the base tables we've
registered, which will also modify each copy to use our unique ID function.

Beyond managing the actual structure of the shards, we also need to control who can invoke
all of these specialty functions, especially since there's so many of them. So, it would be
a good idea to create add_shard_admin and drop_shard_admin to handle necessary
grants for shard administrators.

Do we need more? Possibly. This core of functions provides the minimal structure
necessary to create and maintain a working sharded database, but few systems exist
with only minimal implementations.

There's more...
As we said earlier, building a fully functional API as we discussed here is beyond the scope
of this book. However, we have written a reference implementation named Shard Manager,
available on GitHub:

https://github.com/OptionsHouse/shard_manager

https://github.com/OptionsHouse/shard_manager

Data Distribution

368

Shard Manager creates all of the configuration tables and functions that we discussed in
this recipe, along with a couple extras. Further, it operates as a PostgreSQL extension. For
example, to create a schema named shard to store the API and configuration tables, we
would use these SQL statements:

CREATE SCHEMA shard;
CREATE EXTENSION shard_manager WITH SCHEMA shard;

Documentation is currently somewhat sparse, but there is enough to install and use the
provided functions, as well as some basic usage examples. Feel free to contribute if you
come up with fixes or enhancements!

See also
As we suggested that you learn one of the PostgreSQL procedural languages, here is a list of
links to several popular choices:

ff PL/pgSQL: http://www.postgresql.org/docs/9.3/static/plpgsql.
html

ff PL/Perl: http://www.postgresql.org/docs/9.3/static/plperl.html

ff PL/Python: http://www.postgresql.org/docs/9.3/static/plpython.
html

ff PL/Java: https://github.com/tada/pljava/wiki

ff PL/PHP: https://github.com/commandprompt/PL-php

ff PL/Ruby: https://github.com/knu/postgresql-plruby

Talking to the right shard
In this chapter, we have chosen to represent database shards as PostgreSQL schema names.
So, if our basic schema is named myapp, shard 1 would be myapp1, shard 15 would be
myapp15, and so on. This is what we call the logical shard name.

Beyond this, shards should be independent of each other such that they can be relocated
to another PostgreSQL server arbitrarily. However, if shards can be moved at will, how do we
find them? Much like LVM has a physical drive, logical shards have a corresponding physical
shard. The physical shard is the server where the logical shard currently resides. Think of it
like this diagram:

 http://www.postgresql.org/docs/9.3/static/plpgsql.html
 http://www.postgresql.org/docs/9.3/static/plpgsql.html
 http://www.postgresql.org/docs/9.3/static/plperl.html
 http://www.postgresql.org/docs/9.3/static/plpython.html
 http://www.postgresql.org/docs/9.3/static/plpython.html
 https://github.com/tada/pljava/wiki
 https://github.com/commandprompt/PL-php
 https://github.com/knu/postgresql-plruby

Chapter 10

369

PG Server 1 PG Shared PG Server 2

clients

products

vendors

myapp5

myapp6

myapp7

myapp8

myapp1

myapp2

myapp3

myapp4

Elements such as clients, products, and vendors are shared resources that all
PostgreSQL shard servers can use. This is where our foreign tables would be beneficial.
The logical shards (schemas) myapp1 through myapp4 all reside on PG Server 1, and
myapp5 through myapp8 live on PG Server 2. In this architecture, we have eight logical
shards distributed to two physical servers.

In this recipe, we will explore various techniques to preserve and decode the logical to
physical mapping necessary to interact with the correct data.

Getting ready
This recipe depends on the work we performed in the Creating a scalable nextval replacement
recipe. Please review that part of this chapter before continuing.

How to do it...
All SQL statements in this recipe should be executed by the postgres database user.
Follow these steps to build a table to map logical shards to their physical locations:

1.	 Execute this SQL statement to create the shard-mapping table:
CREATE TABLE shard.shard_map
(
 map_id SERIAL PRIMARY KEY,
 shard_id INT NOT NULL,
 source_schema VARCHAR NOT NULL,
 shard_schema VARCHAR NOT NULL,
 server_name VARCHAR NOT NULL,
 UNIQUE (shard_id, source_schema)
);

Data Distribution

370

2.	 Create a shard and register it with the shard map with this SQL:
CREATE SCHEMA myapp1;
INSERT INTO shard.shard_map
 (shard_id, source_schema, shard_schema, server_name)
VALUES (1, 'myapp', 'myapp1', 'pg-primary');

3.	 Repeat the previous step to create a second shard:
CREATE SCHEMA myapp2;
INSERT INTO shard.shard_map
 (shard_id, source_schema, shard_schema, server_name)
VALUES (2, 'myapp', 'myapp2', 'pg-primary');

4.	 View the current status of our shard mappings:
SELECT * FROM shard.shard_map;

How it works...
If you wish, you can view this as another primer on preparing a shard-management API.
Our first step towards this goal is to create a table to store the logical to physical location
mappings necessary to locate a specific shard. At minimum, this table needs to track the
shard ID (shard_id), the skeleton schema the shard is based on (source_schema), the
shard name itself (shard_schema), and the server where the shard resides (server_name).

Some readers may wonder where the shard_map table should reside.
There's a reason we introduced the shared PostgreSQL server in the
introduction to this recipe. Metadata should be stored on that central
server. A combination of foreign tables and materialized views will ensure
that all servers have immediate access to its contents if necessary.

Next, we should create and save the location of two new shards for illustrative purposes. For
our shard names, we chose to simply append the shard name to the source schema name.
In addition, we created both shards on the pg-primary server we used in various chapters
of this book. This kind of naming scheme makes it simple to locate and interact with any
particular shard in our cluster.

The final step is to visualize the data we stored regarding our logical to physical mapping.
On our test server, the mappings are as follows:

Chapter 10

371

Notice that the shard_map table is designed in such a way that we can create mappings for
any number of schemas. Any schema can have all 2048 shards, and we can find the physical
location for any of them based on this table.

There's more...
While the mapping is an important step, we still need two things to really make use of the
mapping. Let's see what they are.

Create a cache
In modern applications, it is becoming increasingly common to inject a secondary cache layer
between the application and database. This layer stores commonly retrieved data in memory
for immediate use. This layer might be composed of memcached or a NoSQL database such
as CouchDB, MongoDB, or Redis.

Once such a layer exists, it's important that the shard_map table is one of the first tables
copied there. It has very few rows, and storing it in memory removes the relatively expensive
round-trip to the database. With this mapping in memory, the application will always know which
physical server it should be connected to as long as it also knows which shard it is using.

Choose an application data to logical shard mapping
How does an application know which shard it should use in any particular situation? This
answer requires one more modifications to the table structure our application uses. Our last
decision involves adding a shard_id column to one table. This table can be anything but
should be some central value that all data can eventually be traced to.

A good choice for this is a customer table. In an order system, all interaction is eventually
driven by customer activity. If we assign a customer a specific shard ID, all of their order data will
be stored in that shard. As the application likely has the customer row information available at
all times, it should also know the associated shard and, hence, which server to store that data.

As a consequence, customer data should also be stored in the shared PostgreSQL instance
that other shard servers can see. Customer data is relatively sparse compared to high
volumes of order, image, or other types of activity a customer can generate. If the customer
table is too large to cache directly, we could create a customer_shard table in the shared
database instead.

Moving a shard to another server
The final important aspect of database sharding that we are going to explore in this chapter
is reorganization. The purpose of allocating a large number of logical shards is to prepare for
future expansion needs. If we started with 2048 shards, all of which are currently mapped to
a single server, we will eventually want to move some of them elsewhere.

Data Distribution

372

The easiest way to do this is to leverage PostgreSQL replication. Essentially, we will create a
streaming replica for the server we want to split and drop the schemas we don't need on each
server. Consider a database with two shards. Our end goal is to produce something like this:

PG Server 1

myapp1

myapp2

PG Server 2

myapp1

myapp2

On each server, we simply drop the schema indicated by the dashed box. This way, we still
have two shards, and only the location of myapp2 has changed; its data remains unharmed.

This recipe will cover the process described here, making it easy to move shards to a new
physical location.

Getting ready
This recipe depends on the work we performed in the Creating a scalable nextval replacement
and Talking to the right shard recipes. Please review these recipes before continuing.

How to do it...
In addition to our usual pg-primary PostgreSQL server, we will also be using pg-primary2
for this recipe. Database data will remain in the /db/pgdata directory. A server named pg-
shared will play the role of our shared database as well. Follow these steps as the postgres
system user and postgres database user where indicated:

1.	 Use pg_basebackup on pg-primary2 to clone the data from pg-primary:
pg_basebackup -h pg-primary -D /db/pgdata

2.	 Create a file named recovery.conf in /db/pgdata on pg-primary2 with
these contents:
standby_mode = 'on'

primary_conninfo = 'host=pg-primary user=postgres'

3.	 Start PostgreSQL on pg-primary2:
pg_ctl -D /db/pgdata start

4.	 When ready to split the shards, promote pg-primary2 to master status:
pg_ctl -D /db/pgdata promote

Chapter 10

373

5.	 Execute this SQL statement on pg-shared to change the shard mapping:
UPDATE shard.shard_map
 SET server_name = 'pg-primary2'
 WHERE shard_schema = 'myapp2';

6.	 Refresh any cached copies of the shard_map table.

7.	 Drop the myapp2 schema on pg-primary:
DROP SCHEMA myapp2;

8.	 Drop the myapp1 schema on pg-primary2:
DROP SCHEMA myapp1;

How it works...
We've already discussed the process to create streaming replicas several times through this
book, so we've elected to use a shortened version here. Our primary goal here is to create a
full database clone of pg-primary on pg-primary2. This clone should continue to receive
data from pg-primary until we are ready to split up our application data. When database
activity is low or we can temporarily disable write activity to the myapp2 schema, we can
promote pg-primary2 so that it acts as a writable server.

Once pg-primary2 is writable, we execute an UPDATE statement on the shard_map table
in pg-shared. Then, we either refresh or invalidate cached copies of that table so that they
are rebuilt. From this point on, all new requests to interact with data stored in the myapp2
shard will be directed to the pg-primary2 server.

With the myapp2 shard's physical location changed and caches updated, it should be safe to
drop the unneeded schemas on each PostgreSQL server. The pg-primary server is only in
charge of the myapp1 shard now, so we can drop myapp2. Similarly, the pg-primary2 server
is only handling the myapp2, so we can drop myapp1.

If our data was evenly distributed, each PostgreSQL server should now be half the size of
what pg-primary originally was. Furthermore, database load, IOPS and TPS requirements,
and other metrics are also scaled down. By doubling our server count, we've cut our hardware
needs in half and have thereby increased our query response times and availability.

There's more...
Though our example used only two schema shards, this process scales well to any number of
preallocated shards. It's surprisingly easy to relocate schemas using the method described here,
and there's no reason we must limit ourselves to splitting one server into only two. The only real
limitation is that we can't effectively recombine servers once they've been split this way.

Data Distribution

374

There is, however, one important caveat we must explain. This type of database sharding
works best when the application is designed to accommodate it. In fact, it's even better to
create all of the logical shards upfront, before data is inserted into any shard. Why is this?

Consider an existing schema with existing data. Foreign keys, customers, and customer
activity has been accumulating for years. Redistributing this data into all of the necessary
tables of our shard schemas will be extremely difficult and will likely be an entirely manual
migration process.

This same problem exists if we only start our application with a small number of shards
instead of allocating the maximum from the beginning. If we only have four out of 2048
active shards and they're already on four physical servers, we will need to create new
shards and manually distribute the data once again.

However, we can also start with all 2048 shards at the beginning. From the very start,
customers are assigned to shards, and data is inserted to the proper shard. Even if all shards
start on one server, we can expand using the method described in this recipe. If we want to
immediately grow to four servers, we merely create three clones and evenly distribute the
shards to each system.

It's important to advocate and impose this architecture early in systems that are likely to
require high transactional volume. Otherwise, the path to horizontal scalability and the
availability associated with it will be a long and hard one.

Index
Symbols
$OPS variable 323
$? variable 312
10-gigabit Ethernet

URL 31
-a parameter 200, 204, 299
-c frag command 295
-c parameter 294
-d parameter 230
-D parameter 204
-f parameter 294
--help parameter 246
-h parameter 204, 213, 232, 292
-i flag 341
-l parameter 277, 282
-L parameter 283
--man parameter 246
--monitoring-history parameter 256
-n parameter 277-296
/proc/meminfo

interpreting 136-139
URL 139

--remote-ssh-command parameter 243
-r option 295
-s flag 341
-s parameter 296
-t parameter 239, 294
-u parameter 274
%util field 128
-V parameter 275

A
agcount setting 289
allocsize setting 292
AMD Opteron CPUs

URL 24

AnandTech
URL 24

application data
selecting, to logical shard mapping 371

archive_command setting
URL 201

archive_mode setting
URL 201

associated resources
grouping 329-331

asynchronous replication
building 205-208
changing, into synchronous replication 209

attr2 option 292
attr inode setting 289
avgqu-sz field 128
await field 128

B
backend_start field 144
Backup and Recovery Manager. See Barman
backup parameter 241
Barman

configuring 237-240
database, backing up with 240-242
database, restoring with 242-244
installing 237-240
URL 240

barman command tool 242, 244
Barman documentation

URL 240
base options

starting with 312-314
Bucardo

setting up 221-223
tables, copying with 224-226
URL 221, 223

376

bucardo_ctl activate command 226
bucardo_ctl command

about 223
URL 226

business downtime
determining 44-46

C
cache

creating 371
calls column 147
capacity planning 14
Carbon

configuring, URL 185
CentOS

URL 126
chassis

selecting 34, 35
check_mk

about 166
Nagios, enhancing with 166-168
URL 166

check_mk documentation
URL 168

checkpoint activity
examining 151-154

checkpoints_req field 154
checkpoints_timed field 154
checkpoint_sync_time field 154
check_postgres

installing 169-171
URL 169, 172

chkconfig utility 160
chown command 79
client connections, PgBouncer

connect_time 100
database 100
listing 99-101
request_time 100
state 100
user 100

clock_timestamp function 364
clone-max setting 317
clone-node-max setting 317
clone parameter 266
clones 317

cluster
hiding, for virtual IP addition 326, 327

clusterlabs.org website
URL 307

cluster management
DRBD, adding to 315-318
LVM, adding to 318-321
PostgreSQL, adding to 323-326
XFS, adding to 321-323

Cluster Resource Manager 309
collectd

about 172
configuring 172-175
installing 172-175

collectd.conf Manpage
URL 185

collectd custom PostgreSQL query
creating 175-178

collectd data
adding, to Graphite 182-185

collectd documentation
URL 175

collectd Manpage
URL 175

colocation 331
COMMAND column 130
components

installing 305-307
concurrent index creation

elements 69
testing 68

configure property parameter 313
connection costs and limits

determining 87-89
connection pool

inserting 86
connections

terminating 64-67
Corosync

about 304-306
configuring 307-309

corosync-keygen utility 309
create_id_function 367
CREATE MATERIALIZED VIEW

URL 361
create-md parameter 280
create-root parameter 230

377

CREATE SERVER
URL 347

CREATE USER MAPPING
URL 349

crm command 309, 313, 314
crm_mon command 320
crm shell 315
cron parameter 242
current disk performance

evaluating, with iostat utility 126-129
current_query field 144

D
DAS 35
database

about 54-56
backing up, with Barman 240-242
cloning, with repmgr 254-257
cloning, with walctl 264-266
restoring, with Barman 242-244

database host
monitoring, through Nagios

configuration 162-165
Data source

URL 178
dd utility 301
Debian systems

URL 275
default_pool_size setting 94
define keyword 280
Dell

URL 33
derived values 177
device parameter 323
df command 292
Direct Attached Storage. See DAS
dirty_background_ratio setting 82
Disaster Recovery (DR) 41, 197
disk cache

restoring, to operating system 59-61
disk cache poisoning

defusing 58
disk failures, in real world

URL 21
disk keyword 280
DISK READ column 130

disk states 281
DISK WRITE column 130
Distributed Replicated Block

Device. See DRBD
doc/ directory 246
download parameter 246
DRBD

about 270, 279
adding 279-281
adding, to cluster management 315-318

drbdadm command 301
drbdadm utility 284
DRBD documentation

URL 281-318
DRBD filesystem

verifying 284, 285
DRBD, installation guide

URL 275
DRBD split brain

repairing 285-288
DRBD, storage speed

URL 272
DRBD system

dismantling 300, 301
dstat

performance, correlating with 133-136

E
e-mail alert

adding 328, 329
EMC

URL 39
EPEL package

installing, URL 221
URL 159

eXtended File System. See XFS
extract PostgreSQL function 364
Extra Packages for Enterprise

Linux (EPEL) 159

F
features, Intel CPUs

hyperthreading 23
power usage 24
Turbo Mode 24

378

first LVM layer
creating 276-278

foreign PostgreSQL server
setting up 344, 345

foreign servers
altering 346
dropping 346

foreign table
creating 349-352
transforming, into local tables 358-361
used, in query 352-356

foreign table access
optimizing 356-358

frontend caching 340

G
gauges 177
generate_series PostgreSQL function

avg_query 113
Google Docs

URL 10
graph

building, in Graphite 186, 187
Graphite

collectd data, adding to 182-185
configuring 179-182
graph, building 186, 187
installing 179-182
URL 182

Graphite dashboard
creating 191-193

Graphite documentation
URL 182

Graphite graph
customizing 188-190

group 329

H
hardware

monitoring 156-158
hardware failure

mitigating 76-79
hardware planning, PostgreSQL database

chassis, selecting 34, 35
investing, in RAID 18-20

memory speed 26
memory usage 24-26
motherboards, managing 31-33
nimble networking, exploring 26-29
processor, selecting 21-23
redundancy, planning 8-10
SAN 36-38
server, protecting 41, 42
server, tallying 39, 40
storage, sizing 14-16
sufficient IOPS 11-13

hardware spreadsheet
producing, for tracking purchase needs 9, 10

herd 224
horizontal candidates

identifying 340-344
Hot Standby

URL 73
HP

URL 33
hyperthreading 23

I
init_shard_tables 367
Input/Output Operations

Per Second. See IOPS
Instagram 362
install parameter 246
Intel Xeon CPUs

URL 24
invalidate parameter 301
invalidate-remote parameter 301
IO column 130
IOPS 11
iostat utility

current disk performance,
evaluating with 126-129

iotop command
sample output, obtaining from 130, 131

K
kernel tweaks

using 81-83

379

L
latest keyword 241
layers 272
Libre Office

URL 11
link aggregation

URL 141
Linux Documentation Project

URL 278, 297
Linux Standard Base (LSB) 92
Linux Standard Base specification

URL 312
Linux Volume Manager. See LVM
list-backup parameter 241
list-files parameter 241
list tables parameter 225
live stack systems

switching 298, 299
local tables

foreign tables, transforming into 358-361
logbsize option 291
logbufs option 291
logical shard 368
logical shard mapping

application data, selecting to 371
Log-Shipping Standby Servers

URL 73, 208
Londiste

setting up 227-230
tables, copying with 230-232

londiste3 command-line utility 229
londiste3 utility

URL 232
Londiste documentation

URL 230
lvcreate command 283
lvdisplay command 278
LVM

about 271-276
adding, to cluster management 318-321

LVM documentation
URL 283

LVM snapshots
using 295-297

lvremove command 297

M
MailTo agent 328
maintenance_work_mem setting 48
make command 91
managed resource migration

performing 333-336
man command 318
man utility 310
master parameter 264
master register parameter 253
master/slave mode, pgpool

configuring 108-111
materialized view library

URL 361
materialized views 359
max_client_conn setting 94
meta-disk keyword 280
migration

testing, outage used 336-338
mkdir command 79
mkfs.xfs command 290
mklabel parameter 276
mkpart parameter 276
motherboards

managing 31-33
mount command 291, 297

N
Nagios

about 158
configuring 158-161
configuring, to monitor database

host 162-165
enhancing, with check_mk 166-168
installing 158-161

Nagios 3.0 Documentation
URL 161

Nagios object manual
URL 165

Nagios Quickstart Installation Guides
URL 161

Nagios Remote Plugin Executor (NRPE) 162
NAS 35
NetApp

URL 39

380

Network Attached Storage. See NAS
network bond

examining 139-141
network cards

research, saving 31
networking

example 30
network monitoring systems

comparison, URL 161
Network Operations Center (NOC) 156
nimble networking

exploring 26-29
noatime option 291
nodes

swapping, with repmgr 257-260
nodiratime option 291
notify setting 317
number of IOPS, figuring out

concessions, making 14
working example 13

O
OLAP 19
OLTP 19
OmniPITR

configuring 244-246
installation, URL 247
installing 244-246
setup, URL 247
WAL files, managing with 247-249

omnipitr-archive
URL 249

omnipitr-restore command 249
onetimecopy parameter 226
on keyword 280
Online Analytic Processing. See OLAP
Online Transaction Processing. See OLTP
Open Office

URL 11
operating system

disk cache, restoring to 59-61
outage

used, to test migration 336-338

P
Pacemaker

about 304, 305
installing 306

Password File
URL 208

password option 348
pcp_attach_node command 117
pcp_detach_node command 117
pcp_recovery_node command 117
Penguin Computing

URL 33
pgAgent

URL 57
pg_backend_pid function 149
pg_basebackup command 202, 204
pg_basebackup tool

about 208
URL 205

pg_basebackup utility
about 264
URL 73

pgbench command 38
PgBouncer

about 89
client connections, listing 99, 100
combining, with pgpool 117, 118
configuring 92-94
connecting to 96
installing 89-91
pool health, evaluating 101-104
prepared statements 95
server connections, listing 97

pg_class
URL 344

pg-clone
promoting 258

pgFincore
URL 62

pg_foreign_server
URL 347

pgpool
about 105
active nodes, swapping 114-117
configuring, for master/slave mode 108-111

381

installing 106, 107
write query, testing 112-114

pgpool_recovery extension
installing 117

pg-primary server 373
pg_receivexlog command 212
pg_receivexlog utility

URL 80, 214
pg_settings view

URL 53
pg_standby

URL 205
pg_start_backup() function 208
pg_stat_activity view

checking 142-145
URL 145

pg_stat_statements
URL 344

pg_stat_statements view
checking 145-147
stats, resetting 147
URL 148

pgstattuple
URL 57
using 57

pg_total_relation_size function 343
pgtune

URL 49
pg_upgrade 41
pg_user_mapping

URL 349
PGXN

about 245
installing 245
URL 245

physical shard 368
pid field 143
PL/Java

URL 368
PL/Perl

URL 368
PL/pgSQL

URL 368
PL/PHP

URL 368

PL/Python
URL 368

PL/Ruby
URL 368

Point In Time Recovery (PITR) 79, 198
pooling resources

PgBouncer 89
pgpool 105

pool_mode configuration setting
session 95
statement 95
transaction 95

postgres_fdw
URL 347

PostgreSQL 9.0 High Performance
URL 275

PostgreSQL 9.2 29
PostgreSQL database

adding, to cluster management 323-326
configuration 46-49

PostgreSQL documentation
URL 352

PostgreSQL Extension Network. See PGXN
PostgreSQL hot standby

building 201-205
URL 205

PostgreSQL Plugin
URL 178

PostgreSQL repository
adding, URL 237

PostgreSQL Server Configuration
URL 49

PostgreSQL settings
distinct settings 52
managing 50-52

PostgreSQL software
upgrading 74, 75

Primary server 279
primitives 316
processor

selecting 21-23
procpid field 143
psycopg2

installing 227
Python Package Index | pip

URL 182

382

Q
query

foreign table, using in 352-356
query column 147
query_start field 144

R
RAID

about 18
investing in 18-20
URL 20

RAID-1 209
RAID 5 20
RAID 6 20
RAID controllers 20
ra meta command 319, 322
r_await field 128
Red Hat Enterprise Linux (RHEL)

about 271, 305
URL 305

Red Hat systems
URL 275

redundancy
about 8, 30
planning for 8-10

Redundant Array of Independent
(or Inexpensive) Disks. See RAID

REFRESH MATERIALIZED VIEW
URL 361

related actions
combining 331-333
ordering 331-333

remote user
mapping 347-349

replication resource requirements
determining 196-198

repmgr
configuring 250-253
database, cloning with 254-257
installing 250-253
nodes, swapping with 257-260
URL 253

repmgr command 253, 256
repmgr documentation

URL 257

RepoForge
URL 126

RepoForge library 125
RepoForge package

URL 125
reserve_pool_size setting 94
roles 281
round-trip-time (RTT) 140
rows column 147
RPM

URL 237
r/s field 128
rsync 198
rsync command 200, 204

S
sample output

obtaining, from iotop command 129-131
SAN 35, 36, 195
sar utility

past performance, viewing with 131-133
scalable nextval replacement

creating 361-65
sched_autogroup_enabled setting 82
sched_migration_cost setting 82
Secondary server 279
second LVM layer

creating 281-283
server connections, PgBouncer

connect_time 98
database 98
listing 97
request_time 98
state 98
user 98

Service Level Agreement (SLA) 44
setenforce utility 160
SETOF modifier 143
set parameter 277
shard

moving, to another server 371-374
sharding API

building 366-368
Shard Manager

URL 367

383

Shoot The Other Node In The
Head. See STONITH

show-backup parameter 241
SHOW POOLS query

cl_active column 102
cl_waiting column 102
maxwait column 103
sv_active column 103
sv_idle column 103

SHOW STATS query
avg_query 104
avg_recv 104
avg_req 104
avg_sent 104
total_query_time 103
total_received 103
total_requests 103
total_sent 103

SkyTools
URL 227

slonik tool 217
slon utility 217
Slony

setting up 214-217
tables, copying with 217-220
URL 214

Slony documentation
URL 217

Slony-I. See Slony
software

monitoring 156-158
software upgrades

managing 73-76
source parameter 225
ssh_command 239
ssh-copy-id command 239, 246
stack

about 272
layers 272
systems, preparing for 273-275

Standby Server Settings
URL 208

startup services
preparing 310-312

state field 144
static table

creating 59

statistics packages
installing 125, 126

stats
resetting 56

status parameter 309
STONITH

about 307
disabling 313

storage
sizing 14-16

Storage Area Network. See SAN
storage, sizing

numbers, adjusting 17
real world example 16
spreadsheet, incorporating 17

strace utility
debugging with 148-151

Streaming Replication
URL 208

synchronous replication
working with 209-211

System Administration Functions
URL 57, 62

system migrations
managing 70-73

systems
preparing, for stack 273-275

system troubleshooting
URL 301

T
tables

building, to map logical shards to their
physical locations 369-371

copying, with Bucardo 224-226
copying, with Londiste 230-232
copying, with Slony 217-220
identifying 53

targetdb parameter 225
tcpkill command 67
The Oversize Attribute Storage Technique

(TOAST) 56
The Statistics Collector

URL 57, 62, 154, 344
third-party tools

using 235, 236

384

TID column 130
Tom's Hardware

URL 24
top command 129
total_time column 147
TPS (Transactions Per Second) 177
triage

performing 122-125
Turbo Mode 24

U
udev filesystem 274
uptime command 124
username field 143

V
VCE

URL 39
verify-alg setting 284
verify parameter 285
virtual IP

adding, to hide cluster 326, 327
creating 62, 63
moving 62, 63

volume group 277

W
waiting field 144
WAL Configuration

URL 154
walctl

configuring 260-264
database, cloning with 264, 265
installing 260-264
URL 261
WAL files, managing with 266

walctl_clone command 265
walctl_clone tool 265
walctl documentation

URL 264
walctl_pull 266

walctl_push 266
walctl_setup utility 264
WAL data

saving 212, 213
WAL files

managing, with OmniPITR 247-249
managing, with walctl 266, 267

wal_keep_segments parameter 213
WAL stream

securing 79, 80, 198-201
watch utility 139
w_await field 128
web administration tool (WATO) 167
Whiptail

URL 39
worker parameter 230
work_mem setting 48
Write Ahead Log (WAL)

about 151, 198
URL 154

write_graphite Plugin
URL 185

w/s field 128

X
xact_start field 144
XFS

about 271
adding, to cluster management 321-323

xfs_db command 295
xfs_db utility 294
XFS FAQ

URL 293
XFS filesystem

formatting 288-290
maintaining 293-295

xfs_fsr command 294
XFS performance

improving 290-293

Y
yum command 221

Thank you for buying

PostgreSQL 9 High Availability Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PostgreSQL 9.0
High Performance
ISBN: 978-1-84951-030-1 Paperback: 468 pages

Accelerate your PostgreSQL system and avoid the
common pitfalls that can slow it down

1.	 Learn the right techniques to obtain optimal
PostgreSQL database performance, from initial
design to routine maintenance.

2.	 Discover the techniques used to scale successful
database installations.

3.	 Avoid the common pitfalls that can slow your
system down.

PostgreSQL 9 Admin
Cookbook
ISBN: 978-1-84951-028-8 Paperback: 360 pages

Over 80 recipes to help you run an efficient PostgreSQL
9.0 database

1.	 Administer and maintain a healthy database.

2.	 Monitor your database ensuring that it performs
as quickly as possible.

3.	 Tips for backup and recovery of your database.

Please check www.PacktPub.com for information on our titles

PostgreSQL Server
Programming
ISBN: 978-1-84951-698-3 Paperback: 264 pages

Extend PostgreSQL and integrate the database layer into
your development framework

1.	 Understand the extension framework of
PostgreSQL, and leverage it in ways that you
haven't even invented yet.

2.	 Write functions, create your own data types,
all in your favourite programming language.

3.	 Step-by-step tutorial with plenty of tips and tricks
to kick-start server programming.

PostgreSQL Replication
ISBN: 978-1-84951-672-3 Paperback: 250 pages

Understand basic replication concepts and efficiently
replicate PostgreSQL using high-end techniques
to protect your data and run your server without
interruptions

1.	 Explains the new replication features introduced
in PostgreSQL 9.

2.	 Contains easy to understand explanations and
lots of screenshots that simplify an advanced
topic like replication.

3.	 Teaches PostgreSQL administrators how to
maintain consistency between redundant
resources and to improve reliability,
fault-tolerance, and accessibility.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Hardware Planning
	Introduction
	Planning for redundancy
	Having enough IOPS
	Sizing storage
	Investing in a RAID
	Picking a processor
	Making the most of memory
	Exploring nimble networking
	Managing motherboards
	Selecting a chassis
	Saddling up to a SAN
	Tallying up
	Protecting your eggs

	Chapter 2: Handling and Avoiding Downtime
	Introduction
	Determining acceptable losses
	Configuration – getting it right the first time
	Configuration – managing scary settings
	Identifying important tables
	Defusing cache poisoning
	Exploring the magic of virtual IPs
	Terminating rogue connections
	Reducing contention with concurrent indexes
	Managing system migrations
	Managing software upgrades
	Mitigating the impact of hardware failure
	Applying bonus kernel tweaks

	Chapter 3: Pooling Resources
	Introduction
	Determining connection costs and limits
	Installing PgBouncer
	Configuring PgBouncer safely
	Connecting to PgBouncer
	Listing PgBouncer server connections
	Listing PgBouncer client connections
	Evaluating PgBouncer pool health
	Installing pgpool
	Configuring pgpool for master/slave mode
	Testing a write query on pgpool
	Swapping active nodes with pgpool
	Combining the power of PgBouncer
and pgpool

	Chapter 4: Troubleshooting
	Introduction
	Performing triage
	Installing common statistics packages
	Evaluating the current disk performance with iostat
	Tracking I/O-heavy processes with iotop
	Viewing past performance with sar
	Correlating performance with dstat
	Interpreting /proc/meminfo
	Examining /proc/net/bonding/bond0
	Checking the pg_stat_activity view
	Checking the pg_stat_statements view
	Debugging with strace
	Logging checkpoints properly

	Chapter 5: Monitoring
	Introduction
	Figuring out what to monitor
	Installing and configuring Nagios
	Configuring Nagios to monitor a database host
	Enhancing Nagios with check_mk
	Getting to know check_postgres
	Installing and configuring collectd
	Adding a custom PostgreSQL monitor
to collectd
	Installing and configuring Graphite
	Adding collectd data to Graphite
	Building a graph in Graphite
	Customizing a Graphite graph
	Creating a Graphite dashboard

	Chapter 6: Replication
	Introduction
	Deciding what to copy
	Securing the WAL stream
	Setting up a hot standby
	Upgrading to asynchronous replication
	Bulletproofing with synchronous replication
	Faking replication with pg_receivexlog
	Setting up Slony
	Copying a few tables with Slony
	Setting up Bucardo
	Copying a few tables with Bucardo
	Setting up Londiste
	Copying a few tables with Londiste

	Chapter 7: Replication Management Tools
	Introduction
	Deciding when to use third-party tools
	Installing and configuring Barman
	Backing up a database with Barman
	Restoring a database with Barman
	Installing and configuring OmniPITR
	Managing WAL files with OmniPITR
	Installing and configuring repmgr
	Cloning a database with repmgr
	Swapping active nodes with repmgr
	Installing and configuring walctl
	Cloning a database with walctl
	Managing WAL files with walctl

	Chapter 8: Advanced Stack
	Introduction
	Preparing systems for the stack
	Getting started with the Linux Volume Manager
	Adding block-level replication
	Incorporating the second LVM layer
	Verifying a DRBD filesystem
	Correcting a DRBD split brain
	Formatting an XFS filesystem
	Tweaking XFS performance
	Maintaining an XFS filesystem
	Using LVM snapshots
	Switching live stack systems
	Detaching a problematic node

	Chapter 9: Cluster Control
	Introduction
	Installing the components
	Configuring Corosync
	Preparing startup services
	Starting with base options
	Adding DRBD to cluster management
	Adding LVM to cluster management
	Adding XFS to cluster management
	Adding PostgreSQL to cluster management
	Adding a virtual IP to hide the cluster
	Adding an e-mail alert
	Grouping associated resources
	Combining and ordering related actions
	Performing a managed resource migration
	Using an outage to test migration

	Chapter 10: Data Distribution
	Introduction
	Identifying horizontal candidates
	Setting up a foreign PostgreSQL server
	Mapping a remote user
	Creating a foreign table
	Using a foreign table in a query
	Optimizing foreign table access
	Transforming foreign tables into local tables
	Creating a scalable nextval replacement
	Building a sharding API
	Talking to the right shard
	Moving a shard to another server

	Index

