

PostgreSQL: Up and Running

Regina Obe and Leo Hsu

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

PostgreSQL: Up and Running
by Regina Obe and Leo Hsu

Copyright © 2012 Regina Obe and Leo Hsu. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Iris Febres
Proofreader: Iris Febres

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

Revision History for the First Edition:
2012-07-02 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449326333 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. PostgreSQL: Up and Running, the image of the elephant shrew, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32633-3

[LSI]

1341247831

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449326333

Table of Contents

Preface . ix

1. The Basics . 1
Where to Get PostgreSQL 1

Notable PostgreSQL Forks 1
Administration Tools 2
What’s New in Latest Versions of PostgreSQL? 3

Why Upgrade? 4
What to Look for in PostgreSQL 9.2 4
PostgreSQL 9.1 Improvements 5

Database Drivers 5
Server and Database Objects 6
Where to Get Help 8

2. Database Administration . 9
Configuration Files 9

The postgresql.conf File 10
The pg_hba.conf File 12
Reload the Configuration Files 14

Setting Up Groups and Login Roles (Users) 14
Creating an Account That Can Log In 15
Creating Group Roles 15
Roles Inheriting Rights 15

Databases and Management 16
Creating and Using a Template Database 16
Organizing Your Database Using Schemas 16
Permissions 17

Extensions and Contribs 18
Installing Extensions 19
Common Extensions 21

Backup 22

iii

Selective Backup Using pg_dump 23
Systemwide Backup Using pg_dumpall 24

Restore 24
Terminating Connections 24
Using psql to Restore Plain Text SQL backups 25
Using pg_restore 26

Managing Disk Space with Tablespaces 27
Creating Tablespaces 27
Moving Objects Between Tablespaces 27

Verboten 27
Delete PostgreSQL Core System Files and Binaries 28
Giving Full Administrative Rights to the Postgres System (Daemon) Ac-
count 28
Setting shared_buffers Too High 29
Trying to Start PostgreSQL on a Port Already in Use 29

3. psql . 31
Interactive psql 31
Non-Interactive psql 32
Session Configurations 33

Changing Prompts 34
Timing Details 35
AUTOCOMMIT 35
Shortcuts 36
Retrieving Prior Commands 36

psql Gems 36
Executing Shell Commands 37
Lists and Structures 37

Importing and Exporting Data 38
Basic Reporting 39

4. Using pgAdmin . 43
Getting Started 43

Overview of Features 43
Connecting to a PostgreSQL server 44
Navigating pgAdmin 44

pgAdmin Features 45
Accessing psql from pgAdmin 45
Editing postgresql.conf and pg_hba.conf from pgAdmin 47
Creating Databases and Setting Permissions 47
Backup and Restore 48

pgScript 51
Graphical Explain 54

iv | Table of Contents

Job Scheduling with pgAgent 55
Installing pgAgent 55
Scheduling Jobs 56
Helpful Queries 57

5. Data Types . 59
Numeric Data Types 59

Serial 59
Generate Series Function 60

Arrays 60
Array Constructors 60
Referencing Elements in An Array 61
Array Slicing and Splicing 61

Character Types 62
String Functions 63
Splitting Strings into Arrays, Tables, or Substrings 63
Regular Expressions and Pattern Matching 64

Temporal Data Types 65
Time Zones: What It Is and What It Isn’t 66
Operators and Functions for Date and Time Data Types 68

XML 70
Loading XML Data 70
Querying XML Data 70

Custom and Composite Data Types 71
All Tables Are Custom 71
Building Your Own Custom Type 71

6. Of Tables, Constraints, and Indexes . 73
Tables 73

Table Creation 73
Multi-Row Insert 75
An Elaborate Insert 75

Constraints 77
Foreign Key Constraints 77
Unique Constraints 78
Check Constraints 78
Exclusion Constraints 79

Indexes 79
PostgreSQL Stock Indexes 79
Operator Class 81
Functional Indexes 81
Partial Indexes 82
Multicolumn Indexes 82

Table of Contents | v

7. SQL: The PostgreSQL Way . 85
SQL Views 85
Window Functions 87

Partition By 88
Order By 89

Common Table Expressions 90
Standard CTE 91
Writeable CTEs 92
Recursive CTE 92

Constructions Unique to PostgreSQL 93
DISTINCT ON 93
LIMIT and OFFSET 94
Shorthand Casting 94
ILIKE for Case Insensitive Search 94
Set Returning Functions in SELECT 95
Selective DELETE, UPDATE, and SELECT from Inherited Tables 95
RETURNING Changed Records 96
Composite Types in Queries 96

8. Writing Functions . 99
Anatomy of PostgreSQL Functions 99

Function Basics 99
Trusted and Untrusted Languages 100

Writing Functions with SQL 101
Writing PL/pgSQL Functions 103
Writing PL/Python Functions 103

Basic Python Function 104
Trigger Functions 105
Aggregates 107

9. Query Performance Tuning . 111
EXPLAIN and EXPLAIN ANALYZE 111
Writing Better Queries 113

Overusing Subqueries in SELECT 114
Avoid SELECT * 116
Make Good Use of CASE 116

Guiding the Query Planner 118
Strategy Settings 118
How Useful Is Your Index? 118
Table Stats 120
Random Page Cost and Quality of Drives 120

Caching 121

vi | Table of Contents

10. Replication and External Data . 123
Replication Overview 123

Replication Lingo 123
PostgreSQL Built-in Replication Advancements 124
Third-Party Replication Options 125

Setting Up Replication 125
Configuring the Master 125
Configuring the Slaves 126
Initiate the Replication Process 127

Foreign Data Wrappers (FDW) 127
Querying Simple Flat File Data Sources 128
Querying More Complex Data Sources 128

Appendix: Install, Hosting, and Command-Line Guides . 131

Table of Contents | vii

Preface

PostgreSQL is an open source relational database management system that began as a
University of California, Berkeley project. It was originally under the BSD license, but
is now called the PostgreSQL License (TPL). For all intents and purposes, it’s BSD
licensed. It has a long history, almost dating back to the beginning of relational data-
bases.

It has enterprise class features such as SQL windowing functions, the ability to create
aggregate functions and also utilize them in window constructs, common table and
recursive common table expressions, and streaming replication. These features are
rarely found in other open source database platforms, but commonly found in newer
versions of the proprietary databases such as Oracle, SQL Server, and IBM DB2. What
sets it apart from other databases, including the proprietary ones we just mentioned,
is the ease with which you can extend it without changing the underlying base—and
in many cases, without any code compilation. Not only does it have advanced features,
but it performs them quickly. It can outperform many other databases, including pro-
prietary ones for many types of database workloads.

In this book, we’ll expose you to the advanced ANSI-SQL features that PostgreSQL
offers. and the unique features PostgreSQL has that you won’t find in other databases.
If you’re an existing PostgreSQL user or have some familiarity with PostgreSQL, we
hope to show you some gems you may have missed along the way; or features found
in newer PostgreSQL versions that are not in the version you’re using. If you have used
another relational database and are new to PostgreSQL, we’ll show you some parallels
with how PostgreSQL handles tasks compared to other common databases, and
demonstrate feats you can achieve with PostgreSQL that are difficult or impossible to
do in other databases. If you’re completely new to databases, you’ll still learn a lot about
what PostgreSQL has to offer and how to use it; however, we won’t try to teach you
SQL or relational theory. You should read other books on these topics to take the
greatest advantage of what this book has to offer.

This book focuses on PostgreSQL versions 9.0 to 9.2, but we will cover some unique
and advanced features that are also present in prior versions of PostgreSQL.

ix

http://www.postgresql.org

What Makes PostgreSQL Special and Why Use It?
PostgreSQL is special because it’s not just a database: it’s also an application platform
—and an impressive one at that.

PostgreSQL allows you to write stored procedures and functions in several program-
ming languages, and the architecture allows you the flexibility to support more lan-
guages. Example languages that you can write stored functions in are SQL (built-in),
PL/pgSQL (built-in), PL/Perl, PL/Python, PL/Java, and PL/R, to name a few, most of
which are packaged with many distributions. This support for a wide variety of lan-
guages allows you to solve problems best addressed with a domain or more procedural
language; for example, using R statistics functions and R succinct domain idioms to
solve statistics problems; calling a web service via Python; or writing map reduce con-
structs and then using these functions within an SQL statement.

You can even write aggregate functions in any of these languages that makes the com-
bination more powerful than you can achieve in any one, straight language environ-
ment. In addition to these languages, you can write functions in C and make them
callable, just like any other stored function. You can have functions written in several
different languages participating in one query. You can even define aggregate functions
with nothing but SQL. Unlike MySQL and SQL Server, no compilation is required to
build an aggregate function in PostgreSQL. So, in short, you can use the right tool for
the job even if each sub-part of a job requires a different tool; you can use plain SQL
in areas where most other databases won’t let you. You can create fairly sophisticated
functions without having to compile anything.

The custom type support of PostgreSQL is sophisticated and very easy to use, rivaling
and often outperforming most other relational databases. The closest competitor in
terms of custom type support is Oracle. You can define new data types in PostgreSQL
that can then be used as a table column. Every data type has a companion array type
so that you can store an array of a type in a data column or use it in an SQL statement.
In addition to the ability of defining new types, you can also define operators, functions,
and index bindings to work with these. Many third-party extensions for PostgreSQL
take advantage of these fairly unique features to achieve performance speeds, provide
domain specific constructs to allow shorter and more maintainable code, and accom-
plish tasks you can only fantasize about in other databases.

If building your own types and functions is not your thing, you have a wide variety of
extensions to choose from, many of which are packaged with PostgreSQL distros.
PostgreSQL 9.1 introduced a new SQL construct, CREATE EXTENSION, which allows you
to install the many available extensions with a single SQL statement for each in a specific
database. With CREATE EXTENSION, you can install in your database any of the afore-
mentioned PL languages and popular types with their companion functions and oper-
ators, like hstore, ltree, postgis, and countless others. For example, to install the popular
PostgreSQL key-value store type and its companion functions and operators, you
would type:

x | Preface

CREATE EXTENSION hstore;

In addition, there is an SQL command you can run—sect_extensions—to see the list
of available and installed extensions.

Many of the extensions we mentioned, and perhaps even the languages we discussed,
may seem like arbitrary terms to you. You may recognize them and think, “Meh, I’ve
seen Python, and I’ve seen Perl... So what?” As we delve further, we hope you experience
the same “WOW” moments we have come to appreciate with our many years of using
PostgreSQL. Each update treats us to new features, eases usability, brings improve-
ments in speed, and pushes the envelope of what is possible with a database. In the
end, you will wonder why you ever used any other relational database, when Post-
greSQL does everything you could hope for—and does it for free. No more reading the
licensing cost fine print of those other databases to figure out how many dollars you
need to spend if you have 8 cores on your server and you need X,Y, Z functionality,
and how much it will cost you when you get 16 cores.

On top of this, PostgreSQL works fairly consistently across all supported platforms. So
if you’re developing an app you need to resell to customers who are running Linux,
Mac OS X, or Windows, you have no need to worry, because it will work on all of them.
There are binaries available for all if you’re not in the mood to compile your own.

Why Not PostgreSQL?
PostgreSQL was designed from the ground up to be a server-side database. Many people
do use it on the desktop similarly to how they use SQL Server Express or Oracle Express,
but just like those it cares about security management and doesn’t leave this up to the
application connecting to it. As such, it’s not ideal as an embeddable database, like
SQLite or Firebird.

Sadly, many shared-hosts don’t have it pre-installed, or have a fairly antiquated version
of it. So, if you’re using shared-hosting, you’re probably better off with MySQL. This
may change in the future. Keep in mind that virtual, dedicated hosting and cloud server
hosting is reasonably affordable and getting more competitively priced as more ISPs
are beginning to provide them. The cost is not that much more expensive than shared
hosting, and you can install any software you want on them. Because of these options,
these are more suitable for PostgreSQL.

PostgreSQL does a lot and a lot can be daunting. It’s not a dumb data store; it’s a smart
elephant. If all you need is a key value store or you expect your database to just sit there
and hold stuff, it’s probably overkill for your needs.

For More Information on PostgreSQL
This book is geared at demonstrating the unique features of PostgreSQL that make it
stand apart from other databases, as well as how to use these features to solve real world

Preface | xi

problems. You’ll learn how to do things you never knew were possible with a database.
Aside from the cool “Eureka!” stuff, we will also demonstrate bread-and-butter tasks,
such as how to manage your database, how to set up security, troubleshoot perfor-
mance, improve performance, and how to connect to it with various desktop, com-
mand-line, and development tools.

PostgreSQL has a rich set of online documentation for each version. We won’t endeavor
to repeat this information, but encourage you to explore what is available. There are
over 2,250 pages in the manuals available in both HTML and PDF formats. In addition,
fairly recent versions of these online manuals are available for hard-copy purchase if
you prefer paper form. Since the manual is so large and rich in content, it’s usually split
into a 3-4 volume book set when packaged in hard-copy form.

Below is a list of other PostgreSQL resources:

• Planet PostgreSQL is a blog aggregator of PostgreSQL bloggers. You’ll find Post-
greSQL core developers and general users show-casing new features all the time
and demonstrating how to use existing ones.

• PostgreSQL Wiki provides lots of tips and tricks for managing various facets of the
database and migrating from other databases.

• PostgreSQL Books is a list of books that have been written about PostgreSQL.

• PostGIS in Action Book is the website for the book we wrote on PostGIS, the spatial
extender for PostgreSQL.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

xii | Preface

http://www.postgresql.org/docs/manuals
http://planet.postgresql.org
http://wiki.postgresql.org
http://www.postgresql.org/docs/books/
http://www.postgis.us

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “PostgreSQL: Up and Running by Regina
Obe and Leo Hsu (O’Reilly). Copyright 2012 Regina Obe and Leo Hsu,
978-1-449-32633-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

Preface | xiii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://bit.ly/PostgreSQL_UR

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xiv | Preface

http://bit.ly/PostgreSQL_UR
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

The Basics

In this chapter, we’ll cover the basics of getting started with PostgreSQL. This includes
where to get binaries and drivers, what’s new and exciting in the latest 9.2 release,
common administration tools, PostgreSQL nomenclature, and where to turn for help.

Where to Get PostgreSQL
Years ago, if you wanted PostgreSQL, you had to compile it from source. Thankfully,
those days are gone. Granted, you can still compile should you so choose, but most
users nowadays get their PostgreSQL with a prepackaged installer. A few clicks or
keystrokes, and you’re on your way in 10 minutes or less.

If you’re installing PostgreSQL for the first time and have no existing database to up-
grade, you should always install the latest stable release version for your OS. http://www
.postgresql.org/download maintains a listing of places where you can download
PostgreSQL binaries. In “Installation Guides and Distributions” on page 131, you’ll
find installation guides and some other additional custom distributions that people
we’ve talked to seem to like.

Notable PostgreSQL Forks
The fact that PostgreSQL has MIT/BSD style licensing makes it a great candidate for
forking. Various groups have done exactly that over the years., and some have con-
tributed their changes. Netezza, a popular database choice for data warehousing work-
loads, in its inception was a PostgreSQL fork. GreenPlum, used for data warehousing
and analyzing petabytes of information, was a spinoff of Bizgres, which was a commu-
nity-driven spinoff of PostgreSQL focused on Big Data. PostgreSQL Advanced Plus by
EnterpriseDb is a fork of the PostgreSQL codebase—it adds Oracle syntax and com-
patibility features to woo Oracle users. EnterpriseDb does provide funding to the Post-
greSQL community, and for this we’re grateful.

1

http://www.postgresql.org/download
http://www.postgresql.org/download
http://www.netezza.com
http://enterprisedb.com

All the aforementioned are proprietary, closed source forks. tPostgres and Postgres-
XC are two budding forks that we find interesting with open source licensing. tPostgres
braches off PostgreSQL 9.2 and targets Microsoft SQL Server users. For instance, with
tPostgres, you can write functions using T-SQL. Postgres-XC is a cluster server pro-
viding write-scalable, synchronous multi-master replication. What makes Postgres-XC
special is that it supports distributed processing and replication. It is now at version 1.0.

Administration Tools
There are three popular tools for managing PostgreSQL and these are supported by
PostgreSQL core developers; they tend to stay in synch with PostgreSQL versions. In
addition, there are plenty of commercial offerings as well.

psql
psql is a command-line interface for writing queries and managing PostgreSQL. It
comes packaged with some nice extras, such as an import and export commands
for delimited files, and a reporting feature that can generate HTML output. psql
has been around since the beginning of PostgreSQL and is a favorite of hardcore
PostgreSQL users. Newer converts who are more comfortable with GUI tools tend
to favor pgAdmin.

pgAdmin
This is the widely used, free, graphical administration tool for PostgreSQL. You
can download it separately from PostgreSQL. pgAdmin runs on the desktop and
can connect to multiple PostgreSQL servers regardless of version or OS. Even if
you have your database server on a window-less Unix-based server, install pgAd-
min and you’ll find yourself armed with a fantastic GUI. pgAdmin is pictured in
Figure 1-1.

Some installers, such as those offered by EnterpriseDB, package pgAdmin with the
database server install. If you’re unfamiliar with PostgreSQL, you should definitely
start with pgAdmin. You’ll get a great overview and gain an appreciation of the
richness of PostgreSQL just by exploring all the database objects in the main in-
terface. If you’re coming from SQL Server and used Management Studio, you’ll
feel right at home.

PHPPgAdmin
PHPPgAdmin, pictured in Figure 1-2, is a free, web-based administration tool pat-
terned after the popular PHPMyAdmin for MySQL. PostgreSQL has many more
kinds of database objects than MySQL, as such PHPPgAdmin is a step up from
PHPMyAdmin with additions to manage schemas, procedural languages, casts,
operators, and so on. If you’ve used PHPMyAdmin, you’ll find PHPPgAdmin to
be nearly identical.

2 | Chapter 1: The Basics

http://www.tpostgres.org
http://postgres-xc.sourceforge.net
http://postgres-xc.sourceforge.net
http://pgadmin.org/
http://phppgadmin.sourceforge.net
http://www.phpmyadmin.net

What’s New in Latest Versions of PostgreSQL?
The upgrade process gets simpler with each new version. There’s no reason not to
always keep in step with the latest version. PostgreSQL is the fastest growing database
technology today. Major versions come out almost annually. Each new version adds
enhancements to ease of use, stability, security, performance, and avant-garde features.
The lesson here? Always upgrade, and do so often.

Figure 1-1. pgAdmin

Figure 1-2. PHPPgAdmin Tool

What’s New in Latest Versions of PostgreSQL? | 3

Why Upgrade?
If you’re using PostgreSQL 8.2 or below: upgrade now! Enough said.

If you’re using PostgreSQL 8.3: upgrade soon! 8.3 will be reaching end-of-life in early
2013. Details about PostgreSQL EOL policy can be found here: PostgreSQL Release
Support Policy. EOL is not a place you want to be. New security updates and fixes to
serious bugs will no longer be available. You’ll need to hire specialized PostgreSQL core
consultants to patch problems or to implement workarounds—probably not a cheap
proposition, assuming you can even locate someone to begin with.

Regardless of which version you are using, you should always try to run the latest micro-
versions for your version. An upgrade from say 8.4.8 to 8.4.11 requires just binary file
replacement, which can be generally done with a quick restart after installing the up-
grade. Only bug fixes are introduced in micro-versions, so there’s little cause for con-
cern and can in fact save you grief.

What to Look for in PostgreSQL 9.2
At time of writing, PostgreSQL 9.1 is the latest stable release, and 9.2 is waiting in the
wings to strut its stuff. All of the anticipated features in 9.2 are already set in stone and
available in the 9.2 beta release. The following list discusses the most notable features:

• Index-only scans. If you need to retrieve only columns that are already a part of an
index, PostgreSQL will skip the need to go to the table. You’ll see significant speed
improvement in these queries as well as aggregates such as COUNT(*).

• Sorting improvements that improve in-memory sort operations by as much as 20%.

• Improvements in prepared statements. A prepared statement is now parsed, ana-
lyzed, and rewritten, but not necessarily planned. It can also produce custom saved
plans of a given prepared statement which are dependent on argument inputs. This
reduces the chance that a prepared statement will perform worse than an equivalent
ad-hoc query.

• Cascading streaming replication supports streaming from a slave to another slave.

• SP-GiST, another advance in GiST index technology using space filling trees. This
should have great impact on the various extensions that rely on GiST for speed.

• ALTER TABLE IF EXISTS syntax for making changes to tables.

• Many new variants of ALTER TABLE ALTER TYPE commands that used to require
whole table rewrites and rebuild of indexes. (More details are available at More
Alter Table Alter Types.)

• Even more pg_dump and pg_restore options. (Read our article at 9.2 pg_dump
Enhancements.)

• plv8js is a new language handler that allows you to create functions in JavaScript.

4 | Chapter 1: The Basics

http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/docs/9.2/interactive/sql-prepare.html
http://www.depesz.com/2012/02/14/waiting-for-9-2-more-rewrite-less-alter-table-alter-types/
http://www.depesz.com/2012/02/14/waiting-for-9-2-more-rewrite-less-alter-table-alter-types/
http://www.postgresonline.com/journal/archives/252-PostgreSQL-9.2-pg_dump-enhancements.html
http://www.postgresonline.com/journal/archives/252-PostgreSQL-9.2-pg_dump-enhancements.html

• JSON built-in data type and companion functions row_to_json(),
array_to_json(). This should be a welcome addition for web developers writing
AJAX appications.

• New range type class of types where a pair of values in data type forms a range,
eliminating the need to cludge range-like functionality.

• Allow SQL functions to reference arguments by name instead of by number.

PostgreSQL 9.1 Improvements
PostgreSQL 9.1 introduced enterprise features, making it an even more viable alterna-
tive to the likes of Microsoft SQL Server and Oracle:

• More built-in replication features including synchronous replication.

• Extensions management using the new CREATE EXTENSION, ALTER EXTENSION. Ex-
tensions make installing and removing add-ons a breeze.

• ANSI-compliant foreign data wrappers for querying disparate data sources.

• Writeable common table expressions (CTE). The syntactical convenience of CTEs
now works for UPDATE and INSERT queries.

• Unlogged tables speeds up queries against tables where logging is unnecessary.

• Triggers on views. In prior versions, to make views updatable you used DO
INSTEAD rules, which only supported SQL for programming logic. Triggers can be
written in most procedural languages—except SQL—and opens the door for more
complex abstraction using views.

• KNN GiST adds improvement to popular extensions like full-text search, trigram
(for fuzzy search and case insensitive search), and PostGIS.

Database Drivers
If you are using or plan to use PostgreSQL, chances are that you’re not going to use it
in a vacuum. To have it interact with other applications, you’re going to need database
drivers. PostgreSQL enjoys a generous number of freely available database drivers that
can be used in many programming languages. In addition, there are various commercial
organizations that provide drivers with extra bells and whistles at modest prices. Below,
we’ve listed a few popular, open source ones:

• PHP is a common language used to develop web applications, and most PHP dis-
tributions come packaged with at least one PostgreSQL driver. There is the older
pgsql and the newer pdo_pgsql. You may need to enable them in your php.ini or
do a yum install, but they are usually already there.

• Java. If you are doing Java development, there are always updated versions of JDBC
that support the latest PostgreSQL, which you can download from http://jdbc.post
gresql.org.

Database Drivers | 5

http://jdbc.postgresql.org
http://jdbc.postgresql.org

• For .NET. (Microsoft or Mono) you can use the Npgsql driver, which has source
and binary versions for .NET Frameworks 3.5 and above, and Mono.NET.

• If you need to connect from MS Access or some other Windows Office productivity
software, download ODBC drivers from http://www.postgresql.org/ftp/odbc/ver
sions/msi. The link includes both 32-bit and 64-bit ODBC drivers.

• LibreOffice/OpenOffice. LibreOffice 3.5 (and above) comes packaged with a na-
tive PostgreSQL driver. For OpenOffice and older versions of LibreOffice, you can
use a PostgreSQL JDBC driver or the SDBC driver. You can find details about
connecting to these on our article OO Base and PostgreSQL.

• Python is a beautiful language and has support for PostgreSQL via various Python
database drivers; at the moment, Psycopg is the most popular.

• Ruby. You can connect to PostgreSQL via rubypg.

• Perl. You’ll find PostgreSQL connectivity support via DBI and the DBD:Pg driver
or pure Perl DBD:PgPP driver from CPAN.

Server and Database Objects
So you installed PostgreSQL and open up pgAdmin. You expand the server tree. Before
you is a bewildering array of database objects, some familiar and some completely
foreign. PostgreSQL has more database objects than probably any other database, and
that’s without considering add-ons. You’ll probably never touch many of these objects,
but if you dream up a new functionality that you wish PostgreSQL would offer, more
likely than not, it’s already implemented using one of those esoteric objects that you’ve
been ignoring. This book is not even going to attempt to describe all that you’ll find in
a PostgreSQL install. With PostgreSQL churning out features at breakneck speed, we
can’t imagine any book that could possibly itemize all that PostgreSQL has to offer.
We’ll now discuss the most commonly used database objects:

server service
The PostgreSQL server service is often just called a PostgreSQL server, or daemon.
You can have more than one a physical server as long as they listen on different
ports or IPs and have different places to store their respective data.

database
Each PostgreSQL server houses many databases.

table
Table are the workhorses of any database. What is unique about PostgreSQL tables
is the inheritance support and the fact that every table automatically begets an
accompanying custom data type. Tables can inherit from other tables and querying
can bring up child records from child tables.

6 | Chapter 1: The Basics

http://pgfoundry.org/projects/npgsql
http://www.postgresql.org/ftp/odbc/versions/msi
http://www.postgresql.org/ftp/odbc/versions/msi
http://www.postgresonline.com/journal/categories/23-oobase
http://wiki.postgresql.org/wiki/Python
http://wiki.postgresql.org/wiki/Python
http://initd.org/psycopg/
http://rubyforge.org/projects/ruby-pg
http://search.cpan.org/modlist/Database_Interfaces

schema
Schemas are part of the ANSI-SQL standards, so you’ll see them in other databases.
Schemas are the logical containers of tables and other objects. Each database can
have multiple schemas.

tablespace
Tablespace is the physical location where data is stored. PostgreSQL allows table-
spaces to be independently managed, which means you can easily move databases
to different drives with just a few commands.

view
Most relational databases have views for abstracting queries. In PostgreSQL, you
can also have views that can be updated.

function
Functions in PostgreSQL can return scalar value or sets of records. Aggregates are
functions used with SQL constructs such as GROUP BY to summarize data. Most of
the time, they return scalars but in PostgreSQL they can return composite objects.

operator
These are symbolic functions that have backing of a function. In PostgreSQL, you
can define your own.

cast
Casts allow you to convert from one data type to another. They are supported by
functions that actually perform the conversion. What is rare about PostgreSQL
that you won’t find with many other databases is that you can create your own
casts and thus change the default behavior of casting. Casting can be implicit or
explicit. Implicit casts are automatic and usually will expand from a more specific
to a more generic type. When an implicit cast is not offered, you must cast explic-
itly.

sequence
Sequence is what controls auto-incrementation in table definitions. They are usu-
ally automatically created when you define a serial column. Because they are ob-
jects in their own right, you could have multiple serial columns use the same se-
quence object, effectively achieveing uniqueness not only within the column but
across them.

trigger
Found in many databases, triggers detect data change events and can react before
or after the actual data is changed. PostgreSQL 9.0 introduced some special twists
to this with the WHEN clause. PostgreSQL 9.1 added the extra feature of making
triggers available for views.

foreign data wrappers
Foreign data wrappers allow you to query a remote data source whether that data
source be another relational database server, flat file, a NoSQL database, a web
service or even an application platform like SalesForce. They are found in SQL

Server and Database Objects | 7

http://www.oscon.com/oscon2012/public/schedule/detail/24033

Server as linked tables, but PostgreSQL implementation follows the SQL/Manage-
ment of External Data (MED) standard, and is open to connect to any kind of data
source.

row/record
Rows and records generally mean the same thing. In PostgreSQL, rows can be
treated independently from their respective tables. This distinction becomes ap-
parent and useful when you write functions or use the row constructor in SQL.

extension
This is a new feature introduced in 9.1 that packages a set of functions, types, casts,
indexes, and so forth into a single unit for maintainability. It is similar in concept
to Oracle packages and is primarily used to deploy add-ons.

Where to Get Help
There will come a day when you need additional help. Since that day always arrives
earlier than expected, we want to point you to some resources now rather than later.
Our favorite is the lively newsgroup network specifically designed for helping new and
old users with technical issues. First, visit PostgreSQL Help Newsgroups. If you are new
to PostgreSQL, the best newsgroup to start with is PGSQL-General Newsgroup. Finally,
if you run into what appears to be a bug in PostgreSQL, report it at PostgreSQL Bug
Reporting.

8 | Chapter 1: The Basics

http://en.wikipedia.org/wiki/SQL/MED
http://en.wikipedia.org/wiki/SQL/MED
http://www.postgresql.org/community/lists/
http://archives.postgresql.org/pgsql-general
http://www.postgresql.org/docs/current/interactive/bug-reporting.html
http://www.postgresql.org/docs/current/interactive/bug-reporting.html

CHAPTER 2

Database Administration

This chapter will cover what we feel are the most common activities for basic admin-
istration of a PostgreSQL server; namely: role management, database creation, add-on
installation, backup, and restore. We’ll assume you’ve already installed PostgreSQL
and have one of the administration tools at your disposal.

Configuration Files
Three main configuration files control basic operations of a PostgreSQL server instance.
These files are all located in the default PostgreSQL data folder. You can edit them
using your text editor of choice, or using the admin pack that comes with pgAdmin
(“Editing postgresql.conf and pg_hba.conf from pgAdmin” on page 47).

• postgresql.conf controls general settings, such as how much memory to allocate,
default storage location for new databases, which IPs PostgreSQL listens on, where
logs are stored, and so forth.

• pg_hba.conf controls security. It manages access to the server, dictating which users
can login into which databases, which IPs or groups of IPs are permitted to connect
and the authentication scheme expected.

• pg_ident.conf is the mapping file that maps an authenticated OS login to a Post-
greSQL user. This file is used less often, but allows you to map a server account to
a PostgreSQL account. For example, people sometimes map the OS root account
to the postgre’s super user account. Each authentication line in pg_hba.conf can
use a different pg_ident.conf file.

If you are ever unsure where these files are located, run the Example 2-1 query as a
super user while connected to any of your databases.

9

Example 2-1. Location of configuration files

SELECT name, setting
FROM pg_settings
WHERE category = 'File Locations';

name | setting
------------------+-----------------------------
config_file |E:/PGData91/postgresql.conf
data_directory |E:/PGData91
external_pid_file |
hba_file |E:/PGData91/pg_hba.conf
ident_file |E:/PGData91/pg_ident.conf

The postgresql.conf File
postgresql.conf controls the core settings of the PostgreSQL server instance as well as
default settings for new databases. Many settings—such as sorting memory—can be
overriden at the database, user, session, and even function levels for PostgreSQL ver-
sions higher than 8.3.

Details on how to tune this can be found at Tuning Your PostgreSQL Server.

An easy way to check the current settings you have is to query the pg_settings view, as
we demonstrate in Example 2-2. Details of the various columns of information and
what they mean are described in pg_settings.

Example 2-2. Key Settings

SELECT name, context , unit
 , setting , boot_val , reset_val
FROM pg_settings
WHERE name
in('listen_addresses','max_connections','shared_buffers','effective_cache_size',
'work_mem', 'maintenance_work_mem')
ORDER BY context,name;

name | context | unit | setting | boot_val | reset_val
---------------------+------------+------+---------+-----------+-----------
listen_addresses | postmaster | | * | localhost | *
max_connections | postmaster | | 100 | 100 | 100
shared_buffers | postmaster | 8kB | 4096 | 1024 | 4096
effective_cache_size | user | 8kB | 16384 | 16384 | 16384
maintenance_work_mem | user | kB | 16384 | 16384 | 16384
work_mem | user | kB | 1024 | 1024 | 1024

If context is set to postmaster, it means changing this parameter requires a
restart of the postgresql service. If context is set to user, changes require at
least a reload. Furthermore, these settings can be overridden at the database,
user, session, or function levels.

unit tells you the unit of measurement that the setting is reported in. This is
very important for memory settings since, as you can see, some are reported

10 | Chapter 2: Database Administration

http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://www.postgresql.org/docs/current/interactive/view-pg-settings.html

in 8 kB and some in kB. In postgresql.conf, usually you explicitly set these to
a unit of measurement you want to record in, such as 128 MB. You can also
get a more human-readable display of a setting by running the statement:
SHOW effective_cache_size;, which gives you 128 MB, or SHOW mainte
nance_work_mem;, which gives you 16 MB for this particular case. If you want
to see everything in friendly units, use SHOW ALL.

setting is the currently running setting in effect; boot_val is the default set-
ting; reset_val is the new value if you were to restart or reload. You want to
make sure that after any change you make to postgresql.conf the setting and
reset_val are the same. If they are not, it means you still need to do a reload.

We point out the following parameters as ones you should pay attention to in
postgresql.conf. Changing their values requires a service restart:

• listen_addresses tells PostgreSQL which IPs to listen on. This usually defaults to
localhost, but many people change it to *, meaning all available IPs.

• port defaults to 5432. Again, this is often set in a different file in some distributions,
which overrides this setting. For instance, if you are on a Red Hat or CentOS, you
can override the setting by setting a PGPORT value in /etc/sysconfig/pgsql/your_ser
vice_name_here.

• max_connections is the maximum number of concurrent connections allowed.

• shared_buffers defines the amount of memory you have shared across all connec-
tions to store recently accessed pages. This setting has the most effect on query
performance. You want this to be fairly high, probably at least 25% of your on-
board memory.

The following three settings are important, too, and take effect without requiring a
restart, but require at least a reload, as described in “Reload the Configuration
Files” on page 14.

• effective_cache_size is an estimate of how much memory you expect to be avail-
able in the OS and PostgreSQL buffer caches. It has no affect on actual allocation,
but is used only by the PostgreSQL query planner to figure out whether plans under
consideration would fit in RAM or not. If it’s set too low, indexes may be underu-
tilized. If you have a dedicated PostgreSQL server, then setting this to half or more
of your on-board memory would be a good start.

• work_mem controls the maximum amount of memory allocated for each operation
such as sorting, hash join, and others. The optimal setting really depends on the
kind of work you do, how much memory you have, and if your server is a dedicated
database server. If you have many users connecting, but fairly simple queries, you
want this to be relatively low. If you do lots of intensive processing, like building
a data warehouse, but few users, you want this to be high. How high you set this
also depends on how much motherboard memory you have. A good article to read

Configuration Files | 11

on the pros and cons of setting work_mem is Understanding postgresql.conf
work_mem.

• maintenance_work_mem is the total memory allocated for housekeeping activities like
vacuuming (getting rid of dead records). This shouldn’t be set higher than about
1 GB.

The above settings can also be set at the database, function, or user level. For example,
you might want to set work_mem higher for a power user who runs sophisticated queries.
Similarly, if you have a sort-intensive function, you could raise the work_mem just for it.

I edited my postgresql.conf and now my server is broken.
The easiest way to figure out what you did wrong is to look at the log
file, which is located in the root of the data folder, or in the subfolder
pg_log. Open up the latest file and read what the last line says. The error
notice is usually self-explanatory.

A common culprit is that you set the shared_buffers too high. Another
common cause of failures is that there is an old postmaster.pid hanging
around from a failed shutdown. You can safely delete this file which is
located in the data cluster folder and try to restart again.

The pg_hba.conf File
The pg_hba.conf controls which and how users can connect to PostgreSQL databases.
Changes to the pg_hba.conf require a reload or a server restart to take effect. A typical
pg_hba.conf looks like this:

TYPE DATABASE USER ADDRESS METHOD
IPv4 local connections:
host all all 127.0.0.1/32 ident
IPv6 local connections:
host all all ::1/128 trust
host all all 192.168.54.0/24 md5
hostssl all all 0.0.0.0/0 md5
Allow replication connections from localhost, by a user with the
replication privilege.
#host replication postgres 127.0.0.1/32 trust
#host replication postgres ::1/128 trust

Authentication method. ident, trust, md5, password are the most common and al-
ways available. Others such as gss, radius, ldap, and pam, may not always be in-
stalled.

IPv4 syntax for defining network range. The first part in this case 192.168.54.0 is
the network address. The /24 is the bit mask. In this example, we are allowing anyone
in our subnet of 192.168.54.0 to connect as long as they provide a valid md5 en-
crypted password.

IPv6 syntax for defining localhost. This only applies to servers with IPv6 support
and may cause the configuration file to not load if you have it and don’t have IPv6.

12 | Chapter 2: Database Administration

http://www.depesz.com/2011/07/03/understanding-postgresql-conf-work_mem
http://www.depesz.com/2011/07/03/understanding-postgresql-conf-work_mem

For example, on a Windows XP or Windows 2003 machine, you shouldn’t have this
line.

Users must connect through SSL. In our example, we allow anyone to connect to
our server as long as they connect using SSL and have a valid md5-encrypted pass-
word.

Defines a range of IPs allowed to replicate with this server. This is new in PostgreSQL
9.0+. In this example, we have the line remarked out.

For each connection request, postgres service checks the pg_hba.conf file in order from
the top down. Once a rule granting access is encountered, processing stops and the
connection is allowed. Should the end of the file be reached without any matching rules,
the connection is denied. A common mistake people make is to not put the rules in
order. For example, if you put 0.0.0.0/0 reject before you put 127.0.0.1/32 trust, local
users won’t be able to connect, even though you have a rule allowing them to do so.

I edited my pg_hba.conf and now my database server is broken.
This occurs quite frequently, but it’s easily recoverable. This error is
generally caused by typos, or by adding an unavailable authentication
scheme. When the postgres service can’t parse the pg_hba.conf file, it’ll
block all access or won’t even start up. The easiest way to figure out
what you did wrong is to read the log file. This is located in the root of
the data folder or in the sub folder pg_log. Open up the latest file and
read the last line. The error message is usually self-explanatory. If you’re
prone to slippery fingers, consider backing up the file prior to editing.

Authentication Methods

PostgreSQL has many methods for authenticating users, probably more than any other
database. Most people stick with the four main ones: trust, ident, md5, and password.
There is also a fifth one: reject. which performs an immediate deny. Authentication
methods stipulated in pg_hba.conf serve as gatekeepers to the entire server. Users or
devices must still satisfy individual role and database access restrictions after connect-
ing.

We list the most commonly used authentication methods below. For more information
on the various authentication methods, refer to PostgreSQL Client Authentication.

• trust is the least secure of the authentication schemes and means you allow people
to state who they are and don’t care about the passwords, if any, presented. As
long as they meet the IP, user, and database criteria, they can connect. You really
should use this only for local connections or private network connections. Even
then it’s possible to have IPs spoofed, so the more security-minded among us dis-
courage its use entirely. Nevertheless, it’s the most common for PostgreSQL in-
stalled on a desktop for single user local access where security is not as much of a
concern.

Configuration Files | 13

http://www.postgresql.org/docs/current/interactive/client-authentication.html

• md5 is the most common and means an md5-encrypted password is required.

• password means clear text password authentication.

• ident uses the pg_ident.conf to see if the OS account of the user trying to connect
has a mapping to a PostgreSQL account. Password is not checked.

You can have multiple authentication methods, even for the same database; just keep
in mind the top to bottom checking of pg_hba.conf.

Reload the Configuration Files
Many, but not all changes, to configuration files require restarting the postgres service.
Many changes take effect by performing a reload of the configuration. Reloading
doesn’t affect active connections. Open up a command line and follow these steps to
reload:

pg_ctl reload -D your_data_directory_here

If you have PostgreSQL installed as a service in Redhat EL or CentOS, you can do:

service postgresql-9.1 reload

where postgresql-9.1 is the name of your service.

You can also log in as a super user on any database and run this SQL statement:

SELECT pg_reload_conf();

You can also do this from pgAdmin, refer to “Editing postgresql.conf and pg_hba.conf
from pgAdmin” on page 47.

Setting Up Groups and Login Roles (Users)
In PostgreSQL, there is really only one kind of an account and that is a role. Some roles
can log in; when they have login rights, they are called users. Roles can be members of
other roles, and when we have this kind of relationship, the containing roles are called
groups. It wasn’t always this way, though: Pre-8.0 users and groups were distinct en-
tities, but the model got changed to be role-centric to better conform to the ANSI-SQL
specs.

For backward compatibility, there is still a CREATE USER and CREATE GROUP. For the rest
of this discussion, we’ll be using the more generic CREATE ROLE , which is used to create
both users and groups.

If you look at fairly ANSI-SQL standard databases such as Oracle and later versions of
SQL Server, you’ll notice they also have a CREATE ROLE statement, which works similarly
as the PostgreSQL one.

14 | Chapter 2: Database Administration

http://www.postgresql.org/docs/9.1/static/sql-createrole.html

Creating an Account That Can Log In
postgres is an account that is created when you first initialize the PostgreSQL data
cluster. It has a companion database called postgres. Before you do anything else, you
should login as this user via psql or pgAdmin and create other users. pgAdmin has a
graphical section for creating user roles, but if you were to do it using standard SQL
data control language (DCL), you would execute an SQL command as shown in
Example 2-3.

Example 2-3. User with login rights that can create database objects

CREATE ROLE leo LOGIN PASSWORD 'lion!king'
CREATEDB VALID UNTIL 'infinity';

The 'infinity' is optional and assumed if not specified. You could instead put in a
valid date at which you want the account to expire.

If you wanted to create a user with super rights, meaning they can cause major de-
struction to your database cluster and can create what we call untrusted language
functions, you would create such a user as shown in Example 2-4. You can only create
a super user if you are a super user yourself.

Example 2-4. User with login rights that can create database objects

CREATE ROLE regina LOGIN PASSWORD 'queen!penultimate'
 SUPERUSER VALID UNTIL '2020-10-20 23:00';

As you can see, we don’t really want our queen to reign forever, so we put in a timestamp
when her account will expire.

Creating Group Roles
Group roles are generally roles that have no login rights but have other roles as mem-
bers. This is merely a convention. There is nothing stopping you from creating a role
that can both login and can contain other roles.

We can create a group role with this SQL DCL statement:

CREATE ROLE jungle INHERIT;

And add a user or other group role to the group with this statement:

GRANT jungle TO leo;

Roles Inheriting Rights
One quirky thing about PostgreSQL is the ability to define a role that doesn’t allow its
member roles to inherit its rights. The concept comes into play when you define a role
to have member roles. You can designate that members of this role don’t inherit rights
of the role itself. This is a feature that causes much confusion and frustration when

Setting Up Groups and Login Roles (Users) | 15

setting up groups, as people often forget to make sure that the group role is marked to
allow its permissions as inheritable.

Non-Inheritable rights

Some permissions can’t be inherited. For example, while you can create a group role
that you mark as super user, this doesn’t make its member roles super users; however,
those users can impersonate their parent role, thus gaining super power rights for a
brief period.

Databases and Management
The simplest create database statement to write is:

CREATE DATABASE mydb;

The owner of the database will be the logged in user and is a copy of template1 database.

Creating and Using a Template Database
A template database is, as the name suggests, a database that serves as a template for
other databases. In actuality, you can use any database as template for another, but
PostgreSQL allows you to specifically flag certain databases as templates. The main
difference is that a database marked as template can’t be deleted and can be used by
any user having CREATEDB rights (not just superuser) as a template for their new database.
More details about template databases are described in the PostgreSQL manual Man-
aging Template Databases.

The template1 database that is used as the default when no template is specified, doesn’t
allow you to change encodings. As such, if you want to create a database with an
encoding and collation different from your default, or you installed extensions in tem
plate1 you don’t want in this database, you may want to use template0 instead.

CREATE DATABASE mydb TEMPLATE template0;

If we wanted to make our new database a template, we would run this SQL statement
as a super user:

UPDATE pg_database SET datistemplate=true WHERE datname='mydb';

This would allow other users with CREATEDB rights to use this as a template. It will also
prevent the database from being deleted.

Organizing Your Database Using Schemas
Schemas are a logical way of partitioning your database into mini-containers. You can
divide schemas by functionality, by users, or by any other attribute you like. Aside from
logical partitioning, they provide an easy way for doling out rights. One common prac-

16 | Chapter 2: Database Administration

http://www.postgresql.org/docs/current/interactive/manage-ag-templatedbs.html
http://www.postgresql.org/docs/current/interactive/manage-ag-templatedbs.html

tice is to install all contribs and extensions, covered in “Extensions and Con-
tribs” on page 18 into a separate schema and give rights to use for all users of a
database.

To create a schema called contrib in a database, we connect to the database and run
this SQL:

CREATE SCHEMA contrib;

The default search_path defined in postgresql.conf is "$user",public. This means that
if there is a schema with the same name as the logged in user, then all non-schema
qualified objects will first check the schema with the same name as user and then the
public schema. You can override this behavior at the user level or the database level.
For example, if we wanted all objects in contrib to be accessible without schema qual-
ification, we would change our database as follows:

ALTER DATABASE mydb SET search_path="$user",public,contrib;

Schemas are also used for simple abstraction. A table name only needs to be unique
within the schema, so many applications exploit this by creating same named tables in
different schemas and, depending on who is logging in, they will get their own version
based on which is their primary schema.

Permissions
Permissions are one of the trickiest things to get right in PostgreSQL. This is one feature
that we find more difficult to work with than other databases. Permission management
became a lot easier with the advent of PostgreSQL 9.0+. PostgreSQL 9.0 introduced
default permissions, which allowed for setting permissions on all objects of a particular
schema or database as well as permissions on specific types of objects. More details on
permissions management are detailed in the manual, in sections ALTER DEFAULT
PRIVILEGES and GRANT.

Getting back to our contrib schema. Let’s suppose we want all users of our database
to have EXECUTE and SELECT access to any tables and functions we will create in the
contrib schema. We can define permissions as shown in Example 2-5:

Example 2-5. Defining default permissions on a schema

GRANT USAGE ON SCHEMA contrib TO public;
ALTER DEFAULT PRIVILEGES IN SCHEMA contrib
GRANT SELECT, REFERENCES, TRIGGER ON TABLES
 TO public;

ALTER DEFAULT PRIVILEGES IN SCHEMA contrib
 GRANT SELECT, UPDATE ON SEQUENCES
 TO public;

ALTER DEFAULT PRIVILEGES IN SCHEMA contrib
 GRANT EXECUTE ON FUNCTIONS
 TO public;

Databases and Management | 17

http://www.postgresql.org/docs/current/interactive/sql-alterdefaultprivileges.html
http://www.postgresql.org/docs/current/interactive/sql-alterdefaultprivileges.html
http://www.postgresql.org/docs/current/interactive/sql-grant.html

ALTER DEFAULT PRIVILEGES IN SCHEMA contrib
 GRANT USAGE ON TYPES
 TO public;

If you already have your schema set with all the tables and functions, you can retroac-
tively set permissions on each object separately or do this for all existing tables, func-
tions, and sequences with a GRANT .. ALL .. IN SCHEMA.

Example 2-6. Set permissions on existing objects of a type in a schema

GRANT USAGE ON SCHEMA contrib TO public;
GRANT SELECT, REFERENCES, TRIGGER
 ON ALL TABLES IN SCHEMA contrib
 TO public;

GRANT EXECUTE ON ALL FUNCTIONS IN SCHEMA contrib TO public;
GRANT SELECT, UPDATE ON ALL SEQUENCES IN SCHEMA contrib TO public;

If you find this all overwhelming for setting permissions, just use pgAd-
min for permission management. pgAdmin provides a great interface
for setting default permissions, as well as retroactively granting bulk
permissions of selective objects. We’ll cover this feature in “Creating
Databases and Setting Permissions” on page 47.

Extensions and Contribs
Extensions and contribs are add-ons that you can install in a PostgreSQL database to
extend functionality beyond the base offerings. They exemplify the best feature of open
source software: people collaborating, building, and freely sharing new features. Prior
to PostgreSQL 9.1, the add-ons were called contribs. Since PostgreSQL 9.1+, add-ons
are easily installed using the new PostgreSQL extension model. In those cases, the term
extension has come to replace the term contrib. For the sake of consistency, we’ll be
referring to all of them by the newer name of extension, even if they can’t be installed
using the newer extension model.

The first thing to know about extensions is that they are installed separately in each
database. You can have one database with the fuzzy text support extension and another
that doesn’t. If you want all your databases to have a certain set of extensions installed
in a specific schema, you can set up a template database as discussed in “Creating and
Using a Template Database” on page 16 with all these installed, and then create all
your databases using that template.

To see which extensions you have already installed, run the query in Example 2-7:

Example 2-7. List extensions installed

SELECT *
FROM pg_available_extensions

18 | Chapter 2: Database Administration

WHERE comment LIKE '%string%' OR installed_version IS NOT NULL
ORDER BY name;

name | default_version | installed_version | comment
--------------+-----------------+-------------------+------------------------
citext | 1.0 | | data type for case-insen..
fuzzystrmatch | 1.0 | 1.0 | determine simil.. and dist..
hstore | 1.0 | 1.0 | data type for .. (key, value) ..
pg_trgm | 1.0 | 1.0 | text similarity measur..index sear..
plpgsql | 1.0 | 1.0 | PL/pgSQL procedural language
postgis | 2.0.0 | 2.0.0 | geometry, geography,..raster ..
temporal | 0.7.1 | 0.7.1 | temporal data type ..

To get details about a particular installed extension, enter the following command from
psql:

\dx+ fuzzystrmatch

Or run this query:

SELECT pg_catalog.pg_describe_object(d.classid, d.objid, 0) AS description
FROM pg_catalog.pg_depend AS D
 INNER JOIN pg_extension AS E ON D.refobjid = E.oid
WHERE D.refclassid = 'pg_catalog.pg_extension'::pg_catalog.regclass
 AND deptype = 'e' AND E.extname = 'fuzzystrmatch';

Which outputs what is packaged in the extension:

description
--
function dmetaphone_alt(text)
function dmetaphone(text)
function difference(text,text)
function text_soundex(text)
function soundex(text)
function metaphone(text,integer)
function levenshtein_less_equal(text,text,integer,integer,integer,integer)
function levenshtein_less_equal(text,text,integer)
function levenshtein(text,text,integer,integer,integer)
function levenshtein(text,text)

Installing Extensions
Regardless of how you install an extension in your database, you’ll need to have gath-
ered all the dependent libraries in your PostgreSQL bin and lib, or have them accessible
via your system path. For small extensions, most of these libraries already come pre-
packaged with your PostgreSQL install so you don’t have to worry. For others, you’ll
either need to compile your own, get them with a separate install, or copy the files from
another equivalent setup.

Extensions and Contribs | 19

The Old Way

Prior to PostgreSQL 9.1, the only way to install an extension was to manually run the
requisite SQL scripts in your database. Many extensions still can only be installed this
way.

By convention, add-ons scripts are automatically dumped into the contrib folder of your
PostgreSQL if you use an installer. Where you’d find this folder will depend on your
particular OS and distro. As an example, on a CentOS running 9.0, to install the pgAd-
min pack, one would run the following from the command line:

psql -p 5432 -d postgres -f /usr/pgsql-9.0/share/contrib/adminpack.sql

The New Way

With PostgreSQL 9.1 and above, you can use the CREATE EXTENSION command. The two
big benefits are that you don’t have to figure out where the extension files are kept (they
are kept in a folder share/extension), and you can uninstall just as easily with DROP
EXTENSION. Most of the common extensions are packaged with PostgreSQL already, so
you really don’t need to do more than run the command. To retrieve extensions not
packaged with PostgreSQL, visit the PostgreSQL Extension Network. Once you have
downloaded, compiled, and installed (install just copies the scripts and .control to
share/extension, and the respective binaries to bin and lib) the new extension, run CREATE
EXTENSION extension_name to install in specific database. Here is how we would install
the fuzzystrmatch extension in PostgreSQL 9.1+: the new way no longer requires psql
since CREATE EXTENSION is part of the PostgreSQL’s SQL language. Just connect to the
database you want to install the extension and run the SQL command:

CREATE EXTENSION fuzzystrmatch;

If you wanted all your extensions installed in a schema called my_extensions, you
would first create the schema, and install the extensions:

CREATE EXTENSION fuzzystrmatch SCHEMA my_extensions;

Upgrading from Old to New

If you’ve been using a version of PostgreSQL before 9.1 and restored your old database
into a 9.1 during a version upgrade, all add-ons should continue to work untouched.
For maintainability, you’ll probably want to upgrade your old extensions in the con-
trib folder to use the new extensions approach. Many extensions, especially the ones
that come packaged with PostgreSQL, have ability to upgrade pre-extension installs.
Let’s suppose you had installed the tablefunc extension (which provides cross tabula-
tion functions) to your PostgreSQL 9.0 in a schema called contrib, and you’ve just
restored your database to a PostgreSQL 9.1 server. Run the following command to
upgrade the extension:

CREATE EXTENSION tablefunc SCHEMA contrib FROM unpackaged;

20 | Chapter 2: Database Administration

http://pgxn.org/

You’ll notice that the old functions are still in the contrib schema, but moving forward
they will no longer be backed up and your backups will just have a
CREATE EXTENSION .. clause.

Common Extensions
Many extensions come packaged with PostgreSQL, but are not installed by default.
Some past extensions have gained enough traction to become part of the PostgreSQL
core, so if you’re upgrading from an ancient version, you may not even have to worry
about extensions.

Old Extensions Absorbed into PostgreSQL

Prior to PostgreSQL 8.3, the following extensions weren’t part of core:

• PL/PgSQL wasn’t always installed by default in every database. In old versions,
you had to run CREATE LANGUAGE plpgsql; in your database. From around 8.3 on,
it’s installed by default, but you retain the option of uninstalling it.

• tsearch is a suite for supporting full-text searches by adding indexes, operators,
custom dictionaries, and functions. It became part of PostgreSQL core in 8.3. You
don’t have the option to uninstall it. If you’re still relying on old behavior, you can
install the tsearch2 extension, which retained old functions that are no longer
available in the newer version. A better approach would be just to update where
you’re using the functions because compatiblity with the old tsearch could end at
any time.

• xml is an extension that adds in support of XML data type and related functions
and operators. As of version 8.3, XML became an integral part of PostgreSQL, in
part to meet the ANSI-SQL XML standard. The old extension, now dubbed
xml2, can still be installed and contains functions that didn’t make it into the core.
In particular, you need this extension if you relied on the xlst_process() function
for processing XSL templates. There are also a couple of old XPath functions not
found in the core.

Popular Extensions

In this section, we’ll list and quickly describe the most popular, and some may say,
must-have extensions, that aren’t part of current core.

• postgis elevates PostgreSQL to a state-of-the-art spatial database outrivaling all
commercial options. If you deal with standard OGC GIS data, demographic sta-
tistics data, or geocoding, you don’t want to be without this one. You can learn
more about PostGIS in our book, PostGIS in Action. Part of the book’s proceeds
will help fund the PostGIS project itself. PostGIS is a whopper of an extension,
weighing in at over 800 functions, types, and spatial indexes.

Extensions and Contribs | 21

http://www.postgresql.org/docs/current/interactive/textsearch-intro.html
http://www.postgresql.org/docs/current/interactive/tsearch2.html
http://www.postgresql.org/docs/current/interactive/functions-xml.html
http://www.postgresql.org/docs/current/interactive/xml2.html
http://www.postgresql.org/docs/current/interactive/xml2.html
http://www.postgis.org
http://www.postgis.us

• fuzzystrmatch is a lightweight extension with functions like soundex, levenshtein,
and metaphone for fuzzy string matching. We discuss its use in Where is Soundex
and Other Warm and Fuzzy Things.

• hstore is an extension that adds key-value pair storage and index support well-
suited for storing pseudo-normalized data. If you are looking for a comfortable
medium between relational and NoSQL, check out hstore.

• pg_trgm (trigram) is an extension that is another fuzzy string search library. It is
often used in conjunction with fuzzystrmatch. In PostgreSQL 9.1, it takes on an-
other special role in that it makes ILIKE searches indexable by creating a trigram
index. Trigram can also index wild-card searches of the form LIKE '%something
%'. Refer to Teaching ILIKE and LIKE New Tricks for further discussion.

• dblink is a module that allows you to query other PostgreSQL databases. This is
currently the only supported mechanism of cross-database interaction for Post-
greSQL. In PostgreSQL 9.3, foreign data wrapper for PostgreSQL is expected to
hit the scene.

• pgcrypto provides various encryption tools including the popular PGP. We have a
quick primer on using it available here: Encrypting Data with pgcrypto.

As of 9.1, less used procedural languages (PLs), index types, and foreign data wrappers
(FDW) are also packaged as extensions.

Backup
PostgreSQL comes with two utilities for backup—pg_dump and pg_dumpall. You’ll
find both in the bin folder. You use pg_dump to backup specific databases, and
pg_dumpall to backup all databases and server globals. pg_dumpall needs to run under
a postgres super user account so it has access to backup all databases. You will notice
that most of the commands for these tools will have both long names as well as equiv-
alent short switches. You can use them interchangeably, even in the same command.
We’ll be covering just the basics here, but for a more in-depth discussion, refer to the
PostgreSQL Backup and Restore section of the official manual.

We often specify the port and host in these commands because we often
run them via scheduled jobs not on the same machine; or we have several
instances of PostgreSQL running on the same box, each running on a
different port. Sometimes specifying the -h or --host switch, for ex-
ample, may cause problems if your service is set to only listen on local.
You can safely leave it out if you are running from the server.

You may also want to employ the use of ~pgpass since none of these
command lines give you the option of specifying a password.

22 | Chapter 2: Database Administration

http://www.postgresql.org/docs/current/interactive/fuzzystrmatch.html
http://www.postgresonline.com/journal/archives/158-Where-is-soundex-and-other-warm-and-fuzzy-string-things.html
http://www.postgresonline.com/journal/archives/158-Where-is-soundex-and-other-warm-and-fuzzy-string-things.html
http://www.postgresql.org/docs/current/interactive/hstore.html
http://www.postgresql.org/docs/current/interactive/pgtrgm.html
http://www.postgresonline.com/journal/archives/212-PostgreSQL-9.1-Trigrams-teaching-LIKE-and-ILIKE-new-tricks.html
http://www.postgresql.org/docs/current/interactive/dblink.html
http://www.postgresql.org/docs/current/interactive/pgcrypto.html
http://www.postgresonline.com/journal/archives/165-Encrypting-data-with-pgcrypto.html
http://www.postgresql.org/docs/current/interactive/backup.html
http://www.postgresql.org/docs/current/interactive/libpq-pgpass.html

Selective Backup Using pg_dump
For day-to-day backup, pg_dump is generally more expeditious than pg_dumpall be-
cause it can selectively backup tables, schemas, databases. pg_dump backs up to plain
SQL, but also compressed and TAR formats. Compressed and TAR backups can take
advantage of the parallel restore feature introduced in 8.4. Refer to “Database Backup:
pg_dump” on page 138 for a listing of pg_dump command options.

In this example, we’ll show a few common backup scenarios and corresponding
pg_dump switches. These examples should work for any version of PostgreSQL.

Example 2-8. pg_dump usage

Creates a compressed, single database backup:

pg_dump -h localhost -p 5432 -U someuser -F c -b -v -f mydb.backup mydb

Creates a plain-text single database backup, including Creates database:

pg_dump -h localhost -p 5432 -U someuser -C -F p -b -v -f mydb.backup mydb

Creates a compressed backup of tables with a name that starts with payments in any
schema:

pg_dump -h localhost -p 5432 -U someuser -F c -b -v -t *.payments* -f payment_tables.backup
mydb

Creates a compressed backup of all objects in hr and payroll schemas:

pg_dump -h localhost -p 5432 -U someuser -F c -b -v -n hr -n payroll -f
hr_payroll_schemas.backup mydb

Creates a compressed backup of all objects in all schemas, excluding public schemas:

pg_dump -h localhost -p 5432 -U someuser -F c -b -v -N public -f
all_schema_except_public.backup mydb

Creates a plain-text SQL backup of select tables, useful for porting to lower versions
of PostgreSQL or other database systems:

pg_dump -h localhost -p 5432 -U someuser -F p --column-inserts -f select_tables.backup mydb

If you have spaces in your file paths, you’ll want to wrap the file path in
double quotes: "/path with spaces/mydb.backup". As a general rule, you
can always use double quotes if you aren’t sure.

The Directory format option was introduced in PostgreSQL 9.1. This option backs up
each table as a separate file in a folder and gets around the problem where your file
system has limitations on the size of each file. It is the only pg_dump backup format
option that generates multiple files. An example of this is shown in Example 2-8. The
directory backup first creates the directory to put the files in and errors out if the di-
rectory already exists.

Backup | 23

Example 2-9. Directory format backup

The a_directory is created and in the folder, a separate gzipped file for each table and
a file that has all the structures listed.

pg_dump -h localhost -p 5432 -U someuser -F d -f /somepath/a_directory mydb

Systemwide Backup Using pg_dumpall
The pg_dumpall utility is what you would use to backup all databases into a single
plain-text file, along with server globals such as tablespace definitions and users. Refer
to “Server Backup: pg_dumpall” on page 140 for listing of available pg_dumpall com-
mand options.

It’s a good idea to backup globals such as roles and tablespace definitions on a daily
basis. Although you can use pg_dumpall to backup databases as well, we generally don’t
bother or do it—at most, once a month—since it would take much longer to restore
the plain text backup for large databases.

To backup roles and tablespaces:

pg_dumpall -h localhost -U postgres --port=5432 -f myglobals.sql --globals-only

If you only care about backing up roles and not tables spaces, you would use the roles
only option:

pg_dumpall -h localhost -U postgres --port=5432 -f myroles.sql --roles-only

Restore
There are two ways of restoring in PostgreSQL:

• Using psql to restore plain text backups generated with pg_dumpall or pg_dump

• Using pg_restore utility for restoring compressed, tar and directory backups created
with pg_dump

Terminating Connections
Before you can perform a full drop and restore of a database or restore a particular table
that’s in use, you’ll need to kill connections. Every once in a while, someone else (never
you) will execute a query that he or she didn’t mean to and end up wasting resources.
You could also run into a query that’s taking much longer than what you have the
patience for. Should these things happen, you’ll either want to cancel the query on the
connection or kill the connection entirely. To cancel running queries or to terminate
connections, you elicit three administrative functions.

• pg_stat_activity (SELECT * FROM pg_stat_activity;) is a view that will list cur-
rently active connections and the process id. Additionally, it’ll provide details of
the active query running on each connection, the connected user (usename), the

24 | Chapter 2: Database Administration

database (datname) in use, and start times of query currently running. You need
this view to obtain the proc ids of connections that you wish to terminate.

• pg_cancel_backend(procid) (SELECT pg_cancel_backend(procid);) will cancel all ac-
tive queries on a connection, but doesn’t terminate the connection.

• pg_terminate_backend(procid) (SELECT pg_terminate_backend(procid);) will kill a
specific connection. All running queries will automatically cancel. This will be your
weapon of choice prior to a restore to prevent an eager user from immediately
restarting a cancelled query.

PostgreSQL, unlike some other databases, lets you embed functions that perform ac-
tions within a regular SELECT query. This means that though pg_terminate_backend()
and pg_cancel_backend() can only act on one connection at a time, you can effectuate
multiple connections by wrapping them in a SELECT. For example, let’s suppose a user
(Regina) was hogging up resources and had 100 connections going. We can kill all her
connections by running this command:

Before 9.2:

SELECT pg_terminate_backend(procpid) FROM pg_stat_activity WHERE usename = 'regina';

9.2 and after:

SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE usename = 'regina';

pg_stat_activity has changed considerably in PostgreSQL 9.2 with renaming and ad-
dition of new columns. For example, procpid is now pid. More details about the changes
and enhancements are detailed in PostgreSQL 9.2 Monitoring Enhancements.

Using psql to Restore Plain Text SQL backups
A plain SQL backup is nothing more than a text file of a huge SQL script. It’s the least
convenient of backups to have, but it’s portable across different database systems. With
SQL backup, you must execute the entire script, there’s no partial restore, unless you’re
willing to manually edit the file. Since there are no options, the backups are simple to
restore by using the -f psql switch as shown in Example 2-10. However, they are useful
if you need to load data to another DBMS with some editing.

Example 2-10. Restores plain text SQL backups

Restores a full backup and ignore errors:

psql -U postgres -f myglobals.sql

Restores and stops on first error:

psql -U postgres --set ON_ERROR_STOP=on -f myglobals.sql

Restores a partial backup to a specific database:

psql -U postgres -d mydb -f select_objects.sql

Restore | 25

http://blogs.openscg.com/2012/04/30/monitoring-enchancements-in-pg9-2/

Using pg_restore
If you backed up using pg_dump, you can use the versatile pg_restore utility for the
restore. pg_restore provides you with a dizzying array of options for restoration and far
surpasses any restoration utility found in other database systems. Here are some of its
outstanding features:

• As of 8.4, you can do parallel restores using the -j switch to control the number
of threads to use. This allows each thread to be restoring a separate table simulta-
neously, which significantly speeds up restores.

• You can generate a plain text table of contents from your backup file to confirm
what has been backed up. You have the ability to edit this table of contents and
use the revision to control which database objects will be restored.

• Just as pg_dump allows you to do selective backups of objects to save time, pg_re-
store allows you to do selective restores even from a backup that contains a full
database.

• For the most part, pg_restore and pg_dump are backward-compatible. You can
backup a database on an older version and restore using a newer version.

Refer to “Database Backup: pg_restore” on page 141 for a listing of pg_restore com-
mand options.

A basic restore command of a compressed or TAR backup would be to first create the
database in SQL:

CREATE DATABASE mydb;

and then restore:

pg_restore --dbname=mydb --jobs=4 --verbose mydb.backup

If the database is the same as the one you backed up, you can create the database in
ones step with the following:

pg_restore --dbname=postgres --create --jobs=4 --verbose mydb.backup

If you use the --create switch, the --dbname switch needs to be different
from the database being created, since you can’t really run anything
within the context of a database that has yet to be created. The downside
of using --create is that the database name is always the name of the one
you backed up and you can’t change it during the restore.

If you are running 9.2, you can take advantage of the --section switch to restore just
the table structure without the actual data. This is useful if you want to use an existing
database as a template for a new one. To do so, we would first create the target database
using psql or pgAdmin:

CREATE DATABASE mydb2;

26 | Chapter 2: Database Administration

and then use pg_restore:

pg_restore --dbname=mydb2 --section=pre-data --jobs=4 mydb.backup

Managing Disk Space with Tablespaces
PostgreSQL uses tablespaces to ascribe logical names to physical locations on disk.
Initializing a PostgreSQL cluster automatically begets two tablespaces: pg_default,
which stores for all user data and pg_global, which stores all system data. These are
located in the same folder as your default data cluster. You’re free to create tablespaces
at will and house them on any server disks. You can explicitly assign default tablespaces
for new objects by database. You can also move existing database objects to new ones.

Creating Tablespaces
To create a tablespace, you just need to denote a logical name and a physical folder.
The postgres service account needs to have full access to this folder. If you are on a
Windows server, use the following command (note the use of Unix-style slashes):

CREATE TABLESPACE secondary LOCATION 'C:/pgdata91_secondary';

For Unix-based systems, you first have to create the folder or define an fstab location
then use this command:

CREATE TABLESPACE secondary LOCATION '/usr/data/pgdata91_secondary';

Moving Objects Between Tablespaces
You can shuffle database objects among different tablespaces. To move all objects in
the database to our secondary tablespace:

ALTER DATABASE mydb SET TABLESPACE secondary;

To move just a table:

ALTER TABLE mytable SET TABLESPACE secondary;

Moving a table to another tablespace locks it for the duration of the
move.

Verboten
We have seen so many ways that people manage to break their PostgreSQL server that
we thought it best to end this chapter itemizing the most common mistakes that people
make. For starters, if you don’t know what you did wrong the log file could provide
clues. Look for the pg_log folder in your PostgreSQL data folder or the root of the

Verboten | 27

PostgreSQL data folder for the log files. It’s also quite possible that your server shut-
down before a log entry could be written in which case the log won’t help you. Should
your server fail to restart, try the command line by using:

path/to/your/bin/pg_ctl -D your_postgresql_data_folder

Delete PostgreSQL Core System Files and Binaries
When people run out of disk space, the first thing they do is panic and start deleting
files from the PostgreSQL data cluster folder because it’s so big. Part of the reason why
this mistake happens so frequently is that some folders such as pg_log, pg_xlog, and
pg_clog sound like logging folders that you expect to build up and be safe to delete.
There are some files you can safely delete, and some that will destroy your data if you do.

The pg_log folder often found in your data folder is a folder that tends to build up,
especially if you have logging enabled. Files in this folder can always be safely deleted
without issues. In fact, many people just schedule jobs to delete them.

Files in the other folders except for pg_xlog should never be deleted, even if they sound
like logs. In particular, don’t even think of touching pg_clog, the active commit log,
without getting into trouble.

pg_xlog stores transaction logs. Some systems we’ve seen are configured to move pro-
cessed transaction logs in a subfolder called archive. You’ll often have an archive folder
somewhere (not necessarily as a subfolder of pg_xlog) if you are running synchoronous
replication, continuous archiving, or just keeping around logs if you need to revert to
a different point in time. Deleting files in the root of pg_xlog will destroy data, however,
deleting files in the archived folder will just prevent you from performing point-in-time
recovery, or if a slave server hasn’t played back the logs, prevent them from fetching
them. If you aren’t concerned about any of these scenarios, then it’s safe to delete or
move files in the archive folder.

Be weary of overzealous anti-virus programs, especially on Windows. We’ve seen cases
where AV software removed important binaries in the PostgreSQL bin folder. Should
PostgreSQL fail to start on a Windows system, the event viewer is the first place to look
for clues as to why.

Giving Full Administrative Rights to the Postgres System (Daemon) Account
Many people are under the misconception that the postgres account needs to have full
administrative rights to the server. In fact, depending on your PostgreSQL version, if
you give the postgres account full administrative rights to the server, your database
server may not even start.

The postgres system account should always be created as a regular system user in the
OS with just rights to the data cluster and additional tablespace folders. Most installers
will set up the correct permissions for postgres. Don’t try to any favors by giving post-

28 | Chapter 2: Database Administration

gres more rights than it needs. Granting unnecessary rights leaves your system vulner-
able should you fall under an SQL injection attack. There are cases where you’ll need
to give the postgres account write/delete/read rights to folders or executables outside
of the data cluster. With scheduled jobs that execute batch files, this need often arises.
We advise you to practice restraint and only grant the minimum rights necessary to get
the job done.

Setting shared_buffers Too High
Loading up your server with RAM doesn’t mean you can set the shared_buffers as high
as you’d like. Try it and your server may crash or refuse to start. If you are running
PostgreSQL on 32-bit Windows, setting it higher than 512 MB often results in insta-
bility. With PostgreSQL 64-bit windows, you can push the envelop a bit higher and
even exceed 1 GB without any issues. On some Linux systems, the compiled SHMMAX
variable is low and shared_buffers can’t be set higher. Details on how to remedy this
issue are detailed in the manual, in the section Kernel Resources.

Trying to Start PostgreSQL on a Port Already in Use
If you do this, you’ll see errors in your pg_log files of the form. Make sure PostgreSQL
is not already running. Here are the common reasons why this happens:

• You’ve already started postgres service.

• You are trying to run it on a port already in use by another service.

• Your postgres service had a sudden shutdown and you have an orphan post-
gresql.pid file in the data folder. Just delete the file and try to start again.

• You have an orphaned PostgreSQL process. When all else fails, kill all running
PostgreSQL processes and then start again.

Verboten | 29

http://www.postgresql.org/docs/current/interactive/kernel-resources.html

CHAPTER 3

psql

psql is the de rigueur command-line utility packaged with PostgreSQL. Aside from its
most common use of running queries, you can use psql as an automated scripting tool,
as a tool for importing or exporting data, restoring, database administration, and even
go so far as to use it as a minimalistic reporting tool. psql is easy to use. Like any other
command-line tool, you just have to be familiar with the myriad of switches involved.
If you only have access to a server’s command line with no GUI, psql is pretty much
your only choice for querying and managing PostgreSQL. If you fall into this category,
we suggest that you print out the dump of psql help from the “psql: Interactive and
Scriptable” on page 142 and frame it right above your workstation.

Just as the other command-line tools packaged with PostgreSQL, you can forgo ex-
plicitly specifying, host, port, user by setting the environment variables PGHOST, PGPORT,
PGUSER as described in Environment Variables and setting PGPASSWORD or using a pass-
word file as described in The Password File. Should you omit the parameters without
having set the environment variables, psql will use the standard defaults. For examples
in this chapter, we’ll assume you are using default values or have these variables set. If
you’re using pgAdmin as well, you can jump right to psql using the plugin interface,
(see “Accessing psql from pgAdmin” on page 45). A console window will open with
psql and already connected directly to the database in pgAdmin.

Interactive psql
To use psql, the first thing you’ll want to know is what you can do interactively. You
can get help with psql \?. For a thorough list of available interactive commands, refer
to “psql Interactive Commands” on page 142.

While in psql, to get help on any SQL commands, type \h followed by the command
as in the following example:

\h CREATE TABLE

 Command: CREATE TABLE
 Description: define a new table

31

http://www.postgresql.org/docs/current/interactive/libpq-envars.html
http://www.postgresql.org/docs/current/interactive/libpq-pgpass.html

Syntax:
CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS]
table_name ([
 { column_name data_type [COLLATE collation] [column_constraint [...]]
 | table_constraint
 | LIKE source_table [like_option ...] }
 [, ...]
])
[INHERITS (parent_table [, ...])]
[WITH (storage_parameter [= value] [, ...]) | WITH OIDS | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace]
:

Although you have many more interactive commands than non-interactive ones at your
disposal, you can effectively use all interactive commands non-interactively by embed-
ding them into scripts. We’ll go into more detail on how to do this in the later sections
of this chapter.

Non-Interactive psql
Non-interactive commands means that you ask psql to execute a script file composed
of a mix of SQL statements and psql commands. You can alternatively pass one or more
SQL statements. These methods are especially applicable to automated tasks. Once
you have batched your commands into a file, you can schedule the job to run at regular
intervals using a job scheduling agent like pgAgent (covered in “Job Scheduling with
pgAgent” on page 55), Unix crontab or Windows scheduler. For situations where
you have many commands that must be run in sequence or repeatedly, you’re better
off creating a script first and then running it using psql. There will be far fewer switches
to worry about when running psql non-interactively since the details have been em-
bedded in the script file. To execute a file simply use the -f switch as follows:

psql -f some_script_file

If you don’t have your commands saved to a file, you can type them in using a -c switch.
An example follows:

psql -d postgresql_book -c "DROP TABLE IF EXISTS dross; CREATE SCHEMA staging;"

Notice how you can have multiple SQL statements as long as you separate them with
a semicolon. For a more detailed listing of switches you can include, refer to “psql Non-
Interactive Commands” on page 144.

You can embed interactive commands inside script files. See Example 3-1 for an ex-
ample of this.

Example 3-1. Script with psql interactive commands

Contents of build_stage.psql:

\a
\t

32 | Chapter 3: psql

\g create_script.sql
SELECT 'CREATE TABLE staging.factfinder_import(geo_id varchar(255), geo_id2 varchar(255),
geo_display varchar(255)
 , '|| array_to_string(array_agg('s' || lpad(i::text,2, '0') || ' varchar(255), s' ||
lpad(i::text,2, '0') || '_perc varchar(255) '), ',') || ');'
FROM generate_series(1,51) As i;
\o
\i create_script.sql

Since we want the output of our query to be saved as an executable statement, we
need to remove the headers by using the \t switch and use the \a switch to get rid
of the extra breaking elements that psql normally puts in. We then use the \g switch
to force our query output to be redirected to a file.

The use of lpad is so that each numbered column is left padded with 0s so we will
have columns s01, s01_perc, s02, s02_perc, The lpad and similar functions are
detailed in “String Functions” on page 63.

We call the \o with no file arguments to stop redirection of query results to file.

To do the actual execution of the CREATE TABLE statement we built, we use the \i
followed by the generated script. The \i is the interactive version of the non-inter-
active -f switch.

To run Example 3-1, we would type:

psql -f build_stage.psql -d postgresql_book

Example 3-1 is an adaptation of an approach we described in How to Create an N-
column Table. As noted in the article, you can perform this without an intermediary
file by using the DO command introduced in PostgreSQL 9.0. The intermediary does
have the benefit that you have an easy record of what was done.

Session Configurations
If you do use psql as your workhorse, consider customizing your psql environment.
psql can read configuration settings from a file called psqlrc. When psql is launched, it
searches for this file and runs any commands in the file to initialize the environment.
On Unix-based systems, the file is generally named .psqlrc and searched for in the home
directory. On Windows, this file is called psqlrc.conf and searched for in the %APP-
DATA%\postgresql folder, which usually resolves to C:\Users\your_login\AppData
\Roaming\postgresql. Don’t worry if you can’t find the file; it usually doesn’t appear on
its own and you need to manually create it. Any settings in the file will override psql
defaults. More details about this file can be found in psql. You can find examples of
psqlrc at psqlrc File for DBAs and Silencing Commands in .psqlrc.

If you wish to start psql without checking psqlrc, use the -X switch.

In PostgreSQL 9.2, psql understands two new OS environment variables:

Session Configurations | 33

http://www.postgresonline.com/journal/archives/230-How-to-create-an-n-column-table-really-fast.html
http://www.postgresonline.com/journal/archives/230-How-to-create-an-n-column-table-really-fast.html
http://www.postgresql.org/docs/current/interactive/app-psql.html
http://raghavt.blogspot.com/2011/11/psqlrc-file-for-dbas.html
http://www.depesz.com/2008/05/18/silencing-commands-in-psqlrc/

• PSQL_HISTORY allows you to control where psql names and places the history file
instead of using the default ~/.psql_history.

• PSQLRC allows you to control the location of the startup file. Setting this before
launching psql, or as part of your system environment settings, will make psql use
this location.

The contents of a psqlrc file look as shown in Example 3-2. Pretty much any psql com-
mand can be added to it for execution at startup.

Example 3-2. Example .psqlrc or psqlrc.conf file

\pset null 'NULL'
\encoding latin1
\set PROMPT1 '%n@%M:%>%x %/# '
\set PROMPT2 ''
\timing on
\set qstats91 'SELECT usename, datname, substring(current_query, 1,100) || ''...'' As query
FROM pg_stat_activity WHERE current_query != ''<IDLE>'';'
\set qstats92 'SELECT usename, datname, left(query,100) || ''...'' As query FROM
pg_stat_activity WHERE state != ''idle'' ;'
\pset pager always

Each set command should be on a single line. For example, the
qstats91 statement and its value should be all on the same line.

Some commands only work on Unix-based systems and not on Windows, so our
psqlrc is fairly generic.

When you launch psql now, you’ll see the execution result of your psqlrc as follows:

Null display is "NULL".
Timing is on.
Pager is always used.
psql (9.2beta1)
Type "help" for help.
postgres@localhost:5442 postgresql_book#

We’ll cover some popular settings found in psqlrc files. You can still set them during
your session if you don’t want them on or off by default.

Changing Prompts
If you do most of your work using psql and you connect to multiple databases and
servers, chances are you’ll be jumping around between them using \connect. Custom-
izing your prompt to show which server and database and connected user you’re on
helps greatly. In our psqlrc file, we set our prompt to include who we are logged in as
(%n), the host server (%M), the port %>, transaction status %x), and the database (%/).

34 | Chapter 3: psql

The cryptic short-hand symbols we used to define our PROMPT1 and PROMPT2 in Exam-
ple 3-2 are documented in the psql Reference Guide.

When we connect with psql to our database, our prompt looks like:

postgres@localhost:5442 postgresql_book#

If we change to another database say \connect postgis_book, our prompt changes to

postgres@localhost:5442 postgis_book#

Timing Details
You may find it instructive to have psql output the time it took for each query to execute.
Use the \timing command to toggle it on and off.

When that is enabled, each query you run will include at the end, the amount of time
taken, for example:

\timing on

SELECT COUNT(*) FROM pg_tables;

will output the following:

count

73
(1 row)
Time: 18.650 ms

AUTOCOMMIT
By default, AUTOCOMMIT is on, meaning any SQL command you issue that changes data
will immediately commit. Each command is its own transaction. If you are doing a large
batch of precarious updates, you may want a safety net. Start by turning AUTOCOM-
MIT off:

\set AUTOCOMMIT off

Once AUTOCOMMIT is off, you’ll have the option to rollback before you commit:

UPDATE census.facts SET short_name = 'this is a mistake';

To roll this back:

ROLLBACK;

To commit:

COMMIT;

Session Configurations | 35

http://www.postgresql.org/docs/current/interactive/app-psql.html

Shortcuts
The \set command is also useful for defining user-defined shortcuts. You may want to
store the shortcuts in your psqlrc file to have them available each time. For example, if
you use EXPLAIN ANALYZE VERBOSE all the time and you’re tired of typing it all out, you
can define a variable as follows:

\set eav 'EXPLAIN ANALYZE VERBOSE'

Now whenever you want to do an EXPLAIN ANALYZE VERBOSE of a query, you prefix it
with :eav (colon resolves the variable):

:eav SELECT COUNT(*) FROM pg_tables;

You can even save commonly used queries as strings in your psqlrc startup script as we
did for qstats91 and qstats92. So, if I am on a PostgreSQL 9.2 database, I can see current
activity by just typing the following:

:qstats92

Retrieving Prior Commands
As with many command line tools, you can use the up arrows to access prior com-
mands. The number of previous commands stored in the command history is controlled
using the HISTSIZE variable. For example:

\set HISTSIZE 10

will allow you to recover the past ten commands and no more from the command
history file.

You can also have psql pipe the history of commands into separate files for each data-
base using a command like the following:

\set HISTFILE ~/.psql_history- :HOST - :DBNAME

The psql history feature generally doesn’t work on Windows unless
running under Cygwin. This feature relies on the readline library, which
Windows distributions are generally not compiled with. For the same
reason, tab completion also doesn’t work.

Finally, to unset a variable in psql, simply issue the \unset command followed by the
variable name. For example:

\unset qstats91

psql Gems
In this section, we cover some really helpful features that are buried inside psql help.

36 | Chapter 3: psql

Executing Shell Commands
Although you normally use SQL and psql specific commands in psql, you can call out
to the OS shell using the ! command. Let’s say you’re on Windows and need to get a
list of all OS environment settings that start with A. Instead of exiting psql, you can
just directly type the following:

\! set A

ALLUSERSPROFILE=C:\ProgramData
APPDATA=C:\Users\Administrator\AppData\Roaming

Lists and Structures
There are various psql commands available to get lists of objects along with details. In
Example 3-3, we demonstrate how to list all tables in schema pg_catalog that start with
pg_t, along with their size.

Example 3-3. List tables with \dt+

\dt+ pg_catalog.pg_t*

Schema | Name | Type | Owner | Size | Description
-----------+------------------+-------+----------+--------+-------------
pg_catalog | pg_tablespace | table | postgres | 40 kB |
pg_catalog | pg_trigger | table | postgres | 16 kB |
pg_catalog | pg_ts_config | table | postgres | 40 kB |
pg_catalog | pg_ts_config_map | table | postgres | 48 kB |
pg_catalog | pg_ts_dict | table | postgres | 40 kB |
pg_catalog | pg_ts_parser | table | postgres | 40 kB |
pg_catalog | pg_ts_template | table | postgres | 40 kB |
pg_catalog | pg_type | table | postgres | 112 kB |

If we wanted detail about a particular object such as the pg_ts_config table, we would
use the \d command, as shown in Example 3-4.

Example 3-4. Describe object with \d

\d+ pg_ts_dict

Table "pg_catalog.pg_ts_dict"
Column | Type | Modifiers | Storage | Stats target | Description
---------------+------+-----------+----------+--------------+-------------
dictname | name | not null | plain | |
dictnamespace | oid | not null | plain | |
dictowner | oid | not null | plain | |
dicttemplate | oid | not null | plain | |
dictinitoption | text | | extended | |
Indexes:
"pg_ts_dict_dictname_index" UNIQUE, btree (dictname, dictnamespace)
"pg_ts_dict_oid_index" UNIQUE, btree (oid)
Has OIDs: yes

psql Gems | 37

Importing and Exporting Data
psql has a command called \copy for both importing from and exporting to a delimited
text file. The default delimiter is tab with rows separated by new line breaks. For our
first example, we downloaded data from US Census Fact Finder covering racial demo-
graphics of housing in Massachusetts. You can download the file from PostgreSQL
Book Data. Fact Finder is a treasure trove of data about the US; a statistician’s dream
land. We encourage you to explore it via the guided wizard. Our usual practice in
loading denormalized or unfamiliar data is to create a separate schema to segregate it
from production data. We then write a series of explorative queries to get a good sense
of what we have on our hands. Finally, we distribute the data into various normalized
production tables and delete the staging schema.

Before bringing the data into PostgreSQL, you must first create a table to hold the
incoming data. The data must match the file both in the number of columns and data
types. This could be an annoying extra step for a well-formed file, but does obviate the
need for psql to guess at data types. psql processes the entire import as a single trans-
action; should it encounter any errors in the data, the entire import will fail. If you’re
unsure about the data contained in the file, we recommend setting up the table with
the most accommodating data types and then recast later if necessary. For example, if
you can’t be sure that a column will just have numeric values, make it character varying
to get the data in for inspection and then recast later.

Example 3-5. Importing data with psql

psql
\connect postgresql_book
\cd /postgresql_book/ch03
\copy staging.factfinder_import FROM DEC_10_SF1_QTH1_with_ann.csv CSV

In Example 3-5, we launch psql interactively, connect to our database, use \cd to change
the current directory to the folder with our data and then import our data using the
\copy command. Since default for copy is tab-delimited, we need to augment our state-
ment with CSV to denote that our data is comma separated instead of tab delimited.

If you had data with non-standard delimiters like | delimited columns and you also
wanted to replace blank data points with nulls, you would use a command:

\copy sometable FROM somefile.txt DELIMITER '|' NULL As '';

There is another COPY command, which is part of the SQL language
(not to be confused with the \copy in psql) that requires the file be on
the server. Since psql is a client utility, all path references are relative to
the client while the SQL version is relative to the server and runs under
the context of the postgres OS process account. We detail the differences
between the two in Import Fixed-width Data in PostgreSQL with just
psql.

38 | Chapter 3: psql

http://factfinder2.census.gov
http://www.postgresonline.com/downloads/postgresql_book.zip
http://www.postgresonline.com/downloads/postgresql_book.zip
http://www.postgresonline.com/journal/archives/157-Import-fixed-width-data-into-PostgreSQL-with-just-psql.html
http://www.postgresonline.com/journal/archives/157-Import-fixed-width-data-into-PostgreSQL-with-just-psql.html

Another favorite tool for loading data with more options for loading data from a variety
of sources is pgloader. You will have much finer control over the import process, but
Python and psychopg must be installed on your machine first.

Exporting data is even easier than importing data. You can even export a subset of a
table. As mentioned, the psql \copy command and companion SQL COPY allow you
to do just that. In Example 3-6, we demonstrate how to export the data we just loaded
back to tab format.

Example 3-6. Export data with psql

\connect postgresql_book
\copy (SELECT * FROM staging.factfinder_import WHERE s01 ~ E'^[0-9]+') TO /test.tab WITH
DELIMITER E'\t' CSV HEADER

The default behavior of exporting data without qualifications is to export as tab de-
limited. However the default doesn’t export the header columns. In fact, as of the time
of writing, you can only use the HEADER in conjunction with the CSV option.

Example 3-7. Export data with psql

\connect postgresql_book
\copy staging.factfinder_import TO /test.csv WITH CSV HEADER QUOTE '"' FORCE QUOTE *

The FORCE QUOTE * ensures that all columns are double quoted. For clarity, we also
indicate the quoting character, though double quotes is assumed if omitted.

Basic Reporting
Believe it or not, psql is capable of doing basic HTML reports. Try the following and
check out the HTML output.

psql -d postgresql_book -H -c "SELECT category, count(*) As num_per_cat FROM
pg_settings WHERE category LIKE '%Query%' GROUP BY category ORDER BY category;" -o
test.html

Figure 3-1. Minimalist HTML report

Basic Reporting | 39

http://pgloader.projects.postgresql.org
http://www.postgresql.org/docs/current/interactive/sql-copy.html

Not too shabby! The above, however, just outputs an HTML table instead of a fully
qualified HTML document. To create a meatier report, you’d compose a script as
shown in Example 3-8.

Example 3-8. Settings report

content of settings_report.psql

\o settings_report.html
\T 'cellspacing=0 cellpadding=0'
\qecho '<html><head><style>H2{color:maroon}</style>'
\qecho '<title>PostgreSQL Settings</title></head><body>'
\qecho '<table><tr valign=''top''><td><h2>Planner Settings</h2>'
\x on
\t on
\pset format html
SELECT category, string_agg(name || '=' || setting, E'\n' ORDER BY name) As settings
FROM pg_settings
WHERE category LIKE '%Planner%'
GROUP BY category
ORDER BY category;
\H
\qecho '</td><td><h2>File Locations</h2>'
\x off
\t on
\pset format html
SELECT name, setting FROM pg_settings WHERE category = 'File Locations' ORDER BY name;
\qecho '<h2>Memory Settings</h2>'
SELECT name, setting, unit FROM pg_settings WHERE category ILIKE '%memory%' ORDER BY name;
\qecho '</td></tr></table>'
\qecho '</body></html>'
\o

Redirect query output to a file.

HTML table settings for query output.

Write additional content beyond the query output to our output file.

Set to expanded mode. The first query is output in expanded mode which
means that the column headers are repeated for each row and the column of
each row is output as a separate row.

Force the queries to output as HTML tables.

We use the aggregate function string_agg(), which was introduced in Post-
greSQL 9.0 to concatenate all properties in the same category into a single
column. We are also taking advange of the new ORDER BY clause for aggregate
functions introduced in 9.0 to sort properties by name.

Set to expanded mode off. The second and third query are output in non-
expanded mode which means that there is one output row per table row.

Set to tuples only mode. This causes queries to not have any column headers
or row count.

40 | Chapter 3: psql

Example 3-8 demonstrates that with the interspersing of SQL and some psql com-
mands, we can create a fairly comprehensive tabular report consisting of many sub
reports.

You run the Example 3-8 by connecting interactively with psql and using the \i set
tings_report.psql command, or running on the command line using the psql -f set
tings_report.psql.

The generated output of settings_report.html is shown in Figure 3-2.

Having a script means that you can output many queries in one report, and of course,
schedule it as a job via pgAgent or crontab.

Figure 3-2. More advanced HTML report

Basic Reporting | 41

CHAPTER 4

Using pgAdmin

pgAdmin (a.k.a. pgAdmin III or pgAdmin3) is the current rendition of the most com-
monly used graphical administration tool for PostgreSQL. Though it has its shortcom-
ings, we are always encouraged by not only how quickly bugs are fixed, but also how
quickly new features are added. Since it’s accepted as the official graphical adminis-
tration tool for PostgreSQL, and packaged with many binary distributions of Post-
greSQL, pgAdmin has the responsibility to always be kept in sync with the latest Post-
greSQL releases. Should a new release of PostgreSQL induct new features, you can
count on the latest pgAdmin to let you manage it. If you’re new to PostgreSQL, you
should definitely start with pgAdmin before exploring other tools that could cost
money. We should also mention that as of yet, we have not encountered a tool that’s
absolutely superior to pgAdmin.

Getting Started
Get pgAdmin at http://www.pgadmin.org. While on the site, you may opt to peruse one
of the guides that’ll introduce pgAdmin, but the tool is well-organized and, for the most
part, guides itself quite well. For the adventurous, you can always try beta and alpha
releases of pgAdmin. Your help in testing would be greatly appreciated by the com-
munity.

Overview of Features
To whet your appetite, here’s a list of goodies found in pgAdmin that are our favorites.
There are many more you can find listed on pgAdmin Features:

• Graphical EXPLAIN plan for your queries. This most awesome feature offers a pic-
torial insight into what the query planner is thinking. Gone are the days of trying
to wade through the verbosity of text-based planner outputs.

• SQL pane. pgAdmin ultimately interacts with PostgreSQL via SQL; it’s not shy
about letting you see the generated SQL. When you use the graphical interface to

43

http://www.pgadmin.org
http://pgadmin.org/features.php

make changes to your database, the underlying SQL to perform the tasks auto-
matically displays in the SQL pane. For SQL novices, studying the generated SQL
is a great learning opportunity. For pros, taking advantage of the generated SQL
is a great time-saver.

• Direct editing of configuration files such as postgresql.conf and pg_hba.conf. You
no longer need to dig around for the files and use another editor.

• Data export. pgAdmin can easily export query results as CSV or other delimited
format. It can even export as HTML, providing you with a turn-key reporting en-
gine, albeit a bit crude.

• Backup and restore wizard. Can’t remember the myriad of commands and switches
to perform a backup or restore using pg_restore and pg_dump? pgAdmin has a nice
interface that’ll let you selectively back up and restore databases, schemas, single
tables, and globals, and the message tab shows you the command line pg_dump or
pg_restore it used to do it.

• Grant Wizard. This time-saver will allow you to change permissions on many da-
tabase objects in one fell swoop.

• pgScript engine. This is a quick and dirty way to run scripts that don’t have to
complete as a transaction. With this you can run loops and so forth that commit
on each SQL update, unlike stored functions that require all steps completed before
the work is committed. Unfortunately, you can not use it outside of pgAdmin GUI.

• Plugin architecture. Newly developed add-ons are quickly accessible with a single
mouse-click. You can even install your own. We have a description of this feature
in Change in pgAdmin Plugins and PostGIS.

• pgAgent plugin. We’ll be devoting an entire section to this cross-platform job
scheduling agent which is similar in flavor to SQL Server’s job scheduler
(SQLAgent). pgAdmin provides a cool interface to it.

Connecting to a PostgreSQL server
Connecting to a PostgreSQL server with pgAdmin is fairly self-explanatory. The Gen-
eral and Advanced tabs are shown in Figure 4-1.

Navigating pgAdmin
pgAdmin’s tree layout is intuitive to follow but does start off showing you every esoteric
object found in the database. You can pare down the display tree by going into the
Options tab and unchecking objects that you would rather not have to stare at every
time you use pgAdmin.

To simplify the tree sections, go to Tools→Options→Browser, you will see a screen as
shown in Figure 4-2.

44 | Chapter 4: Using pgAdmin

http://www.postgresonline.com/journal/archives/180-pgAdmin113plugins_postgis.html

If you check the Show System Objects in the treeview check box, you’ll see the guts of
PostgreSQL consisting of internal functions, system tables, hidden columns in each
table, and so forth. You will also see the metadata stored in the information_schema
catalog and the pg_catalog PostgreSQL system catalog. information_schema is an
ANSI-SQL standard catalog found in other databases such as MySQL and SQL Server.
You may recognize some of the tables and columns from working with other databases
and its superb for getting standard metadata in a cross database compatible way.

pgAdmin does not always keep the tree in sync, with current state of the
database. For example, if one person alters a table, the tree for a second
person will not automatically refresh. There is a setting in recent ver-
sions that forces an automatic refresh if you check it, but may slow
things down a bit.

pgAdmin Features
pgAdmin is chock full of goodies. We won’t have the space to bring them all to light so
we’ll just highlight the features that we use on a regular basis.

Accessing psql from pgAdmin
Although pgAdmin is a great tool, there are cases where psql does a better job. One of
those cases is executing large SQL files such as those output by pg_dump and other
dump tools. To do this, you’ll want to use psql covered in Chapter 3. pgAdmin has a
feature that makes jumping to psql easy and painless. If you click on the plugin menu

Figure 4-1. pgAdmin register server connection dialog

pgAdmin Features | 45

item as shown in Figure 4-3 and then psql, this will open a psql session connected to
the database you are currently connected to in pgAdmin. You can use the \cd and \i
psql commands to cd and run a psql script file.

Since this feature relies on a database connection, you’ll see it disabled until you’re
connected to a database.

Figure 4-2. Hide or unhide database objects in pgAdmin browse tree

Figure 4-3. psql plugin

46 | Chapter 4: Using pgAdmin

Editing postgresql.conf and pg_hba.conf from pgAdmin
To edit configuration files directly from pgAdmin, you need to have the admin pack
extension installed on your server. If you installed PostgreSQL using one of the one-
click installers, you should see the menu enabled as shown in Figure 4-4

If the menu is greyed out and you are connected to a PostgreSQL server, then you don’t
have the admin pack installed on that server or are not logged in as a superuser. To
install the admin pack on a 9.0 or lower server, connect to the database named postgres
as a superuser and run the file share\contrib\adminpack.sql. For PostgreSQL 9.1 or
above, connect to the database named postgres and run the SQL statement CREATE
EXTENSION adminpack;, or use the graphical interface for installing extensions as shown
in Figure 4-5.

Disconnect from the server and reconnect, and you should see the menu enabled.

Creating Databases and Setting Permissions

Creating Databases and Other Objects

Creating a database in pgAdmin is simple. Just right-click on the database section of
the tree and choose New Database as shown in Figure 4-6. The definition tab provides
a drop down to use a specific template database, similar to what we did in “Creating
and Using a Template Database” on page 16.

You’d follow the same steps to create roles, schemas, and other objects. Each will have
its own relevant set of tabs for you to specify additional attributes.

Figure 4-4. PgAdmin configuration file editor

Figure 4-5. Installing extensions using pgAdmin

pgAdmin Features | 47

Permission Management

For setting permissions on existing objects, nothing beats the pgAdmin Grant Wizard,
which you can access from the Tools→Grant Wizard menu of pgAdmin. As with many
other features, this option is greyed out unless you are connected to a database. It’s
also sensitive to the location in the tree you are on. For example, to set permissions in
objects located in the census schema, we select the census and then choose the Grant
Wizard. The grant wizard screen is shown in Figure 4-7. You can then selectively check
all or some of the objects and switch to the Privileges tab to define the roles and
permissions you want to grant.

More often than setting permissions on existing objects, you may want to set default
privileges for new objects in a schema or database. To do, so right-click the schema or
database, select Properties, and then go to the Default Privileges tab and set per-
missions for the desired object types as shown in Figure 4-8. The default privileges
feature is only available if you are running PostgreSQL 9.0 or above.

When setting permissions for schema, make sure to also set the USAGE permission on
the schema to the groups you will be giving access.

Backup and Restore
Most of the backup and restore features of pg_dump and pg_restore are accessible from
pgAdmin. In this section, we’ll repeat some of the examples we covered in
“Backup” on page 22 and “Restore” on page 24, but using pgAdmin’s graphical interface
instead of the command line. The backup and restore in pgAdmin are just GUIs to the
underlying pg_dump and pg_restore utilities. If you have several versions of PostgreSQL
or pgAdmin installed on your computer, it’s a good idea to make sure that the
pgAdmin version is using utilities versions that you expect. Check what the bin setting

Figure 4-6. Creating a new database

48 | Chapter 4: Using pgAdmin

in pgAdmin is pointing to in order to ensure it’s the latest available, as shown in Fig-
ure 4-9.

If your server is remote or your databases are huge, we recommend using
the command-line tools for backup and restore instead of pgAdmin to
avoid adding another layer of complexity in what could already be a
pretty lengthy process. Also keep in mind that if you do a compressed/
tar/directory backup with a newer version of pg_dump, then you also
need to use the same or higher version of pg_restore because a newer
pg_dump compressed or tar backup can not be restored with an older
pg_restore.

Backing up a whole database

In Example 2-8, we demonstrated how to back up a database. To repeat the same steps
using the pgAdmin interface, we would right click on the database we want to backup
and choose custom for format as shown in Figure 4-10.

Figure 4-7. Grant Wizard

pgAdmin Features | 49

Backing up of System Wide Objects

pgAdmin provides a graphical interface to pg_dumpall for backing up system objects,
which does much the same as what we covered in “Systemwide Backup Using
pg_dumpall” on page 24. To use, first connect to the server you want to backup from
the Server tree and then from the top menu, choose Tools → Backup Globals.

Unfortunately, pgAdmin doesn’t give you any options of what to backup as you get by
using the command line interface, and instead will backup all table spaces and roles.
If you want to backup the whole server, doing a pg_dumpall, then use the Tools →
Backup Server option.

Selective Backup of Database Objects

pgAdmin provides a graphical interface to pg_dump that we covered in “Selective
Backup Using pg_dump” on page 23 for doing selective backup of objects. To back up
selective objects right-mouse click on the object you want to back up and select
Backup You can back up a whole database, schema, table, or anything else.

Figure 4-8. Grant Default Permissions

50 | Chapter 4: Using pgAdmin

If all you wanted to back up was that one object, you can forgo the other tabs and just
do as we did in Figure 4-10. However, you can selectively pick or uncheck some more
items by clicking on the objects tab as shown in Figure 4-12.

pgAdmin behind the scenes just runs pg_dump to perform the backup.
If ever you want to know the actual commands it’s doing for later script-
ing, just look at the Messages tab of the backup screen after you click
the Backup button, and you’ll see the exact call with arguments to
pg_dump.

pgScript
pgScript is a built-in scripting tool in pgAdmin. It’s most useful for being able to run
repetitive SQL tasks. Unlike PostgreSQL stored functions, pgScript commits data right
away which makes it particularly handy for memory-hungry processes that you don’t
need completed as a single transaction. You can see an example of where we use it for

Figure 4-9. pgAdmin File→Options

pgScript | 51

batch geocoding here at http://www.postgresonline.com/journal/archives/181-pgAdmin
-pgScript.html.

The underlying language is lazily typed and supports loops, data generators, macro
replacement, basic print statements and record variables. The general syntax is similar
to that of Transact SQL—the stored procedure language of Microsoft SQL Server. You
launch pgScript by opening up a query window, typing in some pgScript specific
syntax, and then click on the icon to execute it. We’ll show you some examples.

Figure 4-10. Backup database

Figure 4-11. PgAdmin Right-click Backup Schema

52 | Chapter 4: Using pgAdmin

http://www.postgresonline.com/journal/archives/181-pgAdmin-pgScript.html
http://www.postgresonline.com/journal/archives/181-pgAdmin-pgScript.html

Example 4-1 demonstrates how to use pgScript record variables and loops to build a
cross tab table using the lu_fact_types table we create in Example 6-7. It creates an
empty table called census.hisp_pop with numeric columns of hispanic_or_latino,
white_alone, black_or_african_american_alone, and so on.

Example 4-1. Create table using record variables in pgScript

DECLARE @I, @labels, @tdef;
SET @I = 0;
labels becomes a record variable
SET @labels = SELECT
quote_ident(replace(replace(lower(COALESCE(fact_subcats[4], fact_subcats[3])), ' ',
'_'),':','')) As col_name,
fact_type_id
FROM census.lu_fact_types
WHERE category = 'Population' AND fact_subcats[3] ILIKE 'Hispanic or Latino%'
ORDER BY short_name;
SET @tdef = 'census.hisp_pop(tract_id varchar(11) PRIMARY KEY ';

Loop thru records using LINES function
WHILE @I < LINES(@labels)
BEGIN
SET @tdef = @tdef + ', ' + @labels[@I][0] + ' numeric(12,3) ';
SET @I = @I + 1;
END
SET @tdef = @tdef + ')';
print out table def
PRINT @tdef;

Figure 4-12. PgAdmin Right-click Backup Selective

pgScript | 53

create the table
CREATE TABLE @tdef;

Although pgScript does not support the EXECUTE command like PL/pgSQL for running
dynamically generated SQL, we demonstrated in Example 4-1 that it’s still possible to
do so by using macro replacement in pgScript. Example 4-2 pushes the envelope a bit
further by populating the census.hisp_pop table we just created.

Example 4-2. Dynamic Population with pgScript

DECLARE @I, @labels, @tload, @tcols, @fact_types;
SET @I = 0;
SET @labels = SELECT
quote_ident(replace(
replace(
lower(
COALESCE(fact_subcats[4], fact_subcats[3])), ' ', '_'),':'
,'')) As col_name, fact_type_id
FROM census.lu_fact_types
WHERE category = 'Population' AND fact_subcats[3] ILIKE 'Hispanic or Latino%'
ORDER BY short_name;
SET @tload = 'tract_id';
SET @tcols = 'tract_id';
SET @fact_types = '-1';
WHILE @I < LINES(@labels)
BEGIN
SET @tcols = @tcols + ', ' + @labels[@I][0] ;
SET @tload = @tload + ', MAX(CASE WHEN fact_type_id = ' + CAST(@labels[@I][1] AS STRING) +
' THEN val ELSE NULL END)' ;
SET @fact_types = @fact_types + ', ' + CAST(@labels[@I][1] As STRING);
SET @I = @I + 1;
END
INSERT INTO census.hisp_pop(@tcols)
SELECT @tload
FROM census.facts
WHERE fact_type_id IN(@fact_types) AND yr=2010
GROUP BY tract_id;

The lesson to take away from Example 4-2 is that as long as the beginning of your
statement starts with SQL, you can dynamically inject SQL fragments into it anywhere.

Graphical Explain
One of the great gems in pgAdmin is its informative, at-a-glance graphical explain of
the query plan. You can access the graphical explain plan by opening up an SQL query
window, write some query and then clicking on the icon.

If we run the query:

SELECT left(tract_id, 5) As county_code, SUM(hispanic_or_latino) As tot
 , SUM(white_alone) As tot_white
 , SUM(COALESCE(hispanic_or_latino,0) - COALESCE(white_alone,0)) AS non_white
FROM census.hisp_pop

54 | Chapter 4: Using pgAdmin

GROUP BY county_code
ORDER BY county_code;

We will get a graphical explain as shown in Figure 4-13. The best tip we can give for
reading the graphical explain plan is to follow the fatter arrows. The fatter the arrow,
the more time consuming a step.

Graphical explain will be disabled if Query→Explain→Buffers is enabled. So make sure
to uncheck buffers before trying a graphical explain. In addition to the graphical ex-
plain, the Data Outputcode> tab will show the textual explain plan which for this ex-
ample looks like:

GroupAggregate (cost=111.29..151.93 rows=1478 width=20)
 Output: ("left"((tract_id)::text, 5)), sum(hispanic_or_latino),
sum(white_alone), ...
 -> Sort (cost=111.29..114.98 rows=1478 width=20)
 Output: tract_id, hispanic_or_latino, white_alone, ("left"((tract_id)::text, 5))
 Sort Key: ("left"((tract_id)::text, 5))
 -> Seq Scan on census.hisp_pop (cost=0.00..33.48 rows=1478 width=20)
 Output: tract_id, hispanic_or_latino, white_alone, "left"((tract_id)::text,
5)

Job Scheduling with pgAgent
pgAgent is a handy utility for scheduling jobs. Since pgAgent can execute batch scripts
in the OS, we use it for much more than scheduling PostgreSQL jobs. In fact, we don’t
recall the last time where we even touched crontab or the Windows task scheduler.
pgAgent goes further, you can actually schedule jobs on any other server regardless of
operating system. All you have to do is install the pgAgent service, PostgreSQL server
itself is not required but the client connection libraries are. Since pgAgent is built atop
of PostgreSQL, we are blessed with the added advantage of having access to all the
tables controlling the agent. If we ever need to replicate a complicated job multiple
times, we can just go into the database tables directly and insert records instead of using
the interface to set up each new job. We’ll get you started with pgAgent in this section,
but please visit Setting up pgAgent and Doing Scheduled Backups to see more working
examples and details of how to set it up.

Installing pgAgent
You can download pgAgent from pgAgent Download. The packaged SQL install script
will create a new schema named pgAgent in the postgres database and add a new section
to your pgAgmin.

Figure 4-13. Graphical explain example

Job Scheduling with pgAgent | 55

http://www.postgresonline.com/journal/archives/19-Setting-up-PgAgent-and-Doing-Scheduled-Backups.html
http://www.pgadmin.org/download/pgagent.php

Should you wish pgAgent to run batch jobs on additional servers, follow the same steps,
except for the install of the pgagent SQL script. Pay particular attention to the permis-
sion settings of the pgAgent service. Make sure each agent has adequate permissions to
execute the batch jobs that you will be scheduling.

Batch jobs often fail in pgAgent though they may run fine from the com-
mand line. This is often due to permission issues. pgAgent always runs
under the context of the account the pgAgent service is running under.
If this account doesn’t have sufficient permissions or the necessary net-
work path mappings, then it will fail.

Scheduling Jobs
Each scheduled job has two parts: the execution steps and the schedule to run. When
you create a new job, you need to specify one or more steps. For each step, you can
enter SQL to run, point to a shell script on the OS, or even cut and paste in a full shell
script as we commonly do. The syntax for the SQL will not vary across OS and the
PostgreSQL server it runs on is controlled by the Connection Type property of the step.
The syntax for batch jobs should be specific to the OS running it. For example, if your
pgAgent job agent is running on Windows, your batch jobs should have valid DOS
commands. If you are on Linux, your batch jobs should have valid sh or bash com-
mands. Steps run in alphabetical order and you can decide what kind of actions you
wish to take upon success or failure of each individual step. You also have the option
of disabling steps that should remain dormant but you don’t want to delete because
you may reactivate them later. Once you have the steps ready, go ahead and set up a
schedule to run them. You can get fairly detailed with the scheduling screen. You can
even set up multiple schedules.

By default, all job agents on other machines will execute all the jobs. If you want to
only have the job run on one specific machine, you’ll need to fill in the host agent field
when creating the job. Agents running on other servers will skip the job if it doesn’t
match their host name.

Figure 4-14. pgAdmin with pgAgent installed

56 | Chapter 4: Using pgAdmin

pgAgent really consists of two parts: the data defining the jobs and stor-
ing the job logging, which resides in pgAgent schema, usually in postgres
database; the job agents query the jobs for the next job to run and then
insert relevant logging information in the database. Generally, both the
PostgreSQL Server holding the data and the job agent executing the jobs
reside on the same server, but in practice they are not required to. Ad-
ditionally, you can have one PostgreSQL server servicing many job
agents residing on different servers.

A fully formed job is shown in Figure 4-15:

Helpful Queries
To get a glimpse inside the tables controlling all of your agents and jobs, connect to
the postgres database and execute the query in Example 4-3:

Example 4-3. Description of pgAgent tables

SELECT c.relname As table_name, d.description
FROM pg_class As c
 INNER JOIN pg_namespace n ON n.oid = c.relnamespace
 INNER JOIN pg_description As d ON d.objoid = c.oid AND d.objsubid = 0
WHERE n.nspname = 'pgagent'
ORDER BY c.relname;

table_name | description
---------------+-------------------------
pga_job | Job main entry
pga_jobagent | Active job agents
pga_jobclass | Job classification
pga_joblog | Job run logs.
pga_jobstep | Job step to be executed
pga_jobsteplog | Job step run logs.
pga_schedule | Job schedule exceptions

As you can see, with your finely-honed SQL skills you can easily replicate jobs, delete
jobs, edit jobs directly by messing with pgAgent packaged tables. Just be careful!

Figure 4-15. pgAgent job shown in pgAdmin

Job Scheduling with pgAgent | 57

Although pgAdmin provides an intuitive interface to pgAgent scheduling and logging,
you may find the need to run your own reports against the system tables. This is espe-
cially true if you have many jobs or you just want to do stats on your results. We’ll
demonstrate the one query we use often.

Example 4-4. List log step results from today

SELECT j.jobname, s.jstname, l.jslstart,l.jslduration, l.jsloutput
FROM pgagent.pga_jobsteplog As l
 INNER JOIN pgagent.pga_jobstep As s ON s.jstid = l.jsljstid
 INNER JOIN pgagent.pga_job As j ON j.jobid = s.jstjobid
WHERE jslstart > CURRENT_DATE
ORDER BY j.jobname, s.jstname, l.jslstart DESC;

We find it very useful for monitoring batch jobs because sometimes these show as
having succeeded when they actually failed. pgAgent really can’t discern success or
failure of a shell script on several operating systems. The jsloutput field provides the
shell output, which usually details about what went wrong.

58 | Chapter 4: Using pgAdmin

CHAPTER 5

Data Types

PostgreSQL supports the workhorse data types of any database: numerics, characters,
dates and times, booleans, and so on. PostgreSQL sprints ahead by adding support for
dates and times with time zones, time intervals, arrays and XML. If that’s not enough,
you can even add your custom types. In this chapter, we’re not going to dwell on the
vanilla data types, but focus more on showing you ones that are unique to PostgreSQL.

Numeric Data Types
You will find your everyday integers, decimals, and floating point numbers in Post-
greSQL. Of the numeric types, we just want to highlight the serial and bigserial data
types and a nifty function to quickly generate arithmetic series of integers.

Serial
Strictly speaking, serial is not a data type in its own right. Serial and its bigger sibling
bigserial are auto-incrementing integers. This data type goes by different names in dif-
ferent databases, autonumber being the most common alternative moniker. When you
create a table and specify a column as type serial, PostgreSQL first creates a column
of data type integer and then creates a sequence object in the background. It then sets
the default of the new integer column to pull its value from the sequence. In Post-
greSQL, sequence is a database object in its own right, and an ANSI-SQL standard
feature you will also find in Oracle, IBM DB2, SQL Server 2012+, and some other
relational databases. You can inspect and edit the object using pgAdmin or with ALTER
SEQUENCE. You can edit its current value, where the sequence should begin and end, and
even how many numbers to skip each time. Because sequences are independent objects,
you can create them separate from a table using CREATE SEQUENCE, and you can share
the same sequence among different tables. If you want two tables to never end up with
a common identifier field, you could have both tables pull from the same sequence
when creating new rows by setting the default value of the integer column to next
sequence nextval() function.

59

http://www.postgresql.org/docs/current/interactive/sql-altersequence.html
http://www.postgresql.org/docs/current/interactive/sql-altersequence.html
http://www.postgresql.org/docs/current/interactive/sql-createsequence.html
http://www.postgresql.org/docs/current/interactive/functions-sequence.html

Generate Series Function
PostgreSQL has a nifty function called generate_series() that we have yet to find in
other leading databases. It’s actually part of a family of functions for automatically
creating sequential rows. What makes generate_series() such a great function is that
it allows you perform a FOR .. LOOP like behavior in SQL. Suppose we want a list of
the last day of each month for a particular date range. To do this in another language
would either involve some procedural loop or creating a massive cartesian product of
dates and then filtering. With generate_series, you can do it with a query as shown in
Example 5-12.

Here’s another example using integers with an optional step parameter:

Example 5-1. generate_series() with stepping of 13

SELECT x FROM generate_series(1,51,13) As x;

x

1
14
27
40

As shown in Example 5-1, you can pass in an optional step argument that defines how
many steps to skip for each successive element. Leaving out the step will default it to
1. Also note that the end value will never exceed our prescribed range, so although our
range ends at 51, our last number is 40 because adding another 13 to our 40 exceeds
the upper bound.

Arrays
Arrays play an important role in PostgreSQL. They are particularly useful in building
aggregate functions, forming IN and ANY clauses, as well as holding intermediary value
for morphing to other data types. In PostgreSQL, each data type, including custom
types you build, has a companion array type. For example, integer has an integer array
type integer[], character has a character array type character[], and so forth. We’ll
show you some useful functions to construct arrays short of typing them in manually.
We will then point out some handy functions for array manipulations. You can get the
complete listing of array functions and operators in the PostgreSQL reference Array
Operators and Functions.

Array Constructors
The most rudimentary way to create an array is to simply type the elements:

SELECT ARRAY[2001, 2002, 2003] As yrs;

60 | Chapter 5: Data Types

http://www.postgresql.org/docs/current/interactive/functions-srf.html
http://www.postgresql.org/docs/current/interactive/functions-array.html
http://www.postgresql.org/docs/current/interactive/functions-array.html

If the elements of your array can be extracted from a query, you can use the more
sophisticated constructor function: array():

SELECT array(SELECT DISTINCT date_part('year', log_ts)
 FROM logs ORDER BY date_part('year', log_ts));

Although array() has to be used with a query returning a single column, you can specify
a composite type as the output, thus achieving multicolumn results. We demonstrate
this in “Custom and Composite Data Types” on page 71.

You can convert delimited strings to an array with the string_to_array() function as
demonstrated in Example 5-2:

Example 5-2. Converting a delimited string to an array

SELECT string_to_array('abc.123.z45', '.') As x;

x

{abc,123,z45}

array_agg() is a variant function that can take a set of any data type and convert it to
an array. See this example Example 5-3:

Example 5-3. Using GROUP BY with array_agg()

SELECT array_agg(log_ts ORDER BY log_ts) As x
FROM logs
WHERE log_ts BETWEEN '2011-01-01'::timestamptz AND '2011-01-15'::timestamptz;

x

{'2011-01-01', '2011-01-13', '2011-01-14'}

Referencing Elements in An Array
Elements in arrays are most commonly referenced using the index of the element. Post-
greSQL array index starts at 1. If you try to access an element above the upper bound,
you won’t get an error—only NULL will be returned. The next example grabs the first
and last element of our array column.

SELECT fact_subcats[1] AS primero
 , fact_subcats[array_upper(fact_subcats, 1)] As ultimo
 FROM census.lu_fact_types;

We used array_upper() to get the upper bound of the array. The second, required
parameter of the function indicates the dimension. In our case, our array is just one-
dimensional, but PostgreSQL supports multi-dimensional arrays.

Array Slicing and Splicing
PostgreSQL also supports array slicing using the start:end syntax. What gets returned
is another array that is a subset of the original. For example, if we wanted to return

Arrays | 61

from our table new arrays that just contain elements 2 through 4 of each original, we
would type:

SELECT fact_subcats[2:4] FROM census.lu_fact_types;

And to glue two arrays together end to end, we simply use the concatenation operator
as follows:

SELECT fact_subcats[1:2] || fact_subcats[3:4] FROM census.lu_fact_types;

Character Types
There are tree basic types of character types in PostgreSQL: character (a.k.a. char),
character varying (a.k.a. varchar), and text. Unlike other databases you might have
worked with, text is not stored any differently from varchar, and no performance dif-
ference for the same size data so PostgreSQL has no need for distinctions like medi-
umtext, bigtext, and so forth. Even if a type is text, you can still sort by it. Any data
larger than what can fit in a record page gets pushed to TOAST. So how text/varchar are
stored is only contingent on the actual size of the data in the field and PostgreSQL
handles it all for you. When using varchar, there are still some gotchas when you try
to enlarge the number of characters. If you try to expand the size of an existing var
char field for a table with many rows, the process could take a while. People have
different opinions as to whether you should abandon the use of varchar and just stick
with text. Rather than waste space arguing about it here, read the debate at In Defense
of VarcharX.

The difference between varchar with no size modifier and text is subtle.
varchar has a cap around 1 GB and text has no limit. In practice. you
can do things like override the behavior of varchar operators. which you
can’t do easily with text. This override is particularly useful for cross-
database compatibility. We demonstrate an example of this in Using MS
Access with PostgreSQL, where we show how to make varchar behave
without case sensitivity and still be able to use an index. varchar without
a size modifier is essentially equivalent to SQL Server’s varchar(max).

Most people use text or varchar except for cases where a value should be exactly n
characters long. The reason for this? character is right-padded with spaces out to the
specified size for both storage and display; this is more storage costly, though more
semantically meaningful for a key that should be a fixed length. For comparison the
extra spaces are ignored for character, but not for varchar. Performance-wise, there is
no speed benefit with using character over varchar in PostgreSQL.

PostgreSQL has an abundant number of functions for parsing strings. In this section,
we’ll give some common recipes we’ve found useful.

62 | Chapter 5: Data Types

http://www.postgresql.org/docs/current/interactive/storage-toast.html
http://www.postgresonline.com/journal/archives/154-In-Defense-of-varcharx.html
http://www.postgresonline.com/journal/archives/154-In-Defense-of-varcharx.html
http://www.postgresonline.com/journal/archives/24-Using-MS-Access-with-PostgreSQL.html
http://www.postgresonline.com/journal/archives/24-Using-MS-Access-with-PostgreSQL.html
http://www.postgresql.org/docs/current/interactive/datatype-character.html

String Functions
The most common manipulations done to strings is to pad, trim off white space, and
extract substrings. PostgreSQL has no shortage of these functions to aid you in these
endeavors. In this section, we’ll provide examples of these. These functions have been
around since the age of dinosaurs, so regardless of which version of PostgreSQL you’re
using, you should have all these at your disposal. PostgreSQL 9.0 introduced a new
string aggregate function called string_agg(), which we demonstrated in Exam-
ple 3-8. string_agg() is equivalent in concept to MySQL’s group_concat().

Example 5-4. Using lpad() and rpad() to pad

SELECT lpad('ab', 4, '0') As ab_lpad, rpad('ab', 4, '0') As ab_rpad, lpad('abcde', 4, '0')
As ab_lpad_trunc;

ab_lpad | ab_rpad | ab_lpad_trunc
---------+---------+---------------
00ab | ab00 | abcd

Observe that in Example 5-4, lpad() actually truncates instead of padding.

PostgreSQL has several functions for trimming text. These are trim() (a.k.a. btrim()),
ltrim(), rtrim(). By default, all trim will remove spaces, but you can pass in an optional
argument indicating other characters to trim.

Example 5-5. Using trims to trim space and characters

SELECT a As a_before, trim(a) As a_trim , rtrim(a) As a_rt, i As i_before, ltrim(i,'0') As
i_lt_0, rtrim(i,'0') As i_rt_0, trim(i,'0') As i_t_0
FROM (SELECT repeat(' ', 4) || i::text || repeat(' ', 4) As a, '0' || i::text As i
 FROM generate_series(0, 200, 50) As i) As x;

a_before| a_trim | a_rt | i_before | i_lt_0 | i_rt_0 | i_t_0
--------+--------+---------+----------+--------+--------+-------
0 | 0 | 0 | 00 | | |
50 | 50 | 50 | 050 | 50 | 05 | 5
100 | 100 | 100 | 0100 | 100 | 01 | 1
150 | 150 | 150 | 0150 | 150 | 015 | 15
200 | 200 | 200 | 0200 | 200 | 02 | 2

Splitting Strings into Arrays, Tables, or Substrings
There are a couple of functions useful in PostgreSQL for breaking strings apart.

The split_part() function is useful for getting an element of a delimited string.

Example 5-6. Get the nth element of a delimited string

SELECT split_part('abc.123.z45', '.', 2) As x;

x

123

Character Types | 63

The string_to_array() is useful for creating an array of elements from a delimited
string. By combining string_to_array() with unnest() function, you can expand the
returned array into a set of rows.

Example 5-7. Convert delimited string to array to rows

SELECT unnest(string_to_array('abc.123.z45', '.')) As x;

x

abc
123
z45

Regular Expressions and Pattern Matching
PostgreSQL’s regular expression support is downright fantastic. You can return
matches as tables, arrays, or do fairly sophisticated replace and updates. Back-refer-
encing and other fairly advanced search patterns are also supported. In this section,
we’ll provide a short-sampling of these. For more information, refer to the official doc-
umentation, in the following sections: Pattern Matching and String Functions.

Our example shows you how to format phone numbers stored simply as contiguous
digits:

Example 5-8. Reformat a phone number using back referencing

SELECT regexp_replace('6197256719', '([0-9]{3})([0-9]{3})([0-9]{4})', E'\(\\1\) \\2-\\3')
As x;

x

(619) 725-6719

The \\1, \\2, etc. refers to the elements in our pattern expression. We use the reverse
solidus \(to escape the parenthesis. The E' is PostgreSQL syntax for denoting that a
string is an expression so that special characters like \ would be treated literally.

You might have a piece of text with phone numbers embedded; the next example shows
how to extract the phone numbers and turn them into rows all in one step.

Example 5-9. Return phone numbers in piece of text as separate rows

SELECT unnest(regexp_matches('My work phone is (619)725-6719. My mobile is 619.852.5083.
 Mi número de casa es 619-730-6254. Call me.',
 E'[(]{0,1}[0-9]{3}[)-.]{0,1}[0-9]{3}[-.]{0,1}[0-9]{4}', 'g')) As x;

x

(619)725-6719
619.852.5083
619-730-6254

64 | Chapter 5: Data Types

http://www.postgresql.org/docs/current/interactive/functions-matching.html
http://www.postgresql.org/docs/current/interactive/functions-string.html

Below, we list the matching rules for Example 5-9:

• [(]{0,1}: Starts with 0 or 1 (.

• [0-9]{3}: Followed by 3 digits.

• [)-.]{0,1}: Followed by 0 or 1 of),-, or .

• [0-9]{4}: Followed by 4 digits.

• regexp_matches() returns a string array. If you don’t pass in the 'g' parameter, your
array will have 0 or 1 elements and just return the first match. The 'g' stands for
greedy to return all matches as separate elements.

• unnest() is a function introduced in PostgreSQL 8.4 that explodes an array into a
row set.

There are many ways to write the same regular expression. \\d is short-
hand for [0-9], for example. But given the few characters you’d save,
we prefer the more descriptive long form.

In addition to the wealth of regular expression functions, you can use regular expres-
sions with SIMILAR TO and ~ operators. In the next example, we’ll return all description
fields with embedded phone numbers.

SELECT description FROM mytable WHERE description ~ E'[(]{0,1}[0-9]{3}[)-.]{0,1}[0-9]
{3}[-.]{0,1}[0-9]{4}';

Temporal Data Types
PostgreSQL support for temporal data is unparalleled. In addition to the usual dates
and times, PostgreSQL added support for time zones, enabling the automatically han-
dling DST conversions by region. Details of the various types and DST support is de-
tailed in Data Types. Specialized data types such as interval allows for easy arithmetics
using dates and times. Plus, PostgreSQL has the concept of infinity and negative infinity,
saving us from explicitly having to create conventions that we’ll forget. Finally, Post-
greSQL 9.2 unveiled range types that provide support for date ranges as well as other
types and ability to create new range types. There are six data types available in any
PostgreSQL database for working with temporal data and understanding the distinc-
tions could be important to make sure you choose the right data type for the job. These
data types are all defined in the ANSI-SQL 92 specs. Many other leading databases
support some, but not all, those data types. Oracle has the most varieties of temporal
types, MS SQL 2008+ comes in second, and MySQL of any version comes in last (with
no support for timezones in any version and in lower versions not even properly check-
ing validity of dates).

• date just stores the month, day, and year, with no timezone awareness and no
concept of hours, minutes, or seconds.

Temporal Data Types | 65

http://www.postgresql.org/docs/current/interactive/datatype-datetime.html

• time records hours, minutes, seconds with no awareness of time zone or calendar
dates.

• timestamp records both calendar dates and time (hours, minutes, seconds) but does
not care about the time zone. As such the displayed value of this data won’t change
when you change your server’s time zone.

• timestamptz (a.k.a. timestamp with time zone) is a time zone-aware date and time
data type. Internally, timestamptz is stored in Coordinated Universal Time (UTC),
but display defaults to the time zone of the server (or database/user should you
observe differing time zones at those levels). If you input a timestamp with no time
zone and cast to one with time zone, PostgreSQL will assume the server’s time
zone. This means that if you change your server’s time zone, you’ll see all the
displayed times change.

• timetz (a.k.a. time with time zone) is the lesser-used sister of timestamptz. It is
time zone-aware but does not store the date. It always assumes DST of the current
time. For some programing languages with no concept of time without date, it may
map timetzto a timestamp with a time zone at the beginning of time (for example,
Unix Epoch 1970, thus resulting in DST of year 1970 being used).

• interval is a period of time in hours, days, months, minutes, and others. It comes
in handy when doing date-time arithmetic. For example, if the world is supposed
to end in exactly 666 days from now, all you have to do is add an interval of 666
days to the current time to get the exact moment when it’ll happen (and plan
accordingly).

Time Zones: What It Is and What It Isn’t
A common misconception of PostgreSQL time zone aware data types is that an extra
time zone information is being stored along with the timestamp itself. This is incorrect.
If you save 2012-2-14 18:08:00-8 (-8 being the Pacific offest from UTC), Postgresql
internally works like this:

• Get the UTC time for 2012-02-14 18:08:00-8. This would be 2012-02-15
04:08:00-0.

• PostgreSQL stores the value 2012-02-15 04:08:00 in the database.

When you call the data back for display, PostgreSQL goes through the following steps:

• Find the time zone observed by the server or what was requested. Suppose it’s
“America/New_York” and get the offset for that period of time corresponding to
the UTC of the date time in question. For things that just have a time element like
timetz, the offset assumed—if not specified—is the current local time offset. Let’s
suppose it’s -5. You can also directly specify an offset instead of a time zone to
avoid the Daylight Savings check.

66 | Chapter 5: Data Types

• Compute the date time 2012-02-15 04:08:00 with a -5 offset to get 2012-02-15
21:08:00, then display as 2012-02-15 21:08:00-5.

As you can see, PostgreSQL doesn’t store the time zone but simply uses it to know how
to convert it to UTC for storage. The main thing to remember is that the input time
zone is only used to compute the UTC value and once stored, that input time zone
information is gone. When PostgreSQL displays back the time, it always does so in the
default time zone dictated by the session, user, database, or server and checks in that
order. If you employed time zone aware data types, we implore you to consider the
consequence of a server move from one time zone to another. Suppose you based a
server in New York City, and subsequently restored the database in Los Angeles. All
timestamp with time zone fields would suddenly display in Pacific time. This is fine as
long as you anticipate this behavior.

Here’s an example where something can go wrong. Suppose that McDonald’s had their
server on the East Coast and the opening time for stores is timetz. A new McDonald’s
opens up in San Francisco. The new franchisee phones McDonald’s HQ to add their
store to the master directory with an opening time of 7 a.m. The data entry dude entered
the information as he is told—7 a.m. PostgreSQL inteprets this to mean 7 a.m. Eastern,
and now people are waiting in line wondering why they can’t get their breakfast sand-
wiches at 4 a.m. Being hungry is one thing, but we can imagine many situations where
a screw-up with difference of three hours could mean life or death.

So why would anyone want to use time zone aware data types? First, it does save having
to do time zone conversions manually. For example, if a flight leaves Boston at 8 a.m.
and arrives in Los Angeles at 11 a.m., and your server is in Europe, you don’t want to
have to figure out the offset for each manually. You could just enter the data with the
Boston and Los Angeles offsets. There’s another convincing reason to use time zone
aware data types: the automatic handling of Daylight Savings Time. With countries
deviating more and more from each other in DST observation schedules and even
changing from year to year, manually keeping track of DST changes for a globally used
database would almost require a dedicated programmer who does nothing but keep
up to date with the latest DST schedules.

Here’s an interesting example: A traveling sales person catches a flight home from San
Francisco to nearby Oakland. When he boards the plane the clock at the terminal reads
2012-03-11 1:50 a.m. When he lands, the clock in the terminal reads 2012-03-11 3:10
a.m, How long was the flight? With time zone aware time stamps, you get 20 minutes,
which is the plausible answer for a short flight across the Bay. We actually get the wrong
answer if we don’t use time zone aware timestamps.

SELECT '2012-03-11 3:10AM'::timestamptz - '2012-03-11 1:50AM'::timestamptz;

gives you 20 minutes, while

SELECT '2012-03-11 2:45AM'::timestamp - '2012-03-11 1:50AM'::timestamp;

gives you 1 hour and 20 minutes.

Temporal Data Types | 67

We should add that your server needs to be in the US for the above discrepancy to show
up.

Let’s drive the point home with more examples, using a Boston server.

Example 5-10. Inputting time in one time zone and output in another

SELECT '2012-02-28 10:00 PM America/Los_Angeles'::timestamptz;

2012-02-29 01:00:00-05

For Example 5-10, I input my time in Los Angeles local time, but since my server is in
Boston, I get a time returned in Boston local time. Note that it does give me the offset,
but that is merely display information. The timestamp is internally stored in UTC.

Example 5-11. Timestamp with time zone to timestamp at location

SELECT '2012-02-28 10:00 PM America/Los_Angeles'::timestamptz AT TIME ZONE 'Europe/Paris';

2012-02-29 07:00:00

In Example 5-11, we are getting back a timestamp without time zone. So you’ll notice
the answer you get when you run this same query will be the same as mine. The query
is asking: What time is it in Paris if it’s 2012-02-28 10:00 p.m. in Los Angeles? Note
the absence of UTC offset in the result. Also, notice how I can specify time zone with
its official names rather than just an offset, visit Wikipedia for a list of official time zone
names (http://en.wikipedia.org/wiki/Zoneinfo).

Operators and Functions for Date and Time Data Types
The inclusion of a temporal interval data type greatly eases date and time arithmetics
in PostgreSQL. Without it, we’d have to create another family of functions or use a
nesting of functions as most other databases do. With intervals, we can add and subtract
timestamp data simply by using the arithmetic operators we’re intimately familiar with.
Table 5-1 provides a listing of operators and functions used with date and time data
types.

Table 5-1. Date and Timestamp Operators

Operator Example

+ Adding an interval SELECT '2012-02-10 11:00 PM'::timestamp + interval '1 hour';
2012-02-11 00:00:00

- Subtracting an interval SELECT '2012-02-10 11:00 PM'::timestamptz - interval '1 hour';
2012-02-10 22:00:00-05

OVERLAPS Returns
true or false if two tem-
poral ranges overlap.
This is an ANSI-SQL op-
erator equivalent to the
functional over

SELECT '2012-10-25 10:00 AM'::timestamp,'2012-10-25 2:00 PM'::timestamp
OVERLAPS '2012-10-25 11:00 AM'::timestamp,'2012-10-26 2:00 PM'::timestamp
AS x, '2012-10-25'::date,'2012-10-26'::date OVERLAPS
'2012-10-26'::date,'2012-10-27'::date As y;

x | y
-------+--------
t | f

68 | Chapter 5: Data Types

http://en.wikipedia.org/wiki/Zoneinfo

Operator Example
laps(). OVERLAPS
takes four parameters,
the first pair and the last
pair constitute the two
ranges.

Overlap considers the time periods to be half-open, meaning that the start is included but the end
is not. This is slightly different behavior than when using the common BETWEEN operator, which
considers both start and end to be included. The quirk with overlaps won’t appear unless one of your
ranges is a fixed point in time (a period where start and end are identical). Do watch out for this if
you’re a avid user of the the overlaps function.

In addition to the operators, PostgreSQL comes with functions with temporal types in
mind. A full listing can be found here Date Time Functions and Operators. We’ll
demonstrate a sampling here.

Once again, we start with the versatile generate_series function. Above PostgreSQL
8.3 or above, you can use this function with temporal types and interval steps.

Example 5-12. Generate a time series suing generate_series()

SELECT (dt - interval '1 day')::date As eom
FROM generate_series('2/1/2012', '6/30/2012', interval '1 month') As dt;

eom

2012-01-31
2012-02-29
2012-03-31
2012-04-30
2012-05-31

As you can see in Example 5-12, we can express dates in our local date time format, or
the more global ISO Y-M-D format. PostgreSQL automatically interprets differing in-
put formats. To be safe, we tend to stick with entering dates in ISO, because date
formats vary from culture to culture, server to server, or even database to database.

Another popular activity is extracting or formatting parts of a complete date time. Here,
the functions date_part() and to_char() come to the rescue. The next example will
also drive home the abidance of DST for a time zone aware data type.

Example 5-13. Extracting elements of a date time

We intentionally chose a period that crosses a daylight savings switchover in US/East.

SELECT dt, date_part('hour',dt) As mh, to_char(dt, 'HH12:MI AM') As formtime
 FROM generate_series('2012-03-11 12:30 AM', '2012-03-11 3:00 AM', interval '15 minutes')
As dt

dt | mh | formtime
-----------------------+----+----------
2012-03-11 00:30:00-05 | 0 | 12:30 AM
2012-03-11 00:45:00-05 | 0 | 12:45 AM
2012-03-11 01:00:00-05 | 1 | 01:00 AM
2012-03-11 01:15:00-05 | 1 | 01:15 AM
2012-03-11 01:30:00-05 | 1 | 01:30 AM
2012-03-11 01:45:00-05 | 1 | 01:45 AM
2012-03-11 03:00:00-04 | 3 | 03:00 AM

Temporal Data Types | 69

http://www.postgresql.org/docs/current/interactive/functions-datetime.html
http://www.postgresql.org/docs/current/interactive/functions-formatting.html

By default, generate_series() will assume timestamp with time zone if you don’t ex-
plicitly cast to timestamp. It will always return timestamp with time zone.

XML
The XML datatype is perhaps one of the more controversial types you’ll find in a rela-
tional database. It violates principles of normalization and makes purists cringe. None-
theless, all of the high-end proprietary relational databases support them (IBM DB2,
Oracle, SQL Server). PostgreSQL jumped on the bandwagon and offers plenty of func-
tions to work with data of XML type. We’ve also authored many articles on working
with XML in the context of PostgreSQL. (For further reading, you can find these articles
at http://www.postgresonline.com/journal/index.php?/plugin/tag/xml.) PostgreSQL
comes packaged with various functions for generating data, concatenating, and parsing
XML data. These are outlined in PostgreSQL XML Functions.

Loading XML Data
To start, we show you how to get XML data into a table:

Example 5-14. Populate XML field

INSERT INTO web_sessions(session_id, session_state)
 VALUES ('robe'
 , '<session><screen_properties>
 <prop><name>color</name><val>red</val></prop>
 <prop><name>background</name><val>snoopy</val></prop>
 </screen_properties></session>'::xml);

Querying XML Data
For querying XML, the xpath() function is really useful. The first argument is an
XPath query statement, the second is an XML string. Output is an array of XML objects
that satisfy the XPath query. In example Example 5-15, we’ll combine XPath with
unnest() to return all the screen property names. Remember that unnest unravels the
array into a row set. We then cast the XML fragment to text:

Example 5-15. Query XML field

SELECT (xpath('/prop/name/text()', prop))[1]::text As pname
 , (xpath('/prop/val/text()', prop))[1]::text As pval
 FROM (SELECT unnest(xpath('/session/screen_properties/prop', session_state)) As prop
 FROM web_sessions WHERE session_id = 'robe') As X;

pname | pval
------------+--------
color | red
background | snoopy

Unravel into <prop>, <name>, </name>, <val>, </val>, </prop> tags.

70 | Chapter 5: Data Types

http://www.postgresonline.com/journal/index.php?/plugin/tag/xml
http://www.postgresql.org/docs/current/interactive/functions-xml.html
http://en.wikipedia.org/wiki/XPath

Get text element in name and val tags of each prop element.

We need to use array subscripting because XPath always returns an array, even if
there’s only one element to return.

Custom and Composite Data Types
In this section, we’ll demonstrate how to define a simple custom type and use it. The
composite, (a.k.a. record, row) object type is a special type in PostgreSQL because it’s
often used to build an object that is then cast to a custom type or as return types for
functions needing to return multiple columns.

All Tables Are Custom
As mentioned earlier, PostgreSQL automatically creates custom type for all the tables.
For all intents and purposes, you can use custom types just as you would any other
built-in type. So, we could conceivably create a table that has as a column type that is
of another table’s custom type, and we can go even further and make an array of that
type. We’ll go ahead and demonstrate this table turducken:

CREATE TABLE user_facts(user_id varchar(30) PRIMARY KEY, facts census.facts[]);

We can create an instance of factoid composite type as follows:

ROW(86,'25001010206', 2012, 123, NULL)::census.facts

And then stuff this factoid into our table:

INSERT INTO user_facts(user_id, facts)
 VALUES('robe', ARRAY[ROW(86, '25001010206', 2012, 123, NULL)::census.facts]);

We can add more factoids to the same row using the array || (concatenation) operator
and the array constructor array():

UPDATE user_facts
 SET facts = facts || array(SELECT F FROM census.facts AS F WHERE fact_type_id = 86)
WHERE user_id = 'robe';

Finally, we can query our composite array column:

SELECT facts[5].*, facts[1].yr As yr_1 FROM user_facts WHERE user_id = 'robe';

fact_type_id | tract_id | yr | val | perc | yr_1
-------------+-------------+------+----------+------+------
86 | 25001010304 | 2010 | 2421.000 | | 2012

Building Your Own Custom Type
Although you can easily create composite types just by creating a table, at some point,
you’ll probably wish to build your own from scratch. For example, let’s build a complex
number data type with the following statement:

Custom and Composite Data Types | 71

CREATE TYPE complex_number AS (r double precision, i double precision);

We can then use this complex_number as a column type:

CREATE TABLE circuits(circuit_id text PRIMARY KEY, tot_volt complex_number);

We can then query our table with statements such as:

SELECT circuit_id, (tot_volt).*
 FROM circuits;

or an equivalent:

SELECT circuit_id, (tot_volt).r, (tot_volt).i
 FROM circuits;

People from other databases are a bit puzzled by the (tot_volt) syntax.
If you leave out the () for a composite type that is not an array, you get
an error of form missing FROM-clause entry for table “tot_volt”, which
is caused because tot_volt could just as easily refer to a table called
tot_volt.

Although we didn’t show it here, you can also define operators that will work with your
custom type. You could define the operator of + addition between two complex num-
bers or a complex number and a real number. Being able to build custom types and
operators pushes PostgreSQL to the boundary of a full-fledged development environ-
ment, bringing us ever closer to our conception of an ideal world where everything is
table-driven.

72 | Chapter 5: Data Types

CHAPTER 6

Of Tables, Constraints, and Indexes

Tables
In addition to the run-of-the-mill data table, PostgreSQL offers several kinds of tables
that are rather unique: temporary, unlogged (demonstrated in Example 6-3), inherited
(demonstrated in Example 6-2), and typed tables (demonstrated in Example 6-4).

Table Creation
In this section, we’ll demonstrate some common table creation examples. Most are
similar to or exactly what you’ll find in other databases.

Example 6-1. Basic table creation

CREATE TABLE logs(
 log_id serial PRIMARY KEY , user_name varchar(50)
 , description text
 , log_ts timestamp with time zone NOT NULL DEFAULT current_timestamp);
CREATE INDEX idx_logs_log_ts ON logs USING btree(log_ts);

serial type is the data type you use when you want an incrementing auto number.
It creates a companion sequence object and defines the new column as an integer
with the default value set to the next value of the sequence object. It is often as a
primary key.

varchar is a variable length string similar to what you will find used in other data-
bases. It can also be written as character varying(50). If you don’t specify a size,
the size is unconstrained.

text is an unconstrained string. It’s never followed with a size.

timestamp with time zone is a date and time data type always stored in UTC. It will,
by default, always display date and time in the server’s own time zone unless you
tell it to otherwise. It’s often written using the short-hand timestamptz. There is a

73

companion data type called timestamp, which lacks the time zone. As a result, the
value of timestamp will not change if your server’s time zone changes.

PostgreSQL is the only database that we know of that offers table inheritance. When
you specify that a child table inherit from a parent, the child will be created with all the
columns of the parent in addition to its own columns. All structural changes made to
the parent will automatically propagate its child tables. To save you even more time,
whenever you query the parent, all rows in the children are included as well. Not every
trait of the parent passes down to the child, notably indexes and primary key con-
straints.

Example 6-2. Inherited table creation

CREATE TABLE logs_2011(PRIMARY KEY(log_id)) INHERITS (logs);
CREATE INDEX idx_logs_2011_log_ts ON logs USING btree(log_ts);
ALTER TABLE logs_2011
 ADD CONSTRAINT chk_y2011
 CHECK (log_ts BETWEEN '2011-01-01'::timestamptz AND '2012-1-1'::timestamptz);

We defined a check constraint to limit data to just year 2011 for our time zone. Since
we didn’t specify a time zone, our timestamp will default to the server’s time zone.
Having the check constraint in place allows the query planner to completely skip
over inherited tables that do not satisfy a query condition.

For ephemeral data that could be rebuilt in event of a disk failure or don’t need to be
restored after a crash, you might prefer having more speed over redundancy. In 9.1, the
UNLOGGED modifier allows you to create unlogged tables. These tables will not be part
of any write-ahead logs. Should you accidentally unplug the power cord on the server,
when you turn back the power, all data in your unlogged tables will be wiped clean
during the roll-back process. You can find more examples and gotchas in Depesz:
Waiting for 9.1 Unlogged Tables.

Example 6-3. Unlogged table creation

CREATE UNLOGGED TABLE web_sessions(session_id text PRIMARY KEY, add_ts timestamptz
 , upd_ts timestamptz, session_state xml);

The benefit of unlogged tables is that they can be 15 times or faster to write to than
logged tables.

Unlogged tables are always truncated during crash recovery, so don’t
use them for data that is not derivable or ephemeral. They also don’t
support GIST indexes, and are therefore unsuitable for exotic data types
that require such an index for speedy access. GIN indexes are supported,
though.

PostgreSQL 9.0+ provides another way of table creation whereby the column structure
is defined by a composite data type. When using this method, you can’t add additional

74 | Chapter 6: Of Tables, Constraints, and Indexes

http://www.depesz.com/2011/01/03/waiting-for-9-1-unlogged-tables/
http://www.depesz.com/2011/01/03/waiting-for-9-1-unlogged-tables/

columns directly to the table. The advantage of this approach is that if you have many
tables sharing the same structure and you need to alter the column, you can do so by
simply changing the underlying type.

We’ll demonstrate by first creating a type with the definition:

CREATE TYPE app_user AS (user_name varchar(50), email varchar(75), pwd varchar(50));

We can then create a table that has rows that are instances of this type:

Example 6-4. Typed table Creation

CREATE TABLE super_users OF app_user(CONSTRAINT pk_super_users PRIMARY KEY (user_name));

Let’s say we now need to add a phone number to all our tables. We simply have to run
the following command to alter the underlying type:

ALTER TYPE app_user ADD ATTRIBUTE main_phone varchar(18) CASCADE;

Normally, you can’t change the definition of a type if tables depend on that type. The
CASCADE modifier allows you to override this restriction.

Multi-Row Insert
PostgreSQL syntax pretty much abides by the ANSI-SQL standards for adding data,
but it does have some lagniappes not always found in many other databases, one of
which is a multi-row constructor that can be used to insert more than one record at a
time. The multi-row constructor has been in existence since 8.2. The constructor can
in fact be used in any SQL and behaves exactly like a table.

Example 6-5. Using multi-row consructor to insert data

INSERT INTO logs_2011(user_name, description, log_ts)
 VALUES ('robe', 'logged in', '2011-01-10 10:15 AM EST')
 , ('lhsu', 'logged out', '2011-01-11 10:20 AM EST');

It’s much like a single row INSERT VALUES() syntax except you can add more than one
row at a time.

An Elaborate Insert
For this next section, we’ll load the data collected in Example 3-5 into production-
grade tables replete with proper indexes and constraints. We’ll be using the new DO
command, which allows you to write a piece of procedural language code on the fly.
Don’t worry if you can’t follow the code in this section. As long as you run the code,
you’ll have the tables you need to continue with our on-going examples.

The first step we’re going to take is to create a new schema. Think of schemas as another
level of organization for database objects. We use it liberally to group our tables into
logical units. You can have two tables with the same name as long as they are in separate

Tables | 75

schemas. To distinguish between them, you must prepend the schema name. To avoid
the hassle of always having to tag on the schema in front of table names, you can set
the search_path either on a per-session or permanent basis. You list schemas in the
order you would like the SQL parser to search for tables. For example, if you have two
tables named my_table, one in a schema called s1, another in s2, and you set
search_path=s2, s1;. When you refer to my_table in a query without prefixing the
schema name, it’ll be the one in s2. Schemas are not limited to organizing tables, you
can place functions, types, views, and many other objects into separate schemas.

Example 6-6. Creating a new schema, setting search_path, and populating lu_tracts

CREATE SCHEMA census;
set search_path=census;
CREATE TABLE lu_tracts(tract_id varchar(11), tract_long_id varchar(25)
 , tract_name varchar(150)
 , CONSTRAINT pk_lu_tracts PRIMARY KEY (tract_id));
INSERT INTO lu_tracts(tract_id, tract_long_id, tract_name)
SELECT geo_id2, geo_id, geo_display
FROM staging.factfinder_import
WHERE geo_id2 ~ '^[0-9]+';

Create a schema called census to house our new data.

set search_path allows us to designate the default schemas to search in for this
session.

We want to insert only census tract rows, so we designate a regex that searches for
strings starting with one or more numbers.

The next two examples take advantage of the new DO command and the procedural
language PL/pgSQL to generate a series of INSERT INTO SELECT statements. The SQL
also performs an unpivot operation converting columnar data into rows.

Example 6-7. Insert using DO to generate dynamic SQL

set search_path=census;
CREATE TABLE lu_fact_types(fact_type_id serial, category varchar(100)
 , fact_subcats varchar(255)[] , short_name varchar(50)
 , CONSTRAINT pk_lu_fact_types PRIMARY KEY (fact_type_id));

DO language plpgsql
$$
DECLARE var_sql text;
BEGIN
 var_sql := string_agg('INSERT INTO lu_fact_types(category, fact_subcats, short_name)
 SELECT ''Housing''
 , array_agg(s' || lpad(i::text,2,'0') || ') As fact_subcats, ' || quote_literal('s' ||
lpad(i::text,2,'0')) || ' As short_name
 FROM staging.factfinder_import
 WHERE s' || lpad(I::text,2,'0') || ' ~ ''^[a-zA-Z]+'' ', ';') FROM generate_series(1,51)
As I;
 EXECUTE var_sql;

76 | Chapter 6: Of Tables, Constraints, and Indexes

END
$$;

An array of strings each with maximum length of 255 characters.

Example 6-8. Adding data to facts table

set search_path=census;
CREATE TABLE facts(fact_type_id int, tract_id varchar(11), yr int
 , val numeric(12,3), perc numeric(6,2),
CONSTRAINT pk_facts PRIMARY KEY (fact_type_id, tract_id, yr));
DO language plpgsql
$$
DECLARE var_sql text;
BEGIN
 var_sql := string_agg('INSERT INTO facts(fact_type_id, tract_id, yr, val, perc)
 SELECT ' || ft.fact_type_id::text || ', geo_id2, 2010, s' || lpad(i::text,2,'0') ||
'::integer As val
 , CASE WHEN s' || lpad(i::text,2,'0') || '_perc LIKE ''(X%'' THEN NULL ELSE s' ||
lpad(i::text,2,'0') || '_perc END::numeric(5,2) As perc
 FROM staging.factfinder_import AS X
 WHERE s' || lpad(i::text,2,'0') || ' ~ ''^[0-9]+'' ', ';')
 FROM generate_series(1,51) As I INNER JOIN lu_fact_types AS F ON ('s' || lpad(I::text,
2,'0') = T.short_name);
 EXECUTE var_sql;
END$$;

Constraints
PostgreSQL constraints are the most advanced and (most complex) of any database
we’ve worked with. Not only do you just create constraints, but you can also control
all facets of how it’ll handle existing data, cascade options, how to perform the match-
ing, which indexes to incorporate, conditions under which constraint can be violated,
and so forth. On top of it all, you need to even pick your own name for the constraint.
For the full treatment, we suggest you review the official documentation. You’ll find
comfort in knowing that taking the default settings usually works out fine. We’ll start
off with something familiar to most relational folks: foreign key, unique, and check
constraints before moving onto exclusion constraints introduced in 9.0.

Foreign Key Constraints
PostgreSQL follows the same convention as most databases you may have worked with
that support referential integrity. It supports the ability to define cascade update and
delete rules. We’ll experiment with that in Example 6-9.

Example 6-9. Building FK constraints and covering indexes

set search_path=census,public;
ALTER TABLE facts
ADD CONSTRAINT fk_facts_lu_fact_types
FOREIGN KEY (fact_type_id) REFERENCES lu_fact_types (fact_type_id)

Constraints | 77

http://www.postgresql.org/docs/current/interactive/sql-set-constraints.html

ON UPDATE CASCADE ON DELETE RESTRICT;
CREATE INDEX fki_facts_lu_fact_types ON facts(fact_type_id);

ALTER TABLE facts
ADD CONSTRAINT fk_facts_lu_tracts
FOREIGN KEY (tract_id)
REFERENCES census.lu_tracts (tract_id)
ON UPDATE CASCADE ON DELETE RESTRICT;
CREATE INDEX fki_facts_lu_tracts ON census.facts(tract_id);

In this first constraint, we define a foreign key relationship between our facts and
fact_types table. This prevents us from introducing fact types not already present in
our fact types lookup table.

We also define a cascade rule that automatically update the fact_type_id in our facts
table should we renumber our fact types. We restrict deletes from our lookup table
if any values are in use. Although RESTRICT is already the default behavior, we add
it for clarity.

Unlike primary key and unique constraints, PostgreSQL doesn’t automatically cre-
ate an index for foreign key constraints; you need to do this yourself.

Unique Constraints
Each table can have no more than a single primary key. Should you need to enforce
uniqueness on other columns, you must resort to unique constraints. Adding a unique
constraint automatically creates an associated unique index. Unlike a primary key, a
column with unique constraints can still be populated with NULLs. Having a unique
constraint doesn’t qualify a column to participate in a foreign key relationship. Adding
a unique constraint is simple.

ALTER TABLE logs_2011 ADD CONSTRAINT uq_us_log UNIQUE (user_name, log_ts);

Check Constraints
Check constraints are conditions that must be met for a field or set of fields for each
row. PostgreSQL query planner also uses them for what is called constraint exclu
sion which means if a check constraint on a table guarantees that it can’t service the
filter condition of a query, then the planner can skip checking the table. We saw an
example of a check contraint in Example 6-2. That particular example was used to
prevent the planner from having to scan log tables that don’t satisfy the date range of
a query. You can define additional constraints, for example you make require all user
names input into logs tables be in lower case with this check constraint:

ALTER TABLE logs ADD CONSTRAINT chk_lusername
 CHECK (user_name = lower(user_name));

The other noteworthy thing about check constraints is that unlike primary key, foreign
key, and unique key constraints, they can be inherited from parent tables. So you’ll see

78 | Chapter 6: Of Tables, Constraints, and Indexes

that this particular check constraint we put on the logs gets inherited by all child tables
of logs.

Exclusion Constraints
Introduced in PostgreSQL 9.0, exclusion constraints allow you to incorporate additional
operators to enforce a certain kind of uniqueness that can’t be satisfied by equality.
Exclusion constraints are really useful in problems involving scheduling. If a room is
booked between a certain period of time, additional booking overlaps won’t be allowed.
To enforce this rule, create a scheduling table using the period data type1 and then add
an exclusion constraint using the OVERLAP (&&) operator. PostgreSQL 9.2 introduces the
range data types that are perfect for use in exclusion constraints. In 9.2, the period
extension is obsolete and supplanted by the new built-in tstzrange range data type. An
example of using 9.2 ranges with exclusion constraints is demonstrated in Waiting for
9.2 Range Data Types.

Indexes
PostgreSQL comes with a superbly flexible index framework. At time of writing, Post-
greSQL comes with at least four types of indexes. Should you find these insufficient,
you can define new index operators and modifiers to work on top of these. If still
unsatisfied, you’re free to create your own index type. PostgreSQL also allows you to
mix types in the same table each with their own catered index types and count on the
planner to take advantage of them all by the planner’s bitmap index scan strategy. So,
for instance, one column could use a B-tree index; the adjacent column a GiST index
and both indexes can be utilized in the same query.

PostgreSQL Stock Indexes
To take full advantage of all that PostgreSQL has to offer, you’ll want to understand
the various types of indexes and what they can and can’t be used for. The various types
of indexes PostgreSQL currently has built-in are listed next.

Index Types

B-tree
B-tree is the index you’ll find most common in any relation database. B-tree is
designed to be a general purpose type of index. You can usually get by with just
this one alone if you don’t want to experiment with additional types. If PostgreSQL
automaticaly creates an index for you or you don’t bother picking the type, B-tree
will be chosen. It is currently the only index type allowed for primary key and
unique indexes.

1. You’ll need to install the period extension to be able to use this data type.

Indexes | 79

http://www.postgresql.org/docs/current/interactive/ddl-constraints.html
http://www.postgresql.org/docs/9.2/interactive/rangetypes.html
http://www.depesz.com/2011/11/07/waiting-for-9-2-range-data-types
http://www.depesz.com/2011/11/07/waiting-for-9-2-range-data-types
http://www.postgresql.org/docs/current/interactive/indexes-bitmap-scans.html

GiST
Generalized Search Tree (GiST) is an index type optimized for full text search,
spatial data, astronomical data, and hierarchical data. You can’t use it to enforce
uniqueness, however, you can use it in exclusion constraints.

GIN
Generalized Inverted Index (GIN) is an index type commonly used for the built-in
full text search of PostgreSQL and the trigram extensions. GIN is a decendent of
Gist, but it’s not lossy. GIN indexes are generally faster to search than GiST, but
slower to update. You can see an example at Waiting for Faster LIKE/ILIKE.

SP-GiST
Space-Partitioning Trees Generalized Search Tree (SP-GiST) is an index type in-
troduced in PostgreSQL 9.2. It’s use is similar that of GiST, but is generally faster
for certain kinds of distribution. PostGIS 2.1 spatial extension has planned support
for it. The only types built-in that currently have support for it are the built-in
PostgreSQL geometry types like point and box and text. Other GiST dependent
extensions also have planned support for it.

hash
Hash is an index that was popular before GiST and GIN came along. General
consensus is that GiST and GIN outperform and are more transaction safe than
hash. PostgreSQL has relegated hash to legacy status. You may encounter this
index type in other databases, but it’s best to avoid it in PostgreSQL.

Should you want to go beyond the index types that PostgreSQL installs by default,
either out of need or curiosity, you should start perusing the list of additional index
types available as extensions.

Custom Index Types

btree_gist
This index is useful when you’re trying to group different types into a single index.
Excellent choice for cases where you have a simple type like a number and a more
complex type like a point. It’s also used to leverage gist like KNN operators and
exclusion constraints for basic types, which can only be used with GiST and GIN
indexable operators.

btree_gin
is a cross-breeding of B-tree and GIN. It supports the indexable specialty operators
of GIN, but also offers indexable equality found in the B-tree index not available
with standard GIN. It’s most useful when you want to create a compound index
composed of a column data type like a text or number, normally serviced by btree
operators and another column, such as a hierarchical ltree type, or full-text vector
supported by GIN. By using a btree_gin index, you can have both columns as part
of the compound index and still have and indexable equality check be able to use
the index for the text/integer column.

80 | Chapter 6: Of Tables, Constraints, and Indexes

http://www.postgresql.org/docs/current/interactive/textsearch-indexes.html
http://www.depesz.com/2011/02/19/waiting-for-9-1-faster-likeilike/
http://www.postgresql.org/docs/devel/static/spgist-intro.html
http://www.postgresql.org/docs/current/interactive/btree-gist.html
http://www.postgresql.org/docs/current/interactive/btree-gist.html

You can install any of the index types in Custom Index Types on page 80, using the
following:

CREATE EXTENSION btree_gist;

Operator Class
Indexes for each data type have operator classes (a.k.a. opclass). Operator classes are
detailed in Operator Classes. Operator classes support a given set of operators. In short,
an operator can utilize an index only if the operator class for that index supports it. For
example, many B-tree operator classes support =, >= but not pattern operations like
~>~. Each data type comes with a default operator class. For instance, the default opclass
for varchar is varchar_ops, which includes operators such as =, >, and < but no support
for pattern operations. If you create an index without being explicit about the op-
class(es) to be used, the default for the data type(s) being indexed would automatically
be picked. The index will then only be useful when you’re using operators within the
opclass of the index. Refer to Why is My Index Not Used? for more information.

You shouldn’t always accept the default. For instance, varchar_ops doesn’t include the
LIKE operators, so none of your like searches can use an index of that opclass. If you’re
going to be performing wildcard searches on a varchar columns, you’d be better off
choosing the varchar_pattern_ops opclass for your index. To specify the opclass, just
append the opclass after the column name, as in:

CREATE INDEX idx_bt_my_table_description_varchar_pattern ON my_table
 USING btree (description varchar_pattern_ops);

For PostgreSQL 9.1+, you’d do even better with a GiST index and the companion
pg_trgm extension packaged with the gist_trgm_ops operator class. This particular
opclass is highly optimized for wildcard searches. You can learn more about Trigrams
in our article at Teaching LIKE and ILIKE New Tricks. Wtih the extension installed,
you can create your index as follows:

CREATE INDEX idx_gist_my_table_description_gist_trgm_ops ON my_table
 USING gist (description gist_trgm_ops);

You’ll then see your standard ILIKE and LIKE searches being able to take advantage of
indexing.

Functional Indexes
PostgreSQL has a feature called functional indexes, which you won’t often find in other
databases. A more common parallel you’ll see in other databases like Microsoft SQL
Server or MySQL are computed columns and the ability to place indexes on computed
columns. PostgreSQL didn’t buy into the idea of computed columns since views are
more appropriate places for them. To still reap the speed advantage of indexes, Post-
greSQL lets you place indexes on functions of columns. A classic example where you’d
want to employ a functional index is for dealing with mixed case text. PostgreSQL is a

Indexes | 81

http://www.postgresql.org/docs/current/interactive/indexes-opclass.html
http://www.postgresonline.com/journal/archives/78-Why-is-my-index-not-being-used.html
http://www.postgresonline.com/journal/archives/212-PostgreSQL-9.1-Trigrams-teaching-LIKE-and-ILIKE-new-tricks.html

case-sensitive database, so to be able to search using an index when casing doesn’t
matter; you can create an index as follows:

CREATE INDEX idx_featnames_ufullname_varops ON featnames_short
 USING btree (upper(fullname) varchar_pattern_ops);

Partial Indexes
Partial indexes (read more about them here: http://www.postgresql.org/docs/current/
interactive/indexes-partial.html) are indexes that only index that portion of data fitting
a specific WHERE condition. This is pretty much synonymous with SQL Server 2008+
filtered index, but PostgreSQL has had this feature even in pre 8.0 versions. If you have
a table of one million rows, but you only query a fixed set of 10,000, you’re better off
creating partial indexes because of the disk savings and having a smaller more efficient
index to scan. The main caveat with partial indexes is that you must use the same
WHERE condition when you created the index in your query to activate the index. An
easy way to ensure that your partial index will always be used is to use a view when
querying the data. For example, let’s say we have a table of newspaper subscribers,
which we define as follows:

Let’s suppose we have a subscription table, but we want to ensure that for each user,
we have only one active subscription. We might create a table like this:

CREATE TABLE allsubscribers (id serial PRIMARY KEY, user_name varchar(50) NOT NULL
 , deactivate timestamptz);

We can then add our partial index to guarantee uniqueness only for active subscribers:

CREATE UNIQUE INDEX uqidx_1 ON allsubscribers
 USING btree (lower(user_name)) WHERE deactivate IS NULL;

To ensure our index is always used for active subscriptions, we can create a view with
the built-in condition and always use this view when querying active subscriptions:

CREATE OR REPLACE VIEW vw_active_subscribers AS
SELECT id, lower(user_name) As user_name
 FROM allsubscribers WHERE deact_dt IS NULL;

To ensure index usage, we always query against our view as follows:

SELECT * FROM vw_active_subscribers WHERE user_name = 'sandy';

You can open up the planner and see that our index was indeed used.

Multicolumn Indexes
PostgreSQL, like many other databases, supports compound indexes, a.k.a. multicol-
umn indexes. Compound indexes allow you to combine multiple columns or functions
on columns into one index. Prior to 9.0, there wasn’t a compelling reason to use com-
pound indexes apart from primary key and unique key indexes because PostgreSQL
supports bitmap index scans, which allows the planner to utilize multiple indexes in a

82 | Chapter 6: Of Tables, Constraints, and Indexes

http://www.postgresql.org/docs/current/interactive/indexes-partial.html
http://www.postgresql.org/docs/current/interactive/indexes-partial.html
http://www.postgresql.org/docs/current/interactive/indexes-multicolumn.html
http://www.postgresql.org/docs/current/interactive/indexes-multicolumn.html

query. Using a compound index, may speed up certain kinds of searches if you always
search exactly those multiple columns together.

In 9.0 and even more so in 9.2, compound indexes serve an important role in exclusion
constraints. In PostgreSQL 9.2, index-only scans were introduced, which makes the
use of compound indexes even more relevant since the planner can just scan the index
and use data from the index without ever needing to check the underlying table.

Here is an example of a multicolumn index:

CREATE INDEX idx_sometable_cmpd ON sometable
 USING btree(type_id, upper(fullname) varchar_pattern_ops);

Indexes | 83

CHAPTER 7

SQL: The PostgreSQL Way

PostgreSQL is one of the most ANSI-SQL compliant databases on the market. It even
supports many of the additions introduced with the SQL:2006+ standard. PostgreSQL
goes much further and adds constructs that range from mundane syntax shorthands
to avant-garde features that break the bounds of traditional SQL. In this chapter, we’ll
cover some SQL constructs not often found in other databases. For this chapter, you
should have a working knowledge of SQL; otherwise, you may not appreciate the labor-
saving tidbits that PostgreSQL brings to the table.

SQL Views
Like most relational databases, PostgreSQL supports views. Some things have changed
over the years on how views work and how you can update the underlying tables via
updates on views. In pre-PostgreSQL 9.1, views were updatable but required INSTEAD
OF UPDATE, DELETE rules on the view. In PostgreSQL 9.1, the preferred way of updating
data via a view is to use INSTEAD OF triggers instead of rules, though rules are still sup-
ported. The trigger approach is standards compliant and more along the lines of what
you’ll find in other databases that support triggers and updatable views.

Unlike Microsoft SQL Server and MySQL, simple views are not automatically updat-
able and require writing an instead-of rule or trigger to make them updatable. On the
plus side, you have great control over how the underlying tables will be updated. We’ll
cover triggers in more detail in Chapter 8. You can see an example of building updatable
views using rules in Database Abstraction with Updateable Views.

Views are most useful for encapsulating common joins. In this next example, we’ll join
our lookup with our fact data.

85

http://www.postgresonline.com/journal/archives/11-Database-Abstraction-with-Updateable-Views.html

Example 7-1. View census.vw_facts

CREATE OR REPLACE VIEW census.vw_facts AS
SELECT lf.fact_type_id, lf.category, lf.fact_subcats, lf.short_name
 , f.tract_id, f.yr, f.val, f.perc
FROM census.facts As f
 INNER JOIN census.lu_fact_types As lf
 ON f.fact_type_id = lf.fact_type_id;

To make this view updatable with a trigger, you can define one or more instead of
triggers. We first define the trigger function(s). There is no standard in naming of the
functions and a trigger function can be written in any language that supports triggers.
For this example, we’ll use PL/pgSQL to write our trigger function as shown in Exam-
ple 7-2.

Example 7-2. Trigger function for vw_facts to update, delete, insert

CREATE OR REPLACE FUNCTION census.trig_vw_facts_ins_upd_del() RETURNS trigger AS
$$
BEGIN
 IF (TG_OP = 'DELETE') THEN
 DELETE FROM census.facts AS f
 WHERE f.tract_id = OLD.tract_id AND f.yr = OLD.yr AND f.fact_type_id =
OLD.fact_type_id;
 RETURN OLD;
 END IF;
 IF (TG_OP = 'INSERT') THEN
 INSERT INTO census.facts(tract_id, yr, fact_type_id, val, perc)
 SELECT NEW.tract_id, NEW.yr, NEW.fact_type_id, NEW.val, NEW.perc;
 RETURN NEW;
 END IF;
 IF (TG_OP = 'UPDATE') THEN
 IF ROW(OLD.fact_type_id, OLD.tract_id, OLD.yr, OLD.val, OLD.perc)
 != ROW(NEW.fact_type_id, NEW.tract_id, NEW.yr, NEW.val, NEW.perc) THEN
 UPDATE census.facts AS f
 SET tract_id = NEW.tract_id, yr = NEW.yr
 , fact_type_id = NEW.fact_type_id
 , val = NEW.val, perc = NEW.perc
 WHERE f.tract_id = OLD.tract_id
 AND f.yr = OLD.yr
 AND f.fact_type_id = OLD.fact_type_id;
 RETURN NEW;
 ELSE
 RETURN NULL;
 END IF;
 END IF;
END;
$$
LANGUAGE plpgsql VOLATILE;

Handle deletes, only delete the record with matching keys in the OLD record.

Handle inserts.

Only updates if at least one of the columns from facts table was changed.

86 | Chapter 7: SQL: The PostgreSQL Way

http://www.postgresql.org/docs/current/interactive/plpgsql-trigger.html

Handle updates, use the OLD record to determine what records to delete and update
with the NEW record data.

Next, we bind the trigger function to the view as shown in Example 7-3.

Example 7-3. Bind trigger function to vw_facts view insert,update,delete events

CREATE TRIGGER trip_01_vw_facts_ins_upd_del
INSTEAD OF INSERT OR UPDATE OR DELETE ON census.vw_facts
 FOR EACH ROW EXECUTE PROCEDURE census.trig_vw_facts_ins_upd_del();

Now when we update, delete, or insert into our view, it will update the underlying
facts table instead:

UPDATE census.vw_facts SET yr = 2012 WHERE yr = 2011 AND tract_id = '25027761200';

This will output a note:

Query returned successfully: 51 rows affected, 21 ms execution time.

If we tried to update one of the fields in our lookup table, because of our row compare
the update will not take place, as shown here:

UPDATE census.vw_facts SET short_name = 'test';

Therefore, the output message would be:

Query returned successfully: 0 rows affected, 931 ms execution time.

Although we have just one trigger function to handle multiple events, we could have
just as easily created a separate trigger and trigger function for each event.

Window Functions
Window functions are a common ANSI-SQL feature supported in PostgreSQL since
8.4. A window function has the unusual knack to see and use data beyond the current
row, hence the term window. Without window functions, you’d have to resort to using
joins and subqueries to poll data from adjacent rows. On the surface, window functions
do violate the set-based operating principle of SQL, but we mollify the purist by claim-
ing them to be a short-hand. You can find more details and examples in the section
Window Functions.

Here’s a quick example to get started. Using a window function, we can obtain the
average value for all records with fact_type_id of 86 in one simple SELECT.

Window Functions | 87

http://www.postgresql.org/docs/current/interactive/tutorial-window.html

Example 7-4. The basic window

SELECT tract_id, val, AVG(val) OVER () as val_avg
FROM census.facts WHERE fact_type_id = 86;

 tract_id | val | val_avg
------------+-----------+-----------------------
25001010100 | 2942.000 | 4430.0602165087956698
25001010206 | 2750.000 | 4430.0602165087956698
25001010208 | 2003.000 | 4430.0602165087956698
25001010304 | 2421.000 | 4430.0602165087956698
:
:

Notice how we were able to perform an aggregation without having to use GROUP BY.
Furthermore, we were able to rejoin the aggregated result back with the other variables
without using a formal join. The OVER () converted our conventional AVG() function
into a window function. When PostgreSQL sees a window function in a particular row,
it will actually scan all rows fitting the WHERE clause, perform the aggregation, and output
the value as part of the row.

Partition By
You can embellish the window into separate panes using the PARTITION BY clause. This
instructs PostgreSQL to subdivide the window into smaller panes and then to take the
aggregate over those panes instead of over the entire set of rows. The result is then
output along with the row depending on which pane it belongs to. In this next example,
we repeat what we did in Example 7-4, but partition our window into separate panes
by county code.

Example 7-5. Partition our window by county code

SELECT tract_id, val, AVG(val) OVER (PARTITION BY left(tract_id,5)) As val_avg_county
FROM census.facts WHERE fact_type_id = 86 ORDER BY tract_id;

 tract_id | val | val_avg_county
------------+-----------+-----------------------
25001010100 | 2942.000 | 3787.5087719298245614
25001010206 | 2750.000 | 3787.5087719298245614
:
25003900100 | 3389.000 | 3364.5897435897435897
25003900200 | 4449.000 | 3364.5897435897435897
25003900300 | 2903.000 | 3364.5897435897435897
 :

The left function was introduced in PostgreSQL 9.1. If you are using a
lower version, you can use substring instead.

88 | Chapter 7: SQL: The PostgreSQL Way

Order By
Window functions also allow an ORDER BY clause. Without getting too abstruse, the
best way to think about this is that all the rows in the window will be ordered and the
window function will only consider rows from the first row to the current row. The
classic example uses the ROW_NUMBER() function, which is found in all databases sup-
porting window functions. It sequentially numbers rows based on some ordering and
or partition. In Example 7-6, we demonstrate how to number our census tracts in al-
phabetical order.

Example 7-6. Number alphabetically

SELECT ROW_NUMBER() OVER(ORDER BY tract_name) As rnum, tract_name
FROM census.lu_tracts ORDER BY rnum LIMIT 4;

rnum | tract_name
-----+--
1 | Census Tract 1, Suffolk County, Massachusetts
2 | Census Tract 1001, Suffolk County, Massachusetts
3 | Census Tract 1002, Suffolk County, Massachusetts
4 | Census Tract 1003, Suffolk County, Massachusetts

You can combine ORDER BY with PARTITION BY. Doing so will restart the ordering for
each partition. We return to our example of county codes.

Example 7-7. Partition our window and ordering by value

SELECT tract_id, val
 , AVG(val) OVER (PARTITION BY left(tract_id,5) ORDER BY val) As avg_county_ordered
FROM census.facts
WHERE fact_type_id = 86 ORDER BY left(tract_id,5), val;

 tract_id | val | avg_county_ordered
-------------+-----------+------------------------
 25001990000 | 0.000 | 0.00000000000000000000
 25001014100 | 1141.000 | 570.5000000000000000
 25001011700 | 1877.000 | 1006.0000000000000000
 25001010208 | 2003.000 | 1255.2500000000000000
 :
 25003933200 | 1288.000 | 1288.0000000000000000
 25003934200 | 1306.000 | 1297.0000000000000000
 25003931300 | 1444.000 | 1346.0000000000000000
 25003933300 | 1509.000 | 1386.7500000000000000
 :

The key observation with output is to notice how the average changes from row to row.
The ORDER BY clause means that the average will only be taken from the beginning
of the partititon to the current row. For instance, if your row is in the 5th row in the
3rd partition, the average will only cover the first five rows in the 3rd partition. We put
an ORDER BY left(tract_id,5), val at the end of the query so you could easily see the
pattern, but keep in mind that the ORDER BY of the query is independent of the ORDER
BY in each OVER. You can explicitly control the rows under consideration within a frame

Window Functions | 89

by explicitly putting in a RANGE or ROWS clause of the form ROWS BETWEEN CURRENT ROW
AND 5 FOLLOWING. For more details, we ask that you refer to SQL SELECT official doc-
umentation.

PostgreSQL also supports window naming which is useful if you have the same window
for each of your window columns. In Example 7-8, we demonstrate how to define
named windows as well as showing a record value before and after for a given window
frame, using the LEAD and LAG standard ANSI window functions.

Example 7-8. Named windows and lead lag

SELECT *
FROM (SELECT ROW_NUMBER() OVER wt As rnum
 , substring(tract_id,1, 5) As county_code, tract_id
 , LAG(tract_id,2) OVER wt As tract_2_before
 , LEAD(tract_id) OVER wt As tract_after
 FROM census.lu_tracts
 WINDOW wt AS (PARTITION BY substring(tract_id,1, 5) ORDER BY tract_id)
) As foo
WHERE rnum BETWEEN 2 and 3 AND county_code IN('25007', '25025')
ORDER BY county_code, rnum;

rnum | county_code | tract_id | tract_2_before | tract_after
-----+-------------+-------------+----------------+-------------
2 | 25007 | 25007200200 | | 25007200300
3 | 25007 | 25007200300 | 25007200100 | 25007200400
2 | 25025 | 25025000201 | | 25025000202
3 | 25025 | 25025000202 | 25025000100 | 25025000301

PostgreSQL allows for defining named windows that can be reused in multiple
window column definitions. We define our wt window.

We reuse our wt alias multiple times to save having to repeat for each window
column.

Both LEAD() and LAG() take an optional step argument that defines how many to skip
forward or backward; the step can be positive or negative. Also LEAD() and LAG() will
return NULL when trying to retrieve rows outside the window partition. This is a pos-
sibility that you always have to account for when applying these two functions.

Before leaving the discussion on window functions, we must mention that in Post-
greSQL, any aggregate function you create can be used as a window function. Other
databases tend to limit window functions to using built-in aggregates like AVG(), SUM(),
MIN(), MAX() etc.

Common Table Expressions
In its essence, common table expressions (CTE) allow you to assign a temporary variable
name to a query definition so that it can be reused in a larger query. PostgreSQL has
supported this feature since PostgreSQL 8.4 and expanded the feature in 9.1 with the

90 | Chapter 7: SQL: The PostgreSQL Way

http://www.postgresql.org/docs/current/interactive/sql-select.html
http://www.postgresql.org/docs/current/interactive/sql-select.html

introduction of writeable CTEs. You’ll find a similar feature in SQL Server 2005+,
Oracle 11 (Oracle 10 and below implemented this features using CORRESPONDING BY),
IBM DB2, and Firebird. This features doesn’t exist in MySQL of any version. There are
three different ways to use CTEs:

1. The standard non-recursive, non-writable CTE. This is your unadorned CTE used
solely for the purpose of readability of your SQL.

2. Writeable CTEs. This is an extension of the standard CTE with UPDATE and
INSERT constructs. Common use is to delete rows and then return rows that have
been deleted.

3. The recursive CTE. This put an entirely new whirl on standard CTE. With recursive
CTEs, the rows returned by the CTE actually varies during the execution of the
query. PostgreSQL allows you to have a CTE that is both updatable and recursive.

Standard CTE
Your basic CTE construct looks as shown in Example 7-9.

Example 7-9. Basic CTE

WITH cty_with_tot_tracts AS (
SELECT tract_id, substring(tract_id,1, 5) As county_code
 , COUNT(*) OVER(PARTITION BY substring(tract_id,1, 5)) As cnt_tracts
FROM census.lu_tracts)
SELECT MAX(tract_id) As last_tract, county_code, cnt_tracts
FROM cty_with_tot_tracts
WHERE cnt_tracts > 100
GROUP BY county_code, cnt_tracts;

You can stuff as many table expressions as you want in a WITH clause, just be sure to
separate each by a comma. The order of the CTEs matter in that CTEs defined later
can use CTEs defined earlier, but never vice versa.

Example 7-10. CTE with more than one table expression

WITH cty_with_tot_tracts AS (
SELECT tract_id, substring(tract_id,1, 5) As county_code
 , COUNT(*) OVER(PARTITION BY substring(tract_id,1, 5)) As cnt_tracts
FROM census.lu_tracts)
, cty AS (SELECT MAX(tract_id) As last_tract
 , county_code, cnt_tracts
FROM cty_with_tot_tracts
WHERE cnt_tracts < 8
GROUP BY county_code, cnt_tracts)
SELECT cty.last_tract, f.fact_type_id, f.val
FROM census.facts As f
 INNER JOIN cty ON f.tract_id = cty.last_tract;

Common Table Expressions | 91

Writeable CTEs
The writeable CTE was introduced in 9.1 and extends the CTE to allow for update,
delete, insert statements. We’ll revisit our logs tables that we created in Example 6-2.
We’ll add another child table and populate it.

CREATE TABLE logs_2011_01_02(PRIMARY KEY(log_id)
, CONSTRAINT chk_y2011_01_02 CHECK(log_ts >= '2011-01-01' AND log_ts < '2011-03-01'))
INHERITS (logs_2011);

In Example 7-11, we’ll move data from our parent 2011 table to our new child Jan-Feb
2011 table.

Example 7-11. Writeable CTE moves data from one branch to another

t1 AS (DELETE FROM ONLY logs_2011
 WHERE log_ts < '2011-03-01' RETURNING *)
INSERT INTO logs_2011_01_02 SELECT * FROM t1;

A common use case for the writeable CTE is for repartioning of data in one step. Ex-
amples of this and other writeable CTEs are covered in David Fetter’s Writeable CTEs,
The Next Big Thing.

Recursive CTE
The official documentation for PostgreSQL describes it best: The optional RECURSIVE
modifier changes CTE from a mere syntactic convenience into a feature that accom-
plishes things not otherwise possible in standard SQL. A more interesting CTE is one
that uses a recursively defining construct to build an expression. PostgreSQL recursive
CTEs utilize UNION ALL. To turn a basic CTE to a recursive one, add the RECURSIVE
modifier after the WITH. Within a WITH RECURSIVE, you can have a mix of recursive and
non-recursive table expressions. In most other databases, the RECURSIVE keyword is not
necessary to denote recursion. A common of recursive CTEs is for message threading
and other tree like structures. We have an example of this in Recursive CTE to Display
Tree Structures.

Here is an example that lists all the table relationships we have in our database:

Example 7-12. Recursive CTE

 WITH RECURSIVE
 tbls AS (
 SELECT c.oid As tableoid, n.nspname AS schemaname
 , c.relname AS tablename
 FROM pg_class c
 LEFT JOIN pg_namespace n ON n.oid = c.relnamespace
 LEFT JOIN pg_tablespace t ON t.oid = c.reltablespace
 LEFT JOIN pg_inherits As th ON th.inhrelid = c.oid
 WHERE th.inhrelid IS NULL AND c.relkind = 'r'::"char" AND c.relhassubclass = true
 UNION ALL
 SELECT c.oid As tableoid, n.nspname AS schemaname

92 | Chapter 7: SQL: The PostgreSQL Way

http://wiki.postgresql.org/images/c/c0/PGDay2009-EN-Writeable_CTEs_The_Next_Big_Thing.pdf
http://wiki.postgresql.org/images/c/c0/PGDay2009-EN-Writeable_CTEs_The_Next_Big_Thing.pdf
http://www.postgresonline.com/journal/archives/131-Using-Recursive-Common-table-expressions-to-represent-Tree-structures.html
http://www.postgresonline.com/journal/archives/131-Using-Recursive-Common-table-expressions-to-represent-Tree-structures.html

 , tbls.tablename || '->' || c.relname AS tablename
 FROM tbls INNER JOIN pg_inherits As th ON th.inhparent = tbls.tableoid
 INNER JOIN pg_class c ON th.inhrelid = c.oid
 LEFT JOIN pg_namespace n ON n.oid = c.relnamespace
 LEFT JOIN pg_tablespace t ON t.oid = c.reltablespace
)
SELECT * FROM tbls ORDER BY tablename;

tableoid | schemaname | tablename
----------+------------+----------------------------------
3152249 | public | logs
3152260 | public | logs->logs_2011
3152272 | public | logs->logs_2011->logs_2011_01_02

Get list of all tables that have child tables but have no parent table.

This is the recursive part; gets all children of tables in tbls.

Child table name starts with the ancestral tree name.

Return parents and all child tables. Since sorting by table name which has parent
prefix appended, all child tables will follow their parents.

Constructions Unique to PostgreSQL
Although PostgreSQL is fairly ANSI-SQL compliant, it does have a few unique con-
structs you probably won’t find in other databases. Many are simply shortcuts without
which you’d have to write subqueries to achieve the same results. In this regard, if you
opt to stick with ANSI-SQL compliance, simply avoid these shorthands.

DISTINCT ON
One of our favorites is the DISTINCT ON clause. It behaves like an SQL DISTINCT, except
that it allows you to define what columns to consider distinct, and in the case of the
remaining columns, an order to designate the preferred one. This one little word re-
places numerous lines of additional code necessary to achieve the same result.

In Example 7-13, we demonstrate how to get the details of the first tract for each county.

Example 7-13. DISTINCT ON

SELECT DISTINCT ON(left(tract_id, 5)) left(tract_id, 5) As county
 , tract_id, tract_name
FROM census.lu_tracts ORDER BY county, tract_id LIMIT 5;

county | tract_id | tract_name
--------+-------------+--
25001 | 25001010100 | Census Tract 101, Barnstable County, Massachusetts
25003 | 25003900100 | Census Tract 9001, Berkshire County, Massachusetts
25005 | 25005600100 | Census Tract 6001, Bristol County, Massachusetts
25007 | 25007200100 | Census Tract 2001, Dukes County, Massachusetts
25009 | 25009201100 | Census Tract 2011, Essex County, Massachusetts

Constructions Unique to PostgreSQL | 93

The ON modifier can take on multiple columns, all will be considered to determine
uniqueness. Finally, the ORDER BY clause has to start with the set of columns in the
DISTINCT ON, then you can follow with your preferred ordering.

LIMIT and OFFSET
LIMIT and OFFSET are clauses in your query to limit the number of rows returned. They
can be used in tandem or separately. These constructs are not unique to PostgreSQL
and are in fact copied from MySQL. You’ll find it in MySQL and SQLite and probably
various other databases. SQL Server adopted something similar in its 2012 version with
a slightly different naming. An OFFSET of zero is the same as leaving out the clause
entirely. A positive offset means start the output after skipping the number of rows
specified by the offset. You’ll usually use these two clauses in conjuction with an ORDER
BY clause. In Example 7-13, we demonstrate with a positive offset.

Example 7-14. First tract for counties 2 to 5

SELECT DISTINCT ON(left(tract_id, 5)) left(tract_id, 5) As county, tract_id, tract_name
 FROM census.lu_tracts ORDER BY county, tract_id LIMIT 3 OFFSET 2;

county | tract_id | tract_name
--------+-------------+--
25005 | 25005600100 | Census Tract 6001, Bristol County, Massachusetts
25007 | 25007200100 | Census Tract 2001, Dukes County, Massachusetts
25009 | 25009201100 | Census Tract 2011, Essex County, Massachusetts

Shorthand Casting
ANSI-SQL specs define a construct called CAST, which allows you to cast one data type
to another. For example, CAST('2011-10-11' AS date) will cast the text 2011-10-11 to
a date. PostgreSQL has a shorthand for doing this using a pair of colons as in
'2011-10-11'::date. If you don’t care about being coss-database agnostic, the Post-
greSQL syntax is easier to write, especially when chaining casts like
somexml::text::integer for cases where you can’t directly cast from one type to another
without going through an intermediary type.

ILIKE for Case Insensitive Search
PostgreSQL is case sensitive, similar to Oracle. However, it does have mechanisms in
place to do a case insensitive search. You can apply the UPPER() function to both sides
of the ANSI-compliant LIKE operator, or you can simply use the ILIKE operator found
only in PostgreSQL. Here is an example:

SELECT tract_name FROM census.lu_tracts WHERE tract_name ILIKE '%duke%';

which produces:

tract_name
--

94 | Chapter 7: SQL: The PostgreSQL Way

Census Tract 2001, Dukes County, Massachusetts
Census Tract 2002, Dukes County, Massachusetts
Census Tract 2003, Dukes County, Massachusetts
Census Tract 2004, Dukes County, Massachusetts
Census Tract 9900, Dukes County, Massachusetts

Set Returning Functions in SELECT
PostgreSQL allows functions that return sets to appear in the SELECT clause of an SQL
statement. This is not true of many other databases where only scalar functions may
appear in the SELECT. In fact, to circumvent the restriction, SQL Server 2005+ intro-
duced a CROSS APPLY command. The PostgreSQL solution is much cleaner, but we
advise you to use this freedom responsibly. Interweaving set returning functions inside
an already complicated query could easily produce results that are beyond what you
expect, since using set returning functions usually results in row creation or deletion.
You must anticipate this if you’ll be using the results as a subquery. In Example 7-15,
we demonstrate this with a temporal version of generate_series.

We will use a table we construct with the following:

CREATE TABLE interval_periods(i_type interval); INSERT INTO interval_periods(i_type)
VALUES ('5 months'), ('132 days'), ('4862 hours');

Example 7-15. Set returning function in SELECT

SELECT i_type
 , generate_series('2012-01-01'::date,'2012-12-31'::date,i_type) As dt FROM
interval_periods;

i_type | dt
-----------+------------------------
5 months | 2012-01-01 00:00:00-05
5 months | 2012-06-01 00:00:00-04
5 months | 2012-11-01 00:00:00-04
132 days | 2012-01-01 00:00:00-05
132 days | 2012-05-12 00:00:00-04
132 days | 2012-09-21 00:00:00-04
4862 hours | 2012-01-01 00:00:00-05
4862 hours | 2012-07-21 15:00:00-04

Selective DELETE, UPDATE, and SELECT from Inherited Tables
When you query from a table that has child tables, the query drills down, unionizing
all the child records satisfying the query condition. DELETE and UPDATE work the same
way, drilling down the hierarchy for victims. Sometimes this is not desirable and you
want data to only come from the table you specified without the kids tagging along.
This is where the ONLY keyword comes in handy. We saw an example of its use in
Example 7-11, where we only wanted to delete records from the y2011 table that weren’t
already migrated to the logs_2011_01_02 table. Without the ONLY modifier, we’d end up
deleting records from the child table that might have been moved previously.

Constructions Unique to PostgreSQL | 95

RETURNING Changed Records
The RETURNING clause is supported by ANSI-SQL standards, but not found in many
databases. We saw an example of it in Example 7-11, where we returned the records
deleted. RETURNING can also be used for INSERT and UPDATE. For inserts into tables
with serial keys, it is particularly handy since it returns you the key value of the new
row(s). Though RETURNING is often accompanied by * for all fields, you can limit
the fields as we do in Example 7-16.

Example 7-16. RETURNING changed records of an UPDATE

UPDATE census.lu_fact_types AS f
SET short_name = Replace(Replace(Lower(f.fact_subcats[4]),' ','_'),':','')
WHERE f.fact_subcats[3] = 'Hispanic or Latino:' AND f.fact_subcats[4] > ''
RETURNING fact_type_id, short_name;

fact_type_id | short_name
--------------+---
96 | white_alone
97 | black_or_african_american_alone
98 | american_indian_and_alaska_native_alone
99 | asian_alone
100 | native_hawaiian_and_other_pacific_islander_alone
101 | some_other_race_alone
102 | two_or_more_races

Composite Types in Queries
Composites provide a lot of flexibility to PostgreSQL. The first time you see a query
with composites, you might be surprised. In fact, you might come across their versatility
by accident when making a typo in an SQL statement. Try the following query:

SELECT X FROM census.lu_fact_types As X LIMIT 2;

At first glance, you might think that we left out a .* by accident, but check out the result:

x
--
(86,Population,"{D001,Total:}",d001)
(87,Population,"{D002,Total:,""Not Hispanic or Latino:""}",d002)

Recall from an earlier section “All Tables Are Custom” on page 71 where we demon-
strated that PostgreSQL automatically create composite types of all tables in Post-
greSQL. Instead of erroring out, our above example returns the canonical representa-
tion of an lu_fact_type object. Looking at the first record: 86 is the fact_type_id,
Population is the category, and {D001,Total:} is the fact_subcats property, which hap-
pens to be an array in its own right.

In addition to being able to output a row as a single object, there are several functions
that can take a composite or row as an input. For example, you can feed a row into the
array_agg, hstore, and countless other functions. If you are using PostgreSQL 9.2 or
above, and are building AJAX apps, you can take advantage of the built-in JavaScript

96 | Chapter 7: SQL: The PostgreSQL Way

http://json.org/

Object Notation (JSON) support and use a combination of array_agg and
array_to_json to output a whole query as a single JSON object, as we demonstrate in
Example 7-17.

Example 7-17. Query to JSON output

SELECT array_to_json(array_agg(f)) As ajaxy_cats
FROM (SELECT MAX(fact_type_id) As max_type, category
 FROM census.lu_fact_types
 GROUP BY category) As f;

This will give you an output of:

 ajaxy_cats
--
[{"max_type":102,"category":"Population"},
{"max_type":153,"category":"Housing"}]

Defines a subquery where each row will be represented as f.

Collects all these f rows into one composite array of fs.

Converts the composite array into a JSON object. The canonical representation
of a JSON object follows the JSON output standard.

Constructions Unique to PostgreSQL | 97

http://json.org/

CHAPTER 8

Writing Functions

As with most databases, you can string a series of SQL statements together and treat
them as a unit. Different databases ascribe different names for this unit—stored pro-
cedures, modules, macros, prepared statements, and so on. PostgreSQL calls them
functions. Aside from simply unifying various SQL statements, these units often add
the capability to control the execution of the SQL statements through using procedural
language (PL). In PostgreSQL, you have your choice of languages when it comes to
writing functions. Often packaged along with binary installers are SQL, C, PL/pgSQL,
PL/Perl, PL/Python. In version 9.2, you’ll also find plv8js, which will allow you to write
procedural functions in JavaScript. plv8js should be an exciting addition to web de-
velopers and a nice companion to the built-in JSON type.

You can always install additional languages such as PL/R, PL/Java, PL/sh, and even
experimental ones geared for high-end processing and AI, such as PL/Scheme or PgO-
penCL. A list of available languages can be found here:Procedural Languages

Anatomy of PostgreSQL Functions

Function Basics
Regardless which language you choose to write a particular function, they all share a
similar structure.

Example 8-1. Basic Function Structure

CREATE OR REPLACE FUNCTION func_name(
 arg1 arg1_datatype)
RETURNS some_type | setof sometype | TABLE (..) AS
$$
BODY of function
$$
LANGUAGE language_of_function

99

http://code.google.com/p/plv8js/
http://www.joeconway.com/plr/
http://www.postgresql.org/docs/current/interactive/external-pl.html
http://plsh.projects.postgresql.org/
http://plscheme.projects.postgresql.org/
http://wiki.postgresql.org/images/6/65/Pgopencl.pdf
http://wiki.postgresql.org/images/6/65/Pgopencl.pdf
http://www.postgresql.org/docs/current/interactive/external-pl.html

Functional definitions can include additional qualifiers to optimize execution and to
enforce security. We describe these below:

• LANGUAGE has to be one you have installed in your database. You can get a list with
the query: SELECT lanname FROM pg_language;.

• VOLATILITY defaults to VOLATILE if not specified. It can be set to STABLE, VOLATILE,
or IMMUTABLE. This setting gives the planner an idea if the results of a function can
be cached. STABLE means that the function will return the same value for the same
inputs within the same query. VOLATILE means the function may return something
different with each call, even with same inputs. Functions that change data or are
a function of other environment settings like time, should be marked as VOLA
TILE. IMMUTABLE means given the same inputs the function is guaranteed to return
the same result. The volatility setting is merely a hint to the query planner. It may
choose to not cache if it concludes caching is less cost effective than recomputation.
However, if you mark a function as VOLATILE it will always recompute.

• STRICT. A function is assumed to be not strict unless adorned with STRICT. A strict
function will always return NULL if any inputs are NULL and doesn’t bother eval-
uating the function so saves some processing. When building SQL functions, you
should be careful about using STRICT as it will prevent index usage as described in
STRICT on SQL Functions

• COST is a relative measure of computational intensiveness. SQL and PL/pgSQL
functions default to 100 and C functions to 1. This affects the order functions will
be evaluated in a WHERE clause and also the likeliness of caching. The higher the
value, the more costly the function is assumed to be.

• ROWS is only set for set returning functions and is an estimate of how many rows
will be returned; used by planner to arrive at best strategy. Format would be ROWS
100.

• SECURITY DEFINER is an optional clause that means run under the context of the
owner of the function. If left out, a function runs under the context of the user
running the function. This is useful for giving people rights to update a table in a
function but not direct update access to a table and also tasks that normally require
super user rights.

Trusted and Untrusted Languages
Function languages can be divided into two levels of trust. Many—but not all—lan-
guages offer both a trusted and untrusted version.

• Trusted—Trusted languages are languages that don’t have access to the filesystem
beyond the data cluster and can’t execute OS commands. They can be created by
any user. Languages like SQL, PL/pgSQL, PL/Perl are trusted. It basically means
they can’t do damage to the underlying OS.

100 | Chapter 8: Writing Functions

http://www.postgresonline.com/journal/archives/163-STRICT-on-SQL-Function-Breaks-In-lining-Gotcha.html

• Untrusted—Untrusted languages are those that can interact with the OS and even
call on webservices or execute functions on the OS. Functions written in these
languages can only be created by super users, however, a super user can delegate
rights for another user to use them by using the SECURITY DEFINER setting. By con-
vention, these languages have a u at the end of the name to denote that they’re
untrusted—for instance, PL/PerlU, PL/PythonU.

Writing Functions with SQL
Writing SQL functions1 is fast and easy. Take your existing SQL statements, add a
functional header and footer, and you’re done. The ease does mean you’ll sacrifice
flexibility. You won’t have fancy control languages to create conditional execution
branches. You can’t have more than one SQL statement (though you can wrap multiple
into a CTE or subqueries to achieve same result). More restrictively, you can’t run
dynamic SQL statements that you piece together based on parameters as you can in
most other languages. On the positive side, SQL functions are often inlined by the query
planner into the overall plan of a query since the planner can peek into the function.
Functions in other languages are always treated as blackboxes. Inlining allows SQL
functions to take advantage of indexes and collapse repetitive computations.

Your basic scalar returning SQL function is shown in Example 8-2:

Example 8-2. SQL function to return key of inserted record

CREATE OR REPLACE FUNCTION ins_logs(param_user_name varchar, param_description text)
 RETURNS integer AS
$$ INSERT INTO logs(user_name, description) VALUES($1, $2)
RETURNING log_id; $$
LANGUAGE 'sql' VOLATILE;

To call function Example 8-2, we would execute:

SELECT ins_logs('lhsu', 'this is a test') As new_id;

Similarly, you can update data with an SQL function and return a scalar or void as
shown in Example 8-3.

Example 8-3. SQL function to update a record

CREATE OR REPLACE FUNCTION upd_logs(log_id integer, param_user_name varchar,
param_description text)
 RETURNS void AS
$$ UPDATE logs SET user_name = $2, description = $3, log_ts = CURRENT_TIMESTAMP

1. SQL in this context really means a language for writing functions.

Writing Functions with SQL | 101

 WHERE log_id = $1;$$
LANGUAGE 'sql' VOLATILE;

To execute:

SELECT upd_logs(12,'robe', 'Change to regina');

Prior to 9.2, SQL functions could only use the ordinal position of the
input arguments in the body of the function. After 9.2, you have the
option of using named arguments, for example you can write param_1,
param_2 instead of $1, $2. SQL functions are the only ones that retained
this limitation until now.

Functions in almost all languages can return sets. SQL functions can also return sets.
There are three common approaches of doing this, using ANSI-SQL standard RETURNS
TABLE syntax, using OUT parameters, or returning a composite data type. The RETURNS
TABLE approach requires PostgreSQL 8.3 or above, but is closer to what you’ll see in
other relational databases. In Example 8-4, we demonstrate how to write the same
function in three different ways.

Example 8-4. Examples of function returning sets

Using returns table:

CREATE FUNCTION sel_logs_rt(param_user_name varchar)
RETURNS TABLE (log_id int, user_name varchar(50), description text, log_ts timestamptz) AS
$$
SELECT log_id, user_name, description, log_ts FROM logs WHERE user_name = $1;
$$
LANGUAGE 'sql' STABLE;

Using OUT parameters:

CREATE FUNCTION sel_logs_out(param_user_name varchar, OUT log_id int
 , OUT user_name varchar, OUT description text, OUT log_ts timestamptz)
RETURNS SETOF record AS
$$
SELECT * FROM logs WHERE user_name = $1;
$$
LANGUAGE 'sql' STABLE;

Using composite type:

CREATE FUNCTION sel_logs_so(param_user_name varchar)
RETURNS SETOF logs AS
$$
SELECT * FROM logs WHERE user_name = $1;
$$
LANGUAGE 'sql' STABLE;

All functions in Example 8-4 can be called using:

SELECT * FROM sel_logs_rt('lhsu');

102 | Chapter 8: Writing Functions

Writing PL/pgSQL Functions
When your functional needs exceed reaches beyond SQL, PL/pgSQL is the most com-
mon option. PL/pgSQL stands apart from SQL in that you can declare local variables
using DECLARE, you can have control flow, and the body of the function needs be en-
closed in a BEGIN..END block. To demonstrate the difference, we have rewritten Exam-
ple 8-4 as a PL/pgSQL function.

Example 8-5. Function to return a table using PL/pgSQL

CREATE FUNCTION sel_logs_rt(param_user_name varchar)
RETURNS TABLE (log_id int, user_name varchar(50), description text, log_ts timestamptz) AS
$$
BEGIN
 RETURN QUERY
 SELECT log_id, user_name, description, log_ts
 FROM logs WHERE user_name = param_user_name;
END;
$$
LANGUAGE 'plpgsql' STABLE;

Writing PL/Python Functions
Python is a slick language with a vast number of available libraries. PostgreSQL is the
only database we know of that’ll let you compose functions using Python. PostgreSQL
9.0+ supports both Python 2 and Python 3.

You can have both plpython2u andplpython3u installed in the same da-
tabase, but you can’t use them in the same session. This means that you
can’t write a query that contains both plpython2u and plpython3u-writ-
ten functions.

In order to use PL/Python, you first need to install Python on your server. For Windows
and Mac OS, Python installers are available at http://www.python.org/download/. For
Linux/Unix systems, Python binaries are usually available via the various distros. For
details, refer to PL/Python. After you have Python on your server, proceed to install the
PostgreSQL Python extension using the commands below:

CREATE EXTENSION plpython2u;
CREATE EXTENSION plpython3u;

(You will find a third extension called plpythonu, which is an alias for plpython2u and
intended for backwards compatibility.) Make sure you have Python properly running
on your server before attempting to install the extension or else you will run into errors.

You should install a minor version of Python that matches what your plpythonu ex-
tensions were compiled against. For example, if your plpython2u is compiled against
2.7, then you’ll need to install Python 2.7.

Writing PL/Python Functions | 103

http://www.python.org/download/
http://www.postgresql.org/docs/current/interactive/plpython.html

Basic Python Function
PostgreSQL automatically converts PostgreSQL datatypes to Python datatypes and
back. PL/Python is capable of returning arrays and even composite types. You can use
PL/Python to write triggers and create aggregate functions. We’ve demonstrated some
of these on the Postgres OnLine Journal, in PL/Python Examples.

Python allows you to perform feats that aren’t possible in PL/pgSQL. In Exam-
ple 8-6, we demonstrate how to write a PL/Python function that does a text search of
the online PostgreSQL document resource site.

Example 8-6. Searching PostgreSQL docs using PL/Python

CREATE OR REPLACE FUNCTION postgresql_help_search(param_search text)
RETURNS text AS
$$
import urllib, re
response = urllib.urlopen('http://www.postgresql.org/search/?u=%2Fdocs%2Fcurrent%2F&q=' +
param_search)
raw_html = response.read()
result = raw_html[raw_html.find("<!-- docbot goes here -->"):raw_html.find("<!--
pgContentWrap -->") - 1]
result = re.sub('<[^<]+?>', '', result).strip()
return result
$$
LANGUAGE plpython2u SECURITY DEFINER STABLE;

Import the libraries we’ll be using.

Web search concatenating user input parameters.

Read response and save html to a variable called raw_html.

Save the part of the raw_html that starts with <!-- docbot goes here --> and ends
just before the beginning of <!-- pgContentWrap -->.

Strip HTML and white space from front and back and then re-save back to variable
called result.

Return final result.

Calling Python functions is no different than functions written in other languages. In
Example 8-7, we use the function we created in Example 8-6 to output the result with
three search terms.

Example 8-7. Using Python function in a query

SELECT search_term, left(postgresql_help_search(search_term), 125) As result FROM (VALUES
('regexp_match'), ('pg_trgm'), ('tsvector')) As X(search_term);

search_term | result
regexp_match | Results 1-7 of 7.
 1. PostgreSQL: Documentation: Manuals: Pattern Matching [1.46]
 ...matching a POSIX regular
pg_trgm|Results 1-8 of 8.

104 | Chapter 8: Writing Functions

http://www.postgresonline.com/journal/index.php?/plugin/tag/plpython

 1. PostgreSQL: Documentation: Manuals: pg_trgm [0.66]
 ...pg_trgm
The
pg_trgm
module provide
tsvector | Results 1-20 of 32.
 Result pages: 1 2 Next
 1. PostgreSQL: Documentation: Manuals: Text Search Functions
(3 rows)

Recall that PL/Python is an untrusted language without a trusted counterpart. This
means it’s capable of interacting with the filesystem of the OS and a function can only
be created by super users. Our next example uses PL/Python to retrieve file listings
from a directory. Keep in mind that PL/Python function runs under the context of the
postgres user account, so you need to be sure that account has adequate access to the
relevant directories.

Example 8-8. List files in directories

CREATE OR REPLACE FUNCTION list_incoming_files()
RETURNS SETOF text AS
$$
import os
return os.listdir('/incoming')
$$
LANGUAGE 'plpython2u' VOLATILE SECURITY DEFINER;

You can run the function in Example 8-8 with the query below:

SELECT filename FROM list_incoming_files() As filename WHERE filename ILIKE '%.csv'

Trigger Functions
No database of merit should be without triggers to automatically detect and handle
changes in data. Triggers can be added to both tables and views. PostgreSQL offers
both statement-level triggers and row-level triggers. Statement triggers run once per
statement, while row triggers run for each row called. For instance, suppose we execute
an UPDATE command that affects 1,500 rows. A statement-level trigger will fire only
once, whereas the row-level trigger can fire up to 1,500 times. More distinction is made
between a BEFORE, AFTER, and INSTEAD OF trigger. A BEFORE trigger fires prior to the
execution of the command giving you a chance to cancel and change data before it
changes data. An AFTER trigger fires afterwards giving you a chance to retrieve revised
data values. AFTER triggers are often used for logging or replication purposes. The
INSTEAD OF triggers run instead of the normal action. INSTEAD OF triggers can only be
used with views. BEFORE and AFTER triggers can only be used with tables. To gain a better
understanding of the interplay between triggers and the underlying command, we refer

Trigger Functions | 105

you to the official documentation Overview of Trigger Behavior. We demonstrated an
example of a view trigger in Example 7-2.

PostgreSQL offers specialized functions to handle triggers. These trigger functions act
just like any other function and have the same basic structure as your standard function.
Where they differ are in the input parameter and the output type. A trigger function
never takes a literal input argument though internally they have access to the trigger
state data and can modify it. They always output a datatype called a trigger. Because
PostgreSQL trigger functions are just another function, you can reuse the same trigger
function across different triggers. This is usually not the case for other databases where
each trigger has its own non-reusable handler code. Each trigger must have exactly one
associated triggering function. To apply multiple triggering functions, you must create
multiple triggers against the same event. The alphabetical order of the trigger name
determines the order of firing and each trigger passes the revised trigger state data to
the next trigger in the list.

You can use almost any language to write trigger functions, with SQL being the notable
exception. Our example below uses PL/pgSQL, which is by far the most common lan-
guage for writing triggers. You will see that we take two steps: First, we write the trigger
function. Next, we attach the trigger function to the appropriate trigger, a powerful
extra step that decouples triggers from trigger functions.

Example 8-9. Trigger function to timestamp new and changed records

CREATE OR REPLACE FUNCTION trig_time_stamper() RETURNS trigger AS
$$
BEGIN
 NEW.upd_ts := CURRENT_TIMESTAMP;
 RETURN NEW;
END;
$$
LANGUAGE plpgsql VOLATILE;

CREATE TRIGGER trig_1
BEFORE INSERT OR UPDATE OF session_state, session_id
 ON web_sessions
 FOR EACH ROW
 EXECUTE PROCEDURE trig_time_stamper();

Define the trigger function. This function can be used on any table that has a
upd_ts column . It changes the value of the upd_ts field of the new record before
returning. Trigger functions that change values of a row should only be called in the
BEFORE event, because in the AFTER event, all updates to the NEW record will be ignored.

The trigger will fire before the record is committed.

This is a new feature introduced in PostgreSQL 9.0+ that allows us to limit the firing
of the trigger only if specified columns have changed. In prior versions, you would
do this in the trigger function itself using a series of comparison between

106 | Chapter 8: Writing Functions

http://www.postgresql.org/docs/current/interactive/trigger-definition.html

OLD.some_column and NEW.some_column. This feature is not supported for INSTEAD
OF triggers.

Binds the trigger to the table.

Aggregates
Aggregates are another type of specialized function offered up by PostgreSQL. In many
other databases, you’re limited to ANSI-SQL aggregate functions such as MIN(), MAX(),
AVG(), SUM(), and COUNT(). You can define your own aggregates in PostgreSQL. Don’t
forget that any aggregate function in PostgreSQL can be used as a window function.
Altogether this makes PostgreSQL the most customizable database in existence today.

You can write aggregates in almost any language, SQL included. An aggregate is gen-
erally composed of one or more functions. It must have at least a state transition func-
tion to perform the computation and optional functions to manage initial and final
states. You can use a different language for each of the functions should you choose.
We have various examples of building aggregates using PL/pgSQL, PL/Python, and
SQL in PostgreSQL Aggregates.

Regardless of which languages you code the aggregate, the glue that brings them all
together looks the same for all and is of the form:

CREATE AGGREGATE myagg(datatype_of_input)
(SFUNC=state_function_name, STYPE=state_type, FINALFUNC=final_func_name,
INITCOND=optional_init_state_value);

The final function is optional, but if specified must take as input the result of the state
function. The state function always takes as input the datatype_of_input and result of
last state function call. The initial condition is also optional. When present, it is used
to initialize the state value. Aggregates can be multi-column as well, as we describe in
How to Create Multi-Column Aggregates.

Although SQL functions are the simplest of functions to write, you can still go pretty
far with them. In this section, we’ll demonstrate how to create a geometric mean ag-
gregate function with SQL. A geometric mean is the nth root of a product of n positive
numbers ((x1*x2*x3...Xn)^(1/n)). It has various uses in finance, economics, and sta-
tistics. A geometric mean may have more meaning than an arithmetic mean when the
numbers are of vastly different scales. A more suitable computational formula uses
logarithm to convert a multiplicative process to an additive one (EXP(SUM(LN(x))/n)).
We’ll be using this method in our example.

For our geomeric mean aggregate, we’ll use two functions: a state function to add the
logs and a final exponential function to convert the logs back. We will also specify an
initial condition of zero when we put everything together.

Aggregates | 107

http://www.postgresonline.com/journal/index.php?/plugin/tag/aggregates
http://www.postgresonline.com/journal/archives/105-How-to-create-multi-column-aggregates.html
http://www.buzzardsbay.org/geomean.htm

Example 8-10. Geometric mean aggregate: State function

CREATE OR REPLACE FUNCTION geom_mean_state(prev numeric[2], next numeric)
RETURNS numeric[2] AS
$$
SELECT CASE WHEN $2 IS NULL or $2 = 0 THEN $1
 ELSE ARRAY[COALESCE($1[1],0) + ln($2), $1[2] + 1] END;
$$
LANGUAGE sql IMMUTABLE;

Our transition state function, as shown in Example 8-10, takes two inputs: the previous
state passed in as a one-dimensional array with two elements and also the next element
in the aggregation process. If the next element is NULL or zero, the state function
returns the prior state. Otherwise, it’ll return an array where the first element is the
logarithmic sum and the second being the current count. We will need a final function
that takes the sum from the state transition and divides by the count.

Example 8-11. Geometric mean aggregate: Final function

CREATE OR REPLACE FUNCTION geom_mean_final(numeric[2])
RETURNS numeric AS
$$
SELECT CASE WHEN $1[2] > 0 THEN exp($1[1]/$1[2]) ELSE 0 END;
$$
LANGUAGE sql IMMUTABLE;

Now we stitch all the pieces together in our aggregate definition. Note that our aggre-
gate has an initial condition that is the same as what is returned by our state function.

Example 8-12. Geometric mean aggregate: Putting all the pirces together

CREATE AGGREGATE geom_mean(numeric) (SFUNC=geom_mean_state, STYPE=numeric[]
 , FINALFUNC=geom_mean_final, INITCOND='{0,0}');

Let’s take our geom_mean() function for a test drive. We’re going to compute a heuristic
rating for racial diversity and list the top five most racially diverse counties in Massa-
chusetts.

Example 8-13. Top five most racially diverse counties using geometric mean

SELECT left(tract_id,5) As county, geom_mean(val) As div_county
FROM census.vw_facts
WHERE category = 'Population' AND short_name != 'white_alone'
GROUP BY county
ORDER BY div_county DESC LIMIT 5;

county | div_county
-------+---------------------
25025 | 85.1549046212833364
25013 | 79.5972921427888918
25017 | 74.7697097102419689
25021 | 73.8824162064128504
25027 | 73.5955049035237656

108 | Chapter 8: Writing Functions

Let’s put things into overdrive and try our new aggregate function as a window aggre-
gate.

Example 8-14. Top five most racially diverse census tracts with average

WITH X AS (SELECT tract_id, left(tract_id,5) As county
 , geom_mean(val) OVER(PARTITION BY tract_id) As div_tract
 , ROW_NUMBER() OVER(PARTITION BY tract_id) As rn
 , geom_mean(val) OVER(PARTITION BY left(tract_id,5)) As div_county
 FROM census.vw_facts WHERE category = 'Population' AND short_name != 'white_alone')
SELECT tract_id, county, div_tract, div_county
 FROM X
 WHERE rn = 1
 ORDER BY div_tract DESC, div_county DESC LIMIT 5;

tract_id | county | div_tract | div_county
------------+--------+----------------------+---------------------
25025160101 | 25025 | 302.6815688785928786 | 85.1549046212833364
25027731900 | 25027 | 265.6136902148147729 | 73.5955049035237656
25021416200 | 25021 | 261.9351057509603296 | 73.8824162064128504
25025130406 | 25025 | 260.3241378371627137 | 85.1549046212833364
25017342500 | 25017 | 257.4671462282508267 | 74.7697097102419689

Aggregates | 109

CHAPTER 9

Query Performance Tuning

Sooner or later, we’ll all face a query that takes just a bit longer to execute than what
we have patience for. The best and easiest fix to a sluggish query is to perfect the un-
derlying SQL, followed by adding indexes, and updating planner statistics. To guide
you in these pursuits, Postgres comes with a built-in explainer that informs you how
the query planner is going to execute your SQL. Armed with your knack for writing
flawless SQL, your instinct to sniff out useful indexes, and the insight of the explainer,
you should have no trouble getting your queries to run as fast as what your hardware
budget will allow.

EXPLAIN and EXPLAIN ANALYZE
The easiest tool for targeting query performance problems is using the EXPLAIN and
EXPLAIN ANALYZE commands. These have been around ever since the early years of Post-
greSQL. Since then it has matured into a full-blown tool capable of reporting highly
detailed information about the query execution. Along the way, it added to its number
of output formats. In PostgreSQL 9.0+, you can even dump the output to XML or
JSON. Perhaps the most exciting enhancement for the common user came when pgAd-
min introduced graphical EXPLAIN several years back. With a hard and long stare, you
can identify where the bottlenecks are in your query, which tables are missing indexes,
and whether the path of execution took an unexpected turn.

EXPLAIN will give you just an idea of how the planner intends to execute the query
without running it. EXPLAIN ANALYZE will actually execute the query and give you com-
parative analysis of expected versus actual. For the non-graphical version of EXPLAIN,
simply preface your SQL with the EXPLAIN or EXPLAIN ANALYZE. VERBOSE is an optional
modifier that will give you details down to the columnar level. You launch graphical
EXPLAIN via pgAdmin. Compose the query as usual, but instead of executing it, choose
EXPLAIN or EXPLAIN ANALYZE from the drop down menu.

111

It goes without saying that to use graphical explain, you’ll need more
than a command prompt. To those of you who pride yourself on being
self-sufficient using only the command line: good for you!

Let’s try an example, we’ll first use the EXPLAIN ANALYZE command.

Example 9-1. Explain analyze

EXPLAIN ANALYZE
SELECT left(tract_id,5) As county_code, SUM(hispanic_or_latino) As tot
 , SUM(white_alone) As tot_white
 , SUM(coalesce(hispanic_or_latino,0) - coalesce(white_alone,0)) AS non_white
FROM census.hisp_pop
GROUP BY county_code
ORDER BY county_code;

The output of Example 9-1 is shown in Example 9-2.

Example 9-2. EXPLAIN ANALYZE output

GroupAggregate (cost=111.29..151.93 rows=1478 width=20)
 (actual time=6.099..10.194 rows=14 loops=1)
 -> Sort (cost=111.29..114.98 rows=1478 width=20)
 (actual time=5.897..6.565 rows=1478 loops=1)
 Sort Key: ("left"((tract_id)::text, 5))
 Sort Method: quicksort Memory: 136kB
 -> Seq Scan on hisp_pop (cost=0.00..33.48 rows=1478 width=20)
 (actual time=0.390..2.693 rows=1478 loops=1)
Total runtime: 10.370 ms

If reading the output is giving you a headache, here’s the graphical EXPLAIN:

Figure 9-1. Graphical EXPLAIN output

Before leaving the section on EXPLAIN, we must pay homage to a new online EXPLAIN
tool created by Hubert “depesz” Lubaczewski. Using his site, you can copy and paste
the text output of your EXPLAIN, and it will show you a beautifully formatted stats report
as shown in Figure 9-2.

In the HTML tab, a nicely reformatted color-coded table of the plan will be displayed,
with problem areas highlighted in vibrant colors, as shown in Figure 9-3.

Although the HTML table in Figure 9-3 provides much the same information as our
plain-text plan, the color coding and breakout of numbers makes it easier to see that

112 | Chapter 9: Query Performance Tuning

http://explain.depesz.com/
http://explain.depesz.com/

our actual values are far off from the estimated numbers. This suggests that our planner
stats are probably not up to date.

Writing Better Queries
The best and easiest way to improve query performance is to start with well-written
queries. Four out of five queries we encounter are not written as efficiently as they could
be. There appears to be two primary causes for all this bad querying. First, we see people
reuse SQL patterns without thinking. For example, if they successfully write a query
using a left join, they will continue to use left join when incorporating more tables
instead of considering the sometimes more appropriate inner join. Unlike other pro-
gramming languages, the SQL language does not lend itself well to blind reuse. Second,
people don’t tend to keep up with the latest developments in their dialect of SQL. If a
PostgreSQL user is still writing SQL as if he still had an early version, he’d be oblivious
to all the syntax-saving (and mind-saving) addendums that have come along. Writing
efficient SQL takes practice. There’s no such thing as a wrong query as long as you get
the expected result, but there is such a thing as a slow query. In this section, we’ll go
over some of the common mistakes we see people make. Although this book is about
PostgreSQL, our constructive recommendations are applicable to other relational da-
tabases as well.

Figure 9-2. Online EXPLAIN stats

Figure 9-3. Online EXPLAIN HTML table

Writing Better Queries | 113

Overusing Subqueries in SELECT
A classic newbie mistake is to think about a query in independent pieces and then trying
to gather them up all in one final SELECT. Unlike conventional programming, SQL
doesn’t take kindly to the idea of blackboxing where you can write a bunch of subqu-
eries independently and then assemble them together mindlessly to get the final result.
You have to give your query the holistic treatment. How you piece together data from
different views and tables is every bit as important as how you go about retrieving the
data in the first place.

Example 9-3. Overusing subqueries

SELECT tract_id
 ,(SELECT COUNT(*) FROM census.facts As F
 WHERE F.tract_id = T.tract_id) As num_facts
 ,(SELECT COUNT(*) FROM census.lu_fact_types As Y
 WHERE Y.fact_type_id IN (SELECT fact_type_id
 FROM census.facts F WHERE F.tract_id = T.tract_id)) As num_fact_types
FROM census.lu_tracts As T;

The graphical EXPLAIN plan for Example 9-3 is shown in Figure 9-4.

We’ll save you the eyesore from seeing the gnarled output of the non-graphical
EXPLAIN. We’ll show you instead the output from using the online EXPLAIN at http://
explain.depesz.com.

Example 9-3 can be more efficiently written as shown in Example 9-4. This version of
the query is not only shorter, but faster than the prior one. If you have even more rows
or weaker hardware, the difference would be even more pronounced.

Example 9-4. Overused subqueries simplified

SELECT T.tract_id, COUNT(f.fact_type_id) As num_facts, COUNT(DISTINCT fact_type_id) As
num_fact_types
FROM census.lu_tracts As T LEFT JOIN census.facts As F ON T.tract_id = F.tract_id
GROUP BY T.tract_id;

The graphical EXPLAIN plan of Example 9-4 is shown in Figure 9-6.

Figure 9-4. Graphical EXPLAIN plan of long-winded subselects

114 | Chapter 9: Query Performance Tuning

http://explain.depesz.com
http://explain.depesz.com

Keep in mind that we’re not asking you to avoid subqueries. We’re simply asking you
to use them judiciously. When you do use them, be sure to pay extra attention on how
you combine them into the main query. Finally, remember that a subquery should try
to work with the the main query, not independent of it.

Figure 9-5. Online EXPLAIN of overusing subqueries

Figure 9-6. Graphical explain plan of re-written subqueries

Writing Better Queries | 115

Avoid SELECT *
SELECT * is wasteful. It’s akin to printing out a 1,000-page document when you only
need ten pages. Besides the obvious downside of adding to network traffic, there are
two other drawbacks that you might not think of.

First, PostgreSQL stores large blob and text objects using TOAST (The Oversized-
Attribute Storage Technique). TOAST maintains side tables for PostgreSQL to store
this extra data. The larger the data the more internally divided up it is. So retrieving a
large field means that TOAST must assemble the data across different rows across
different tables. Imagine the extra processing should your table contain text data the
size of War and Peace and you perform an unnecessary SELECT *.

Second, when you define views, you often will include more columns than you’ll need.
You might even go so far as to use SELECT * inside a view. This is understandable and
perfectly fine. PostgreSQL is smart enough that you can have all the columns you want
in your view definition and even include complex calculations or joins without incur-
ring penalty as long as you don’t ask for them. SELECT * asks for everything. You could
easily end up pulling every column out of all joined tables inside the view.

To drive home our point, let’s wrap our census in a view and use the slow subselect
example we proposed:

CREATE OR REPLACE VIEW vw_stats AS
SELECT tract_id
 ,(SELECT COUNT(*) FROM census.facts As F WHERE F.tract_id = T.tract_id) As num_facts
 ,(SELECT COUNT(*) FROM census.lu_fact_types As Y
 WHERE Y.fact_type_id
 IN (SELECT fact_type_id FROM census.facts F
 WHERE F.tract_id = T.tract_id)) As num_fact_types
 FROM census.lu_tracts As T;

Now if we query our view with this query:

SELECT tract_id FROM vw_stats;

Execution time is about 21ms on our server. If you looked at the plan, you may be
startled to find that it never even touches the facts table because it’s smart enough to
know it doesn’t need to. If we used the following:

SELECT * FROM vw_stats;

Our execution time skyrockets to 681ms, and the plan is just as we had in Figure 9-4.
Though we’re looking at milliseconds still, imagine tables with tens of millions of rows
and hundreds of columns. Those milliseconds could transcribe into overtime at the
office waiting for a query to finish.

Make Good Use of CASE
We’re always surprised how frequently people forget about using the ANSI-SQL CASE
expression. In many aggregate situations, a CASE can obviate the need for inefficient

116 | Chapter 9: Query Performance Tuning

subqueries. We’ll demonstrate with two equivalent queries and their corresponding
plans.

Example 9-5. Using subqueries instead of CASE

SELECT T.tract_id, COUNT(*) As tot, type_1.tot AS type_1
 FROM census.lu_tracts AS T
 LEFT JOIN
 (SELECT tract_id, COUNT(*) As tot
 FROM census.facts WHERE fact_type_id = 131
 GROUP BY tract_id) As type_1 ON T.tract_id = type_1.tract_id
 LEFT JOIN census.facts AS F ON T.tract_id = F.tract_id
 GROUP BY T.tract_id, type_1.tot;

The graphical explain of Example 9-5 is shown in Figure 9-7.

We now rewrite the query using CASE. You’ll find the revised query shown in Exam-
ple 9-6 is generally faster and much easier to read than Example 9-5.

Example 9-6. Using CASE instead of subqueries

SELECT T.tract_id, COUNT(*) As tot
 , COUNT(CASE WHEN f.fact_type_id = 131 THEN 1 ELSE NULL END) AS type_1
 FROM census.lu_tracts AS T
 LEFT JOIN census.facts AS F ON T.tract_id = F.tract_id
GROUP BY T.tract_id;

The graphical explain of Example 9-6 is shown in Figure 9-8.

Even though our rewritten query still doesn’t use the fact_type index, it’s still generally
faster than using subqueries because the planner scans the facts table only once.

Figure 9-7. Graphical explain of using subqueries instead of CASE

Figure 9-8. Graphical EXPLAIN of using CASE instead

Writing Better Queries | 117

Although not always the case, a shorter plan is generally not only easier to comprehend,
but also performs better than a longer one.

Guiding the Query Planner
The planner’s behavior is driven by several cost settings, strategy settings, and its gen-
eral perception of the distribution of data. Based on distribution of data, the costs it
ascribes to scanning indexes, and the indexes you have in place, it may choose to use
one strategy over another. In this section we’ll go over various approaches for opti-
mizing the planner’s behavior.

Strategy Settings
Although PostgreSQL query planner doesn’t provide the option to accept index hints
like some other databases, when running a query you can disable various strategy set-
tings on a per query or pemanent basis to dissuade the planner from going down an
unproductive path. All planner optimizing settings are documented in the section
Planner Method Configuration. By default, all strategy settings are enabled, giving the
planner flexibility to maximize the choice of plans. You can disable various strategies
if you have some prior knowledge of the data. Keep in mind that disabling doesn’t
necessarily mean that the planner will be barred from using the strategy. You’re only
making a polite request to the planner to avoid it.

Two of our favorite method settings to disable are the enable_nestloop and enable_seqs
can. The reason is that these two strategies tend to be the slowest and should be rele-
gated to be used only as a last resort. Although you can disable them, the planner may
still use them when it has no other viable alternative. When you do see them being
used, it’s a good idea to double-check that the planner is using them out of necessity,
not out of ignorance. One quick way to check is to actually disable them.

How Useful Is Your Index?
When the planner decides to perform a sequential scan, it plans to loop through all the
rows of a table. It will opt for this route if it finds no index that could satisfy a query
condition, or it concludes that using an index is more costly than scanning the table.
If you disable the sequential scan strategy, and the planner still insists on using it, then
it means that the planner thinks whatever indexes you have in place won’t be helpful
for the particular query or you are missing indexes altogether. A common mistake
people make is they write queries and either don’t put indexes in their tables or put in
indexes that can’t be used by their queries. An easy way to check if your indexes are
used is to query the pg_stat_user_indexes and pg_stat_user_tables views.

118 | Chapter 9: Query Performance Tuning

http://www.postgresql.org/docs/current/static/runtime-config-query.html

Let’s start off with a query against the table we created in Example 6-7. We’ll add a
GIN index on the array column. GIN indexes are one of the few indexes you can use with
arrays.

CREATE INDEX idx_lu_fact_types ON census.lu_fact_types USING gin (fact_subcats);

To test our index, we’ll execute a query to find all rows with subcats containing “White
alone” or “Asian alone”. We explicitly enabled sequential scan even though it’s the
default setting, just to be sure. The accompanying EXPLAIN output is shown in Exam-
ple 9-7.

Example 9-7. Allow choice of Query index utilization

set enable_seqscan = true;
EXPLAIN ANALYZE
SELECT *
FROM census.lu_fact_types
WHERE fact_subcats && '{White alone, Asian alone}'::varchar[];

Seq Scan on lu_fact_types (cost=0.00..3.85 rows=1 width=314)
(actual time=0.017..0.078 rows=4 loops=1)
Filter: (fact_subcats && '{"White alone","Asian alone"}'::character varying[])
Total runtime: 0.112 ms

Observe that when enable_seqscan is enabled, our index is not being used and the
planner has chosen to do a sequential scan. This could be because our table is so small
or because the index we have is no good for this query. If we repeat the query but turn
off sequential scan beforehand, as shown in Example 9-8:

Example 9-8. Coerce query index utilization

set enable_seqscan = false;
EXPLAIN ANALYZE
SELECT *
FROM census.lu_fact_types
 WHERE fact_subcats && '{White alone, Black alone}'::varchar[];

Bitmap Heap Scan on lu_fact_types (cost=8.00..12.02 rows=1 width=314)
(actual time=0.064..0.067 rows=4 loops=1)
Recheck Cond: (fact_subcats && '{"White alone","Asian alone"}'::character varying[])
-> Bitmap Index Scan on idx_lu_fact_types_gin (cost=0.00..8.00 rows=1 width=0)
 (actual time=0.050..0.050 rows=4 loops=1)
Index Cond: (fact_subcats && '{"White alone","Asian alone"}'::character varying[])
Total runtime: 0.118 ms

We can see from Example 9-8 that we have succeeded in forcing the planner to use the
index.

In contrast to the above, if we were to write a query of the form:

SELECT * FROM census.lu_fact_types WHERE 'White alone' = ANY(fact_subcats)

We would discover that regardless of what we set enable_seqscan to, the planner will
always do a sequential scan because the index we have in place can’t service this query.

Guiding the Query Planner | 119

So in short, create useful indexes. Write your queries to take advantage of them. And
experiment, experiment, experiment!

Table Stats
Despite what you might think or hope, the query planner is not a magician. Its decisions
follow prescribed logic that’s far beyond the scope this book. The rules that the planner
follows depends heavily on the current state of the data. The planner can’t possibly
scan all the tables and rows prior to formulating its plan. That would be self-defeating.
Instead, it relies on aggregated statistics about the data. To get a sense of what the
planner uses, we’ll query the pg_stats table with Example 9-9.

SELECT attname As colname, n_distinct, most_common_vals AS common_vals,
most_common_freqs As dist_freq
 FROM pg_stats
 WHERE tablename = 'facts'
 ORDER BY schemaname, tablename, attname;

Example 9-9. Data distribution histogram

colname | n_distinct | common_vals | dist_freq
-------------+------------+------------------+-----------------
fact_type_id | 68 | {135,113.. | {0.0157,0.0156333,...
perc | 985 | {0.00,.. | {0.1845,0.0579333,0.056...
tract_id | 1478 | {25025090300,25..| {0.00116667,0.00106667,0.0...
val | 3391 | {0.000,1.000,2...| {0.2116,0.0681333,0....
yr | 2 | {2011,2010} | {0.748933,0.251067}

By using pg_stats, the planner gains a sense of how actual values are dispersed within
a given column and plan accordingly. The pg_stats table is constantly updated as a
background process. After a large data load, or a major deletion, you should manually
update the stats by executing a VACUUM ANALYZE. VACUUM permanently removes deleted
rows from tables; ANALYZE updates the stats.

Having accurate and current stats is crucial for the planner to make the right decision.
If stats differ greatly from reality, planner will often produce poor plans, the most det-
rimental of these being unnecessary sequential table scans. Generally, only about 20
percent of the entire table is sampled to produce stats. This percentage could be even
lower for really large tables. You can control the number of rows sampled on a column-
by-column basis by setting the STATISTICS value.

ALTER TABLE census.facts ALTER COLUMN fact_type_id SET STATISTICS 1000;

For columns that participate often in joins and are used heavily in WHERE clauses, you
should consider increasing sampled rows.

Random Page Cost and Quality of Drives
Another setting that the planner is sensitive to is the RPC random_page_cost ratio, the
relative cost of the disk in retrieving a record using sequential read versus using random

120 | Chapter 9: Query Performance Tuning

access. Generally, the faster (and more expensive) the physical disk, the lower the ratio.
Default value for RPC is set to 4, which works well for most mechanical hard drives on
the market today. With the advent of SSDs, high-end SANs, cloud storage, it’s worth
tweaking this value. You can set this on a per database, server, or per table space basis,
but it makes most sense to set this at the server level in the postgresql.conf file. If you
have different kinds of disks, you can set it at the tablespace level using the ALTER
TABLESPACE command like so:

ALTER TABLESPACE pg_default SET (random_page_cost=2);

Details about this setting can be found at Random Page Cost Revisited. The article
suggests the following settings:

• High-End NAS/SAN: 2.5 or 3.0

• Amazon EBS and Heroku: 2.0

• iSCSI and other bad SANs: 6.0, but varies widely

• SSDs: 2.0 to 2.5

• NvRAM (or NAND): 1.5

Caching
If you execute a complex query that takes a while to run, you’ll often notice the second
time you run the query that it’s faster, sometimes much, much faster. A good part of
the reason for that is due to caching. If the same query executes in sequence and there
has been no changes to the underlying data, you should get back the same result. As
long as there’s space in on-board memory to cache the data, the planner doesn’t need
to re-plan or re-retrieve.

How do you check what’s in the current cache? If you are running PostgreSQL 9.1+,
you can install the pg_buffercache extension with the command:

CREATE EXTENSION pg_buffercache;

You can then run a query against the pg_buffercache table as shown in Example 9-10
query.

Example 9-10. Are my table rows in buffer cache?

SELECT C.relname, COUNT(CASE WHEN B.isdirty THEN 1 ELSE NULL END) As dirty_nodes
 , COUNT(*) As num_nodes
FROM pg_class AS C
 INNER JOIN pg_buffercache B ON C.relfilenode = B.relfilenode AND C.relname IN('facts',
'lu_fact_types')
 INNER JOIN pg_database D ON B.reldatabase = D.oid AND D.datname = current_database())
GROUP BY C.relname;

Example 9-10 returned buffered records of facts and lu_fact_types. Of course, to ac-
tually see buffered rows, you need to run a query. Try the one below:

Caching | 121

http://www.postgresql.org/docs/current/interactive/sql-altertablespace.html
http://www.postgresql.org/docs/current/interactive/sql-altertablespace.html
http://www.databasesoup.com/2012/05/random-page-cost-revisited.html

SELECT T.fact_subcats[2], COUNT(*) As num_fact
 FROM census.facts As F
 INNER JOIN census.lu_fact_types AS T ON F.fact_type_id = T.fact_type_id
 GROUP BY T.fact_subcats[2];

The second time you run the query, you should notice at least a 10% performance speed
increase and you should see the following cached in the buffer:

relname | dirty_nodes | num_nodes
--------------+-------------+-----------
facts | 0 | 736
lu_fact_types | 0 | 3

The more on-board memory you have dedicated to cache, the more room you’ll have
to cache data. You can set the amount of dedicated memory by changing shared_buf
fers. Don’t increase shared_buffers too high since at a certain point you’ll get dimin-
ishing returns from having to scan a bloated cache. Using common table expressions
and immutable functions also lead to more caching.

Nowadays, there’s no shortage of on-board memory. In version 9.2 of PostgreSQL, you
can take advantage of this fact by pre-caching commonly used tables. pg_prewarm will
allow you to rev up your PostgreSQL so that the first user to hit the database can
experience the same performance boost offered by caching as later users. A good article
that describes this feature is Caching in PostgreSQL.

122 | Chapter 9: Query Performance Tuning

http://raghavt.blogspot.com/2012/04/caching-in-postgresql.html

CHAPTER 10

Replication and External Data

PostgreSQL has a number of options for sharing data with external servers or data
sources. The first option is PostgreSQL’s own built-in replication, which allows you to
have a readied copy of your server on another PostgreSQL server. The second option,
unveiled in 9.1, is the Foreign Data Wrapper, which allows you to query and copy data
from many kinds of external data resources utilizing the SQL/Management of External
Datasource (MED) standard. The third option is to use third-party add-ons, many of
which are freely available and time-tested.

Replication Overview
You can probably enumerate countless reasons for the need to replicate, but they all
boil down to two: availability and scalability. If your main server goes down you want
another to immediately assume its role. For small databases, you could just make sure
you have another physical server ready and restore the database onto it, but for large
databases (say, in the terabytes), the restore itself could take many hours. To avoid the
downtime, you’ll need to replicate. The other main reason is for scalability. You set up
a database to handle your collection of fancy elephant beetles. After a few years of
unbridled breeding, you now have millions of fancy elephant beetles. People all over
the world now come to your site to check out the beetles. You’re overwhelmed by the
traffic. Replication comes to your aid; you set up a read-only slave server to replicate
with your main server. People who just want to learn about your beetles will pull data
from the slave. As your audience grows, you can add on more and more slave servers.

Replication Lingo
Before we get too carried away with replication, we better lay down some common
terminology used in replication.

Master
The master server is the database server that is the source of the data being replicated and where
all updates happen. As of now you can have only one master when using the built-in replication

123

http://en.wikipedia.org/wiki/Elephant_beetle

features of PostgreSQL. Plans are in place to support multi-master replication scenarios, pack-
aged with future releases of PostgreSQL.

Slave
A slave is a server where data is copied to. More aesthetically pleasing terms such as subscriber
or agent have been bandied about, but slave is still the most apropos. PostgreSQL built-in
replication currently only supports read-only slaves.

Write-ahead Log (WAL)
WAL is the log that keeps track of all transactions. It’s often referred to as the transaction log
in other databases. To set up replication, PostgreSQL simply makes the logs available for slaves
to pull down. Once slaves have the logs, they just need to execute the transactions therein.

Synchronous
A transaction on the master will not be considered complete until all slaves have updated,
guaranteeing zero data loss.

Asynchronous
A transaction on the master will commit even if slaves haven’t been updated. This is useful in
the case of distant servers where you don’t want transactions to wait because of network latency,
but the downside is that your dataset on the slave may lag behind, and the slave may miss some
transactions in the event of transmission failure.

Streaming
Streaming replication model was introduced in 9.0. Unlike prior versions, it does not require
direct file access between master and slaves. Instead, it relies on PostgreSQL connection pro-
tocol to transmit the WALs.

Cascading Replication
Introduced in 9.2, slaves can receive logs from nearby slaves instead of directly from the master.
This allows a slave to also behave like a master for replication purposes but still only allow read
only queries.

PostgreSQL Built-in Replication Advancements
When you set up replication, the additional servers can be on the same physical hard-
ware running on a different port or one on the cloud halfway around the globe. Prior
to 9.0, PostgreSQL only offered asynchronous warm slaves. A warm slave will retrieve
WAL and keep itself in sync but will not be available for query. It acted only as a
standby. Version 9.0 introduced asynchronous hot slaves and also streaming replica-
tion where users can execute read-only queries against the slave and replication can
happen without direct file access between the servers (using database connections for
shipping logs instead). Finally, with 9.1, synchronous replication became a reality. In
9.2, Cascading Streaming Replication was introduced. The main benefit of Cascading
Streaming Replication is to reduce latency. It’s much faster for a slave to receive updates
from a nearby slave than from a master far far away. Built-in replication relies on WAL
shipping to perform the replication. The disadvantage is that your slaves need to have
the same version of PostgreSQL and OS installed to ensure faithful execution of the
received logs.

124 | Chapter 10: Replication and External Data

Third-Party Replication Options
In addition to the built-in replication, common third party options abound. Slony and
Bucardo are two of the most popular open source ones. Although PostgreSQL is im-
proving replication with each new release, Slony, Bucardo, and other third-party still
offer more flexibility. Slony and Bucardo will allow you to replicate individual databases
or even tables instead of the entire server. As such, they don’t require that all masters
and slaves be of the same PostgreSQL version and OS. Both also support multi-master
scenarios. However, both rely on additional triggers to initiate the replication and often
don’t support DDL commands such as creating new tables, installing extensions, and
so on. This makes them more invasive than merely shipping logs. Postgres-XC, still in
beta, is starting to gain an audience. Postgres-XC is not an add-on to PostgreSQL;
rather. it’s a completely separate fork focused on providing a write-scalable, multi-
master symmetric cluster very similar in purpose to Oracle RAC. To this end, the rasison
d’etre of Postgres-XC is not replication, but distributed query processing. It is designed
with scability in mind rather than high availability.

We urge you to consult a comparison matrix of popular third-party options here: http:
//wiki.postgresql.org/wiki/Replication%2C_Clustering%2C_and_Connection_Pooling.

Setting Up Replication
Let’s go over the steps to set up replication. We’ll take advantage of streaming intro-
duced in 9.0 so that master and slaves only need to be connected at the PostgreSQL
connection level instead of at the directory level to sustain replication. We will also use
features introduced in 9.1 that allow you to easily setup authentication accounts specif-
ically for replication.

Configuring the Master
The basic steps for setting up the master server are as follows:

1. Create a replication account.

CREATE ROLE pgrepuser REPLICATION LOGIN PASSWORD 'woohoo'

2. Alter the following configuration settings in postgresql.conf.

wal_level = hot_standby
archive_mode = on
max_wal_senders = 10

3. Use the archive_command to indicate where the WAL will be saved. With stream-
ing, you’re free to choose any directory. More details on this setting can be found
at PostgreSQL PGStandby.

On Linux/Unix your archive_command line should look something like:

archive_command = 'cp %p ../archive/%f'

Setting Up Replication | 125

http://slony.info/
http://bucardo.org/wiki/Bucardo
http://postgres-xc.sourceforge.net
http://www.oracle.com/technetwork/products/clustering/overview/index.html
http://wiki.postgresql.org/wiki/Replication%2C_Clustering%2C_and_Connection_Pooling
http://wiki.postgresql.org/wiki/Replication%2C_Clustering%2C_and_Connection_Pooling
http://www.postgresql.org/docs/current/interactive/pgstandby.html

On Windows:

archive_command = 'copy %p ..\\archive\\%f'

4. In the pg_hba.conf, you want a rule to allow the slaves to act as replication agents.
As an example, the following rule will allow a PostgreSQL account named pgre-
puser that is on my private network with IP in range 192.168.0.1 to 192.168.0.254
to replicate using a md5 password.

host replication pgrepuser 192.168.0.0/24 md5

5. Shut down the postgreSQL service and copy all the files in the data folder EXCEPT
for the pg_xlog and pg_log folders to the slaves. You should make sure that
pg_xlog and pg_log folders are both present on the slaves, but devoid of any files.

If you have a large database cluster and can’t afford a shut down for a long period
of time while you’re copying, you can use the pg_basebackup utility which is located
in the bin folder of your PostgreSQL install. This will create a copy of the data
cluster files in the specified directory and allow you to do a base backup while the
postgres server service is running and people are using the system.

Configuring the Slaves
To minimize headaches, slaves should have the same configuration as the master, es-
pecially if you’ll be using them for failover. In addition to those configurations, in order
for it to be a slave, it needs to be able to play back the WAL transactions of the master.
So, you need at least the following settings in postgresql.conf of a slave:

1. Create a new instance of PostgreSQL with the same version (preferably even micro-
versions) as your master server and also same OS at the same patch level. Keeping
servers identical is not a requirement and you’re more than welcome to TOFTT
and see how far you can deviate.

2. Shut down the postgreSQL service.

3. Overwrite the data folder files with those you copied from the master.

4. Set the following configuration settings on the postgresql.conf.

hot_standby = on

5. You don’t need to run the slaves on the same port as the master, so you can op-
tionally change the port either via postgresql.conf or via some other OS specific
startup script that sets PGPORT before startup. Any startup script will override the
setting you have in postgresql.conf.

6. Create a new file in the data folder called recovery.conf that contains the following
lines:

standby_mode = 'on'
primary_conninfo = 'host=192.168.0.1 port=5432 user=pgrepuser password='woohoo'
trigger_file = 'failover.now'

Host name, IP, and port should be those of the master.

126 | Chapter 10: Replication and External Data

http://www.postgresql.org/docs/current/interactive/app-pgbasebackup.html

7. Add to the recovery.conf file the following line, which varies, depending on the OS:

On Linux/Unix:

restore_command = 'cp %p ../archive/%f'

On Windows:

restore_command = 'copy %p ..\\archive\\%f'

This command is only needed if the slave can’t play the WALs fast enough, so it
needs a location to cache them.

Initiate the Replication Process
1. Start up the slave server first. You’ll get an error in logs that it can’t connect to the

master. Ignore.

2. Start up the master server.

You should now be able to connect to both servers. Any changes you make on the
master, even structural changes like installing extensions or creating tables, should
trickle down to the slaves. You should also be able to query the slaves, but not much
else.

When and if the time comes to liberate a chosen slave, create a blank file called fail-
over.now in the data folder of the slave. What happens next is that Postgres will com-
plete the playing back of WAL, rename the recover.conf to recover.done. At that point,
your slave will be unshackled from the master and continue life on its own with all the
data from the last WAL. Once the slave has tasted freedom, there’s no going back. In
order to make it a slave again, you’ll need to go through the whole process from the
beginning.

Unlogged tables don’t participate in replication.

Foreign Data Wrappers (FDW)
Foreign Data Wrappers are mechanisms of querying external datasources. PostgreSQL
9.1 introduced this SQL/MED standards compliant feature. At the center of the concept
is what is called a foreign table. In this section, we’ll demonstrate how to register foreign
servers, foreign users, and foreign tables, and finally, how to query foreign tables. You
can find a catalog of foreign data wrappers for PostgreSQL at PGXN FDW and PGXN
Foreign Data Wrapper. You can also find examples of usage in PostgreSQL Wiki
FDW. At this time, it’s rare to find FDWs packaged with PostgreSQL except for
fdw_file. For wrapping anything else, you’ll need to compile your own or get them from
someone who already did the work. In PostgreSQL 9.3, you can expect a FDW that

Foreign Data Wrappers (FDW) | 127

http://pgxn.org/tag/fdw/
http://pgxn.org/tag/foreign%20data%20wrapper/
http://pgxn.org/tag/foreign%20data%20wrapper/
http://wiki.postgresql.org/wiki/Foreign_data_wrappers
http://wiki.postgresql.org/wiki/Foreign_data_wrappers
http://www.postgresql.org/docs/current/interactive/file-fdw.html

will at least wrap other PostgreSQL databases. Also, you’re limited to SELECT queries
against the FDW, but this will hopefully change in the future so that you can use them
to update foreign data as well.

Querying Simple Flat File Data Sources
We’ll gain an introduction to FDW using the file_fdw wrapper. To install, use the
command:

CREATE EXTENSION file_fdw;

Although file_fdw can only read from files on your local server, you still need to define
a server for it. You register a FDW server with the following command.

CREATE SERVER my_server FOREIGN DATA WRAPPER file_fdw;

Next, you have to register the tables. You can place foreign tables in any schema you
want. We usually create a separate schema to house foreign data. For this example,
we’ll use our staging schema.

Example 10-1. Make a Foreign Table from Delimited file

CREATE FOREIGN TABLE staging.devs (developer VARCHAR(150), company VARCHAR(150))
SERVER my_server
OPTIONS (format 'csv', header 'true', filename '/postgresql_book/ch10/devs.psv', delimiter
'|', null '');

When all the set up is finished, we can finally query our pipe delimited file directly:

SELECT * FROM staging.devs WHERE developer LIKE 'T%';

Once we no longer need our foreign table, we can drop it with the basic SQL command:

DROP FOREIGN TABLE staging.devs;

Querying More Complex Data Sources
The database world does not appear to be getting more homogeneous. We’re witness-
ing exotic databases sprouting up left and right. Some are fads that go away. Some
aspire to dethrone the relational databases altogether. Some could hardly be considered
databases. The introduction of foreign data wrappers is in part a response to the grow-
ing diversity. Resistance is futile. FDW assimilates.

In this next example, we’ll demonstrate how to use the www_fdw foreign data wrapper
to query the web services. We borrowed the example from www_fdw Examples.

The www_fdw foreign data wrapper is not generally packaged with
PostgreSQL installs. If you are on Linux/Unix, it’s an easy compile if
you have the postgresql-dev installed. We did the work of compiling for
Windows—you can download our binaries here: Windows-32 9.1
FDWs.

128 | Chapter 10: Replication and External Data

https://github.com/cyga/www_fdw/wiki/Examples
http://www.postgresonline.com/downloads/fdw_win32_91_bin.zip
http://www.postgresonline.com/downloads/fdw_win32_91_bin.zip

The first step to perform after you have copied the binaries and extension files is to
install the extension in your database:

CREATE EXTENSION www_fdw;

We then create our Twitter foreign data server:

CREATE SERVER www_fdw_server_twitter
FOREIGN DATA WRAPPER www_fdw
OPTIONS (uri 'http://search.twitter.com/search.json');

The default format supported by the www_fdw is JSON, so we didn’t need to include
it in the OPTIONS modifier. The other supported format is XML. For details on additional
parameters that you can set, refer to the www_fdw documentation. Each FDW is dif-
ferent and comes with its own API settings.

Next, we define at least one user for our FDW. All users that connect to our server
should be able to access the Twitter server, so we create one for the entire public group.

CREATE USER MAPPING FOR public SERVER www_fdw_server_twitter;

Now we create our foreign table:

Example 10-2. Make a Foreign Table from Twitter

CREATE FOREIGN TABLE www_fdw_twitter (
/* parameters used in request */
q text, page text, rpp text, result_type text,
/* fields in response */
created_at text, from_user text, from_user_id text, from_user_id_str text
 , geo text, id text, id_str text
 , is_language_code text, profile_image_url text
 , source text, text text, to_user text, to_user_id text)
SERVER www_fdw_server_twitter;

The user mapping doesn’t imply rights. We still need to grants rights before being able
to query the foreign table.

GRANT SELECT ON TABLE www_fdw_twitter TO public;

Now comes the fun part. Here, we ask for page two of any tweets that have something
to do with postgresql, mysql, and nosql:

SELECT DISTINCT left(text,75) As part_txt
 FROM www_fdw_twitter WHERE q='postgresql AND mysql AND nosql' and
page='2';

Voilà! We have our response:

 part_txt

 MySQL Is Done. NoSQL Is Done. It's the Postgres Age http://t.co/4DfqG75d
 RT @mjasay: .@451Research: <0.002% of paid MySQL deployments being repla
 @alanzeino: I know MySQL... but anyone with a brain is using PostgreSQL
 Hstore FTW! RT @mjasay: .@451Research: <0.002% of MySQL deployments bein
 @al3xandru: MySQL Is Done. NoSQL Is Done. It's the Postgres Age http://t

Foreign Data Wrappers (FDW) | 129

https://github.com/cyga/www_fdw/wiki/Documentation

APPENDIX

Install, Hosting, and Command-Line
Guides

Installation Guides and Distributions

Windows, Mac OS X, Linux Desktops
EnterpriseDB, a company devoted to popularizing PostgreSQL technology, builds in-
stallers for Windows, Mac OS X, and desktop versions of Linux. For Windows users,
this is the preferred installer to use. Mac OS X and Linux opinions vary depending on
what you are doing. For example, the EnterpriseDb PostGIS installers for Mac OS X
and Linux aren’t always kept up to date with the latest releases of PostGIS, so PostGIS
Mac OS X and Linux users, tend to prefer other distributions. EnterpriseDb also dis-
tribute binaries for beta versions of coming PostgreSQL versions. The installers are
super easy to use. They come packaged with PgAdmin GUI Administration tool and a
stack builder that allows you to install additional add-ons like JDBC, .NET drivers,
Ruby, PostGIS, phpPgAdmin, pgAgent, WaveMaker, and others.

EnterpriseDB has two offerings: the official, open source PostgreSQL, which Enterpri-
seDB calls the Community Edition, and their proprietary edition called Advanced Plus.
The proprietary fork offers Oracle compatibility and enhanced management features.
Don’t get confused between the two when you download. In this book, we will focus
on the official PostgreSQL, not Advanced Plus; however, much of the material apply
more or less equally to Advanced Plus.

If you want to try out different versions of PostgreSQL on the same
machine or want to run it from a USB device. EnterpriseDB also offers
binaries in addition to installers. Read this article on our site at Post-
greSQL in Windows without Install for further guidance.

131

http://www.enterprisedb.com
http://www.postgresonline.com/journal/archives/172-Starting-PostgreSQL-in-windows-without-install.html
http://www.postgresonline.com/journal/archives/172-Starting-PostgreSQL-in-windows-without-install.html

Other Linux, Unix, Mac Distributions
Most Unix/Linux distributions come packaged with some version of PostgreSQL,
though the version they come with is usually not the latest and greatest. To compensate
for this, many people use backports.

PostgreSQL Yum Repositories

For adventurous Linux users, you can always download the latest and greatest Post-
greSQL, including the developmental versions by going to the PostgreSQL Yum repos-
itory. Not only will you find the core server, but you can also retrieve popular extensions
like PL, PostGIS, and many more. At the time of this writing, Yum is available for Fedora
14-16, Red Hat Enterprise 4-6, CentOS 4-6, Scientific Linux 5-6. If you have older
versions of the OS or still use PostgreSQL 8.3, you should check the documentations
for what’s maintained. If you use Yum for the install, we prefer this Yum distro because
it is managed by PostgreSQL group; it is actively maintained by PostgreSQL developers
and always releases patches and updates as soon as they are available. We have in-
structions for installing using Yum in the Yum section of our PostgresOnLine journal
site.

Ubuntu, Debian, OpenSUSE

Ubuntu is generally good about staying up to date with latest versions of PostgreSQL.
Debian tends to be a bit slower. You can usually get the latest PostgreSQL on most
recent versions of Ubuntu/Debian using a command along the lines of:

sudo apt-get install postgresql-server-9.1

If you plan to be compiling any of the other additional add-ons not generally packaged
with PostgreSQL, such as the PostGIS or R, then you’ll want to also install the devel-
opment libraries:

sudo apt-get install postgresql-server-dev-9.1

If you want to try the latest and greatest of PostgreSQL and not have to compile yourself,
or the version of Ubuntu/Debian you have doesn’t have the latest version of Post-
greSQL, then you’ll want to go with a backport. Here are some that people use:

• OpenSCG Red Hat, Debian, Ubuntu, and OpenSuse PostgreSQL packages have
PostgreSQL for latest stable and beta releases of PostgreSQL.

• Martin Pitt backports usually keeps Ubuntu installs for PostgreSQL two versions
plus latest beta release of PostgreSQL. It also has releases currently for lucid, natty,
and oneiric for core PostgreSQL and postgresql extensions.

• If you are interested in PostgreSQL for the GIS offerings, then UbuntuGIS may be
something to check out for the additional add-ons like PostGIS and pgRouting, in
addition to some other non-PostgreSQL-related GIS toolkits it offers.

132 | Appendix: Install, Hosting, and Command-Line Guides

http://yum.postgresql.org
http://yum.postgresql.org
http://www.postgresonline.com/journal/categories/53-yum
http://www.openscg.com/se/postgresql/packages.jsp
https://launchpad.net/~pitti/+archive/postgresql
https://wiki.ubuntu.com/UbuntuGIS

FreeBSD

FreeBSD is a popular choice for PostgreSQL install. However, many people who use
FreeBSD tend to compile their own directly from source rather than using a Port or
package distribution. You can find even the latest beta versions of PostgreSQL on the
FreeBSD database section of FreeBSD ports site.

Mac OS X

There are several ways of installing PostgreSQL on Mac OS X that we’ve seen people
use. There is the EnterpriseDb desktop install, which we already mentioned. Many
have complained since it installs in a non-standard location, and it doesn’t play well
when it wants to receive other add-ons. There is also HomeBrew, which seems to be
gaining a lot of popularity; and there’s KyngChaos, for people who want a relatively
smooth, but very up to date GIS experience. Lastly, there is the standard MacPorts.

• Installing PostgreSQL 9.0 using Homebrew gives step-by-step instructions of using
HomeBrew to install PostgreSQL 9. Similar steps can be done for newer Post-
greSQL.

• KyngChaos PostgreSQL + GIS has the latest release package of PostgreSQL and
PostGIS 2.0, as well as pgRouting. However, the packages distributed by Kyng-
Chaos are incompatible with the EnterpriseDb ones, so if you want to use Kyng-
Chaos, you’ll need to use the PostgreSQL 9.1 packaged with it as well.

• Fink and MacPorts.

Where to Host PostgreSQL
You can always install and use PostgreSQL on your own server and your own LAN,
but for applications running on the Internet, you may want to look for a hosting com-
pany with scalable servers and reliable bandwidth. You should avoid shared hosting
environments. Though they are ridiculously cheap, you’re relegated to having little or
no control over the server itself. The database that usually comes stock is MySQL or
an antiquated version of PostgreSQL. Unless you’re running a fly-by-night website, we
don’t recommend shared hosting.

Before the advent of virtualization and cloud computing, the only alternative to shared
hosting was to have your own dedicated server. This can be a server that you lease from
the hosting company or your own server placed at a hosting facility. This tried-and-
true arrangement is still the way to go for large operations requiring many powerful
servers and a thirst for bandwidth. With your own server, you dictate the OS and the
PostgreSQL version. The drawbacks are that it does take a few days for the hosting
company to build your leased rig and expect little support from the hosting company
should you have a software problem. Placing your own server at a secure hosting facility
tends to give you the best reliability in terms of connectivity since these facilities are
built with redundancy in mind, but you’ll have to maintain your own server. This means

Where to Host PostgreSQL | 133

http://www.freebsd.org/ports/databases.html
http://russbrooks.com/2010/11/25/install-postgresql-9-on-os-x
http://www.kyngchaos.com/software:postgres
http://www.postgresql.org/download/macosx

having to dispatch your own technician to the hosting site, or even placing your own
IT personnel permanently at the hosting facility.

With rampant virtualization of servers, cloud hosting gained popularity in the last few
years. It fills a nice gap between restrictive shared hosting and dedicated hosting which
required a high level of technical savvy.

For a list of hosts that claim PostgreSQL experience and support, check out PostgreSQL
Hosting Providers. We’ll be covering hosts that we have heard positive reviews about
from PostgreSQL users, or that we have direct experience with.

• Dedicated Server. This is the oldest and most common kind of hosting offered
suitable for PostgreSQL. It is the most responsive, but also takes the most time to
set up. It is being quickly replaced by cheaper options. We won’t provide any
examples of these since there are too many good ones to itemize. It tends to be the
most expensive, but it provides you with the greatest control for disks you can use,
as well as disk configuration. For low profile servers, the dedicated server is almost
always more expensive. For high-end servers getting into the 8 CPU/terabyte disks,
dedicated is on par or cheaper than Cloud and VPS. This is designed more for
experienced Sys Admins and Db Admins with a tremendous need for power.

• Virtual Private Server (VPS)/Virtual Dedicated Server is like a physical server
in that you can treat it like any other, but it is not a physical device—instead, it’s
a host on a host server. It is much like a cloud server except you usually can’t save
images of it or build them yourself. The ISP builds it and charges you a fixed
monthly fee based on configuration of the virtual. You are, however, usually al-
lowed to install any additional things you want via remoting in or a control panel
of options. There are more VPS providers than there are of cloud server providers,
but this may change in the future.

• Cloud Server. A cloud server is like a VPS; in fact, in many cases, they use the same
underlying technology. The main difference between cloud and standard virtual is
you have more control and the billing is hour metered. As you would with a virtual
dedicated server, you can install anything you want on it, manage permissions,
remote into it, and sometimes add more disks or disk space. They also often come
packaged with cloud storage. Where it differs from dedicated server or the con-
ventional VPS is that you can usually save images of it and restore these images
using a web console. You can delete servers, add new servers, scale up servers.
Therefore, they are ideal if you are not sure how much power you will need, or
even what OS you want to deploy on, or if your needs fluctuate frequently on a
daily basis. They vary in offerings from cloud host to cloud host. so you’ll want to
closely analyze the fine print. As far as pricing goes for an always on server with
similar configuration, they are about the same price or slightly more expensive than
VPS/Virtual Dedicated one.

• DbaaS is an upcoming type called Database as a Service (DbaaS).

134 | Appendix: Install, Hosting, and Command-Line Guides

http://www.postgresql.org/support/professional_hosting
http://www.postgresql.org/support/professional_hosting

Virtual Private Server (VPS)/Virtual Dedicated Server
You can get a Virtual for as little as $5 USD per month, but if you have higher bandwidth
needs and want to do something serious with PostgreSQL (something more than host-
ing your blog or consulting website), we recommend spending at least $50 USD per
month. These do charge you extra for bandwidth above what is packaged with the plan,
so you’ll want to consider the cost of that depending on traffic you have.

• Hub.org has been providing PostgreSQL and open source specific hosting services
for longer than any we can think of and was founded by a PostgreSQL core team
member. They offer FreeBSD VPS servers with the latest versions of PostgreSQL
installed. The DBMS is dedicated for higher end plans and shared for lower plans.
They also offer PostGIS hosting in the plan. Their VPS hosting starts at $5.00 USD/
month, with higher ends being $60 USD per month. The disk space availability is
pretty low (around 20 GB for their highest plan), so probably not suitable for large
PostgreSQL databases, but fine for those with low traffic or databases under 15 GB
or so.

• A2Hosting offers Virtual Private Server hosting with quick installers for PostgreSQL
9.0. They also offer 24/7 support. Their VPS plans range from approximately $10
to $60 with quick installers. They offer various Linux options (CentOS, Fedora,
Slackware, and Ubuntu). It also offers shared hosting with PostgreSQL 9.0.

• GoDaddy Virtual Dedicated - Although GoDaddy doesn’t offer PostgreSQL and
are more well known for their shared hosting SQL Server and MySQL, they are the
biggest host and offer fairly cheap Virtual Dedicated hosting packages. They also
offer Windows 2008+ virtual dedicated servers, in addition to CentOS and Fedora
offerings—a better option for people who want to run a DBMS+ASP.NET on the
same Windows box. The disk sizes are on the low end, approximately 20 GB to
120 GB. You should probably go with at least the 2 GB RAM plan, which is priced
around $40 USD per month. We must say their tech support isn’t that great, but
it isn’t horrible either, and is available 24/7.

Cloud Server Hosters
Pricing usually starts around $0.02 USD per 1 GB of RAM per hour, depending on if
you go with a contract or a pay-as-you go plan; keep in mind that Windows servers
tend to be more pricey than the Linux/Unix Cloud server offerings. Each has their own
specialty perks, so it’s hard to say one is absolutely better than another. You’ll probably
want to go with at least a 2 GB motherboard RAM plan if you plan to do anything
remotely serious with PostgreSQL.

As a general rule, cloud disk speeds tend to be slower than the physical disks and not
optimized for databases with Amazon EC having one of the worst reputations. This
may change in the future, but that’s where the technology is right now. A lot of people

Where to Host PostgreSQL | 135

http://hub.org
http://www.a2hosting.com/services/vps-hosting
http://www.godaddy.com/hosting/virtual-dedicated-servers.aspx

use cloud servers despite concerns with speed and robustness because of the sheer
convenience of being able to create an image to your liking and cloning it many times.

Lots of cloud server offerings are cropping up these days. They are generally fairly
priced, easy to use with wizards, and more importantly you can have a server up an
running in less than 30 minutes. Many come with OS images that come pre-installed
with PostgreSQL. We generally prefer installing our own using the aforementioned
Yum repository, or Ubuntu apt-get, or EnterpriseDb installers, but if you want to get
up and running with PostgreSQL with additional add-ons such as GIS add-ons, a pre-
made image might better suit your needs.

Below are a couple of cloud hosts we’ve heard general good things about from Post-
greSQL users or have personal experience with. As they say: your mileage may vary.

• Linode is a Linux-only XEN VPS host with a fairly good reputation among Post-
greSQL users. Plans offered accomodate for various flavors of Linux, including
OpenSUSE, as well as automated backup options at fairly cheap prices. Linode
also have various plan tiers, starting at $20 per month for 20 GB storage, going up
to $160 per month for 160 GB storage and 4 GB motherboard RAM. The host is a
bit of a hybrid Cloud/VPS, in that it offers similar features of standard cloud host-
ing, like deploying your own server with a panel, saving images but using VPS
technology. Unlike standard cloud hosts, Linode doesn’t charge by the hour but
instead, by the month, based on whatever plan you purchased.

• GoGrid is not specifically designed for PostgreSQL, but generally performs well.
These plans offer dedicated servers on the same network as your cloud servers so
connectivity speeds are fast between the two. From our personal experience, GoG-
rid’s 24/7 tech support is superb. If you are not sure cloud server will be fast enough
for your needs, GoGrid’s hybrid approach might be just what you are looking for.
It offers Linux and Windows standard images at the same price, as well as some
community contributed ones; you can also make your own. It is also generous with
ips starting with 8 ips per account, which you can assign to the same server if you
choose, allowing you to add more for a small additional cost. This is important if
you plan to host several different domains each requiring their own SSL certificate
on the same server. They, however, start at a higher tier than the others with their
entry-level Professional Cloud, starting at $200 per month, which gets you a 4 GB/
4core server with 200 GB disk and 100 GB of cloud storage. For Windows hosting,
GoGrid is comparable to Amazon’s prices. Many of its options are geared toward
enterprises requiring virtual private clouds.

• Amazon EC (AWS) is probably the most popular choice in general for cloud servers.
It is relatively cheap and you can turn off an instance if you don’t need it and not
get charged for the downtime. For databases, it generally has a bad reputation,
though that reputation is improving. (Here’s an interesting read on Amazon by
Christophe Pettus (PostgreSQL on Amazon) that has tips and tricks of getting the
most out of AWS.) If you don’t need to do super heavy lifting and don’t have

136 | Appendix: Install, Hosting, and Command-Line Guides

http://www.linode.com
http://www.gogrid.com
http://aws.amazon.com/ec2
http://thebuild.com/presentations/pg-aws.pdf

terabytes of data to swing around, it’s not a bad choice. They also allow you to add
new EC disks on demand for any size you want so easy to scale, disk-wise. Granted,
their disks are kinda slow.

Amazon provides images for both Windows and various Linux/Free BSD distros,
so there are likely more choices available than any other cloud server offering.
Amazon also allows you to save the full snapshot image of a server, regardless its
size, whereas other cloud offerings have limits on the maximum size you can save.
However, they do not offer 24/7 tech support like many of the others.

Many Amazon EC community images come pre-installed with PostgreSQL, and
they come and go. It is best to run a search in the image list, or use one specially
made for what you are doing.

Generally speaking, Amazon is more hands-off than the others, so most issues are
opened and closed with a form. You rarely get personalized emails. This is not to
say the service is poor, since most issues involve systemwide issues that it promptly
addresses. If you feel uncomftable with this arrangement or are a non-techie with
lots of basic OS hand-holding needs, Amazon is probably not the best host for you.

• RackSpace is not specifically designed for PostgreSQL, but we know several Post-
greSQL users using it for PostgreSQL and web application, and are happy with the
performance and Rackspace support team. It offers both Linux and Windows.

• SoftLayer is not specifically designed for PostgreSQL but similar to GoGrid, it pro-
vides both dedicated as well as cloud hosting offerings and Private network setups.
It provides hosting for both Linux and Windows. Pricing is similar to the others
with hourly and monthly options.

PostgreSQL Database as a Service
Fairly recently, there have been database cloud offerings that focus on giving you op-
timized PostgreSQL installs. We’ll refer to these as database-as-a-service (DbaaS).
These tend to be pricier than cloud server offerings, but in return are optimized for
more database heavy load and often take care of the System DBA tasks for you.

In theory, they don’t suffer the same disk speed issues many have complained about
with Server cloud offerings like Amazon EC.

These are similar to Amazon RDS (Amazon’s MySQL database service offering), SQL
Server Azure (Microsoft’s SQL Server in the cloud), and even Oracle’s Public Cloud.

There are a few downsides: you are usually stuck with one version of PostgreSQL, which
is usually a version behind the latest, and you may not be able to install all the extensions
you want to. In other words, many of these don’t support PostGIS, which we personally
can’t live without. Their starting costs tend to be pricier than server cloud offerings,
but promise you better speed and optimized for Postgres.

Where to Host PostgreSQL | 137

http://www.rackspace.com
http://www.softlayer.com

• Heroku Postgres. Heroku offers a lot of application appliances in the cloud. One
of these is Heroku Postgres. which gives you up to 2 TB database storage and
various pricing offerings for number of cores and hot memory (equivalent to moth-
erboard ram). The main downside we see with Heroku is that many modules are
disabled, and a user is stuck with whatever version of PostgreSQL Heroku supports
(which is currently one version behind latest). For example, you can’t run PostGIS
or any untrusted languages like plpythonu on this. This may change in the future.
For more of a critique, read: Heroku a really easy way to get a database in a hurry.

• EnterpriseDb Cloud Database. This is a PostgreSQL and PostgreSQL Plus advanced
servers cloud database hosting on Amazon EC2. It just came out of beta at the time
of this writing. It comes ready with elastic scale out and auto provisioning, along
with the self-healing tool kits built by EnterpriseDb. In addition, you have the
option to manage it yourself or have EnterpriseDb do the managing. This one does
use the latest version of PostgreSQL (9.1) and does allow for installation of PostGIS,
unlike the others mentioned.

• CartoDB PostGIS in the Cloud is a PostgreSQL offering targeted at providing an
easy interface for performing spatial queries and maps with PostGIS. It has an intro
free offering that comes with canned data and CartoDb pricing tiers based on da-
tabase size that allow you to load up your own spatial data in various formats. It
also provides slick map interfaces for displaying spatial queries. This is the first
DaaS to provide PostGIS 2.0.

• VMWare vFabric Postgres is not a hosted service, but instead an engine to make a
DbaaS; it’s more suited for Enterprises or ISPs looking to replicate a stampede of
PostgreSQL elephants.

PostgreSQL Packaged Command-Line Tools
In this section, we list help commands of command line tools discussed in this book.

Database Backup: pg_dump
pg_dump is the command-line executable packaged with PostgreSQL for doing indi-
vidual database and selective parts of a database. It can backup to tar, custom com-
pressed backup, and plain text. Plain-text backups need to be restored with psql. If you
choose --inserts or --column-inserts option, it will backup using standard SQL inserts
that can be run with a tool like pgAdmin. For examples of pg_dump usage, refer to
“Selective Backup Using pg_dump” on page 23.

Example A-1. pg_dump help

pg_dump --help

pg_dump dumps a database as a text file or to other formats.
Usage:
pg_dump [OPTION]... [DBNAME]

138 | Appendix: Install, Hosting, and Command-Line Guides

http://postgres.heroku.com/
http://people.planetpostgresql.org/andrew/index.php?/archives/259-Heroku,-a-really-easy-way-to-get-a-database-in-a-hurry..html
http://cloud.enterprisedb.com/
http://cartodb.com
http://cartodb.com/pricing
http://cartodb.com/pricing
http://www.vmware.com/products/application-platform/vfabric-data-director.html
http://www.postgresql.org/docs/current/interactive/app-pgdump.html

General options:
-f, --file=FILENAME output file or directory name
-F, --format=c|d|t|p output file format (custom, directory, tar, plain
text)
-v, --verbose verbose mode
-Z, --compress=0-9 compression level for compressed formats
--lock-wait-timeout=TIMEOUT fail after waiting TIMEOUT for a table lock
--help show this help, then exit
--version output version information, then exit
Options controlling the output content:
-a, --data-only dump only the data, not the schema
-b, --blobs include large objects in dump
-c, --clean clean (drop) database objects before recreating
-C, --create include commands to create database in dump
-E, --encoding=ENCODING dump the data in encoding ENCODING
-n, --schema=SCHEMA dump the named schema(s) only
-N, --exclude-schema=SCHEMA do NOT dump the named schema(s)
-o, --oids include OIDs in dump
-O, --no-owner skip restoration of object ownership in
plain-text format
-s, --schema-only dump only the schema, no data
-S, --superuser=NAME superuser user name to use in plain-text format
-t, --table=TABLE dump the named table(s) only
-T, --exclude-table=TABLE do NOT dump the named table(s)
-x, --no-privileges do not dump privileges (grant/revoke)
--binary-upgrade for use by upgrade utilities only
--column-inserts dump data as INSERT commands with column names
--disable-dollar-quoting disable dollar quoting, use SQL standard quoting
--disable-triggers disable triggers during data-only restore
--exclude-table-data=TABLE do NOT dump data for the named table(s)
--inserts dump data as INSERT commands, rather than COPY
--no-security-labels do not dump security label assignments
--no-tablespaces do not dump tablespace assignments
--no-unlogged-table-data do not dump unlogged table data
--quote-all-identifiers quote all identifiers, even if not key words
--section=SECTION dump named section (pre-data, data, or post-data)
--serializable-deferrable wait until the dump can run without anomalies
--use-set-session-authorization
use SET SESSION AUTHORIZATION commands instead of
ALTER OWNER commands to set ownership
Connection options:
-h, --host=HOSTNAME database server host or socket directory
-p, --port=PORT database server port number
-U, --username=NAME connect as specified database user
-w, --no-password never prompt for password
-W, --password force password prompt (should happen automatically)
--role=ROLENAME do SET ROLE before dump

New features introduced in PostgreSQL 9.2.

PostgreSQL Packaged Command-Line Tools | 139

Server Backup: pg_dumpall
pg_dump_all is used for doing complete plain text server cluster backup as well as server
level objects like roles and table spaces. This feature is discussed in “Systemwide
Backup Using pg_dumpall” on page 24.

Example A-2. pg_dumpall help

pg_dumpall --help

pg_dumpall extracts a PostgreSQL database cluster into an SQL script file.
Usage:
pg_dumpall [OPTION]...

General options:
-f, --file=FILENAME output file name
--lock-wait-timeout=TIMEOUT fail after waiting TIMEOUT for a table lock
--help show this help, then exit
--version output version information, then exit

Options controlling the output content:
 -a, --data-only dump only the data, not the schema
 -c, --clean clean (drop) databases before recreating
 -g, --globals-only dump only global objects, no databases
 -o, --oids include OIDs in dump
 -O, --no-owner skip restoration of object ownership
 -r, --roles-only dump only roles, no databases or tablespaces
 -s, --schema-only dump only the schema, no data
 -S, --superuser=NAME superuser user name to use in the dump
 -t, --tablespaces-only dump only tablespaces, no databases or roles
 -x, --no-privileges do not dump privileges (grant/revoke)
 --binary-upgrade for use by upgrade utilities only
 --column-inserts dump data as INSERT commands with column names
 --disable-dollar-quoting disable dollar quoting, use SQL standard quoting
 --disable-triggers disable triggers during data-only restore
 --inserts dump data as INSERT commands, rather than COPY
 --no-security-labels do not dump security label assignments
 --no-tablespaces do not dump tablespace assignments
 --no-unlogged-table-data do not dump unlogged table data
 --quote-all-identifiers quote all identifiers, even if not key words
 --use-set-session-authorization
use SET SESSION AUTHORIZATION commands instead o
ALTER OWNER commands to set ownership

Connection options:
 -h, --host=HOSTNAME database server host or socket directory
 -l, --database=DBNAME alternative default database
 -p, --port=PORT database server port number
 -U, --username=NAME connect as specified database user
 -w, --no-password never prompt for password
 -W, --password force password prompt (should happen automatically)
 --role=ROLENAME do SET ROLE before dump

If -f/--file is not used, then the SQL script will be written to the standard
output.

140 | Appendix: Install, Hosting, and Command-Line Guides

http://www.postgresql.org/docs/current/interactive/app-pg-dumpall.html

Database Backup: pg_restore
pg_restore is the command-line tool packaged with PostgreSQL for doing database
restores of compressed, tar, and directory backups created by pg_dump. Examples of
its use are available in “Restore” on page 24.

Example A-3. pg_restore help

pg_restore --help

pg_restore restores a PostgreSQL database from an archive created by pg_dump.
Usage:
pg_restore [OPTION]... [FILE]
General options:
 -d, --dbname=NAME connect to database name
 -f, --file=FILENAME output file name
 -F, --format=c|d|t backup file format (should be automatic)
 -l, --list print summarized TOC of the archive
 -v, --verbose verbose mode
 --help show this help, then exit
 --version output version information, then exit

Options controlling the restore:
 -a, --data-only restore only the data, no schema
 -c, --clean clean (drop) database objects before recreating
 -C, --create create the target database
 -e, --exit-on-error exit on error, default is to continue
 -I, --index=NAME restore named index
 -j, --jobs=NUM use this many parallel jobs to restore
 -L, --use-list=FILENAME use table of contents from this file for
 selecting/ordering output
 -n, --schema=NAME restore only objects in this schema
 -O, --no-owner skip restoration of object ownership
 -P, --function=NAME(args)
 restore named function
 -s, --schema-only restore only the schema, no data
 -S, --superuser=NAME superuser user name to use for disabling triggers
 -t, --table=NAME restore named table
 -T, --trigger=NAME restore named trigger
 -x, --no-privileges skip restoration of access privileges (grant/revoke)
 -1, --single-transaction
 restore as a single transaction
 --disable-triggers disable triggers during data-only restore
 --no-data-for-failed-tables
 do not restore data of tables that could not be
 created
 --no-security-labels do not restore security labels
 --no-tablespaces do not restore tablespace assignments
 --section=SECTION restore named section (pre-data, data, or post-data)
 --use-set-session-authorization
use SET SESSION AUTHORIZATION commands instead of
ALTER OWNER commands to set ownership
Connection options:
 -h, --host=HOSTNAME database server host or socket directory
 -p, --port=PORT database server port number

PostgreSQL Packaged Command-Line Tools | 141

 -U, --username=NAME connect as specified database user
 -w, --no-password never prompt for password
 -W, --password force password prompt (should happen automatically)
 --role=ROLENAME do SET ROLE before restore

These items are new features introduced in PostgreSQL 9.2.

psql: Interactive and Scriptable
psql is a tool for doing interactive querying as well as running command-line scripted
tasks. In this section, we’ll list both the command line and interactive commands of
psql.

psql Interactive Commands

This section lists commands available in psql when you launch an interactive session.
For examples of usage, refer to “Interactive psql” on page 31 and “Non-Interactive
psql” on page 32.

Example A-4. Getting list of interactive help commands

psql
\?

General
 \copyright show PostgreSQL usage and distribution terms
 \g [FILE] or ; execute query (and send results to file or |pipe)
 \h [NAME] help on syntax of SQL commands, * for all commands
 \q quit psql
Query Buffer
 \e [FILE] [LINE] edit the query buffer (or file) with external editor
 \ef [FUNCNAME [LINE]] edit function definition with external editor
 \p show the contents of the query buffer
 \r reset (clear) the query buffer
 \w FILE write query buffer to file
Input/Output
 \copy ... perform SQL COPY with data stream to the client host
 \echo [STRING] write string to standard output
 \i FILE execute commands from file
 \ir FILE as \i, but relative to location of current script
 \o [FILE] send all query results to file or |pipe
 \qecho [STRING] write string to query output stream (see \o)
Informational
 (options: S = show system objects, + = additional detail)
 \d[S+] list tables, views, and sequences
 \d[S+] NAME describe table, view, sequence, or index
 \da[S] [PATTERN] list aggregates
 \db[+] [PATTERN] list tablespaces
 \dc[S] [PATTERN] list conversions
 \dC [PATTERN] list casts
 \dd[S] [PATTERN] show comments on objects
 \ddp [PATTERN] list default privileges
 \dD[S] [PATTERN] list domains

142 | Appendix: Install, Hosting, and Command-Line Guides

http://www.postgresql.org/docs/current/interactive/app-psql.html

 \det[+] [PATTERN] list foreign tables
 \des[+] [PATTERN] list foreign servers
 \deu[+] [PATTERN] list user mappings
 \dew[+] [PATTERN] list foreign-data wrappers
 \df[antw][S+] [PATRN] list [only agg/normal/trigger/window] functions
 \dF[+] [PATTERN] list text search configurations
 \dFd[+] [PATTERN] list text search dictionaries
 \dFp[+] [PATTERN] list text search parsers
 \dFt[+] [PATTERN] list text search templates
 \dg[+] [PATTERN] list roles
 \di[S+] [PATTERN] list indexes
 \dl list large objects, same as \lo_list
 \dL[S+] [PATTERN] list procedural languages
 \dn[S+] [PATTERN] list schemas
 \do[S] [PATTERN] list operators
 \dO[S+] [PATTERN] list collations
 \dp [PATTERN] list table, view, and sequence access privileges
 \drds [PATRN1 [PATRN2]] list per-database role settings
 \ds[S+] [PATTERN] list sequences
 \dt[S+] [PATTERN] list tables
 \dT[S+] [PATTERN] list data types
 \du[+] [PATTERN] list roles
 \dv[S+] [PATTERN] list views
 \dE[S+] [PATTERN] list foreign tables
 \dx[+] [PATTERN] list extensions
 \l[+] list all databases
 \sf[+] FUNCNAME show a function's definition
 \z [PATTERN] same as \dp
Formatting
 \a toggle between unaligned and aligned output mode
 \C [STRING] set table title, or unset if none
 \f [STRING] show or set field separator for unaligned query output
 \H toggle HTML output mode (currently off)
 \pset NAME [VALUE] set table output option
 (NAME := {format|border|expanded|fieldsep|fieldsep_zero | footer|
null|
 numericlocale|recordsep|tuples_only|title|tableattr|pager})
 \t [on|off] show only rows (currently off)
 \T [STRING] set HTML <table> tag attributes, or unset if none
 \x [on|off] toggle expanded output (currently off)
Connection
 \c[onnect] [DBNAME|- USER|- HOST|- PORT|-]
 connect to new database (currently "postgres")
 \encoding [ENCODING] show or set client encoding
 \password [USERNAME] securely change the password for a user
 \conninfo display information about current connection
Operating System
 \cd [DIR] change the current working directory
\setenv NAME [VALUE] set or unset environment variable
 \timing [on|off] toggle timing of commands (currently off)
 \! [COMMAND] execute command in shell or start interactive shell

These items are new features introduced in PostgreSQL 9.2.

PostgreSQL Packaged Command-Line Tools | 143

psql Non-Interactive Commands

Example A-5 shows the non-interactive command helps screen. Examples of its usage
are covered in “Non-Interactive psql” on page 32.

Example A-5. psql Basic Help screen

psql --help

psql is the PostgreSQL interactive terminal.
Usage:
psql [OPTION]... [DBNAME [USERNAME]]

General options:
-c, --command=COMMAND run only single command (SQL or internal) and exit
-d, --dbname=DBNAME database name to connect to
-f, --file=FILENAME execute commands from file, then exit
-l, --list list available databases, then exit
-v, --set=, --variable=NAME=VALUE
set psql variable NAME to VALUE
-X, --no-psqlrc do not read startup file (~/.psqlrc)
-1 ("one"), --single-transaction
execute command file as a single transaction
--help show this help, then exit
--version output version information, then exit

Input and output options:
-a, --echo-all echo all input from script
-e, --echo-queries echo commands sent to server
-E, --echo-hidden display queries that internal commands generate
-L, --log-file=FILENAME send session log to file
-n, --no-readline disable enhanced command line editing (readline)
-o, --output=FILENAME send query results to file (or |pipe)
-q, --quiet run quietly (no messages, only query output)
-s, --single-step single-step mode (confirm each query)
-S, --single-line single-line mode (end of line terminates SQL command)

Output format options:
-A, --no-align unaligned table output mode
-F, --field-separator=STRING
set field separator (default: "|")
-H, --html HTML table output mode
-P, --pset=VAR[=ARG] set printing option VAR to ARG (see \pset command)
-R, --record-separator=STRING
set record separator (default: newline)
-t, --tuples-only print rows only
-T, --table-attr=TEXT set HTML table tag attributes (e.g., width, border)
-x, --expanded turn on expanded table output
-z, --field-separator-zero
 set field separator to zero byte
-0, --record-separator-zero
 set record separator to zero byte

Connection options:
-h, --host=HOSTNAME database server host or socket directory

144 | Appendix: Install, Hosting, and Command-Line Guides

-p, --port=PORT database server port (default: "5432")
-U, --username=USERNAME database user name
-w, --no-password never prompt for password
-W, --password force password prompt (should happen automatically)

For more information, type "\?" (for internal commands) or "\help" (for SQL
commands) from within psql, or consult the psql section in the PostgreSQL
documentation.

These items are new features introduced in PostgreSQL 9.2.

PostgreSQL Packaged Command-Line Tools | 145

About the Authors
Regina Obe is a co-principal of Paragon Corporation, a database consulting company
based in Boston. She has over 15 years of professional experience in various
programming languages and database systems, with special focus on spatial databases.
She is a member of the PostGIS steering committee and the PostGIS core development
team. Regina holds a BS degree in mechanical engineering from the Massachusetts
Institute of Technology. She co-authored PostGIS in Action.

Leo Hsu holds an MS degree in engineering of economic systems from Stanford Leo
Hsu is a co-principal of Paragon Corporation, a database consulting company based in
Boston. He has over 15 years of professional experience developing and thinking about
databases for organizations large and small. Leo holds an MS degree in engineering of
economic systems from Stanford University and BS degrees in mechanical engineering
and economics from the Massachusetts Institute of Technology. He co-authored
PostGIS in Action.

	Table of Contents
	Preface
	What Makes PostgreSQL Special and Why Use It?
	Why Not PostgreSQL?
	For More Information on PostgreSQL
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. The Basics
	Where to Get PostgreSQL
	Notable PostgreSQL Forks

	Administration Tools
	What’s New in Latest Versions of PostgreSQL?
	Why Upgrade?
	What to Look for in PostgreSQL 9.2
	PostgreSQL 9.1 Improvements

	Database Drivers
	Server and Database Objects
	Where to Get Help

	Chapter 2. Database Administration
	Configuration Files
	The postgresql.conf File
	The pg_hba.conf File
	Authentication Methods

	Reload the Configuration Files

	Setting Up Groups and Login Roles (Users)
	Creating an Account That Can Log In
	Creating Group Roles
	Roles Inheriting Rights
	Non-Inheritable rights

	Databases and Management
	Creating and Using a Template Database
	Organizing Your Database Using Schemas
	Permissions

	Extensions and Contribs
	Installing Extensions
	The Old Way
	The New Way
	Upgrading from Old to New

	Common Extensions
	Old Extensions Absorbed into PostgreSQL
	Popular Extensions

	Backup
	Selective Backup Using pg_dump
	Systemwide Backup Using pg_dumpall

	Restore
	Terminating Connections
	Using psql to Restore Plain Text SQL backups
	Using pg_restore

	Managing Disk Space with Tablespaces
	Creating Tablespaces
	Moving Objects Between Tablespaces

	Verboten
	Delete PostgreSQL Core System Files and Binaries
	Giving Full Administrative Rights to the Postgres System (Daemon) Account
	Setting shared_buffers Too High
	Trying to Start PostgreSQL on a Port Already in Use

	Chapter 3. psql
	Interactive psql
	Non-Interactive psql
	Session Configurations
	Changing Prompts
	Timing Details
	AUTOCOMMIT
	Shortcuts
	Retrieving Prior Commands

	psql Gems
	Executing Shell Commands
	Lists and Structures

	Importing and Exporting Data
	Basic Reporting

	Chapter 4. Using pgAdmin
	Getting Started
	Overview of Features
	Connecting to a PostgreSQL server
	Navigating pgAdmin

	pgAdmin Features
	Accessing psql from pgAdmin
	Editing postgresql.conf and pg_hba.conf from pgAdmin
	Creating Databases and Setting Permissions
	Creating Databases and Other Objects
	Permission Management

	Backup and Restore
	Backing up a whole database
	Backing up of System Wide Objects
	Selective Backup of Database Objects

	pgScript
	Graphical Explain
	Job Scheduling with pgAgent
	Installing pgAgent
	Scheduling Jobs
	Helpful Queries

	Chapter 5. Data Types
	Numeric Data Types
	Serial
	Generate Series Function

	Arrays
	Array Constructors
	Referencing Elements in An Array
	Array Slicing and Splicing

	Character Types
	String Functions
	Splitting Strings into Arrays, Tables, or Substrings
	Regular Expressions and Pattern Matching

	Temporal Data Types
	Time Zones: What It Is and What It Isn’t
	Operators and Functions for Date and Time Data Types

	XML
	Loading XML Data
	Querying XML Data

	Custom and Composite Data Types
	All Tables Are Custom
	Building Your Own Custom Type

	Chapter 6. Of Tables, Constraints, and Indexes
	Tables
	Table Creation
	Multi-Row Insert
	An Elaborate Insert

	Constraints
	Foreign Key Constraints
	Unique Constraints
	Check Constraints
	Exclusion Constraints

	Indexes
	PostgreSQL Stock Indexes
	Operator Class
	Functional Indexes
	Partial Indexes
	Multicolumn Indexes

	Chapter 7. SQL: The PostgreSQL Way
	SQL Views
	Window Functions
	Partition By
	Order By

	Common Table Expressions
	Standard CTE
	Writeable CTEs
	Recursive CTE

	Constructions Unique to PostgreSQL
	DISTINCT ON
	LIMIT and OFFSET
	Shorthand Casting
	ILIKE for Case Insensitive Search
	Set Returning Functions in SELECT
	Selective DELETE, UPDATE, and SELECT from Inherited Tables
	RETURNING Changed Records
	Composite Types in Queries

	Chapter 8. Writing Functions
	Anatomy of PostgreSQL Functions
	Function Basics
	Trusted and Untrusted Languages

	Writing Functions with SQL
	Writing PL/pgSQL Functions
	Writing PL/Python Functions
	Basic Python Function

	Trigger Functions
	Aggregates

	Chapter 9. Query Performance Tuning
	EXPLAIN and EXPLAIN ANALYZE
	Writing Better Queries
	Overusing Subqueries in SELECT
	Avoid SELECT *
	Make Good Use of CASE

	Guiding the Query Planner
	Strategy Settings
	How Useful Is Your Index?
	Table Stats
	Random Page Cost and Quality of Drives

	Caching

	Chapter 10. Replication and External Data
	Replication Overview
	Replication Lingo
	PostgreSQL Built-in Replication Advancements
	Third-Party Replication Options

	Setting Up Replication
	Configuring the Master
	Configuring the Slaves
	Initiate the Replication Process

	Foreign Data Wrappers (FDW)
	Querying Simple Flat File Data Sources
	Querying More Complex Data Sources

	Appendix. Install, Hosting, and Command-Line Guides
	Installation Guides and Distributions
	Windows, Mac OS X, Linux Desktops
	Other Linux, Unix, Mac Distributions
	PostgreSQL Yum Repositories
	Ubuntu, Debian, OpenSUSE
	FreeBSD
	Mac OS X

	Where to Host PostgreSQL
	Virtual Private Server (VPS)/Virtual Dedicated Server
	Cloud Server Hosters
	PostgreSQL Database as a Service

	PostgreSQL Packaged Command-Line Tools
	Database Backup: pg_dump
	Server Backup: pg_dumpall
	Database Backup: pg_restore
	psql: Interactive and Scriptable
	psql Interactive Commands
	psql Non-Interactive Commands

